1
|
Li J, Wang Y, Dong C, Luo L. Advancements in leukemia management: Bridging diagnosis, prognosis and nanotechnology (Review). Int J Oncol 2024; 65:112. [PMID: 39364739 PMCID: PMC11542963 DOI: 10.3892/ijo.2024.5700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/19/2024] [Indexed: 10/05/2024] Open
Abstract
Leukemia is a cancer that starts in blood stem cells in the bone marrow. Today, the proper diagnosis and prognosis of leukemia are essential in mitigating the morbidity and mortality associated with this malignancy. The advent of novel biomarkers, particularly those related to minimal residual disease, has paved the way for personalized therapeutic strategies and enables the quantitative assessment of patient responses to treatment regimens. Novel diagnostic and targeted drug delivery may be helpful for the improved management of leukemia. Genetic clinical parameters, such as chromosomal abnormalities, are crucial in diagnosing and guiding treatment decisions. These genetic markers also provide valuable prognostic information, helping to predict patient outcomes and tailor personalized treatment plans. In the present review, the studies on the diagnostic and prognostic parameters of leukemia were analyzed. The prognosis of leukemia was investigated in most of the studies, and the remaining were performed on diagnosis. The clinical and laboratory prognostic parameters were the most common, followed by diagnostic hematological parameters, diagnostic blood parameter studies, and diagnostic immunological parameters. Clinical and laboratory prognostic and hematologic parameters were the most extensively studied. The methods used to diagnose and prognose the leukemia cases in these studies were predominantly clinical hematology. Numerous surface proteins and receptors, including CD45, CD27, CD29, CD38, CD27, CD123, CD56 and CD25, react similarly in various kinds of leukemia, which are ideal for targeted drug delivery. Drug delivery to leukemia cells encounters several significant obstacles, including heterogeneity, that hinder the effectiveness of treatment. Nanocarriers play a critical role in targeted drug delivery for leukemia by enhancing the precision of treatments directed at surface proteins and receptors. Additionally, they can be functionalized with targeting drugs and antibodies to target specific tissues and cells.
Collapse
Affiliation(s)
- Jingbo Li
- Department of Ultrasound Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Yingxue Wang
- Department of Ultrasound Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Chunli Dong
- Department of Critical Care Medicine, Jilin People's Hospital, Changchun, Jilin 130021, P.R. China
| | - Lifu Luo
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
2
|
Colaianni F, Zelli V, Compagnoni C, Miscione MS, Rossi M, Vecchiotti D, Di Padova M, Alesse E, Zazzeroni F, Tessitore A. Role of Circulating microRNAs in Liver Disease and HCC: Focus on miR-122. Genes (Basel) 2024; 15:1313. [PMID: 39457437 PMCID: PMC11507253 DOI: 10.3390/genes15101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
miR-122 is the most abundant microRNA (miRNA) in the liver; it regulates several genes mainly involved in cell metabolism and inflammation. Host factors, diet, metabolic disorders and viral infection promote the development of liver diseases, including hepatocellular carcinoma (HCC). The downregulation of miR-122 in tissue is a common feature of the progression of liver injury. In addition, the release of miR-122 in the bloodstream seems to be very promising for the early diagnosis of both viral and non-viral liver disease. Although controversial data are available on the role of circulating miR-122 as a single biomarker, high diagnostic accuracy has been observed using miR-122 in combination with other circulating miRNAs and/or proteins. This review is focused on comprehensively summarizing the most recent literature on the potential role of circulating miR-122, and related molecules, as biomarker(s) of metabolic liver diseases, hepatitis and HCC.
Collapse
Affiliation(s)
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (F.C.); (C.C.); (M.S.M.); (M.R.); (D.V.); (M.D.P.); (E.A.); (F.Z.); (A.T.)
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zhang H, Xu J, Liu S, Li H, Xu L, Wang S. Detection of MicroRNA-155 based on lambda exonuclease selective digestion and CRISPR/cas12a-assisted amplification. Anal Biochem 2024; 693:115592. [PMID: 38871161 DOI: 10.1016/j.ab.2024.115592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
In numerous malignancies, miRNA-155 is overexpressed and has oncogenic activity because it is one of the most efficient microRNAs for inhibiting apoptosis in human cancer cells. As a result, the highest sensitive detection of the miRNA-155 gene is a technological instrument that can enable early cancer screening. In this study, a miRNA-155 biosensor was created to create a hairpin probe that can bind to the miRNA-155 gene using lambda nucleic acid exonuclease, which can cut the 5' phosphorylated double strand, and by the DNA probe is recognized by the Cas12a enzyme, which then activates Cas12a to catalyze trans-cutting produces strong fluorescence. Research finding, the target concentration's logarithm and corresponding fluorescence intensity have a strong linear connection, and the limit of detection (LOD) of the sensing system was determined to be 8.3 pM. In addition, the biosensor displayed exceptional specificity, low false-positive signal, and high sensitivity in detecting the miRNA-155 gene in serum samples. This study's creation of a biosensor that has high sensitivity, good selectivity, and is simple to operate provides promising opportunities for research into biosensor design and early cancer detection.
Collapse
Affiliation(s)
- Haotian Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Jun Xu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Shiwen Liu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, 330029, PR China.
| | - Hongbo Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China.
| | - Lianlian Xu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Suqin Wang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| |
Collapse
|
4
|
Li M, Zhuang L, Jiang T, Sun L. Exosomal miR-223 promotes ARDS by targeting insulin-like growth factor 1 receptor: A cell communication study. Exp Lung Res 2024; 50:42-52. [PMID: 38425288 DOI: 10.1080/01902148.2024.2318561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a respiratory failure syndrome characterized by hypoxemia and changes in the respiratory system. ARDS is the most common cause of death in COVID-19 deaths was ARDS. In this study, we explored the role of miR-223 in exosomes in ARDS. METHODS Exosomes were purified from the supernatants of macrophages. qPCR was used to detect relative mRNA levels. A luciferase reporter assay was performed to verify the miRNA target genes. Western blotting was used to detect the activation of inflammatory pathways. Flow cytometry was performed to assess apoptosis. An LPS-induced ARDS mouse model was used to assess the function of miR-223 in ARDS. RESULTS Exosomes secreted by macrophages promoted apoptosis in A549 cells. Macrophages and exosomes contain high levels of miR-223. Exogenous miR-223 can decrease the expression of insulin-like growth factor 1 receptor (IGF-1R) in A549 and promote the apoptosis of A549.Transfection of anti-miR223 antisense nucleotides effectively reduced the level of miR-223 in macrophages and exosomes and eliminated the pro-apoptotic effect of A549. In vivo, LPS stimulation increased inflammatory cell infiltration in the lungs of mice, whereas knockdown of miR-223 in mice resulted in significantly reduced eosinophil infiltration. CONCLUSIONS Macrophages can secrete exosomes containing miR-223 and promote apoptosis by targeting the IGF-1R/Akt/mTOR signaling pathway in A549 cells and mouse models, suggesting that miR-223 is a potential target for treating COVID-19 induced ARDS.
Collapse
Affiliation(s)
- Miaomiao Li
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Lilei Zhuang
- Department of Gastroenterology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, China
| | - Tao Jiang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Li Sun
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| |
Collapse
|
5
|
Cai Y, Wang S. Deeply integrating latent consistent representations in high-noise multi-omics data for cancer subtyping. Brief Bioinform 2024; 25:bbae061. [PMID: 38426322 PMCID: PMC10939425 DOI: 10.1093/bib/bbae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/13/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer is a complex and high-mortality disease regulated by multiple factors. Accurate cancer subtyping is crucial for formulating personalized treatment plans and improving patient survival rates. The underlying mechanisms that drive cancer progression can be comprehensively understood by analyzing multi-omics data. However, the high noise levels in omics data often pose challenges in capturing consistent representations and adequately integrating their information. This paper proposed a novel variational autoencoder-based deep learning model, named Deeply Integrating Latent Consistent Representations (DILCR). Firstly, multiple independent variational autoencoders and contrastive loss functions were designed to separate noise from omics data and capture latent consistent representations. Subsequently, an Attention Deep Integration Network was proposed to integrate consistent representations across different omics levels effectively. Additionally, we introduced the Improved Deep Embedded Clustering algorithm to make integrated variable clustering friendly. The effectiveness of DILCR was evaluated using 10 typical cancer datasets from The Cancer Genome Atlas and compared with 14 state-of-the-art integration methods. The results demonstrated that DILCR effectively captures the consistent representations in omics data and outperforms other integration methods in cancer subtyping. In the Kidney Renal Clear Cell Carcinoma case study, cancer subtypes were identified by DILCR with significant biological significance and interpretability.
Collapse
Affiliation(s)
- Yueyi Cai
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China
| | - Shunfang Wang
- Department of Computer Science and Engineering, School of Information Science and Engineering, Yunnan University, Kunming, 650504, Yunnan, China
| |
Collapse
|
6
|
Hussain MS, Gupta G, Afzal M, Alqahtani SM, Samuel VP, Hassan Almalki W, Kazmi I, Alzarea SI, Saleem S, Dureja H, Singh SK, Dua K, Thangavelu L. Exploring the role of lncrna neat1 knockdown in regulating apoptosis across multiple cancer types: A review. Pathol Res Pract 2023; 252:154908. [PMID: 37950931 DOI: 10.1016/j.prp.2023.154908] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of gene expression, contributing significantly to a diverse range of cellular processes, including apoptosis. One such lncRNA is NEAT1, which is elevated in several types of cancer and aid in cancer growth. However, recent studies have also demonstrated that the knockdown of NEAT1 can inhibit cancer cells proliferation, movement, and infiltration while enhancing apoptosis. This article explores the function of lncRNA NEAT1 knockdown in regulating apoptosis across multiple cancer types. We explore the existing understanding of NEAT1's involvement in the progression of malignant conditions, including its structure and functions. Additionally, we investigate the molecular mechanisms by which NEAT1 modulates the cell cycle, cellular proliferation, apoptosis, movement, and infiltration in diverse cancer types, including acute myeloid leukemia, breast cancer, cervical cancer, colorectal cancer, esophageal squamous cell carcinoma, glioma, non-small cell lung cancer, ovarian cancer, prostate cancer, and retinoblastoma. Furthermore, we review the recent studies investigating the therapeutic potential of NEAT1 knockdown in cancer treatment. Targeting the lncRNA NEAT1 presents a promising therapeutic approach for treating cancer. It has shown the ability to suppress cancer cell proliferation, migration, and invasion while promoting apoptosis in various cancer types.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Gaurav Gupta
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India; School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Safar M Alqahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK Medical & Health Sciences University, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Kamal Dua
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| | - Lakshmi Thangavelu
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| |
Collapse
|
7
|
Khamis T, Diab AAAA, Zahra MH, El-Dahmy SE, Abd Al-Hameed BA, Abdelkhalek A, Said MA, Abdellatif H, Fericean LM, Banatean-Dunea I, Arisha AH, Attia MS. The Antiproliferative Activity of Adiantum pedatum Extract and/or Piceatannol in Phenylhydrazine-Induced Colon Cancer in Male Albino Rats: The miR-145 Expression of the PI-3K/ Akt/ p53 and Oct4/ Sox2/ Nanog Pathways. Molecules 2023; 28:5543. [PMID: 37513415 PMCID: PMC10383735 DOI: 10.3390/molecules28145543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Colon cancer is one of the most common types of cancer worldwide, and its incidence is increasing. Despite advances in medical science, the treatment of colon cancer still poses a significant challenge. This study aimed to investigate the potential protective effects of Adiantum pedatum (AP) extract and/or piceatannol on colon cancer induced via phenylhydrazine (PHZ) in terms of the antioxidant and apoptotic pathways and histopathologic changes in the colons of male albino rats. The rats were randomly divided into eight groups: control, AP extract, piceatannol (P), PHZ, PHZ and AP treatments, PHZ and P treatments, PHZ and both AP and P, and PHZ and prophylaxis with both AP and P. The results demonstrated that PHZ induced oxidative damage, apoptosis, and histopathological changes compared to the control group. However, the administration of AP or P or AP + P as therapy or prophylaxis significantly ameliorated these changes and upregulated the colonic mir-145 and mRNA expression of P53 and PDCD-4 while downregulating the colonic mRNA expression of PI3K, AKT, c-Myc, CK-20, SOX-2, OCT-4, and NanoG compared to the PHZ group. These findings suggest that the candidate drugs may exert their anti-cancer effects through multiple mechanisms, including antioxidant and apoptotic activities.
