1
|
Grivet-Brancot A, Buscemi M, Ciardelli G, Bronco S, Sartori S, Cassino C, Al Kayal T, Losi P, Soldani G, Boffito M. Cord Blood Platelet Lysate-Loaded Thermo-Sensitive Hydrogels for Potential Treatment of Chronic Skin Wounds. Pharmaceutics 2024; 16:1438. [PMID: 39598561 PMCID: PMC11597581 DOI: 10.3390/pharmaceutics16111438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Chronic skin wounds (CSWs) are a worldwide healthcare problem with relevant impacts on both patients and healthcare systems. In this context, innovative treatments are needed to improve tissue repair and patient recovery and quality of life. Cord blood platelet lysate (CB-PL) holds great promise in CSW treatment thanks to its high growth factors and signal molecule content. In this work, thermo-sensitive hydrogels based on an amphiphilic poly(ether urethane) (PEU) were developed as CB-PL carriers for CSW treatment. METHODS A Poloxamer 407®-based PEU was solubilized in aqueous medium (10 and 15% w/v) and added with CB-PL at a final concentration of 20% v/v. Hydrogels were characterized for their gelation potential, rheological properties, and swelling/dissolution behavior in a watery environment. CB-PL release was also tested, and the bioactivity of released CB-PL was evaluated through cell viability, proliferation, and migration assays. RESULTS PEU aqueous solutions with concentrations in the range 10-15% w/v exhibited quick (within a few minutes) sol-to-gel transition at around 30-37 °C and rheological properties modulated by the PEU concentration. Moreover, CB-PL loading within the gels did not affect the overall gel properties. Stability in aqueous media was dependent on the PEU concentration, and payload release was completed between 7 and 14 days depending on the polymer content. The CB-PL-loaded hydrogels also showed biocompatibility and released CB-PL induced keratinocyte migration and proliferation, with scratch wound recovery similar to the positive control (i.e., CB-PL alone). CONCLUSIONS The developed hydrogels represent promising tools for CSW treatment, with tunable gelation properties and residence time and the ability to encapsulate and deliver active biomolecules with sustained and controlled kinetics.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Marianna Buscemi
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Gianluca Ciardelli
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Simona Bronco
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
| | - Susanna Sartori
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| | - Claudio Cassino
- Department of Science and Technological Innovation, Università del Piemonte Orientale, 15121 Alessandria, Italy;
| | - Tamer Al Kayal
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Paola Losi
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Giorgio Soldani
- Institute of Clinical Physiology, National Research Council, Massa, 56124 Pisa, Italy; (M.B.); (T.A.K.); (P.L.); (G.S.)
| | - Monica Boffito
- Institute for Chemical-Physical Processes, National Research Council, 56124 Pisa, Italy; (A.G.-B.); (S.B.)
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
| |
Collapse
|
2
|
Re F, Sartore L, Pasini C, Ferroni M, Borsani E, Pandini S, Bianchetti A, Almici C, Giugno L, Bresciani R, Mutti S, Trenta F, Bernardi S, Farina M, Russo D. In Vitro Biocompatibility Assessment of Bioengineered PLA-Hydrogel Core-Shell Scaffolds with Mesenchymal Stromal Cells for Bone Regeneration. J Funct Biomater 2024; 15:217. [PMID: 39194655 DOI: 10.3390/jfb15080217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Human mesenchymal stromal cells (hMSCs), whether used alone or together with three-dimensional scaffolds, are the best-studied postnatal stem cells in regenerative medicine. In this study, innovative composite scaffolds consisting of a core-shell architecture were seeded with bone-marrow-derived hMSCs (BM-hMSCs) and tested for their biocompatibility and remarkable capacity to promote and support bone regeneration and mineralization. The scaffolds were prepared by grafting three different amounts of gelatin-chitosan (CH) hydrogel into a 3D-printed polylactic acid (PLA) core (PLA-CH), and the mechanical and degradation properties were analyzed. The BM-hMSCs were cultured in the scaffolds with the presence of growth medium (GM) or osteogenic medium (OM) with differentiation stimuli in combination with fetal bovine serum (FBS) or human platelet lysate (hPL). The primary objective was to determine the viability, proliferation, morphology, and spreading capacity of BM-hMSCs within the scaffolds, thereby confirming their biocompatibility. Secondly, the BM-hMSCs were shown to differentiate into osteoblasts and to facilitate scaffold mineralization. This was evinced by a positive Von Kossa result, the modulation of differentiation markers (osteocalcin and osteopontin), an expression of a marker of extracellular matrix remodeling (bone morphogenetic protein-2), and collagen I. The results of the energy-dispersive X-ray analysis (EDS) clearly demonstrate the presence of calcium and phosphorus in the samples that were incubated in OM, in the presence of FBS and hPL, but not in GM. The chemical distribution maps of calcium and phosphorus indicate that these elements are co-localized in the same areas of the sections, demonstrating the formation of hydroxyapatite. In conclusion, our findings show that the combination of BM-hMSCs and PLA-CH, regardless of the amount of hydrogel content, in the presence of differentiation stimuli, can provide a construct with enhanced osteogenicity for clinically relevant bone regeneration.
Collapse
Affiliation(s)
- Federica Re
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
| | - Luciana Sartore
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy
| | - Chiara Pasini
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy
| | - Matteo Ferroni
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), University of Brescia, Via Valotti 9, 25123 Brescia, Italy
- National Research Council (CNR)-Institute for Microelectronics and Microsystems, Via Gobetti 101, 40129 Bologna, Italy
| | - Elisa Borsani
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research "Adaption and Regeneration of Tissues and Organs (ARTO)", University of Brescia, 25123 Brescia, Italy
| | - Stefano Pandini
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy
| | - Andrea Bianchetti
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Camillo Almici
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Lorena Giugno
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
| | - Roberto Bresciani
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Highly Specialized Laboratory, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Silvia Mutti
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
| | - Federica Trenta
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
| | - Simona Bernardi
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
- National Center for Gene Therapy and Drugs based on RNA Technology-CN3, 35122 Padua, Italy
| | - Mirko Farina
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
| | - Domenico Russo
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- University Center of Research "STem cells, bioENgineering and regenerative MEDicine"-STENMED, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
3
|
Ferrari M, Taboni S, Chan HHL, Townson J, Gualtieri T, Franz L, Ruaro A, Mathews S, Daly MJ, Douglas CM, Eu D, Sahovaler A, Muhanna N, Ventura M, Dey K, Pandini S, Pasini C, Re F, Bernardi S, Bosio K, Mattavelli D, Doglietto F, Joshi S, Gilbert RW, Nicolai P, Viswanathan S, Sartore L, Russo D, Irish JC. Hydrogel-chitosan and polylactic acid-polycaprolactone bioengineered scaffolds for reconstruction of mandibular defects: a preclinical in vivo study with assessment of translationally relevant aspects. Front Bioeng Biotechnol 2024; 12:1353523. [PMID: 39076208 PMCID: PMC11284118 DOI: 10.3389/fbioe.2024.1353523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
Background: Reconstruction of mandibular bone defects is a surgical challenge, and microvascular reconstruction is the current gold standard. The field of tissue bioengineering has been providing an increasing number of alternative strategies for bone reconstruction. Methods: In this preclinical study, the performance of two bioengineered scaffolds, a hydrogel made of polyethylene glycol-chitosan (HyCh) and a hybrid core-shell combination of poly (L-lactic acid)/poly ( ε -caprolactone) and HyCh (PLA-PCL-HyCh), seeded with different concentrations of human mesenchymal stromal cells (hMSCs), has been explored in non-critical size mandibular defects in a rabbit model. The bone regenerative properties of the bioengineered scaffolds were analyzed by in vivo radiological examinations and ex vivo radiological, histomorphological, and immunohistochemical analyses. Results: The relative density increase (RDI) was significantly more pronounced in defects where a scaffold was placed, particularly if seeded with hMSCs. The immunohistochemical profile showed significantly higher expression of both VEGF-A and osteopontin in defects reconstructed with scaffolds. Native microarchitectural characteristics were not demonstrated in any experimental group. Conclusion: Herein, we demonstrate that bone regeneration can be boosted by scaffold- and seeded scaffold-reconstruction, achieving, respectively, 50% and 70% restoration of presurgical bone density in 120 days, compared to 40% restoration seen in spontaneous regeneration. Although optimization of the regenerative performance is needed, these results will help to establish a baseline reference for future experiments.
Collapse
Affiliation(s)
- Marco Ferrari
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
- Unit of Otorhinolaryngology-Head and Neck Surgery, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Stefano Taboni
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
- Unit of Otorhinolaryngology-Head and Neck Surgery, Azienda Ospedale-Università di Padova, Padova, Italy
- Artificial Intelligence in Medicine and Innovation in Clinical Research and Methodology (PhD Program), Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Harley H. L. Chan
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
| | - Jason Townson
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
| | - Tommaso Gualtieri
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada
- Department of Otorhinolaryngology, Head & Neck Surgery, Nuovo Santo Stefano Civil Hospital, Prato, Italy
| | - Leonardo Franz
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
| | - Alessandra Ruaro
- Guided Therapeutics (GTx) Program International Scholarship, University Health Network (UHN), Toronto, ON, Canada
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
- Unit of Otorhinolaryngology-Head and Neck Surgery, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Smitha Mathews
- Osteoarthritis Program, Schroeder Arthritis Institute, Krembil Research Institute, Institute of Biomedical Engineering, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Michael J. Daly
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
| | - Catriona M. Douglas
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto General Hospital, Department of Otolaryngology-Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, ON, Canada
- Department of Otolaryngology, Head and Neck Surgery, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Donovan Eu
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto General Hospital, Department of Otolaryngology-Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery, National University Hospital, Singapore, Singapore
| | - Axel Sahovaler
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto General Hospital, Department of Otolaryngology-Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, ON, Canada
- Head & Neck Surgery Unit, University College London Hospitals, London, United Kingdom
| | - Nidal Muhanna
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
- Department of Otolaryngology-Head and Neck Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Manuela Ventura
- STTARR Innovation Centre, University Health Network, Toronto, ON, Canada
- Human Technopole Foundation, Milan, Italy
| | - Kamol Dey
- Department of Mechanical and Industrial Engineering, University of Brescia Via Branze, Brescia, Italy
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Chittagong, Bangladesh
| | - Stefano Pandini
- Department of Mechanical and Industrial Engineering, University of Brescia Via Branze, Brescia, Italy
| | - Chiara Pasini
- Department of Mechanical and Industrial Engineering, University of Brescia Via Branze, Brescia, Italy
| | - Federica Re
- Unit of Blood Diseases and Bone Marrow Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili, University of Brescia, Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Simona Bernardi
- Unit of Blood Diseases and Bone Marrow Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili, University of Brescia, Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Katia Bosio
- Unit of Blood Diseases and Bone Marrow Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili, University of Brescia, Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, Brescia, Italy
| | - Davide Mattavelli
- Unit of Otorhinolaryngology-Head and Neck Surgery, ASST Spedali Civili of Brescia, Brescia, Italy
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Francesco Doglietto
- Neurosurgery Unit, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
- Catholic University School of Medicine, Rome, Italy
| | - Shrinidh Joshi
- Osteoarthritis Program, Schroeder Arthritis Institute, Krembil Research Institute, Institute of Biomedical Engineering, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Ralph W. Gilbert
- Princess Margaret Cancer Centre, Toronto General Hospital, Department of Otolaryngology-Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, ON, Canada
| | - Piero Nicolai
- Section of Otorhinolaryngology-Head and Neck Surgery, Department of Neurosciences, University of Padua, Padua, Italy
- Unit of Otorhinolaryngology-Head and Neck Surgery, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Sowmya Viswanathan
- Osteoarthritis Program, Schroeder Arthritis Institute, Krembil Research Institute, Institute of Biomedical Engineering, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Luciana Sartore
- Department of Mechanical and Industrial Engineering, University of Brescia Via Branze, Brescia, Italy
| | - Domenico Russo
- Unit of Blood Diseases and Bone Marrow Transplantation, Department of Clinical and Experimental Sciences, ASST Spedali Civili, University of Brescia, Brescia, Italy
| | - Jonathan C. Irish
- Guided Therapeutics (GTx) Program, Techna Institute, University Health Network, Toronto, ON, Canada
- Princess Margaret Cancer Centre, Toronto General Hospital, Department of Otolaryngology-Head and Neck Surgery/Surgical Oncology, University Health Network, Toronto, ON, Canada
| |
Collapse
|
4
|
Pasini C, Re F, Trenta F, Russo D, Sartore L. Gelatin-Based Scaffolds with Carrageenan and Chitosan for Soft Tissue Regeneration. Gels 2024; 10:426. [PMID: 39057449 PMCID: PMC11276450 DOI: 10.3390/gels10070426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Motivated by the enormous potential of hydrogels in regenerative medicine, new biocompatible gelatin-based hybrid hydrogels were developed through a green process using poly(ethylene glycol) diglycidyl ether as a cross-linking agent, adding carrageenan and chitosan polysaccharides to the network to better mimic the hybrid composition of native extracellular matrix. Overall, the hydrogels show suitable structural stability, high porosity and pore interconnectivity, good swellability, and finally, biocompatibility. Their mechanical behavior, investigated by tensile and compression tests, appears to be characterized by nonlinear elasticity with high compliance values, fast stress-relaxation, and good strain reversibility with no sign of mechanical failure for compressive loading-unloading cycles at relatively high deformation levels of 50%. Degradation tests confirm the hydrogel bioresorbability by gradual hydrolysis, during which the structural integrity of both materials is maintained, while their mechanical behavior becomes more and more compliant. Human Umbilical Cord-derived Mesenchymal Stem Cells (hUC-MSCs) were used to test the hydrogels as potential carriers for cell delivery in tissue engineering. hUC-MSCs cultured inside the hydrogels show a homogenous distribution and maintain their growth and viability for at least 21 days of culture, with an increasing proliferation trend. Hence, this study contributes to a further understanding of the potential use of hybrid hydrogels and hUC-MSCs for a wide range of biomedical applications, particularly in soft tissue engineering.
