1
|
Han N, Yuan Z, Zhao H, Chang X, Chen Y, Zhang M, Wang Y. Relationship between serum NLRP3 along with its effector molecules and pregnancy outcomes in women with hyperglycemia. J Matern Fetal Neonatal Med 2024; 37:2312447. [PMID: 38350233 DOI: 10.1080/14767058.2024.2312447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024]
Abstract
OBJECTIVE The study aims to investigate the levels of serum NLRP3 along with its effector molecules (Caspase-1, IL-1β, and IL-18) in the mid-pregnancy in pregnant women with hyperglycemia, and explore the relationship between NLRP3, along with its effector molecules (Caspase-1, IL-1β, and IL-18) and insulin resistance, as well as pregnancy outcomes. METHODS The levels of serum NLRP3 along with its effector molecules (Caspase-1, IL-1β, and IL-18) in three groups of pregnant women with gestational diabetes mellitus (GDM), pregestational diabetes mellitus (PGDM) and normal glucose tolerance (NGT) were measured in mid-pregnancy, and their relationship with insulin resistance and pregnancy outcomes was analyzed. The ROC curve was also used to evaluate the predictive value of serum NLRP3 inflammasome and its effector molecules for pregnancy outcomes. RESULTS There were no statistical differences in the general clinical data of the three groups, and the concentrations of serum NLRP3 along with its effector molecules were higher in the GDM and PGDM groups than in the NGT group, and NLRP3 along with its effector molecules were positively correlated with fasting blood glucose, fasting insulin, and insulin resistance index in both groups (r > 0, p < .05). The incidence of preterm delivery, hypertensive disorders of pregnancy, premature rupture of membranes, neonatal hypoglycemia and macrosomia was significantly higher in both groups than in the NGT group (p < .05). The value of the combined serum NLRP3 and its effector molecules in mid-pregnancy to predict adverse pregnancy outcomes was highest, and the AUCs for the combined prediction of late hypertensive disorders of pregnancy, premature rupture of membranes, preterm delivery, neonatal hypoglycemia and macrosomia were 0.84 (95% CI 0.79-0.88, p < .001), 0.81 (95% CI 0.75-0.85, p < .001), 0.76 (95% CI 0.70-0.81, p < .001), 0.76 (95% CI 0.70-0.81, p < .001) and 0.72 (95% CI 0.63-0.81, p < .001), respectively. CONCLUSIONS Increased serum NLRP3 along with its effector molecules in pregnant women with hyperglycemia are associated with the levels of insulin resistance and the subsequent development of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Ning Han
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zili Yuan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyang Zhao
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinyuan Chang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Chen
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Miao Zhang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yizhan Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Shaffer Z, Romero R, Tarca AL, Galaz J, Arenas-Hernandez M, Gudicha DW, Chaiworapongsa T, Jung E, Suksai M, Theis KR, Gomez-Lopez N. The vaginal immunoproteome for the prediction of spontaneous preterm birth: A retrospective longitudinal study. eLife 2024; 13:e90943. [PMID: 38913421 PMCID: PMC11196114 DOI: 10.7554/elife.90943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Background Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Most cases of preterm birth occur spontaneously and result from preterm labor with intact (spontaneous preterm labor [sPTL]) or ruptured (preterm prelabor rupture of membranes [PPROM]) membranes. The prediction of spontaneous preterm birth (sPTB) remains underpowered due to its syndromic nature and the dearth of independent analyses of the vaginal host immune response. Thus, we conducted the largest longitudinal investigation targeting vaginal immune mediators, referred to herein as the immunoproteome, in a population at high risk for sPTB. Methods Vaginal swabs were collected across gestation from pregnant women who ultimately underwent term birth, sPTL, or PPROM. Cytokines, chemokines, growth factors, and antimicrobial peptides in the samples were quantified via specific and sensitive immunoassays. Predictive models were constructed from immune mediator concentrations. Results Throughout uncomplicated gestation, the vaginal immunoproteome harbors a cytokine network with a homeostatic profile. Yet, the vaginal immunoproteome is skewed toward a pro-inflammatory state in pregnant women who ultimately experience sPTL and PPROM. Such an inflammatory profile includes increased monocyte chemoattractants, cytokines indicative of macrophage and T-cell activation, and reduced antimicrobial proteins/peptides. The vaginal immunoproteome has improved predictive value over maternal characteristics alone for identifying women at risk for early (<34 weeks) sPTB. Conclusions The vaginal immunoproteome undergoes homeostatic changes throughout gestation and deviations from this shift are associated with sPTB. Furthermore, the vaginal immunoproteome can be leveraged as a potential biomarker for early sPTB, a subset of sPTB associated with extremely adverse neonatal outcomes. Funding This research was conducted by the Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS) under contract HHSN275201300006C. ALT, KRT, and NGL were supported by the Wayne State University Perinatal Initiative in Maternal, Perinatal and Child Health.
Collapse
Affiliation(s)
- Zachary Shaffer
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Physiology, Wayne State University School of MedicineDetroitUnited States
| | - Roberto Romero
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, University of MichiganAnn ArborUnited States
- Department of Epidemiology and Biostatistics, Michigan State UniversityEast LansingUnited States
| | - Adi L Tarca
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Computer Science, Wayne State University College of EngineeringDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
| | - Jose Galaz
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de ChileSantiagoChile
| | - Marcia Arenas-Hernandez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Dereje W Gudicha
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Tinnakorn Chaiworapongsa
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Eunjung Jung
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Manaphat Suksai
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
| | - Kevin R Theis
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| | - Nardhy Gomez-Lopez
- Pregnancy Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS)BethesdaUnited States
- Department of Obstetrics and Gynecology, Wayne State University School of MedicineDetroitUnited States
- Center for Molecular Medicine and Genetics, Wayne State UniversityDetroitUnited States
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of MedicineDetroitUnited States
| |
Collapse
|
3
|
DeTomaso A, Kim H, Shauh J, Adulla A, Zigo S, Ghoul M, Presicce P, Kallapur SG, Goodman W, Tilburgs T, Way SS, Hackney D, Moore J, Mesiano S. Progesterone inactivation in decidual stromal cells: A mechanism for inflammation-induced parturition. Proc Natl Acad Sci U S A 2024; 121:e2400601121. [PMID: 38861608 PMCID: PMC11194587 DOI: 10.1073/pnas.2400601121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
The process of human parturition involves inflammation at the interface where fetal chorion trophoblast cells interact with maternal decidual stromal (DS) cells and maternal immune cells in the decidua (endometrium of pregnancy). This study tested the hypothesis that inflammation at the chorion-decidua interface (CDI) induces labor by negating the capacity for progesterone (P4) to block labor and that this is mediated by inactivation of P4 in DS cells by aldo-keto reductase family 1 member C1 (AKR1C1). In human, Rhesus macaque, and mouse CDI, AKR1C1 expression increased in association with term and preterm labor. In a human DS cell line and in explant cultures of term human fetal membranes containing the CDI, the prolabor inflammatory cytokine, interleukin-1ß (IL-1ß), and media conditioned by LPS-stimulated macrophages increased AKR1C1 expression and coordinately reduced nuclear P4 levels and P4 responsiveness. Loss of P4 responsiveness was overcome by inhibition of AKR1C1 activity, inhibition of AKR1C1 expression, and bypassing AKR1C1 activity with a P4 analog that is not metabolized by AKR1C1. Increased P4 activity in response to AKR1C1 inhibition was prevented by the P4 receptor antagonist RU486. Pharmacologic inhibition of AKR1C1 activity prevented parturition in a mouse model of inflammation-induced preterm parturition. The data suggest that inflammatory stimuli at the CDI drive labor by inducing AKR1C1-mediated P4 inactivation in DS cells and that inhibiting and/or bypassing of AKR1C1-mediated P4 inactivation is a plausible therapeutic strategy to mitigate the risk of inflammation-associated preterm birth.
Collapse
Affiliation(s)
- Angela DeTomaso
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Hyeyon Kim
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Jacqueline Shauh
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Anika Adulla
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Sarah Zigo
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Maya Ghoul
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
| | - Pietro Presicce
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Suhas G. Kallapur
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Wendy Goodman
- Department of Pathology, Case Western Reserve University, Cleveland, OH44106
| | - Tamara Tilburgs
- Cincinnati Children’s Hospital, Center for Inflammation and Tolerance, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229
| | - Sing-Sing Way
- Cincinnati Children’s Hospital, Center for Inflammation and Tolerance, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH45229
| | - David Hackney
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
- Department of Obstetrics and Gynecology, University Hospitals, Cleveland, OH44106
| | - John Moore
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH44106
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University, Cleveland, OH44106
- Department of Obstetrics and Gynecology, University Hospitals, Cleveland, OH44106
| |
Collapse
|
4
|
Zhang L, Cai J, Wang X, Yang Z, Ding H, Yang L. Effects of early pregnancy on NOD-like receptor expression in the ovine endometrium. Front Vet Sci 2024; 11:1384386. [PMID: 38903689 PMCID: PMC11188467 DOI: 10.3389/fvets.2024.1384386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Nucleotide-binding domain (NOD)-like receptors (NLRs) are expressed in the endometrium, and involved in modulating the female innate immune responses. There are conceptus-endometrial interactions during pregnancy, which ensure immune homeostasis of the maternal-fetal interface. The purpose of this study was to explore the effects of early pregnancy on NLR expression in the ovine endometrium. Methods Endometrial tissues were collected at day 16 of the estrous cycle, and at days 13, 16 and 25 of pregnancy (n = 6 for each group), and RT-qPCR, western blot and immunohistochemistry analysis were used to analyze the expression of NLRs, including NOD1, NOD2, major histocompatibility complex class II transactivator (CIITA), neuronal apoptosis inhibitor protein (NAIP), NLR family, pyrin domain-containing 1 (NLRP1), NLRP3 and NLRP7. Results Expression levels of NOD1, NOD2, NAIP, CIITA, NLRP1 and NLRP3 declined, but expression level of NLRP7 increased in the endometria during early pregnancy compared with nonpregnant ewes. In addition, NOD2 and CIITA proteins were located in the endometrium in a protein type-, cell type- and pregnancy status-specific manner. Discussion Early pregnancy modulated expression of NLR family in the ovine endometrium, which may be essential for conceptus-endometrial interactions and maternal-fetal interface immune homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ling Yang
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, China
| |
Collapse
|
5
|
Wang J, Nuray U, Yan H, Xu Y, Fang L, Li R, Zhou X, Zhang H. Pyroptosis is involved in the immune microenvironment regulation of unexplained recurrent miscarriage. Mamm Genome 2024; 35:256-279. [PMID: 38538990 DOI: 10.1007/s00335-024-10038-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/11/2024] [Indexed: 05/29/2024]
Abstract
Unexplained recurrent miscarriage (URM) is a common pregnancy complication with few effective therapies. Moreover, little is known regarding the role of pyroptosis in the regulation of the URM immune microenvironment. To address this issue, gene expression profiles of publicly available placental datasets GSE22490 and GSE76862 were downloaded from the Gene Expression Omnibus database. Pyroptosis-related differentially expressed genes were identified and a total of 16 differentially expressed genes associated with pyroptosis were detected, among which 1 was upregulated and 15 were downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that the functionally enriched modules and pathways of these genes are closely related to immune and inflammatory responses. Four hub genes were identified: BTK, TLR8, NLRC4, and TNFSF13B. BTK, TLR8, and TNFSF13B were highly connected with immune cells, according to the correlation analysis of four hub genes and 20 different types of immune cells (p < 0.05). The four hub genes were used as research objects to construct the interaction networks. Chorionic villus tissue was used for quantitative real-time polymerase chain reaction and western blot to confirm the expression levels of hub genes, and the results showed that the expression of the four hub genes was significantly decreased in the chorionic villus tissue in the URM group. Collectively, the present study indicates that perhaps pyroptosis is essential to the diversity and complexity of the URM immune microenvironment, and provides a theoretical basis and research ideas for subsequent target gene verification and mechanism research.
Collapse
Affiliation(s)
- Jing Wang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | | | - Hongchao Yan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yang Xu
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lisha Fang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ranran Li
- First clinical medical college of Xuzhou Medical University, Xuzhou, China
| | - Xin Zhou
- First clinical medical college of Xuzhou Medical University, Xuzhou, China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, Second Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Tripathy S, Burd I, Kelleher MA. Membrane inflammasome activation by choriodecidual Ureaplasma parvum infection without intra-amniotic infection in a Non-Human Primate model†. Biol Reprod 2024; 110:971-984. [PMID: 38335245 PMCID: PMC11094395 DOI: 10.1093/biolre/ioae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/29/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Intrauterine infection is a significant cause of neonatal morbidity and mortality. Ureaplasma parvum is a microorganism commonly isolated from cases of preterm birth and preterm premature rupture of membranes (pPROM). However, the mechanisms of early stage ascending reproductive tract infection remain poorly understood. To examine inflammation in fetal (chorioamnionic) membranes we utilized a non-human primate (NHP) model of choriodecidual U. parvum infection. Eight chronically catheterized pregnant rhesus macaques underwent maternal-fetal catheterization surgery at ~105-112 days gestation and choriodecidual inoculation with U. parvum (105 CFU/mL, n =4) or sterile media (controls; n = 4) starting at 115-119 days, repeated at 5-day intervals until C-section at 136-140 days (term=167 days). The average inoculation to delivery interval was 21 days, and Ureaplasma infection of the amniotic fluid (AF) was undetectable in all animals. Choriodecidual Ureaplasma infection resulted in increased fetal membrane expression of MMP-9 and PTGS2, but did not result in preterm labor or increased concentrations of AF pro-inflammatory cytokines. However, membrane expression of inflammasome sensors, NLRP3, NLRC4, AIM2, and NOD2, and adaptor ASC (PYCARD) gene expression were significantly increased. Gene expression of IL-1β, IL-18, IL-18R1 , CASPASE-1, and pro-CASPASE-1 protein increased with Ureaplasma infection. Downstream inflammatory genes MYD88 and NFκB (Nuclear factor kappa-light-chain-enhancer of activated B cells) were also significantly upregulated. These results demonstrate that choriodecidual Ureaplasma infection, can cause activation of inflammasome complexes and pathways associated with pPROM and preterm labor prior to microbes being detectable in the AF.
