1
|
Yang X, Zheng E, Sun X, Reynolds A, Gonzalez M, Villamil JH, Pando BD, Smith DJ, Yuan SY, Wu MH. C-TYPE LECTIN-2D RECEPTOR CONTRIBUTES TO HISTONE-INDUCED VASCULAR BARRIER DYSFUNCTION DURING BURN INJURY. Shock 2024; 61:592-600. [PMID: 37878490 PMCID: PMC10997737 DOI: 10.1097/shk.0000000000002237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
ABSTRACT Severe burns are associated with massive tissue destruction and cell death where nucleus histones and other damage-associated molecular patterns are released into the circulation and contribute to the pathogenesis of multiple-organ dysfunction. Currently, there is limited information regarding the pathophysiology of extracellular histones after burns, and the mechanisms underlying histone-induced vascular injury are not fully understood. In this study, by comparing the blood samples from healthy donors and burn patients, we confirmed that burn injury promoted the release of extracellular histones into the circulation, evidenced by increased plasma levels of histones correlating with injury severity. The direct effects of extracellular histones on human endothelial monolayers were examined, and the results showed that histones caused cell-cell adherens junction discontinuity and barrier dysfunction in a dose-related manner. Like burn patients, mice subjected to a scald burn covering 25% total body surface area also displayed significantly increased plasma histones. Intravital microscopic analysis of mouse mesenteric microcirculation indicated that treatment with a histone antibody greatly attenuated burn-induced plasma leakage in postcapillary venules, supporting the pathogenic role of extracellular histones in the development of microvascular barrier dysfunction during burns. At the molecular level, intrigued by the recent discovery of C-type lectin domain family 2 member D (Clec2d) as a novel receptor of histones, we tested its potential involvement in the histone interaction with endothelial cells. Indeed, we identified abundant expression of Clec2d in vascular endothelial cells. Further proximity ligation assay demonstrated a close association between extracellular histones and endothelial expressing Clec2d. Functionally, in vivo administration of an anti-Clec2d antibody attenuated burn-induced plasma leakage across mesenteric microvessels. Consistently, Clec2d knockdown in endothelial cells partially inhibited histone-induced endothelial barrier dysfunction. Together, our data suggest that burn injury-induced increases in circulating histones contribute to microvascular leakage and endothelial barrier dysfunction via a mechanism involving the endothelial Clec2d receptor.
Collapse
Affiliation(s)
- Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Ethan Zheng
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Xiaoqi Sun
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Amanda Reynolds
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Monica Gonzalez
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Juan Hernandez Villamil
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Briana D. Pando
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - David J. Smith
- Department of Plastic Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Sarah Y. Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, Florida
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Mack H. Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
- James A Haley Veterans’ Hospital, Tampa, Florida
| |
Collapse
|
2
|
Li Q, Nie H. Advances in lung ischemia/reperfusion injury: unraveling the role of innate immunity. Inflamm Res 2024; 73:393-405. [PMID: 38265687 DOI: 10.1007/s00011-023-01844-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/03/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Lung ischemia/reperfusion injury (LIRI) is a common occurrence in clinical practice and represents a significant complication following pulmonary transplantation and various diseases. At the core of pulmonary ischemia/reperfusion injury lies sterile inflammation, where the innate immune response plays a pivotal role. This review aims to investigate recent advancements in comprehending the role of innate immunity in LIRI. METHODS A computer-based online search was performed using the PubMed database and Web of Science database for published articles concerning lung ischemia/reperfusion injury, cell death, damage-associated molecular pattern molecules (DAMPs), innate immune cells, innate immunity, inflammation. RESULTS During the process of lung ischemia/reperfusion, cellular injury even death can occur. When cells are injured or undergo cell death, endogenous ligands known as DAMPs are released. These molecules can be recognized and bound by pattern recognition receptors (PRRs), leading to the recruitment and activation of innate immune cells. Subsequently, a cascade of inflammatory responses is triggered, ultimately exacerbating pulmonary injury. These steps are complex and interrelated rather than being in a linear relationship. In recent years, significant progress has been made in understanding the immunological mechanisms of LIRI, involving novel types of cell death, the ability of receptors other than PRRs to recognize DAMPs, and a more detailed mechanism of action of innate immune cells in ischemia/reperfusion injury (IRI), laying the groundwork for the development of novel diagnostic and therapeutic approaches. CONCLUSIONS Various immune components of the innate immune system play critical roles in lung injury after ischemia/reperfusion. Preventing cell death and the release of DAMPs, interrupting DAMPs receptor interactions, disrupting intracellular inflammatory signaling pathways, and minimizing immune cell recruitment are essential for lung protection in LIRI.