Collapse
Affiliation(s)
- Chiara Pasini
- Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy;
| | - Federica Re
- Blood Diseases and Cell Therapies Unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.R.); (F.T.); (D.R.)
- Centro di Ricerca Emato-Oncologico AIL (CREA), “ASST-Spedali Civili” Hospital, 25123 Brescia, Italy
| | - Federica Trenta
- Blood Diseases and Cell Therapies Unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.R.); (F.T.); (D.R.)
- Centro di Ricerca Emato-Oncologico AIL (CREA), “ASST-Spedali Civili” Hospital, 25123 Brescia, Italy
| | - Domenico Russo
- Blood Diseases and Cell Therapies Unit, Bone Marrow Transplant Unit, “ASST-Spedali Civili” Hospital of Brescia, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (F.R.); (F.T.); (D.R.)
| | - Luciana Sartore
- Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy;
| |
Collapse
|
5
|
Jaramillo V, Arévalo DF, González-Hernández M, Cortés MT, Perdomo-Arciniegas AM, Cruz JC, Muñoz-Camargo C. Conductive extracellular matrix derived/chitosan methacrylate/ graphene oxide-pegylated hybrid hydrogel for cell expansion. Front Bioeng Biotechnol 2024; 12:1398052. [PMID: 38952668 PMCID: PMC11215370 DOI: 10.3389/fbioe.2024.1398052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/08/2024] [Indexed: 07/03/2024] Open
Abstract
Electrical stimulation has emerged as a cornerstone technique in the rapidly evolving field of biomedical engineering, particularly within the realms of tissue engineering and regenerative medicine. It facilitates cell growth, proliferation, and differentiation, thereby advancing the development of accurate tissue models and enhancing drug-testing methodologies. Conductive hydrogels, which enable the conduction of microcurrents in 3D in vitro cultures, are central to this advancement. The integration of high-electroconductive nanomaterials, such as graphene oxide (GO), into hydrogels has revolutionized their mechanical and conductivity properties. Here, we introduce a novel electrostimulation assay utilizing a hybrid hydrogel composed of methacryloyl-modified small intestine submucosa (SIS) dECM (SISMA), chitosan methacrylate (ChiMA), and GO-polyethylene glycol (GO-PEG) in a 3D in vitro culture within a hypoxic environment of umbilical cord blood cells (UCBCs). Results not only demonstrate significant cell proliferation within 3D constructs exposed to microcurrents and early growth factors but also highlight the hybrid hydrogel's physiochemical prowess through comprehensive rheological, morphological, and conductivity analyses. Further experiments will focus on identifying the regulatory pathways of cells subjected to electrical stimulation.
Collapse
Affiliation(s)
- Valentina Jaramillo
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia
| | - Daniel Felipe Arévalo
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia
| | | | - María T. Cortés
- Department of Chemistry, Universidad de los Andes, Bogotá, Colombia
| | - Ana María Perdomo-Arciniegas
- Cord Blood Bank (CBB) Research Group, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud (IDCBIS), Bogotá, Colombia
| | - Juan C. Cruz
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia
| | - Carolina Muñoz-Camargo
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
6
|
Esmaeilzadeh A, Yeganeh PM, Nazari M, Esmaeilzadeh K. Platelet-derived extracellular vesicles: a new-generation nanostructured tool for chronic wound healing. Nanomedicine (Lond) 2024; 19:915-941. [PMID: 38445377 DOI: 10.2217/nnm-2023-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Chronic nonhealing wounds pose a serious challenge to regaining skin function and integrity. Platelet-derived extracellular vesicles (PEVs) are nanostructured particles with the potential to promote wound healing since they can enhance neovascularization and cell migration and reduce inflammation and scarring. This work provides an innovative overview of the technical laboratory issues in PEV production, PEVs' role in chronic wound healing and the benefits and challenges in its clinical translation. The article also explores the challenges of proper sourcing, extraction techniques and storage conditions, and discusses the necessity of further evaluations and combinational therapeutics, including dressing biomaterials, M2-derived exosomes, mesenchymal stem cells-derived extracellular vesicles and microneedle technology, to boost their therapeutic efficacy as advanced strategies for wound healing.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| | | | - Mahdis Nazari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| | - Kimia Esmaeilzadeh
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, 77978-45157, Iran
| |
Collapse
|
7
|
Aoki K, Ideta H, Komatsu Y, Tanaka A, Kito M, Okamoto M, Takahashi J, Suzuki S, Saito N. Bone-Regeneration Therapy Using Biodegradable Scaffolds: Calcium Phosphate Bioceramics and Biodegradable Polymers. Bioengineering (Basel) 2024; 11:180. [PMID: 38391666 PMCID: PMC10886059 DOI: 10.3390/bioengineering11020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Calcium phosphate-based synthetic bone is broadly used for the clinical treatment of bone defects caused by trauma and bone tumors. Synthetic bone is easy to use; however, its effects depend on the size and location of the bone defect. Many alternative treatment options are available, such as joint arthroplasty, autologous bone grafting, and allogeneic bone grafting. Although various biodegradable polymers are also being developed as synthetic bone material in scaffolds for regenerative medicine, the clinical application of commercial synthetic bone products with comparable performance to that of calcium phosphate bioceramics have yet to be realized. This review discusses the status quo of bone-regeneration therapy using artificial bone composed of calcium phosphate bioceramics such as β-tricalcium phosphate (βTCP), carbonate apatite, and hydroxyapatite (HA), in addition to the recent use of calcium phosphate bioceramics, biodegradable polymers, and their composites. New research has introduced potential materials such as octacalcium phosphate (OCP), biologically derived polymers, and synthetic biodegradable polymers. The performance of artificial bone is intricately related to conditions such as the intrinsic material, degradability, composite materials, manufacturing method, structure, and signaling molecules such as growth factors and cells. The development of new scaffold materials may offer more efficient bone regeneration.
Collapse
Affiliation(s)
- Kaoru Aoki
- Physical Therapy Division, School of Health Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Hirokazu Ideta
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Yukiko Komatsu
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Atsushi Tanaka
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Munehisa Kito
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Masanori Okamoto
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Jun Takahashi
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Shuichiro Suzuki
- Department of Orthopaedic Surgery, Matsumoto Medical Center, Matsumoto 390-8621, Japan
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
8
|
Shan BH, Wu FG. Hydrogel-Based Growth Factor Delivery Platforms: Strategies and Recent Advances. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210707. [PMID: 37009859 DOI: 10.1002/adma.202210707] [Citation(s) in RCA: 79] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Growth factors play a crucial role in regulating a broad variety of biological processes and are regarded as powerful therapeutic agents in tissue engineering and regenerative medicine in the past decades. However, their application is limited by their short half-lives and potential side effects in physiological environments. Hydrogels are identified as having the promising potential to prolong the half-lives of growth factors and mitigate their adverse effects by restricting them within the matrix to reduce their rapid proteolysis, burst release, and unwanted diffusion. This review discusses recent progress in the development of growth factor-containing hydrogels for various biomedical applications, including wound healing, brain tissue repair, cartilage and bone regeneration, and spinal cord injury repair. In addition, the review introduces strategies for optimizing growth factor release including affinity-based delivery, carrier-assisted delivery, stimuli-responsive delivery, spatial structure-based delivery, and cellular system-based delivery. Finally, the review presents current limitations and future research directions for growth factor-delivering hydrogels.
Collapse
Affiliation(s)
- Bai-Hui Shan
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Digital Medical Engineering Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
9
|
Pasini C, Pandini S, Ramorino G, Sartore L. Tailoring the properties of composite scaffolds with a 3D-Printed lattice core and a bioactive hydrogel shell for tissue engineering. J Mech Behav Biomed Mater 2024; 150:106305. [PMID: 38096608 DOI: 10.1016/j.jmbbm.2023.106305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/04/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024]
Abstract
The optimal performance of scaffolds for tissue engineering relies on a proper combination of their constituent biomaterials and on the design of their structure. In this work, composite scaffolds with a core-shell architecture are realized by grafting a gelatin-chitosan hydrogel onto a 3D-printed polylactic acid (PLA) core, aiming in particular at bone regeneration. This hydrogel was recently found to sustain osteogenic differentiation of mesenchymal stromal cells, leading to new bone tissue formation. Here, the integration with rigid PLA lattice structures provides improved mechanical support and finer control of strength and stiffness. The core is prepared by fused deposition modeling with the specific aim to study several lattice structures and thereby better tune the scaffold mechanical properties. In fact, the core architecture dictates the scaffold strength and stiffness, which are seen to match those of different types of bone tissue. For all lattice types, the hydrogel is found to penetrate throughout the entire core and to present highly interconnected pores for cell colonization. By varying the void volume fraction in the core it is possible to significantly change the bioactive shell content, as well as the mechanical properties, over a wide range of values. Looking for design guidelines, relationships between stiffness/strength and density are here outlined for scaffolds featuring different lattice parameters. Moreover, by acting on the core strut arrangement, scaffolds are reinforced along specific directions, as evaluated under compressive and bending loading conditions.
Collapse
Affiliation(s)
- C Pasini
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| | - S Pandini
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy.
| | - G Ramorino
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| | - L Sartore
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze, 38, 25123, Brescia, Italy
| |
Collapse
|
10
|
Şeker Ş, Aral D, Elçin AE, Yaşar Murat E. Biomimetic mineralization of platelet lysate/oxidized dextran cryogel as a macroporous 3D composite scaffold for bone repair. Biomed Mater 2024; 19:025006. [PMID: 38194711 DOI: 10.1088/1748-605x/ad1c9a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Scaffold development approaches using autologous sources for tissue repair are of great importance in obtaining bio-active/-compatible constructs. Platelet-rich plasma (PRP) containing various growth factors and platelet lysate (PL) derived from PRP are autologous products that have the potential to accelerate the tissue repair response by inducing a transient inflammatory event. Considering the regenerative capacity of PRP and PL, PRP/PL-based scaffolds are thought to hold great promise for tissue engineering as a natural source of autologous growth factors and a provider of mechanical support for cells. Here, a bio-mineralized PRP-based scaffold was developed using oxidized dextran (OD) and evaluated for future application in bone tissue engineering. Prepared PL/OD scaffolds were incubated in simulated body fluid (SBF) for 7, 14 and 21 d periods. Mineralized PL/OD scaffolds were characterized using Fourier transform infrared spectroscopy, x-ray diffraction spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis, porosity and compression tests. SEM and energy-dispersive x-ray spectroscopy analyses revealed mineral accumulation on the PL/OD scaffold as a result of SBF incubation.In vitrocytotoxicity andin vitrohemolysis tests revealed that the scaffolds were non-toxic and hemocompatible. Additionally, human osteoblasts (hOBs) exhibited good attachment and spreading behavior on the scaffolds and maintained their viability throughout the culture period. The alkaline phosphatase activity assay and calcium release results revealed that PL/OD scaffolds preserved the osteogenic properties of hOBs. Overall, findings suggest that mineralized PL/OD scaffold may be a promising scaffold for bone tissue engineering.