Collapse
Affiliation(s)
- Tarek Khamis
- Department of Pharmacology and Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | - Mansour H Zahra
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Samih Ebrahim El-Dahmy
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | | | - Adel Abdelkhalek
- Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
| | - Mahmoud A Said
- Zagazig University Hospital, Zagazig University, Zagazig 44511, Egypt
| | - Hussein Abdellatif
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
- Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Liana Mihaela Fericean
- Department of Biology, Faculty of Agriculture, University of Life Sciences, King Mihai I" from Timisoara [ULST], Aradului St. 119, 300645 Timisoara, Romania
| | - Ioan Banatean-Dunea
- Department of Biology, Faculty of Agriculture, University of Life Sciences, King Mihai I" from Timisoara [ULST], Aradului St. 119, 300645 Timisoara, Romania
| | - Ahmed Hamed Arisha
- Department of Animal Physiology and Biochemistry, Faculty of Veterinary Medicine, Badr University in Cairo, Badr City 11829, Egypt
- Department of Physiology, Laboratory of Biotechnology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mai S Attia
- Zoology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
8
|
Waryah C, Alves E, Mazzieri R, Dolcetti R, Thompson EW, Redfern A, Blancafort P. Unpacking the Complexity of Epithelial Plasticity: From Master Regulator Transcription Factors to Non-Coding RNAs. Cancers (Basel) 2023; 15:3152. [PMID: 37370762 DOI: 10.3390/cancers15123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular plasticity in cancer enables adaptation to selective pressures and stress imposed by the tumor microenvironment. This plasticity facilitates the remodeling of cancer cell phenotype and function (such as tumor stemness, metastasis, chemo/radio resistance), and the reprogramming of the surrounding tumor microenvironment to enable immune evasion. Epithelial plasticity is one form of cellular plasticity, which is intrinsically linked with epithelial-mesenchymal transition (EMT). Traditionally, EMT has been regarded as a binary state. Yet, increasing evidence suggests that EMT involves a spectrum of quasi-epithelial and quasi-mesenchymal phenotypes governed by complex interactions between cellular metabolism, transcriptome regulation, and epigenetic mechanisms. Herein, we review the complex cross-talk between the different layers of epithelial plasticity in cancer, encompassing the core layer of transcription factors, their interacting epigenetic modifiers and non-coding RNAs, and the manipulation of cancer immunogenicity in transitioning between epithelial and mesenchymal states. In examining these factors, we provide insights into promising therapeutic avenues and potential anti-cancer targets.
Collapse
Affiliation(s)
- Charlene Waryah
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Eric Alves
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Erik W Thompson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Andrew Redfern
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
9
|
Yarra SS, Ashok G, Mohan U. "Toehold Switches; a foothold for Synthetic Biology". Biotechnol Bioeng 2023; 120:932-952. [PMID: 36527224 DOI: 10.1002/bit.28309] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/24/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Toehold switches are de novo designed riboregulators that contain two RNA components interacting through linear-linear RNA interactions, regulating the gene expression. These are highly versatile, exhibit excellent orthogonality, wide dynamic range, and are highly programmable, so can be used for various applications in synthetic biology. In this review, we summarized and discussed the design characteristics and benefits of toehold switch riboregulators over conventional riboregulators. We also discussed applications and recent advancements of toehold switch riboregulators in various fields like gene editing, DNA nanotechnology, translational repression, and diagnostics (detection of microRNAs and some pathogens). Toehold switches, therefore, furnished advancement in synthetic biology applications in various fields with their prominent features.
Collapse
Affiliation(s)
- Sai Sumanjali Yarra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Ganapathy Ashok
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER) Kolkata, Kolkata, West Bengal, India
| |
Collapse
|
10
|
Ye X, Shi T, Cui Y, Sakurai T. Interactive gene identification for cancer subtyping based on multi-omics clustering. Methods 2023; 211:61-67. [PMID: 36804215 DOI: 10.1016/j.ymeth.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/06/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023] Open
Abstract
Recent advances in multi-omics databases offer the opportunity to explore complex systems of cancers across hierarchical biological levels. Some methods have been proposed to identify the genes that play a vital role in disease development by integrating multi-omics. However, the existing methods identify the related genes separately, neglecting the gene interactions that are related to the multigenic disease. In this study, we develop a learning framework to identify the interactive genes based on multi-omics data including gene expression. Firstly, we integrate different omics based on their similarities and apply spectral clustering for cancer subtype identification. Then, a gene co-expression network is construct for each cancer subtype. Finally, we detect the interactive genes in the co-expression network by learning the dense subgraphs based on the L1 prosperities of eigenvectors in the modularity matrix. We apply the proposed learning framework on a multi-omics cancer dataset to identify the interactive genes for each cancer subtype. The detected genes are examined by DAVID and KEGG tools for systematic gene ontology enrichment analysis. The analysis results show that the detected genes have relationships to cancer development and the genes in different cancer subtypes are related to different biological processes and pathways, which are expected to yield important references for understanding tumor heterogeneity and improving patient survival.
Collapse
Affiliation(s)
- Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan.
| | - Tianyi Shi
- Tsukuba Life Science Innovation Program, University of Tsukuba, Tsukuba 3058577, Japan
| | - Yaxuan Cui
- Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan
| | - Tetsuya Sakurai
- Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan; Tsukuba Life Science Innovation Program, University of Tsukuba, Tsukuba 3058577, Japan
| |
Collapse
|
11
|
Ghamlouche F, Yehya A, Zeid Y, Fakhereddine H, Fawaz J, Liu YN, Al-Sayegh M, Abou-Kheir W. MicroRNAs as clinical tools for diagnosis, prognosis, and therapy in prostate cancer. Transl Oncol 2023; 28:101613. [PMID: 36608541 PMCID: PMC9827391 DOI: 10.1016/j.tranon.2022.101613] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/05/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the most commonly diagnosed cancers among men worldwide. Despite the presence of accumulated clinical strategies for PCa management, limited prognostic/sensitive biomarkers are available to follow up on disease occurrence and progression. MicroRNAs (miRNAs) are small non-coding RNAs that control gene expression through post-transcriptional regulation of their complementary target messenger RNA (mRNA). MiRNAs modulate fundamental biological processes and play crucial roles in the pathology of various diseases, including PCa. Multiple evidence proved an aberrant miRNA expression profile in PCa, which is actively involved in the carcinogenic process. The robust and pleiotropic impact of miRNAs on PCa suggests them as potential candidates to help more understand the molecular landscape of the disease, which is likely to provide tools for early diagnosis and prognosis as well as additional therapeutic strategies to manage prostate tumors. Here, we emphasize the most consistently reported dysregulated miRNAs and highlight the contribution of their altered downstream targets with PCa hallmarks. Also, we report the potential effectiveness of using miRNAs as diagnostic/prognostic biomarkers in PCa and the high-throughput profiling technologies that are being used in their detection. Another key aspect to be discussed in this review is the promising implication of miRNAs molecules as therapeutic tools and targets for fighting PCa.
Collapse
Affiliation(s)
- Fatima Ghamlouche
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Amani Yehya
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Yousef Zeid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Hiam Fakhereddine
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jhonny Fawaz
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Yen-Nien Liu
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Mohamed Al-Sayegh
- Biology Division, New York University Abu Dhabi, Abu Dhabi 2460, United Arab Emirates.
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon.
| |
Collapse
|
12
|
Machida M, Ambo M, Mishina R, Hada N, Tachibana F, Yamashita M, Konda A, Tsuji K. Integrated Predictors by Propensity Scoring With Tumor Markers and Plasma Levels of microRNA-21-5p, IL-17, and IL-10 Complement Early Detection of Hepatocellular Carcinoma in Patients With Liver Cirrhosis. Technol Cancer Res Treat 2023; 22:15330338231212084. [PMID: 37960842 PMCID: PMC10647953 DOI: 10.1177/15330338231212084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 11/15/2023] Open
Abstract
Objectives: The clinical usefulness of tumor markers alpha-fetoprotein (AFP) and des-gamma carboxyprothrombin (DCP) in the early detection of hepatocellular carcinoma (HCC) in patients with liver cirrhosis (LC), including those with marker decline after antiviral therapy, is limited. MicroRNAs (miRNAs) are expected to complement detection; however, their details remain unknown. Our prospective pilot study aimed to improve the surveillance of HCC high-risk LC patients by propensity scoring with tumor markers and additional predictors. Methods: Tumor markers and plasma levels of cytokines and miRNAs were observationally measured and statistically evaluated with propensity scoring in 85 eligible patients: 43 with current HCC (cHCC) including 8 with early-HCC, 22 with previous HCC cured (pHCC), and 20 with intact LC (iLC). Results: The analysis of the area under the receiver operating characteristic curve (AUC) showed that the best single predictor was AFP (0.794 for cHCC-discrimination and 0.771 for pHCC-discrimination). AFP-DCP integrated with miR-21-5p for cHCC-discrimination was 0.896; with IL-10 for pHCC-discrimination was 0.872, these were significantly better than those of AFP alone, independently (P < .01). The best single predictor for iLC-discrimination was IL-17 level (0.756). IL-17 integrated with AFP-DCP was 0.882, which was significantly better than that of IL-17 alone (P < .01). The positive likelihood ratio (pLR) for cHCC-discrimination by integration of AFP-DCP and miR-21-5p was 32.2. Preliminary validation analysis of early-HCCs compared to conventional AFP and DCP showed the combinations of AFP-DCP and 3 integrated predictors, miR-21-5p for cHCC-discrimination, IL-10 for pHCC-discrimination, and IL-17 for iLC-discrimination, sensitivity, specificity, and pLR, improved from 37.5% to 62.5%, 55.8% to 83.1%, and 0.85 to 3.70, respectively. Conclusion: The predictors of AFP-DCP combined with iR-21-5p, IL-10, and IL-17 by propensity scoring achieved higher discrimination of cHCCs, pHCCs, and iLCs, may be beneficial for the surveillance of early-HCCs, improving prediction of early-HCCs over conventional methods. However, further validation is required.
