1
|
Peregud DI, Gulyaeva NV. Contribution of Visceral Systems to the Development of Substance Use Disorders: Translational Aspects of Interaction between Central and Peripheral Mechanisms. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1868-1888. [PMID: 39647817 DOI: 10.1134/s0006297924110026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 12/10/2024]
Abstract
Substance use disorders are associated with structural and functional changes in the neuroendocrine, neuromediator, and neuromodulator systems in brain areas involved in the reward and stress response circuits. Chronic intoxication provokes emergence of somatic diseases and aggravates existing pathologies. Substance use disorders and somatic diseases often exacerbate the clinical courses of each other. Elucidation of biochemical pathways common for comorbidities may serve as a basis for the development of new effective pharmacotherapy agents, as well as drug repurposing. Here, we discussed molecular mechanisms underlying integration of visceral systems into the central mechanisms of drug dependence.
Collapse
Affiliation(s)
- Danil I Peregud
- Serbsky National Medical Research Center for Psychiatry and Drug Addiction, Ministry of Health of the Russian Federation, Moscow, 119034, Russia.
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, 115419, Russia
| |
Collapse
|
2
|
Mountoufaris G, Nair A, Yang B, Kim DW, Vinograd A, Kim S, Linderman SW, Anderson DJ. A line attractor encoding a persistent internal state requires neuropeptide signaling. Cell 2024; 187:5998-6015.e18. [PMID: 39191257 PMCID: PMC11490375 DOI: 10.1016/j.cell.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 06/23/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Internal states drive survival behaviors, but their neural implementation is poorly understood. Recently, we identified a line attractor in the ventromedial hypothalamus (VMH) that represents a state of aggressiveness. Line attractors can be implemented by recurrent connectivity or neuromodulatory signaling, but evidence for the latter is scant. Here, we demonstrate that neuropeptidergic signaling is necessary for line attractor dynamics in this system by using cell-type-specific CRISPR-Cas9-based gene editing combined with single-cell calcium imaging. Co-disruption of receptors for oxytocin and vasopressin in adult VMH Esr1+ neurons that control aggression diminished attack, reduced persistent neural activity, and eliminated line attractor dynamics while only slightly reducing overall neural activity and sex- or behavior-specific tuning. These data identify a requisite role for neuropeptidergic signaling in implementing a behaviorally relevant line attractor in mammals. Our approach should facilitate mechanistic studies in neuroscience that bridge different levels of biological function and abstraction.
Collapse
Affiliation(s)
- George Mountoufaris
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Aditya Nair
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Program in Computation and Neural Systems, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Bin Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Dong-Wook Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Amit Vinograd
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Samuel Kim
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | - Scott W Linderman
- Department of Statistics, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - David J Anderson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA; Howard Hughes Medical Institute, Pasadena, CA 91001, USA.
| |
Collapse
|
3
|
Liu H, Yang G, Wang H. Oxytocin/Oxytocin Receptor Signalling in the Gastrointestinal System: Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:10935. [PMID: 39456718 PMCID: PMC11508134 DOI: 10.3390/ijms252010935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The neuropeptide hormone oxytocin (OT) is involved in various physiological and pathological processes via the oxytocin receptor (OTR). While OT is most widely known as a reproductive system hormone and a nervous system neurotransmitter, the OT/OTR system has gradually gained much attention for its role in the gastrointestinal (GI) system, such as the GI motility, secretion, and bowel inflammatory reactions. Its importance in GI cancers has also been reported in the past few decades. The promising clinical observations have revealed OT's anti-nociceptive effect, protective effect over gut injury, and the potential of using microbiota to naturally increase endogenous OT levels, which shed a light on the management of GI disorders with lower side effects. However, no current comprehensive review is available on the actions of OT/OTR in the GI tract. This review aims to present the lesser-known role of the OT/OTR system in the GI tract, and the most recent findings are discussed regarding the distribution and functional role of OTR signalling in regulating (patho)physiological functions of the GI tract. Special emphasis is placed on its therapeutic potential for clinical management of GI disorders, such as GI pain, inflammatory bowel disease (IBD), and irritable bowel syndrome (IBS). The recent characterisation of the OTR's crystal structure has advanced research for designing and identifying new OTR-specific molecules. Future in-depth basic and clinical research is needed to further elucidate the involvement and detailed mechanism of OT/OTR in GI disorders, and the development of OTR-specific ligands.
Collapse
Affiliation(s)
- Huiping Liu
- School of Pharmacy, Yantai University, Yantai 264005, China; (G.Y.); (H.W.)
| | | | | |
Collapse
|
4
|
Yu P, Cheng M, Wang N, Wu C, Qiang K. Pubertal maternal presence reduces anxiety and increases adult neurogenesis in Kunming mice offspring. Pharmacol Biochem Behav 2024; 243:173839. [PMID: 39079561 DOI: 10.1016/j.pbb.2024.173839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Puberty is a critical period of emotional development and neuroplasticity. However, most studies have focused on early development, with limited research on puberty, particularly the parental presence. In this study, four groups were established, and pubertal maternal presence (PMP) was assessed until postnatal days 21 (PD21), 28 (PD28), 35 (PD35), and 42 (PD42), respectively. The social interaction and anxiety behaviors, as well as the expression of oxytocin (OT) in the paraventricular nucleus (PVN) and supraoptic nucleus (SON), and the number of new generated neurons and the expression of estrogen receptor alpha (ERα) in the dentate gyrus (DG) were assessed. The results suggest that there is a lot of physical contact between the mother and offspring from 21 to 42 days of age, which reduces anxiety in both female and male offspring in adulthood; for example, the PMP increased the amount of time mice spent in the center area in the open field experiment and in the bright area in the light-dark box experiment. PMP increased OT expression in the PVN and SON and the number of newly generated neurons in the DG. However, there was a sexual difference in ERα, with ERα increasing in females but decreasing in males. In conclusion, PMP reduces the anxiety of offspring in adulthood, increases OT in the PVN and SON, and adult neurogenesis; ERα in the DG may be involved in this process.