Collapse
Affiliation(s)
- Şükran Şeker
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Dilara Aral
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Ayşe Eser Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
| | - Elçin Yaşar Murat
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, and Ankara University Stem Cell Institute, Ankara, Turkey
- Biovalda Health Technologies, Inc., Ankara, Turkey
| |
Collapse
|
11
|
Pasini C, Pandini S, Re F, Ferroni M, Borsani E, Russo D, Sartore L. New Poly(lactic acid)-Hydrogel Core-Shell Scaffolds Highly Support MSCs' Viability, Proliferation and Osteogenic Differentiation. Polymers (Basel) 2023; 15:4631. [PMID: 38139883 PMCID: PMC10747776 DOI: 10.3390/polym15244631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Scaffolds for tissue engineering are expected to respond to a challenging combination of physical and mechanical requirements, guiding the research towards the development of novel hybrid materials. This study introduces innovative three-dimensional bioresorbable scaffolds, in which a stiff poly(lactic acid) lattice structure is meant to ensure temporary mechanical support, while a bioactive gelatin-chitosan hydrogel is incorporated to provide a better environment for cell adhesion and proliferation. The scaffolds present a core-shell structure, in which the lattice core is realized by additive manufacturing, while the shell is nested throughout the core by grafting and crosslinking a hydrogel forming solution. After subsequent freeze-drying, the hydrogel network forms a highly interconnected porous structure that completely envelops the poly(lactic acid) core. Thanks to this strategy, it is easy to tailor the scaffold properties for a specific target application by properly designing the lattice geometry and the core/shell ratio, which are found to significantly affect the scaffold mechanical performance and its bioresorption. Scaffolds with a higher core/shell ratio exhibit higher mechanical properties, whereas reducing the core/shell ratio results in higher values of bioactive hydrogel content. Hydrogel contents up to 25 wt% could be achieved while maintaining high compression stiffness (>200 MPa) and strength (>5 MPa), overall, within the range of values displayed by human bone tissue. In addition, mechanical properties remain stable after prolonged immersion in water at body temperature for several weeks. On the other hand, the hydrogel undergoes gradual and homogeneous degradation over time, but the core-shell integrity and structural stability are nevertheless maintained during at least 7-week hydrolytic degradation tests. In vitro experiments with human mesenchymal stromal cells reveal that the core-shell scaffolds are biocompatible, and their physical-mechanical properties and architecture are suitable to support cell growth and osteogenic differentiation, as demonstrated by hydroxyapatite formation. These results suggest that the bioresorbable core-shell scaffolds can be considered and further studied, in view of clinically relevant endpoints in bone regenerative medicine.
Collapse
Affiliation(s)
- Chiara Pasini
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy; (C.P.); (S.P.)
| | - Stefano Pandini
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy; (C.P.); (S.P.)
| | - Federica Re
- Unit of Blood Diseases and Bone Marrow Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (F.R.); (D.R.)
| | - Matteo Ferroni
- Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), University of Brescia, Via Valotti 9, 25123 Brescia, Italy;
- National Research Council (CNR)—Institute for Microelectronics and Microsystems, Bologna, Via Gobetti, 101, 40129 Bologna, Italy
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
| | - Domenico Russo
- Unit of Blood Diseases and Bone Marrow Transplantation, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (F.R.); (D.R.)
| | - Luciana Sartore
- Materials Science and Technology Laboratory, Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy; (C.P.); (S.P.)
| |
Collapse
|
12
|
Dey K, Sandrini E, Gobetti A, Ramorino G, Lopomo NF, Tonello S, Sardini E, Sartore L. Designing Biomimetic Conductive Gelatin-Chitosan-Carbon Black Nanocomposite Hydrogels for Tissue Engineering. Biomimetics (Basel) 2023; 8:473. [PMID: 37887604 PMCID: PMC10604854 DOI: 10.3390/biomimetics8060473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Conductive nanocomposites play a significant role in tissue engineering by providing a platform to support cell growth, tissue regeneration, and electrical stimulation. In the present study, a set of electroconductive nanocomposite hydrogels based on gelatin (G), chitosan (CH), and conductive carbon black (CB) was synthesized with the aim of developing novel biomaterials for tissue regeneration application. The incorporation of conductive carbon black (10, 15 and 20 wt.%) significantly improved electrical conductivity and enhanced mechanical properties with the increased CB content. We employed an oversimplified unidirectional freezing technique to impart anisotropic morphology with interconnected porous architecture. An investigation into whether any anisotropic morphology affects the mechanical properties of hydrogel was conducted by performing compression and cyclic compression tests in each direction parallel and perpendicular to macroporous channels. Interestingly, the nanocomposite with 10% CB produced both anisotropic morphology and mechanical properties, whereas anisotropic pore morphology diminished at higher CB concentrations (15 and 20%), imparting a denser texture. Collectively, the nanocomposite hydrogels showed great structural stability as well as good mechanical stability and reversibility. Under repeated compressive cyclic at 50% deformation, the nanocomposite hydrogels showed preconditioning, characteristic hysteresis, nonlinear elasticity, and toughness. Overall, the collective mechanical behavior resembled the mechanics of soft tissues. The electrical impedance associated with the hydrogels was studied in terms of the magnitude and phase angle in dry and wet conditions. The electrical properties of the nanocomposite hydrogels conducted in wet conditions, which is more physiologically relevant, showed a decreasing magnitude with increased CB concentrations, with a resistive-like behavior in the range 1 kHz-1 MHz and a capacitive-like behavior for frequencies <1 kHz and >1 MHz. Overall, the impedance of the nanocomposite hydrogels decreased with increased CB concentrations. Together, these nanocomposite hydrogels are compositionally, morphologically, mechanically, and electrically similar to native ECMs of many tissues. These gelatin-chitosan-carbon black nanocomposite hydrogels show great promise for use as conducting substrates for the growth of electro-responsive cells in tissue engineering.
Collapse
Affiliation(s)
- Kamol Dey
- Bio-Nanomaterials and Tissue Engineering Laboratory (BNTELab), Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Emanuel Sandrini
- Department of Mechanical and Industrial Engineering, Materials Science and Technology Laboratory, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (A.G.); (G.R.); (L.S.)
| | - Anna Gobetti
- Department of Mechanical and Industrial Engineering, Materials Science and Technology Laboratory, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (A.G.); (G.R.); (L.S.)
| | - Giorgio Ramorino
- Department of Mechanical and Industrial Engineering, Materials Science and Technology Laboratory, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (A.G.); (G.R.); (L.S.)
| | - Nicola Francesco Lopomo
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (N.F.L.); (E.S.)
| | - Sarah Tonello
- Department of Information Engineering, University of Padova, 35131 Padua, Italy;
| | - Emilio Sardini
- Department of Information Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (N.F.L.); (E.S.)
| | - Luciana Sartore
- Department of Mechanical and Industrial Engineering, Materials Science and Technology Laboratory, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (E.S.); (A.G.); (G.R.); (L.S.)
| |
Collapse
|
13
|
Re F, Borsani E, Rezzani R, Sartore L, Russo D. Bone Regeneration Using Mesenchymal Stromal Cells and Biocompatible Scaffolds: A Concise Review of the Current Clinical Trials. Gels 2023; 9:gels9050389. [PMID: 37232981 DOI: 10.3390/gels9050389] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Bone regenerative medicine is a clinical approach combining live osteoblast progenitors, such as mesenchymal stromal cells (MSCs), with a biocompatible scaffold that can integrate into host bone tissue and restore its structural integrity. Over the last few years, many tissue engineering strategies have been developed and thoroughly investigated; however, limited approaches have been translated to clinical application. Consequently, the development and clinical validation of regenerative approaches remain a centerpiece of investigational efforts towards the clinical translation of advanced bioengineered scaffolds. The aim of this review was to identify the latest clinical trials related to the use of scaffolds with or without MSCs to regenerate bone defects. A revision of the literature was performed in PubMed, Embase, and Clinicaltrials.gov from 2018 up to 2023. Nine clinical trials were analyzed according to the inclusion criteria: six presented in the literature and three reported in Clinicaltrials.gov. Data were extracted covering background trial information. Six of the clinical trials added cells to scaffolds, while three used scaffolds alone. The majority of scaffolds were composed of calcium phosphate ceramic alone, such as β-tricalcium phosphate (TCP) (two clinical trials), biphasic calcium phosphate bioceramic granules (three clinical trials), and anorganic bovine bone (two clinical trials), while bone marrow was the primary source of the MSCs (five clinical trials). The MSC expansion was performed in GMP facilities, using human platelet lysate (PL) as a supplement without osteogenic factors. Only one trial reported minor adverse events. Overall, these findings highlight the importance and efficacy of cell-scaffold constructs in regenerative medicine under different conditions. Despite the encouraging clinical results obtained, further studies are needed to assess their clinical efficacy in treating bone diseases to optimize their application.
Collapse
Affiliation(s)
- Federica Re
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research "Adaption and Regeneration of Tissues and Organs (ARTO)", University of Brescia, 25123 Brescia, Italy
| | - Rita Rezzani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Interdepartmental University Center of Research "Adaption and Regeneration of Tissues and Organs (ARTO)", University of Brescia, 25123 Brescia, Italy
| | - Luciana Sartore
- Department of Mechanical and Industrial Engineering, Materials Science and Technology Laboratory, University of Brescia, 25123 Brescia, Italy
| | - Domenico Russo
- Unit of Blood Diseases and Cell Therapies, Department of Clinical and Experimental Sciences, University of Brescia, "ASST-Spedali Civili" Hospital of Brescia, 25123 Brescia, Italy
| |
Collapse
|
14
|
Wang Q, Wang X, Feng Y. Chitosan Hydrogel as Tissue Engineering Scaffolds for Vascular Regeneration Applications. Gels 2023; 9:gels9050373. [PMID: 37232967 DOI: 10.3390/gels9050373] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023] Open
Abstract
Chitosan hydrogels have a wide range of applications in tissue engineering scaffolds, mainly due to the advantages of their chemical and physical properties. This review focuses on the application of chitosan hydrogels in tissue engineering scaffolds for vascular regeneration. We have mainly introduced these following aspects: advantages and progress of chitosan hydrogels in vascular regeneration hydrogels and the modification of chitosan hydrogels to improve the application in vascular regeneration. Finally, this paper discusses the prospects of chitosan hydrogels for vascular regeneration.
Collapse
Affiliation(s)
- Qiulin Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Xiaoyu Wang
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin), Weijin Road 92, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Weijin Road 92, Tianjin 300072, China
| |
Collapse
|
15
|
Fattahi R, Soleimani M, Khani MM, Rasouli M, Hosseinzadeh S. A three-dimensional structure with osteoconductive function made of O-carboxymethyl chitosan using aspirin as a cross-linker. INT J POLYM MATER PO 2023. [DOI: 10.1080/00914037.2022.2155156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Roya Fattahi
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Mehdi Khani
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Rasouli
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Fabrication, characterization and application of novel nanoemulsion polyvinyl alcohol/chitosan hybrid incorporated with citral for healing of infected full-thickness wound. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Tudureanu R, Handrea-Dragan IM, Boca S, Botiz I. Insight and Recent Advances into the Role of Topography on the Cell Differentiation and Proliferation on Biopolymeric Surfaces. Int J Mol Sci 2022; 23:7731. [PMID: 35887079 PMCID: PMC9315624 DOI: 10.3390/ijms23147731] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
It is well known that surface topography plays an important role in cell behavior, including adhesion, migration, orientation, elongation, proliferation and differentiation. Studying these cell functions is essential in order to better understand and control specific characteristics of the cells and thus to enhance their potential in various biomedical applications. This review proposes to investigate the extent to which various surface relief patterns, imprinted in biopolymer films or in polymeric films coated with biopolymers, by utilizing specific lithographic techniques, influence cell behavior and development. We aim to understand how characteristics such as shape, dimension or chemical functionality of surface relief patterns alter the orientation and elongation of cells, and thus, finally make their mark on the cell proliferation and differentiation. We infer that such an insight is a prerequisite for pushing forward the comprehension of the methodologies and technologies used in tissue engineering applications and products, including skin or bone implants and wound or fracture healing.
