1
|
Elul D, Levin N. The Role of Population Receptive Field Sizes in Higher-Order Visual Dysfunction. Curr Neurol Neurosci Rep 2024; 24:611-620. [PMID: 39266871 PMCID: PMC11538192 DOI: 10.1007/s11910-024-01375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2024] [Indexed: 09/14/2024]
Abstract
PURPOSE OF REVIEW Population receptive field (pRF) modeling is an fMRI technique used to retinotopically map visual cortex, with pRF size characterizing the degree of spatial integration. In clinical populations, most pRF mapping research has focused on damage to visual system inputs. Herein, we highlight recent work using pRF modeling to study high-level visual dysfunctions. RECENT FINDINGS Larger pRF sizes, indicating coarser spatial processing, were observed in homonymous visual field deficits, aging, and autism spectrum disorder. Smaller pRF sizes, indicating finer processing, were observed in Alzheimer's disease and schizophrenia. In posterior cortical atrophy, a unique pattern was found in which pRF size changes depended on eccentricity. Changes to pRF properties were observed in clinical populations, even in high-order impairments, explaining visual behavior. These pRF changes likely stem from altered interactions between brain regions. Furthermore, some studies suggested that pRF sizes change as part of cortical reorganization, and they can point towards future prognosis.
Collapse
Affiliation(s)
- Deena Elul
- fMRI Unit, Neurology Department Hadassah Medical Organization, Faculty of Medicine, The Hebrew University of Jerusalem, POB 12000, Jerusalem, 91120, Israel
- Edmond and Lily Safra Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Netta Levin
- fMRI Unit, Neurology Department Hadassah Medical Organization, Faculty of Medicine, The Hebrew University of Jerusalem, POB 12000, Jerusalem, 91120, Israel.
| |
Collapse
|
2
|
Li Y, Dai W, Wang T, Wu Y, Dou F, Xing D. Visual surround suppression at the neural and perceptual levels. Cogn Neurodyn 2024; 18:741-756. [PMID: 38699623 PMCID: PMC11061091 DOI: 10.1007/s11571-023-10027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 05/05/2024] Open
Abstract
Surround suppression was initially identified as a phenomenon at the neural level in which stimuli outside the neuron's receptive field alone cannot activate responses but can modulate neural responses to stimuli covered inside the receptive field. Subsequent studies showed that surround suppression is not only a critical property of neurons across species and brain areas but also has been found in visual perceptions. More importantly, surround suppression varies across individuals and shows significant differences between normal controls and patients with certain mental disorders. Here, we combined results from related literature and summarized the findings derived from physiological and psychophysical evidence. We first outline the basic properties of surround suppression in the visual system and perceptions. Then, we mainly summarize the differences in perceptual surround suppression among different human subjects. Our review suggests that there is no consensus regarding whether the strength of perceptual surround suppression could be used as an effective index to distinguish particular populations. Then, we summarized the similar mechanisms for surround suppression and cognitive impairments to further explore the potential clinical applications of surround suppression. A clearer understanding of the mechanisms of surround suppression in neural responses and perceptions is necessary for facilitating its clinical applications.
Collapse
Affiliation(s)
- Yang Li
- School of Criminology, People’s Public Security University of China, Beijing, 100038 China
| | - Weifeng Dai
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Tian Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
- College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Yujie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Fei Dou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
- College of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Dajun Xing
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
3
|
Murray SO, Kolodny T, Webb SJ. Cortical Surface Area Relates to Distinct Computational Properties in Human Visual Perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.16.545373. [PMID: 37398212 PMCID: PMC10312808 DOI: 10.1101/2023.06.16.545373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Understanding the relationship between cortical structure and function is essential for elucidating the neural basis of human behavior. However, the impact of cortical structural features on the computational properties of neural circuits remains poorly understood. In this study, we demonstrate that a simple structural feature - cortical surface area (SA) - relates to specific computational properties underlying human visual perception. By combining psychophysical, neuroimaging, and computational modeling approaches, we show that differences in SA in the parietal and frontal cortices are associated with distinct patterns of behavior in a motion perception task. These behavioral differences can be accounted for by specific parameters of a divisive normalization model, suggesting that SA in these regions contributes uniquely to the spatial organization of cortical circuitry. Our findings provide novel evidence linking cortical structure to distinct computational properties and offer a framework for understanding how cortical architecture can impact human behavior.