Collapse
Affiliation(s)
- Maiko Machida
- Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Mayuko Ambo
- Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Runa Mishina
- Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Nanaka Hada
- Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Fuhito Tachibana
- Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Miki Yamashita
- Department of Clinical Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Ainari Konda
- Department of Pharmacotherapy, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| | - Kunihiko Tsuji
- Teine Keijinkai Hospital, Center of Gastroenterology, Sapporo Hokkaido, Japan
| |
Collapse
|
13
|
Al-Awsi GRL, Jasim SA, Fakri Mustafa Y, Alhachami FR, Ziyadullaev S, Kandeel M, Abulkassim R, Sivaraman R, M Hameed N, Mireya Romero Parra R, Karampoor S, Mirzaei R. The role of miRNA-128 in the development and progression of gastrointestinal and urogenital cancer. Future Oncol 2022; 18:4209-4231. [PMID: 36519554 DOI: 10.2217/fon-2022-0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Increasing data have shown the significance of various miRNAs in malignancy. In this regard, parallel to its biological role in normal tissues, miRNA-128 (miR-128) has been found to play an essential immunomodulatory function in the process of cancer initiation and development. The occurrence of the aberrant expression of miR-128 in tumors and the unique properties of miRNAs raise the prospect of their use as biomarkers and the next generation of molecular anticancer therapies. The function of miR-128 in malignancies such as breast, prostate, colorectal, gastric, pancreatic, esophageal, cervical, ovarian and bladder cancers and hepatocellular carcinoma is discussed in this review. Finally, the effect of exosomal miR-128 on cancer resistance to therapeutics and cancer immunotherapy in certain malignancies is highlighted.
Collapse
Affiliation(s)
| | - Saade Abdalkareem Jasim
- Department of Medical Laboratory Techniques, Al-maarif University College, Al-Anbar-Ramadi, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Firas Rahi Alhachami
- Department of Radiology, College of Health & Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | - Shukhrat Ziyadullaev
- No. 1 Department of Internal Diseases, Vice-rector for Scientific Affairs & Innovations, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Hofuf, Al-Ahsa, 31982, Saudi Arabia.,Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, 33516, Egypt
| | | | - R Sivaraman
- Department of Mathematics, Dwaraka Doss Goverdhan Doss Vaishnav College, Arumbakkam, University of Madras, Chennai, India
| | - Noora M Hameed
- Anesthesia Techniques, Al-Nisour University College, Iraq
| | | | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Department of Medical Biotechnology, Venom & Biotherapeutics Molecules Lab, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
14
|
Li X, Michels BE, Tosun OE, Jung J, Kappes J, Ibing S, Nataraj NB, Sahay S, Schneider M, Wörner A, Becki C, Ishaque N, Feuerbach L, Heßling B, Helm D, Will R, Yarden Y, Müller-Decker K, Wiemann S, Körner C. 5’isomiR-183-5p|+2 elicits tumor suppressor activity in a negative feedback loop with E2F1. J Exp Clin Cancer Res 2022; 41:190. [PMID: 35655310 PMCID: PMC9161486 DOI: 10.1186/s13046-022-02380-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022] Open
Abstract
Background MicroRNAs (miRNAs) and isomiRs play important roles in tumorigenesis as essential regulators of gene expression. 5’isomiRs exhibit a shifted seed sequence compared to the canonical miRNA, resulting in different target spectra and thereby extending the phenotypic impact of the respective common pre-miRNA. However, for most miRNAs, expression and function of 5’isomiRs have not been studied in detail yet. Therefore, this study aims to investigate the functions of miRNAs and their 5’isomiRs. Methods The expression of 5’isomiRs was assessed in The Cancer Genome Atlas (TCGA) breast cancer patient dataset. Phenotypic effects of miR-183 overexpression in triple-negative breast cancer (TNBC) cell lines were investigated in vitro and in vivo by quantifying migration, proliferation, tumor growth and metastasis. Direct targeting of E2F1 by miR-183-5p|+2 was validated with a 3’UTR luciferase assay and linked to the phenotypes of isomiR overexpression. Results TCGA breast cancer patient data indicated that three variants of miR-183-5p are highly expressed and upregulated, namely miR-183-5p|0, miR-183-5p|+1 and miR-183-5p|+2. However, TNBC cell lines displayed reduced proliferation and invasion upon overexpression of pre-miR-183. While invasion was reduced individually by all three isomiRs, proliferation and cell cycle progression were specifically inhibited by overexpression of miR-183-5p|+2. Proteomic analysis revealed reduced expression of E2F target genes upon overexpression of this isomiR, which could be attributed to direct targeting of E2F1, specifically by miR-183-5p|+2. Knockdown of E2F1 partially phenocopied the effect of miR-183-5p|+2 overexpression on cell proliferation and cell cycle. Gene set enrichment analysis of TCGA and METABRIC patient data indicated that the activity of E2F strongly correlated with the expression of miR-183-5p, suggesting transcriptional regulation of the miRNA by a factor of the E2F family. Indeed, in vitro, expression of miR-183-5p was regulated by E2F1. Hence, miR-183-5p|+2 directly targeting E2F1 appears to be part of a negative feedback loop potentially fine-tuning its activity. Conclusions This study demonstrates that 5’isomiRs originating from the same arm of the same pre-miRNA (i.e. pre-miR-183-5p) may exhibit different functions and thereby collectively contribute to the same phenotype. Here, one of three isomiRs was shown to counteract expression of the pre-miRNA by negatively regulating a transcriptional activator (i.e. E2F1). We speculate that this might be part of a regulatory mechanism to prevent uncontrolled cell proliferation, which is disabled during cancer progression. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02380-8.
Collapse
|
15
|
George S, Cassidy RN, Saintilnord WN, Fondufe-Mittendorf Y. Epigenomic reprogramming in iAs-mediated carcinogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:319-365. [PMID: 36858778 DOI: 10.1016/bs.apha.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Arsenic is a naturally occurring metal carcinogen found in the Earth's crust. Millions of people worldwide are chronically exposed to arsenic through drinking water and food. Exposure to inorganic arsenic has been implicated in many diseases ranging from acute toxicities to malignant transformations. Despite the well-known deleterious health effects of arsenic exposure, the molecular mechanisms in arsenic-mediated carcinogenesis are not fully understood. Since arsenic is non-mutagenic, the mechanism by which arsenic causes carcinogenesis is via alterations in epigenetic-regulated gene expression. There are two possible ways by which arsenic may modify the epigenome-indirectly through an arsenic-induced generation of reactive oxygen species which then impacts chromatin remodelers, or directly through interaction and modulation of chromatin remodelers. Whether directly or indirectly, arsenic modulates epigenetic gene regulation and our understanding of the direct effect of this modulation on chromatin structure is limited. In this chapter we will discuss the various ways by which inorganic arsenic affects the epigenome with consequences in health and disease.
Collapse
Affiliation(s)
- Smitha George
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Richard N Cassidy
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States
| | - Wesley N Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|
16
|
Chen T, Sun MR, Zhou Q, Guzman AM, Ramchandran R, Chen J, Fraidenburg DR, Ganesh B, Maienschein-Cline M, Obrietan K, Raj JU. MicroRNA-212-5p, an anti-proliferative miRNA, attenuates hypoxia and sugen/hypoxia-induced pulmonary hypertension in rodents. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 29:204-216. [PMID: 35892089 PMCID: PMC9289783 DOI: 10.1016/j.omtn.2022.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 06/15/2022] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNA, miR-) play important roles in disease development. In this study, we identified an anti-proliferative miRNA, miR-212-5p, that is induced in pulmonary artery smooth muscle cells (PASMCs) and lungs of pulmonary hypertension (PH) patients and rodents with experimental PH. We found that smooth muscle cell (SMC)-specific knockout of miR-212-5p exacerbated hypoxia-induced pulmonary vascular remodeling and PH in mice, suggesting that miR-212-5p may be upregulated in PASMCs to act as an endogenous inhibitor of PH, possibly by suppressing PASMC proliferation. Extracellular vesicles (EVs) have been shown recently to be promising drug delivery tools for disease treatment. We generated endothelium-derived EVs with an enriched miR-212-5p load, 212-eEVs, and found that they significantly attenuated hypoxia-induced PH in mice and Sugen/hypoxia-induced severe PH in rats, providing proof of concept that engineered endothelium-derived EVs can be used to deliver miRNA into lungs for treatment of severe PH.
Collapse
Affiliation(s)
- Tianji Chen
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Miranda R. Sun
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Qiyuan Zhou
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alyssa M. Guzman
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ramaswamy Ramchandran
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jiwang Chen
- Cardiovascular Research Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Dustin R. Fraidenburg
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Balaji Ganesh
- Flow Cytometry Core, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | - Karl Obrietan
- Department of Neuroscience, Ohio State University, Columbus, OH 43210, USA
| | - J. Usha Raj
- Department of Pediatrics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
17
|
McAlarnen LA, Gupta P, Singh R, Pradeep S, Chaluvally-Raghavan P. Extracellular vesicle contents as non-invasive biomarkers in ovarian malignancies. Mol Ther Oncolytics 2022; 26:347-359. [PMID: 36090475 PMCID: PMC9420349 DOI: 10.1016/j.omto.2022.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer most commonly presents at an advanced stage where survival is approximately 30% compared with >80% if diagnosed and treated before disease spreads. Diagnostic capabilities have progressed from surgical staging via laparotomy to image-guided biopsies and immunohistochemistry staining, along with advances in technology and medicine. Despite improvements in diagnostic capabilities, population-level screening for ovarian cancer is not recommended. Extracellular vesicles (EVs) are 40–150 nm structures formed when the cellular lipid bilayer invaginates. These structures function in cell signaling, immune responses, cancer progression, and establishing the tumor microenvironment. EVs are found in nearly every bodily fluid, including serum, plasma, ascites, urine, and effusion fluid, and contain molecular cargo from their cell of origin. This cargo can be analyzed to yield information about a possible malignancy. In this review we describe how the cargo of EVs has been studied as biomarkers in ovarian cancer. We bring together studies analyzing evidence for various cargos as ovarian cancer biomarkers. Then, we describe the role of EVs in modulation of the tumor microenvironment. This review also summarizes the therapeutic and translational potential of EVs for their optimal utilization as non-invasive biomarkers for novel treatments against cancer.
Collapse
|
18
|
Dicer-mediated miR-200b expression contributes to cell migratory/invasive abilities and cancer stem cells properties of breast cancer cells. Aging (Albany NY) 2022; 14:6520-6536. [PMID: 35951366 PMCID: PMC9467414 DOI: 10.18632/aging.204205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/12/2022] [Indexed: 11/25/2022]
Abstract
Distant metastasis is the leading cause of death in patients with breast cancer. Despite considerable treatment advances, the clinical outcomes of patients with metastatic breast cancer remain poor. CSCs can self-renew, enhancing cancer progression and metastasis. Dicer, a microRNA (miRNA) processing–related enzyme, is required for miRNA maturation. Imbalanced Dicer expression may be pivotal in cancer progression. However, whether and how Dicer affects the stemness of metastatic breast cancer cells remains unclear. Here, we hypothesized that Dicer regulates the migration, invasion, and stemness of breast cancer cells. We established highly invasive cell lines (MCF-7/I-3 and MDA-MB-231/I-3) and observed that Dicer expression was conspicuously lower in the highly invasive cells than in the parental cells. The silencing of Dicer significantly enhanced the cell migratory/invasive abilities and CSCs properties of the breast cancer cells. Conversely, the overexpression of Dicer in the highly invasive cells reduced their migration, invasion, and CSCs properties. Our bioinformatics analyses demonstrated that low Dicer levels were correlated with increased breast cancer risk. Suppression of Dicer inhibited miR-200b expression, whereas miR-200b suppression recovered Dicer knockdown–induced migration, invasion, and cancer stem cells (CSCs) properties of the breast cancer cells. Thus, our findings reveal that Dicer is a crucial regulator of the migration, invasion, and CSCs properties of breast cancer cells and is significantly associated with poor survival in patients with breast cancer.
