1
|
Qian Y, Wang J, Chen J, Lin W, Shen H, Fang Y, Yu W. Multifaceted role of thrombin in subarachnoid hemorrhage: Focusing on cerebrospinal fluid circulation disorder. Exp Neurol 2025; 383:115036. [PMID: 39486608 DOI: 10.1016/j.expneurol.2024.115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a severe neurological condition characterized by high morbidity and mortality. The unfavorable prognosis of SAH is closely associated with early brain injury (EBI) and delayed cerebral ischemia (DCI), wherein thrombin plays a role as part of the secondary injury components following hemorrhage in these two pathological processes. Additionally, thrombin contributes to disruptions in the circulation of cerebrospinal fluid (CSF), thereby giving rise to a spectrum of sequelae following SAH, including cerebral edema, hydrocephalus, cognitive impairments, and depressive symptoms. This review aims to provide a comprehensive understanding of the pathological role of thrombin in EBI, DCI, and CSF circulation following SAH, with a specific focus on its impact on the glymphatic-meningeal lymphatic system-a crucial mechanism for waste clearance and neurohomeostatic regulation. Additionally, this review offers an overview of current pharmacological interventions and treatment modalities targeting pathogenic mechanisms, aiming to mitigate brain injury and promote neurological recovery post-SAH.
Collapse
Affiliation(s)
- Yajun Qian
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Neurosurgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Junjie Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiarui Chen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Weibo Lin
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huimin Shen
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wenhua Yu
- Department of Neurosurgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Hey G, Mehkri I, Mehkri Y, Maqbool H, Tahirkheli M, Woodford S, Lucke-Wold B. Nanoparticle-Based Therapies for Management of Subarachnoid Hemorrhage, Neurotrauma, and Stroke. Biomedicines 2024; 13:16. [PMID: 39857600 PMCID: PMC11760890 DOI: 10.3390/biomedicines13010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Neurotrauma, stroke, and subarachnoid hemorrhage (SAH) are symptomatically diverse and etiologically complex central nervous system pathologies. Despite numerous therapeutic modalities that are available to minimize neurologic damage and secondary injury, the prognosis can still be dismal and unpredictable. Nanoparticle (NP) technology allows for deliberate, modular, and minimally invasive drug delivery. This literature review encompasses pertinent information on the impact and versatility of nanoparticle therapeutics when treating neurotrauma, stroke, and SAH. Currently, notable treatments such as Perfluorooctyl-Bromide (PFOB), PLGA nanoparticles, and ischemic relief-based NPs are promising new techniques for the management of these complex pathologies.
Collapse
Affiliation(s)
- Grace Hey
- College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.H.); (Y.M.)
| | - Ilyas Mehkri
- College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.H.); (Y.M.)
| | - Yusuf Mehkri
- College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.H.); (Y.M.)
| | - Hasan Maqbool
- College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.H.); (Y.M.)
| | - Mubariz Tahirkheli
- College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.H.); (Y.M.)
| | - Samuel Woodford
- College of Medicine, University of Florida, Gainesville, FL 32610, USA; (G.H.); (Y.M.)
| | - Brandon Lucke-Wold
- Lillian S. Wells Department of Neurosurgery, College of Medicine, University of Florida, 1600 SW Archer Road, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
van Landeghem N, Ziegenfuß C, Demircioglu A, Dammann P, Jabbarli R, Haubold J, Forsting M, Wanke I, Köhrmann M, Frank B, Deuschl C, Li Y. Impact of post-thrombectomy isolated subarachnoid hemorrhage on neurological outcomes in patients with anterior ischemic stroke - a retrospective single-center observational study. Neuroradiology 2024; 66:1737-1745. [PMID: 38980345 PMCID: PMC11424715 DOI: 10.1007/s00234-024-03424-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/29/2024] [Indexed: 07/10/2024]
Abstract
PURPOSE We aimed to investigate the impact of post-thrombectomy isolated subarachnoid hemorrhage (i-SAH) and other types of intracranial hemorrhage (o-ICH) on patient's neurological outcomes. METHODS Stroke data from 2018 to 2022 in a tertiary care center were retrospectively analyzed. Patients with large vessel occlusion from ICA to M2 branch were included. Post-thrombectomy intracranial hemorrhages at 24 h were categorized with Heidelberg Bleeding Classification. Neurological impairment of patients was continuously assessed at admission, at 24 h, 48 h and 72 h, and at discharge. Predictors of i-SAH and o-ICH were assessed. RESULTS 297 patients were included. i-SAH and o-ICH were found in 12.1% (36/297) and 11.4% (34/297) of patients. Overall, NIHSS of i-SAH patients at discharge were comparable to o-ICH patients (median 22 vs. 21, p = 0.889) and were significantly higher than in non-ICH patients (22 vs. 7, p < 0.001). i-SAH often resulted in abrupt deterioration of patient's neurological symptoms at 24 h after thrombectomy. Compared to non-ICH patients, the occurrence of i-SAH was frequently associated with worse neurological outcome at discharge (median NIHSS increase of 4 vs. decrease of 4, p < 0.001) and higher in-hospital mortality (41.7% vs. 23.8%, p = 0.022). Regardless of successful reperfusion (TICI 2b/3), the beneficial impact of thrombectomy appeared to be outweighed by the adverse effect of i-SAH. Incomplete reperfusion and shorter time from symptom onset to admission were associated with higher probability of i-SAH, whereas longer procedure time and lower baseline ASPECTS were predictive for o-ICH occurrence. CONCLUSION Post-thrombectomy isolated subarachnoid hemorrhage is a common complication with significant negative impact on neurological outcome.
Collapse
Affiliation(s)
- Natalie van Landeghem
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany.
| | - Christoph Ziegenfuß
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Aydin Demircioglu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Johannes Haubold
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Isabel Wanke
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Swiss Neuroradiology Institute, Bürglistrasse 29, Zürich, 8002, Switzerland
| | - Martin Köhrmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Benedikt Frank
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Yan Li
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstrasse 55, 45147, Essen, Germany
| |
Collapse
|
4
|
Zhang Y, Zhang C, Yi X, Wang Q, Zhang T, Li Y. Gabapentinoids for the treatment of stroke. Neural Regen Res 2024; 19:1509-1516. [PMID: 38051893 PMCID: PMC10883501 DOI: 10.4103/1673-5374.387968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 08/04/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Gabapentinoid drugs (pregabalin and gabapentin) have been successfully used in the treatment of neuropathic pain and in focal seizure prevention. Recent research has demonstrated their potent activities in modulating neurotransmitter release in neuronal tissue, oxidative stress, and inflammation, which matches the mechanism of action via voltage-gated calcium channels. In this review, we briefly elaborate on the medicinal history and ligand-binding sites of gabapentinoids. We systematically summarize the preclinical and clinical research on gabapentinoids in stroke, including ischemic stroke, intracerebral hemorrhage, subarachnoid hemorrhage, seizures after stroke, cortical spreading depolarization after stroke, pain after stroke, and nerve regeneration after stroke. This review also discusses the potential targets of gabapentinoids in stroke; however, the existing results are still uncertain regarding the effect of gabapentinoids on stroke and related diseases. Further preclinical and clinical trials are needed to test the therapeutic potential of gabapentinoids in stroke. Therefore, gabapentinoids have both opportunities and challenges in the treatment of stroke.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaoli Yi
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qi Wang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tiejun Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
5
|
Lauzier DC, Athiraman U. Role of microglia after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2024; 44:841-856. [PMID: 38415607 PMCID: PMC11318405 DOI: 10.1177/0271678x241237070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Subarachnoid hemorrhage is a devastating sequela of aneurysm rupture. Because it disproportionately affects younger patients, the population impact of hemorrhagic stroke from subarachnoid hemorrhage is substantial. Secondary brain injury is a significant contributor to morbidity after subarachnoid hemorrhage. Initial hemorrhage causes intracranial pressure elevations, disrupted cerebral perfusion pressure, global ischemia, and systemic dysfunction. These initial events are followed by two characterized timespans of secondary brain injury: the early brain injury period and the delayed cerebral ischemia period. The identification of varying microglial phenotypes across phases of secondary brain injury paired with the functions of microglia during each phase provides a basis for microglia serving a critical role in both promoting and attenuating subarachnoid hemorrhage-induced morbidity. The duality of microglial effects on outcomes following SAH is highlighted by the pleiotropic features of these cells. Here, we provide an overview of the key role of microglia in subarachnoid hemorrhage-induced secondary brain injury as both cytotoxic and restorative effectors. We first describe the ontogeny of microglial populations that respond to subarachnoid hemorrhage. We then correlate the phenotypic development of secondary brain injury after subarachnoid hemorrhage to microglial functions, synthesizing experimental data in this area.