Collapse
Affiliation(s)
- Raluca Tudureanu
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Iuliana M. Handrea-Dragan
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
- Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Sanda Boca
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
| | - Ioan Botiz
- Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania; (R.T.); (I.M.H.-D.); (S.B.)
| |
Collapse
|
18
|
Cassimjee H, Kumar P, Ubanako P, Choonara YE. Genipin-Crosslinked, Proteosaccharide Scaffolds for Potential Neural Tissue Engineering Applications. Pharmaceutics 2022; 14:441. [PMID: 35214173 PMCID: PMC8874445 DOI: 10.3390/pharmaceutics14020441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Traumatic brain injuries (TBIs) are still a challenge for the field of modern medicine. Many treatment options such as autologous grafts and stem cells show limited promise for the treatment and the reversibility of damage caused by TBIs. Injury beyond the critical size necessitates the implementation of scaffolds that function as surrogate extracellular matrices. Two scaffolds were synthesised utilising polysaccharides, chitosan and hyaluronic acid in conjunction with gelatin. Both scaffolds were chemically crosslinked using a naturally derived crosslinker, Genipin. The polysaccharides increased the mechanical strength of each scaffold, while gelatin provided the bioactive sequence, which promoted cellular interactions. The effect of crosslinking was investigated, and the crosslinked hydrogels showed higher thermal decomposition temperatures, increased resistance to degradation, and pore sizes ranging from 72.789 ± 16.85 µm for the full interpenetrating polymer networks (IPNs) and 84.289 ± 7.658 μm for the semi-IPN. The scaffolds were loaded with Dexamethasone-21-phosphate to investigate their efficacy as a drug delivery vehicle, and the full IPN showed a 100% release in 10 days, while the semi-IPN showed a burst release in 6 h. Both scaffolds stimulated the proliferation of rat pheochromocytoma (PC12) and human glioblastoma multiforme (A172) cell cultures and also provided signals for A172 cell migration. Both scaffolds can be used as potential drug delivery vehicles and as artificial extracellular matrices for potential neural regeneration.
Collapse
Affiliation(s)
| | | | | | - Yahya E. Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa; (H.C.); (P.K.); (P.U.)
| |
Collapse
|
19
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 183] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
20
|
P B S, S G, J P, Muthusamy S, R N, Krishnakumar GS, R S. Tricomposite gelatin-carboxymethylcellulose-alginate bioink for direct and indirect 3D printing of human knee meniscal scaffold. Int J Biol Macromol 2022; 195:179-189. [PMID: 34863969 DOI: 10.1016/j.ijbiomac.2021.11.184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022]
Abstract
The development of technologies that could ease the production of customizable patient-specific tissue engineering constructs having required biomechanical properties and restoring function in damaged tissue is the need of the hour. In this study, we report the optimization of composite, bioactive and biocompatible tripolymeric hydrogel bioink, suitable for both direct and indirect printing of customizable scaffolds for cartilage tissue engineering applications. A customized hierarchical meniscal scaffold was designed using solid works software and developed using a negative mould made of polylactic acid (PLA) filament and by a direct 3D printing process. A composite tripolymeric bioink made of gelatin, carboxymethyl cellulose (CMC) and alginate was optimized and characterized for its printability, structural, bio-mechanical and bio-functional properties. The optimized composite hydrogel bioink was extruded into the negative mould with and without live cells, cross-linked and the replica of meniscus structure was retrieved aseptically. The cellular proliferation, apatite formation, and extracellular matrix secretion from negative printed meniscal scaffold were determined using MTT, live/dead and collagen estimation assays. A significant increase in collagen secretion, cellular proliferation and changes in biomechanical properties was observed in the 3D scaffolds with MG63-osteosarcoma cells indicating its suitability for cartilage tissue engineering.
Collapse
Affiliation(s)
- Sathish P B
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Gayathri S
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India; Department of Electronics and Communication Engineering, PSG College of Technology, Coimbatore 641004, India
| | - Priyanka J
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India; Department of Electronics and Communication Engineering, PSG College of Technology, Coimbatore 641004, India
| | - Shalini Muthusamy
- Applied Biomaterials Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Narmadha R
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Gopal Shankar Krishnakumar
- Applied Biomaterials Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India
| | - Selvakumar R
- Tissue Engineering Laboratory, Department of Biotechnology, PSG Institute of Advanced Studies, Coimbatore 641004, India.
| |
Collapse
|
21
|
Li Y, He J, Zhou J, Li Z, Liu L, Hu S, Guo B, Wang W. Conductive photothermal non-swelling nanocomposite hydrogel patch accelerating bone defect repair. Biomater Sci 2022; 10:1326-1341. [DOI: 10.1039/d1bm01937f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone defect repair is one of the most common issue in clinic. Developmental multifunctional scaffolds have become a promising strategy to effectively promote bone defect repair. Here, a series of...
Collapse
|
22
|
Yoo SH, Kim HW, Lee JH. Restoration of olfactory dysfunctions by nanomaterials and stem cells-based therapies: Current status and future perspectives. J Tissue Eng 2022; 13:20417314221083414. [PMID: 35340424 PMCID: PMC8949739 DOI: 10.1177/20417314221083414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Dysfunction in the olfactory system of a person can have adverse effects on their health and quality of life. It can even increase mortality among individuals. Olfactory dysfunction is related to many factors, including post-viral upper respiratory infection, head trauma, and neurodegenerative disorders. Although some clinical therapies such as steroids and olfactory training are already available, their effectiveness is limited and controversial. Recent research in the field of therapeutic nanoparticles and stem cells has shown the regeneration of dysfunctional olfactory systems. Thus, we are motivated to highlight these regenerative approaches. For this, we first introduce the anatomical characteristics of the olfactory pathway, then detail various pathological factors related to olfactory dysfunctions and current treatments, and then finally discuss the recent regenerative endeavors, with particular focus on nanoparticle-based drug delivery systems and stem cells. This review offers insights into the development of future therapeutic approaches to restore and regenerate dysfunctional olfactory systems.
Collapse
Affiliation(s)
- Shin Hyuk Yoo
- Department of Otorhinolaryngology, Dankook University College of Medicine, Cheonan, Republic of Korea.,Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,UCL Eastman-Korea Dental Medicine Innovation Center, Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea.,Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea.,Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, Republic of Korea.,Cell and Matter Institute, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
23
|
Zhuge W, Liu H, Wang W, Wang J. Microfluidic Bioscaffolds for Regenerative Engineering. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
24
|
Lee JS, Kim HS, Nah H, Lee SJ, Moon HJ, Bang JB, Lee JB, Do SH, Kwon IK, Heo DN. The Effectiveness of Compartmentalized Bone Graft Sponges Made Using Complementary Bone Graft Materials and Succinylated Chitosan Hydrogels. Biomedicines 2021; 9:biomedicines9121765. [PMID: 34944581 PMCID: PMC8698467 DOI: 10.3390/biomedicines9121765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 11/24/2022] Open
Abstract
Bone defects can occur from many causes, including disease or trauma. Bone graft materials (BGMs) have been used to fill damaged areas for the reconstruction of diseased bone tissues since they are cost effective and readily available. However, BGMs quickly disperse around the tissue area, which ultimately leads to it migrating away from the defect after transplantation. We tested chitosan hydrogels as a useful carrier to hold BGMs in the transplantation area. In this study, we synthesized succinylated chitosan (SCS)-based hydrogels with a high decomposition rate and excellent biocompatibility. We confirmed that BGMs were well distributed inside the SCS hydrogel. The SCS-B hydrogel showed a decrease in mechanical properties, such as compressive strength and Young’s modulus, as the succinylation rate increased. SCS-B hydrogels also exhibited a high cell growth rate and bone differentiation rate. Moreover, the in vivo results showed that the SCS hydrogel resorbed into the surrounding tissues while maintaining the BGMs in the transplantation area for up to 6 weeks. These data support the idea that SCS hydrogel can be useful as a bioactive drug carrier for a broad range of biomedical applications.
Collapse
Affiliation(s)
- Jae Seo Lee
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (J.S.L.); (H.N.)
| | - Hyo-Sung Kim
- Department of Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (H.-S.K.); (S.H.D.)
| | - Haram Nah
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (J.S.L.); (H.N.)
| | - Sang Jin Lee
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.J.L.); (H.-J.M.)
| | - Ho-Jin Moon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.J.L.); (H.-J.M.)
| | - Jae Beum Bang
- Department of Dental Education, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemum-gu, Seoul 02447, Korea;
| | - Jung Bok Lee
- Department of Biological Science, Sookmyung Women’s University, Cheongpa-ro 47-gil 100 (Cheongpa-dong 2(i)-ga), Yongsan-gu, Seoul 04310, Korea;
| | - Sun Hee Do
- Department of Clinical Pathology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea; (H.-S.K.); (S.H.D.)
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.J.L.); (H.-J.M.)
- Correspondence: (I.K.K.); (D.N.H.)
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea; (S.J.L.); (H.-J.M.)
- Correspondence: (I.K.K.); (D.N.H.)
| |
Collapse
|
25
|
Yu D, Wang J, Qian KJ, Yu J, Zhu HY. Effects of nanofibers on mesenchymal stem cells: environmental factors affecting cell adhesion and osteogenic differentiation and their mechanisms. J Zhejiang Univ Sci B 2021; 21:871-884. [PMID: 33150771 DOI: 10.1631/jzus.b2000355] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nanofibers can mimic natural tissue structure by creating a more suitable environment for cells to grow, prompting a wide application of nanofiber materials. In this review, we include relevant studies and characterize the effect of nanofibers on mesenchymal stem cells, as well as factors that affect cell adhesion and osteogenic differentiation. We hypothesize that the process of bone regeneration in vitro is similar to bone formation and healing in vivo, and the closer nanofibers or nanofibrous scaffolds are to natural bone tissue, the better the bone regeneration process will be. In general, cells cultured on nanofibers have a similar gene expression pattern and osteogenic behavior as cells induced by osteogenic supplements in vitro. Genes involved in cell adhesion (focal adhesion kinase (FAK)), cytoskeletal organization, and osteogenic pathways (transforming growth factor-β (TGF-β)/bone morphogenic protein (BMP), mitogen-activated protein kinase (MAPK), and Wnt) are upregulated successively. Cell adhesion and osteogenesis may be influenced by several factors. Nanofibers possess certain physical properties including favorable hydrophilicity, porosity, and swelling properties that promote cell adhesion and growth. Moreover, nanofiber stiffness plays a vital role in cell fate, as cell recruitment for osteogenesis tends to be better on stiffer scaffolds, with associated signaling pathways of integrin and Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ). Also, hierarchically aligned nanofibers, as well as their combination with functional additives (growth factors, HA particles, etc.), contribute to osteogenesis and bone regeneration. In summary, previous studies have indicated that upon sensing the stiffness of the nanofibrous environment as well as its other characteristics, stem cells change their shape and tension accordingly, regulating downstream pathways followed by adhesion to nanofibers to contribute to osteogenesis. However, additional experiments are needed to identify major signaling pathways in the bone regeneration process, and also to fully investigate its supportive role in fabricating or designing the optimum tissue-mimicking nanofibrous scaffolds.
Collapse
Affiliation(s)
- Dan Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jin Wang
- Department of Stomatology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ke-Jia Qian
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jing Yu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Hui-Yong Zhu
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
26
|
Medrano-David D, Lopera AM, Londoño ME, Araque-Marín P. Formulation and Characterization of a New Injectable Bone Substitute Composed PVA/Borax/CaCO 3 and Demineralized Bone Matrix. J Funct Biomater 2021; 12:46. [PMID: 34449632 PMCID: PMC8395841 DOI: 10.3390/jfb12030046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/22/2022] Open
Abstract
The occurrence of bone-related disorders and diseases has dramatically increased in recent years around the world. Demineralized bone matrix (DBM) has been widely used as a bone implant due to its osteoinduction and bioactivity. However, the use of DBM is limited because it is a particulate material, which makes it difficult to manipulate and implant with precision. In addition, these particles are susceptible to migration to other sites. To address this situation, DBM is commonly incorporated into a variety of carriers. An injectable scaffold has advantages over bone grafts or preformed scaffolds, such as the ability to flow and fill a bone defect. The aim of this research was to develop a DBM carrier with such viscoelastic properties in order to obtain an injectable bone substitute (IBS). The developed DBM carrier consisted of a PVA/glycerol network cross-linked with borax and reinforced with CaCO3 as a pH neutralizer, porosity generator, and source of Ca. The physicochemical properties were determined by an injectability test, FTIR, SEM, and TGA. Porosity, degradation, bioactivity, possible cytotoxic effect, and proliferation in osteoblasts were also determined. The results showed that the developed material has great potential to be used in bone tissue regeneration.