Collapse
Affiliation(s)
- Peng Yu
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China.
| | - Miao Cheng
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Na Wang
- College of Life and Geographic Sciences, Kashi University, Kashi 844099, Xinjiang, China
| | - Chendong Wu
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| | - Keju Qiang
- Institute of Behavioral and Physical Sciences, College of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu, China
| |
Collapse
|
5
|
Hou C, Chen G, Li D, Wang X, Liu X, Cui D, Jiang Y, Liu Y, Wang P, Wang YF, Meng D, Jia S. Intranasal Application of Diluted Saline Alleviates Ischemic Brain Injury in Association with Suppression of Vasopressin Neurons. Neuroendocrinology 2024:1-22. [PMID: 39348823 DOI: 10.1159/000541648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
INTRODUCTION Cerebral swelling and brain injury in ischemic stroke are closely related to increased vasopressin (VP) secretion. How to alleviate ischemic brain injury by suppressing VP hypersecretion through simply available approaches remains to be established. METHODS Using a rat model of middle cerebral artery occlusion (MCAO), testing effects of the intranasal application of low concentration saline-0.09% NaCl (IAL) on brain damage, VP neuronal activity, synaptic inputs, astrocytic plasticity, and olfactory bulb (OB) activity in immunohistochemistry, patch-clamp recording, Western blotting, and co-immunoprecipitation. RESULTS IAL reduced MCAO-evoked neurological disorders, brain swelling, injury and loss of neurons, increase in c-Fos expression, and excitation of supraoptic VP neurons. The effects of IAL on VP neurons were associated with its suppression of MCAO-evoked increase in the frequency of excitatory synaptic inputs and decrease in the expression of glial fibrillary acidic protein (GFAP) filaments around VP neurons. MCAO and IAL also caused similar but weaker reactions in putative oxytocin neurons. In the OB, MCAO increased the firing rate of mitral cells on the MCAO side, which was reduced by IAL. A direct hypotonic challenge of OB slices increased the expression of glutamine synthetase and GFAP filaments in the glomerular bodies while reducing the firing rate of mitral cells. Blocking aquaporin 4 activity in the supraoptic and paraventricular nuclei on the MCAO side reduced MCAO-evoked VP increase and brain damage. CONCLUSION IAL reduces ischemic stroke-evoked brain injury in association with suppression of VP neuronal activity through reducing excitatory synaptic inputs and astrocytic process retraction, which likely result from reducing mitral cell activation in ischemic side.
Collapse
Affiliation(s)
- Chunmei Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Guichuan Chen
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Department of Medicine, Ziyang College of Dental Technology, Ziyang, China
| | - Di Li
- Department of Otolaryngology, The First Affiliated Hospital, Jiamusi University, Jiamusi, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xiaoyu Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dan Cui
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- School of Nursing, Dali University, Dali, China
| | - Yunhao Jiang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yang Liu
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Department of Clinical Laboratory, Quzhou People's Hospital, Quzhou, China
| | - Ping Wang
- Department of Genetics, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dexin Meng
- Department of Physiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, China
| | - Shuwei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Li T, Jiang YH, Wang X, Hou D, Jia SW, Wang YF. Immune-regulating effect of oxytocin and its association with the hypothalamic-pituitary axes. J Neuroimmunol 2024; 394:578419. [PMID: 39088908 DOI: 10.1016/j.jneuroim.2024.578419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
Oxytocin can regulate immunological activity directly or indirectly; however, immunological functions and mechanisms of oxytocin actions under chronic stress like cesarean delivery (CD) are poorly understood. Our study found that abnormal oxytocin production and secretion in CD rats caused atrophy of thymic tissues. Neurotoxin kainic acid microinjected into the dorsolateral supraoptic nucleus in male rats selectively reduced hypothalamic oxytocin levels, increased corticotrophin-releasing hormone and plasma interleukin-1β while reducing plasma oxytocin, thyroxine and testosterone levels and causing atrophy of immune tissues. Thus, plasma oxytocin is essential for immunological homeostasis, which involves oxytocin facilitation of thyroid hormone and sex steroid secretion.
Collapse
Affiliation(s)
- Tong Li
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China; Neuroelectrophysiology Laboratory, School of Mental Health, Qiqihar Medical University, Qiqihar, China.
| | - Yun-Hao Jiang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoran Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Dan Hou
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Shu-Wei Jia
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China.
| | - Yu-Feng Wang
- Department of Physiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China; School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
7
|
Coté JJ, Coté RD, Dilsaver DB, Stessman HAF, Watson C, Handelzalts J, Doehrman P, Walters RW, Badura-Brack AS. Human placental lactogen (human chorionic somatomammotropin) and oxytocin during pregnancy: Individual patterns and associations with maternal-fetal attachment, anxiety, and depression. Horm Behav 2024; 163:105560. [PMID: 38723407 DOI: 10.1016/j.yhbeh.2024.105560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/29/2024] [Accepted: 05/01/2024] [Indexed: 06/17/2024]
Abstract
Previous studies support links among maternal-fetal attachment, psychological symptoms, and hormones during pregnancy and the post-partum period. Other studies connect maternal feelings and behaviors to oxytocin and suggest that an increase in oxytocin during pregnancy may prime maternal-fetal attachment. To date, researchers have not examined a possible association between maternal-fetal attachment with human placental lactogen although animal models are suggestive. In the current study, we sought to describe oxytocin and human placental lactogen levels as related to psychological constructs across pregnancy. Seventy women participated in the study. At each of three time-points (early, mid, and late pregnancy), the women had their blood drawn to assess oxytocin and human placental lactogen levels, and they completed psychological assessments measuring maternal-fetal attachment, anxiety, and depression. Our results indicate that oxytocin levels were statistically similar across pregnancy, but that human placental lactogen significantly increased across pregnancy. Results did not indicate significant associations of within-person (comparing individuals to themselves) oxytocin or human placental lactogen levels with maternal-fetal attachment. Additionally, results did not show between-person (comparing individuals to other individuals) oxytocin or human placental lactogen levels with maternal-fetal attachment. Oxytocin levels were not associated with anxiety; rather the stage of pregnancy moderated the effect of the within-person OT level on depression. Notably, increasing levels of human placental lactogen were significantly associated with increasing levels of both anxiety and depression in between subject analyses. The current study is important because it describes typical hormonal and maternal fetal attachment levels during each stage of pregnancy, and because it suggests an association between human placental lactogen and psychological symptoms during pregnancy. Future research should further elucidate these relationships.