Collapse
|
19
|
Yang Y, Tian S, Qiu Y, Zhao P, Zou Q. MDICC: novel method for multi-omics data integration and cancer subtype identification. Brief Bioinform 2022; 23:6569541. [PMID: 35437603 DOI: 10.1093/bib/bbac132] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/11/2022] [Accepted: 03/19/2022] [Indexed: 12/12/2022] Open
Abstract
Each type of cancer usually has several subtypes with distinct clinical implications, and therefore the discovery of cancer subtypes is an important and urgent task in disease diagnosis and therapy. Using single-omics data to predict cancer subtypes is difficult because genomes are dysregulated and complicated by multiple molecular mechanisms, and therefore linking cancer genomes to cancer phenotypes is not an easy task. Using multi-omics data to effectively predict cancer subtypes is an area of much interest; however, integrating multi-omics data is challenging. Here, we propose a novel method of multi-omics data integration for clustering to identify cancer subtypes (MDICC) that integrates new affinity matrix and network fusion methods. Our experimental results show the effectiveness and generalization of the proposed MDICC model in identifying cancer subtypes, and its performance was better than those of currently available state-of-the-art clustering methods. Furthermore, the survival analysis demonstrates that MDICC delivered comparable or even better results than many typical integrative methods.
Collapse
Affiliation(s)
- Ying Yang
- College of Mathematics and Statistics, Shenzhen University, 518000, China
| | - Sha Tian
- College of Mathematics and Statistics, Shenzhen University, 518000, China
| | - Yushan Qiu
- College of Mathematics and Statistics, Shenzhen University, 518000, China
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang, 110169, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610056, China
| |
Collapse
|
20
|
Mukherjee S, Murata A, Ishida R, Sugai A, Dohno C, Hamada M, Krishna S, Nakatani K. HT-SELEX-based identification of binding pre-miRNA hairpin-motif for small molecules. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:165-174. [PMID: 34976435 PMCID: PMC8685993 DOI: 10.1016/j.omtn.2021.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Selective targeting of biologically relevant RNAs with small molecules is a long-standing challenge due to the lack of clear understanding of the binding RNA motifs for small molecules. The standard SELEX procedure allows the identification of specific RNA binders (aptamers) for the target of interest. However, more effort is needed to identify and characterize the sequence-structure motifs in the aptamers important for binding to the target. Herein, we described a strategy integrating high-throughput (HT) sequencing with conventional SELEX followed by bioinformatic analysis to identify aptamers with high binding affinity and target specificity to unravel the sequence-structure motifs of pre-miRNA, which is essential for binding to the recently developed new water-soluble small-molecule CMBL3aL. To confirm the fidelity of this approach, we investigated the binding of CMBL3aL to the identified motifs by surface plasmon resonance (SPR) spectroscopy and its potential regulatory activity on dicer-mediated cleavage of the obtained aptamers and endogenous pre-miRNAs comprising the identified motif in its hairpin loop. This new approach would significantly accelerate the identification process of binding sequence-structure motifs of pre-miRNA for the compound of interest and would contribute to increase the spectrum of biomedical application.
Collapse
Affiliation(s)
- Sanjukta Mukherjee
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bangalore 560065, India
| | - Asako Murata
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Ryoga Ishida
- Graduate School of Advanced Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Ayako Sugai
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Chikara Dohno
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| | - Michiaki Hamada
- Graduate School of Advanced Science and Engineering, Waseda University, 55N-06-10, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Sudhir Krishna
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR), Bellary Road, Bangalore 560065, India
| | - Kazuhiko Nakatani
- Department of Regulatory Bioorganic Chemistry, The Institute of Scientific and Industrial Research (SANKEN), Osaka University, 8-1 Mihogaoka, Ibaraki 567-0047, Japan
| |
Collapse
|
21
|
Marzhoseyni Z, Shojaie L, Tabatabaei SA, Movahedpour A, Safari M, Esmaeili D, Mahjoubin-Tehran M, Jalili A, Morshedi K, Khan H, Okhravi R, Hamblin MR, Mirzaei H. Streptococcal bacterial components in cancer therapy. Cancer Gene Ther 2022; 29:141-155. [PMID: 33753868 DOI: 10.1038/s41417-021-00308-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 02/01/2023]
Abstract
The incidence rate of cancer is steadily increasing all around the world, and there is an urgent need to develop novel and more effective treatment strategies. Recently, bacterial therapy has been investigated as a new approach to target cancer, and is becoming a serious option. Streptococcus strains are among the most common and well-studied virulent bacteria that cause a variety of human infections. Everyone has experienced a sore throat during their lifetime, or has been asymptomatically colonized by streptococci. The ability of Streptococcus bacteria to fight cancer was discovered more than 100 years ago, and over the years has undergone clinical trials, but the mechanism is not yet completely understood. Recently, several animal models and human clinical trials have been reported. Streptococcal strains can have an intrinsic anti-tumor activity, or can activate the host immune system to fight the tumor. Bacteria can selectively accumulate and proliferate in the hypoxic regions of solid tumors. Moreover, the bacteria can be genetically engineered to secrete toxins or enzymes that can specifically attack the tumors.
Collapse
Affiliation(s)
- Zeynab Marzhoseyni
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Layla Shojaie
- Research Center for Liver Diseases, Keck School of Medicine, Department of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Seyed Alireza Tabatabaei
- Department of Internal Medicine, School of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmood Safari
- Department of Microbiology and Immunology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems Biology and Poisonings Institute and Department of Microbiology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Jalili
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Korosh Morshedi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Ranaa Okhravi
- Department of Medical Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
22
|
Chen T, Sun MR, Zhou Q, Guzman AM, Ramchandran R, Chen J, Ganesh B, Raj JU. Extracellular vesicles derived from endothelial cells in hypoxia contribute to pulmonary artery smooth muscle cell proliferation in-vitro and pulmonary hypertension in mice. Pulm Circ 2022; 12:e12014. [PMID: 35506070 PMCID: PMC9053009 DOI: 10.1002/pul2.12014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 01/01/2023] Open
Abstract
In the lung, communication between pulmonary vascular endothelial cells (PVEC) and pulmonary artery smooth muscle cells (PASMC) is essential for the maintenance of vascular homeostasis. In pulmonary hypertension (PH), the derangement in their cell-cell communication plays a major role in the pathogenesis of pulmonary vascular remodeling. In this study, we focused on the role of PVEC-derived extracellular vesicles (EV), specifically their microRNA (miRNA, miR-) cargo, in the regulation of PASMC proliferation and vascular remodeling in PH. We found that the amount of pro-proliferative miR-210-3p was increased in PVEC-derived EV in hypoxia (H-EV), which contributes to the H-EV-induced proliferation of PASMC and the development of PH.
Collapse
Affiliation(s)
- Tianji Chen
- Department of PediatricsUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Miranda R. Sun
- Department of PediatricsUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Present address:
School of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWisconsin
| | - Qiyuan Zhou
- Department of PediatricsUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Alyssa M. Guzman
- Department of PediatricsUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | | | - Jiwang Chen
- Cardiovascular Research CenterUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and AllergyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Balaji Ganesh
- Flow Cytometry Core, Research Resources CenterUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - J. Usha Raj
- Department of PediatricsUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
23
|
Lahooti B, Poudel S, Mikelis CM, Mattheolabakis G. MiRNAs as Anti-Angiogenic Adjuvant Therapy in Cancer: Synopsis and Potential. Front Oncol 2021; 11:705634. [PMID: 34956857 PMCID: PMC8695604 DOI: 10.3389/fonc.2021.705634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is a key mechanism for tumor growth and metastasis and has been a therapeutic target for anti-cancer treatments. Intensive vascular growth is concomitant with the rapidly proliferating tumor cell population and tumor outgrowth. Current angiogenesis inhibitors targeting either one or a few pro-angiogenic factors or a range of downstream signaling molecules provide clinical benefit, but not without significant side effects. miRNAs are important post-transcriptional regulators of gene expression, and their dysregulation has been associated with tumor progression, metastasis, resistance, and the promotion of tumor-induced angiogenesis. In this mini-review, we provide a brief overview of the current anti-angiogenic approaches, their molecular targets, and side effects, as well as discuss existing literature on the role of miRNAs in angiogenesis. As we highlight specific miRNAs, based on their activity on endothelial or cancer cells, we discuss their potential for anti-angiogenic targeting in cancer as adjuvant therapy and the importance of angiogenesis being evaluated in such combinatorial approaches.
Collapse
Affiliation(s)
- Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Sagun Poudel
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, United States
- Department of Pharmacy, University of Patras, Patras, Greece
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA, United States
| |
Collapse
|
24
|
Yang B, Xin TT, Pang SM, Wang M, Wang YJ. Deep Subspace Mutual Learning For Cancer Subtypes Prediction. Bioinformatics 2021; 37:3715-3722. [PMID: 34478501 DOI: 10.1093/bioinformatics/btab625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 07/26/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION Precise prediction of cancer subtypes is of significant importance in cancer diagnosis and treatment. Disease etiology is complicated existing at different omics levels, hence integrative analysis provides a very effective way to improve our understanding of cancer. RESULTS We propose a novel computational framework, named Deep Subspace Mutual Learning (DSML). DSML has the capability to simultaneously learn the subspace structures in each available omics data and in overall multi-omics data by adopting deep neural networks, which thereby facilitates the subtypes prediction via clustering on multi-level, single level, and partial level omics data. Extensive experiments are performed in five different cancers on three levels of omics data from The Cancer Genome Atlas. The experimental analysis demonstrates that DSML delivers comparable or even better results than many state-of-the-art integrative methods. AVAILABILITY An implementation and documentation of the DSML is publicly available at https://github.com/polytechnicXTT/Deep-Subspace-Mutual-Learning.git. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Bo Yang
- School of Computer Science, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Ting-Ting Xin
- School of Computer Science, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Shan-Min Pang
- School of Software Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Meng Wang
- School of Computer Science, Xi'an Polytechnic University, Xi'an, 710048, China
| | - Yi-Jie Wang
- School of Software Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
25
|
Chen F, Lao Z, Zhang H, Wang J, Wang S. Knockdown of circ_0001883 may inhibit epithelial-mesenchymal transition in laryngeal squamous cell carcinoma via the miR-125-5p/PI3K/AKT axis. Exp Ther Med 2021; 22:1007. [PMID: 34345289 PMCID: PMC8311254 DOI: 10.3892/etm.2021.10440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/09/2021] [Indexed: 12/27/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a malignant tumor with increasing incidence and poor prognosis. Circular RNAs (circRNAs) are known to modulate tumorigenesis and cancer development that may function through microRNAs (miRs). The aim of the present study was to investigate the functional roles of circ_0001883 in LSCC and the underlying molecular mechanism. The expression of circ_0001883 was upregulated and measured using reverse transcription-quantitative PCR (RT-qPCR) and RNase R. miR-125b-5p expression was downregulated in LSCC tissues and cells as determined using RT-qPCR. Subsequently, knockdown of circ_0001883 inhibited LSCC cell migration, invasion and epithelial-mesenchymal transition (EMT), which were tested by wound healing assays, Transwell assays and western blotting, respectively. Bioinformatics analysis predicted that circ_0001883 was a sponge of miR-125b-5p, which was verified using a dual-luciferase reporter assay. Knockdown of circ_0001883 played a functional role by sponging miR-125b-5p. Additionally, circ_0001883 and miR-125b-5p influenced phosphorylation of PI3K and AKT, detected via western blotting. In an in vivo study, knockdown of circ_0001883 reduced tumor volume and weight in mice, along with enhanced miR-125b-5p and E-cadherin expression levels, and decreased N-cadherin, phosphorylated (p)-PI3K/PI3K and p-AKT/AKT ratios. In conclusion, knockdown of circ_0001883 inhibited cell migration, invasion and EMT of LSCC by sponging miR-125b-5p. This is hypothesized to be via the PI3K/AKT signaling pathway, which suggested that circ_0001883 has potential for LSCC therapy.