Collapse
Affiliation(s)
- Daniela Medrano-David
- Research Group GIBEC, Life Sciences Faculty, EIA University, Envigado 055420, Colombia; (A.M.L.); (M.E.L.)
| | - Aura María Lopera
- Research Group GIBEC, Life Sciences Faculty, EIA University, Envigado 055420, Colombia; (A.M.L.); (M.E.L.)
| | - Martha Elena Londoño
- Research Group GIBEC, Life Sciences Faculty, EIA University, Envigado 055420, Colombia; (A.M.L.); (M.E.L.)
| | - Pedronel Araque-Marín
- Research and Innovation Group in Chemical Formulations, Life Sciences Faculty, EIA University, Envigado 055420, Colombia;
- CECOLTEC, Medellín 050022, Colombia
| |
Collapse
|
27
|
Shin EY, Kim DS, Lee MJ, Lee AR, Shim SH, Baek SW, Han DK, Lee DR. Prevention of chemotherapy-induced premature ovarian insufficiency in mice by scaffold-based local delivery of human embryonic stem cell-derived mesenchymal progenitor cells. Stem Cell Res Ther 2021; 12:431. [PMID: 34332643 PMCID: PMC8325282 DOI: 10.1186/s13287-021-02479-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/27/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Premature ovarian insufficiency (POI) is one of the most serious side effects of chemotherapy in young cancer survivors. It may not only reduce fecundity but also affect lifelong health. There is no standard therapy for preserving ovarian health after chemotherapy. Recently, administration of embryonic stem cell-derived mesenchymal progenitor cells (ESC-MPCs) has been considered a new therapeutic option for preventing POI. However, the previous method of directly injecting cells into the veins of patients exhibits low efficacy and safety. This study aimed to develop safe and effective local delivery methods for the prevention of POI using two types of bioinspired scaffolds. METHODS Female mice received intraperitoneal cisplatin for 10 days. On day 11, human ESC-MPCs were delivered through systemic administration using intravenous injection or local administration using intradermal injection and intradermal transplantation with a PLGA/MH sponge or hyaluronic acid (HA) gel (GEL) type of scaffold. PBS was injected intravenously as a negative control. Ovarian function and fertility were evaluated 4 weeks after transplantation. Follicle development was observed using hematoxylin and eosin staining. The plasma levels of sex hormones were measured using ELISA. Expression levels of anti-Müllerian hormone (AMH) and ki-67 were detected using immunostaining, and the quality of oocytes and embryos was evaluated after in vitro fertilization. The estrous cycles were observed at 2 months after transplantation. RESULTS The local administration of human ESC-MPCs using the bioinspired scaffold to the backs of mice effectively prolonged the cell survival rate in vivo. The HA GEL group exhibited the best recovered ovarian functions, including a significantly increased number of ovarian reserves, estrogen levels, and AMH levels and decreased apoptotic levels. Furthermore, the HA GEL group showed improved quality of oocytes and embryos and estrous cycle regularity. CONCLUSIONS HA GEL scaffolds can be used as new delivery platforms for ESC-MPC therapy, and this method may provide a novel option for the clinical treatment of chemotherapy-induced POI.
Collapse
Affiliation(s)
- Eun-Young Shin
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea
| | - Da-Seul Kim
- School of Integrative Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Min Ji Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea
| | - Ah Reum Lee
- CHA Advanced Research Institute, CHA Medical Center, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea
| | - Sung Han Shim
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea
| | - Seung Woon Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea
| | - Dong Keun Han
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea.
| | - Dong Ryul Lee
- Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi, 13488, Republic of Korea.
| |
Collapse
|
28
|
Re F, Sartore L, Borsani E, Ferroni M, Baratto C, Mahajneh A, Smith A, Dey K, Almici C, Guizzi P, Bernardi S, Faglia G, Magni F, Russo D. Mineralization of 3D Osteogenic Model Based on Gelatin-Dextran Hybrid Hydrogel Scaffold Bioengineered with Mesenchymal Stromal Cells: A Multiparametric Evaluation. MATERIALS 2021; 14:ma14143852. [PMID: 34300769 PMCID: PMC8306641 DOI: 10.3390/ma14143852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Gelatin–dextran hydrogel scaffolds (G-PEG-Dx) were evaluated for their ability to activate the bone marrow human mesenchymal stromal cells (BM-hMSCs) towards mineralization. G-PEG-Dx1 and G-PEG-Dx2, with identical composition but different architecture, were seeded with BM-hMSCs in presence of fetal bovine serum or human platelet lysate (hPL) with or without osteogenic medium. G-PEG-Dx1, characterized by a lower degree of crosslinking and larger pores, was able to induce a better cell colonization than G-PEG-Dx2. At day 28, G-PEG-Dx2, with hPL and osteogenic factors, was more efficient than G-PEG-Dx1 in inducing mineralization. Scanning electron microscopy (SEM) and Raman spectroscopy showed that extracellular matrix produced by BM-hMSCs and calcium-positive mineralization were present along the backbone of the G-PEG-Dx2, even though it was colonized to a lesser degree by hMSCs than G-PEG-Dx1. These findings were confirmed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), detecting distinct lipidomic signatures that were associated with the different degree of scaffold mineralization. Our data show that the architecture and morphology of G-PEG-Dx2 is determinant and better than that of G-PEG-Dx1 in promoting a faster mineralization, suggesting a more favorable and active role for improving bone repair.
Collapse
Affiliation(s)
- Federica Re
- Bone Marrow Transplant Unit, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (F.R.); (S.B.)
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Luciana Sartore
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (L.S.); (K.D.)
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy;
| | - Matteo Ferroni
- Department of Civil, Environmental, Architectural Engineering and Mathematics (DICATAM), University of Brescia, Via Valotti 9, 25123 Brescia, Italy;
- CNR-IMM Bologna, Via Gobetti 101, 40129 Bologna, Italy
| | | | - Allia Mahajneh
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy; (A.M.); (A.S.); (F.M.)
| | - Andrew Smith
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy; (A.M.); (A.S.); (F.M.)
| | - Kamol Dey
- Department of Mechanical and Industrial Engineering, University of Brescia, Via Branze 38, 25123 Brescia, Italy; (L.S.); (K.D.)
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Camillo Almici
- Laboratory for Stem Cell Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy;
| | - Pierangelo Guizzi
- Orthopedics and Traumatology Unit, ASST Spedali Civili, Via Papa Giovanni XXIII 4, 25063 Gardone Val Trompia, 25123 Brescia, Italy;
| | - Simona Bernardi
- Bone Marrow Transplant Unit, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (F.R.); (S.B.)
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Guido Faglia
- PRISM Lab, CNR-INO, 25123 Brescia, Italy; (C.B.); (G.F.)
- Department of Information Engineering (DII), University of Brescia, Via Branze 38, 25123 Brescia, Italy
| | - Fulvio Magni
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, Via Raoul Follereau 3, 20854 Vedano al Lambro, Italy; (A.M.); (A.S.); (F.M.)
| | - Domenico Russo
- Bone Marrow Transplant Unit, Department of Clinical and Experimental Sciences, University of Brescia, ASST Spedali Civili, Piazzale Spedali Civili 1, 25123 Brescia, Italy; (F.R.); (S.B.)
- Correspondence:
| |
Collapse
|
29
|
Bone Regeneration Improves with Mesenchymal Stem Cell Derived Extracellular Vesicles (EVs) Combined with Scaffolds: A Systematic Review. BIOLOGY 2021; 10:biology10070579. [PMID: 34202598 PMCID: PMC8301056 DOI: 10.3390/biology10070579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023]
Abstract
Scaffolds associated with mesenchymal stem cell (MSC) derivatives, such as extracellular vesicles (EVs), represent interesting carriers for bone regeneration. This systematic review aims to analyze in vitro and in vivo studies that report the effects of EVs combined with scaffolds in bone regeneration. A methodical review of the literature was performed from PubMed and Embase from 2012 to 2020. Sixteen papers were analyzed; of these, one study was in vitro, eleven were in vivo, and four were both in vitro and in vivo studies. This analysis shows a growing interest in this upcoming field, with overall positive results. In vitro results were demonstrated as both an effect on bone mineralization and proangiogenic ability. The interesting in vitro outcomes were confirmed in vivo. Particularly, these studies showed positive effects on bone regeneration and mineralization, activation of the pathway for bone regeneration, induction of vascularization, and modulation of inflammation. However, several aspects remain to be elucidated, such as the concentration of EVs to use in clinic for bone-related applications and the definition of the real advantages.
Collapse
|
30
|
Yao T, Zhang Y, Lv M, Zang G, Ng SS, Chen X. Advances in 3D cell culture for liver preclinical studies. Acta Biochim Biophys Sin (Shanghai) 2021; 53:643-651. [PMID: 33973620 DOI: 10.1093/abbs/gmab046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Indexed: 11/13/2022] Open
Abstract
The 3D cell culture model is an indispensable tool in the study of liver biology in the field of health and disease and the development of clinically relevant products for liver therapies. The 3D culture model captures critical factors of the microenvironmental niche required by hepatocytes for exhibiting optimal phenotypes, thus enabling the pursuit of a range of preclinical studies that are not entirely feasible in conventional 2D cell models. In this review, we highlight the major attributes associated with and the components needed for the development of a functional 3D liver culture model for a range of applications.
Collapse
Affiliation(s)
- Ting Yao
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yi Zhang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Mengjiao Lv
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Guoqing Zang
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Soon Seng Ng
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London W2 1PG, UK
| | - Xiaohua Chen
- Department of Infectious Diseases, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
31
|
Bianchetti A, Chinello C, Guindani M, Braga S, Neva A, Verardi R, Piovani G, Pagani L, Lisignoli G, Magni F, Russo D, Almici C. A Blood Bank Standardized Production of Human Platelet Lysate for Mesenchymal Stromal Cell Expansion: Proteomic Characterization and Biological Effects. Front Cell Dev Biol 2021; 9:650490. [PMID: 34055779 PMCID: PMC8160451 DOI: 10.3389/fcell.2021.650490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/06/2021] [Indexed: 01/14/2023] Open
Abstract
Human platelet lysate (hPL) is considered a valid substitute to fetal bovine serum (FBS) in the expansion of mesenchymal stromal cells (MSC), and it is commonly produced starting from intermediate side products of whole blood donations. Through freeze-thaw cycles, hPL is highly enriched in chemokines, growth factors, and adhesion and immunologic molecules. Cell therapy protocols, using hPL instead of FBS for the expansion of cells, are approved by regulatory authorities without concerns, and its administration in patients is considered safe. However, published data are fairly difficult to compare, since the production of hPL is highly variable. This study proposes to optimize and standardize the hPL productive process by using instruments, technologies, and quality/safety standards required for blood bank activities and products. The quality and improved selection of the starting material (i.e., the whole blood), together with the improvement of the production process, guarantee a product characterized by higher content and quality of growth factors as well as a reduction in batch-to-batch variability. By increasing the number of freeze/thaw cycles from one (hPL1c) to four (hPL4c), we obtained a favorable effect on the release of growth factors from platelet α granules. Those changes have directly translated into biological effects leading to a decreasing doubling time (DT) of MSC expansion at 7 days (49.41 ± 2.62 vs. 40.61 ± 1.11 h, p < 0.001). Furthermore, mass spectrometry (MS)-based evaluation has shown that the proliferative effects of hPL4c are also combined with a lower batch-to-batch variability (10-15 vs. 21-31%) at the proteomic level. In conclusion, we have considered lot-to-lot hPL variability, and by the strict application of blood bank standards, we have obtained a standardized, reproducible, safe, cheap, and ready-to-use product.