Collapse
Affiliation(s)
- John J Coté
- Department of Obstetrics and Gynecology, Creighton University School of Medicine, Omaha, NE, USA; Department of Obstetrics and Gynecology, CommonSpirit/CHI Health, Lakeside, Omaha, NE, USA.
| | | | - Danielle B Dilsaver
- Department of Clinical Research and Public Health, Creighton University School of Medicine, Omaha, NE, USA
| | - Holly A F Stessman
- Department of Pharmacology and Neuroscience, Creighton University School of Medicine, USA
| | - Cynthia Watson
- Biorepository Core, Creighton University School of Medicine, USA
| | - Jonathan Handelzalts
- The Academic College of Tel-Aviv, Graduate Program in Clinical Psychology, School of Behavioral Sciences, Yaffo, Israel; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Pooja Doehrman
- Department of Obstetrics and Gynecology, Creighton University School of Medicine, Phoenix, AZ 85013, USA; Department of Obstetrics and Gynecology, University of Arizona College of Medicine, Phoenix, AZ 85013, USA; Department of Obstetrics and Gynecology CommonSpirit/Dignity Health, Phoenix, AZ, USA
| | - Ryan W Walters
- Department of Clinical Research and Public Health, Creighton University School of Medicine, Omaha, NE, USA
| | - Amy S Badura-Brack
- Department of Psychological Science, Creighton University, Omaha, NE, USA
| |
Collapse
|
8
|
Nagasawa M, Tomori S, Mogi K, Kikusui T. Attachment-like behavioral expressions to humans in puppies are related to oxytocin and cortisol: A comparative study of Akitas and Labrador Retrievers. Peptides 2024; 177:171224. [PMID: 38636810 DOI: 10.1016/j.peptides.2024.171224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/13/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
This study investigated the relationship between urinary hormone concentrations and attachment-related behaviors in two dog breeds, the Akitas and Labrador Retrievers, to elucidate the hormonal and behavioral mechanisms underlying domestication and interspecies attachment to humans. By measuring cortisol and oxytocin concentrations, and conducting the Strange Situation Test (SST), we aimed to investigate breed differences in endocrine secretions associated with domestication and how these differences influence dog behavior toward humans. Our results showed significant breed differences in urinary cortisol concentrations, with Akitas exhibiting higher levels than Labrador Retrievers. This suggests a breed-specific stress response related to genetic proximity to wolves. However, oxytocin concentrations did not differ significantly, which suggests a complex interplay between factors influencing the domestication process and the formation of attachment behaviors. Behavioral observations during the SST revealed breed-specific patterns, with Labrador Retrievers showing more playful and attachment-like behaviors and Akitas showing more exploratory and passive behaviors. The study found correlations between hormones and behaviors within breeds, particularly in Labrador Retrievers, where oxytocin concentrations were associated with attachment-like behaviors, and cortisol concentrations reflected individual differences in physical activity rather than stress responses to social situations. These findings contribute to the understanding of the evolutionary and adaptive processes underlying the ability of domestic dogs to form close relationships with humans while highlighting the role of hormonal mechanisms in mediating attachment behaviors and the influence of breed-specific genetic backgrounds on these processes.
Collapse
Affiliation(s)
- Miho Nagasawa
- Department of Animal Science and Biotechnology, Azabu University, Japan
| | - Sakiko Tomori
- Department of Animal Science and Biotechnology, Azabu University, Japan
| | - Kazutaka Mogi
- Department of Animal Science and Biotechnology, Azabu University, Japan
| | - Takefumi Kikusui
- Department of Animal Science and Biotechnology, Azabu University, Japan.
| |
Collapse
|
9
|
Rappeneau V, Castillo Díaz F. Convergence of oxytocin and dopamine signalling in neuronal circuits: Insights into the neurobiology of social interactions across species. Neurosci Biobehav Rev 2024; 161:105675. [PMID: 38608828 DOI: 10.1016/j.neubiorev.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 04/14/2024]
Abstract
Social behaviour is essential for animal survival, and the hypothalamic neuropeptide oxytocin (OXT) critically impacts bonding, parenting, and decision-making. Dopamine (DA), is released by ventral tegmental area (VTA) dopaminergic neurons, regulating social cues in the mesolimbic system. Despite extensive exploration of OXT and DA roles in social behaviour independently, limited studies investigate their interplay. This narrative review integrates insights from human and animal studies, particularly rodents, emphasising recent research on pharmacological manipulations of OXT or DA systems in social behaviour. Additionally, we review studies correlating social behaviour with blood/cerebral OXT and DA levels. Behavioural facets include sociability, cooperation, pair bonding and parental care. In addition, we provide insights into OXT-DA interplay in animal models of social stress, autism, and schizophrenia. Emphasis is placed on the complex relationship between the OXT and DA systems and their collective influence on social behaviour across physiological and pathological conditions. Understanding OXT and DA imbalance is fundamental for unravelling the neurobiological underpinnings of social interaction and reward processing deficits observed in psychiatric conditions.
Collapse
Affiliation(s)
- Virginie Rappeneau
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany.
| | - Fernando Castillo Díaz
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, Regensburg 93053, Germany
| |
Collapse
|
10
|
Adedokun MA, Enye LA, Akinluyi ET, Ajibola TA, Edem EE. Black seed oil reverses chronic antibiotic-mediated depression and social behaviour deficits via modulation of hypothalamic mitochondrial-dependent markers and insulin expression. IBRO Neurosci Rep 2024; 16:267-279. [PMID: 38379607 PMCID: PMC10876594 DOI: 10.1016/j.ibneur.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024] Open
Abstract
Chronic antibiotic use has been reported to impair mitochondrial indices, hypothalamus-mediated metabolic function, and amygdala-regulated emotional processes. Natural substances such as black seed (Nigella sativa) oil could be beneficial in mitigating these impairments. This study aimed to assess the impact of black seed oil (NSO) on depression and sociability indices, redox imbalance, mitochondrial-dependent markers, and insulin expression in mice subjected to chronic ampicillin exposure. Forty adult male BALB/c mice (30 ± 2 g) were divided into five groups: the CTRL group received normal saline, the ABT group received ampicillin, the NSO group received black seed oil, the ABT/NSO group concurrently received ampicillin and black seed oil, and the ABT+NSO group experienced pre-exposure to ampicillin followed by subsequent treatment with black seed oil. The ampicillin-exposed group exhibited depressive-like behaviours, impaired social interactive behaviours, and disruptions in mitochondrial-dependent markers in plasma and hypothalamic tissues, accompanied by an imbalance in antioxidant levels. Moreover, chronic antibiotic exposure downregulated insulin expression in the hypothalamus. However, these impairments were significantly ameliorated in the ABT/NSO, and ABT+NSO groups compared to the untreated antibiotic-exposed group. Overall, findings from this study suggest the beneficial role of NSO as an adjuvant therapy in preventing and abrogating mood behavioural and neural-metabolic impairments of chronic antibiotic exposure.