Collapse
Affiliation(s)
- Qingqing Li
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
3
|
Rico MC, Perez-Leal O, Barbe MF, Amin M, Colussi DJ, Florez ML, Olusajo V, Rios DS, Barrero CA. Extracellular Acetylated Histone 3.3 Induces Inflammation and Lung Tissue Damage. Biomolecules 2023; 13:1334. [PMID: 37759735 PMCID: PMC10527259 DOI: 10.3390/biom13091334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Extracellular histones, part of the protein group known as damage-associated molecular patterns (DAMPs), are released from damaged or dying cells and can instigate cellular toxicity. Within the context of chronic obstructive pulmonary disease (COPD), there is an observed abundance of extracellular histone H3.3, indicating potential pathogenic implications. Notably, histone H3.3 is often found hyperacetylated (AcH3.3) in the lungs of COPD patients. Despite these observations, the specific role of these acetylated histones in inducing pulmonary tissue damage in COPD remains unclear. To investigate AcH3.3's impact on lung tissue, we administered recombinant histones (rH2A, rH3.3, and rAcH3.3) or vehicle solution to mice via intratracheal instillation. After 48 h, we evaluated the lung toxicity damage and found that the rAcH3.3 treated animals exhibited more severe lung tissue damage compared to those treated with non-acetylated H3.3 and controls. The rAcH3.3 instillation resulted in significant histological changes, including alveolar wall rupture, epithelial cell damage, and immune cell infiltration. Micro-CT analysis confirmed macroscopic structural changes. The rAcH3.3 instillation also increased apoptotic activity (cleavage of caspase 3 and 9) and triggered acute systemic inflammatory marker activation (TNF-α, IL-6, MCP-3, or CXCL-1) in plasma, accompanied by leukocytosis and lymphocytosis. Confocal imaging analysis confirmed lymphocytic and monocytic/macrophage lung infiltration in response to H3.3 and AcH3.3 administration. Taken together, our findings implicate extracellular AcH3.3 in inducing cytotoxicity and acute inflammatory responses, suggesting its potential role in promoting COPD-related lung damage progression.
Collapse
Affiliation(s)
- Mario C. Rico
- Pharmaceutical Sciences Department, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (M.C.R.); (O.P.-L.); (D.J.C.); (M.L.F.); (V.O.)
| | - Oscar Perez-Leal
- Pharmaceutical Sciences Department, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (M.C.R.); (O.P.-L.); (D.J.C.); (M.L.F.); (V.O.)
| | - Mary F. Barbe
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.F.B.); (M.A.)
| | - Mamta Amin
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; (M.F.B.); (M.A.)
| | - Dennis J. Colussi
- Pharmaceutical Sciences Department, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (M.C.R.); (O.P.-L.); (D.J.C.); (M.L.F.); (V.O.)
| | - Magda L. Florez
- Pharmaceutical Sciences Department, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (M.C.R.); (O.P.-L.); (D.J.C.); (M.L.F.); (V.O.)
| | - Victor Olusajo
- Pharmaceutical Sciences Department, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (M.C.R.); (O.P.-L.); (D.J.C.); (M.L.F.); (V.O.)
| | | | - Carlos A. Barrero
- Pharmaceutical Sciences Department, Temple University School of Pharmacy, Philadelphia, PA 19140, USA; (M.C.R.); (O.P.-L.); (D.J.C.); (M.L.F.); (V.O.)