Collapse
Affiliation(s)
- Sudeshna Tripathy
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Irina Burd
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Meredith A Kelleher
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| |
Collapse
|
7
|
Flis W, Socha MW. The Role of the NLRP3 Inflammasome in the Molecular and Biochemical Mechanisms of Cervical Ripening: A Comprehensive Review. Cells 2024; 13:600. [PMID: 38607039 PMCID: PMC11012148 DOI: 10.3390/cells13070600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
The uterine cervix is one of the key factors involved in ensuring a proper track of gestation and labor. At the end of the gestational period, the cervix undergoes extensive changes, which can be summarized as a transformation from a non-favorable cervix to one that is soft and prone to dilation. During a process called cervical ripening, fundamental remodeling of the cervical extracellular matrix (ECM) occurs. The cervical ripening process is a derivative of many interlocking and mutually driving biochemical and molecular pathways under the strict control of mediators such as inflammatory cytokines, nitric oxide, prostaglandins, and reactive oxygen species. A thorough understanding of all these pathways and learning about possible triggering factors will allow us to develop new, better treatment algorithms and therapeutic goals that could protect women from both dysfunctional childbirth and premature birth. This review aims to present the possible role of the NLRP3 inflammasome in the cervical ripening process, emphasizing possible mechanisms of action and regulatory factors.
Collapse
Affiliation(s)
- Wojciech Flis
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland;
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| |
Collapse
|
8
|
Balci CN, Acar N. NLRP3 inflammasome pathway, the hidden balance in pregnancy: A comprehensive review. J Reprod Immunol 2024; 161:104173. [PMID: 38043434 DOI: 10.1016/j.jri.2023.104173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/01/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The balance of the inflammatory response is indispensable during pregnancy. Inflammasomes are the cytosolic supramolecular protein complexes activated by pattern recognition receptors. These receptors recognize the pathogen and damage/danger-associated molecular patterns. NLRP3 inflammasome complex consists mainly of NLRP3 (leucine-rich repeat-containing and pyrin domain-containing protein 3), a cytosolic sensor molecule, ASC (apoptosis-associated speck-like protein containing a CARD) protein and a cysteine protease pro-caspase-1 as an effector molecule. This complex has a role in producing inflammatory cytokines, interleukin 1 beta and interleukin 18, and inflammasome-dependent programmed cell death pathway pyroptosis. In this review, we focused on and summarised the NLRP3 inflammasome and its roles in normal and pathological pregnancies. The NLRP3 inflammasome pathway influences endometrial receptivity and embryo invasion by inducing epithelial-mesenchymal transition. Abnormal inflammasome activation in the endometrium may adversely affect endometrial receptivity. In addition, NLRP3 inflammasome pathway overactivation may mediate the abnormal inflammatory response at the maternal-fetal interface and be associated with pregnancy complications, such as recurrent implantation failure, pregnancy loss, pre-term birth and pre-eclampsia. Therefore, targeting the NLRP3 inflammasome pathway could develop a new therapeutic approach to prevent the aforementioned pregnancy pathologies.
Collapse
Affiliation(s)
- Cemre Nur Balci
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Nuray Acar
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
9
|
Feng Y, Miao C, Zhao Y. Predicting Acute Appendicitis in Pregnant Patients Using the Neutrophil-to-Lymphocyte Ratio: A Meta-Analysis. Surg Infect (Larchmt) 2023; 24:903-909. [PMID: 38011746 DOI: 10.1089/sur.2023.269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Background: To determine whether the neutrophil-to-lymphocyte ratio (NLR) can serve as a predictive indicator for acute appendicitis among pregnant females. Patients and Methods: A comprehensive search was conducted across multiple databases including PubMed, Embase, and Web of Science seeking to gather pertinent research on the NLR concerning pregnant individuals either suspected of or diagnosed with acute appendicitis. The NLR value and receiver operating characteristic (ROC) curve were utilized to assess the predictive value of the NLR in predicting acute appendicitis among pregnant patients. Results: Seven studies and 410 patients were included in the meta-analysis. The area under the curve (AUC) for identifying acute appendicitis in pregnant patients using the NLR was found to be 0.856 (95% confidence interval [CI], 0.833-0.879). Additionally, the NLR values for pregnant patients with acute appendicitis were significantly elevated, showing a mean difference (MD) of 0.80 (95% CI, 0.58-1.03; p < 0.001). Conclusions: The NLR can be considered a valuable and effective diagnostic tool for anticipating acute appendicitis in pregnant patients.
Collapse
Affiliation(s)
- Yangchong Feng
- Department of Obstetrics and Gynecology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
- Department of Reproductive Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Chongxiu Miao
- Department of Obstetrics and Gynecology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
- Department of Reproductive Medicine, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| | - Yahui Zhao
- Department of Otorhinolaryngology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
10
|
Chen Y, Miao C, Zhao Y, Yang L, Wang R, Shen D, Ren N, Zhang Q. Inflammasomes in human reproductive diseases. Mol Hum Reprod 2023; 29:gaad035. [PMID: 37788097 DOI: 10.1093/molehr/gaad035] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
Inflammasomes are multi-protein complexes localized within immune and non-immune cells that induce caspase activation, proinflammatory cytokine secretion, and ultimately pyroptosis-a type of cell death. Inflammasomes are involved in a variety of human diseases, especially acute or chronic inflammatory diseases. In this review, we focused on the strong correlation between the NLRP3 inflammasome and various reproductive diseases, including ovarian aging or premature ovarian insufficiency, PCOS, endometriosis, recurrent spontaneous abortion, preterm labor, pre-eclampsia, and male subfertility, as well as the multifaceted role of NLRP3 in the pathogenesis and treatment of these diseases. In addition, we provide an overview of the structure and amplification of inflammasomes. This comprehensive review demonstrates the vital role of NLRP3 inflammasome activation in human reproductive diseases together with the underlying mechanisms, offers new insights for mechanistic studies of reproduction, and provides promising possibilities for the development of drugs targeting the NLRP3 inflammasome for the treatment of reproductive disorders in the future.
Collapse
Affiliation(s)
- Yun Chen
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenyun Miao
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ying Zhao
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Liuqing Yang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruye Wang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Dan Shen
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Ning Ren
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Qin Zhang
- Department of TCM Gynecology, Hangzhou TCM Hospital affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Tripathy S, Burd I, Kelleher MA. Membrane Inflammasome Activation by Choriodecidual Ureaplasma parvum Infection without Intra-Amniotic Infection in an NHP Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.18.557989. [PMID: 37781578 PMCID: PMC10541100 DOI: 10.1101/2023.09.18.557989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Intrauterine infection is a significant cause of preterm labor and neonatal morbidity and mortality. Ureaplasma parvum is the micro-organism most commonly isolated from cases of preterm birth and preterm premature rupture of membranes (pPROM). However, the mechanisms during the early stages of ascending reproductive tract infection that initiate maternal-fetal inflammatory pathways, preterm birth and pPROM remain poorly understood. To examine inflammation in fetal (chorioamnionic) membranes in response to Ureaplasma parvum infection, we utilized a novel in vivo non-human primate model of early choriodecidual infection. Eight chronically catheterized pregnant rhesus macaques underwent maternal-fetal catheterization surgery at 105-112 days gestation and choriodecidual inoculation with Ureaplasma parvum (10 5 cfu/mL of a low passaged clinical isolate, serovar 1; n=4) or saline/sterile media (Controls; n=4) starting at 115-119 days gestation, repeated every 5 days until scheduled cesarean-section at 136-140d gestation (term=167d). The average inoculation to delivery interval was 21 days and Ureaplasma infection of the amniotic fluid was undetectable by culture and PCR in all animals. Inflammatory mediators in amniotic fluid (AF) were assessed by Luminex, ELISA and multiplex assays. RNA was extracted from the chorion and amnionic membranes for single gene analysis (qRT-PCR) and protein expression was determined by Western blot and immunohistochemistry. Our NHP model of choriodecidual Ureaplasma infection, representing an early-stage ascending reproductive tract infection without microbial invasion of the amniotic cavity, resulted in increased fetal membrane protein and gene expression of MMP-9 and PTGS2, but did not result in preterm labor (no increase in uterine contractility) or increased concentrations of amniotic fluid pro-inflammatory cytokines (IL-1β, IL-6, IL-8, IL-18, TNF-α). However, membrane expression of inflammasome sensor molecules, NLRP3, NLRC4, AIM2 and NOD2, and the adaptor protein ASC ( PYCARD ) gene expression were significantly increased in the Ureaplasma group when compared to non-infected controls. Gene expression of IL-1 β, IL-18, the IL-18R1 receptor , CASPASE-1 and pro-CASPASE-1 protein were also increased in the fetal membranes with Ureaplasma infection. Downstream inflammatory signaling genes MYD88 was also significantly upregulated in both the amnion and chorion, along with a significant increase in NFKB in the chorion. These results demonstrate that even at the early stages of ascending reproductive tract Ureaplasma infection, activation of inflammasome complexes and pathways associated with degradation of chorioamnionic membrane integrity are present. This study therefore provides experimental evidence for the importance of the early stages of ascending Ureaplasma infection in initiating processes of pPROM and preterm labor. These findings have implications for the identification of intrauterine inflammation before microbes are detectable in the amniotic fluid (sterile inflammation) and the timing of potential treatments for preterm labor and fetal injury caused by intrauterine infection.
Collapse
|
12
|
Yang R, Li X, Ying Z, Zhao Z, Wang Y, Wang Q, Shen B, Peng W. Prematurely delivering mothers show reductions of lachnospiraceae in their gut microbiomes. BMC Microbiol 2023; 23:169. [PMID: 37322412 PMCID: PMC10268532 DOI: 10.1186/s12866-023-02892-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Preterm birth is the leading cause of perinatal morbidity and mortality. Despite evidence shows that imbalances in the maternal microbiome associates to the risk of preterm birth, the mechanisms underlying the association between a perturbed microbiota and preterm birth remain poorly understood. METHOD Applying shotgun metagenomic analysis on 80 gut microbiotas of 43 mothers, we analyzed the taxonomic composition and metabolic function in gut microbial communities between preterm and term mothers. RESULTS Gut microbiome of mothers delivering prematurely showed decreased alpha diversity and underwent significant reorganization, especially during pregnancy. SFCA-producing microbiomes, particularly species of Lachnospiraceae, Ruminococcaceae, and Eubacteriaceae, were significantly depleted in preterm mothers. Lachnospiraceae and its species were the main bacteria contributing to species' differences and metabolic pathways. CONCLUSION Gut microbiome of mothers delivering prematurely has altered and demonstrates the reduction of Lachnospiraceae.
Collapse
Affiliation(s)
- Ru Yang
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoyu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan, China
| | - Zhiye Ying
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Sichuan, China
- Medical Big Data Center, Sichuan University, Chengdu, Sichuan China
| | - Zicheng Zhao
- Shenzhen Byoryn Technology, Shenzhen, Guangdong P.R. China
| | - Yinan Wang
- Peking University Shenzhen Hospital, 1120 Lianhua Road, Shenzhen, China
| | - Qingyu Wang
- School of Business Administration, Northeast University, Shenyang, China
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Sichuan, China
| | - Wentao Peng
- Department of Neonatology Nursing, West China Second University Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
13
|
Jaiman S, Romero R, Gotsch F, Gowrishankar S, Mohiuddin K, Gallo DM, Jung E, Suksai M, Fernandez E. Fetal sepsis: a cause of stillbirth. J Matern Fetal Neonatal Med 2022; 35:9966-9970. [PMID: 35647781 PMCID: PMC9976197 DOI: 10.1080/14767058.2022.2079404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/21/2022] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
Infection is considered a leading cause of fetal death, responsible for approximately 20% of cases. Such estimates are derived from the frequency of acute histological chorioamnionitis and funisitis in cases of fetal death rather than direct detection of microorganisms in the fetal compartment. We report a case of clinically unexplained fetal death at 38 weeks of gestation in an uncomplicated pregnancy resulting in delivery of an appropriate-for-gestational-age fetus. The mother did not have any clinical signs of infection. Overwhelming bacterial invasion in multiple fetal organs, including the heart, liver, spleen, and kidneys, was observed despite the lack of evidence of maternal clinical infection. The bacteria were visualized by using standard histologic techniques (e.g. H&E/ tissue Gram stain) highlighting the value of autopsy in determining the cause of death.