Collapse
Affiliation(s)
- Fu Chen
- Department of Radiation Oncology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Zheng Lao
- Radiotherapy Division, Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Haiyan Zhang
- Department of Radiation Oncology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Jie Wang
- Department of Radiation Oncology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| | - Shengzi Wang
- Department of Radiation Oncology, Eye and ENT Hospital of Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
26
|
The Role of microRNAs in Pulp Inflammation. Cells 2021; 10:cells10082142. [PMID: 34440911 PMCID: PMC8391605 DOI: 10.3390/cells10082142] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
The dental pulp can be affected by thermal, physical, chemical, and bacterial phenomena that stimulate the inflammatory response. The pulp tissue produces an immunological, cellular, and vascular reaction in an attempt to defend itself and resolve the affected tissue. The expression of different microRNAs during pulp inflammation has been previously documented. MicroRNAs (miRNAs) are endogenous small molecules involved in the transcription of genes that regulate the immune system and the inflammatory response. They are present in cellular and physiological functions, as well as in the pathogenesis of human diseases, becoming potential biomarkers for diagnosis, prognosis, monitoring, and safety. Previous studies have evidenced the different roles played by miRNAs in proinflammatory, anti-inflammatory, and immunological phenomena in the dental pulp, highlighting specific key functions of pulp pathology. This systematized review aims to provide an understanding of the role of the different microRNAs detected in the pulp and their effects on the expression of the different target genes that are involved during pulp inflammation.
Collapse
|
27
|
Kmiecik AM, Dzięgiel P, Podhorska-Okołów M. Nucleobindin-2/Nesfatin-1-A New Cancer Related Molecule? Int J Mol Sci 2021; 22:ijms22158313. [PMID: 34361082 PMCID: PMC8348729 DOI: 10.3390/ijms22158313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023] Open
Abstract
Cancer is a heterogeneous disease, and even tumors with similar clinicopathological characteristics show different biology, behavior, and treatment responses. As a result, there is an urgent need to define new prognostic and predictive markers to make treatment options more personalized. According to the latest findings, nucleobindin-2/nesfatin-1 (NUCB2/NESF-1) is an important factor in cancer development and progression. Nucleobindin-2 is a precursor protein of nesfatin-1. As NUCB2 and nesfatin-1 are colocalized in each tissue, their expression is often analyzed together as NUCB2. The metabolic function of NUCB2/NESF-1 is related to food intake, glucose metabolism, and the regulation of immune, cardiovascular and endocrine systems. Recently, it has been demonstrated that high expression of NUCB2/NESF-1 is associated with poor outcomes and promotes cell proliferation, migration, and invasion in, e.g., breast, colon, prostate, endometrial, thyroid, bladder cancers, or glioblastoma. Interestingly, nesfatin-1 is also considered an inhibitor of the proliferation of human adrenocortical carcinoma and ovarian epithelial carcinoma cells. These conflicting results make NUCB2/NESF-1 an interesting target of study in the context of cancer progression. The present review is the first to describe NUCB2/NESF-1 as a new prognostic and predictive marker in cancers.
Collapse
Affiliation(s)
- Alicja M. Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-7-1784-1365; Fax: +48-7-1784-0082
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland;
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| | | |
Collapse
|
28
|
Choi JH, Ha T, Shin M, Lee SN, Choi JW. Nanomaterial-Based Fluorescence Resonance Energy Transfer (FRET) and Metal-Enhanced Fluorescence (MEF) to Detect Nucleic Acid in Cancer Diagnosis. Biomedicines 2021; 9:928. [PMID: 34440132 PMCID: PMC8392676 DOI: 10.3390/biomedicines9080928] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/25/2021] [Accepted: 07/28/2021] [Indexed: 12/27/2022] Open
Abstract
Nucleic acids, including DNA and RNA, have received prodigious attention as potential biomarkers for precise and early diagnosis of cancers. However, due to their small quantity and instability in body fluids, precise and sensitive detection is highly important. Taking advantage of the ease-to-functionality and plasmonic effect of nanomaterials, fluorescence resonance energy transfer (FRET) and metal-enhanced fluorescence (MEF)-based biosensors have been developed for accurate and sensitive quantitation of cancer-related nucleic acids. This review summarizes the recent strategies and advances in recently developed nanomaterial-based FRET and MEF for biosensors for the detection of nucleic acids in cancer diagnosis. Challenges and opportunities in this field are also discussed. We anticipate that the FRET and MEF-based biosensors discussed in this review will provide valuable information for the sensitive detection of nucleic acids and early diagnosis of cancers.
Collapse
Affiliation(s)
- Jin-Ha Choi
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea;
| | - Taehyeong Ha
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| | - Minkyu Shin
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (T.H.); (M.S.)
| |
Collapse
|
29
|
Morishita A, Oura K, Tadokoro T, Fujita K, Tani J, Masaki T. MicroRNAs in the Pathogenesis of Hepatocellular Carcinoma: A Review. Cancers (Basel) 2021; 13:cancers13030514. [PMID: 33572780 PMCID: PMC7866004 DOI: 10.3390/cancers13030514] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the most frequently occurring cancers, and the prognosis for late-stage HCC remains poor. A better understanding of the pathogenesis of HCC is expected to improve outcomes. MicroRNAs (miRNAs) are small, noncoding, single-stranded RNAs that regulate the expression of various target genes, including those in cancer-associated genomic regions or fragile sites in various human cancers. We summarize the central roles of miRNAs in the pathogenesis of HCC and discuss their potential utility as valuable biomarkers and new therapeutic agents for HCC. Abstract Hepatocellular carcinoma (HCC) is the seventh most frequent cancer and the fourth leading cause of cancer mortality worldwide. Despite substantial advances in therapeutic strategies, the prognosis of late-stage HCC remains dismal because of the high recurrence rate. A better understanding of the etiology of HCC is therefore necessary to improve outcomes. MicroRNAs (miRNAs) are small, endogenous, noncoding, single-stranded RNAs that modulate the expression of their target genes at the posttranscriptional and translational levels. Aberrant expression of miRNAs has frequently been detected in cancer-associated genomic regions or fragile sites in various human cancers and has been observed in both HCC cells and tissues. The precise patterns of aberrant miRNA expression differ depending on disease etiology, including various causes of hepatocarcinogenesis, such as viral hepatitis, alcoholic liver disease, or nonalcoholic steatohepatitis. However, little is known about the underlying mechanisms and the association of miRNAs with the pathogenesis of HCC of various etiologies. In the present review, we summarize the key mechanisms of miRNAs in the pathogenesis of HCC and emphasize their potential utility as valuable diagnostic and prognostic biomarkers, as well as innovative therapeutic targets, in HCC diagnosis and treatment.
Collapse
|
30
|
Yang B, Zhang Y, Pang S, Shang X, Zhao X, Han M. Integrating Multi-Omic Data With Deep Subspace Fusion Clustering for Cancer Subtype Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:216-226. [PMID: 31689204 DOI: 10.1109/tcbb.2019.2951413] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One type of cancer usually consists of several subtypes with distinct clinical implications, thus the cancer subtype prediction is an important task in disease diagnosis and therapy. Utilizing one type of data from molecular layers in biological system to predict is difficult to bridge the cancer genome to cancer phenotypes, since the genome is neither simple nor independent but rather complicated and dysregulated from multiple molecular mechanisms. Similarity Network Fusion (SNF) has been recently proposed to integrate diverse omics data for improving the understanding of tumorigenesis. SNF adopts Euclidean distance to measure the similarity between patients, which shows some limitations. In this article, we introduce a novel prediction technique as an extension of SNF, namely Deep Subspace Fusion Clustering (DSFC). DSFC utilizes auto-encoder and data self-expressiveness approaches to guide a deep subspace model, which can achieve effective expression of discriminative similarity between patients. As a result, the dissimilarity between inter-cluster is delivered and enhanced compactness of intra-cluster is achieved at the same time. The validity of DSFC is examined by extensive simulations over six different cancer through three levels omics data. The survival analysis demonstrates that DSFC delivers comparable or even better results than many state-of-the-art integrative methods.
Collapse
|
31
|
Wang J, Zhao H, Yu J, Xu X, Jing H, Li N, Tang Y, Wang S, Li Y, Cai J, Jin J. MiR-320b/RAD21 axis affects hepatocellular carcinoma radiosensitivity to ionizing radiation treatment through DNA damage repair signaling. Cancer Sci 2020; 112:575-588. [PMID: 33251678 PMCID: PMC7894001 DOI: 10.1111/cas.14751] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world and is associated with high mortality. Ionizing radiation (IR)-based therapy causes DNA damage, exerting a curative effect; however, DNA damage repair signaling pathways lead to HCC resistance to IR-based therapy. RAD21 is a component of the cohesion complex, crucial for chromosome segregation and DNA damage repair, while it is still unclear whether RAD21 is implicated in DNA damage and influences IR sensitivity in HCC. The current research explores the effect and upstream regulatory mechanism of RAD21 on IR sensitivity in HCC. In the present study, RAD21 mRNA and protein expression were increased within HCC tissue samples, particularly within IR-insensitive HCC tissues. The overexpression of RAD21 partially attenuated the roles of IR in HCC by promoting the viability and suppressing the apoptosis of HCC cells. RAD21 overexpression reduced the culture medium 8-hydroxy-2-deoxyguanosine concentration and decreased the protein levels of γH2AX and ATM, suggesting that RAD21 overexpression attenuated IR treatment-induced DNA damage to HCC cells. miR-320b targeted RAD21 3'-UTR to inhibit RAD21 expression. In HCC tissues, particularly in IR-insensitive HCC tissues, miR-320b expression was significantly downregulated. miR-320b inhibition also attenuated IR treatment-induced DNA damage to HCC cells; more importantly, RAD21 silencing significantly attenuated the effects of miR-320b inhibition on IR treatment-induced DNA damage, suggesting that miR-320b plays a role through targeting RAD21. In conclusion, an miR-320b/RAD21 axis modulating HCC sensitivity to IR treatment through acting on IR-induced DNA damage was demonstrated. The miR-320b/RAD21 axis could be a novel therapeutic target for further study of HCC sensitivity to IR treatment.