Collapse
Affiliation(s)
- Mujeeb Adekunle Adedokun
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Linus Anderson Enye
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Elizabeth Toyin Akinluyi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Toheeb Adesumbo Ajibola
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Edem Ekpenyong Edem
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
11
|
Dale II J, Harberson MT, Hill JW. From Parental Behavior to Sexual Function: Recent Advances in Oxytocin Research. CURRENT SEXUAL HEALTH REPORTS 2024; 16:119-130. [PMID: 39224135 PMCID: PMC11365839 DOI: 10.1007/s11930-024-00386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 09/04/2024]
Abstract
Purpose of Review Oxytocin plays many diverse roles in physiological and behavioral processes, including social activity, parental nurturing, stress responses, and sexual function. In this narrative review, we provide an update on the most noteworthy recent findings in this fascinating field. Recent Findings The development of techniques such as serial two-photon tomography and fiber photometry have provided a window into oxytocin neuroanatomy and real-time neuronal activity during social interactions. fMRI and complementary mapping techniques offer new insights into oxytocin's influence on brain activity and connectivity. Indeed, oxytocin has recently been found to influence the acquisition of maternal care behaviors and to mediate the influence of social touch on brain development and social interaction. Additionally, oxytocin plays a crucial role in male sexual function, affecting erectile activity and ejaculation, while its role in females remains controversial. Recent studies also highlight oxytocin's interaction with other neuropeptides, such as melanin-concentrating hormone, serotonin, and arginine vasopressin, influencing social and affective behaviors. Finally, an update is provided on the status of clinical trials involving oxytocin as a therapeutic intervention. Summary The exploration of oxytocin's complexities and its interplay with other neuropeptides holds promise for targeted treatment in various health and disease contexts. Overall, these findings contribute to the discovery of new and specific pathways to allow therapeutic targeting of oxytocin to treat disorders.
Collapse
Affiliation(s)
- Joseph Dale II
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH USA
- Department of Biology, University of Toledo College of Medicine, Toledo, OH USA
| | - Mitchell T. Harberson
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, OH USA
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH USA
| | - Jennifer W. Hill
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, OH USA
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH USA
- Department of Obstetrics and Gynecology, University of Toledo College of Medicine, Toledo, OH USA
| |
Collapse
|
12
|
Hang S, Jost GM, Guyer AE, Robins RW, Hastings PD, Hostinar CE. Understanding the Development of Chronic Loneliness in Youth. CHILD DEVELOPMENT PERSPECTIVES 2024; 18:44-53. [PMID: 39463780 PMCID: PMC11504316 DOI: 10.1111/cdep.12496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Loneliness becomes more prevalent as youth transition from childhood into adolescence. A key underlying process may be the puberty-related increase in biological stress reactivity, which can alter social behavior and elicit conflict or social withdrawal ("fight-or-flight" behaviors) in some youth, but increased prosocial ("tend-and-befriend") responses in others. We propose an integrative theoretical model that identifies the social, personality, and biological characteristics underlying individual differences in social-behavioral responses to stress. This model posits a vicious cycle whereby youth who respond to stress with "fight-or-flight" tendencies develop increasing and chronic levels of loneliness across adolescence, whereas youth who display "tend-and-befriend" behaviors may be buffered from these consequences. Based on research supporting this model, we propose multiple intervention avenues for curtailing the prevalence of loneliness in adolescence by targeting key factors involved in its development: social relationships, personality, and stress-induced behavioral and biological changes.
Collapse
Affiliation(s)
- Sally Hang
- Psychology Department, University of
California-Davis
- Center for Mind and Brain, University of
California-Davis
| | - Geneva M. Jost
- Psychology Department, University of
California-Davis
- Center for Mind and Brain, University of
California-Davis
| | - Amanda E. Guyer
- Center for Mind and Brain, University of
California-Davis
- Department of Human Ecology, University of
California-Davis
| | | | - Paul D. Hastings
- Psychology Department, University of
California-Davis
- Center for Mind and Brain, University of
California-Davis
| | - Camelia E. Hostinar
- Psychology Department, University of
California-Davis
- Center for Mind and Brain, University of
California-Davis
| |
Collapse
|
13
|
Zhang Y, Huang W, Shan Z, Zhou Y, Qiu T, Hu L, Yang L, Wang Y, Xiao Z. A new experimental rat model of nocebo-related nausea involving double mechanisms of observational learning and conditioning. CNS Neurosci Ther 2024; 30:e14389. [PMID: 37545429 PMCID: PMC10848046 DOI: 10.1111/cns.14389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/23/2023] [Indexed: 08/08/2023] Open
Abstract
AIM The nocebo effect, such as nausea and vomiting, is one of the major reasons patients discontinue therapy. The underlying mechanisms remain unknown due to a lack of reliable experimental models. The goal of this study was to develop a new animal model of nocebo-related nausea by combining observational learning and Pavlovian conditioning paradigms. METHODS Male Sprague-Dawley rats with nitroglycerin-induced migraine were given 0.9% saline (a placebo) or LiCl (a nausea inducer) following headache relief, according to different paradigms. RESULTS Both strategies provoked nocebo nausea responses, with the conditioning paradigm having a greater induction impact. The superposition of two mechanisms led to a further increase in nausea responses. A preliminary investigation of the underlying mechanism revealed clearly raised peripheral and central cholecystokinin (CCK) levels, as well as specific changes in the 5-hydroxytryptamine and cannabinoid systems. Brain networks related to emotion, cognition, and visceral sense expressed higher c-Fos-positive neurons, including the anterior cingulate cortex (ACC), insula, basolateral amygdala (BLA), thalamic paraventricular nucleus (PVT), hypothalamic paraventricular nucleus (PVN), nucleus tractus solitarius (NTS), periaqueductal gray (PAG), and dorsal raphe nucleus-dorsal part (DRD). We also found that nausea expectances in the model could last for at least 12 days. CONCLUSION The present study provides a useful experimental model of nocebo nausea that might be used to develop potential molecular pathways and therapeutic strategies for nocebo.
Collapse
Affiliation(s)
- Yu Zhang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Wanbin Huang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Zhengming Shan
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Yanjie Zhou
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Tao Qiu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Luyu Hu
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Liu Yang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Yue Wang
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| | - Zheman Xiao
- Department of NeurologyRenmin Hospital of Wuhan UniversityWuhanHubei ProvinceChina
| |
Collapse
|
14
|
Wasilczuk AZ, Rinehart C, Aggarwal A, Stone ME, Mashour GA, Avidan MS, Kelz MB, Proekt A. Hormonal basis of sex differences in anesthetic sensitivity. Proc Natl Acad Sci U S A 2024; 121:e2312913120. [PMID: 38190526 PMCID: PMC10801881 DOI: 10.1073/pnas.2312913120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024] Open
Abstract
General anesthesia-a pharmacologically induced reversible state of unconsciousness-enables millions of life-saving procedures. Anesthetics induce unconsciousness in part by impinging upon sexually dimorphic and hormonally sensitive hypothalamic circuits regulating sleep and wakefulness. Thus, we hypothesized that anesthetic sensitivity should be sex-dependent and modulated by sex hormones. Using distinct behavioral measures, we show that at identical brain anesthetic concentrations, female mice are more resistant to volatile anesthetics than males. Anesthetic sensitivity is bidirectionally modulated by testosterone. Castration increases anesthetic resistance. Conversely, testosterone administration acutely increases anesthetic sensitivity. Conversion of testosterone to estradiol by aromatase is partially responsible for this effect. In contrast, oophorectomy has no effect. To identify the neuronal circuits underlying sex differences, we performed whole brain c-Fos activity mapping under anesthesia in male and female mice. Consistent with a key role of the hypothalamus, we found fewer active neurons in the ventral hypothalamic sleep-promoting regions in females than in males. In humans, we demonstrate that females regain consciousness and recover cognition faster than males after identical anesthetic exposures. Remarkably, while behavioral and neurocognitive measures in mice and humans point to increased anesthetic resistance in females, cortical activity fails to show sex differences under anesthesia in either species. Cumulatively, we demonstrate that sex differences in anesthetic sensitivity are evolutionarily conserved and not reflected in conventional electroencephalographic-based measures of anesthetic depth. This covert resistance to anesthesia may explain the higher incidence of unintended awareness under general anesthesia in females.