Collapse
Affiliation(s)
- Scott O. Murray
- Department of Psychology, University of Washington, Seattle WA USA 98195
| | - Tamar Kolodny
- Department of Psychology, University of Washington, Seattle WA USA 98195
| | - Sara Jane Webb
- Department of Psychiatry and Behavioral Science, University of Washington, Seattle WA USA 98195
- Seattle Children’s Research Institute, 1920 Terry Ave, Building Cure-03, Seattle WA 98101
| |
Collapse
|
4
|
Orekhova EV, Manyukhina VO, Galuta IA, Prokofyev AO, Goiaeva DE, Obukhova TS, Fadeev KA, Schneiderman JF, Stroganova TA. Gamma oscillations point to the role of primary visual cortex in atypical motion processing in autism. PLoS One 2023; 18:e0281531. [PMID: 36780507 PMCID: PMC9925089 DOI: 10.1371/journal.pone.0281531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Neurophysiological studies suggest that abnormal neural inhibition may explain a range of sensory processing differences in autism spectrum disorders (ASD). In particular, the impaired ability of people with ASD to visually discriminate the motion direction of small-size objects and their reduced perceptual suppression of background-like visual motion may stem from deficient surround inhibition within the primary visual cortex (V1) and/or its atypical top-down modulation by higher-tier cortical areas. In this study, we estimate the contribution of abnormal surround inhibition to the motion-processing deficit in ASD. For this purpose, we used a putative correlate of surround inhibition-suppression of the magnetoencephalographic (MEG) gamma response (GR) caused by an increase in the drift rate of a large annular high-contrast grating. The motion direction discrimination thresholds for the gratings of different angular sizes (1° and 12°) were assessed in a separate psychophysical paradigm. The MEG data were collected in 42 boys with ASD and 37 typically developing (TD) boys aged 7-15 years. Psychophysical data were available in 33 and 34 of these participants, respectively. The results showed that the GR suppression in V1 was reduced in boys with ASD, while their ability to detect the direction of motion was compromised only in the case of small stimuli. In TD boys, the GR suppression directly correlated with perceptual suppression caused by increasing stimulus size, thus suggesting the role of the top-down modulations of V1 in surround inhibition. In ASD, weaker GR suppression was associated with the poor directional sensitivity to small stimuli, but not with perceptual suppression. These results strongly suggest that a local inhibitory deficit in V1 plays an important role in the reduction of directional sensitivity in ASD and that this perceptual deficit cannot be explained exclusively by atypical top-down modulation of V1 by higher-tier cortical areas.
Collapse
Affiliation(s)
- Elena V. Orekhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
- * E-mail:
| | - Viktoriya O. Manyukhina
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
- National Research University Higher School of Economics, Moscow, Russian Federation
| | - Ilia A. Galuta
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Andrey O. Prokofyev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Dzerassa E. Goiaeva
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Tatiana S. Obukhova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Kirill A. Fadeev
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| | - Justin F. Schneiderman
- MedTech West and the Institute of Neuroscience and Physiology, Sahlgrenska Academy, The University of Gothenburg, Gothenburg, Sweden
| | - Tatiana A. Stroganova
- Center for Neurocognitive Research (MEG Center), Moscow State University of Psychology and Education, Moscow, Russian Federation
| |
Collapse
|
5
|
Spiteri S, Crewther D. Neural Mechanisms of Visual Motion Anomalies in Autism: A Two-Decade Update and Novel Aetiology. Front Neurosci 2021; 15:756841. [PMID: 34790092 PMCID: PMC8591069 DOI: 10.3389/fnins.2021.756841] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
The 21st century has seen dramatic changes in our understanding of the visual physio-perceptual anomalies of autism and also in the structure and development of the primate visual system. This review covers the past 20 years of research into motion perceptual/dorsal stream anomalies in autism, as well as new understanding of the development of primate vision. The convergence of this literature allows a novel developmental hypothesis to explain the physiological and perceptual differences of the broad autistic spectrum. Central to these observations is the development of motion areas MT+, the seat of the dorsal cortical stream, central area of pre-attentional processing as well as being an anchor of binocular vision for 3D action. Such development normally occurs via a transfer of thalamic drive from the inferior pulvinar → MT to the anatomically stronger but later-developing LGN → V1 → MT connection. We propose that autistic variation arises from a slowing in the normal developmental attenuation of the pulvinar → MT pathway. We suggest that this is caused by a hyperactive amygdala → thalamic reticular nucleus circuit increasing activity in the PIm → MT via response gain modulation of the pulvinar and hence altering synaptic competition in area MT. We explore the probable timing of transfer in dominance of human MT from pulvinar to LGN/V1 driving circuitry and discuss the implications of the main hypothesis.