| |
Collapse
|
4
|
Richards CM, McRae SA, Ranger AL, Klegeris A. Extracellular histones as damage-associated molecular patterns in neuroinflammatory responses. Rev Neurosci 2023; 34:533-558. [PMID: 36368030 DOI: 10.1515/revneuro-2022-0091] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/18/2022] [Indexed: 07/20/2023]
Abstract
The four core histones H2A, H2B, H3, H4, and the linker histone H1 primarily bind DNA and regulate gene expression within the nucleus. Evidence collected mainly from the peripheral tissues illustrates that histones can be released into the extracellular space by activated or damaged cells. In this article, we first summarize the innate immune-modulatory properties of extracellular histones and histone-containing complexes, such as nucleosomes, and neutrophil extracellular traps (NETs), described in peripheral tissues. There, histones act as damage-associated molecular patterns (DAMPs), which are a class of endogenous molecules that trigger immune responses by interacting directly with the cellular membranes and activating pattern recognition receptors (PRRs), such as toll-like receptors (TLR) 2, 4, 9 and the receptor for advanced glycation end-products (RAGE). We then focus on the available evidence implicating extracellular histones as DAMPs of the central nervous system (CNS). It is becoming evident that histones are present in the brain parenchyma after crossing the blood-brain barrier (BBB) or being released by several types of brain cells, including neurons, microglia, and astrocytes. However, studies on the DAMP-like effects of histones on CNS cells are limited. For example, TLR4 is the only known molecular target of CNS extracellular histones and their interactions with other PRRs expressed by brain cells have not been observed. Nevertheless, extracellular histones are implicated in the pathogenesis of a variety of neurological disorders characterized by sterile neuroinflammation; therefore, detailed studies on the role these proteins and their complexes play in these pathologies could identify novel therapeutic targets.
Collapse
Affiliation(s)
- Christy M Richards
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Seamus A McRae
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Athena L Ranger
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| | - Andis Klegeris
- Department of Biology, University of British Columbia Okanagan Campus, Kelowna V1V 1V7, BC, Canada
| |
Collapse
|
5
|
Liu Y, Shu H, Wan P, Wang X, Xie H. Neutrophil extracellular traps predict postoperative pulmonary complications in paediatric patients undergoing parental liver transplantation. BMC Gastroenterol 2023; 23:237. [PMID: 37442949 DOI: 10.1186/s12876-023-02744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 03/25/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Parental liver transplantation (PLT) improves long-term survival rates in paediatric hepatic failure patients; however, the mechanism of PLT-induced postoperative pulmonary complications (PPCs) is unclear. METHODS A total of 133 paediatric patients undergoing PLT were included. Serum levels of NET components, including circulating free DNA (cfDNA), DNA-histone complex, and myeloperoxidase (MPO)-DNA complex, were detected. The occurrence of PPCs post-PLT, prolonged intensive care unit (ICU) stay and death within one year were recorded as the primary and secondary outcomes. RESULTS The overall rate of PPCs in the hospital was 47.4%. High levels of serum cfDNA, DNA-histone complexes and MPO-DNA complexes were associated with an increased risk of PPCs (for cfDNA, OR 2.24; for DNA-histone complex, OR 1.64; and for MPO-DNA, OR 1.94), prolonged ICU stay (OR 1.98, 4.26 and 3.69, respectively), and death within one year (OR 1.53, 2.65 and 1.85, respectively). The area under the curve of NET components for the prediction of PPCs was 0.843 for cfDNA, 0.813 for DNA-histone complexes, and 0.906 for MPO-DNA complexes. During the one-year follow-up, the death rate was higher in patients with PPCs than in patients without PPCs (14.3% vs. 2.9%, P = 0.001). CONCLUSIONS High serum levels of NET components are associated with an increased incidence of PPCs and death within one year in paediatric patients undergoing PLT. Serum levels of NET components serve as a biomarker for post-PLT PPCs and a prognostic indicator.
Collapse
Affiliation(s)
- Yaling Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road Suzhou, Jiangsu, China
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Huigang Shu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaodong Wang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, China.