Collapse
Affiliation(s)
- Jianyang Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Yu
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Jing
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ning Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Tang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shulian Wang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yexiong Li
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
32
|
An T, Zhang XQ, Liu YF, Lian J, Wu YX, Lv BH, Liang C, Chen CY, Yu QS, Ma MH, Wang YQ, Jiang GJ, Fan T. Microarray analysis of aberrant microRNA expression patterns in spinal cord gliomas of different grades. Oncol Lett 2020; 20:371. [PMID: 33154769 PMCID: PMC7640765 DOI: 10.3892/ol.2020.12234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/15/2019] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs (miRNAs) are involved in the development of several types of tumor; however, their role in spinal gliomas remains unknown. The present study aimed to identify potentially novel spinal cord gliomas (SCG)-associated miRNAs and to characterize their roles in the development and progression of SCG. miRNA expression levels in low-grade SCG (classed as stage I–II SCG based on the World Health Organization grading system), high-grade SCG (classed as stage IV SCG based on the World Health Organization grading system) and 5 control cases were measured using a miRNA expression microarray. Subsequently, blood samples from the spinal cord of patients with differing grades of SCG were screened for differentially expressed miRNAs (DEmiRNAs). Compared with the control group, 7 upregulated and 36 downregulated miRNAs were identified in the low-grade SCG group and a total of 70 upregulated and 20 downregulated miRNAs were identified in the high-grade SCG group (P≤0.05, fold change >2). Gene Ontology analysis revealed that the regulation of cellular metabolic processes, negative regulation of biological processes and axon guidance were primarily involved. Moreover, pathway analysis showed that the target genes of DEmiRNAs were enriched in tumor-related signaling pathways, such as the MAPK and Wnt signaling pathway. The results suggest that DEmiRNAs in peripheral blood may serve as novel target markers with high specificity and sensitivity for the diagnosis of SCG.
Collapse
Affiliation(s)
- Tian An
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Xin-Qing Zhang
- Department of Neurosurgery, ChuiYangLiu Hospital Affiliated to Tsinghua University, Beijing 100022, P.R. China
| | - Yu-Fei Liu
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, P.R. China
| | - Juan Lian
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Yan-Xiang Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Bo-Han Lv
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Cong Liang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Chun-You Chen
- Department of Endocrinology, Workers Hospital of Tangshan City, Tangshan, Hebei 063000, P.R. China
| | - Qi-Shuai Yu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| | - Meng-Hua Ma
- Department of Endocrinology, Workers Hospital of Tangshan City, Tangshan, Hebei 063000, P.R. China
| | - Yin-Qian Wang
- Department of Neurosurgery, ChuiYangLiu Hospital Affiliated to Tsinghua University, Beijing 100022, P.R. China
| | - Guang-Jian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Tao Fan
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing 100093, P.R. China
| |
Collapse
|
33
|
Baburaj G, Damerla RR, Udupa KS, Parida P, Munisamy M, Kolesar J, Rao M. Liquid biopsy approaches for pleural effusion in lung cancer patients. Mol Biol Rep 2020; 47:8179-8187. [PMID: 33029702 DOI: 10.1007/s11033-020-05869-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
Genomic profiling of tumors has become the mainstay for diagnosis, treatment monitoring and a guide to precision medicine. However, in clinical practice, the detection of driver mutations in tumors has several procedural limitations owing to progressive disease and tumor heterogeneity. The current era of liquid biopsy promises a better solution. This diagnostic utility of liquid biopsy has been demonstrated by numerous studies for the detection of cell-free DNA (cfDNA) in plasma for disease diagnosis, prognosis, and prediction. However, cfDNAs are limited in blood circulation and still hurdles to achieve promising precision medicine. Malignant pleural effusion (MPE) is usually detected in advanced lung malignancy, which is rich in tumor cells. Extracellular vesicles and cfDNAs are the two major targets currently explored using MPE. Therefore, MPE can be used as a source of biomarkers in liquid biopsy for investigating tumor mutations. This review focuses on the liquid biopsy approaches for pleural effusion which may be explored as an alternative source for liquid biopsy in lung cancer patients to diagnose early disease progression.
Collapse
Affiliation(s)
- Gayathri Baburaj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Rama Rao Damerla
- Department of Medical Genetics, Kasturba Medical College- Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Karthik S Udupa
- Department of Medical Oncology, Kasturba Medical College- Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Preetiparna Parida
- Department of Medical Genetics, Kasturba Medical College- Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Murali Munisamy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jill Kolesar
- Department of Pharmacy Practice & Science, University of Kentucky, 567 TODD Building, 789 South Limestone Street, Lexington, KY, 40539-0596, USA
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
34
|
Saw PE, Xu X, Chen J, Song EW. Non-coding RNAs: the new central dogma of cancer biology. SCIENCE CHINA-LIFE SCIENCES 2020; 64:22-50. [PMID: 32930921 DOI: 10.1007/s11427-020-1700-9] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
The central dogma of molecular biology states that the functions of RNA revolve around protein translation. Until the last decade, most researches were geared towards characterization of RNAs as intermediaries in protein translation, namely, messenger RNAs (mRNAs) as temporary copies of genetic information, ribosomal RNAs (rRNAs) as a main component of ribosome, or translators of codon sequence (tRNAs). The statistical reality, however, is that these processes account for less than 2% of the genome, and insufficiently explain the functionality of 98% of transcribed RNAs. Recent discoveries have unveiled thousands of unique non-coding RNAs (ncRNAs) and shifted the perception of them from being "junk" transcriptional products to "yet to be elucidated"-and potentially monumentally important-RNAs. Most ncRNAs are now known as key regulators in various networks in which they could lead to specific cellular responses and fates. In major cancers, ncRNAs have been identified as both oncogenic drivers and tumor suppressors, indicating a complex regulatory network among these ncRNAs. Herein, we provide a comprehensive review of the various ncRNAs and their functional roles in cancer, and the pre-clinical and clinical development of ncRNA-based therapeutics. A deeper understanding of ncRNAs could facilitate better design of personalized therapeutics.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jianing Chen
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Er-Wei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China. .,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
35
|
Li Y, Kong R, Chen H, Zhao Z, Li L, Li J, Hu J, Zhang G, Pan S, Wang Y, Wang G, Chen H, Sun B. Overexpression of KLF5 is associated with poor survival and G1/S progression in pancreatic cancer. Aging (Albany NY) 2020; 11:5035-5057. [PMID: 31327760 PMCID: PMC6682527 DOI: 10.18632/aging.102096] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
Abstract
Despite improvements in surgical procedures and comprehensive therapies, pancreatic cancer remains one of the most aggressive and deadly human malignancies. It is therefore necessary to determine which cellular mediators associate with prognosis in pancreatic cancer so as to improve the treatment of this disease. In the present study, mRNA array and immunohistochemical analyses showed that KLF5 is highly expressed in tissue samples from three short-surviving patients with pancreatic cancer. Survival analysis using data from The Cancer Genome Atlas showed that patients highly expressing KLF5 exhibited shorter overall and tumor-free survival times. Mechanistically, KLF5 promoted expression of E2F1, cyclin D1 and Rad51, while inhibiting expression of p16 in pancreatic cancer cells. Finally, flow cytometric analyses verified that KLF5 promotes G1/S progression of the cell cycle in pancreatic cancer cells. Collectively, these findings demonstrate that KLF5 is an important prognostic biomarker in pancreatic cancer patients, and they shed light on the molecular mechanism by which KLF5 stimulates cell cycle progression in pancreatic cancer.
Collapse
Affiliation(s)
- Yilong Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Rui Kong
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Hongze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Zhongjie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Jiating Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Jisheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Guangquan Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Shangha Pan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Yongwei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin 150001, China
| |
Collapse
|
36
|
Yang Y, Zhao F. MicroRNA-16 inhibits the growth and metastasis of human glioma cells via modulation of PI3K/AKT/mTOR signalling pathway. Arch Med Sci 2020; 20:839-846. [PMID: 39050153 PMCID: PMC11264078 DOI: 10.5114/aoms.2020.95653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 01/18/2020] [Indexed: 07/27/2024] Open
Abstract
Introduction Gliomas are lethal cancers accounting for significant human mortality across the globe. MicroRNAs (miRs) have shown potential to act as therapeutic targets for the treatment of cancer. Herein the role and therapeutic implications of miR-16 in glioma were investigated. Material and methods Expression analysis was carried out by qRT-PCR. Cell-Titer-Glo assay (Promega) was used for the determination of cell proliferation. DAPI, AO/EB, and annexin V/PI assays were used to detect apoptosis. Wound healing and Transwell assays were used for cell migration and invasion, respectively. Western blot analysis was used for the determination of protein expression. Results The study revealed that miR-16 was significantly suppressed in the human glioma cells. Ectopic expression of miR-16 in U118 MG cells inhibited the proliferation via induction of apoptosis. The apoptosis induction was also accompanied by an upsurge of Bax and depletion of Bcl-2. The overexpression of miR-16 also inhibited the migration and invasion of the glioma U118 MG cells, as evident from the wound healing and transwell assays, which were accompanied by the inhibition of metalloproteinase-2 and -9 (MMP-2 and MMP-9). The effects of miR-16 overexpression were also examined on the PI3K/AKT/mTOR signalling pathway. The results showed that miR-16 overexpression inhibited the phosphorylation of the p70S6K, AKT, and mTOR at Ser473, Ser2448, and Thr389, respectively, with no apparent effects on the total PI3K and AKT. Conclusions miR-16 acts as tumour suppressor in glioma and may severe as therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Yan Yang
- Department of Clinical Pharmacy, No. 1 People’s Hospital, Jining, Shandong, China
| | - Feng Zhao
- Department of Neurosurgery, Jining No. 1 People’s Hospital, Jining, Shandong, China
| |
Collapse
|
37
|
Trung NT, Hoan NX, Trung PQ, Binh MT, Van Tong H, Toan NL, Bang MH, Song LH. Clinical significance of combined circulating TERT promoter mutations and miR-122 expression for screening HBV-related hepatocellular carcinoma. Sci Rep 2020; 10:8181. [PMID: 32424223 PMCID: PMC7234991 DOI: 10.1038/s41598-020-65213-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Telomerase reverse-transcriptase (TERT) gene promoter mutations in circulating cell-free DNA (cfDNA) as well as the levels of circulating microRNA-122 (miR-122) have been reported as potential noninvasive biomarkers for several. This study evaluates the diagnostic performance of potent biomarker-based panels composing of serological AFP, miR-122 and circulating TERT promoter mutations for screening HBV-related HCC. TERT promoter mutations (C228T and C250T) and miR-122 expression were assessed in the plasma samples from 249 patients with HBV-related liver diseases by nested PCR and qRT-PCR assays, respectively. The diagnostic values of TERT promoter mutations, miR-122 expression and biomarker-based panels were assessed by computation of the area under the curve (AUC). Nested-PCR assays were optimized to detect C228T and C250T mutations in TERT promoter with detection limit of 1%. The common hotspot C228T was observed in 22 HCC cases. The triple combinatory panel (AFP@TERT@miR-122) acquired the best diagnostic value to distinguish HCC from CHB (AUC = 0.98), LC (AUC = 0.88) or non-HCC (LC + CHB, AUC = 0.94) compared to the performance of double combinations or single biomarkers, respectively. Notably, among patients with AFP levels≤20 ng/μl, the double combination panel (TERT@miR-122) retains satisfactory diagnostic performance in discriminating HCC from the others (HCC vs. CHB, AUC = 0.96; HCC vs. LC, AUC = 0.88, HCC vs. non-HCC, AUC = 0.94). The triple combination panel AFP@TERT@miR-122 shows a better diagnostic performance for screening HCC in HBV patients, regardless of AFP levels. The newly established panels can be a potential application in clinical practice in Vietnamese setting.