Collapse
Affiliation(s)
- Samuel Spiteri
- Centre for Human Psychopharmacology, Swinburne University of Technology, Melbourne, VIC, Australia
| | | |
Collapse
|
6
|
Park WJ, Schauder KB, Kwon OS, Bennetto L, Tadin D. Atypical visual motion prediction abilities in autism spectrum disorder. Clin Psychol Sci 2021; 9:944-960. [PMID: 34721951 DOI: 10.1177/2167702621991803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A recent theory posits that prediction deficits may underlie the core symptoms in autism spectrum disorder (ASD). However, empirical evidence for this hypothesis is minimal. Using a visual extrapolation task, we tested motion prediction abilities in children and adolescents with and without ASD. We examined the factors known to be important for motion prediction: the central-tendency response bias and smooth pursuit eye movements. In ASD, response biases followed an atypical trajectory that was dominated by early responses. This differed from controls who exhibited response biases that reflected a gradual accumulation of knowledge about stimulus statistics. Moreover, while better smooth pursuit eye movements for the moving object were linked to more accurate motion prediction in controls, in ASD, better smooth pursuit was counterintuitively linked to a more pronounced early response bias. Together, these results demonstrate atypical visual prediction abilities in ASD and offer insights into possible mechanisms underlying the observed differences.
Collapse
Affiliation(s)
- Woon Ju Park
- Department of Psychology, University of Washington, Seattle, WA, 98195
| | - Kimberly B Schauder
- Center for Autism Spectrum Disorders, Children's National Hospital, Rockville, MD, 20850
| | - Oh-Sang Kwon
- Department of Human Factors Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Loisa Bennetto
- Department of Psychology, University of Rochester, Rochester, NY, 14627.,Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, 14627.,Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642
| | - Duje Tadin
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, 14627.,Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, 14642.,Center for Visual Science, University of Rochester, Rochester, NY, 14627.,Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY, 14642
| |
Collapse
|
7
|
Koirala A, Yu Z, Schiltz H, Van Hecke A, Armstrong B, Zheng Z. A Preliminary Exploration of Virtual Reality-Based Visual and Touch Sensory Processing Assessment for Adolescents With Autism Spectrum Disorder. IEEE Trans Neural Syst Rehabil Eng 2021; 29:619-628. [PMID: 33684040 DOI: 10.1109/tnsre.2021.3064148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sensory abnormalities are experienced by 90 - 95% of individuals with Autism Spectrum Disorder (ASD), a developmental disorder that impacts at least 1 in 132 children worldwide. Virtual reality (VR) technologies can precisely present sensory stimuli and be integrated with human sensing technologies to automatically detect sensory responses, and thus has a potential to improve sensory assessment objectiveness and sensitivity, compared to traditional questionnaire-based methods. However, there is a lack of evidence to demonstrate this potential. Therefore, we designed and developed a preliminary sensory assessment VR system (SAVR) to objectively and precisely evaluate the visual and touch sensory processing differences between adolescents with ASD and their typically developing (TD) peers through game playing. A controlled experiment was conducted with 12 adolescents with ASD and 12 TD adolescents. Participants' sensory pattern was assessed by SAVR and a widely used traditional questionnaire-the Adult/Adolescent Sensory Profile (AASP). We hypothesized that: 1) compared to AASP, SAVR can find more significant differences between the two participant groups, and 2) there are significant and strong correlations between the SAVR results and the AASP results. Statistical analyses of the experimental data supported the hypotheses. The implication and limitations of this preliminary exploration as well as future works are discussed.
Collapse
|
8
|
Reh M, Lee MJ, Schmierer J, Zeck G. Spatial and temporal resolution of optogenetically recovered vision in ChR2-transduced mouse retina. J Neural Eng 2021; 18. [PMID: 33545694 DOI: 10.1088/1741-2552/abe39a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/05/2021] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Retinal ganglion cells (RGCs) represent an attractive target in vision restoration strategies, because they undergo little degeneration compared to other retinal neurons. Here we investigated the temporal and spatial resolution in adult photoreceptor-degenerated (rd10) mouse retinas, where RGCs have been transduced with the optogenetic actuator channelrhodopsin-2 (ChR2). APPROACH The RGC spiking activity was recorded continuously with a CMOS-based microelectrode array during a variety of photostimulation protocols. The temporal resolution was assessed through Gaussian white noise stimuli and evaluated using a linear-nonlinear-Poisson model. Spatial sensitivity was assessed upon photostimulation with single rectangular pulses stepped across the retina and upon stimulation with alternating gratings of different spatial frequencies. Spatial sensitivity was estimated using logistic regression or by evaluating the spiking activity of independent RGCs. MAIN RESULTS The temporal resolution after photostimulation displayed an about ten times faster kinetics as compared to physiological filters in wild-type RGCs. The optimal spatial resolution estimated using the logistic regression model was 10 µm and 87 µm based on the population response. These values correspond to an equivalent acuity of 1.7 or 0.2 cycles per degree, which is better than expected from the size of RGCs' optogenetic receptive fields. SIGNIFICANCE The high temporal and spatial resolution obtained by photostimulation of optogenetically transduced RGCs indicate that high acuity vision restoration may be obtained by photostimulation of appropriately modified RGCs in photoreceptor-degenerated retinas.