| | - Hong Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Li F, Yuan L, Shao N, Yang X, Yang S, He L, Ding J, Ding M, Yang S, Fu W, Wang C, Li X, Cai Q. Changes and significance of vascular endothelial injury markers in patients with diabetes mellitus and pulmonary thromboembolism. BMC Pulm Med 2023; 23:183. [PMID: 37231402 PMCID: PMC10212603 DOI: 10.1186/s12890-023-02486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND To investigate the changes and clinical significance of vascular endothelial injury markers in type 2 diabetes mellitus (T2DM) complicated with pulmonary embolism (PE). METHODS This prospective study enrolled patients with T2DM hospitalized in one hospital from January 2021 to June 2022. Soluble thrombomodulin (sTM) (ELISA), von Willebrand factor (vWF) (ELISA), and circulating endothelial cells (CECs) (flow cytometry) were measured. PE was diagnosed by computed tomography pulmonary angiography (CTPA). RESULTS Thirty participants were enrolled in each group. The plasma levels of sTM (151.22 ± 120.57 vs. 532.93 ± 243.82 vs. 1016.51 ± 218.00 pg/mL, P < 0.001) and vWF (9.63 ± 2.73 vs. 11.50 ± 2.17 vs. 18.02 ± 3.40 ng/mL, P < 0.001) and the percentage of CECs (0.17 ± 0.46 vs. 0.30 ± 0.08 vs. 0.56 ± 0.18%, P < 0.001) gradually increased from the control group to the T2DM group to the T2DM + PE group. sTM (OR = 1.002, 95%CI: 1.002-1.025, P = 0.022) and vWF (OR = 1.168, 95%CI: 1.168-2.916, P = 0.009) were associated with T2DM + PE. sTM > 676.68 pg/mL for the diagnosis of T2DM + PE achieved an AUC of 0.973, while vWF > 13.75 ng/mL achieved an AUC of 0.954. The combination of sTM and vWF above their cutoff points achieved an AUC of 0.993, with 100% sensitivity and 96.7% specificity. CONCLUSIONS Patients with T2DM show endothelial injury and dysfunction, which were worse in patients with T2DM and PE. High sTM and vWF levels have certain clinical predictive values for screening T2DM accompanied by PE.
Collapse
Affiliation(s)
- Fan Li
- Respiratory Medicine Department, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China.
| | - Lianfang Yuan
- Respiratory Medicine Department, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Na Shao
- Respiratory Medicine Department, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaokun Yang
- Respiratory Medicine Department, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Shaohua Yang
- Respiratory Medicine Department, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Linjia He
- Respiratory Medicine Department, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Jie Ding
- Respiratory Medicine Department, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Ming Ding
- Respiratory Medicine Department, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Shengzhe Yang
- Respiratory Medicine Department, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Wenwen Fu
- Respiratory Medicine Department, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Congcong Wang
- Respiratory Medicine Department, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Xiaochen Li
- Respiratory Medicine Department, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Qiling Cai
- Respiratory Medicine Department, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, NHC Key Laboratory of Hormones and Development / Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China.
| |
Collapse
|
7
|
Ge Y, Wang C, Yao C, Wang Y, Zheng Y, Luo J, Chen J, Wang Y, Wang F, Wang L, Lin Y, Shi L, Yao S. STC3141 improves acute lung injury through neutralizing circulating histone in rat with experimentally-induced acute respiratory distress syndrome. Front Pharmacol 2023; 14:1166814. [PMID: 37284312 PMCID: PMC10239964 DOI: 10.3389/fphar.2023.1166814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/03/2023] [Indexed: 06/08/2023] Open
Abstract
Background: Acute respiratory distress syndrome (ARDS) remains a challenge because of its high morbidity and mortality. Circulation histones levels in ARDS patients were correlated to disease severity and mortality. This study examined the impact of histone neutralization in a rat model of acute lung injury (ALI) induced by a lipopolysaccharide (LPS) double-hit. Methods: Sixty-eight male Sprague-Dawley rats were randomized to sham (N = 8, received saline only) or LPS (N = 60). The LPS double-hit consisted of a 0.8 mg/kg intraperitoneal injection followed after 16 h by 5 mg/kg intra-tracheal nebulized LPS. The LPS group was then randomized into five groups: LPS only; LPS +5, 25, or 100 mg/kg intravenous STC3141 every 8 h (LPS + L, LPS + M, LPS + H, respectively); or LPS + intraperitoneal dexamethasone 2.5 mg/kg every 24 h for 56 h (LPS + D). The animals were observed for 72 h. Results: LPS animals developed ALI as suggested by lower oxygenation, lung edema formation, and histological changes compared to the sham animals. Compared to the LPS group, LPS + H and +D groups had significantly lower circulating histone levels and lung wet-to-dry ratio, and the LPS + D group also had lower BALF histone concentrations; the blood neutrophils and platelets counts in LPS + D group did not change, meanwhile, the LPS + L, +M and +H groups had significantly lower neutrophil counts and higher platelet counts in the blood; the total number of BALF WBC, platelet counts, MPO and H3 were significantly lower in the LPS + L, +M, +H and +D groups than in the LPS only group; and the degree of inflammation was significantly less in the LPS + L, +M, +H and +D groups, moreover, inflammation in the LPS + L, +M and +H animals showed a dose-dependent response; finally, the LPS + L, +M, +H and +D groups had improved oxygenation compared to the LPS group, and there were no statistical differences in PCO2 or pH among groups. All animals survived. Conclusion: Neutralization of histone using STC3141, especially at high dose, had similar therapeutic effects to dexamethasone in this LPS double-hit rat ALI model, with significantly decreased circulating histone concentration, improved acute lung injury and oxygenation.