Collapse
Affiliation(s)
- Ngo Tat Trung
- Centre for Genetic Consultation and Cancer Screening, 108 Military Central Hospital, Hanoi, Vietnam. .,Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam.
| | - Nghiem Xuan Hoan
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam.,Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Pham Quang Trung
- Centre for Genetic Consultation and Cancer Screening, 108 Military Central Hospital, Hanoi, Vietnam.,Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam
| | - Mai Thanh Binh
- Department of Gastroenterology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Hoang Van Tong
- Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Hanoi, Vietnam.,Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Nguyen Linh Toan
- Department of Pathophysiology, Vietnam Military Medical University, Hanoi, Vietnam
| | - Mai Hong Bang
- Department of Gastroenterology, 108 Military Central Hospital, Hanoi, Vietnam
| | - Le Huu Song
- Vietnamese-German Center of Excellence in Medical Research, Hanoi, Vietnam. .,Institute of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam.
| |
Collapse
|
38
|
Nahand JS, Karimzadeh MR, Nezamnia M, Fatemipour M, Khatami A, Jamshidi S, Moghoofei M, Taghizadieh M, Hajighadimi S, Shafiee A, Sadeghian M, Bokharaei-Salim F, Mirzaei H. The role of miR-146a in viral infection. IUBMB Life 2019; 72:343-360. [PMID: 31889417 DOI: 10.1002/iub.2222] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Cellular microRNAs (miRNAs) were identified as a key player in the posttranscriptional regulation of cellular-genes regulatory pathways. They also emerged as a significant regulator of the immune response. In particular, miR-146a acts as an importance modulator of function and differentiation cells of the innate and adaptive immunity. It has been associated with disorder including cancer and viral infections. Given its significance in the regulation of key cellular processes, it is not surprising which virus infection have found ways to dysregulation of miRNAs. miR-146a has been identified in exosomes (exosomal miR-146a). After the exosomes release from donor cells, they are taken up by the recipient cell and probably the exosomal miR-146a is able to modulate the antiviral response in the recipient cell and result in making them more susceptible to virus infection. In this review, we discuss recent reports regarding miR-146a expression levels, target genes, function, and contributing role in the pathogenesis of the viral infection and provide a clue to develop the new therapeutic and preventive strategies for viral disease in the future.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Karimzadeh
- Department of Medical Genetics, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Maria Nezamnia
- Department of Obstetrics and Gynecology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Maryam Fatemipour
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Khatami
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sogol Jamshidi
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Alimohammad Shafiee
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Mohammad Sadeghian
- Orthopedic Surgeon Fellowship of Spine Surgery, Sasan General Hospital, Tehran, Iran
| | - Farah Bokharaei-Salim
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
39
|
Shan G, Tang T, Xia Y, Qian HJ. Long non-coding RNA NEAT1 promotes bladder progression through regulating miR-410 mediated HMGB1. Biomed Pharmacother 2019; 121:109248. [PMID: 31734579 DOI: 10.1016/j.biopha.2019.109248] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
LncRNA NEAT1 is reported as a crucial oncogene in multiple cancers. But, its biological role in bladder cancer is barely understood. Therefore, we concentrated on the function and role of NEAT1 in bladder cancer. Firstly, NEAT1 expression in bladder cancer cells was determined and it was displayed NEAT1 was significant elevated. NEAT1 was knockdown and overexpressed in T24 and J82 cells. Then it was indicated that NEAT1 silence greatly inhibited bladder cancer cell proliferation with an increased ratio of apoptotic cells and severe cell cycle arrest. Overexpression of NEAT1 exhibited a reversed process in bladder cancer cells. Additionally, in vivo experiments were employed using establishment of nude mice models. NEAT1 knockdown inhibited bladder cancer growth while increase of NEAT1 promoted bladder cancer development in vivo. By employing the bioinformatics analysis, we speculated that miR-410 was as a downstream target of NEAT1. Then, the targeting association between them was proved in our research and we implicated miR-410 was dramatically restrained in bladder cancer cells. Meanwhile, it was exhibited that miR-410 was negatively regulated by NEAT1. Apart from these, HMGB1 was speculated as a downstream target of miR-410. Dual-luciferase reporter assay was used to prove the correlation between miR-410 and HMGB1. Up-regulation of miR-410 restrained HMGB1 levels and NEAT1 can regulate HMGB1 level via sponging miR-410. To sum up, we implied NEAT1/miR-410/HMGB1 axis participated in bladder cancer.
Collapse
Affiliation(s)
- Guang Shan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Tian Tang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yue Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Hui-Jun Qian
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
40
|
Houri H, Ghalavand Z, Faghihloo E, Fallah F, Mohammadi-Yeganeh S. Exploiting yoeB-yefM toxin-antitoxin system of Streptococcus pneumoniae on the selective killing of miR-21 overexpressing breast cancer cell line (MCF-7). J Cell Physiol 2019; 235:2925-2936. [PMID: 31541457 DOI: 10.1002/jcp.29198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/03/2019] [Indexed: 12/13/2022]
Abstract
Toxin-antitoxin (TA) systems are two-component genetic modules widespread in bacterial and archaeal genomes, in which the toxin module is rendered inactive under resting conditions by its antitoxin counterpart. Under stress conditions, however, the antitoxin is degraded, freeing the toxin to exert its lethal effects. Although not evolved to function in eukaryotes, some studies have established the lethal activity of these bacterial toxins by inducing apoptosis in mammalian cells, an effect that can be neutralized by its cognate antitoxin. Inspired by the way the toxin can become active in eukaryotes cells, we produced an engrained yoeB-yefM TA system to selectively kill human breast cancer cells expressing a high level of miR-21. Accordingly, we generated an engineered yefM antitoxin gene with eight miR-21 target sites placed in its 3'untranslated region. The resulting TA system acts autonomously in human cells, distinguishing those that overexpress miR-21, killed by YoeB, from those that do not, remaining protected by YefM. Thus, we indicated that microRNA-control of the antitoxin protein of bacterial TA systems constitutes a novel strategy to enhance the selective killing of human cancer cells by the toxin module. The present study provides significant insights for developing novel anticancer strategies avoiding off-target effects, a challenge that has been pursued by many investigators over the years.
Collapse
Affiliation(s)
- Hamidreza Houri
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fallah
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Wang H, Lv Y, Wang C, Leng D, Yan Y, Blessing Fasae M, Madiha Zahra S, Jiang Y, Wang Z, Yang B, Bai Y. Systematic Analysis of Intestinal MicroRNAs Expression in HCC: Identification of Suitable Reference Genes in Fecal Samples. Front Genet 2019; 10:687. [PMID: 31456816 PMCID: PMC6700738 DOI: 10.3389/fgene.2019.00687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 07/01/2019] [Indexed: 01/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is an extremely fatal malignancy. Intestinal microRNAs, which can be detected in fecal samples in humans may be involved in the pathological process of HCC. Therefore, screening for functional intestinal microRNAs in fecal samples and investigating their potential roles in the molecular progression of HCC are necessary. Quantitative real-time PCR (qRT-PCR) has been widely used in microRNA expression studies. However, few genes have been reported as reference genes for intestinal microRNAs in fecal samples. In order to obtain a more accurately analyzed intestinal microRNAs expression, we first searched for reliable reference genes for intestinal microRNAs expression normalization during qRT-PCR, using three software packages (GeNorm, NormFinder, and Bestkeeper). Next we screened and predicted the target genes of the differentially intestinal microRNAs of control and HCC mice through quantitative RT-PCR or miRtarBase. Finally, we also analyzed the mRNA targets for enrichment of Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways using the DAVID Bioinformatic Resources database. This study has successfully screened relatively suitable reference genes and we have discovered that the differential intestinal microRNAs play significant roles in the development of HCC. The top reference genes identified in this study could provide a theoretical foundation for the reasonable selection of a suitable reference gene. Furthermore, the detection of intestinal microRNAs expression may serve as a promising therapeutic target for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuan Lv
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Cao Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Dongjing Leng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Yan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Moyondafoluwa Blessing Fasae
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Syeda Madiha Zahra
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yanan Jiang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Chronic Disease Research Institute, Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Zhiguo Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Chronic Disease Research Institute, Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China.,Chronic Disease Research Institute, Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
42
|
SOX4: Epigenetic regulation and role in tumorigenesis. Semin Cancer Biol 2019; 67:91-104. [PMID: 31271889 DOI: 10.1016/j.semcancer.2019.06.022] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 06/21/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023]
Abstract
Sex-determining region Y-related (SRY) high-mobility group box 4 (SOX4) is a member of the group C subfamily of SOX transcription factors and promotes tumorigenesis by endowing cancer cells with survival, migratory, and invasive capacities. Emerging evidence has highlighted an unequivocal role for this transcription factor in mediating various signaling pathways involved in tumorigenesis, epithelial-to-mesenchymal transition (EMT), and tumor progression. During the last decade, numerous studies have highlighted the epigenetic interplay between SOX4-targeting microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and SOX4 and the subsequent modulation of tumorigenesis, invasion and metastasis. In this review, we summarize the current state of knowledge about the role of SOX4 in cancer development and progression, the epigenetic regulation of SOX4, and the potential utilization of SOX4 as a diagnostic and prognostic biomarker and its depletion as a therapeutic target.
Collapse
|
43
|
Yao Z, Chen Q, Ni Z, Zhou L, Wang Y, Yang Y, Huang H. Long Non-Coding RNA Differentiation Antagonizing Nonprotein Coding RNA (DANCR) Promotes Proliferation and Invasion of Pancreatic Cancer by Sponging miR-214-5p to Regulate E2F2 Expression. Med Sci Monit 2019; 25:4544-4552. [PMID: 31213582 PMCID: PMC6599422 DOI: 10.12659/msm.916960] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Long non-coding RNA differentiation antagonizing nonprotein coding RNA (lncRNA DANCR) has been reported to act as an oncogene in various human cancers. The role of DANCR in development of pancreatic cancer (PC) is unknown. The aim of our research was to investigate the biological role of DANCR in PC. Material/Methods Expressions of DANCR, miR-214-5p, and E2F2 mRNA in PC tissues and cell lines were examined by qRT-PCR. Western blotting was carried out for detection of E2F2 protein expression in PC cells. Transwell assays were used to examine the metastatic ability of PC cells, while CCK-8 and colony formation assay were applied to evaluate cell proliferation. The effects of DANCR on PC cells were assessed by knockdown in vitro and in vivo. The regulatory mechanism of competitive endogenous RNAs were obtained from bioinformatics prediction and luciferase reporter assay. Results DANCR was markedly upregulated in clinical tissues and cell lines of PC. High DANCR expression exhibited a significant correlation with poor prognosis. DANCR knockdown inhibited growth and metastasis of PC cells. Furthermore, DANCR acted as sponge to regulate miR-214-5p, and miR-214-5p inhibitor reversed the effects of DANCR knockdown on PC cells. Moreover, DANCR positively modulated E2F2 expression through miR-214-5p in PC cells. Conclusions Collectively, our findings demonstrated that lncRNA DANCR/miR-214-5p/E2F2 axis acts as an oncogene in PC development, which might provide a potential target for PC therapy.
Collapse
Affiliation(s)
- Zhichao Yao
- Department of General Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Qiyu Chen
- Department of Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Zhonglin Ni
- Department of General Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Lei Zhou
- Department of General Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Yigeng Wang
- Department of General Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - Yuetao Yang
- Department of General Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| | - He Huang
- Department of General Surgery, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China (mainland)
| |
Collapse
|
44
|
Fatima N, Srivastava AN, Nigam J, Raza ST, Rizvi S, Siddiqui Z, Kumar V. Low Expression of MicroRNA335-5p Is Associated with Malignant Behavior of Gallbladder Cancer: A Clinicopathological Study. Asian Pac J Cancer Prev 2019; 20:1895-1900. [PMID: 31244315 PMCID: PMC7021618 DOI: 10.31557/apjcp.2019.20.6.1895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 02/06/2023] Open
Abstract
Background: MicroRNAs (miRNAs) are non-coding RNAs that regulate multiple cellular processes during cancer
progression, identified to be involved in tumorgenesis of several cancers including cancers of digestive system. However
its role in gallbladder inflammatory disease (GID) and gallbladder cancer (GBC) has not been well documented.