Collapse
Affiliation(s)
- Andrzej Z. Wasilczuk
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Cole Rinehart
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
| | - Adeeti Aggarwal
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
| | - Martha E. Stone
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
| | - George A. Mashour
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI48105
| | - Michael S. Avidan
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
| | - Max B. Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Alex Proekt
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Neuroscience of Unconsciousness and Reanimation Research Alliance, Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA19104
- Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - ReCCognition Study Group
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA19104
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI48105
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
15
|
Shimizu M, Yoshimura M, Baba K, Ikeda N, Nonaka Y, Maruyama T, Onaka T, Ueta Y. Deschloroclozapine exhibits an exquisite agonistic effect at lower concentration compared to clozapine-N-oxide in hM3Dq expressing chemogenetically modified rats. Front Neurosci 2023; 17:1301515. [PMID: 38099201 PMCID: PMC10720889 DOI: 10.3389/fnins.2023.1301515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Within the realm of chemogenetics, a particular form of agonists targeting designer receptors exclusively activated by designer drugs (DREADDs) has emerged. Deschloroclozapine (DCZ), a recently introduced DREADDs agonist, demonstrates remarkable potency in activating targeted neurons at a lower dosage compared to clozapine-N-oxide (CNO). Methods We conducted a comparative analysis of the effects of subcutaneously administered CNO (1 mg/kg) and DCZ (0.1 mg/kg) in our transgenic rats expressing hM3Dq and mCherry exclusively in oxytocin (OXT) neurons. Results and Discussion Notably, DCZ exhibited a swift and robust elevation of serum OXT, surpassing the effects of CNO, with a significant increase in the area under the curve (AUC) up to 3 hours post-administration. Comprehensive assessment of brain neuronal activity, using Fos as an indicator, revealed comparable effects between CNO and DCZ. Additionally, in a neuropathic pain model, both CNO and DCZ increased the mechanical nociceptive and thermal thresholds; however, the DCZ-treated group exhibited a significantly accelerated onset of the effects, aligning harmoniously with the observed alterations in serum OXT concentration following DCZ administration. These findings emphasize the remarkable efficacy of DCZ in rats, suggesting its equivalent or potentially superior performance to CNO at considerably lower dosages, thus positioning it as a promising contender among DREADDs agonists.
Collapse
Affiliation(s)
- Makiko Shimizu
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Mitsuhiro Yoshimura
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Kazuhiko Baba
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Naofumi Ikeda
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
- Department of Orthopaedic Surgery, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuki Nonaka
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takashi Maruyama
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke, Japan
| | - Yoichi Ueta
- Department of Physiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
16
|
Mountoufaris G, Nair A, Yang B, Kim DW, Anderson DJ. Neuropeptide Signaling is Required to Implement a Line Attractor Encoding a Persistent Internal Behavioral State. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565073. [PMID: 37961374 PMCID: PMC10635056 DOI: 10.1101/2023.11.01.565073] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Internal states drive survival behaviors, but their neural implementation is not well understood. Recently we identified a line attractor in the ventromedial hypothalamus (VMH) that represents an internal state of aggressiveness. Line attractors can be implemented by recurrent connectivity and/or neuromodulatory signaling, but evidence for the latter is scant. Here we show that neuropeptidergic signaling is necessary for line attractor dynamics in this system, using a novel approach that integrates cell type-specific, anatomically restricted CRISPR/Cas9-based gene editing with microendoscopic calcium imaging. Co-disruption of receptors for oxytocin and vasopressin in adult VMH Esr1 + neurons that control aggression suppressed attack, reduced persistent neural activity and eliminated line attractor dynamics, while only modestly impacting neural activity and sex- or behavior-tuning. These data identify a requisite role for neuropeptidergic signaling in implementing a behaviorally relevant line attractor. Our approach should facilitate mechanistic studies in neuroscience that bridge different levels of biological function and abstraction.
Collapse
|
17
|
Berendzen KM, Bales KL, Manoli DS. Attachment across the lifespan: Examining the intersection of pair bonding neurobiology and healthy aging. Neurosci Biobehav Rev 2023; 153:105339. [PMID: 37536581 PMCID: PMC11073483 DOI: 10.1016/j.neubiorev.2023.105339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023]
Abstract
Increasing evidence suggests that intact social bonds are protective against age-related morbidity, while bond disruption and social isolation increase the risk for multiple age-related diseases. Social attachments, the enduring, selective bonds formed between individuals, are thus essential to human health. Socially monogamous species like the prairie vole (M. ochrogaster) form long-term pair bonds, allowing us to investigate the mechanisms underlying attachment and the poorly understood connection between social bonds and health. In this review, we explore several potential areas of focus emerging from data in humans and other species associating attachment and healthy aging, and evidence from prairie voles that may clarify this link. We examine gaps in our understanding of social cognition and pair bond behavior. Finally, we discuss physiologic pathways related to pair bonding that promote resilience to the processes of aging and age-related disease. Advances in the development of molecular genetic tools in monogamous species will allow us to bridge the mechanistic gaps presented and identify conserved research and therapeutic targets relevant to human health and aging.