Collapse
Affiliation(s)
- Sunil Jaiman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | - Kashif Mohiuddin
- Department of Pathology, KIMS Hospitals, Begumpet, Secunderabad, India
| | - Dahiana M. Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | |
Collapse
|
14
|
The Expression of IL-1β Correlates with the Expression of Galectin-3 in the Tissue at the Maternal-Fetal Interface during the Term and Preterm Labor. J Clin Med 2022; 11:jcm11216521. [PMID: 36362749 PMCID: PMC9656499 DOI: 10.3390/jcm11216521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The inflammatory processes that occur at the maternal−fetal interface are considered one of the factors that are responsible for preterm birth. The pro-inflammatory roles of the Gal-3-induced activation of NLRP3 inflammasome and the consecutive production of IL-1β have been described in several acute and chronic inflammatory diseases, but the role of this inflammatory axis in parturition has not been studied. The aim of this study was to analyze the protein expression of Gal-3, NLRP3, and IL-1β in the decidua, villi, and fetal membranes, and to analyze their mutual correlation and correlation with the clinical parameters of inflammation in preterm birth (PTB) and term birth (TB). The study included 40 women that underwent a preterm birth (gestational age of 25.0−36.6) and histological chorioamnionitis (PTB) and control subjects, 22 women that underwent a term birth (gestational age of 37.0−41.6) without histological chorioamnionitis (TB). An analysis of the tissue sections that were stained with anti- Gal-3, -NLRP3, and -IL-1β antibodies was assessed by three independent investigators. The expression levels of Gal-3 and IL-1β were significantly higher (p < 0.001) in the decidua, villi, and fetal membranes in the PTB group when they compared to those of the TB group, while there was no difference in the expression of NLRP3. A further analysis revealed that there was no correlation between the protein expression of NLRP3 and the expression of Gal-3 and IL-1β, but there was a correlation between the expression of Gal-3 and IL-1β in decidua (R = 0.401; p = 0.008), villi (R = 0.301; p = 0.042) and the fetal membranes (R = 0.428; p = 0.002) in both of the groups, PTB and TB. In addition, the expression of Gal-3 and IL-1β in decidua and the fetal membranes was in correlation with the parameters of inflammation in the maternal and fetal blood (C-reactive protein, leukocyte number, and fibrinogen). The strong correlation between the expression of Gal-3 and IL-1β in the placental and fetal tissues during labor indicates that Gal-3 may participate in the regulation of the inflammatory processes in the placenta, leading to increased production of IL-1β, a cytokine that plays the main role in both term and preterm birth.
Collapse
|
15
|
Motomura K, Romero R, Galaz J, Tao L, Garcia-Flores V, Xu Y, Done B, Arenas-Hernandez M, Miller D, Gutierrez-Contreras P, Farias-Jofre M, Aras S, Grossman LI, Tarca AL, Gomez-Lopez N. Fetal and maternal NLRP3 signaling is required for preterm labor and birth. JCI Insight 2022; 7:158238. [PMID: 35993366 PMCID: PMC9462488 DOI: 10.1172/jci.insight.158238] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Pedro Gutierrez-Contreras
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo Farias-Jofre
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Siddhesh Aras
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Lawrence I. Grossman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services (NICHD/NIH/DHHS), Detroit, Michigan, USA, and Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
16
|
Zucker E, Burd I. P2X7 receptor as a potential therapeutic target for perinatal brain injury associated with preterm birth. Exp Neurol 2022; 357:114207. [PMID: 35985555 DOI: 10.1016/j.expneurol.2022.114207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 01/09/2023]
Abstract
Inflammation-induced preterm birth is the leading cause of perinatal mortality and long-term sequelae in surviving children. IL-1β is a major contributor to inflammation-induced preterm labor and its sequelae. It has recently been demonstrated that the cytokine storm and its progression depend on IL-1β release into circulation and that the P2X7 receptor (P2X7R) is the key player of the ATP-driven NLRP3/caspase-1 activation, necessary for the cleavage of pro-IL-1β to its mature form as well as its subsequent secretion. Being a key component to the inflammatory cascade, P2X7R illuminates a new therapeutic avenue to halt progression of inflammation prior to perinatal brain injury. In this review, we summarize the basic role of the P2X7 receptor in the inflammatory signaling cascade and the possibility of it being used as a therapeutic target in perinatal brain injury. We discuss the antagonists and agonists of the receptor as well as its role in other inflammatory diseases, showing the importance of discovering the functions of the receptor.
Collapse
Affiliation(s)
- Emily Zucker
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Irina Burd
- Integrated Research Center for Fetal Medicine, Department of Gynecology and Obstetrics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
17
|
Gomez-Lopez N, Galaz J, Miller D, Farias-Jofre M, Liu Z, Arenas-Hernandez M, Garcia-Flores V, Shaffer Z, Greenberg J, Theis KR, Romero R. The immunobiology of preterm labor and birth: intra-amniotic inflammation or breakdown of maternal-fetal homeostasis. Reproduction 2022; 164:R11-R45. [PMID: 35559791 PMCID: PMC9233101 DOI: 10.1530/rep-22-0046] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/13/2022] [Indexed: 11/08/2022]
Abstract
In brief The syndrome of preterm labor comprises multiple established and novel etiologies. This review summarizes the distinct immune mechanisms implicated in preterm labor and birth and highlights potential strategies for its prevention. Abstract Preterm birth, the leading cause of neonatal morbidity and mortality worldwide, results from preterm labor, a syndrome that includes multiple etiologies. In this review, we have summarized the immune mechanisms implicated in intra-amniotic inflammation, the best-characterized cause of preterm labor and birth, as well as novel etiologies non-associated with intra-amniotic inflammation (i.e. formally known as idiopathic). While the intra-amniotic inflammatory responses driven by microbes (infection) or alarmins (sterile) have some overlap in the participating cellular and molecular processes, the distinct natures of these two conditions necessitate the implementation of specific approaches to prevent adverse pregnancy and neonatal outcomes. Intra-amniotic infection can be treated with the correct antibiotics, whereas sterile intra-amniotic inflammation could potentially be treated by administering a combination of anti-inflammatory drugs (e.g. betamethasone, inflammasome inhibitors, etc.). Recent evidence also supports the role of fetal T-cell activation as a newly described trigger for preterm labor and birth in a subset of cases diagnosed as idiopathic. Moreover, herein we also provide evidence of two maternally-driven immune mechanisms responsible for preterm births formerly considered to be idiopathic. First, the impairment of maternal Tregs can lead to preterm birth, likely due to the loss of immunosuppressive activity resulting in unleashed effector T-cell responses. Secondly, homeostatic macrophages were shown to be essential for maintaining pregnancy and promoting fetal development, and the adoptive transfer of homeostatic M2-polarized macrophages shows great promise for preventing inflammation-induced preterm birth. Collectively, in this review, we discuss the established and novel immune mechanisms responsible for preterm birth and highlight the potential targets for novel strategies aimed at preventing the multi-etiological syndrome of preterm labor leading to preterm birth.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Marcelo Farias-Jofre
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Zhenjie Liu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Zachary Shaffer
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Jonathan Greenberg
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Kevin R. Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan, 48201, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan, 48201, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, 48109, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, 48824, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, 48201, USA
- Detroit Medical Center, Detroit, Michigan, 48201, USA
| |
Collapse
|
18
|
Bittner ZA, Schrader M, George SE, Amann R. Pyroptosis and Its Role in SARS-CoV-2 Infection. Cells 2022; 11:1717. [PMID: 35626754 PMCID: PMC9140030 DOI: 10.3390/cells11101717] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 12/15/2022] Open
Abstract
The pore-forming inflammatory cell death pathway, pyroptosis, was first described in the early 1990s and its role in health and disease has been intensively studied since. The effector molecule GSDMD is cleaved by activated caspases, mainly Caspase 1 or 11 (Caspase 4/5 in humans), downstream of inflammasome formation. In this review, we describe the molecular events related to GSDMD-mediated pore formation. Furthermore, we summarize the so far elucidated ways of SARS-CoV-2 induced NLRP3 inflammasome formation leading to pyroptosis, which strongly contributes to COVID-19 pathology. We also explore the potential of NLRP3 and GSDMD inhibitors as therapeutics to counter excessive inflammation.
Collapse
Affiliation(s)
- Zsofia Agnes Bittner
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (Z.A.B.); (S.E.G.)
| | - Markus Schrader
- Department of Radiooncology, Marienhospital Stuttgart, 70199 Stuttgart, Germany;
| | - Shilpa Elizabeth George
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (Z.A.B.); (S.E.G.)
| | - Ralf Amann
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany; (Z.A.B.); (S.E.G.)
| |
Collapse
|
19
|
Alfian I, Chakraborty A, Yong HEJ, Saini S, Lau RWK, Kalionis B, Dimitriadis E, Alfaidy N, Ricardo SD, Samuel CS, Murthi P. The Placental NLRP3 Inflammasome and Its Downstream Targets, Caspase-1 and Interleukin-6, Are Increased in Human Fetal Growth Restriction: Implications for Aberrant Inflammation-Induced Trophoblast Dysfunction. Cells 2022; 11:1413. [PMID: 35563719 PMCID: PMC9102093 DOI: 10.3390/cells11091413] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Fetal growth restriction (FGR) is commonly associated with placental insufficiency and inflammation. Nonetheless, the role played by inflammasomes in the pathogenesis of FGR is poorly understood. We hypothesised that placental inflammasomes are differentially expressed and contribute to the aberrant trophoblast function. Inflammasome gene expression profiles were characterised by real-time PCR on human placental tissues collected from third trimester FGR and gestation-matched control pregnancies (n = 25/group). The functional significance of a candidate inflammasome was then investigated using lipopolysaccharide (LPS)-induced models of inflammation in human trophoblast organoids, BeWo cells in vitro, and a murine model of FGR in vivo. Placental mRNA expression of NLRP3, caspases 1, 3, and 8, and interleukin 6 increased (>2-fold), while that of the anti-inflammatory cytokine, IL-10, decreased (<2-fold) in FGR compared with control pregnancies. LPS treatment increased NLRP3 and caspase-1 expression (>2-fold) in trophoblast organoids and BeWo cell cultures in vitro, and in the spongiotrophoblast and labyrinth in the murine model of FGR. However, the LPS-induced rise in NLRP3 was attenuated by its siRNA-induced down-regulation in BeWo cell cultures, which correlated with reduced activity of the apoptotic markers, caspase-3 and 8, compared to the control siRNA-treated cells. Our findings support the role of the NLRP3 inflammasome in the inflammation-induced aberrant trophoblast function, which may contribute to FGR.
Collapse
Affiliation(s)
- Irvan Alfian
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
- Faculty of Medicine, Universitas Indonesia, Jl. Salemba Raya 6, Jakarta Pusat 10160, Indonesia
| | - Amlan Chakraborty
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Hannah E. J. Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore;
| | - Sheetal Saini
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Ricky W. K. Lau
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Bill Kalionis
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC 3052, Australia;
| | - Evdokia Dimitriadis
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC 3052, Australia;
- Gynaecology Research Centre, The Royal Women’s Hospital, Melbourne, VIC 3052, Australia
| | - Nadia Alfaidy
- Institut National de la Santé et de la Recherche Médicale U1292, Biologie et Biotechnologie pour la Santé, 38043 Grenoble, France;
- Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Biosciences and Biotechnology Institute of Grenoble, 38054 Grenoble, France
- Service Obstétrique & Gynécologie, Centre Hospitalo-Universitaire Grenoble Alpes, University Grenoble-Alpes, CEDEX 9, 38043 Grenoble, France
| | - Sharon D. Ricardo
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Chrishan S. Samuel
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
| | - Padma Murthi
- Department of Pharmacology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; (I.A.); (A.C.); (S.S.); (R.W.K.L.); (S.D.R.)
- Department of Maternal-Fetal Medicine Pregnancy Research Centre, The Royal Women’s Hospital, Melbourne, VIC 3052, Australia;
- Department of Obstetrics and Gynaecology, The University of Melbourne, Melbourne, VIC 3052, Australia;
| |
Collapse
|
20
|
Miller AS, Hidalgo TN, Abrahams VM. Human fetal membrane IL-1β production in response to bacterial components is mediated by uric-acid induced NLRP3 inflammasome activation. J Reprod Immunol 2022; 149:103457. [PMID: 34875574 PMCID: PMC8792319 DOI: 10.1016/j.jri.2021.103457] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/05/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
Inflammatory interleukin-1β (IL-1β) is an important mediator of preterm birth. IL-1β secretion is mediated by the inflammasome that processes pro-IL-1β into its active form. However the mechanisms involved at the level of the fetal membrane (FM) are not fully understood. This study sought to determine the FM compartment involved in IL-1β production in response to bacterial components and to evaluate the mechanism of inflammasome activation. Since IL-18 is also mediated by the inflammasome and IL-8 is a chemoattractant that contributes to neutrophil recruitment in chorioamnionitis, we also evaluated the production of these factors. A human explant system was used to evaluate the response of the chorion, amnion, and intact FMs to the bacterial components lipopolysaccharide (LPS), peptidoglycan (PGN), or muramyl dipeptide (MDP). The chorion was the major source of IL-1β and IL-8 production in response to LPS, PGN, and MDP. LPS, PGN, and MDP induced FM IL-1β and IL-18 secretion in a non-pyroptotic manner through activation of the NLRP3 inflammasome with contributions from ATP release through Pannexin-1, and ROS signaling. Since LPS, PGN, and MDP are not known to activate NLRP3 directly, the role of uric acid as a potential mediator was assessed. FMs produced elevated uric acid in response to LPS, PGN and MDP. FM IL-1β secretion was inhibited by allopurinol, which blocks uric acid production, for LPS and PGN, and to a lesser degree, MDP. These findings shed light on the mechanisms by which fetal membrane inflammation and subsequent preterm birth may arise.