Collapse
Affiliation(s)
- Andrea Bianchetti
- Laboratory for Stem Cells Manipulation and Cryopreservation, Blood Bank, Department of Transfusion Medicine, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Clizia Chinello
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Michele Guindani
- Department of Statistics, University of California, Irvine, Irvine, CA, United States
| | - Simona Braga
- Laboratory for Stem Cells Manipulation and Cryopreservation, Blood Bank, Department of Transfusion Medicine, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Arabella Neva
- Laboratory for Stem Cells Manipulation and Cryopreservation, Blood Bank, Department of Transfusion Medicine, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Rosanna Verardi
- Laboratory for Stem Cells Manipulation and Cryopreservation, Blood Bank, Department of Transfusion Medicine, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Giovanna Piovani
- Biology and Genetics Division, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Lisa Pagani
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Gina Lisignoli
- IRCCS, Istituto Ortopedico Rizzoli, SC Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | - Fulvio Magni
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Domenico Russo
- Chair of Hematology, Unit of Blood Diseases and Stem Cell Transplantation, University of Brescia, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Camillo Almici
- Laboratory for Stem Cells Manipulation and Cryopreservation, Blood Bank, Department of Transfusion Medicine, ASST Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
32
|
Dey K, Roca E, Ramorino G, Sartore L. Progress in the mechanical modulation of cell functions in tissue engineering. Biomater Sci 2021; 8:7033-7081. [PMID: 33150878 DOI: 10.1039/d0bm01255f] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In mammals, mechanics at multiple stages-nucleus to cell to ECM-underlie multiple physiological and pathological functions from its development to reproduction to death. Under this inspiration, substantial research has established the role of multiple aspects of mechanics in regulating fundamental cellular processes, including spreading, migration, growth, proliferation, and differentiation. However, our understanding of how these mechanical mechanisms are orchestrated or tuned at different stages to maintain or restore the healthy environment at the tissue or organ level remains largely a mystery. Over the past few decades, research in the mechanical manipulation of the surrounding environment-known as substrate or matrix or scaffold on which, or within which, cells are seeded-has been exceptionally enriched in the field of tissue engineering and regenerative medicine. To do so, traditional tissue engineering aims at recapitulating key mechanical milestones of native ECM into a substrate for guiding the cell fate and functions towards specific tissue regeneration. Despite tremendous progress, a big puzzle that remains is how the cells compute a host of mechanical cues, such as stiffness (elasticity), viscoelasticity, plasticity, non-linear elasticity, anisotropy, mechanical forces, and mechanical memory, into many biological functions in a cooperative, controlled, and safe manner. High throughput understanding of key cellular decisions as well as associated mechanosensitive downstream signaling pathway(s) for executing these decisions in response to mechanical cues, solo or combined, is essential to address this issue. While many reports have been made towards the progress and understanding of mechanical cues-particularly, substrate bulk stiffness and viscoelasticity-in regulating the cellular responses, a complete picture of mechanical cues is lacking. This review highlights a comprehensive view on the mechanical cues that are linked to modulate many cellular functions and consequent tissue functionality. For a very basic understanding, a brief discussion of the key mechanical players of ECM and the principle of mechanotransduction process is outlined. In addition, this review gathers together the most important data on the stiffness of various cells and ECM components as well as various tissues/organs and proposes an associated link from the mechanical perspective that is not yet reported. Finally, beyond addressing the challenges involved in tuning the interplaying mechanical cues in an independent manner, emerging advances in designing biomaterials for tissue engineering are also explored.
Collapse
Affiliation(s)
- Kamol Dey
- Department of Applied Chemistry and Chemical Engineering, Faculty of Science, University of Chittagong, Bangladesh
| | | | | | | |
Collapse
|
33
|
Salahuddin B, Wang S, Sangian D, Aziz S, Gu Q. Hybrid Gelatin Hydrogels in Nanomedicine Applications. ACS APPLIED BIO MATERIALS 2021; 4:2886-2906. [PMID: 35014383 DOI: 10.1021/acsabm.0c01630] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gelatin based hydrogels are often incorporated with supporting materials such as chitosan, poly(vinyl alcohol), alginate, carbon nanotubes, and hyaluronic acid. These hybrid materials are specifically of interest in diversified nanomedicine fields as they exhibit unique physicochemical properties, antimicrobial activity, biodegradability, and biocompatibility. The applications include drug delivery, wound healing, cell culture, and tissue engineering. This paper reviews the various up-to-date methods to fabricate gelatin-based hydrogels, including UV photo-cross-linking, electrospinning, and 3D bioprinting. This paper also includes physical, chemical, mechanical, and biocompatibility characterization studies of several hybrid gelatin hydrogels and discusses their relevance in nanomedicine based applications. Challenges associated with the fabrication of hybrid materials for nanotechnology implementation, specifically in nanomedicine development, are critically discussed, and some future recommendations are provided.
Collapse
Affiliation(s)
- Bidita Salahuddin
- ARC Centre of Excellence for Electromaterials Science and Intelligent Polymer Research Institute, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia
| | - Shuo Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P. R. China
| | - Danial Sangian
- Mechatronic Systems Laboratory, Faculty of Mechanical Engineering and Transport Systems, Technical University of Berlin, Hardenbergstrasse 36, D-10623, Berlin, Germany
| | - Shazed Aziz
- School of Chemical Engineering, The University of Queensland, Don Nicklin Building (74), St. Lucia, QLD 4072, Australia
| | - Qi Gu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, P. R. China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 3 Datun Road, Chaoyang District, Beijing 100101, P. R. China
| |
Collapse
|
34
|
Park SB, Sung MH, Uyama H, Han DK. Poly(glutamic acid): Production, composites, and medical applications of the next-generation biopolymer. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2020.101341] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
35
|
Platelet lysates-based hydrogels incorporating bioactive mesoporous silica nanoparticles for stem cell osteogenic differentiation. Mater Today Bio 2021; 9:100096. [PMID: 33665604 PMCID: PMC7903011 DOI: 10.1016/j.mtbio.2021.100096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/17/2021] [Indexed: 12/22/2022] Open
Abstract
Scaffolds for bone tissue regeneration should provide the right cues for stem cell adhesion and proliferation, but also lead to their osteogenic differentiation. Hydrogels of modified platelet lysates (PLMA) show the proper mechanical stability for cell encapsulation and contain essential bioactive molecules required for cell maintenance. We prepared a novel PLMA-based nanocomposite for bone repair and regeneration capable of releasing biofactors to induce osteogenic differentiation. Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) were encapsulated in PLMA hydrogels containing bioactive mesoporous silica nanoparticles previously loaded with dexamethasone and functionalized with calcium and phosphate ions. After 21 d of culture, hBM-MSCs remained viable, presented a stretched morphology, and showed signs of osteogenic differentiation, namely the presence of significant amounts of alkaline phosphatase, bone morphogenic protein-2 and osteopontin, hydroxyapatite, and calcium nodules. Developed for the first time, PLMA/MSNCaPDex nanocomposites were able to guide the differentiation of hBM-MSCs without any other osteogenic supplementation.
Collapse
|
36
|
Kirsch M, Rach J, Handke W, Seltsam A, Pepelanova I, Strauß S, Vogt P, Scheper T, Lavrentieva A. Comparative Analysis of Mesenchymal Stem Cell Cultivation in Fetal Calf Serum, Human Serum, and Platelet Lysate in 2D and 3D Systems. Front Bioeng Biotechnol 2021; 8:598389. [PMID: 33520956 PMCID: PMC7844400 DOI: 10.3389/fbioe.2020.598389] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
In vitro two-dimensional (2D) and three-dimensional (3D) cultivation of mammalian cells requires supplementation with serum. Mesenchymal stem cells (MSCs) are widely used in clinical trials for bioregenerative medicine and in most cases, in vitro expansion and differentiation of these cells are required before application. Optimized expansion and differentiation protocols play a key role in the treatment outcome. 3D cell cultivation systems are more comparable to in vivo conditions and can provide both, more physiological MSC expansion and a better understanding of intercellular and cell-matrix interactions. Xeno-free cultivation conditions minimize risks of immune response after implantation. Human platelet lysate (hPL) appears to be a valuable alternative to widely used fetal calf serum (FCS) since no ethical issues are associated with its harvest, it contains a high concentration of growth factors and cytokines and it can be produced from expired platelet concentrate. In this study, we analyzed and compared proliferation, as well as osteogenic and chondrogenic differentiation of human adipose tissue-derived MSCs (hAD-MSC) using three different supplements: FCS, human serum (HS), and hPL in 2D. Furthermore, online monitoring of osteogenic differentiation under the influence of different supplements was performed in 2D. hPL-cultivated MSCs exhibited a higher proliferation and differentiation rate compared to HS- or FCS-cultivated cells. We demonstrated a fast and successful chondrogenic differentiation in the 2D system with the addition of hPL. Additionally, FCS, HS, and hPL were used to formulate Gelatin-methacryloyl (GelMA) hydrogels in order to evaluate the influence of the different supplements on the cell spreading and proliferation of cells growing in 3D culture. In addition, the hydrogel constructs were cultivated in media supplemented with three different supplements. In comparison to FCS and HS, the addition of hPL to GelMA hydrogels during the encapsulation of hAD-MSCs resulted in enhanced cell spreading and proliferation. This effect was promoted even further by cultivating the hydrogel constructs in hPL-supplemented media.
Collapse
Affiliation(s)
- Marline Kirsch
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Jessica Rach
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Wiebke Handke
- Bavarian Red Cross Blood Service, Institute Nuremberg, Nuremberg, Germany
| | - Axel Seltsam
- Bavarian Red Cross Blood Service, Institute Nuremberg, Nuremberg, Germany
| | - Iliyana Pepelanova
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Sarah Strauß
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Peter Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, Hanover, Germany
| | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | | |
Collapse
|
37
|
Mendes BB, Daly AC, Reis RL, Domingues RMA, Gomes ME, Burdick JA. Injectable hyaluronic acid and platelet lysate-derived granular hydrogels for biomedical applications. Acta Biomater 2021; 119:101-113. [PMID: 33130309 DOI: 10.1016/j.actbio.2020.10.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/26/2022]
Abstract
Towards the repair of damaged tissues, numerous scaffolds have been fabricated to recreate the complex extracellular matrix (ECM) environment to support desired cell behaviors; however, it is often challenging to design scaffolds with the requisite cell-anchorage sites, mechanical stability, and tailorable physicochemical properties necessary for many applications. To address this and to improve on the properties of hyaluronic acid (HA) hydrogels, we combined photocrosslinkable norbornene-modified HA (NorHA) with human platelet lysate (PL). These PL-NorHA hybrid hydrogels supported the adhesion of cells when compared to NorHA hydrogels without PL, exhibited tailorable physicochemical properties based on the concentration of individual components, and released proteins over time. Using microfluidic techniques with on-chip mixing of NorHA and PL and subsequent photocrosslinking, spherical PL-NorHA microgels with a hierarchical fibrillar network were fabricated that exhibited the sustained delivery of PL proteins. Microgels could be jammed into granular hydrogels that exhibited shear-thinning and self-healing properties, enabling ejection from syringes and the fabrication of stable 3D constructs with 3D printing. Again, the inclusion of PL enhanced cellular interactions with the microgel structures. Overall, the combination of biomolecules and fibrin self-assembly arising from the enriched milieu of PL-derived proteins improved the bioactivity of HA-based hydrogels, enabling the formation of dynamic systems with modular design. The granular systems can be engineered to meet the complex demands of functional tissue repair using versatile processing techniques, such as with 3D printing.
Collapse
Affiliation(s)
- Bárbara B Mendes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Andrew C Daly
- Department of Bioengineering, University of Pennsylvania, USA
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal
| | - Rui M A Domingues
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal.
| | - Manuela E Gomes
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Zona Industrial da Gandra, 4805-017 Barco - Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães 4805-017, Portugal.