Collapse
Affiliation(s)
- Yangyang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenchen Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenye Yao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Wang
- Grand Pharma (China) Co., Ltd, Hubei, China
| | | | - Junjie Luo
- Grand Pharma (China) Co., Ltd, Hubei, China
| | - Jiayi Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuquan Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Lin
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Shi
- Grand Pharma (China) Co., Ltd, Hubei, China
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Lei B, Wang C, Snow K, Graton ME, Tighe RM, Fager AM, Hoffman MR, Giangrande PH, Miller FJ. Inhalation of an RNA aptamer that selectively binds extracellular histones protects from acute lung injury. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:662-673. [PMID: 36910716 PMCID: PMC9999168 DOI: 10.1016/j.omtn.2023.02.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
Acute lung injury (ALI) is a syndrome of acute inflammation, barrier disruption, and hypoxemic respiratory failure associated with high morbidity and mortality. Diverse conditions lead to ALI, including inhalation of toxic substances, aspiration of gastric contents, infection, and trauma. A shared mechanism of acute lung injury is cellular toxicity from damage-associated molecular patterns (DAMPs), including extracellular histones. We recently described the selection and efficacy of a histone-binding RNA aptamer (HBA7). The current study aimed to identify the effects of extracellular histones in the lung and determine if HBA7 protected mice from ALI. Histone proteins decreased metabolic activity, induced apoptosis, promoted proinflammatory cytokine production, and caused endothelial dysfunction and platelet activation in vitro. HBA7 prevented these effects. The oropharyngeal aspiration of histone proteins increased neutrophil and albumin levels in bronchoalveolar lavage fluid (BALF) and precipitated neutrophil infiltration, interstitial edema, and barrier disruption in alveoli in mice. Similarly, inhaling wood smoke particulate matter, as a clinically relevant model, increased lung inflammation and alveolar permeability. Treatment by HBA7 alleviated lung injury in both models of ALI. These findings demonstrate the pulmonary delivery of HBA7 as a nucleic acid-based therapeutic for ALI.
Collapse
Affiliation(s)
- Beilei Lei
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Chaojian Wang
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Kamie Snow
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Murilo E. Graton
- Department of Medicine, Duke University, Durham, NC 27710, USA
- São Paulo State University, School of Dentistry, Campus of Aracatuba, São Paulo 16015-050, Brazil
| | - Robert M. Tighe
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Ammon M. Fager
- Department of Medicine, Duke University, Durham, NC 27710, USA
- Veterans Affairs Medical Center, Durham, NC 27705, USA
| | - Maureane R. Hoffman
- Department of Pathology, Duke University, Durham, NC 27710, USA
- Veterans Affairs Medical Center, Durham, NC 27705, USA
| | | | - Francis J. Miller
- Department of Medicine, Duke University, Durham, NC 27710, USA
- Veterans Affairs Tennessee Valley Healthcare, Nashville, TN 37212, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240, USA
| |
Collapse
|
9
|
Tayal A, Sankar J. Extracellular Histones-Friend or Foe? Indian J Pediatr 2022; 89:966-967. [PMID: 35925543 DOI: 10.1007/s12098-022-04335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Anshula Tayal
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Jhuma Sankar
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, 110029, India.