Collapse
Affiliation(s)
- Miriam Reh
- Neurophysics, NMI, Markwiesenstraße 55, Reutlingen, 72770, GERMANY
| | - Meng-Jung Lee
- Neurophysics, NMI, Markwiesenstraße 55, Reutlingen, 72770, GERMANY
| | - Julia Schmierer
- Neurophysics, NMI, Markwiesenstraße 55, Reutlingen, 72770, GERMANY
| | - Guenther Zeck
- Neurophysics, NMI, Markwiesenstraße 55, Reutlingen, 72770, GERMANY
| |
Collapse
|
9
|
Arranz-Paraíso S, Read JCA, Serrano-Pedraza I. Reduced surround suppression in monocular motion perception. J Vis 2021; 21:10. [PMID: 33450007 PMCID: PMC7814361 DOI: 10.1167/jov.21.1.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022] Open
Abstract
Motion discrimination of large stimuli is impaired at high contrast and short durations. This psychophysical result has been linked with the center-surround suppression found in neurons of area MT. Recent physiology results have shown that most frontoparallel MT cells respond more strongly to binocular than to monocular stimulation. Here we measured the surround suppression strength under binocular and monocular viewing. Thirty-nine participants took part in two experiments: (a) where the nonstimulated eye viewed a blank field of the same luminance (n = 8) and (b) where it was occluded with a patch (n = 31). In both experiments, we measured duration thresholds for small (1 deg diameter) and large (7 deg) drifting gratings of 1 cpd with 85% contrast. For each subject, a Motion Suppression Index (MSI) was computed by subtracting the duration thresholds in logarithmic units of the large minus the small stimulus. Results were similar in both experiments. Combining the MSI of both experiments, we found that the strength of suppression for binocular condition (MSIbinocular = 0.249 ± 0.126 log10 (ms)) is 1.79 times higher than under monocular viewing (MSImonocular = 0.139 ± 0.137 log10 (ms)). This increase is too high to be explained by the higher perceived contrast of binocular stimuli and offers a new way of testing whether MT neurons account for surround suppression. Potentially, differences in surround suppression reported in clinical populations may reflect altered binocular processing.
Collapse
Affiliation(s)
| | - Jenny C A Read
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- https://www.jennyreadresearch.com/
| | - Ignacio Serrano-Pedraza
- Faculty of Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- https://www.ucm.es/serranopedrazalab/
| |
Collapse
|
10
|
Abstract
Abnormal sensory processing has been observed in autism, including superior visual motion discrimination, but the neural basis for these sensory changes remains unknown. Leveraging well-characterized suppressive neural circuits in the visual system, we used behavioral and fMRI tasks to demonstrate a significant reduction in neural suppression in young adults with autism spectrum disorder (ASD) compared to neurotypical controls. MR spectroscopy measurements revealed no group differences in neurotransmitter signals. We show how a computational model that incorporates divisive normalization, as well as narrower top-down gain (that could result, for example, from a narrower window of attention), can explain our observations and divergent previous findings. Thus, weaker neural suppression is reflected in visual task performance and fMRI measures in ASD, and may be attributable to differences in top-down processing. Sensory hypersensitivity is common in autism spectrum disorders. Using functional MRI, psychophysics, and computational modeling, Schallmo et al. show that differences in visual motion perception in ASD are accompanied by weaker neural suppression in visual cortex.