Collapse
Affiliation(s)
- David C Lauzier
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Umeshkumar Athiraman
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
Andrianov VV, Kulchitsky VA, Yafarova GG, Bazan LV, Bogodvid TK, Deryabina IB, Muranova LN, Silantyeva DI, Arslanov AI, Paveliev MN, Fedorova EV, Filipovich TA, Nagibov AV, Gainutdinov KL. Investigation of NO Role in Neural Tissue in Brain and Spinal Cord Injury. Molecules 2023; 28:7359. [PMID: 37959778 PMCID: PMC10650517 DOI: 10.3390/molecules28217359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Nitric oxide (NO) production in injured and intact brain regions was compared by EPR spectroscopy in a model of brain and spinal cord injury in Wistar rats. The precentral gyrus of the brain was injured, followed by the spinal cord at the level of the first lumbar vertebra. Seven days after brain injury, a reduction in NO content of 84% in injured brain regions and 66% in intact brain regions was found. The difference in NO production in injured and uninjured brain regions persisted 7 days after injury. The copper content in the brain remained unchanged one week after modeling of brain and spinal cord injury. The data obtained in the experiments help to explain the problems in the therapy of patients with combined brain injury.
Collapse
Affiliation(s)
- Viacheslav V. Andrianov
- Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia; (V.V.A.); (G.G.Y.); (L.V.B.)
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | - Vladimir A. Kulchitsky
- Brain Center, Institute of Physiology, National Academy of Sciences, 220012 Minsk, Belarus; (V.A.K.); (E.V.F.); (T.A.F.); (A.V.N.)
| | - Guzel G. Yafarova
- Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia; (V.V.A.); (G.G.Y.); (L.V.B.)
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | - Leah V. Bazan
- Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia; (V.V.A.); (G.G.Y.); (L.V.B.)
| | - Tatiana K. Bogodvid
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
- Department of Biomedical Sciences, Volga Region State University of Physical Culture, Sport and Tourism, 420000 Kazan, Russia
| | - Irina B. Deryabina
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | - Lyudmila N. Muranova
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | - Dinara I. Silantyeva
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | - Almaz I. Arslanov
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| | | | - Ekaterina V. Fedorova
- Brain Center, Institute of Physiology, National Academy of Sciences, 220012 Minsk, Belarus; (V.A.K.); (E.V.F.); (T.A.F.); (A.V.N.)
| | - Tatiana A. Filipovich
- Brain Center, Institute of Physiology, National Academy of Sciences, 220012 Minsk, Belarus; (V.A.K.); (E.V.F.); (T.A.F.); (A.V.N.)
| | - Aleksei V. Nagibov
- Brain Center, Institute of Physiology, National Academy of Sciences, 220012 Minsk, Belarus; (V.A.K.); (E.V.F.); (T.A.F.); (A.V.N.)
| | - Khalil L. Gainutdinov
- Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420000 Kazan, Russia; (V.V.A.); (G.G.Y.); (L.V.B.)
- Department of Human and Animals, Institute of Fundamental Medicine and Biology, Kazan Federal University, 420000 Kazan, Russia; (T.K.B.); (I.B.D.); (L.N.M.); (D.I.S.); (A.I.A.)
| |
Collapse
|
7
|
Tartara F, Montalbetti A, Crobeddu E, Armocida D, Tavazzi E, Cardia A, Cenzato M, Boeris D, Garbossa D, Cofano F. Compartmental Cerebrospinal Fluid Events Occurring after Subarachnoid Hemorrhage: An "Heparin Oriented" Systematic Review. Int J Mol Sci 2023; 24:7832. [PMID: 37175544 PMCID: PMC10178276 DOI: 10.3390/ijms24097832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a severe acute event with high morbidity and mortality due to the development of early brain injury (EBI), secondary delayed cerebral ischemia (DCI), and shunt-related hydrocephalus. Secondary events (SSE) such as neuroinflammation, vasospasm, excitotoxicity, blood-brain barrier disruption, oxidative cascade, and neuronal apoptosis are related to DCI. Despite improvement in management strategies and therapeutic protocols, surviving patients frequently present neurological deficits with neurocognitive impairment. The aim of this paper is to offer to clinicians a practical review of the actually documented pathophysiological events following subarachnoid hemorrhage. To reach our goal we performed a literature review analyzing reported studies regarding the mediators involved in the pathophysiological events following SAH occurring in the cerebrospinal fluid (CSF) (hemoglobin degradation products, platelets, complement, cytokines, chemokines, leucocytes, endothelin-1, NO-synthase, osteopontin, matricellular proteins, blood-brain barrier disruption, microglia polarization). The cascade of pathophysiological events secondary to SAH is very complex and involves several interconnected, but also distinct pathways. The identification of single therapeutical targets or specific pharmacological agents may be a limited strategy able to block only selective pathophysiological paths, but not the global evolution of SAH-related events. We report furthermore on the role of heparin in SAH management and discuss the rationale for use of intrathecal heparin as a pleiotropic therapeutical agent. The combination of the anticoagulant effect and the ability to interfere with SSE theoretically make heparin a very interesting molecule for SAH management.
Collapse
Affiliation(s)
- Fulvio Tartara
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Montalbetti
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Emanuela Crobeddu
- A.O.U. Maggiore della Carità University Hospital, Department of Neurosurgery, 28100 Novara, Italy
| | - Daniele Armocida
- A.U.O. Policlinico Umberto I, Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Eleonora Tavazzi
- IRCCS Fondazione Istituto Neurologico Nazionale C. Mondino, 27100 Pavia, Italy
| | - Andrea Cardia
- Department of Neurosurgery, Neurocenter of Southern Switzerland, EOC, 6900 Lugano, Switzerland
| | - Marco Cenzato
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Davide Boeris
- Ospedale Niguarda Ca’ Granda, Department of Neurosurgery, 20162 Milan, Italy
| | - Diego Garbossa
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| | - Fabio Cofano
- Department of Neuroscience Rita Levi Montalcini, Neurosurgery Unit, University of Turin, 10095 Turin, Italy
| |
Collapse
|
8
|
You F, Tang WJ, Zhang C, Ye MQ, Fang XG, Zhou YF. Whole-brain CT Perfusion at Admission and During Delayed Time-window Detects the Delayed Cerebral Ischemia in Patients with Aneurysmal Subarachnoid Hemorrhage. Curr Med Sci 2023; 43:409-416. [PMID: 36864249 DOI: 10.1007/s11596-023-2703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/23/2022] [Indexed: 03/04/2023]
Abstract
OBJECTIVE To evaluate the utility of computed tomography perfusion (CTP) both at admission and during delayed cerebral ischemia time-window (DCITW) in the detection of delayed cerebral ischemia (DCI) and the change in CTP parameters from admission to DCITW following aneurysmal subarachnoid hemorrhage. METHODS Eighty patients underwent CTP at admission and during DCITW. The mean and extreme values of all CTP parameters at admission and during DCITW were compared between the DCI group and non-DCI group, and comparisons were also made between admission and DCITW within each group. The qualitative color-coded perfusion maps were recorded. Finally, the relationship between CTP parameters and DCI was assessed by receiver operating characteristic (ROC) analyses. RESULTS With the exception of cerebral blood volume (P=0.295, admission; P=0.682, DCITW), there were significant differences in the mean quantitative CTP parameters between DCI and non-DCI patients both at admission and during DCITW. In the DCI group, the extreme parameters were significantly different between admission and DCITW. The DCI group also showed a deteriorative trend in the qualitative color-coded perfusion maps. For the detection of DCI, mean transit time to the center of the impulse response function (Tmax) at admission and mean time to start (TTS) during DCITW had the largest area under curve (AUC), 0.698 and 0.789, respectively. CONCLUSION Whole-brain CTP can predict the occurrence of DCI at admission and diagnose DCI during DCITW. The extreme quantitative parameters and qualitative color-coded perfusion maps can better reflect the perfusion changes of patients with DCI from admission to DCITW.