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, USA.
| |
Collapse
|
38
|
Lee S, Lee DS, Jang JH. Recombinant laminin α5 LG1-3 domains support the stemness of human mesenchymal stem cells. Exp Ther Med 2020; 21:166. [PMID: 33456533 DOI: 10.3892/etm.2020.9597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/24/2020] [Indexed: 11/06/2022] Open
Abstract
The extracellular matrix components laminin and elastin serve key roles in stem cell therapy. Elastin-like polypeptides (ELPs), derived from a soluble form of elastin, affect the proliferation and differentiation of various types of cells. In the present study, a novel protein was designed containing globular domains 1-3 of laminin α5 (Lα5LG1-3) fused to ELPs (Lα5LG1-3/ELP). Lα5LG1-3/ELP was expressed in Escherichia coli and displayed a molecular size of ~70 kDa on 12% SDS-polyacrylamide gels. The cellular activities, such as cellular adhesion (adhesion assay) and proliferation (MTT cytotoxicity assay), of human mesenchymal stem cells (hMSCs) treated with 1 µg/ml of Lα5LG1-3/ELP were enhanced compared with those of untreated cells. Additionally, the number of undifferentiated hMSCs and their degree of stemness were assessed based on the gene expression levels of the stem cell markers cluster differentiation 90 (CD90), endoglin (CD105) and CD73. The expression levels of these markers were upregulated by 2.42-, 2.29- and 1.92-fold, respectively, in the hMSCs treated with Lα5LG1-3/ELP compared with the levels in untreated controls. Thus, Lα5LG1-3/ELP may be used to enhance the viability of hMSCs and preserve their undifferentiated state, whereby the clinical applications of hMSCs may be improved.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Biochemistry, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
39
|
Luo L, Zhang Y, Chen H, Hu F, Wang X, Xing Z, Albashari AA, Xiao J, He Y, Ye Q. Effects and mechanisms of basic fibroblast growth factor on the proliferation and regenerative profiles of cryopreserved dental pulp stem cells. Cell Prolif 2020; 54:e12969. [PMID: 33332682 PMCID: PMC7848956 DOI: 10.1111/cpr.12969] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Various factors could interfere the biological performance of DPSCs during post-thawed process. Yet, little has been known about optimization of the recovery medium for DPSCs. Thus, our study aimed to explore the effects of adding recombinant bFGF on DPSCs after 3-month cryopreservation as well as the underlying mechanisms. MATERIALS AND METHODS DPSCs were extracted from impacted third molars and purified by MACS. The properties of CD146+ DPSCs (P3) were identified by CCK-8 and flow cytometry. After cryopreservation for 3 months, recovered DPSCs (P4) were immediately supplied with a series of bFGF and analysed cellular proliferation by CCK-8. Then, the optimal dosage of bFGF was determined to further identify apoptosis and TRPC1 channel through Western blot. The succeeding passage (P5) from bFGF pre-treated DPSCs was cultivated in bFGF-free culture medium, cellular proliferation and stemness were verified, and pluripotency was analysed by neurogenic, osteogenic and adipogenic differentiation. RESULTS It is found that adding 20 ng/mL bFGF in culture medium could significantly promote the proliferation of freshly thawed DPSCs (P4) through suppressing apoptosis, activating ERK pathway and up-regulating TRPC1. Such proliferative superiority could be inherited to the succeeding passage (P5) from bFGF pre-stimulated DPSCs, meanwhile, stemness and pluripotency have not been compromised. CONCLUSIONS This study illustrated a safe and feasible cell culture technique to rapidly amplify post-thawed DPSCs with robust regenerative potency, which brightening the future of stem cells banking and tissue engineering.
Collapse
Affiliation(s)
- Lihua Luo
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Yanni Zhang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Hongyu Chen
- Department of Stomatology, Ningbo Women and Children Hospital, Ningbo, China
| | - Fengting Hu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xiaoyan Wang
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zhenjie Xing
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | | | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan He
- Laboratory of Regenerative Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China.,Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Tang Q, Lim T, Shen LY, Zheng G, Wei XJ, Zhang CQ, Zhu ZZ. Well-dispersed platelet lysate entrapped nanoparticles incorporate with injectable PDLLA-PEG-PDLLA triblock for preferable cartilage engineering application. Biomaterials 2020; 268:120605. [PMID: 33360073 DOI: 10.1016/j.biomaterials.2020.120605] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 01/02/2023]
Abstract
Platelet lysate (PL) as a cost-effective cocktail of growth factors is an emerging ingredient in regenerative medicine, especially in cartilage tissue engineering. However, most studies fail to pay attention to PL's intrinsic characteristics and incorporate it directly with scaffolds or hydrogels by simple mixture. Currently, the particle size distribution of PL was determined to be scattered. Directly introducing PL into a thermosensitive poly(d,l-lactide)-poly(ethylene glycol)-poly(d,l-lactide) (PLEL) hydrogel disturbed its sol-gel transition. Electrostatic self-assembly heparin (Hep) and ε-poly-l-lysine (EPL) nanoparticles (NPs) were fabricated to improve the dispersity of PL. Such PL-NPs-incorporated PLEL gels retained the initial gelling capacity and showed a long-term PL-releasing ability. Moreover, the PL-loaded composite hydrogels inhibited the inflammatory response and dedifferentiation of IL-1β-induced chondrocytes. For in vivo applications, the PLEL@PL-NPs system ameliorated the early cartilage degeneration and promoted cartilage repair in the late stage of osteoarthritis. RNA sequencing analysis indicated that PL's protective effects might be associated with modulating hyaluronan synthase 1 (HAS-1) expression. Taken together, these results suggest that well-dispersed PL by Hep/EPL NPs is a preferable approach for its incorporation into hydrogels and the constructed PLEL@PL-NPs system is a promising cell-free and stepwise treatment option for cartilage tissue engineering.
Collapse
Affiliation(s)
- Qian Tang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Thou Lim
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Li-Yan Shen
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi Road, 325027 Wenzhou, China
| | - Gang Zheng
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuanxi Road, 325027 Wenzhou, China
| | - Xiao-Juan Wei
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Zhen-Zhong Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| |
Collapse
|
41
|
Mukherjee S, Agarwal M, Bakshi A, Sawant S, Thomas L, Fujii N, Nair P, Kode J. Chemokine SDF1 Mediated Bone Regeneration Using Biodegradable Poly(D,L-lactide- co-glycolide) 3D Scaffolds and Bone Marrow-Derived Mesenchymal Stem Cells: Implication for the Development of an "Off-the-Shelf" Pharmacologically Active Construct. Biomacromolecules 2020; 21:4888-4903. [PMID: 33136384 DOI: 10.1021/acs.biomac.0c01134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
There is an increasing need for bone substitutes for reconstructive orthopedic surgery following removal of bone tumors. Despite the advances in bone regeneration, the use of autologous mesenchymal stem cells (MSC) presents a significant challenge, particularly for the treatment of large bone defects in cancer patients. This study aims at developing new chemokine-based technology to generate biodegradable scaffolds that bind pharmacologically active proteins for regeneration/repair of target injured tissues in patients. Primary MSC were cultured from the uninvolved bone marrow (BM) of cancer patients and further characterized for "stemness". Their ability to differentiate into an osteogenic lineage was studied in 2D cultures as well as on 3D macroporous PLGA scaffolds incorporated with biomacromolecules bFGF and homing factor chemokine stromal-cell derived factor-1 (SDF1). MSC from the uninvolved BM of cancer patients exhibited properties similar to that reported for MSC from BM of healthy individuals. Macroporous PLGA discs were prepared and characterized for pore size, architecture, functional groups, thermostability, and cytocompatibility by ESEM, FTIR, DSC, and CCK-8 dye proliferation assay, respectively. It was observed that the MSC+PLGA+bFGF+SDF1 construct cultured for 14 days supported significant cell growth, osteo-lineage differentiation with increased osteocalcin expression, alkaline phosphatase secretion, calcium mineralization, bone volume, and soluble IL6 compared to unseeded PLGA and PLGA+MSC, as analyzed by confocal microscopy, biochemistry, ESEM, microCT imaging, flow cytometry, and EDS. Thus, chemotactic biomacromolecule SDF1-guided tissue repair/regeneration ability of MSC from cancer patients opens up the avenues for development of "off-the-shelf" pharmacologically active construct for optimal repair of the target injured tissue in postsurgery cancer patients, bone defects, damaged bladder tissue, and radiation-induced skin/mucosal lesions.
Collapse
Affiliation(s)
- Shayanti Mukherjee
- Tumor Immunology and Immunotherapy Group, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton VIC Australia 3168
| | - Manish Agarwal
- Department of Orthopaedic Oncology, Tata Memorial Hospital, TMC, Parel, Mumbai 400012, India
- Department of Orthopedic Oncology, P.D. Hinduja National Hospital & Medical Research Centre, Mumbai, India
| | - Ashish Bakshi
- Department of Medical Oncology, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
- Department of Bone Marrow Transplantation, Department of Medical Oncology, Hiranandani Hospital, Powai, Mumbai 400076, India
| | - Sharada Sawant
- Electron Microscopy Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
| | - Lynda Thomas
- Laboratory for Polymer Analysis, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology Poojappura, Trivandrum, India
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Prabha Nair
- Laboratory for Polymer Analysis, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology Poojappura, Trivandrum, India
| | - Jyoti Kode
- Tumor Immunology and Immunotherapy Group, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre (TMC), Kharghar, Navi Mumbai 410210, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
42
|
Chen H, Yang H, Weir MD, Schneider A, Ren K, Homayounfar N, Oates TW, Zhang K, Liu J, Hu T, Xu HHK. An antibacterial and injectable calcium phosphate scaffold delivering human periodontal ligament stem cells for bone tissue engineering. RSC Adv 2020; 10:40157-40170. [PMID: 35520873 PMCID: PMC9057516 DOI: 10.1039/d0ra06873j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
Osteomyelitis and post-operative infections are major problems in orthopedic, dental and craniofacial surgeries. It is highly desirable for a tissue engineering construct to kill bacteria, while simultaneously delivering stem cells and enhancing cell function and tissue regeneration. The objectives of this study were to: (1) develop a novel injectable calcium phosphate cement (CPC) scaffold containing antibiotic ornidazole (ORZ) while encapsulating human periodontal ligament stem cells (hPDLSCs), and (2) investigate the inhibition efficacy against Staphylococcus aureus (S. aureus) and the promotion of hPDLSC function for osteogenesis for the first time. ORZ was incorporated into a CPC-chitosan scaffold. hPDLSCs were encapsulated in alginate microbeads (denoted hPDLSCbeads). The ORZ-loaded CPCC+hPDLSCbeads scaffold was fully injectable, and had a flexural strength of 3.50 ± 0.92 MPa and an elastic modulus of 1.30 ± 0.45 GPa, matching those of natural cancellous bone. With 6 days of sustained ORZ release, the CPCC+10ORZ (10% ORZ) scaffold had strong antibacterial effects on S. aureus, with an inhibition zone of 12.47 ± 1.01 mm. No colonies were observed in the CPCC+10ORZ group from 3 to 7 days. ORZ-containing scaffolds were biocompatible with hPDLSCs. CPCC+10ORZ+hPDLSCbeads scaffold with osteogenic medium had 2.4-fold increase in alkaline phosphatase (ALP) activity and bone mineral synthesis by hPDLSCs, as compared to the control group (p < 0.05). In conclusion, the novel antibacterial construct with stem cell delivery had injectability, good strength, strong antibacterial effects and biocompatibility, supporting osteogenic differentiation and bone mineral synthesis of hPDLSCs. The injectable and mechanically-strong CPCC+10ORZ+hPDLSCbeads construct has great potential for treating bone infections and promoting bone regeneration.
Collapse
Affiliation(s)
- Hong Chen
- Department of Endodontics, College of Stomatological, Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education Chongqing China
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University Chengdu China
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Hui Yang
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University Chengdu China
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry Baltimore USA
- Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine Baltimore MD 21201 USA
| | - Ke Ren
- Department of Neural and Pain Sciences, School of Dentistry, Program in Neuroscience, University of Maryland Baltimore MD 21201 USA
| | - Negar Homayounfar
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University Beijing China
| | - Jin Liu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University Xi'an Shannxi China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, National Clinical Research Centre for Oral Diseases, Sichuan University Chengdu China
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School Baltimore MD 21201 USA
- Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine Baltimore MD 21201 USA
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine Baltimore MD 21201 USA
| |
Collapse
|
43
|
Hong SY, Tran TVT, Kang HJ, Tripathi G, Lee BT, Bae SH. Synthesis and characterization of biphasic calcium phosphate laden thiolated hyaluronic acid hydrogel based scaffold: physical and in-vitro biocompatibility evaluations. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 32:337-354. [PMID: 33026287 DOI: 10.1080/09205063.2020.1833816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study focused on the combination of biphasic calcium phosphate (BCP) nanoparticles into the modified hyaluronic acid based injectable hydrogels for bone tissue engineering. Self-cross-linked thiolated hyaluronic acid (HA-HS) injectable hydrogels loaded with biphasic calcium phosphate (BCP) nanoparticles were prepared by disulfide cross-linking to mimic the extracellular matrix as a potential material for bone treatment. Varying concentration of HA-HS ranging between 1 and 5w/v% was tested to optimize the optimum concentration and were further modified with varying BCP concentrations for final optimization. Physico-chemical characterizations of the prepared hydrogel such as SEM, EDS, FT-IR, and XRD confirmed that the BCP has effectively loaded and distributed homogeneously in the HA-HS hydrogel. The results showed that the 3% (w/v) HA-HS hydrogel exhibits the appropriate properties for injectable hydrogel system such as gelation times, swelling rate and in vitro degradation behavior among all tested concentrations. Cell viability and cell proliferation using osteoblast cells (MC3T3-E1) demonstrated that the BCP laden modified hydrogel are biocompatible in vitro. In light of the encouraging results obtained, BCP laden HA-HS hydrogels might offer the potential to be used as injectable hydrogel in bone tissue engineering.