Collapse
|
11
|
Kolodny T, Schallmo MP, Gerdts J, Bernier RA, Murray SO. Response Dissociation in Hierarchical Cortical Circuits: a Unique Feature of Autism Spectrum Disorder. J Neurosci 2020; 40:2269-2281. [PMID: 32015023 PMCID: PMC7083290 DOI: 10.1523/jneurosci.2376-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 01/03/2023] Open
Abstract
A prominent hypothesis regarding the pathophysiology of autism is that an increase in the balance between neural excitation and inhibition results in an increase in neural responses. However, previous reports of population-level response magnitude in individuals with autism have been inconsistent. Critically, network interactions have not been considered in previous neuroimaging studies of excitation and inhibition imbalance in autism. In particular, a defining characteristic of cortical organization is its hierarchical and interactive structure; sensory and cognitive systems are comprised of networks where later stages inherit and build upon the processing of earlier input stages, and also influence and shape earlier stages by top-down modulation. Here we used the well established connections of the human visual system to examine response magnitudes in a higher-order motion processing region [middle temporal area (MT+)] and its primary input region (V1). Simple visual stimuli were presented to adult individuals with autism spectrum disorders (ASD; n = 24, mean age 23 years, 8 females) and neurotypical controls (n = 24, mean age 22, 8 females) during fMRI scanning. We discovered a strong dissociation of fMRI response magnitude between region MT+ and V1 in individuals with ASD: individuals with high MT+ responses had attenuated V1 responses. The magnitude of MT+ amplification and of V1 attenuation was associated with autism severity, appeared to result from amplified suppressive feedback from MT+ to V1, and was not present in neurotypical controls. Our results reveal the potential role of altered hierarchical network interactions in the pathophysiology of ASD.SIGNIFICANCE STATEMENT An imbalance between neural excitation and inhibition, resulting in increased neural responses, has been suggested as a pathophysiological pathway to autism, but direct evidence from humans is lacking. In the current study we consider the role of interactions between stages of sensory processing when testing increased neural responses in individuals with autism. We used the well known hierarchical structure of the visual motion pathway to demonstrate dissociation in the fMRI response magnitude between adjacent stages of processing in autism: responses are attenuated in a primary visual area but amplified in a subsequent higher-order area. This response dissociation appears to rely on enhanced suppressive feedback between regions and reveals a previously unknown cortical network alteration in autism.
Collapse
Affiliation(s)
| | - Michael-Paul Schallmo
- Departments of Psychology
- Department of Psychiatry and Behavioral Science, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jennifer Gerdts
- Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 95195, and
| | - Raphael A Bernier
- Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington 95195, and
| | | |
Collapse
|
12
|
Brunton BW, Beyeler M. Data-driven models in human neuroscience and neuroengineering. Curr Opin Neurobiol 2019; 58:21-29. [PMID: 31325670 DOI: 10.1016/j.conb.2019.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 06/22/2019] [Indexed: 12/26/2022]
Abstract
Discoveries in modern human neuroscience are increasingly driven by quantitative understanding of complex data. Data-intensive approaches to modeling have promise to dramatically advance our understanding of the brain and critically enable neuroengineering capabilities. In this review, we provide an accessible primer to modern modeling approaches and highlight recent data-driven discoveries in the domains of neuroimaging, single-neuron and neuronal population responses, and device neuroengineering. Further, we suggest that meaningful progress requires the community to tackle open challenges in the realms of model interpretability and generalizability, training pipelines of data-fluent human neuroscientists, and integrated consideration of data ethics.
Collapse
Affiliation(s)
- Bingni W Brunton
- Department of Biology, University of Washington, Seattle, WA 98195, USA; Institute for Neuroengineering, University of Washington, Seattle, WA 98195, USA; eScience Institute, University of Washington, Seattle, WA 98195, USA
| | - Michael Beyeler
- Institute for Neuroengineering, University of Washington, Seattle, WA 98195, USA; eScience Institute, University of Washington, Seattle, WA 98195, USA; Department of Psychology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Spatial suppression promotes rapid figure-ground segmentation of moving objects. Nat Commun 2019; 10:2732. [PMID: 31266956 PMCID: PMC6606582 DOI: 10.1038/s41467-019-10653-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 05/21/2019] [Indexed: 12/21/2022] Open
Abstract
Segregation of objects from their backgrounds is a fundamental visual function and one that is particularly effective when objects are in motion. Theoretically, suppressive center-surround mechanisms are well suited for accomplishing motion segregation. This longstanding hypothesis, however, has received limited empirical support. We report converging correlational and causal evidence that spatial suppression of background motion signals is critical for rapid segmentation of moving objects. Motion segregation ability is strongly predicted by both individual and stimulus-driven variations in spatial suppression strength. Moreover, aging-related superiority in perceiving background motion is associated with profound impairments in motion segregation. This segregation deficit is alleviated via perceptual learning, but only when motion segregation training also causes decreased sensitivity to background motion. We argue that perceptual insensitivity to large moving stimuli effectively implements background subtraction, which, in turn, enhances the visibility of moving objects and accounts for the observed link between spatial suppression and motion segregation. The visual system excels at segregating moving objects from their backgrounds, a key visual function hypothesized to be driven by suppressive centre-surround mechanisms. Here, the authors show that spatial suppression of background motion signals is critical for rapid segmentation of moving objects.