Collapse
Affiliation(s)
- Feng You
- Department of Radiology, the First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, China.,Department of Radiology, Affiliated Hangzhou First People's Hospital, Hangzhou, 310000, China
| | - Wen-Juan Tang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chao Zhang
- Department of Radiology, the First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Ming-Quan Ye
- School of Medical Information, Wannan Medical College, Wuhu, 241001, China
| | - Xing-Gen Fang
- Department of Neurosurgery, the First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, China
| | - Yun-Feng Zhou
- Department of Radiology, the First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, China.
| |
Collapse
|
9
|
Simonato D, Gaugain S, Le Dorze M, Prisco L, Borchert RJ, Fuschi M, Patel J, Mebazaa A, Froelich S, Houdart E, Chousterman B, Labeyrie MA. Early Cerebral Infarction After Aneurysmal Subarachnoid Hemorrhage Is Associated with Prior Global Cerebral Hypoperfusion. World Neurosurg 2022; 168:e546-e554. [DOI: 10.1016/j.wneu.2022.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
10
|
Yang Y, Richard SA, Lan Z. The impact of residual hematoma after evacuation on the outcomes of patients with ruptured intracranial aneurysms with intracerebral hematoma: A longitudinal single-center observational study. Medicine (Baltimore) 2022; 101:e30129. [PMID: 36086761 PMCID: PMC10980503 DOI: 10.1097/md.0000000000030129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 07/04/2022] [Indexed: 11/26/2022] Open
Abstract
Intracerebral hematoma (ICH) as a result of ruptured of intracranial aneurysms often arises in patients with subarachnoid hemorrhage. Few studies focused on risk factors for ICH and not the impact of residual hematoma after evacuation on the outcomes of the patients. Therefore, 2 questions need to be answered: does residual hematoma after evacuation have impact on the outcome of patients who present with ICH as a result of ruptured intracranial aneurysms? Is radical pursuit of the hematoma necessary? The study was a single-center longitudinal observational type. Data of 2044 consecutive patients with subarachnoid hemorrhage from January 2009 to December 2019 were reviewed. ICHs were established and the locations of aneurysms as well as hematoma volumes were measured by computed tomographic scan before aneurysm occlusion. Only patients who received aneurysm clipping were included. Patients were stratified into hematoma evacuation without residuals versus residual hematoma after evaluation groups, and outcome was assessed according to the modified Rankin Scale (mRS) at 6 months. Out of the 1365 patients who received clipping, 476 patients presented in poor grade, whereas 889 patients' good grade. Our mRS scores revealed that patients who attained hematoma evacuation without residuals in the good-grade category attained better functional outcome than those with residual hematoma after evacuation. Contrarily, our mRS scores did not establish any significant difference in outcome between the poor-grade patients with hematoma evacuation without residuals and patients with residual hematoma after evacuation. Furthermore, our logistic regression model showed that advance age, poor Hunt-Hess grade, and vascular injury due to surgery were contributing factors for poor outcome of patients with ICH. Our data suggested that aggressive hematoma evacuation may not benefit the poor-grade patients. Majority of poor outcomes were due to surgical complications which were vascular related as a result of excessive pursuit of ICH.
Collapse
Affiliation(s)
- Yifan Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Seidu A. Richard
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China
- Department of Medicine, Princefield University, Ho-Volta Region, West Africa
| | - Zhigang Lan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, P. R. China
| |
Collapse
|
11
|
Fung C, Z'Graggen WJ, Jakob SM, Gralla J, Haenggi M, Rothen HU, Mordasini P, Lensch M, Söll N, Terpolilli N, Feiler S, Oertel MF, Raabe A, Plesnila N, Takala J, Beck J. Inhaled Nitric Oxide Treatment for Aneurysmal SAH Patients With Delayed Cerebral Ischemia. Front Neurol 2022; 13:817072. [PMID: 35250821 PMCID: PMC8894247 DOI: 10.3389/fneur.2022.817072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/24/2022] [Indexed: 11/22/2022] Open
Abstract
Background We demonstrated experimentally that inhaled nitric oxide (iNO) dilates hypoperfused arterioles, increases tissue perfusion, and improves neurological outcome following subarachnoid hemorrhage (SAH) in mice. We performed a prospective pilot study to evaluate iNO in patients with delayed cerebral ischemia after SAH. Methods SAH patients with delayed cerebral ischemia and hypoperfusion despite conservative treatment were included. iNO was administered at a maximum dose of 40 ppm. The response to iNO was considered positive if: cerebral artery diameter increased by 10% in digital subtraction angiography (DSA), or tissue oxygen partial pressure (PtiO2) increased by > 5 mmHg, or transcranial doppler (TCD) values decreased more than 30 cm/sec, or mean transit time (MTT) decreased below 6.5 secs in CT perfusion (CTP). Patient outcome was assessed at 6 months with the modified Rankin Scale (mRS). Results Seven patients were enrolled between February 2013 and September 2016. Median duration of iNO administration was 23 h. The primary endpoint was reached in all patients (five out of 17 DSA examinations, 19 out of 29 PtiO2 time points, nine out of 26 TCD examinations, three out of five CTP examinations). No adverse events necessitating the cessation of iNO were observed. At 6 months, three patients presented with a mRS score of 0, one patient each with an mRS score of 2 and 3, and two patients had died. Conclusion Administration of iNO in SAH patients is safe. These results call for a larger prospective evaluation.
Collapse
Affiliation(s)
- Christian Fung
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| | - Werner J Z'Graggen
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Stephan M Jakob
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan Gralla
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias Haenggi
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Hans-Ulrich Rothen
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pasquale Mordasini
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Lensch
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicole Söll
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nicole Terpolilli
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Munich, Germany
- Department of Neurosurgery, Munich University Hospital, Munich, Germany
| | - Sergej Feiler
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Markus F Oertel
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | - Andreas Raabe
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research (ISD), Munich University Hospital, Munich, Germany
| | - Jukka Takala
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jürgen Beck
- Department of Neurosurgery, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Rowland MJ, Garry P, Ezra M, Corkill R, Baker I, Jezzard P, Westbrook J, Douaud G, Pattinson KTS. Early brain injury and cognitive impairment after aneurysmal subarachnoid haemorrhage. Sci Rep 2021; 11:23245. [PMID: 34853362 PMCID: PMC8636506 DOI: 10.1038/s41598-021-02539-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 10/29/2021] [Indexed: 12/21/2022] Open
Abstract
The first 72 h following aneurysm rupture play a key role in determining clinical and cognitive outcomes after subarachnoid haemorrhage (SAH). Yet, very little is known about the impact of so called "early brain injury" on patents with clinically good grade SAH (as defined as World Federation of Neurosurgeons Grade 1 and 2). 27 patients with good grade SAH underwent MRI scanning were prospectively recruited at three time-points after SAH: within the first 72 h (acute phase), at 5-10 days and at 3 months. Patients underwent additional, comprehensive cognitive assessment 3 months post-SAH. 27 paired healthy controls were also recruited for comparison. In the first 72 h post-SAH, patients had significantly higher global and regional brain volume than controls. This change was accompanied by restricted water diffusion in patients. Persisting abnormalities in the volume of the posterior cerebellum at 3 months post-SAH were present to those patients with worse cognitive outcome. When using this residual abnormal brain area as a region of interest in the acute-phase scans, we could predict with an accuracy of 84% (sensitivity 82%, specificity 86%) which patients would develop cognitive impairment 3 months later, despite initially appearing clinically indistinguishable from those making full recovery. In an exploratory sample of good clinical grade SAH patients compared to healthy controls, we identified a region of the posterior cerebellum for which acute changes on MRI were associated with cognitive impairment. Whilst further investigation will be required to confirm causality, use of this finding as a risk stratification biomarker is promising.