Collapse
Affiliation(s)
- Kristen M. Berendzen
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
| | - Karen L. Bales
- Department of Psychology, University of California, Davis; Davis, CA 95616, USA
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis; Davis, CA 95616, USA
| | - Devanand S. Manoli
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Center for Integrative Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Weill Institute for Neurosciences, University of California, San Francisco; San Francisco, CA 95158, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 95158, USA
- Neurosciences Graduate Program, University of California, San Francisco; San Francisco, CA 95158, USA
| |
Collapse
|
18
|
Liu S, Huang R, Li A, Yu S, Yao S, Xu J, Tang L, Li W, Gan C, Cheng H. The role of the oxytocin system in the resilience of patients with breast cancer. Front Oncol 2023; 13:1187477. [PMID: 37781188 PMCID: PMC10534028 DOI: 10.3389/fonc.2023.1187477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/29/2023] [Indexed: 10/03/2023] Open
Abstract
Breast cancer is a grave traumatic experience that can profoundly compromise patients' psychological resilience, impacting their overall quality of life. The oxytocin system represents one of the essential neurobiological bases of psychological resilience and plays a critical role in regulating resilience in response to social or traumatic events during adulthood. Oxytocin, through its direct interaction with peripheral or central oxytocin receptors, has been found to have a significant impact on regulating social behavior. However, the precise mechanism by which the activation of peripheral oxytocin receptors leads to improved social is still not completely comprehended and requires additional research. Its activation can modulate psychological resilience by influencing estrogen and its receptors, the hypothalamic-pituitary-adrenal axis, thyroid function, 5-hydroxytryptamine metabolism levels, and arginine pressure release in breast cancer patients. Various interventions, including psychotherapy and behavioral measures, have been employed to improve the psychological resilience of breast cancer patients. The potential effectiveness of such interventions may be underpinned by their ability to modulate oxytocin release levels. This review provides an overview of the oxytocin system and resilience in breast cancer patients and identifies possible future research directions and interventions.
Collapse
Affiliation(s)
- Shaochun Liu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Runze Huang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Anlong Li
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Sheng Yu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Senbang Yao
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jian Xu
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lingxue Tang
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wen Li
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chen Gan
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Huaidong Cheng
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
- Shenzhen Clinical Medical School of Southern Medical University, Guangzhou, China
- Department of Oncology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
19
|
Hinchado MD, Otero E, Gálvez I, Martín-Cordero L, Navarro MDC, Ortega E. Subjective Sleep Quality Versus Objective Accelerometric Measures of Sleep and Systemic Concentrations of Sleep-Related Hormones as Objective Biomarkers in Fibromyalgia Patients. Biomedicines 2023; 11:1980. [PMID: 37509619 PMCID: PMC10377165 DOI: 10.3390/biomedicines11071980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Poor quality of sleep leads to an increase in severity of the symptoms associated with fibromyalgia (FM) syndrome and vice versa. The aim of this study was to determine if the poor perceived sleep quality in FM patients could be corroborated by objective physiological determinations. Perceived sleep quality was evaluated (through the Pittsburgh Sleep Quality Index) in 68 FM patients compared to an age-matched reference group of 68 women without FM. Objective sleep quality (measured using accelerometry), and systemic concentrations of sleep-related hormones (catecholamines, oxytocin, serotonin, and melatonin) were evaluated in two representative groups from the reference control group (n = 11) and FM patients (n = 11). FM patients reported poorer subjective sleep quality compared to the reference group. However, no significant differences were found in accelerometry parameters, except for a delay in getting in and out of bed. In addition, FM patients showed no significant differences in oxytocin concentration and adrenaline/noradrenaline ratio, as well as a lower serotonin/melatonin ratio. Poor perception of sleep quality in FM patients does not correspond to objective determinations. A dysregulation of the stress response could be associated with the delay in their resting circadian rhythm and difficulty falling asleep. This would be the cause that justifies the perceived lack of rest and the fatigue they feel when waking up.
Collapse
Affiliation(s)
- María Dolores Hinchado
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Av. de Elvas s/n, 06080 Badajoz, Spain
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain
| | - Eduardo Otero
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Av. de Elvas s/n, 06080 Badajoz, Spain
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain
| | - Isabel Gálvez
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Av. de Elvas s/n, 06080 Badajoz, Spain
- Immunophysiology Research Group, Nursing Department, Faculty of Medicine and Health Sciences, University of Extremadura, 06071 Badajoz, Spain
| | - Leticia Martín-Cordero
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Av. de Elvas s/n, 06080 Badajoz, Spain
- Immunophysiology Research Group, Nursing Department, University Center of Plasencia, University of Extremadura, 10600 Plasencia, Spain
| | - María Del Carmen Navarro
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Av. de Elvas s/n, 06080 Badajoz, Spain
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain
| | - Eduardo Ortega
- Immunophysiology Research Group, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Av. de Elvas s/n, 06080 Badajoz, Spain
- Immunophysiology Research Group, Physiology Department, Faculty of Sciences, University of Extremadura, 06071 Badajoz, Spain
| |
Collapse
|
20
|
Kozlakidis Z, Shi P, Abarbanel G, Klein C, Sfera A. Recent Developments in Protein Lactylation in PTSD and CVD: Novel Strategies and Targets. BIOTECH 2023; 12:38. [PMID: 37218755 PMCID: PMC10204439 DOI: 10.3390/biotech12020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
In 1938, Corneille Heymans received the Nobel Prize in physiology for discovering that oxygen sensing in the aortic arch and carotid sinus was mediated by the nervous system. The genetics of this process remained unclear until 1991 when Gregg Semenza while studying erythropoietin, came upon hypoxia-inducible factor 1, for which he obtained the Nobel Prize in 2019. The same year, Yingming Zhao found protein lactylation, a posttranslational modification that can alter the function of hypoxia-inducible factor 1, the master regulator of cellular senescence, a pathology implicated in both post-traumatic stress disorder (PTSD) and cardiovascular disease (CVD). The genetic correlation between PTSD and CVD has been demonstrated by many studies, of which the most recent one utilizes large-scale genetics to estimate the risk factors for these conditions. This study focuses on the role of hypertension and dysfunctional interleukin 7 in PTSD and CVD, the former caused by stress-induced sympathetic arousal and elevated angiotensin II, while the latter links stress to premature endothelial cell senescence and early vascular aging. This review summarizes the recent developments and highlights several novel PTSD and CVD pharmacological targets. They include lactylation of histone and non-histone proteins, along with the related biomolecular actors such as hypoxia-inducible factor 1α, erythropoietin, acid-sensing ion channels, basigin, and Interleukin 7, as well as strategies to delay premature cellular senescence by telomere lengthening and resetting the epigenetic clock.