Collapse
|
14
|
Palmer CJ, Lawson RP, Clifford CW, Rees G. Establishing the scope of the divisive normalisation theory of autism: A reply to Rosenberg and Sunkara. Cortex 2019; 111:319-323. [DOI: 10.1016/j.cortex.2018.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/09/2018] [Accepted: 10/10/2018] [Indexed: 10/27/2022]
|
15
|
Goodrich M, Armour AC, Panchapakesan K, You X, Devaney J, Knoblach S, Sullivan CA, Herrero MJ, Gupta AR, Vaidya CJ, Kenworthy L, Corbin JG. PAC1R Genotype to Phenotype Correlations in Autism Spectrum Disorder. Autism Res 2019; 12:200-211. [PMID: 30556326 PMCID: PMC6665682 DOI: 10.1002/aur.2051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/10/2018] [Accepted: 10/21/2018] [Indexed: 12/26/2022]
Abstract
Amygdala dysfunction has been implicated in numerous neurodevelopmental disorders, including autism spectrum disorder (ASD). Previous studies in mice and humans, respectively, have linked Pac1r/PAC1R function to social behavior and PTSD-susceptibility. Based on this connection to social and emotional processing and the central role played by the amygdala in ASD, we examined a putative role for PAC1R in social deficits in ASD and determined the pattern of gene expression in the developing mouse and human amygdala. We reveal that Pac1r/PAC1R is expressed in both mouse and human amygdala from mid-neurogenesis through early postnatal stages, critical time points when altered brain trajectories are hypothesized to unfold in ASD. We further find that parents of autistic children carrying a previously identified PTSD-risk genotype (CC) report greater reciprocal social deficits compared to those carrying the non-risk GC genotype. Additionally, by exploring resting-state functional connectivity differences in a subsample of the larger behavioral sample, we find higher functional connectivity between the amygdala and right middle temporal gyrus in individuals with the CC risk genotype. Thus, using multimodal approaches, our data reveal that the amygdala-expressed PAC1R gene may be linked to severity of ASD social phenotype and possible alterations in brain connectivity, therefore potentially acting as a modifier of amygdala-related phenotypes. Autism Res 2019, 12: 200-211 © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: In this multimodal study across mouse and human, we examined expression patterns of Pac1r/PAC1R, a gene implicated in social behavior, and further explored whether a previously identified human PTSD-linked mutation in PAC1R can predict brain connectivity and social deficits in ASD. We find that PAC1R is highly expressed in the both the mouse and human amygdala. Furthermore, our human data suggest that PAC1R genotype is linked to severity of social deficits and functional amygdala connectivity in ASD.
Collapse
Affiliation(s)
- Meredith Goodrich
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Health System, 111 Michigan Avenue NW, Washington, DC, USA
| | - Anna Chelsea Armour
- Children’s Center for Autism Spectrum Disorders, Children’s National Health System, 15245 Shady Grove Road, Rockville, MD, USA
| | - Karuna Panchapakesan
- Center for Genetic Medicine, Children’s Research Institute, Children’s National Health System, 111 Michigan Avenue NW, Washington, DC, USA
| | - Xiaozhen You
- Department of Psychology, Georgetown University, 306N White-Gravenor Hall, Washington, DC, USA
| | - Joseph Devaney
- Center for Genetic Medicine, Children’s Research Institute, Children’s National Health System, 111 Michigan Avenue NW, Washington, DC, USA
| | - Susan Knoblach
- Center for Genetic Medicine, Children’s Research Institute, Children’s National Health System, 111 Michigan Avenue NW, Washington, DC, USA
| | - Catherine A.W. Sullivan
- Department of Pediatrics and Child Study Center, Yale School of Medicine, 230 South Frontage Road, New Haven, CT, USA
| | - Maria Jesus Herrero
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Health System, 111 Michigan Avenue NW, Washington, DC, USA
| | - Abha R. Gupta
- Department of Pediatrics and Child Study Center, Yale School of Medicine, 230 South Frontage Road, New Haven, CT, USA
| | - Chandan J. Vaidya
- Department of Psychology, Georgetown University, 306N White-Gravenor Hall, Washington, DC, USA
| | - Lauren Kenworthy
- Children’s Center for Autism Spectrum Disorders, Children’s National Health System, 15245 Shady Grove Road, Rockville, MD, USA
| | - Joshua G. Corbin
- Center for Neuroscience Research, Children’s Research Institute, Children’s National Health System, 111 Michigan Avenue NW, Washington, DC, USA
| |
Collapse
|
16
|
Bakroon A, Lakshminarayanan V. Do different experimental tasks affect psychophysical measurements of motion perception in autism-spectrum disorder? An analysis. CLINICAL OPTOMETRY 2018; 10:131-143. [PMID: 30588145 PMCID: PMC6296182 DOI: 10.2147/opto.s179336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
There is a rapid increase in the number of individuals with high-functioning autism (HFA). Research on motion perception in HFA has shown deficits in processing motion information at the higher visual cortical areas (V5/middle temporal). Several hypotheses have been put forth to explain these deficits as being due to enhanced processing of small details at the expense of the global picture or as a global integration abnormality. However, there is a lot of variability in the results obtained from experiments designed to study motion in adults with autism. These could be due to the inherent diagnostic differences within even the same range of the autism spectrum and/or due to comparison of different experimental paradigms whose processing by the same visual neural areas could be different. In this review, we discuss the various results on motion processing in HFA, as well as the theories of motion perception in autism.