Collapse
Affiliation(s)
- Matthew J Rowland
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK.
- Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, Oxford, UK.
| | - Payashi Garry
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Martyn Ezra
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Rufus Corkill
- Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Ian Baker
- Department of Psychological Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, OX3 9DU, UK
| | - Peter Jezzard
- FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Jon Westbrook
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Gwenaëlle Douaud
- FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kyle T S Pattinson
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, Oxford, UK
| |
Collapse
|
13
|
Yan A, Pan X, Wen X, Nie X, Li Y. Activated protein C overexpression suppresses the pyroptosis of subarachnoid hemorrhage model cells by regulating the NLRP3 inflammasome pathway. Exp Ther Med 2021; 22:1391. [PMID: 34650639 PMCID: PMC8506940 DOI: 10.3892/etm.2021.10827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/13/2021] [Indexed: 11/12/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a condition with a high associated mortality rate that is caused by hemorrhagic stroke. Activated protein C (APC) serves a neuroprotective role in central nervous system diseases. However, its role in SAH remains unclear. The present study aimed to investigate the role of APC and its regulatory mechanism in SAH. The SAH rat model was constructed through internal carotid artery puncture, while the SAH cell model was established via the application of oxygenated hemoglobin. ELISA was performed to detect the level of cytokines, and flow cytometry was used to determine the population of pyroptotic cells. Reverse transcription-quantitative PCR and western blotting were used to examine the relative mRNA and protein levels of APC. APC was silenced using specific APC short hairpin RNA. Neurological functions of rats were estimated using modified Garcia scoring and the balance beam test, while SAH was estimated using modified Sugawara's scoring. The results demonstrated that the expression of APC was significantly decreased, whereas the expression of NLR family pyrin domain-containing 3 (NLRP3) was increased in the SAH rat model in a time-dependent manner. The application of APC recombinant protein 3K3A-APC could significantly ameliorate SAH and improve neurological functions. In addition, 3K3A-APC could inhibit pyroptosis in a dose-dependent manner in the SAH cell model. Moreover, the NLRP3 inhibitor BAY11-7082 could reverse the upregulation of pyroptosis induced by APC-knockdown. Overall, the present study revealed that APC could ameliorate SAH-induced early brain injury by suppressing pyroptosis via inhibition of the NLRP3 inflammasome, which could provide a novel strategy for the treatment of SAH.
Collapse
Affiliation(s)
- Ai Yan
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou, Zhejiang 313000, P.R. China
| | - Xuyan Pan
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou, Zhejiang 313000, P.R. China
| | - Xianqiang Wen
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou, Zhejiang 313000, P.R. China
| | - Xiaohu Nie
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou, Zhejiang 313000, P.R. China
| | - Yuntao Li
- Department of Neurosurgery, Huzhou Central Hospital, Affiliated Hospital of Huzhou Normal University, Huzhou, Zhejiang 313000, P.R. China
| |
Collapse
|
14
|
Schwarting J, Nehrkorn K, Liu H, Plesnila N, Terpolilli NA. Role of Pial Microvasospasms and Leukocyte Plugging for Parenchymal Perfusion after Subarachnoid Hemorrhage Assessed by In Vivo Multi-Photon Microscopy. Int J Mol Sci 2021; 22:8444. [PMID: 34445151 PMCID: PMC8395146 DOI: 10.3390/ijms22168444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/05/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is associated with acute and delayed cerebral ischemia. We suggested spasms of pial arterioles as a possible mechanism; however, it remained unclear whether and how pial microvasospasms (MVSs) induce cerebral ischemia. Therefore, we used in vivo deep tissue imaging by two-photon microscopy to investigate MVSs together with the intraparenchymal microcirculation in a clinically relevant murine SAH model. Male C57BL/6 mice received a cranial window. Cerebral vessels and leukocytes were labelled with fluorescent dyes and imaged by in vivo two-photon microscopy before and three hours after SAH induced by filament perforation. After SAH, a large clot formed around the perforation site at the skull base, and blood distributed along the perivascular space of the middle cerebral artery up to the cerebral cortex. Comparing the cerebral microvasculature before and after SAH, we identified three different patterns of constrictions: pearl string, global, and bottleneck. At the same time, the volume of perfused intraparenchymal vessels and blood flow velocity in individual arterioles were significantly reduced by more than 60%. Plugging of capillaries by leukocytes was observed but infrequent. The current study demonstrates that perivascular blood is associated with spasms of pial arterioles and that these spasms result in a significant reduction in cortical perfusion after SAH. Thus, the pial microvasospasm seems to be an important mechanism by which blood in the subarachnoid space triggers cerebral ischemia after SAH. Identifying the mechanisms of pial vasospasm may therefore result in novel therapeutic options for SAH patients.
Collapse
Affiliation(s)
- Julian Schwarting
- Institute for Stroke and Dementia Research, Munich University Hospital, Graduate School of Systemic Neurosciences, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University, 81377 Munich, Germany; (J.S.); (K.N.); (H.L.); (N.A.T.)
- Department of Neurosurgery, Munich University Hospital, 81377 Munich, Germany
| | - Kathrin Nehrkorn
- Institute for Stroke and Dementia Research, Munich University Hospital, Graduate School of Systemic Neurosciences, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University, 81377 Munich, Germany; (J.S.); (K.N.); (H.L.); (N.A.T.)
| | - Hanhan Liu
- Institute for Stroke and Dementia Research, Munich University Hospital, Graduate School of Systemic Neurosciences, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University, 81377 Munich, Germany; (J.S.); (K.N.); (H.L.); (N.A.T.)
| | - Nikolaus Plesnila
- Institute for Stroke and Dementia Research, Munich University Hospital, Graduate School of Systemic Neurosciences, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University, 81377 Munich, Germany; (J.S.); (K.N.); (H.L.); (N.A.T.)
| | - Nicole Angela Terpolilli
- Institute for Stroke and Dementia Research, Munich University Hospital, Graduate School of Systemic Neurosciences, Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-University, 81377 Munich, Germany; (J.S.); (K.N.); (H.L.); (N.A.T.)
- Department of Neurosurgery, Munich University Hospital, 81377 Munich, Germany
| |
Collapse
|
15
|
Dienel A, Veettil RA, Matsumura K, Savarraj JPJ, Choi HA, Kumar T P, Aronowski J, Dash P, Blackburn SL, McBride DW. α 7-Acetylcholine Receptor Signaling Reduces Neuroinflammation After Subarachnoid Hemorrhage in Mice. Neurotherapeutics 2021; 18:1891-1904. [PMID: 33970466 PMCID: PMC8609090 DOI: 10.1007/s13311-021-01052-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 02/04/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) causes a robust inflammatory response which leads worse brain injury and poor outcomes. We investigated if stimulation of nicotinic acetylcholine α7 receptors (α7-AChR) (receptors shown to have anti-inflammatory effects) would reduce inflammation and improve outcomes. To investigate the level of peripheral inflammation after aSAH, inflammatory markers were measured in plasma samples collected in a cohort of aSAH patients. To study the effect of α7-AChR stimulation, SAH was induced in adult mice which were then treated with a α7-AChR agonist, galantamine, or vehicle. A battery of motor and cognitive tests were performed 24 h after subarachnoid hemorrhage. Mice were euthanized and tissue collected for analysis of markers of inflammation or activation of α7-AChR-mediated transduction cascades. A separate cohort of mice was allowed to survive for 28 days to assess long-term neurological deficits and histological outcome. Microglia cell culture subjected to hemoglobin toxicity was used to assess the effects of α7-AChR agonism. Analysis of eighty-two patient plasma samples confirmed enhanced systemic inflammation after aSAH. α7-AChR agonism reduced neuroinflammation at 24 h after SAH in male and female mice, which was associated with improved outcomes. This coincided with JAK2/STAT3 and IRAK-M activity modulations and a robust improvement in neurological/cognitive status that was effectively reversed by interfering with various components of these signaling pathways. Pharmacologic inhibition partially reversed the α7-AChR agonist's benefits, supporting α7-AChR as a target of the agonist's therapeutic effect. The cell culture experiment showed that α7-AChR agonism is directly beneficial to microglia. Our results demonstrate that activation of α7-AChR represents an attractive target for treatment of SAH. Our findings suggest that α7-AChR agonists, and specifically galantamine, might provide therapeutic benefit to aSAH patients.