| |
Collapse
|
10
|
Ramasubramanian B, Kim J, Ke Y, Li Y, Zhang CO, Promnares K, Tanaka KA, Birukov KG, Karki P, Birukova AA. Mechanisms of pulmonary endothelial permeability and inflammation caused by extracellular histone subunits H3 and H4. FASEB J 2022; 36:e22470. [PMID: 35969180 DOI: 10.1096/fj.202200303rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 11/11/2022]
Abstract
Extracellular DNA-binding proteins such as histones are danger-associated molecular pattern released by the injured tissues in trauma and sepsis settings, which trigger host immune response and vascular dysfunction. Molecular events leading to histone-induced endothelial cell (EC) dysfunction remain poorly understood. This study performed comparative analysis of H1, H2A, H2B, H3, and H4 histone subunits effects on human pulmonary EC permeability and inflammatory response. Analysis of transendothelial electrical resistance and EC monolayer permeability for macromolecues revealed that H3 and H4, but not H1, H2A, or H2B caused dose-dependent EC permeability accompanied by disassembly of adherens junctions. At higher doses, H3 and H4 activated nuclear factor kappa B inflammatory cascade leading to upregulation EC adhesion molecules ICAM1, VCAM1, E-selectin, and release of inflammatory cytokines. Inhibitory receptor analysis showed that toll-like receptor (TLR) 4 but not TLR1/2 or receptor for advanced glycation end inhibition significantly attenuated deleterious effects of H3 and H4 histones. Inhibitor of Rho-kinase was without effect, while inhibition of Src kinase caused partial preservation of cell-cell junctions, H3/H4-induced permeability and inflammation. Deleterious effects of H3/H4 were blocked by heparin. Activation of Epac-Rap1 signaling restored EC barrier properties after histone challenge. Intravenous injection of histones in mice caused elevation of inflammatory markers and increased vascular leak. Post-treatment with pharmacological Epac/Rap1 activator suppressed injurious effects of histones in vitro and in vivo. These results identify H3 and H4 as key histone subunits exhibiting deleterious effects on pulmonary vascular endothelium via TLR4-dependent mechanism. In conclusion, elevation of circulating histones may represent a serious risk of exacerbated acute lung injury (ALI) and multiple organ injury during severe trauma and infection.
Collapse
Affiliation(s)
- Baalachandran Ramasubramanian
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Junghyun Kim
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yue Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Chen-Ou Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kamoltip Promnares
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kenichi A Tanaka
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
11
|
Kim J, Baalachandran R, Li Y, Zhang CO, Ke Y, Karki P, Birukov KG, Birukova AA. Circulating extracellular histones exacerbate acute lung injury by augmenting pulmonary endothelial dysfunction via TLR4-dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2022; 323:L223-L239. [PMID: 35852995 PMCID: PMC9512107 DOI: 10.1152/ajplung.00072.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Extracellular histones released into the circulation following trauma, sepsis, and ARDS may act as potent damage-associated molecular pattern signals leading to multiple organ failure. Endothelial cell (EC) dysfunction caused by extracellular histones has been demonstrated in vitro and in vivo; however, precise mechanistic details of histone-induced EC dysfunction and exacerbation of ongoing inflammation remain poorly understood. This study investigated the role of extracellular histones in exacerbating preexisting endothelial dysfunction and acute lung injury. Histone subunits H3 and H4, but not H1, H2A, or H2B, induced permeability in human pulmonary EC. H3 and H4 at concentrations above 30 µg/mL caused EC inflammation reflected by activation of the NF-κB pathway, transcriptional activation, and release of cytokines and chemokines including IL-6 and IL-8, and increased mRNA and protein expression of EC adhesion molecules VCAM-1 and ICAM-1. Pharmacological inhibitors targeting Toll-like receptor TLR4 but not TLR2/6, blocked histone-induced EC dysfunction. H3 and H4 also strongly augmented EC permeability and inflammation caused by Gram-negative and Gram-positive bacterial particles, endotoxin, and TNFα. Heparin blocked histone-induced augmentation of EC inflammation caused by endotoxin and TNFα. Injection of histone in mouse models of lung injury caused by bacterial wall lipopolysaccharide (LPS) and heat-killed Staphylococcus aureus (HKSA) augmented ALI parameters: increased protein content, cell count, and inflammatory cytokine secretion in bronchoalveolar lavage fluid. Important clinical significance of these findings is in the demonstration that even a modest increase in extracellular histone levels can act as a severe exacerbating factor in conjunction with other EC barrier disruptive or proinflammatory agents.