Collapse
Affiliation(s)
- Asmaa Bakroon
- Theoretical and Experimental Epistemology Laboratory, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada,
| | - Vasudevan Lakshminarayanan
- Theoretical and Experimental Epistemology Laboratory, School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada,
- Departments of Physics and Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada
- Department of Computer Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
17
|
Validation of motion perception of briefly displayed images using a tablet. Sci Rep 2018; 8:16056. [PMID: 30375459 PMCID: PMC6207664 DOI: 10.1038/s41598-018-34466-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/18/2018] [Indexed: 01/07/2023] Open
Abstract
Motion perception of briefly displayed images has been reported to be abnormal in clinical populations afflicted with schizophrenia, major depression, autism, Alzheimer’s disease and epilepsy. These abnormalities have been measured using CRT monitors connected to a computer. Given that the use of this experimental set-up in clinical environments can be difficult, we tested whether motion perception of briefly displayed images could also be measured using a tablet. For 13 participants, we found similar estimates of motion discrimination on a tablet and a CRT. This validates a tablet to measure motion perception of briefly displayed images.
Collapse
|
18
|
Murray SO, Schallmo MP, Kolodny T, Millin R, Kale A, Thomas P, Rammsayer TH, Troche SJ, Bernier RA, Tadin D. Sex Differences in Visual Motion Processing. Curr Biol 2018; 28:2794-2799.e3. [PMID: 30122530 PMCID: PMC6133755 DOI: 10.1016/j.cub.2018.06.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/07/2018] [Accepted: 06/08/2018] [Indexed: 10/28/2022]
Abstract
The importance of sex as a biological variable has recently been emphasized by major funding organizations [1] and within the neuroscience community [2]. Critical sex-based neural differences are indicated by, for example, conditions such as autism spectrum disorder (ASD) that have a strong sex bias with a higher prevalence among males [51, 3]. Motivated by this broader context, we report a marked sex difference in a visual motion perception task among neurotypical adults. Motion duration thresholds [4, 5]-the minimum duration needed to accurately perceive motion direction-were considerably shorter for males than females. We replicated this result across three laboratories and 263 total participants. This type of enhanced performance has previously been observed only in special populations including ASD, depression, and senescence [6-8]. The observed sex difference cannot be explained by general differences in speed of visual processing, overall visual discrimination abilities, or potential motor-related differences. We also show that while individual differences in motion duration thresholds are associated with differences in fMRI responsiveness of human MT+, surprisingly, MT+ response magnitudes did not differ between males and females. Thus, we reason that sex differences in motion perception are not captured by an MT+ fMRI measure that predicts within-sex individual differences in perception. Overall, these results show how sex differences can manifest unexpectedly, highlighting the importance of sex as a factor in the design and analysis of perceptual and cognitive studies.
Collapse
Affiliation(s)
- Scott O Murray
- Department of Psychology, University of Washington, Seattle WA 98195, USA.
| | | | - Tamar Kolodny
- Department of Psychology, University of Washington, Seattle WA 98195, USA
| | - Rachel Millin
- Department of Psychology, University of Washington, Seattle WA 98195, USA
| | - Alex Kale
- Department of Psychology, University of Washington, Seattle WA 98195, USA
| | - Philipp Thomas
- Department of Psychology, University of Bern, Bern, Switzerland
| | | | - Stefan J Troche
- Department of Psychology and Psychotherapy, University of Witten/Herdecke, Witten, Germany
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, U.S.A
| | - Duje Tadin
- Departments of Brain and Cognitive Sciences, Ophthalmology, and Neuroscience, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
19
|
Visually Evoked Response Differences to Contrast and Motion in Children with Autism Spectrum Disorder. Brain Sci 2018; 8:brainsci8090160. [PMID: 30149500 PMCID: PMC6162529 DOI: 10.3390/brainsci8090160] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 12/26/2022] Open
Abstract
High-density electroencephalography (EEG) was used to examine the utility of the P1 event-related potential (ERP) as a marker of visual motion sensitivity to luminance defined low-spatial frequency drifting gratings in 16 children with autism and 16 neurotypical children. Children with autism displayed enhanced sensitivity to large, high-contrast low-spatial frequency stimuli as indexed by significantly shorter P1 response latencies to large vs. small gratings. The current study also found that children with autism had larger amplitude responses to large gratings irrespective of contrast. A linear regression established that P1 adaptive mean amplitude for large, high-contrast sinusoidal gratings significantly predicted hyperresponsiveness item mean scores on the Sensory Experiences Questionnaire for children with autism, but not for neurotypical children. We conclude that children with autism have differences in the mechanisms that underlie low-level visual processing potentially related to altered visual spatial suppression or contrast gain control.