Collapse
Affiliation(s)
- Ari Dienel
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Remya A Veettil
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Kanako Matsumura
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Jude P J Savarraj
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - H Alex Choi
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Peeyush Kumar T
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | - Pramod Dash
- Department of Neurobiology and Anatomy, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Spiros L Blackburn
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA
| | - Devin W McBride
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center At Houston, Houston, TX, USA.
| |
Collapse
|
16
|
Bhogal P, Makalanda L, Hassan AE, Fiorella D, Andersson T, Ahmad M, Bäzner H, Jaffer O, Henkes H. COVID-19 and Delayed Cerebral Ischemia-More in Common Than First Meets the Eye. J Clin Med 2021; 10:2646. [PMID: 34208470 PMCID: PMC8233948 DOI: 10.3390/jcm10122646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 01/22/2023] Open
Abstract
Since the arrival of the global COVID-19 pandemic scientists around the world have been working to understand the pathological mechanisms resulting from infection. There has gradually been an understanding that COVID-19 triggers a widespread endotheliopathy and that this can result in a widespread thrombosis and in particular a microthrombosis. The mechanisms involved in the microthrombosis are not confined to infection and there is evidence that patients with aneurysmal sub-arachnoid haemorrhage (SAH) also suffer from an endotheliopathy and microthrombosis. In this article we attempt to shed light on similarities in the underlying processes involved in both diseases and suggest potential treatment options.
Collapse
Affiliation(s)
- Pervinder Bhogal
- Department of Interventional Neuroradiology, The Royal London Hospital, Barts NHS Trust, Whitechapel Road, Whitechapel, London E1 1BB, UK;
| | - Levansri Makalanda
- Department of Interventional Neuroradiology, The Royal London Hospital, Barts NHS Trust, Whitechapel Road, Whitechapel, London E1 1BB, UK;
| | - Ameer E. Hassan
- Departments of Neurology and Radiology, University of Texas Rio Grande Valley, Harlingen, TX 78550, USA;
| | - Dave Fiorella
- Department of Neurosurgery, Stony Brook University Hospital, Stony Brook, NY 11794, USA;
| | - Tommy Andersson
- Department of Interventional Neuroradiology, The Karolinska University Hospital, 171 76 Stockholm, Sweden;
| | | | - Hansjörg Bäzner
- Department of Neurology, Klinikum Stuttgart, 70174 Stuttgart, Germany;
| | - Ounali Jaffer
- Department of Interventional Radiology, The Royal London Hospital, Barts NHS Trust, Whitechapel Road, Whitechapel, London E1 1BB, UK;
| | - Hans Henkes
- Department of Neuroradiology, Klinikum Stuttgart, 70174 Stuttgart, Germany;
| |
Collapse
|
17
|
Oguzoglu AS, Senol N, Asci H, Erzurumlu Y, Gulle K, Savran M, Sadef M, Acar BG, Goksel HM. Pregabalin Protects Brain Tissue from Subarachnoid Hemorrhage by Enhancing HIF-1α/eNOS Signaling and VEGF Production. World Neurosurg 2021; 152:e713-e720. [PMID: 34129987 DOI: 10.1016/j.wneu.2021.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVE We investigated the effects of different doses of pregabalin on the pathophysiologic changes in early brain injury after subarachnoid hemorrhage (SAH) in rats. METHODS Thirty-eight Wistar albino rats were divided into 4 groups: control (n = 8), SAH (n = 10), SAH plus 30 mg/kg/day of pregabalin (n = 10), and SAH plus 60 mg/kg/day of pregabalin (n = 10). SAH was induced with 0.3 mL of autologous blood injected to the cisterna magna of rats. Pregabalin was administered intraperitoneally. Oxidative stress markers, mRNA expression of endothelial nitric oxide synthase, hypoxia-inducible factor-1α, and vascular endothelial growth factor, and histopathological changes were evaluated. RESULTS Pregabalin increased mRNA expression of endothelial nitric oxide synthase, hypoxia-inducible factor-1α, and vascular endothelial growth factor in a dose-dependent manner. Significant improvement in the histopathological parameters was observed at 60 mg/kg, including a decrease in diffuse hemorrhagic areas, edema and apoptotic bodies in the associated cortical area, evident vacuolization in the hippocampal area, and apoptotic bodies. However, these improvements were not observed with the lower dose (30 mg/kg). In contrast, the antioxidant effect was greater with 30 mg/kg of pregabalin than with 60 mg/kg. CONCLUSIONS Although the antioxidant effect was significant with the lower dose of pregabalin, the anti-inflammatory effects via vasodilatation were more marked with the higher dose. Significant improvements in the histopathological changes were observed with the higher dose of pregabalin. The dose-dependent effects of pregabalin on SAH should be evaluated in animal studies as a function of time and in the acute and chronic phases.
Collapse
Affiliation(s)
- Ali Serdar Oguzoglu
- Department of Neurosurgery, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Nilgun Senol
- Department of Neurosurgery, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey.
| | - Halil Asci
- Department of Medical Pharmacology, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Yalcin Erzurumlu
- Department of Biochemistry, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Kanat Gulle
- Departments of Histology and Embryology, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Mehtap Savran
- Department of Medical Pharmacology, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Mustafa Sadef
- Department of Neurosurgery, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Berivan Gunduru Acar
- Department of Medical Pharmacology, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| | - Hakan Murat Goksel
- Department of Neurosurgery, Suleyman Demirel University, Faculty of Medicine, Isparta, Turkey
| |
Collapse
|
18
|
Weiland J, Beez A, Westermaier T, Kunze E, Sirén AL, Lilla N. Neuroprotective Strategies in Aneurysmal Subarachnoid Hemorrhage (aSAH). Int J Mol Sci 2021; 22:5442. [PMID: 34064048 PMCID: PMC8196706 DOI: 10.3390/ijms22115442] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) remains a disease with high mortality and morbidity. Since treating vasospasm has not inevitably led to an improvement in outcome, the actual emphasis is on finding neuroprotective therapies in the early phase following aSAH to prevent secondary brain injury in the later phase of disease. Within the early phase, neuroinflammation, thromboinflammation, disturbances in brain metabolism and early neuroprotective therapies directed against delayed cerebral ischemia (DCI) came into focus. Herein, the role of neuroinflammation, thromboinflammation and metabolism in aSAH is depicted. Potential neuroprotective strategies regarding neuroinflammation target microglia activation, metalloproteases, autophagy and the pathway via Toll-like receptor 4 (TLR4), high mobility group box 1 (HMGB1), NF-κB and finally the release of cytokines like TNFα or IL-1. Following the link to thromboinflammation, potential neuroprotective therapies try to target microthrombus formation, platelets and platelet receptors as well as clot clearance and immune cell infiltration. Potential neuroprotective strategies regarding metabolism try to re-balance the mismatch of energy need and supply following aSAH, for example, in restoring fuel to the TCA cycle or bypassing distinct energy pathways. Overall, this review addresses current neuroprotective strategies in aSAH, hopefully leading to future translational therapy options to prevent secondary brain injury.