Collapse
Affiliation(s)
- Junghyun Kim
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ramasubramanian Baalachandran
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yue Li
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Chen-Ou Zhang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yunbo Ke
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Konstantin G Birukov
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
12
|
Li Y, Wan D, Luo X, Song T, Wang Y, Yu Q, Jiang L, Liao R, Zhao W, Su B. Circulating Histones in Sepsis: Potential Outcome Predictors and Therapeutic Targets. Front Immunol 2021; 12:650184. [PMID: 33868288 PMCID: PMC8044749 DOI: 10.3389/fimmu.2021.650184] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/11/2021] [Indexed: 02/05/2023] Open
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection and is associated with high morbidity and mortality. Circulating histones (CHs), a group of damage-associated molecular pattern molecules mainly derived from neutrophil extracellular traps, play a crucial role in sepsis by mediating inflammation response, organ injury and death through Toll-like receptors or inflammasome pathways. Herein, we first elucidate the molecular mechanisms of histone-induced inflammation amplification, endothelium injury and cascade coagulation activation, and discuss the close correlation between elevated level of CHs and disease severity as well as mortality in patients with sepsis. Furthermore, current state-of-the-art on anti-histone therapy with antibodies, histone-binding proteins (namely recombinant thrombomodulin and activated protein C), and heparin is summarized to propose promising approaches for sepsis treatment.
Collapse
Affiliation(s)
- Yupei Li
- Department of Nephrology of West China Hospital, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, China.,Department of Emergency Medicine of West China Hospital, Disaster Medical Center, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Dingyuan Wan
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Xinyao Luo
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Tao Song
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Yiran Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Qiao Yu
- Department of Nephrology of West China Hospital, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, China.,Department of Emergency Medicine of West China Hospital, Disaster Medical Center, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China
| | - Luojia Jiang
- Department of Nephrology of West China Hospital, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, China
| | - Ruoxi Liao
- Department of Nephrology of West China Hospital, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Baihai Su
- Department of Nephrology of West China Hospital, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, China.,Department of Emergency Medicine of West China Hospital, Disaster Medical Center, Sichuan University, Chengdu, China.,Med-X Center for Materials, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Root-Bernstein R. Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions. Int J Mol Sci 2021; 22:ijms22042108. [PMID: 33672738 PMCID: PMC7924650 DOI: 10.3390/ijms22042108] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
Severe COVID-19 is characterized by a “cytokine storm”, the mechanism of which is not yet understood. I propose that cytokine storms result from synergistic interactions among Toll-like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NLR) due to combined infections of SARS-CoV-2 with other microbes, mainly bacterial and fungal. This proposition is based on eight linked types of evidence and their logical connections. (1) Severe cases of COVID-19 differ from healthy controls and mild COVID-19 patients in exhibiting increased TLR4, TLR7, TLR9 and NLRP3 activity. (2) SARS-CoV-2 and related coronaviruses activate TLR3, TLR7, RIG1 and NLRP3. (3) SARS-CoV-2 cannot, therefore, account for the innate receptor activation pattern (IRAP) found in severe COVID-19 patients. (4) Severe COVID-19 also differs from its mild form in being characterized by bacterial and fungal infections. (5) Respiratory bacterial and fungal infections activate TLR2, TLR4, TLR9 and NLRP3. (6) A combination of SARS-CoV-2 with bacterial/fungal coinfections accounts for the IRAP found in severe COVID-19 and why it differs from mild cases. (7) Notably, TLR7 (viral) and TLR4 (bacterial/fungal) synergize, TLR9 and TLR4 (both bacterial/fungal) synergize and TLR2 and TLR4 (both bacterial/fungal) synergize with NLRP3 (viral and bacterial). (8) Thus, a SARS-CoV-2-bacterium/fungus coinfection produces synergistic innate activation, resulting in the hyperinflammation characteristic of a cytokine storm. Unique clinical, experimental and therapeutic predictions (such as why melatonin is effective in treating COVID-19) are discussed, and broader implications are outlined for understanding why other syndromes such as acute lung injury, acute respiratory distress syndrome and sepsis display varied cytokine storm symptoms.
Collapse
|