The present study was aimed to investigate the clinical significance of hsa-miRNA-335-5p (miR-335) in GBC and
GID. Subjects and Methods: This prospective case control study, conducted from July 1, 2014 to December 1, 2017
in Era’s Lucknow Medical College & Hospital, India, evaluated miR-335 expression by real-time polymerase chain
reaction. Hundred tissue samples GID (control; n=50) and GBC (case; n=50) were studied. Relative quantification of
target miR-335 expression was examined using the comparative cycle threshold method. Their expression was correlated
with different clinicopathological parameters. Fishers’ exact test, Student’s t-test, and Chi-square test were used as
appropriate for data analysis. Kaplan-Meier methods were used to calculate overall and disease-free survival rate.
Two sided P<0.05 was considered as significant. Results: miR-335 expression was found to be significantly low in
GBC lesions when compared with GID lesions (P<0.001). The low expression level of miR-335 was correlated with
histological grade (P=0.007), clinical stage (P<0.001), lymph node metastasis (P<0.001) and liver metastasis (P=0.016).
Reduced expression of miRNA-335 was associated with a shorter median overall survival (7 months vs. 25 months)
in GBC patients (P<0.001). Conclusions: Down regulation of miR-335 is associated with the severity of the disease
and thus indicate that miR-335 expression may serve as prognostic marker for GBC.
Collapse
Affiliation(s)
- Naseem Fatima
- Department of Pathology, Era's Lucknow Medical College & Hospital, Lucknow, India.
| | | | - Jaya Nigam
- Department of Surgical Gastroenterology, King George's Medical University, Lucknow India
| | - Syed Tasleem Raza
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Lucknow, India
| | - Saliha Rizvi
- Department of Biochemistry, Era's Lucknow Medical College & Hospital, Lucknow, India
| | - Zainab Siddiqui
- Department of Pathology, Era's Lucknow Medical College & Hospital, Lucknow, India.
| | - Vijay Kumar
- Department of Surgical Oncology, King George's Medical University, Lucknow India
| |
Collapse
|
45
|
Guo W, Huang J, Lei P, Guo L, Li X. LncRNA SNHG1 promoted HGC-27 cell growth and migration via the miR-140/ADAM10 axis. Int J Biol Macromol 2019; 122:817-823. [DOI: 10.1016/j.ijbiomac.2018.10.214] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
|
46
|
Kral J, Korenkova V, Novosadova V, Langerova L, Schneiderova M, Liska V, Levy M, Veskrnova V, Spicak J, Opattova A, Jiraskova K, Vymetalkova V, Vodicka P, Slyskova J. Expression profile of miR-17/92 cluster is predictive of treatment response in rectal cancer. Carcinogenesis 2018; 39:1359-1367. [DOI: 10.1093/carcin/bgy100] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/05/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jan Kral
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Vlasta Korenkova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Vendula Novosadova
- Laboratory of Transgenic Models of Diseases, Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Division BIOCEV, Vestec, Czech Republic
| | - Lucie Langerova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | | | - Vaclav Liska
- Department of Surgery, Teaching Hospital and Medical School of Charles University, Pilsen, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Miroslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Veronika Veskrnova
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
| | - Julius Spicak
- Department of Gastroenterology and Hepatology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Alena Opattova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Katerina Jiraskova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Jana Slyskova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
47
|
Bharali D, Jebur HB, Baishya D, Kumar S, Sarma MP, Masroor M, Akhter J, Husain SA, Kar P. Expression Analysis of Serum microRNA-34a and microRNA-183 in Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2018; 19:2561-2568. [PMID: 30256056 PMCID: PMC6249442 DOI: 10.22034/apjcp.2018.19.9.2561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background/objective:: HCC is a multistep process starting from chronic hepatitis that progress through cirrhosis to HCC. MicroRNA expression level was found to be deregulated in HCC. To find out whether the expression level of miR-34a and miR-183 was deregulated in HCC compared to controls without HCC. Methods: Real time quantitative PCR was done to find out the miRNA expression level in terms of Ct value followed by statistical analysis. Results: Over-expression of miR-183 and under-expression of miR-34a in HCC was detected. All changes in expression level of miR-34a and miR-183 were found to be due to HCC compared to controls without HCC. So both miR-34a and miR-183 were suitable to differentiate HCC from Cirrhosis and chronic hepatitis with an efficient diagnostic power of sensitivity, specificity and expression level. But they might not have any role in patients’ survival. Conclusion: miR-34a and miR-183 might be considered as potential markers of HCC screening molecule in addition to other approved panel of marker. Our study warrants further expression level study.
Collapse
Affiliation(s)
- Dipu Bharali
- Department of Medicine, Maulana Azad Medical College, New Delhi, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Zakhari S, Hoek JB. Epidemiology of Moderate Alcohol Consumption and Breast Cancer: Association or Causation? Cancers (Basel) 2018; 10:E349. [PMID: 30249004 PMCID: PMC6210419 DOI: 10.3390/cancers10100349] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023] Open
Abstract
Epidemiological studies have been used to show associations between modifiable lifestyle habits and the incidence of breast cancer. Among such factors, a history of alcohol use has been reported in multiple studies and meta-analyses over the past decades. However, associative epidemiological studies that were interpreted as evidence that even moderate alcohol consumption increases breast cancer incidence have been controversial. In this review, we consider the literature on the relationship between moderate or heavy alcohol use, both in possible biological mechanisms and in variations in susceptibility due to genetic or epigenetic factors. We argue that there is a need to incorporate additional approaches to move beyond the associations that are reported in traditional epidemiological analyses and incorporate information on molecular pathologic signatures as a requirement to posit causal inferences. In particular, we point to the efforts of the transdisciplinary field of molecular pathological epidemiology (MPE) to evaluate possible causal relationships, if any, of alcohol consumption and breast cancer. A wider application of the principles of MPE to this field would constitute a giant step that could enhance our understanding of breast cancer and multiple modifiable risk factors, a step that would be particularly suited to the era of "personalized medicine".
Collapse
Affiliation(s)
- Samir Zakhari
- Science Office, Distilled Spirits Council, Washington, DC 20005, USA.
| | - Jan B Hoek
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
49
|
Yin PT, Pongkulapa T, Cho HY, Han J, Pasquale NJ, Rabie H, Kim JH, Choi JW, Lee KB. Overcoming Chemoresistance in Cancer via Combined MicroRNA Therapeutics with Anticancer Drugs Using Multifunctional Magnetic Core-Shell Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26954-26963. [PMID: 30028120 DOI: 10.1021/acsami.8b09086] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we report the use of a multifunctional magnetic core-shell nanoparticle (MCNP), composed of a highly magnetic zinc-doped iron oxide (ZnFe2O4) core nanoparticle and a biocompatible mesoporous silica (mSi) shell, for the simultaneous delivery of let-7a microRNA (miRNA) and anticancer drugs (e.g., doxorubicin) to overcome chemoresistance in breast cancer. Owing to the ability of let-7a to repress DNA repair mechanisms (e.g., BRCA1 and BRCA2) and downregulate drug efflux pumps (e.g., ABCG2), delivery of let-7a could sensitize chemoresistant breast cancer cells (MDA-MB-231) to subsequent doxorubicin chemotherapy both in vitro and in vivo. Moreover, the multifunctionality of our MCNPs allows for the monitoring of in vivo delivery via magnetic resonance imaging. In short, we have developed a multifunctional MCNP-based therapeutic approach to provide an attractive method with which to enhance our ability not only to deliver combined miRNA therapeutics with small-molecule drugs in both selective and effective manner but also to sensitize cancer cells for the enhanced treatment via the combination of miRNA replacement therapy using a single nanoplatform.
Collapse
Affiliation(s)
| | | | - Hyeon-Yeol Cho
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 04107 , Republic of Korea
| | - Jiyou Han
- Division of Biotechnology, Laboratory of Stem Cells and Tissue Regeneration, College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Republic of Korea
- Department of Biological Sciences, Laboratory of Stem Cell Research and Biotechnology , Hyupsung University , Hwaseong-si 18330 , Republic of Korea
| | | | | | - Jong-Hoon Kim
- Division of Biotechnology, Laboratory of Stem Cells and Tissue Regeneration, College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 04107 , Republic of Korea
| | - Ki-Bum Lee
- College of Pharmacy , Kyung Hee University , 26 Kyungheedae-ro , Dongdaemun-gu, Seoul 02447 , Republic of Korea
| |
Collapse
|
50
|
Pardini B, De Maria D, Francavilla A, Di Gaetano C, Ronco G, Naccarati A. MicroRNAs as markers of progression in cervical cancer: a systematic review. BMC Cancer 2018; 18:696. [PMID: 29945565 PMCID: PMC6020348 DOI: 10.1186/s12885-018-4590-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Invasive cervical cancer (ICC) is caused by high-risk human papillomavirus types (HR-HPVs) and is usually preceded by a long phase of intraepithelial neoplasia (CIN). Before invasion, (epi) genetic changes, potentially applicable as molecular markers within cervical screening, occur in HPV host cells. Epigenetic alterations, such as dysregulation of microRNA (miRNA) expression, are frequently observed in ICC. The mechanisms and role of miRNA dysregulation in cervical carcinogenesis are still largely unknown. METHODS We provide an overview of the studies investigating miRNA expression in relation to ICC progression, highlighting their common outcomes and their weaknesses/strengths. To achieve this, we systematically searched through Pubmed database all articles between January 2010 and December 2017. RESULTS From the 24 studies retrieved, miR-29a and miR-21 are the most frequently down- and up-regulated in ICC progression, respectively. Microarray-based studies show a small overlap, with miR-10a, miR-20b, miR-9, miR-16 and miR-106 found repeatedly dysregulated. miR-34a, miR-125 and miR-375 were also found dysregulated in cervical exfoliated cells in relation to cancer progression. CONCLUSIONS The pivotal role of miRNAs in ICC progression and initial development is becoming more and more relevant. Available studies are essentially based on convenience material, entailing possible selection bias, and frequently of small size: all these points still represent a limitation to a wide comprehension of miRNAs relevant for ICC. The targeted approach instead of a genome-wide investigation still precludes the identification of all the relevant miRNAs in the process. The implementation of deep sequencing on large scale population-based studies will help to discover and validate the relation between altered miRNA expression and CC progression for the identification of biomarkers. Optimally, once explored on a miRNome scale, small specific miRNA signatures maybe used in the context of screening.
Collapse
Affiliation(s)
- Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy.,Department of Medical Sciences, University of Turin, Via Santena 19, 10126, Turin, Italy
| | - Daniela De Maria
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy
| | - Antonio Francavilla
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy
| | - Cornelia Di Gaetano
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy.,Department of Medical Sciences, University of Turin, Via Santena 19, 10126, Turin, Italy
| | - Guglielmo Ronco
- Center for Cancer Epidemiology and Prevention, AO City of Health and Science, Via Cavour, 31 10123, Turin, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), Via Nizza 52, 10126, Turin, Italy.
| |
Collapse
|