Collapse
Affiliation(s)
- Judith Weiland
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Alexandra Beez
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Thomas Westermaier
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
- Department of Neurosurgery, Helios-Amper Klinikum Dachau, Krankenhausstr. 15, 85221 Dachau, Germany
| | - Ekkehard Kunze
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Anna-Leena Sirén
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
| | - Nadine Lilla
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider Str. 11, 97080 Würzburg, Germany; (A.B.); (T.W.); (E.K.); (A.-L.S.)
- Department of Neurosurgery, University Hospital Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
19
|
Decreased Superoxide Dismutase Concentrations (SOD) in Plasma and CSF and Increased Circulating Total Antioxidant Capacity (TAC) Are Associated with Unfavorable Neurological Outcome after Aneurysmal Subarachnoid Hemorrhage. J Clin Med 2021; 10:jcm10061188. [PMID: 33809085 PMCID: PMC7999673 DOI: 10.3390/jcm10061188] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Subarachnoid hemorrhage (SAH) is a devastating disease with high morbidity and mortality. Hypoxia-induced changes and hemoglobin accumulation within the subarachnoid space are thought to lead to oxidative stress, early brain injury, and delayed vasospasm. This study aimed to evaluate the antioxidant status and its impact on neurological outcome in patients with aneurysmal SAH. Methods: In this prospective observational study, 29 patients with aneurysmal SAH were included (mean age 54.7 ± 12.4). Blood and cerebrospinal fluid (CSF) samples were collected on days (d) 1, 3, and 7. In addition, 29 patients without intracranial hemorrhage served as controls. The antioxidant system was analyzed by glutathione peroxidase (GSH-Px; U/L) and total and free glutathione-sulfhydryl (GSH; mg/L) in the plasma. Superoxide dismutase (SOD, U/mL) and total antioxidant capacity (TAC, µmol/L) were measured in the serum and CSF. Clinical data were compiled on admission (Hunt and Hess grade, Fisher grade, and GCS). Neurological and cognitive outcome (modified Rankin scale (mRS), Glasgow Outcome Scale Extended (GOSE) and Montreal Cognitive Assessment (MoCA)) was assessed after 6 weeks (6 w) and 6 months (6 m). Results: Plasma levels of SOD increased from day 1 to 7 after SAH (d1: 1.22 ± 0.36 U/L; d3: 1.25 ± 0.33 U/L, p = 0.99; d7: 1.52 ± 0.4 U/L, p = 0.019) and were significantly higher compared to controls (1.11 ± 0.27 U/L) at day 7 (p < 0.001). Concordantly, CSF levels of SOD increased from day 1 to 7 after SAH (d1: 1.22 ± 0.41 U/L; d3: 1.77 ± 0.73 U/L, p = 0.10; d7: 2.37 ± 1.29 U/L, p < 0.0001) without becoming significantly different compared to controls (1.74 ± 0.8 U/L, p = 0.09). Mean plasma TAC at day 1 (d1: 77.87 ± 49.72 µmol/L) was not statistically different compared to controls (46.74 ± 32.42 µmol/L, p = 0.25). TAC remained unchanged from day 1 to 7 (d3: 92.64 ± 68.58 µmol/L, p = 0.86; d7: 74.07 ± 54.95 µmol/L, p = 0.8) in plasma. TAC in CSF steeply declined from day 1 to 7 in patients with SAH becoming significantly different from controls at days 3 and 7 (d3: 177.3 ± 108.7 µmol/L, p = 0.0046; d7: 85.35 ± 103.9 µmol/L, p < 0.0001). Decreased SOD levels in plasma and CSF are associated with a worse neurological outcome 6 weeks (mRS: CSF p = 0.0001; plasma p = 0.027/GOSE: CSF p = 0.001; plasma p = 0.001) and 6 months (mRS: CSF p = 0.001; plasma p = 0.09/GOSE: CSF p = 0.001; plasma p = 0.001) after SAH. Increased plasma TAC correlated with a worse neurological outcome 6 weeks (mRS: p = 0.001/GOSE p = 0.001) and 6 months (mRS p = 0.001/GOSE p = 0.001) after SAH. Conclusion: In our study, a reduction in the antioxidative enzyme SOD and elevated TAC were associated with a poorer neurological outcome reflected by mRS and GOSE at 6 weeks and 6 months after SAH. A lower initial SOD CSF concentration was associated with the late deterioration of cognitive ability. These findings support the mounting evidence of the role of oxidative stress in early brain injury formation and unfavorable outcome after SAH.
Collapse
|
20
|
Han M, Cao Y, Guo X, Chu X, Li T, Xue H, Xin D, Yuan L, Ke H, Li G, Wang Z. Mesenchymal stem cell-derived extracellular vesicles promote microglial M2 polarization after subarachnoid hemorrhage in rats and involve the AMPK/NF-κB signaling pathway. Biomed Pharmacother 2021; 133:111048. [PMID: 33378955 DOI: 10.1016/j.biopha.2020.111048] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is an acute and severe disease with high disability and mortality. Inflammatory reactions have been proven to occur throughout SAH. Extracellular vesicles derived from mesenchymal stem cells (MSCs-EVs) have shown broad potential for the treatment of brain dysfunction and neuroprotective effects through neurogenesis and angiogenesis after stroke. However, the mechanisms of EVs in neuroinflammation during the acute phase of SAH are not well known. Our present study was designed to investigate the effects of MSCs-EVs on neuroinflammation and the polarization regulation of microglia to the M2 phenotype and related signaling pathways after SAH in rats. The SAH model was induced by an improved method of intravascular perforation, and MSCs-EVs were injected via the tail vein. Post-SAH assessments included neurobehavioral tests as well as brain water content, immunohistochemistry, PCR and Western blot analyses. Our results showed that MSCs-EVs alleviated the expression of inflammatory cytokines in the parietal cortex and hippocampus 24 h and 48 h after SAH and that MSCs-EVs inhibited NF-κB and activated AMPK to reduce inflammation after SAH. Furthermore, MSC-EVs regulated the polarization of microglia toward the M2 phenotype by downregulating interleukin-1β, cluster of differentiation 16, cluster of differentiation 11b, and inducible nitric oxide synthase and upregulating the expression of cluster of differentiation 206 and arginase-1. Additionally, MSCs-EVs inhibited the neuroinflammatory response and had neuroprotective effects in the brain tissues of rats after SAH. This study may support their use as a potential treatment strategy for early SAH in the future.
Collapse
Affiliation(s)
- Min Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China; Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Ying Cao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaofan Guo
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xili Chu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Danqing Xin
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Lin Yuan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Hongfei Ke
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
21
|
Spencer P, Jiang Y, Liu N, Han J, Li Y, Vodovoz S, Dumont AS, Wang X. Update: Microdialysis for Monitoring Cerebral Metabolic Dysfunction after Subarachnoid Hemorrhage. J Clin Med 2020; 10:jcm10010100. [PMID: 33396652 PMCID: PMC7794715 DOI: 10.3390/jcm10010100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/25/2020] [Accepted: 12/25/2020] [Indexed: 01/07/2023] Open
Abstract
Cerebral metabolic dysfunction has been shown to extensively mediate the pathophysiology of brain injury after subarachnoid hemorrhage (SAH). The characterization of the alterations of metabolites in the brain can help elucidate pathophysiological changes occurring throughout SAH and the relationship between secondary brain injury and cerebral energy dysfunction after SAH. Cerebral microdialysis (CMD) is a tool that can measure concentrations of multiple bioenergetics metabolites in brain interstitial fluid. This review aims to provide an update on the implication of CMD on the measurement of metabolic dysfunction in the brain after SAH. A literature review was conducted through a general PubMed search with the terms “Subarachnoid Hemorrhage AND Microdialysis” as well as a more targeted search using MeSh with the search terms “Subarachnoid hemorrhage AND Microdialysis AND Metabolism.” Both experimental and clinical papers were reviewed. CMD is a suitable tool that has been used for monitoring cerebral metabolic changes in various types of brain injury. Clinically, CMD data have shown the dramatic changes in cerebral metabolism after SAH, including glucose depletion, enhanced glycolysis, and suppressed oxidative phosphorylation. Experimental studies using CMD have demonstrated a similar pattern of cerebral metabolic dysfunction after SAH. The combination of CMD and other monitoring tools has also shown value in further dissecting and distinguishing alterations in different metabolic pathways after brain injury. Despite the lack of a standard procedure as well as the presence of limitations regarding CMD application and data interpretation for both clinical and experimental studies, emerging investigations have suggested that CMD is an effective way to monitor the changes of cerebral metabolic dysfunction after SAH in real-time, and alternatively, the combination of CMD and other monitoring tools might be able to further understand the relationship between cerebral metabolic dysfunction and brain injury after SAH, determine the severity of brain injury and predict the pathological progression and outcomes after SAH. More translational preclinical investigations and clinical validation may help to optimize CMD as a powerful tool in critical care and personalized medicine for patients with SAH.