Collapse
Affiliation(s)
- Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization (IARC/WHO), 69372 Lyon, France
| | - Patricia Shi
- Department of Psychiatry, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ganna Abarbanel
- Patton State Hospital, University of California, Riverside, CA 92521, USA
| | | | - Adonis Sfera
- Patton State Hospital, University of California, Riverside, CA 92521, USA
- Department of Psychiatry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
21
|
Handlin L, Novembre G, Lindholm H, Kämpe R, Paul E, Morrison I. Human endogenous oxytocin and its neural correlates show adaptive responses to social touch based on recent social context. eLife 2023; 12:81197. [PMID: 37157840 PMCID: PMC10168694 DOI: 10.7554/elife.81197] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023] Open
Abstract
Both oxytocin (OT) and touch are key mediators of social attachment. In rodents, tactile stimulation elicits the endogenous release of OT, potentially facilitating attachment and other forms of prosocial behavior, yet the relationship between endogenous OT and neural modulation remains unexplored in humans. Using a serial sampling of plasma hormone levels during functional neuroimaging across two successive social interactions, we show that contextual circumstances of social touch influence not only current hormonal and brain responses but also later responses. Namely, touch from a male to his female romantic partner enhanced her subsequent OT release for touch from an unfamiliar stranger, yet females' OT responses to partner touch were dampened following stranger touch. Hypothalamus and dorsal raphe activation reflected plasma OT changes during the initial social interaction. In the subsequent interaction, precuneus and parietal-temporal cortex pathways tracked time- and context-dependent variables in an OT-dependent manner. This OT-dependent cortical modulation included a region of the medial prefrontal cortex that also covaried with plasma cortisol, suggesting an influence on stress responses. These findings demonstrate that modulation between hormones and the brain during human social interactions can flexibly adapt to features of social context over time.
Collapse
Affiliation(s)
- Linda Handlin
- Department of Biomedicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Giovanni Novembre
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Helene Lindholm
- Department of Biomedicine, School of Health Sciences, University of Skövde, Skövde, Sweden
| | - Robin Kämpe
- Center for Medical Image Science and Visualization (CMIV) Linköping University Hospital, Linköping, Sweden
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Elisabeth Paul
- Center for Medical Image Science and Visualization (CMIV) Linköping University Hospital, Linköping, Sweden
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - India Morrison
- Division of Neurobiology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV) Linköping University Hospital, Linköping, Sweden
| |
Collapse
|
22
|
Jiang Y, Wei D, Xie Y. Functional modular networks identify the pivotal genes associated with morphine addiction and potential drug therapies. BMC Anesthesiol 2023; 23:151. [PMID: 37138216 PMCID: PMC10155436 DOI: 10.1186/s12871-023-02111-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 04/25/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND Chronic morphine usage induces lasting molecular and microcellular adaptations in distinct brain areas, resulting in addiction-related behavioural abnormalities, drug-seeking, and relapse. Nonetheless, the mechanisms of action of the genes responsible for morphine addiction have not been exhaustively studied. METHODS We obtained morphine addiction-related datasets from the Gene Expression Omnibus (GEO) database and screened for Differentially Expressed Genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) functional modularity constructs were analyzed for genes associated with clinical traits. Venn diagrams were filtered for intersecting common DEGs (CDEGs). Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis for functional annotation. Protein-protein interaction network (PPI) and CytoHubba were used to screen for hub genes. Potential treatments for morphine addiction were figured out with the help of an online database. RESULTS Sixty-five common differential genes linked to morphine addiction were identified, and functional enrichment analysis showed that they were primarily involved in ion channel activity, protein transport, the oxytocin signalling pathway, neuroactive ligand-receptor interactions, and other signalling pathways. Based on the PPI network, ten hub genes (CHN2, OLIG2, UGT8A, CACNB2, TIMP3, FKBP5, ZBTB16, TSC22D3, ISL1, and SLC2A1) were checked. In the data set GSE7762, all of the Area Under Curve (AUC) values for the hub gene Receiver Operating Characteristic (ROC) curves were greater than 0.8. We also used the DGIdb database to look for eight small-molecule drugs that might be useful for treating morphine addiction. CONCLUSIONS The hub genes are crucial genes associated with morphine addiction in the mouse striatum. The oxytocin signalling pathway may play a vital role in developing morphine addiction.
Collapse
Affiliation(s)
- Yage Jiang
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 China
| | - Donglei Wei
- Department of Traumatology Orthopedic Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021 China
| |
Collapse
|
23
|
Pozo M, Milà-Guasch M, Haddad-Tóvolli R, Boudjadja M, Chivite I, Toledo M, Gómez-Valadés A, Eyre E, Ramírez S, Obri A, Ben-Ami Bartal I, D'Agostino G, Costa-Font J, Claret M. Negative energy balance hinders prosocial helping behavior. Proc Natl Acad Sci U S A 2023; 120:e2218142120. [PMID: 37023123 PMCID: PMC10104524 DOI: 10.1073/pnas.2218142120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/02/2023] [Indexed: 04/07/2023] Open
Abstract
The internal state of an animal, including homeostatic requirements, modulates its behavior. Negative energy balance stimulates hunger, thus promoting a range of actions aimed at obtaining food. While these survival actions are well established, the influence of the energy status on prosocial behavior remains unexplored. We developed a paradigm to assess helping behavior in which a free mouse was faced with a conspecific trapped in a restrainer. We measured the willingness of the free mouse to liberate the confined mouse under diverse metabolic conditions. Around 42% of ad libitum-fed mice exhibited a helping behavior, as evidenced by the reduction in the latencies to release the trapped cagemate. This behavior was independent of subsequent social contact reward and was associated with changes in corticosterone indicative of emotional contagion. This decision-making process was coupled with reduced blood glucose excursions and higher Adenosine triphosphate (ATP):Adenosine diphosphate (ADP) ratios in the forebrain of helper mice, suggesting that it was a highly energy-demanding process. Interestingly, chronic (food restriction and type 2 diabetes) and acute (chemogenetic activation of hunger-promoting AgRP neurons) situations mimicking organismal negative energy balance and enhanced appetite attenuated helping behavior toward a distressed conspecific. To investigate similar effects in humans, we estimated the influence of glycated hemoglobin (a surrogate of long-term glycemic control) on prosocial behavior (namely charity donation) using the Understanding Society dataset. Our results evidenced that organismal energy status markedly influences helping behavior and that hypothalamic AgRP neurons are at the interface of metabolism and prosocial behavior.