Collapse
Affiliation(s)
- Alex S. Miller
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Tiffany N. Hidalgo
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT
| | - Vikki M. Abrahams
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT,Corresponding Author: Vikki M. Abrahams PhD. Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, 310 Cedar Street, LSOG 305C, New Haven, CT 06510, USA. ; Phone: 203-785-2175
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW It is well established that controlled immune activation and balance is critical for women's reproductive health and successful pregnancy outcomes. Research in recent decades in both clinical and animal studies has demonstrated that aberrant immune activation and inflammation play a role in the development and progression of women's reproductive health and pregnancy-related disorders. Inflammasomes are multi-protein cytoplasmic complexes that mediate immune activation. In this review, we summarize current knowledge on the role of inflammasome activation in pregnancy-related disorders. RECENT FINDINGS Increased activation of inflammasome is associated with multiple women's health reproductive disorders and pregnancy-associated disorders, including preeclampsia (PreE). Inflammasome activation is also associated with the novel coronavirus disease 2019 (COVID-19) disease caused by the SARS-Cov-2 virus. We and others have observed a positive association between increased PreE incidences with the onset of the COVID-19 pandemic. Here, we present our recent data indicating increased inflammasome activation, represented by caspase-1 activity, in women with COVID-19 and PreE compared to normotensive pregnant women COVID-19. The role of inflammation in pregnancy-related disorders is an area of intense research interest. With the onset of the COVID-19 pandemic and the associated increase in PreE observed clinically, there is a greater need to identify mechanisms of pathophysiology and targets to treat this maternal disorder. Inflammasome activation is associated with PreE and COVID-19 infection and may hold therapeutic potential to improve outcomes associated with PreE and curb the morbidity attributed to PreE.
Collapse
|
22
|
Tiozzo C, Bustoros M, Lin X, Manzano De Mejia C, Gurzenda E, Chavez M, Hanna I, Aguiari P, Perin L, Hanna N. Placental extracellular vesicles-associated microRNA-519c mediates endotoxin adaptation in pregnancy. Am J Obstet Gynecol 2021; 225:681.e1-681.e20. [PMID: 34181894 PMCID: PMC8633060 DOI: 10.1016/j.ajog.2021.06.075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Pregnancy represents a unique challenge for the maternal-fetal immune interface, requiring a balance between immunosuppression, which is essential for the maintenance of a semiallogeneic fetus, and proinflammatory host defense to protect the maternal-fetal interface from invading organisms. Adaptation to repeated inflammatory stimuli (endotoxin tolerance) may be critical in preventing inflammation-induced preterm birth caused by exaggerated maternal inflammatory responses to mild or moderate infections that are common during pregnancy. However, the exact mechanisms contributing to the maintenance of tolerance to repeated infections are not completely understood. MicroRNAs play important roles in pregnancy with several microRNAs implicated in gestational tissue function and in pathologic pregnancy conditions. MicroRNA-519c, a member of the chromosome 19 microRNA cluster, is a human-specific microRNA mainly expressed in the placenta. However, its role in pregnancy is largely unknown. OBJECTIVE This study aimed to explore the role of "endotoxin tolerance" failure in the pathogenesis of an exaggerated inflammatory response often seen in inflammation-mediated preterm birth. In this study, we investigated the role of microRNA-519c, a placenta-specific microRNA, as a key regulator of endotoxin tolerance at the maternal-fetal interface. STUDY DESIGN Using a placental explant culture system, samples from term and second-trimester placentas were treated with lipopolysaccharide. After 24 hours, the conditioned media were collected for analysis, and the placental explants were re-exposed to repeated doses of lipopolysaccharide for 3 days. The supernatant was analyzed for inflammatory markers, the presence of extracellular vesicles, and microRNAs. To study the possible mechanism of action of the microRNAs, we evaluated the phosphodiesterase 3B pathway involved in tumor necrosis factor alpha production using a microRNA mimic and phosphodiesterase 3B small interfering RNA transfection. Finally, we analyzed human placental samples from different gestational ages and from women affected by inflammation-associated pregnancies. RESULTS Our data showed that repeated exposure of the human placenta to endotoxin challenges induced a tolerant phenotype characterized by decreased tumor necrosis factor alpha and up-regulated interleukin-10 levels. This reaction was mediated by the placenta-specific microRNA-519c packaged within placental extracellular vesicles. Lipopolysaccharide treatment increased the extracellular vesicles that were positive for the exosome tetraspanin markers, namely CD9, CD63, and CD81, and secreted primarily by trophoblasts. Primary human trophoblast cells transfected with a microRNA-519c mimic decreased phosphodiesterase 3B, whereas a lack of phosphodiesterase 3B, achieved by small interfering RNA transfection, led to decreased tumor necrosis factor alpha production. These data support the hypothesis that the anti-inflammatory action of microRNA-519c was mediated by a down-regulation of the phosphodiesterase 3B pathway, leading to inhibition of tumor necrosis factor alpha production. Furthermore, human placentas from normal and inflammation-associated pregnancies demonstrated that a decreased placental microRNA-519c level was linked to infection-induced inflammatory pathologies during pregnancy. CONCLUSION We identified microRNA-519c, a human placenta-specific microRNA, as a novel regulator of immune adaptation associated with infection-induced preterm birth at the maternal-fetal interface. Our study serves as a basis for future experiments to explore the potential use of microRNA-519c as a biomarker for infection-induced preterm birth.
Collapse
Affiliation(s)
- Caterina Tiozzo
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY
| | - Mark Bustoros
- Women and Children's Research Laboratory, New York University Long Island School of Medicine, Mineola, NY; Division of Hematologic Neoplasia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Xinhua Lin
- Women and Children's Research Laboratory, New York University Long Island School of Medicine, Mineola, NY
| | - Claudia Manzano De Mejia
- Women and Children's Research Laboratory, New York University Long Island School of Medicine, Mineola, NY
| | - Ellen Gurzenda
- Research and Academic Center, New York University Long Island School of Medicine, Mineola, NY
| | - Martin Chavez
- Department of Obstetrics-Gynecology, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY
| | - Iman Hanna
- Department of Pathology, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY
| | - Paola Aguiari
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of Urology, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Laura Perin
- GOFARR Laboratory for Organ Regenerative Research and Cell Therapeutics, Division of Urology, Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA
| | - Nazeeh Hanna
- Division of Neonatology, Department of Pediatrics, NYU Langone Hospital-Long Island, New York University Long Island School of Medicine, Mineola, NY.
| |
Collapse
|
23
|
Fan Y, Fan C, Mao P, Rui C, Wang X, Hou W, Luan T, Dong Z, Li P, Feng S, Zeng X. Study on perinatal-related factors of maternity and newborn in parturients with intrapartum fever in part of Eastern China: A cross-sectional study. J Clin Lab Anal 2021; 36:e24050. [PMID: 34786765 PMCID: PMC8761421 DOI: 10.1002/jcla.24050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/31/2022] Open
Abstract
Background Maternal intrapartum fever has a serious impact on mother and child. However, the corresponding study seems to be in short. Methods The role of inflammatory cells in patients who were diagnosed with intrapartum fever lived in part of Eastern China was evaluated. The obstetrics outcomes, complete blood cell count (CBC) and thereby converted neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio, monocyte to lymphocyte ratio (MLR), and vaginal secretion were compared in different groups. Results Prepartum values of white blood cell (WBC), red blood cell (RBC), and hemoglobin (Hb) were all a little higher in the febrile group than in the afebrile group, and postpartum WBC in the afebrile group was still higher while postpartum RBC and Hb were inferior to non‐fever maternity. Postpartum NLR and MLR were all higher in the fever group but not preferred overtly difference before delivery. Additionally, the comparison of WBC, RBC, Hb, platelets, neutrophils, and monocytes in prepartum and postpartum all showed significant differences. Conclusion The parturition could bring about the value change of CBC and intrapartum fever might aggravate or alleviate this change. Besides, the intrapartum fever might not be caused mainly by infection and the difference between bacteria and fungus could reflect in the CBC.
Collapse
Affiliation(s)
- Yuru Fan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Chong Fan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Pengyuan Mao
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Can Rui
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Xinyan Wang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Wenwen Hou
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Ting Luan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Zhiyong Dong
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Ping Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Shanwu Feng
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Xin Zeng
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
24
|
Šket T, Ramuta TŽ, Starčič Erjavec M, Kreft ME. The Role of Innate Immune System in the Human Amniotic Membrane and Human Amniotic Fluid in Protection Against Intra-Amniotic Infections and Inflammation. Front Immunol 2021; 12:735324. [PMID: 34745106 PMCID: PMC8566738 DOI: 10.3389/fimmu.2021.735324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Intra-amniotic infection and inflammation (IAI) affect fetal development and are highly associated with preterm labor and premature rupture of membranes, which often lead to adverse neonatal outcomes. Human amniotic membrane (hAM), the inner part of the amnio-chorionic membrane, protects the embryo/fetus from environmental dangers, including microbial infection. However, weakened amnio-chorionic membrane may be breached or pathogens may enter through a different route, leading to IAI. The hAM and human amniotic fluid (hAF) respond by activation of all components of the innate immune system. This includes changes in 1) hAM structure, 2) presence of immune cells, 3) pattern recognition receptors, 4) cytokines, 5) antimicrobial peptides, 6) lipid derivatives, and 7) complement system. Herein we provide a comprehensive and integrative review of the current understanding of the innate immune response in the hAM and hAF, which will aid in design of novel studies that may lead to breakthroughs in how we perceive the IAI.
Collapse
Affiliation(s)
- Tina Šket
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
25
|
Li T, Zheng G, Li B, Tang L. Pyroptosis: A promising therapeutic target for noninfectious diseases. Cell Prolif 2021; 54:e13137. [PMID: 34590363 PMCID: PMC8560609 DOI: 10.1111/cpr.13137] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
Pyroptosis, which is characterized by gasdermin family protein-mediated pore formation, cellular lysis and the release of pro-inflammatory cytokines, is a form of programmed cell death associated with intracellular pathogens-induced infection. However, emerging evidence indicates that pyroptosis also contributes to sterile inflammation. In this review, we will first illustrate the biological process of pyroptosis. Then, we will focus on the pathogenic effects of pyroptosis on multiple noninfectious disorders. At last, we will characterize several specific pyroptotic inhibitors targeting the pyroptotic signalling pathway. These data demonstrate that pyroptosis plays a prominent role in sterile diseases, thereby providing a promising approach to the treatment of noninfective inflammatory disorders.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacy, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ben Li
- Department of Pharmacy, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lipeng Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
26
|
Galaz J, Romero R, Arenas-Hernandez M, Panaitescu B, Para R, Gomez-Lopez N. Betamethasone as a potential treatment for preterm birth associated with sterile intra-amniotic inflammation: a murine study. J Perinat Med 2021; 49:897-906. [PMID: 33878254 PMCID: PMC8440410 DOI: 10.1515/jpm-2021-0049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/31/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Preterm birth remains the leading cause of perinatal morbidity and mortality worldwide. Preterm birth is preceded by spontaneous preterm labor, which is commonly associated with sterile intra-amniotic inflammation; yet, no approved treatment exists for this clinical condition. Corticosteroids are the standard of care to improve neonatal outcomes in women at risk of preterm birth. Herein, we first validated our model of alarmin-induced preterm birth. Next, we investigated whether treatment with betamethasone could prevent preterm birth resulting from sterile intra-amniotic inflammation in mice. METHODS Under ultrasound guidance, the first cohort of dams received an intra-amniotic injection of the alarmin high-mobility group box-1 (HMGB1, n=10) or phosphate-buffered saline (PBS, n=9) as controls. A second cohort of dams received HMGB1 intra-amniotically and were subcutaneously treated with betamethasone (n=15) or vehicle (n=15). Dams were observed until delivery, and perinatal outcomes were observed. RESULTS Intra-amniotic HMGB1 reduced gestational length (p=0.04), inducing preterm birth in 40% (4/10) of cases, of which 100% (4/4) were categorized as late preterm births. Importantly, treatment with betamethasone extended the gestational length (p=0.02), thereby reducing the rate of preterm birth by 26.6% (from 33.3% [5/15] to 6.7% [1/15]). Treatment with betamethasone did not worsen the rate of neonatal mortality induced by HMGB1 or alter weight gain in the first three weeks of life. CONCLUSIONS Treatment with betamethasone prevents preterm birth induced by the alarmin HMGB1. This study supports the potential utility of betamethasone for treating women with sterile intra-amniotic inflammation.
Collapse
Affiliation(s)
- Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States,Department of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Detroit Medical Center, Detroit, MI, United States,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, United States
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
27
|
Choltus H, Lavergne M, De Sousa Do Outeiro C, Coste K, Belville C, Blanchon L, Sapin V. Pathophysiological Implication of Pattern Recognition Receptors in Fetal Membranes Rupture: RAGE and NLRP Inflammasome. Biomedicines 2021; 9:biomedicines9091123. [PMID: 34572309 PMCID: PMC8466405 DOI: 10.3390/biomedicines9091123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Preterm prelabor ruptures of fetal membranes (pPROM) are a pregnancy complication responsible for 30% of all preterm births. This pathology currently appears more as a consequence of early and uncontrolled process runaway activation, which is usually implicated in the physiologic rupture at term: inflammation. This phenomenon can be septic but also sterile. In this latter case, the inflammation depends on some specific molecules called “alarmins” or “damage-associated molecular patterns” (DAMPs) that are recognized by pattern recognition receptors (PRRs), leading to a microbial-free inflammatory response. Recent data clarify how this activation works and which receptor translates this inflammatory signaling into fetal membranes (FM) to manage a successful rupture after 37 weeks of gestation. In this context, this review focused on two PRRs: the receptor for advanced glycation end-products (RAGE) and the NLRP7 inflammasome.