Collapse
Affiliation(s)
| | - Yinghua Jiang
- Correspondence: (Y.J.); (X.W.); Tel.: +504-988-9117 (Y.J.); +504-988-2646 (X.W.)
| | | | | | | | | | | | - Xiaoying Wang
- Correspondence: (Y.J.); (X.W.); Tel.: +504-988-9117 (Y.J.); +504-988-2646 (X.W.)
| |
Collapse
|
22
|
The Role of Oxidative Stress in Early Brain Injury after Subarachnoid Hemorrhage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020. [DOI: 10.1155/2020/8877116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review focuses on the problem of oxidative stress in early brain injury (EBI) after spontaneous subarachnoid hemorrhage (SAH). EBI involves complex pathophysiological mechanisms, including oxidative stress. In the first section, we describe the main sources of free radicals in EBI. There are several sources of excessive generation of free radicals from mitochondrial free radicals’ generation and endoplasmic reticulum stress, to hemoglobin and enzymatic free radicals’ generation. The second part focuses on the disruption of antioxidant mechanisms in EBI. The third section describes some newly found molecular mechanisms and pathway involved in oxidative stress after EBI. The last section is dedicated to the pathophysiological mechanisms through which free radicals mediate early brain injury.
Collapse
|
23
|
Mean Platelet Volume/Platelet Count Ratio is Associated with Poor Clinical Outcome After Aneurysmal Subarachnoid Hemorrhage. J Stroke Cerebrovasc Dis 2020; 29:105208. [DOI: 10.1016/j.jstrokecerebrovasdis.2020.105208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 12/14/2022] Open
|
24
|
Ezra M, Garry P, Rowland MJ, Mitsis GD, Pattinson KT. Phase dynamics of cerebral blood flow in subarachnoid haemorrhage in response to sodium nitrite infusion. Nitric Oxide 2020; 106:55-65. [PMID: 33283760 DOI: 10.1016/j.niox.2020.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 11/25/2022]
Abstract
Aneurysmal subarachnoid haemorrhage (SAH) is a devastating subset of stroke. One of the major determinates of morbidity is the development of delayed cerebral ischemia (DCI). Disruption of the nitric oxide (NO) pathway and consequently the control of cerebral blood flow (CBF), known as cerebral autoregulation, is believed to play a role in its pathophysiology. Through the pharmacological manipulation of in vivo NO levels using an exogenous NO donor we sought to explore this relationship. Phase synchronisation index (PSI), an expression of the interdependence between CBF and arterial blood pressure (ABP) and thus cerebral autoregulation, was calculated before and during sodium nitrite administration in 10 high-grade SAH patients acutely post-rupture. In patients that did not develop DCI, there was a significant increase in PSI around 0.1 Hz during the administration of sodium nitrite (33%; p-value 0.006). In patients that developed DCI, PSI did not change significantly. Synchronisation between ABP and CBF at 0.1 Hz has been proposed as a mechanism by which organ perfusion is maintained, during periods of physiological stress. These findings suggest that functional NO depletion plays a role in impaired cerebral autoregulation following SAH, but the development of DCI may have a distinct pathophysiological aetiology.
Collapse
Affiliation(s)
- Martyn Ezra
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, UK.
| | - Payashi Garry
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | - Matthew J Rowland
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| | | | - Kyle Ts Pattinson
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, UK
| |
Collapse
|
25
|
Ironside N, Christophe B, Bruce S, Carpenter AM, Robison T, Yoh N, Cremers S, Landry D, Frey HP, Chen CJ, Hoh BL, Kim LJ, Claassen J, Connolly ES. A phase II randomized controlled trial of tiopronin for aneurysmal subarachnoid hemorrhage. J Neurosurg 2020; 133:351-359. [PMID: 31299655 DOI: 10.3171/2019.4.jns19478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/12/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Delayed cerebral ischemia (DCI) is a significant contributor to poor outcomes after aneurysmal subarachnoid hemorrhage (aSAH). The neurotoxin 3-aminopropanal (3-AP) is upregulated in cerebral ischemia. This phase II clinical trial evaluated the efficacy of tiopronin in reducing CSF 3-AP levels in patients with aSAH. METHODS In this prospective, randomized, double-blind, placebo-controlled, multicenter clinical trial, 60 patients were assigned to receive tiopronin or placebo in a 1:1 ratio. Treatment was commenced within 96 hours after aSAH onset, administered at a dose of 3 g daily, and continued until 14 days after aSAH or hospital discharge, whichever occurred earlier. The primary efficacy outcome was the CSF 3-AP level at 7 ± 1 days after aSAH. RESULTS Of the 60 enrolled patients, 29 (97%) and 27 (93%) in the tiopronin and placebo arms, respectively, received more than one dose of the study drug or placebo. At post-aSAH day 7 ± 1, CSF samples were available in 41% (n = 12/29) and 48% (n = 13/27) of patients in the tiopronin and placebo arms, respectively. No difference in CSF 3-AP levels at post-aSAH day 7 ± 1 was observed between the study arms (11 ± 12 nmol/mL vs 13 ± 18 nmol/mL; p = 0.766). Prespecified adverse events led to early treatment cessation for 4 patients in the tiopronin arm and 2 in the placebo arm. CONCLUSIONS The power of this study was affected by missing data. Therefore, the authors could not establish or refute an effect of tiopronin on CSF 3-AP levels. Additional observational studies investigating the role of 3-AP as a biomarker for DCI may be warranted prior to its use as a molecular target in future clinical trials.Clinical trial registration no.: NCT01095731 (ClinicalTrials.gov).