Collapse
Affiliation(s)
- Macarena Pozo
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Maria Milà-Guasch
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Roberta Haddad-Tóvolli
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Mehdi Boutagouga Boudjadja
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, M13 9PTManchester, United Kingdom
| | - Iñigo Chivite
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Miriam Toledo
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Alicia G. Gómez-Valadés
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Elena Eyre
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Sara Ramírez
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Arnaud Obri
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
| | - Inbal Ben-Ami Bartal
- School of Psychological Sciences, Tel-Aviv University, 6997801Tel Aviv, Israel
- Sagol School of Neuroscience, Tel-Aviv University, 6997801Tel Aviv, Israel
| | - Giuseppe D'Agostino
- Faculty of Biology, Medicine and Health, School of Medical Sciences, University of Manchester, M13 9PTManchester, United Kingdom
| | - Joan Costa-Font
- Department of Health Policy, London School of Economics and Political Science, WC2A 2AELondon, United Kingdom
| | - Marc Claret
- Neuronal Control of Metabolism Laboratory, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Spain
- School of Medicine, Universitat de Barcelona, 08036Barcelona, Spain
| |
Collapse
|
24
|
Zayan U, Caccialupi Da Prato L, Muscatelli F, Matarazzo V. Modulation of the thermosensory system by oxytocin. Front Mol Neurosci 2023; 15:1075305. [PMID: 36698777 PMCID: PMC9868264 DOI: 10.3389/fnmol.2022.1075305] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
Oxytocin (OT) is a neurohormone involved early in neurodevelopment and is implicated in multiple functions, including sensory modulation. Evidence of such modulation has been observed for different sensory modalities in both healthy and pathological conditions. This review summarizes the pleiotropic modulation that OT can exercise on an often overlooked sensory system: thermosensation. This system allows us to sense temperature variations and compensate for the variation to maintain a stable core body temperature. Oxytocin modulates autonomic and behavioral mechanisms underlying thermoregulation at both central and peripheral levels. Hyposensitivity or hypersensitivity for different sensory modalities, including thermosensitivity, is a common feature in autism spectrum disorder (ASD), recapitulated in several ASD mouse models. These sensory dysregulations occur early in post-natal development and are correlated with dysregulation of the oxytocinergic system. In this study, we discussed the potential link between thermosensory atypia and the dysregulation of the oxytocinergic system in ASD.
Collapse
|
25
|
Chen Z, Wang Q, Xue X, Huang Z, Wang Y. The neural connections of oxytocin-mediated parental behavior in male mice. Front Mol Neurosci 2023; 16:1091139. [PMID: 36910264 PMCID: PMC9998477 DOI: 10.3389/fnmol.2023.1091139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Affiliation(s)
- Zhichao Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Qian Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiumin Xue
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhihui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
26
|
Neurobiology of Maternal Behavior in Nonhuman Mammals: Acceptance, Recognition, Motivation, and Rejection. Animals (Basel) 2022; 12:ani12243589. [PMID: 36552508 PMCID: PMC9774276 DOI: 10.3390/ani12243589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Among the different species of mammals, the expression of maternal behavior varies considerably, although the end points of nurturance and protection are the same. Females may display passive or active responses of acceptance, recognition, rejection/fear, or motivation to care for the offspring. Each type of response may indicate different levels of neural activation. Different natural stimuli can trigger the expression of maternal and paternal behavior in both pregnant or virgin females and males, such as hormone priming during pregnancy, vagino-cervical stimulation during parturition, mating, exposure to pups, previous experience, or environmental enrichment. Herein, we discuss how the olfactory pathways and the interconnections of the medial preoptic area (mPOA) with structures such as nucleus accumbens, ventral tegmental area, amygdala, and bed nucleus of stria terminalis mediate maternal behavior. We also discuss how the triggering stimuli activate oxytocin, vasopressin, dopamine, galanin, and opioids in neurocircuitries that mediate acceptance, recognition, maternal motivation, and rejection/fear.
Collapse
|
27
|
Catarino S. Genetic determinants of arterial hypertension: A case of oxytocin receptor gene polymorphism. Rev Port Cardiol 2022; 41:917-918. [PMID: 39492196 DOI: 10.1016/j.repc.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Steve Catarino
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
28
|
Tsingotjidou AS. Oxytocin: A Multi-Functional Biomolecule with Potential Actions in Dysfunctional Conditions; From Animal Studies and Beyond. Biomolecules 2022; 12:1603. [PMID: 36358953 PMCID: PMC9687803 DOI: 10.3390/biom12111603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/20/2022] [Accepted: 10/23/2022] [Indexed: 10/13/2023] Open
Abstract
Oxytocin is a hormone secreted from definite neuroendocrine neurons located in specific nuclei in the hypothalamus (mainly from paraventricular and supraoptic nuclei), and its main known function is the contraction of uterine and/or mammary gland cells responsible for parturition and breastfeeding. Among the actions of the peripherally secreted oxytocin is the prevention of different degenerative disorders. These actions have been proven in cell culture and in animal models or have been tested in humans based on hypotheses from previous studies. This review presents the knowledge gained from the previous studies, displays the results from oxytocin intervention and/or treatment and proposes that the well described actions of oxytocin might be connected to other numerous, diverse actions of the biomolecule.
Collapse
Affiliation(s)
- Anastasia S Tsingotjidou
- Laboratory of Anatomy, Histology and Embryology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece
| |
Collapse
|
29
|
Manjila SB, Betty R, Kim Y. Missing pieces in decoding the brain oxytocin puzzle: Functional insights from mouse brain wiring diagrams. Front Neurosci 2022; 16:1044736. [PMID: 36389241 PMCID: PMC9643707 DOI: 10.3389/fnins.2022.1044736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/06/2022] [Indexed: 10/24/2023] Open
Abstract
The hypothalamic neuropeptide, oxytocin (Oxt), has been the focus of research for decades due to its effects on body physiology, neural circuits, and various behaviors. Oxt elicits a multitude of actions mainly through its receptor, the Oxt receptor (OxtR). Despite past research to understand the central projections of Oxt neurons and OxtR- coupled signaling pathways in different brain areas, it remains unclear how this nonapeptide exhibits such pleiotropic effects while integrating external and internal information. Most reviews in the field either focus on neuroanatomy of the Oxt-OxtR system, or on the functional effects of Oxt in specific brain areas. Here, we provide a review by integrating brain wide connectivity of Oxt neurons and their downstream circuits with OxtR expression in mice. We categorize Oxt connected brain regions into three functional modules that regulate the internal state, somatic visceral, and cognitive response. Each module contains three neural circuits that process distinct behavioral effects. Broad innervations on functional circuits (e.g., basal ganglia for motor behavior) enable Oxt signaling to exert coordinated modulation in functionally inter-connected circuits. Moreover, Oxt acts as a neuromodulator of neuromodulations to broadly control the overall state of the brain. Lastly, we discuss the mismatch between Oxt projections and OxtR expression across various regions of the mouse brain. In summary, this review brings forth functional circuit-based analysis of Oxt connectivity across the whole brain in light of Oxt release and OxtR expression and provides a perspective guide to future studies.
Collapse
Affiliation(s)
| | | | - Yongsoo Kim
- Department of Neural and Behavioral Sciences, The Pennsylvania State University, Hershey, PA, United States
| |
Collapse
|