Collapse
Affiliation(s)
- Helena Choltus
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Marilyne Lavergne
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Coraline De Sousa Do Outeiro
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Karen Coste
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Corinne Belville
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Loïc Blanchon
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
| | - Vincent Sapin
- CNRS, INSERM, GReD, Université Clermont Auvergne, 63000 Clermont-Ferrand, France; (H.C.); (M.L.); (C.D.S.D.O.); (K.C.); (C.B.); (L.B.)
- CHU de Clermont-Ferrand, Biochemistry and Molecular Genetic Department, 63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-473-178-174
| |
Collapse
|
28
|
Motomura K, Romero R, Garcia-Flores V, Leng Y, Xu Y, Galaz J, Slutsky R, Levenson D, Gomez-Lopez N. The alarmin interleukin-1α causes preterm birth through the NLRP3 inflammasome. Mol Hum Reprod 2021; 26:712-726. [PMID: 32647859 DOI: 10.1093/molehr/gaaa054] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/25/2020] [Indexed: 12/12/2022] Open
Abstract
Sterile intra-amniotic inflammation is a clinical condition frequently observed in women with preterm labor and birth, the leading cause of neonatal morbidity and mortality worldwide. Growing evidence suggests that alarmins found in amniotic fluid, such as interleukin (IL)-1α, are central initiators of sterile intra-amniotic inflammation. However, the causal link between elevated intra-amniotic concentrations of IL-1α and preterm birth has yet to be established. Herein, using an animal model of ultrasound-guided intra-amniotic injection of IL-1α, we show that elevated concentrations of IL-1α cause preterm birth and neonatal mortality. Additionally, using immunoblotting techniques and a specific immunoassay, we report that the intra-amniotic administration of IL-1α induces activation of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome in the fetal membranes, but not in the decidua, as evidenced by a concomitant increase in the protein levels of NLRP3, active caspase-1, and IL-1β. Lastly, using Nlrp3-/- mice, we demonstrate that the deficiency of this inflammasome sensor molecule reduces the rates of preterm birth and neonatal mortality caused by the intra-amniotic injection of IL-1α. Collectively, these results demonstrate a causal link between elevated IL-1α concentrations in the amniotic cavity and preterm birth as well as adverse neonatal outcomes, a pathological process that is mediated by the NLRP3 inflammasome. These findings shed light on the mechanisms underlying sterile intra-amniotic inflammation and provide further evidence that this clinical condition can potentially be treated by targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- K Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - R Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - V Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Y Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Y Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - J Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - R Slutsky
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA
| | - D Levenson
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - N Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, MD, USA and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
29
|
The amniotic fluid cell-free transcriptome in spontaneous preterm labor. Sci Rep 2021; 11:13481. [PMID: 34188072 PMCID: PMC8242007 DOI: 10.1038/s41598-021-92439-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/03/2021] [Indexed: 02/03/2023] Open
Abstract
The amniotic fluid (AF) cell-free RNA was shown to reflect physiological and pathological processes in pregnancy, but its value in the prediction of spontaneous preterm delivery is unknown. Herein we profiled cell-free RNA in AF samples collected from women who underwent transabdominal amniocentesis after an episode of spontaneous preterm labor and subsequently delivered within 24 h (n = 10) or later (n = 28) in gestation. Expression of known placental single-cell RNA-Seq signatures was quantified in AF cell-free RNA and compared between the groups. Random forest models were applied to predict time-to-delivery after amniocentesis. There were 2385 genes differentially expressed in AF samples of women who delivered within 24 h of amniocentesis compared to gestational age-matched samples from women who delivered after 24 h of amniocentesis. Genes with cell-free RNA changes were associated with immune and inflammatory processes related to the onset of labor, and the expression of placental single-cell RNA-Seq signatures of immune cells was increased with imminent delivery. AF transcriptomic prediction models captured these effects and predicted delivery within 24 h of amniocentesis (AUROC = 0.81). These results may inform the development of biomarkers for spontaneous preterm birth.
Collapse
|
30
|
Kacerovsky M, Romero R, Pliskova L, Bolehovska R, Hornychova H, Matejkova A, Vosmikova H, Andrys C, Kolackova M, Laudański P, Pelantova V, Jacobsson B, Musilova I. Presence of Chlamydia trachomatis DNA in the amniotic fluid in women with preterm prelabor rupture of membranes. J Matern Fetal Neonatal Med 2021; 34:1586-1597. [PMID: 31272257 PMCID: PMC7062296 DOI: 10.1080/14767058.2019.1640676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/30/2019] [Accepted: 07/03/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The primary aim of this study was to assess the rate and load of amniotic fluid Chlamydia trachomatis DNA and their associations with intra-amniotic infection and intra-uterine inflammatory complications in women with preterm prelabor rupture of membranes (PPROM). The secondary aim was to assess the short-term morbidity of newborns from PPROM pregnancies complicated by amniotic fluid C. trachomatis DNA. METHODS A retrospective study of 788 women with singleton pregnancies complicated by PPROM between 24 + 0 and 36 + 6 weeks of gestation was performed. Transabdominal amniocenteses were performed at the time of admission. C. trachomatis DNA in the amniotic fluid was assessed by real-time polymerase chain reaction using a commercial AmpliSens® C. trachomatis/Ureaplasma/Mycoplasma hominis-FRT kit, and the level of Ct DNA was quantified. RESULTS Amniotic fluid C. trachomatis DNA complicated 2% (16/788) of the PPROM pregnancies and was present in very low loads (median 57 copies DNA/mL). In addition to amniotic fluid C. trachomatis DNA, other bacteria were detected in 62% (10/16) of the C. trachomatis DNA-complicated PPROM pregnancies. Amniotic fluid C. trachomatis DNA was associated with intra-amniotic infection, histologic chorioamnionitis (HCA), and funisitis in 31%, 47%, and 33%, respectively. The presence of C. trachomatis DNA accompanied by Ureaplasma species in the amniotic fluid was associated with a higher rate of HCA than the presence of amniotic fluid C. trachomatis DNA alone. The composite neonatal morbidity in newborns from PPROM pregnancies with amniotic fluid C. trachomatis DNA was 31%. CONCLUSION The presence of C. trachomatis DNA in the amniotic fluid is a relatively rare condition in PPROM. Amniotic fluid C. trachomatis DNA in PPROM is not related to intensive intra-amniotic and intr-auterine inflammatory responses or adverse short-term neonatal outcomes.
Collapse
Affiliation(s)
- Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Lenka Pliskova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Radka Bolehovska
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Helena Hornychova
- The Fingerland Department of Pathology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Adela Matejkova
- The Fingerland Department of Pathology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Hana Vosmikova
- The Fingerland Department of Pathology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Department of Clinical immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove
| | - Martina Kolackova
- Department of Clinical immunology and Allergy, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove
| | - Piotr Laudański
- 1 Department of Obstetrics and Gynecology, Medical University of Warsaw, Poland
| | - Vera Pelantova
- Department of Infectious Diseases, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| | - Ivana Musilova
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
31
|
Abstract
Pyroptosis, an inflammatory form of programmed cell death, takes an essential part in a wide variety of physiological activities, for instance, implantation, placentation and the body's defense against infection. However, once excessively activated, pyroptosis mediated by the activation of inflammasomes can be highly pathological. It can cause inflammatory and autoimmune diseases including a variety of obstetrical and gynecological diseases, such as endometriosis, gestational diabetes mellitus, insulin resistance in polycystic ovary syndrome, and multiple obstetric complications including preeclampsia. Although the role of pyroptosis in the pathogenesis of the above mentioned diseases has not been fully elucidated, we try to tap its therapeutic potential by targeting pyroptosis signaling and inflammasome formation. Pyroptosis and inflammasomes are confirmed to be involved in endometriosis and gynecological malignant tumors, therefore, medical approachs inducing pyroptosis of the ectopic endometrium and tumor cells can be feasible treatments for endometriosis and gynecological cancers. On the maternal-fetal interface, although a certain level of the innate immune response activation is required for a successful implantation and placentation, maternal and fetal injury may occur once the inflammasomes are over-activated. Besides, since gestational diabetes mellitus and insulin resistance in polycystic ovary syndrome share common pathogenesis with metabolic diseases, this domain research sheds light on future study of some obstetrical and gynecological diseases.
Collapse
Affiliation(s)
- Shu-Yue Yu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University,, Shanghai, P.R. China
| | - Xue-Lian Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University,, Shanghai, P.R. China
| |
Collapse
|
32
|
von Chamier M, Reyes L, Hayward LF, Brown MB. Nicotine induces maternal and fetal inflammatory responses which predispose intrauterine infection risk in a rat model. Nicotine Tob Res 2021; 23:1763-1770. [PMID: 33894055 PMCID: PMC8403242 DOI: 10.1093/ntr/ntab080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Introduction Both smoking and infection adversely impact pregnancy. Previously, our group identified in a rodent model that 6 mg/kg/d nicotine increased the risk of fetal infection at gestation day (GD) 18. Here, we investigate lower nicotine doses. Methods Pregnant Sprague-Dawley rats received nicotine infusion at 0, 1, or 3 mg/kg/d (no, low-, and mid-dose nicotine, respectively) from GD 6, with intravenous inoculation with Mycoplasma pulmonis (MP) at 107 CFU (N = 20) or sterile broth (sham) (N = 11) on GD 14. Uterus and fetuses were retrieved on GD 18 for MP culture and histopathologic evaluation of maternal and fetal inflammatory responses (MIR and FIR). Results At 1 mg/kg/d nicotine, MP colonization rates were decreased, from 100% (9 of 9) to 40% (2 of 5) of MP-inoculated dams (p = .03), and 59% (66 of 111) to 39% (24 of 62) of fetuses (p = .01), versus no nicotine. Low-dose nicotine resulted in increased MIR and FIR in the sham-inoculated group; in the MP-inoculated group, this resulted in reduced relative risk (RR) for placental colonization (RR, 95% CI with high MIR = 0.14, 0.02 to 0.65; FIR = 0.38, 0.12 to 0.93). In contrast, 3 mg/kg/d nicotine treatment did not alter colonization rates; furthermore, FIR was completely suppressed, even in the face of placental or amniotic fluid colonization. Conclusion The 1 mg/kg/d nicotine dose decreased risk of intrauterine infection, with increased MIR and FIR. The 3 mg/kg/d nicotine dose inhibited FIR, and increased risk for intrauterine infection. Nicotine alterations of the intrauterine environment were markedly dose-dependent. Implications Nicotine exposure alters intrauterine infection and inflammation in a dose-dependent manner, potentially impacting fetal development and programming. Previous work in a rodent model showed that high-dose nicotine (6 mg/kg/d) exposure exacerbated intrauterine infection during pregnancy. The current study found that low-dose nicotine (1 mg/kg/d) exposure reduced colonization of placenta and amniotic fluid; this decrease was associated with increased intrauterine inflammation. Exposure to mid-dose nicotine (3 mg/kg/d) suppressed fetal inflammation. Elucidation of underlying mechanisms of these phenomena will inform public health and clinical care decisions, particularly in the context of risk assessment of nicotine replacement therapy during pregnancy for smoking cessation.
Collapse
Affiliation(s)
- Maria von Chamier
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| | - Leticia Reyes
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI
| | - Linda F Hayward
- Department of Physiological Sciences, University of Florida, Gainesville, FL
| | - Mary B Brown
- Department of Infectious Diseases and Immunology, University of Florida, Gainesville, FL
| |
Collapse
|
33
|
RNA Sequencing Reveals Distinct Immune Responses in the Chorioamniotic Membranes of Women with Preterm Labor and Microbial or Sterile Intra-amniotic Inflammation. Infect Immun 2021; 89:IAI.00819-20. [PMID: 33558326 DOI: 10.1128/iai.00819-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
Preterm labor precedes premature birth, the leading cause of neonatal morbidity and mortality worldwide. Preterm labor can occur in the context of either microbe-associated intra-amniotic inflammation (i.e., intra-amniotic infection) or intra-amniotic inflammation in the absence of detectable microorganisms (i.e., sterile intra-amniotic inflammation). Both intra-amniotic infection and sterile intra-amniotic inflammation trigger local immune responses that have deleterious effects on fetal life. Yet, the extent of such immune responses in the fetal tissues surrounding the amniotic cavity (i.e., the chorioamniotic membranes) is poorly understood. By using RNA sequencing (RNA seq) as a discovery approach, we found that there were significant transcriptomic differences involving host response to pathogens in the chorioamniotic membranes of women with intra-amniotic infection compared to those from women without inflammation. In addition, the sterile or microbial nature of intra-amniotic inflammation was associated with distinct transcriptomic profiles in the chorioamniotic membranes. Moreover, the immune response in the chorioamniotic membranes of women with sterile intra-amniotic inflammation was milder in nature than that induced by microbes and involved the upregulation of alarmins and inflammasome-related molecules. Lastly, the presence of maternal and fetal inflammatory responses in the placenta was associated with the upregulation of immune processes in the chorioamniotic membranes. Collectively, these findings provide insight into the immune responses against microbes or alarmins that take place in the fetal tissues surrounding the amniotic cavity, shedding light on the immunobiology of preterm labor and birth.