Collapse
Affiliation(s)
- Suk Young Hong
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea
| | - Tuong Van Thi Tran
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Hoe Jin Kang
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Garima Tripathi
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea.,Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Byong Taek Lee
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan, South Korea.,Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| | - Sang Ho Bae
- Department of Surgery, Soonchunhyang University Cheonan Hospital, Cheonan, South Korea.,Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, South Korea
| |
Collapse
|
44
|
Chitosan-Hydrogel Polymeric Scaffold Acts as an Independent Primary Inducer of Osteogenic Differentiation in Human Mesenchymal Stromal Cells. MATERIALS 2020; 13:ma13163546. [PMID: 32796668 PMCID: PMC7475832 DOI: 10.3390/ma13163546] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
Regenerative medicine aims to restore damaged tissues and mainly takes advantage of human mesenchymal stromal cells (hMSCs), either alone or combined with three-dimensional scaffolds. The scaffold is generally considered a support, and its contribution to hMSC proliferation and differentiation is unknown or poorly investigated. The aim of this study was to evaluate the capability of an innovative three-dimensional gelatin–chitosan hybrid hydrogel scaffold (HC) to activate the osteogenic differentiation process in hMSCs. We seeded hMSCs from adipose tissue (AT-hMSCs) and bone marrow (BM-hMSCs) in highly performing HC of varying chitosan content in the presence of growing medium (GM) or osteogenic medium (OM) combined with Fetal Bovine Serum (FBS) or human platelet lysate (hPL). We primarily evaluated the viability and the proliferation of AT-hMSCs and BM-hMSCs under different conditions. Then, in order to analyse the activation of osteogenic differentiation, the osteopontin (OPN) transcript was absolutely quantified at day 21 by digital PCR. OPN was expressed under all conditions, in both BM-hMSCs and AT-hMSCs. Cells seeded in HC cultured with OM+hPL presented the highest OPN transcript levels, as expected. Interestingly, both BM-hMSCs and AT-hMSCs cultured with GM+FBS expressed OPN. In particular, BM-hMSCs cultured with GM+FBS expressed more OPN than those cultured with GM+hPL and OM+FBS; AT-hMSCs cultured with GM+FBS presented a lower expression of OPN when compared with those cultured with GM+hPL, but no significant difference was detected when compared with AT-hMSCs cultured with OM+FBS. No OPN expression was detected in negative controls. These results show the capability of HC to primarily and independently activate osteogenic differentiation pathways in hMCSs. Therefore, these scaffolds may be considered no more as a simple support, rather than active players in the differentiative and regenerative process.
Collapse
|
45
|
Xing Z, Cai J, Sun Y, Cao M, Li Y, Xue Y, Finne-Wistrand A, Kamal M. Altered Surface Hydrophilicity on Copolymer Scaffolds Stimulate the Osteogenic Differentiation of Human Mesenchymal Stem Cells. Polymers (Basel) 2020; 12:polym12071453. [PMID: 32610488 PMCID: PMC7407625 DOI: 10.3390/polym12071453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Recent studies have suggested that both poly(l-lactide-co-1,5-dioxepan-2-one) (or poly(LLA-co-DXO)) and poly(l-lactide-co-ε-caprolactone) (or poly(LLA-co-CL)) porous scaffolds are good candidates for use as biodegradable scaffold materials in the field of tissue engineering; meanwhile, their surface properties, such as hydrophilicity, need to be further improved. METHODS We applied several different concentrations of the surfactant Tween 80 to tune the hydrophilicity of both materials. Moreover, the modification was applied not only in the form of solid scaffold as a film but also a porous scaffold. To investigate the potential application for tissue engineering, human bone marrow mesenchymal stem cells (hMSCs) were chosen to test the effect of hydrophilicity on cell attachment, proliferation, and differentiation. First, the cellular cytotoxicity of the extracted medium from modified scaffolds was investigated on HaCaT cells. Then, hMSCs were seeded on the scaffolds or films to evaluate cell attachment, proliferation, and osteogenic differentiation. The results indicated a significant increasing of wettability with the addition of Tween 80, and the hMSCs showed delayed attachment and spreading. PCR results indicated that the differentiation of hMSCs was stimulated, and several osteogenesis related genes were up-regulated in the 3% Tween 80 group. Poly(LLA-co-CL) with 3% Tween 80 showed an increased messenger Ribonucleic acid (mRNA) level of late-stage markers such as osteocalcin (OC) and key transcription factor as runt related gene 2 (Runx2). CONCLUSION A high hydrophilic scaffold may speed up the osteogenic differentiation for bone tissue engineering.
Collapse
Affiliation(s)
- Zhe Xing
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (J.C.); (M.C.)
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway;
| | - Jiazheng Cai
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (J.C.); (M.C.)
| | - Yang Sun
- Department of Fibre and Polymer Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden; (Y.S.); (A.F.-W.)
| | - Mengnan Cao
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (J.C.); (M.C.)
| | - Yi Li
- School of Stomatology, Lanzhou University, Lanzhou 730000, China; (Z.X.); (J.C.); (M.C.)
- Correspondence: (Y.L.); (Y.X.)
| | - Ying Xue
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway;
- Correspondence: (Y.L.); (Y.X.)
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden; (Y.S.); (A.F.-W.)
| | - Mustafa Kamal
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway;
| |
Collapse
|
46
|
S P, Jaiswal AK. Effect of interpolymer complex formation between chondroitin sulfate and chitosan-gelatin hydrogel on physico-chemical and rheological properties. Carbohydr Polym 2020; 238:116179. [DOI: 10.1016/j.carbpol.2020.116179] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 01/03/2023]
|
47
|
Tonello S, Bianchetti A, Braga S, Almici C, Marini M, Piovani G, Guindani M, Dey K, Sartore L, Re F, Russo D, Cantù E, Francesco Lopomo N, Serpelloni M, Sardini E. Impedance-Based Monitoring of Mesenchymal Stromal Cell Three-Dimensional Proliferation Using Aerosol Jet Printed Sensors: A Tissue Engineering Application. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2231. [PMID: 32413993 PMCID: PMC7287852 DOI: 10.3390/ma13102231] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
One of the main hurdles to improving scaffolds for regenerative medicine is the development of non-invasive methods to monitor cell proliferation within three-dimensional environments. Recently, an electrical impedance-based approach has been identified as promising for three-dimensional proliferation assays. A low-cost impedance-based solution, easily integrable with multi-well plates, is here presented. Sensors were developed using biocompatible carbon-based ink on foldable polyimide substrates by means of a novel aerosol jet printing technique. The setup was tested to monitor the proliferation of human mesenchymal stromal cells into previously validated gelatin-chitosan hybrid hydrogel scaffolds. Reliability of the methodology was assessed comparing variations of the electrical impedance parameters with the outcomes of enzymatic proliferation assay. Results obtained showed a magnitude increase and a phase angle decrease at 4 kHz (maximum of 2.5 kΩ and -9 degrees) and an exponential increase of the modeled resistance and capacitance components due to the cell proliferation (maximum of 1.5 kΩ and 200 nF). A statistically significant relationship with enzymatic assay outcomes could be detected for both phase angle and electric model parameters. Overall, these findings support the potentiality of this non-invasive approach for continuous monitoring of scaffold-based cultures, being also promising in the perspective of optimizing the scaffold-culture system.
Collapse
Affiliation(s)
- Sarah Tonello
- Department of Information Engineering, University of Padova, 35131 Padua, Italy
| | - Andrea Bianchetti
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili, 25123 Brescia, Italy; (A.B.); (S.B.); (C.A.); (M.M.)
| | - Simona Braga
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili, 25123 Brescia, Italy; (A.B.); (S.B.); (C.A.); (M.M.)
| | - Camillo Almici
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili, 25123 Brescia, Italy; (A.B.); (S.B.); (C.A.); (M.M.)
| | - Mirella Marini
- Laboratory for Stem Cells Manipulation and Cryopreservation, Department of Transfusion Medicine, ASST Spedali Civili, 25123 Brescia, Italy; (A.B.); (S.B.); (C.A.); (M.M.)
| | - Giovanna Piovani
- Biology and Genetics Division, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Michele Guindani
- Department of Statistics, University of California, Irvine, CA 92697-1250, USA;
| | - Kamol Dey
- Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy; (K.D.); (L.S.)
| | - Luciana Sartore
- Department of Mechanical and Industrial Engineering, University of Brescia, 25123 Brescia, Italy; (K.D.); (L.S.)
| | - Federica Re
- Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy; (F.R.); (D.R.)
| | - Domenico Russo
- Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy; (F.R.); (D.R.)
| | - Edoardo Cantù
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; (E.C.); (N.F.L.); (M.S.); (E.S.)
| | - Nicola Francesco Lopomo
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; (E.C.); (N.F.L.); (M.S.); (E.S.)
| | - Mauro Serpelloni
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; (E.C.); (N.F.L.); (M.S.); (E.S.)
| | - Emilio Sardini
- Department of Information Engineering, University of Brescia, 25123 Brescia, Italy; (E.C.); (N.F.L.); (M.S.); (E.S.)
| |
Collapse
|
48
|
Cassimjee H, Kumar P, Choonara YE, Pillay V. Proteosaccharide combinations for tissue engineering applications. Carbohydr Polym 2020; 235:115932. [DOI: 10.1016/j.carbpol.2020.115932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/21/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
|
49
|
Tziveleka LA, Sapalidis A, Kikionis S, Aggelidou E, Demiri E, Kritis A, Ioannou E, Roussis V. Hybrid Sponge-Like Scaffolds Based on Ulvan and Gelatin: Design, Characterization and Evaluation of Their Potential Use in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1763. [PMID: 32283814 PMCID: PMC7178717 DOI: 10.3390/ma13071763] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023]
Abstract
Ulvan, a bioactive natural sulfated polysaccharide, and gelatin, a collagen-derived biopolymer, have attracted interest for the preparation of biomaterials for different biomedical applications, due to their demonstrated compatibility for cell attachment and proliferation. Both ulvan and gelatin have exhibited osteoinductive potential, either alone or in combination with other materials. In the current work, a series of novel hybrid scaffolds based on crosslinked ulvan and gelatin was designed, prepared and characterized. Their mechanical performance, thermal stability, porosity, water-uptake and in vitro degradation ability were assessed, while their morphology was analyzed through scanning electron microscopy. The prepared hybrid ulvan/gelatin scaffolds were characterized by a highly porous and interconnected structure. Human adipose-derived mesenchymal stem cells (hADMSCs) were seeded in selected ulvan/gelatin hybrid scaffolds and their adhesion, survival, proliferation, and osteogenic differentiation efficiency was evaluated. Overall, it was found that the prepared hybrid sponge-like scaffolds could efficiently support mesenchymal stem cells' adhesion and proliferation, suggesting that such scaffolds could have potential uses in bone tissue engineering.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Andreas Sapalidis
- Institute of Nanosciences and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15310 Attiki, Greece;
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Eleni Aggelidou
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Efterpi Demiri
- Department of Plastic Surgery, School of Medicine, Faculty of Health Sciences, Papageorgiou Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Aristeidis Kritis
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| |
Collapse
|
50
|
Aoki K, Saito N. Biodegradable Polymers as Drug Delivery Systems for Bone Regeneration. Pharmaceutics 2020; 12:E95. [PMID: 31991668 PMCID: PMC7076380 DOI: 10.3390/pharmaceutics12020095] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/10/2020] [Accepted: 01/15/2020] [Indexed: 01/09/2023] Open
Abstract
Regenerative medicine has been widely researched for the treatment of bone defects. In the field of bone regenerative medicine, signaling molecules and the use of scaffolds are of particular importance as drug delivery systems (DDS) or carriers for cell differentiation, and various materials have been explored for their potential use. Although calcium phosphates such as hydroxyapatite and tricalcium phosphate are clinically used as synthetic scaffold material for bone regeneration, biodegradable materials have attracted much attention in recent years for their clinical application as scaffolds due their ability to facilitate rapid localized absorption and replacement with autologous bone. In this review, we introduce the types, features, and performance characteristics of biodegradable polymer scaffolds in their role as DDS for bone regeneration therapy.
Collapse
Affiliation(s)
- Kaoru Aoki
- Physical Therapy Division, School of Health Sciences, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan;
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|