Collapse
|
20
|
Arranz-Paraíso S, Serrano-Pedraza I. Testing the link between visual suppression and intelligence. PLoS One 2018; 13:e0200151. [PMID: 29979774 PMCID: PMC6034845 DOI: 10.1371/journal.pone.0200151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022] Open
Abstract
The impairment to discriminate the motion direction of a large high contrast stimulus or to detect a stimulus surrounded by another one is called visual suppression and is the result of the normal function of our visual inhibitory mechanisms. Recently, Melnick et al. (2013), using a motion discrimination task, showed that intelligence strongly correlates with visual suppression (r = 0.71). Cook et al. (2016) also showed a strong link between contrast surround suppression and IQ (r = 0.87), this time using a contrast matching task. Our aim is to test this link using two different visual suppression tasks: a motion discrimination task and a contrast detection task. Fifty volunteers took part in the experiments. Using Bayesian staircases, we measured duration thresholds in the motion experiment and contrast thresholds in the spatial experiment. Although we found a much weaker effect, our results from the motion experiment still replicate previous results supporting the link between motion surround suppression and IQ (r = 0.43). However, our results from the spatial experiment do not support the link between contrast surround suppression and IQ (r = -0.09). Methodological differences between this study and previous studies which could explain these discrepancies are discussed.
Collapse
Affiliation(s)
| | - Ignacio Serrano-Pedraza
- Faculty of Psychology, Universidad Complutense de Madrid, Madrid, Spain
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Mismatched summation mechanisms in older adults for the perception of small moving stimuli. Vision Res 2018; 142:52-57. [DOI: 10.1016/j.visres.2017.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 10/14/2017] [Accepted: 10/17/2017] [Indexed: 11/20/2022]
|
22
|
Park WJ, Schauder KB, Zhang R, Bennetto L, Tadin D. High internal noise and poor external noise filtering characterize perception in autism spectrum disorder. Sci Rep 2017; 7:17584. [PMID: 29242499 PMCID: PMC5730555 DOI: 10.1038/s41598-017-17676-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/28/2017] [Indexed: 11/28/2022] Open
Abstract
An emerging hypothesis postulates that internal noise is a key factor influencing perceptual abilities in autism spectrum disorder (ASD). Given fundamental and inescapable effects of noise on nearly all aspects of neural processing, this could be a critical abnormality with broad implications for perception, behavior, and cognition. However, this proposal has been challenged by both theoretical and empirical studies. A crucial question is whether and how internal noise limits perception in ASD, independently from other sources of perceptual inefficiency, such as the ability to filter out external noise. Here, we separately estimated internal noise and external noise filtering in ASD. In children and adolescents with and without ASD, we computationally modeled individuals' visual orientation discrimination in the presence of varying levels of external noise. The results revealed increased internal noise and worse external noise filtering in individuals with ASD. For both factors, we also observed high inter-individual variability in ASD, with only the internal noise estimates significantly correlating with severity of ASD symptoms. We provide evidence for reduced perceptual efficiency in ASD that is due to both increased internal noise and worse external noise filtering, while highlighting internal noise as a possible contributing factor to variability in ASD symptoms.
Collapse
Affiliation(s)
- Woon Ju Park
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, 14627, USA.
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA.
| | - Kimberly B Schauder
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
- Department of Clinical and Social Sciences in Psychology, University of Rochester, Rochester, NY, 14627, USA
| | - Ruyuan Zhang
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota at Twin Cities, Minneapolis, MN, 55455, USA
| | - Loisa Bennetto
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, 14627, USA
- Department of Clinical and Social Sciences in Psychology, University of Rochester, Rochester, NY, 14627, USA
| | - Duje Tadin
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, 14627, USA
- Center for Visual Science, University of Rochester, Rochester, NY, 14627, USA
- Department of Ophthalmology, University of Rochester School of Medicine, Rochester, NY, 14642, USA
| |
Collapse
|
23
|
Abstract
Autism is a complex neurodevelopmental condition, and little is known about its neurobiology. Much of autism research has focused on the social, communication and cognitive difficulties associated with the condition. However, the recent revision of the diagnostic criteria for autism has brought another key domain of autistic experience into focus: sensory processing. Here, we review the properties of sensory processing in autism and discuss recent computational and neurobiological insights arising from attention to these behaviours. We argue that sensory traits have important implications for the development of animal and computational models of the condition. Finally, we consider how difficulties in sensory processing may relate to the other domains of behaviour that characterize autism.
Collapse
|