Collapse
|
34
|
Morales-Roselló J, Loscalzo G, Perez G, Payá AS, Jakaitė V, Perales-Marín A. Association of first trimester fetal heart rate and nuchal translucency with preterm birth. J Matern Fetal Neonatal Med 2021; 35:5572-5579. [PMID: 33618603 DOI: 10.1080/14767058.2021.1887128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To evaluate whether first trimester fetal heart rate (FHR) and nuchal translucency (NT) associate with preterm birth (PTB). METHODS This was a comparative case-control study of 518 normal pregnancies with no history of PTB, of which 272 delivered at term (TB) and 246 progressed to spontaneous PTB prior to 37, 34, 32, and 28 weeks. Fetal heart rate (FHR) and NT values at the first-trimester scan were compared by means of univariable (Mann-Whitney) and multivariable logistic regression analysis considering hourglass membranes (HM) as the most severe PTB subgroup. Finally, severity trends for both parameters were investigated using correlations with gestational age (GA) at delivery and Kruskal-Walls tests. RESULTS Regardless of GA at delivery, pregnancies affected with PTB showed higher FHR and thicker NT at the first trimester scan. The association was confirmed by the multivariable analysis and the severity trends, which paired the highest FHR and NT values with the most severe cases of PTB (p < .001) (p < .0001). CONCLUSION Fetuses with subsequent late, early and very early PTB show higher values of NT and FHR at the first-trimester scan.
Collapse
Affiliation(s)
- José Morales-Roselló
- Servicio de Obstetricia y Ginecología, Hospital Universitario y Politécnico La Fe, Valencia, Spain.,Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| | - Gabriela Loscalzo
- Servicio de Obstetricia y Ginecología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Gemma Perez
- Servicio de Obstetricia y Ginecología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Alicia Soriano Payá
- Servicio de Obstetricia y Ginecología, Hospital Francisco de Borja, Gandía, Valencia, Spain
| | - Vaidilė Jakaitė
- Servicio de Obstetricia y Ginecología, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Alfredo Perales-Marín
- Servicio de Obstetricia y Ginecología, Hospital Universitario y Politécnico La Fe, Valencia, Spain.,Departamento de Pediatría, Obstetricia y Ginecología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
35
|
Fedorka CE, Ball BA, Walker OF, McCormick ME, Scoggin KE, Kennedy LA, Squires EL, Troedsson MHT. Alterations of Circulating Biomarkers During Late Term Pregnancy Complications in the Horse Part I: Cytokines. J Equine Vet Sci 2021; 99:103425. [PMID: 33781421 DOI: 10.1016/j.jevs.2021.103425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Equine abortions are attributed to both infectious and noninfectious causes. Clinical extrapolations are often made from the experimental model for ascending placentitis towards other causes of fetal compromise, including various markers of inflammation, including the cytokines IL-2, 5, IL-6, IL-10, IFNγ, and TNF. It is unknown if these cytokine changes are noted under field conditions, or if they increase preceding other pregnancy related complications. To assess this, Thoroughbred mares (n = 702) had weekly blood obtained beginning in December 2013 and continuing until parturition. Fetal membranes were submitted to the UKVDL for complete gross and pathologic assessment and classified as either ascending placentitis (n = 6), focal mucoid placentitis (n = 6), idiopathic abortion (n = 6) or control (n = 20). Weekly serum samples were analyzed via immunoassay for concentrations of IL-2, IL-5, IL-6, IL-10, IFNγ, and TNF. For both focal mucoid placentitis and ascending placentitis, an increase (P < .05) in the concentrations of IL-2, IL-5, IL-6, IL-10, IFNγ, and TNF was noted preceding parturition in comparison to controls. Cytokine profiles preceding idiopathic abortion did not differ from controls. In conclusion, serum cytokines may be considered potential biomarkers for the prediction of placental infection, while no changes in cytokine profiles were noted when noninfectious causes of abortion occurred. Additionally, this is the first study to report an increase in cytokines during the disease process of focal mucoid placentitis, the etiology of which includes Nocardioform placentitis.
Collapse
Affiliation(s)
- C E Fedorka
- University of Kentucky, Department of Veterinary Sciences, Lexington, KY
| | - B A Ball
- University of Kentucky, Department of Veterinary Sciences, Lexington, KY.
| | - O F Walker
- Lincoln Memorial University, College of Veterinary Medicine, Harrogate, TN
| | - M E McCormick
- Rhode Island College, College of Nursing. Providence, RI; Rhode Island Department of Health. Providence, RI
| | - K E Scoggin
- University of Kentucky, Department of Veterinary Sciences, Lexington, KY
| | - L A Kennedy
- University of Kentucky, Department of Veterinary Sciences, Lexington, KY
| | - E L Squires
- University of Kentucky, Department of Veterinary Sciences, Lexington, KY
| | - M H T Troedsson
- University of Kentucky, Department of Veterinary Sciences, Lexington, KY
| |
Collapse
|
36
|
Tersigni C, Vatish M, D'Ippolito S, Scambia G, Di Simone N. Abnormal uterine inflammation in obstetric syndromes: molecular insights into the role of chemokine decoy receptor D6 and inflammasome NLRP3. Mol Hum Reprod 2021; 26:111-121. [PMID: 32030415 DOI: 10.1093/molehr/gaz067] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/12/2019] [Indexed: 12/12/2022] Open
Abstract
The adaptation of the uterine environment into a favorable immunological and inflammatory milieu is a physiological process needed in normal pregnancy. A uterine hyperinflammatory state, whether idiopathic or secondary to hormonal or organic uterine disorders (polycystic ovary syndromes, endometriosis/adenomyosis and fibroids), negatively influences the interactions between decidua and trophoblast, early in gestation, and between chorion and decidua later in pregnancy. Abnormal activation of uterine inflammatory pathways not only contributes to the pathogenesis of the obstetric syndromes, i.e. recurrent pregnancy loss (RPL), pre-term delivery (PTD) and pre-eclampsia (PE), but also to correlates with severity. In this review, we summarize recent advances in the knowledge of uterine molecular mechanisms of inflammatory modulation in normal pregnancy and obstetric syndromes (RPL, PTD and PE). In particular, we focus on two regulators of uterine/placental inflammation: the NLRP3 inflammasome and the chemokines decoy receptor D6. We performed comprehensive review of the literature in PubMed and Google Scholar databases from 1994 to 2018. The available evidence suggests that: (i) the expression of inflammasome NLRP3 is increased in the endometrium of women with unexplained RPL, in the chorioamniotic membranes of women with PTL and in the placenta of women with PE; (ii) there is a role for abnormal expression and function of D6 decoy receptor at the feto-maternal interface in cases of RPL and PTD and (iii) the function of placental D6 decoy receptor is impaired in PE. A wider comprehension of the inflammatory molecular mechanisms involved in the pathogenesis of the obstetric syndromes might lead to the identification of new potential therapeutic targets.
Collapse
Affiliation(s)
- Chiara Tersigni
- U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy.,Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Manu Vatish
- Nuffield Department of Women's & Reproductive Health, University of Oxford, OX3 9DU, Oxford, UK
| | - Silvia D'Ippolito
- U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy.,Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Giovanni Scambia
- Università Cattolica del Sacro Cuore, Rome 00168, Italy.,U.O.C. di Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Nicoletta Di Simone
- U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy.,Università Cattolica del Sacro Cuore, Rome 00168, Italy
| |
Collapse
|
37
|
Fang X, Wang Y, Zhang Y, Li Y, Kwak-Kim J, Wu L. NLRP3 Inflammasome and Its Critical Role in Gynecological Disorders and Obstetrical Complications. Front Immunol 2021; 11:555826. [PMID: 33584639 PMCID: PMC7876052 DOI: 10.3389/fimmu.2020.555826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Inflammasomes, intracellular, multimeric protein complexes, are assembled when damage signals stimulate nucleotide-binding oligomerization domain receptors (NLRs). Several inflammasomes have been reported, including the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), NLRP1, NLRP7, ice protease-activating factor (IPAF), absent in melanoma 2 (AIM2) and NLR family CARD domain-containing protein 4 (NLRC4). Among these inflammasomes, the NLRP3 inflammasome is the most well-studied in terms of structure and function. Unlike other inflammasomes that can only be activated by a finite number of pathogenic microorganisms, the NLRP3 inflammasome can be activated by the imbalance of the internal environment and a large number of metabolites. The biochemical function of NLRP3 inflammasome is to activate cysteine-requiring aspartate proteinase-1 (caspase-1), which converts pro-IL-1β and pro-IL-18 into their active forms, namely, IL-1β and IL-18, which are then released into the extracellular space. The well-established, classic role of NLRP3 inflammasome has been implicated in many disorders. In this review, we discuss the current understanding of NLRP3 inflammasome and its critical role in gynecological disorders and obstetrical complications.
Collapse
Affiliation(s)
- Xuhui Fang
- Center for Reproductive Medicine, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Yanshi Wang
- Center for Reproductive Medicine, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Yu Zhang
- Center for Reproductive Medicine, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Yelin Li
- Center for Reproductive Medicine, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| | - Joanne Kwak-Kim
- Reproductive Medicine and Immunology, Obstetrics and Gynecology, Clinical Sciences Department, Chicago Medical School, Rosalind Franklin University of Medicine and Science, Vernon Hills, IL, United States.,Center for Cancer Cell Biology, Immunology and Infection Diseases, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Li Wu
- Center for Reproductive Medicine, Anhui Provincial Hospital affiliated to Anhui Medical University, Hefei, China
| |
Collapse
|
38
|
Jacobs SO, Sheller-Miller S, Richardson LS, Urrabaz-Garza R, Radnaa E, Menon R. Characterizing the immune cell population in the human fetal membrane. Am J Reprod Immunol 2020; 85:e13368. [PMID: 33145922 DOI: 10.1111/aji.13368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/23/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
PROBLEM This study localized CD45+ immune cells and compared changes in their numbers between term, not in labor (TNIL) and term, labor (TL) human fetal membranes. METHOD OF STUDY Fetal membranes (amniochorion) from normal TNIL and TL subjects were analyzed by immunohistochemistry (IHC), immunofluorescence (IF), and flow cytometry for evidence of total (CD45+ ) immune cells as well as innate immune cells (neutrophils, macrophages and NK cells) using specific markers. Fetal origin of immune cells was determined using polymerase chain reaction (PCR) for SRY gene in Y chromosome. RESULTS CD45+ cells were localized in human fetal membranes for both TNIL and TL. A threefold increase in CD45+ cells was seen in TL fetal membranes of (7.73% ± 2.35) compared to TNIL (2.36% ± 0.78). This increase is primarily contributed by neutrophils. Macrophages and NK cells did not change in the membranes between TNIL and TL. Leukocytes of fetal origin are present in the fetal membranes. CONCLUSION The fetal membranes without decidua contain a small proportion of immune cells. Some of these immune cells in the fetal membrane are fetal in origin. There is a moderate increase of immune cells in the fetal membranes at term labor; however, it is unclear whether this is a cause or consequence of labor. Further functional studies are needed to determine their contribution to membrane inflammation associated with parturition.
Collapse
Affiliation(s)
- Sara O Jacobs
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Samantha Sheller-Miller
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Lauren S Richardson
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Rheanna Urrabaz-Garza
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Enkhtuya Radnaa
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- The Department of Obstetrics & Gynecology, Division of Maternal-Fetal Medicine & Perinatal Research, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
39
|
El-Sheikh Ali H, Dini P, Scoggin K, Loux S, Fedorka C, Boakari Y, Norris J, Esteller-Vico A, Kalbfleisch T, Ball B. Transcriptomic analysis of equine placenta reveals key regulators and pathways involved in ascending placentitis†. Biol Reprod 2020; 104:638-656. [PMID: 33345276 DOI: 10.1093/biolre/ioaa209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/07/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022] Open
Abstract
Improved understanding of the molecular mechanisms underlying ascending equine placentitis holds the potential for the development of new diagnostic tools and therapies to forestall placentitis-induced preterm labor. The current study characterized the equine placental transcriptome (chorioallantois [CA] and endometrium [EN]) during placentitis (placentitis group, n = 6) in comparison to gestationally-matched controls (control group, n = 6). Transcriptome analysis identified 2953 and 805 differentially expressed genes in CA and EN during placentitis, respectively. Upstream regulator analysis revealed the central role of toll-like receptors (TLRs) in triggering the inflammatory signaling, and consequent immune-cell chemotaxis. Placentitis was associated with the upregulation of matrix metalloproteinase (MMP1, MMP2, and MMP9) and apoptosis-related genes such as caspases (CASP3, CASP4, and CASP7) in CA. Also, placentitis was associated with downregulation of transcripts coding for proteins essential for placental steroidogenesis (SRD5A1 and AKR1C1), progestin signaling (PGRMC1 and PXR) angiogenesis (VEGFA, VEGFR2, and VEGFR3), and nutrient transport (GLUT12 and SLC1A4), as well as upregulation of hypoxia-related genes (HIF1A and EGLN3), which could explain placental insufficiency during placentitis. Placentitis was also associated with aberrant expression of several placenta-regulatory genes, such as PLAC8, PAPPA, LGALS1, ABCG2, GCM1, and TEPP, which could negatively affect placental functions. In conclusion, our findings revealed for the first time the key regulators and mechanisms underlying placental inflammation, separation, and insufficiency during equine placentitis, which might lead to the development of efficacious therapies or diagnostic aids by targeting the key molecular pathways.
Collapse
Affiliation(s)
- Hossam El-Sheikh Ali
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.,Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Pouya Dini
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Kirsten Scoggin
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Shavahn Loux
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Carleigh Fedorka
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Yatta Boakari
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Jamie Norris
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Alejandro Esteller-Vico
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.,Department of Biomedical and Diagnostic Sciences, University of Tennessee, USA
| | - Theodore Kalbfleisch
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Barry Ball
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
40
|
Zhou F, Li C, Zhang SY. NLRP3 inflammasome: a new therapeutic target for high-risk reproductive disorders? Chin Med J (Engl) 2020; 134:20-27. [PMID: 33395071 PMCID: PMC7862815 DOI: 10.1097/cm9.0000000000001214] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT The NOD-like receptor protein 3 (NLRP3) inflammasome is a key regulator of the host's immune response, and many immune and metabolic disorders are linked to its activation. This review aimed to investigate and clarify the relationship between this inflammasome and high-risk reproductive disorders. Papers cited here were retrieved from PubMed up to August 2020 using the keywords "NLRP3" or "NALP3", "caspase-1", "endometriosis", "gestational diabetes", "interleukin (IL)-18", "IL-1β", "pre-eclampsia (PE)", "preterm birth", "polycystic ovarian syndrome (PCOS)", "recurrent spontaneous abortion (RSA)", and combinations of these terms. The results show that NLRP3 inflammasome is associated with various high-risk reproductive disorders and many inflammatory factors are secreted during its activation, such as IL-1β induced during the development of endometriosis. PCOS is also associated with activation of the NLRP3 inflammasome, especially in overweight patients. It also participates in the pathogenesis of RSA and is activated in fetal membranes before preterm birth. The placentas of pregnant women with PE show higher expression of the NLRP3 inflammasome, and gestational diabetes mellitus occurs simultaneously with its activation. Current evidence suggest that the NLRP3 inflammasome plays an important role in female reproductive disorders. New treatment and management methods targeting it might help reduce the incidence of such disorders and improve neonatal outcomes.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, Zhejiang 310016, China
| | | | | |
Collapse
|
41
|
Amoushahi M, Sunde L, Lykke-Hartmann K. The pivotal roles of the NOD-like receptors with a PYD domain, NLRPs, in oocytes and early embryo development†. Biol Reprod 2020; 101:284-296. [PMID: 31201414 DOI: 10.1093/biolre/ioz098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/29/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors with a pyrin domain (PYD), NLRPs, are pattern recognition receptors, well recognized for their important roles in innate immunity and apoptosis. However, several NLRPs have received attention for their new, specialized roles as maternally contributed genes important in reproduction and embryo development. Several NLRPs have been shown to be specifically expressed in oocytes and preimplantation embryos. Interestingly, and in line with divergent functions, NLRP genes reveal a complex evolutionary divergence. The most pronounced difference is the human-specific NLRP7 gene, not identified in rodents. However, mouse models have been extensively used to study maternally contributed NLRPs. The NLRP2 and NLRP5 proteins are components of the subcortical maternal complex (SCMC), which was recently identified as essential for mouse preimplantation development. The SCMC integrates multiple proteins, including KHDC3L, NLRP5, TLE6, OOEP, NLRP2, and PADI6. The NLRP5 (also known as MATER) has been extensively studied. In humans, inactivating variants in specific NLRP genes in the mother are associated with distinct phenotypes in the offspring, such as biparental hydatidiform moles (BiHMs) and preterm birth. Maternal-effect recessive mutations in KHDC3L and NLRP5 (and NLRP7) are associated with reduced reproductive outcomes, BiHM, and broad multilocus imprinting perturbations. The precise mechanisms of NLRPs are unknown, but research strongly indicates their pivotal roles in the establishment of genomic imprints and post-zygotic methylation maintenance, among other processes. Challenges for the future include translations of findings from the mouse model into human contexts and implementation in therapies and clinical fertility management.
Collapse
Affiliation(s)
| | - Lone Sunde
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
42
|
Motomura K, Romero R, Tarca AL, Galaz J, Bhatti G, Done B, Arenas-Hernandez M, Levenson D, Slutsky R, Hsu CD, Gomez-Lopez N. Pregnancy-specific transcriptional changes upon endotoxin exposure in mice. J Perinat Med 2020; 48:700-722. [PMID: 32866128 PMCID: PMC8258803 DOI: 10.1515/jpm-2020-0159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 05/27/2020] [Indexed: 12/26/2022]
Abstract
Objectives Pregnant women are more susceptible to certain infections; however, this increased susceptibility is not fully understood. Herein, systems biology approaches were utilized to elucidate how pregnancy modulates tissue-specific host responses to a bacterial product, endotoxin. Methods Pregnant and non-pregnant mice were injected with endotoxin or saline on 16.5 days post coitum (n=8-11 per group). The uterus, cervix, liver, adrenal gland, kidney, lung, and brain were collected 12 h after injection and transcriptomes were measured using microarrays. Heatmaps and principal component analysis were used for visualization. Differentially expressed genes between groups were assessed using linear models that included interaction terms to determine whether the effect of infection differed with pregnancy status. Pathway analysis was conducted to interpret gene expression changes. Results We report herein a multi-organ atlas of the transcript perturbations in pregnant and non-pregnant mice in response to endotoxin. Pregnancy strongly modified the host responses to endotoxin in the uterus, cervix, and liver. In contrast, pregnancy had a milder effect on the host response to endotoxin in the adrenal gland, lung, and kidney. However, pregnancy did not drastically affect the host response to endotoxin in the brain. Conclusions Pregnancy imprints organ-specific host immune responses upon endotoxin exposure. These findings provide insight into the host-response against microbes during pregnancy.
Collapse
Affiliation(s)
- Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan 48109, USA,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan 48824, USA,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan 48201, USA,Detroit Medical Center, Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Florida International University, Miami, Florida, 33199, USA,Address correspondence to: Nardhy Gomez-Lopez, MSc, PhD, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Perinatology Research Branch, NICHD/NIH/DHHS, 275 E. Hancock, Detroit, Michigan 48201, USA, Tel (313) 577-8904, ; . Roberto Romero, MD, D. Med. Sci., Perinatology Research Branch, NICHD/NIH/DHHS, Wayne State University/Hutzel Women’s Hospital 3990 John R, Box 4, Detroit, Michigan 48201, USA, Telephone: (313) 993-2700, Fax: (313) 993-2694,
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA,Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan 48201, USA
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Dustyn Levenson
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Rebecca Slutsky
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS); Bethesda, Maryland, 20892 and Detroit, Michigan 48201, USA,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA,Address correspondence to: Nardhy Gomez-Lopez, MSc, PhD, Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Perinatology Research Branch, NICHD/NIH/DHHS, 275 E. Hancock, Detroit, Michigan 48201, USA, Tel (313) 577-8904, ; . Roberto Romero, MD, D. Med. Sci., Perinatology Research Branch, NICHD/NIH/DHHS, Wayne State University/Hutzel Women’s Hospital 3990 John R, Box 4, Detroit, Michigan 48201, USA, Telephone: (313) 993-2700, Fax: (313) 993-2694,
| |
Collapse
|
43
|
Tersigni C, Neri C, D'Ippolito S, Garofalo S, Martino C, Lanzone A, Scambia G, Di Simone N. Impact of maternal obesity on the risk of preterm delivery: insights into pathogenic mechanisms. J Matern Fetal Neonatal Med 2020; 35:3216-3221. [PMID: 32942918 DOI: 10.1080/14767058.2020.1817370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE Preterm delivery (PTD) represents the leading cause of neonatal death and disability. Among risk factors for PTD, maternal obesity (MO) is becoming an ever more relevant condition in developed countries, although the mechanisms relating this condition to higher risk of PTD is not clear. Aim of this narrative review is to summarize evidences from clinical and translational research showing how MO might negatively impact on pregnancy and neonatal outcomes, particularly, by increasing the risk of PTD. METHODS We performed comprehensive review of the literature in PubMed and Google Scholar databases for studies from 1998 to 2018 linking MO to PTD and inflammation. RESULTS Chronic inflammatory status associated to increased synthesis of adipokines and cytokines from fat tissue has been shown in obesity. Obese women have a higher risk of both spontaneous and medically induced PTD. In about 50% of cases of spontaneous PTD, an infection-induced chorion amnionitis can be detected while in the remaining 50% a sterile inflammatory response has been described. Activation of uterine innate immunity system in intra-amniotic cavity and in chorioamniotic membranes might represent the missing link between MO and the pathogenesis of PTD. CONCLUSION Tissue inflammation might represent the pathogenic link between MO and increased occurrence of PTD. The achievement of pre-pregnancy normal maternal weight and body mass index is a fundamental aim of public health to reduce the incidence of PTD and get optimal reproductive outcomes.
Collapse
Affiliation(s)
- Chiara Tersigni
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Rome, Italy.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Caterina Neri
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Rome, Italy
| | - Silvia D'Ippolito
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Rome, Italy
| | - Serafina Garofalo
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Rome, Italy
| | - Carmelinda Martino
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Rome, Italy
| | - Antonio Lanzone
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Rome, Italy.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giovanni Scambia
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ginecologia Oncologica, Rome, Italy
| | - Nicoletta Di Simone
- Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Rome, Italy.,Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
44
|
Philip RK, Purtill H, Reidy E, Daly M, Imcha M, McGrath D, O'Connell NH, Dunne CP. Unprecedented reduction in births of very low birthweight (VLBW) and extremely low birthweight (ELBW) infants during the COVID-19 lockdown in Ireland: a 'natural experiment' allowing analysis of data from the prior two decades. BMJ Glob Health 2020; 5:e003075. [PMID: 32999054 PMCID: PMC7528371 DOI: 10.1136/bmjgh-2020-003075] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/10/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Aetiology of births involving very low birthweight (VLBW) and extremely low birthweight (ELBW) infants is heterogeneous and preventive strategies remain elusive. Socioenvironmental measures implemented as Ireland's response to the SARS-CoV-2 virus (COVID-19) pandemic represented a national lockdown, and have possibly influenced the health and well-being of pregnant women and unborn infants. METHODS Regional trends of VLBW and ELBW infants in one designated health area of Ireland over two decades were analysed. Poisson regression and rate ratio analyses with 95% CI were conducted. Regional data covering most of the lockdown period of 2020 were compared with historical regional and national data and forecasted national figures for 2020. RESULTS Poisson regression analysis found that the regional historical VLBW rate per 1000 live births for January to April, 2001-2019 was 8.18 (95% CI 7.21 to 9.29). During January to April 2020, an unusually low VLBW rate of just 2.17 per 1000 live births was observed, reflecting a rate ratio of 3.77 (95% CI 1.21 to 11.75), p=0.022, representing a 73% reduction of VLBW during the first 4 months of 2020 compared with same period for the preceding two decades. There were no ELBW infants admitted to the regional neonatal intensive care unit. National Irish VLBW rate for 2020 is forecasted to be reduced to approximate 400 per 60 000 births compared with the historical 500-600 range. CONCLUSION An unprecedented reduction in regional births of VLBW and ELBW infants was observed in Ireland coinciding with the COVID-19 lockdown. Potential determinants of this unique temporal trend possibly reside in the summative socioenvironmental impact of the COVID-19 lockdown. Our findings, if mirrored in other regions that have adopted a lockdown, demonstrate the potential to evaluate these implicated behavioural and socioenvironmental modifiers to positively influence VLBW and ELBW rates globally.
Collapse
Affiliation(s)
- Roy K Philip
- Division of Neonatology, Department of Paediatrics, University of Limerick School of Medicine, Limerick, Ireland
- Division of Neonatology, Department of Paediatrics, University Maternity Hospital Limerick (UMHL), Limerick, Ireland
| | - Helen Purtill
- Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland
| | - Elizabeth Reidy
- Midwifery and Neonatal Nursing, University Maternity Hospital Limerick (UMHL), Limerick, Ireland
| | - Mandy Daly
- Advocacy and Policymaking, Irish Neonatal Health Alliance (INHA), Dublin, Ireland
| | - Mendinaro Imcha
- Obstetrics and Gynaecology, University Maternity Hospital Limerick (UMHL), Limerick, Ireland
| | - Deirdre McGrath
- Centre for Interventions in Infection, Inflammation and Immunity (4i), University of Limerick School of Medicine, Limerick, Ireland
| | - Nuala H O'Connell
- Centre for Interventions in Infection, Inflammation and Immunity (4i), University of Limerick School of Medicine, Limerick, Ireland
- Clinical Microbiology, University Hospital Limerick (UHL), Dooradoyle, Limerick, Ireland
| | - Colum P Dunne
- Centre for Interventions in Infection, Inflammation and Immunity (4i), University of Limerick School of Medicine, Limerick, Ireland
| |
Collapse
|
45
|
Gomez-Lopez N, Romero R, Garcia-Flores V, Leng Y, Miller D, Hassan SS, Hsu CD, Panaitescu B. Inhibition of the NLRP3 inflammasome can prevent sterile intra-amniotic inflammation, preterm labor/birth, and adverse neonatal outcomes†. Biol Reprod 2020; 100:1306-1318. [PMID: 30596885 DOI: 10.1093/biolre/ioy264] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 01/20/2023] Open
Abstract
Sterile intra-amniotic inflammation is commonly observed in patients with spontaneous preterm labor, a syndrome that commonly precedes preterm birth, the leading cause of perinatal morbidity and mortality worldwide. However, the mechanisms leading to sterile intra-amniotic inflammation are poorly understood and no treatment exists for this clinical condition. Herein, we investigated whether the alarmin S100B could induce sterile intra-amniotic inflammation by activating the NLRP3 inflammasome, and whether the inhibition of this pathway could prevent preterm labor/birth and adverse neonatal outcomes. We found that the ultrasound-guided intra-amniotic administration of S100B induced a 50% rate of preterm labor/birth and a high rate of neonatal mortality (59.7%) without altering the fetal and placental weights. Using a multiplex cytokine array and immunoblotting, we reported that S100B caused a proinflammatory response in the amniotic cavity and induced the activation of the NLRP3 inflammasome in the fetal membranes, indicated by the upregulation of the NLRP3 protein and increased release of active caspase-1 and mature IL-1β. Inhibition of the NLRP3 inflammasome via the specific inhibitor MCC950 prevented preterm labor/birth by 35.7% and reduced neonatal mortality by 26.7%. Yet, inhibition of the NLRP3 inflammasome at term did not drastically obstruct the physiological process of parturition. In conclusion, the data presented herein indicate that the alarmin S100B can induce sterile intra-amniotic inflammation, preterm labor/birth, and adverse neonatal outcomes by activating the NLRP3 inflammasome, which can be prevented by inhibiting such a pathway. These findings provide evidence that sterile intra-amniotic inflammation could be treated by targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
46
|
Faro J, Romero R, Schwenkel G, Garcia-Flores V, Arenas-Hernandez M, Leng Y, Xu Y, Miller D, Hassan SS, Gomez-Lopez N. Intra-amniotic inflammation induces preterm birth by activating the NLRP3 inflammasome†. Biol Reprod 2020; 100:1290-1305. [PMID: 30590393 DOI: 10.1093/biolre/ioy261] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/12/2018] [Accepted: 12/22/2018] [Indexed: 01/23/2023] Open
Abstract
Intra-amniotic inflammation is strongly associated with spontaneous preterm labor and birth, the leading cause of perinatal mortality and morbidity worldwide. Previous studies have suggested a role for the NLRP3 (NLR family pyrin domain-containing protein 3) inflammasome in the mechanisms that lead to preterm labor and birth. However, a causal link between the NLRP3 inflammasome and preterm labor/birth induced by intra-amniotic inflammation has not been established. Herein, using an animal model of lipopolysaccharide-induced intra-amniotic inflammation (IAI), we demonstrated that there was priming of the NLRP3 inflammasome (1) at the transcriptional level, indicated by enhanced mRNA expression of inflammasome-related genes (Nlrp3, Casp1, Il1b); and (2) at the protein level, indicated by greater protein concentrations of NLRP3, in both the fetal membranes and decidua basalis prior to preterm birth. Additionally, we showed that there was canonical activation of the NLRP3 inflammasome in the fetal membranes, but not in the decidua basalis, prior to IAI-induced preterm birth as evidenced by increased protein levels of active caspase-1. Protein concentrations of released IL1β were also increased in both the fetal membranes and decidua basalis, as well as in the amniotic fluid, prior to IAI-induced preterm birth. Finally, using the specific NLRP3 inhibitor, MCC950, we showed that in vivo inhibition of the NLRP3 inflammasome reduced IAI-induced preterm birth and neonatal mortality. Collectively, these results provide a causal link between NLRP3 inflammasome activation and spontaneous preterm labor and birth in the context of intra-amniotic inflammation. We also showed that, by targeting the NLRP3 inflammasome, adverse pregnancy and neonatal outcomes can be significantly reduced.
Collapse
Affiliation(s)
- Jonathan Faro
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - George Schwenkel
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Marcia Arenas-Hernandez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
47
|
Conde-Agudelo A, Romero R, Nicolaides KH. Cervical pessary to prevent preterm birth in asymptomatic high-risk women: a systematic review and meta-analysis. Am J Obstet Gynecol 2020; 223:42-65.e2. [PMID: 32027880 DOI: 10.1016/j.ajog.2019.12.266] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Randomized controlled trials that have assessed the efficacy of cervical pessary to prevent preterm birth in asymptomatic high-risk women have reported conflicting results. OBJECTIVE To evaluate the efficacy and safety of cervical pessary to prevent preterm birth and adverse perinatal outcomes in asymptomatic high-risk women. DATA SOURCES MEDLINE, EMBASE, POPLINE, CINAHL, and LILACS (from their inception to October 31, 2019), Cochrane databases, Google Scholar, bibliographies, and conference proceedings. STUDY ELIGIBILITY CRITERIA Randomized controlled trials that compared cervical pessary with standard care (no pessary) or alternative interventions in asymptomatic women at high risk for preterm birth. STUDY APPRAISAL AND SYNTHESIS METHODS The systematic review was conducted according to the Cochrane Handbook guidelines. The primary outcome was spontaneous preterm birth <34 weeks of gestation. Secondary outcomes included adverse pregnancy, maternal, and perinatal outcomes. Pooled relative risks with 95% confidence intervals were calculated. Quality of evidence was assessed using the GRADE methodology. RESULTS Twelve studies (4687 women and 7167 fetuses/infants) met the inclusion criteria: 8 evaluated pessary vs no pessary in women with a short cervix, 2 assessed pessary vs no pessary in unselected multiple gestations, and 2 compared pessary vs vaginal progesterone in women with a short cervix. There were no significant differences between the pessary and no pessary groups in the risk of spontaneous preterm birth <34 weeks of gestation among singleton gestations with a cervical length ≤25 mm (relative risk, 0.80; 95% confidence interval, 0.43-1.49; 6 trials, 1982 women; low-quality evidence), unselected twin gestations (relative risk, 1.05; 95% confidence interval, 0.79-1.41; 1 trial, 1177 women; moderate-quality evidence), twin gestations with a cervical length <38 mm (relative risk, 0.75; 95% confidence interval, 0.41-1.36; 3 trials, 1128 women; low-quality evidence), and twin gestations with a cervical length ≤25 mm (relative risk; 0.72, 95% confidence interval, 0.25-2.06; 2 trials, 348 women; low-quality evidence). Overall, no significant differences were observed between the pessary and no pessary groups in preterm birth <37, <32, and <28 weeks of gestation, and most adverse pregnancy, maternal, and perinatal outcomes (low- to moderate-quality evidence for most outcomes). There were no significant differences in the risk of spontaneous preterm birth <34 weeks of gestation between pessary and vaginal progesterone in singleton gestations with a cervical length ≤25 mm (relative risk, 0.99; 95% confidence interval, 0.54-1.83; 1 trial, 246 women; low-quality evidence) and twin gestations with a cervical length <38 mm (relative risk, 0.73; 95% confidence interval, 0.46-1.18; 1 trial, 297 women; very low-quality evidence). Vaginal discharge was significantly more frequent in the pessary group than in the no pessary and vaginal progesterone groups (relative risks, ∼2.20; high-quality evidence). CONCLUSION Current evidence does not support the use of cervical pessary to prevent preterm birth or to improve perinatal outcomes in singleton or twin gestations with a short cervix and in unselected twin gestations.
Collapse
Affiliation(s)
- Agustin Conde-Agudelo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI; Detroit Medical Center, Detroit, MI; Department of Obstetrics and Gynecology, Florida International University, Miami, FL.
| | - Kypros H Nicolaides
- Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, UK
| |
Collapse
|
48
|
Intra-Amniotic Infection with Ureaplasma parvum Causes Preterm Birth and Neonatal Mortality That Are Prevented by Treatment with Clarithromycin. mBio 2020; 11:mBio.00797-20. [PMID: 32576673 PMCID: PMC7315120 DOI: 10.1128/mbio.00797-20] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Preterm birth is the leading cause of neonatal morbidity and mortality worldwide. Multiple etiologies are associated with preterm birth; however, 25% of preterm infants are born to a mother with intra-amniotic infection, most commonly due to invasion of the amniotic cavity by Ureaplasma species. Much research has focused on establishing a link between Ureaplasma species and adverse pregnancy/neonatal outcomes; however, little is known about the taxonomy of and host response against Ureaplasma species. Here, we applied a multifaceted approach, including human samples, in vivo models, and in vitro manipulations, to study the maternal-fetal immunobiology of Ureaplasma infection during pregnancy. Furthermore, we investigated the use of clarithromycin as a treatment for this infection. Our research provides translational knowledge that bolsters scientific understanding of Ureaplasma species as a cause of adverse pregnancy/neonatal outcomes and gives strong evidence for the use of clarithromycin as the recommended treatment for women intra-amniotically infected with Ureaplasma species. Intra-amniotic infection is strongly associated with adverse pregnancy and neonatal outcomes. Most intra-amniotic infections are due to Ureaplasma species; however, the pathogenic potency of these genital mycoplasmas to induce preterm birth is still controversial. Here, we first laid out a taxonomic characterization of Ureaplasma isolates from women with intra-amniotic infection, which revealed that Ureaplasma parvum is the most common bacterium found in this clinical condition. Next, using animal models, we provided a causal link between intra-amniotic inoculation with Ureaplasma species and preterm birth. Importantly, the intra-amniotic inoculation of Ureaplasma species induced high rates of mortality in both preterm and term neonates. The in vivo potency of U. parvum to induce preterm birth was not associated with known virulence factors. However, term-derived and preterm-derived U. parvum isolates were capable of inducing an intra-amniotic inflammatory response. Both U. parvum isolates invaded several fetal tissues, primarily the fetal lung, and caused fetal inflammatory response syndrome. This bacterium was also detected in the placenta, reproductive tissues, and most severely in the fetal membranes, inducing a local inflammatory response that was replicated in an in vitro model. Importantly, treatment with clarithromycin, a recently recommended yet not widely utilized antibiotic, prevented the adverse pregnancy and neonatal outcomes induced by U. parvum. These findings shed light on the maternal-fetal immunobiology of intra-amniotic infection.
Collapse
|
49
|
Peng J, Jiang J, Wang H, Feng X, Dong X. miR‑199a‑3p suppresses cervical epithelial cell inflammation by inhibiting the HMGB1/TLR4/NF‑κB pathway in preterm birth. Mol Med Rep 2020; 22:926-938. [PMID: 32468045 PMCID: PMC7339783 DOI: 10.3892/mmr.2020.11184] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/09/2020] [Indexed: 02/07/2023] Open
Abstract
Preterm birth (PTB) is the primary cause of neonatal mortality worldwide. Infection and inflammation are considered to be the primary causes of PTB. Cervical remodeling is an important step in the process of preterm delivery, and the destruction of the cervical epithelial barrier and inflammation are important triggers of cervical remodeling. The aim of the present study was to determine the effect and underlying mechanism of microRNA (miR)-199a-3p/high-mobility group box 1 protein (HMGB1) signaling in cervical epithelial inflammation in PTB. The results of this study revealed that miR-199a-3p was significantly decreased in cervical epithelial tissue samples from patients in both the preterm labor and preterm premature rupture of membrane groups. This decrease was also observed in tissue samples from a lipopolysaccharide (LPS)-induced PTB mouse model and in LPS-induced ectocervical and endocervical cells. Whereas, the expression of HMGB1 and toll-like receptor 4 (TLR4) was significantly increased, which was associated with the upregulation of interleukin (IL)-1β and tumor necrosis factor (TNF)-α expression. Furthermore, overexpression of miR-199a-3p significantly suppressed the expression and activation of HMGB1 and TLR4/NF-κB signaling, and decreased the levels of IL-1β and TNF-α in vitro and in vivo. Additionally, overexpression of HMGB1 and/or TLR4 reversed the anti-inflammatory effects of miR-199a-3p mimics in vitro and in vivo. These results indicate that miR-199a-3p acts as a negative inflammatory regulator in PTB by targeting HMGB1 to regulate the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Juan Peng
- Department of Obstetrics, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650031, P.R. China
| | - Jiang Jiang
- Department of Obstetrics, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650031, P.R. China
| | - Huizi Wang
- Department of Obstetrics, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650031, P.R. China
| | - Xinzi Feng
- Department of Obstetrics, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650031, P.R. China
| | - Xudong Dong
- Department of Obstetrics, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan 650031, P.R. China
| |
Collapse
|
50
|
Gomez-Lopez N, Motomura K, Miller D, Garcia-Flores V, Galaz J, Romero R. Inflammasomes: Their Role in Normal and Complicated Pregnancies. THE JOURNAL OF IMMUNOLOGY 2020; 203:2757-2769. [PMID: 31740550 DOI: 10.4049/jimmunol.1900901] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/27/2019] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytoplasmic multiprotein complexes that coordinate inflammatory responses, including those that take place during pregnancy. Inflammasomes and their downstream mediators caspase-1 and IL-1β are expressed by gestational tissues (e.g., the placenta and chorioamniotic membranes) during normal pregnancy. Yet, only the activation of the NLRP3 inflammasome in the chorioamniotic membranes has been partially implicated in the sterile inflammatory process of term parturition. In vivo and ex vivo studies have consistently shown that the activation of the NLRP3 inflammasome is a mechanism whereby preterm labor and birth occur in the context of microbial- or alarmin-induced inflammation. In the placenta, the activation of the NLRP3 inflammasome is involved in the pathogenesis of preeclampsia and other pregnancy syndromes associated with placental inflammation. This evidence suggests that inhibition of the NLRP3 inflammasome or its downstream mediators may foster the development of novel anti-inflammatory therapies for the prevention or treatment of pregnancy complications.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201; .,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Kenichiro Motomura
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Derek Miller
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Valeria Garcia-Flores
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Jose Galaz
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, and Detroit, MI 48201.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824.,Center for Molecular Obstetrics and Genetics, Wayne State University, Detroit, MI 48201.,Detroit Medical Center, Detroit, MI 48201; and.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL 33199
| |
Collapse
|