Collapse
Affiliation(s)
- Natasha Ironside
- 1Department of Neurological Surgery, Columbia University Medical Center
| | | | - Samuel Bruce
- 1Department of Neurological Surgery, Columbia University Medical Center
| | | | - Trae Robison
- 1Department of Neurological Surgery, Columbia University Medical Center
| | - Nina Yoh
- 1Department of Neurological Surgery, Columbia University Medical Center
| | - Serge Cremers
- 2Division of Laboratory Medicine, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center
| | - Donald Landry
- 3Department of Medicine, Columbia University Medical Center
| | - Hans-Peter Frey
- 4Department of Neurology, Columbia University Medical Center, New York, New York
| | - Ching-Jen Chen
- 5Department of Neurological Surgery, University of Virginia Health System, Charlottesville, Virginia
| | - Brian L Hoh
- 6Department of Neurosurgery, University of Florida, Gainesville, Florida; and
| | - Louis J Kim
- 7Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Jan Claassen
- 4Department of Neurology, Columbia University Medical Center, New York, New York
| | | |
Collapse
|
26
|
Ho WM, Görke AS, Glodny B, Oberacher H, Helbok R, Thomé C, Petr O. Time Course of Metabolomic Alterations in Cerebrospinal Fluid After Aneurysmal Subarachnoid Hemorrhage. Front Neurol 2020; 11:589. [PMID: 32655487 PMCID: PMC7324721 DOI: 10.3389/fneur.2020.00589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/22/2020] [Indexed: 11/13/2022] Open
Abstract
Object: The aim of this study was to investigate metabolite levels in cerebrospinal fluid (CSF) in their time-dependent course after aneurysmal subarachnoid hemorrhage (aSAH) comparing them to patients harboring unruptured intracranial aneurysms. Methods: Eighty CSF samples of 16 patients were analyzed. The study population included patients undergoing endovascular/microsurgical treatment of ruptured intracranial aneurysms (n = 8), which were assessed for 9 days after aSAH. Control samples were collected from the basal cisterns in elective aneurysm surgery (n = 8). The CSF samples were consecutively collected with extraventricular drain (EVD) placement/intraoperatively, 6 h later, and daily thereafter (day 1-9). The endogenous metabolites were analyzed with a targeted quantitative and quality controlled metabolomics approach using the AbsoluteIDQ®p180Kit. Differences inbetween timepoints and compared to the control group were evaluated. Results: Numerous alterations of amino acid (AA) levels were detected within the first hours after bleeding. The highest mean concentrations occurred 1 week after aSAH. AA levels were continuously increasing over time starting 6 h after aSAH. Taurine concentration was highest briefly after aSAH starting to decrease already after 6 h (vs. day 1-9, p = 0.02). The levels of sphingomyelins/ phosphatidylcholines/ lysophosphatidylcholines/mono-unsaturated fatty acid chain were highly elevated on day 0 (compared to other timepoints or controls, p < 0.01) and decreased over the next several days to concentrations comparable to the control group. Carnitine concentrations were decreased after SAH (vs. day 7, p < 0.01), while they recovered within the next day. The Fischer ratio of branched-chain AA to aromatic AA was lowest immediately after SAH and increased in 7 days (p < 0.001). Conclusion: AA levels in CSF increased overtime and often differ from patients without SAH. There was a peak concentration of structural AA within the first 6 h after aneurysm treatment. Time-dependent alterations of CSF metabolites and compounds may elucidate pathophysiological processes after aSAH, providing potential predictors assessed non-invasively by routine lab testing.
Collapse
Affiliation(s)
- Wing Mann Ho
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - Alice S Görke
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - Bernhard Glodny
- Department of Radiology, Medical University Innsbruck, Innsbruck, Austria
| | - Herbert Oberacher
- Department of Forensic Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Raimund Helbok
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - Ondra Petr
- Department of Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
27
|
Seemiller J, Challagundla S, Taylor T, Zand R. Intrathecal blood injection: a case report of a rare complication of an epidural blood patch. BMC Neurol 2020; 20:187. [PMID: 32404065 PMCID: PMC7222553 DOI: 10.1186/s12883-020-01763-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/04/2020] [Indexed: 11/10/2022] Open
Abstract
Background Intrathecal injection is a rare complication of spinal anesthesia and an underreported complication of epidural blood patches. Although there are other reported cases of intrathecal blood injection, these cases lack confirmatory imaging and others report injection of mixed blood with other agents. Case presentation We present a case report of post-laminectomy cerebrospinal fluid leak who underwent epidural blood patch placement. CT and MRI brain imaging was obtained, depicting intrathecal blood products. The patient had subsequent seizures and respiratory distress, received supportive care, and returned to baseline after several days. Conclusion The patient’s clinical course illustrates the potential complications of blood products within CSF, including seizures and respiratory distress, which improved with supportive care in this case. Importantly, to our knowledge, this is the only report that clearly depicts injection of purely blood products, without other confounding agents (such as gadolinium), into intrathecal space and with diffuse spread through the CSF as visualized on CT and MRI imaging.
Collapse
Affiliation(s)
- Joseph Seemiller
- Department of Neurology, Neuroscience Institute, Geisinger Medical Center, 100 N. Academy Ave, Danville, PA, 17822, USA.
| | - Sankeerth Challagundla
- Department of Neurology, Neuroscience Institute, Geisinger Medical Center, 100 N. Academy Ave, Danville, PA, 17822, USA
| | - Travis Taylor
- Department of Neurology, Neuroscience Institute, Geisinger Medical Center, 100 N. Academy Ave, Danville, PA, 17822, USA
| | - Ramin Zand
- Department of Neurology, Neuroscience Institute, Geisinger Medical Center, 100 N. Academy Ave, Danville, PA, 17822, USA
| |
Collapse
|
28
|
Solar P, Mackerle Z, Joukal M, Jancalek R. Non-steroidal anti-inflammatory drugs in the pathophysiology of vasospasms and delayed cerebral ischemia following subarachnoid hemorrhage: a critical review. Neurosurg Rev 2020; 44:649-658. [PMID: 32124117 DOI: 10.1007/s10143-020-01276-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/03/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening condition associated with the development of early brain injury (EBI) and delayed cerebral ischemia (DCI). Pharmacological treatment of vasospasm following aSAH currently mainly comprises nimodipine administration. In the past few years, many drugs that can potentially benefit cases of subarachnoid hemorrhage have become available. The objective of this review is to critically assess the effects of non-steroidal anti-inflammatory drugs (NSAIDs) following aSAH. A systematic literature review was conducted following PRISMA guidelines. The search was aimed at studies addressing aSAH and NSAIDs during the 2010 to 2019 period, and it yielded 13 articles. Following the application of search criteria, they were divided into two groups, one containing 6 clinical articles and the other containing 7 experimental articles on animal models of aSAH. Inflammatory cerebral changes after aneurysm rupture contribute to the development of EBI, DCI and cerebral vasospasm. It appears that NSAIDs (especially coxibs) are even more effective in reducing vasospasm than nimodipine. Other beneficial effects of NSAIDs include reduction in mortality, improved functional outcome and increased hypoaggregability. However, despite these positive effects, there is only one randomized, double-blind, placebo-controlled trial showing a tendency towards a better outcome with lower incidence of vasospasm or mortality in patients following aSAH.
Collapse
Affiliation(s)
- Peter Solar
- Department of Neurosurgery - St. Anne's University Hospital Brno, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Department of Neurosurgery, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic
- Cellular and Molecular Neurobiology Research Group, Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdenek Mackerle
- Department of Neurosurgery - St. Anne's University Hospital Brno, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
- Department of Neurosurgery, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic
| | - Marek Joukal
- Cellular and Molecular Neurobiology Research Group, Department of Anatomy, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radim Jancalek
- Department of Neurosurgery - St. Anne's University Hospital Brno, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
- Department of Neurosurgery, St. Anne's University Hospital Brno, Pekarska 53, 656 91, Brno, Czech Republic.
| |
Collapse
|
29
|
Gürer B, Kertmen H, Kuru Bektaşoğlu P, Öztürk ÖÇ, Bozkurt H, Karakoç A, Arıkök AT, Çelikoğlu E. The effects of Cinnamaldehyde on early brain injury and cerebral vasospasm following experimental subarachnoid hemorrhage in rabbits. Metab Brain Dis 2019; 34:1737-1746. [PMID: 31444631 DOI: 10.1007/s11011-019-00480-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/08/2019] [Indexed: 12/26/2022]
Abstract
The neuroprotective and vasodilatory effects of cinnamaldehyde have been widely studied and documented. On the basis of these findings, we hypothesized that cinnamaldehyde exhibits therapeutic effects on subarachnoid hemorrhage-induced early brain injury and cerebral vasospasm. Thirty-two adult male New Zealand white rabbits were randomly divided into four groups of eight rabbits: control, subarachnoid hemorrhage, subarachnoid hemorrhage + vehicle, and subarachnoid hemorrhage + cinnamaldehyde. An intraperitoneal dose of 50 mg/kg cinnamaldehyde was administered 5 min following an intracisternal blood injection, followed by three further daily injections at identical doses. The animals were sacrificed 72 h after subarachnoid hemorrhage was induced. The cross-sectional areas and arterial wall thicknesses of the basilar artery were measured and hippocampal degeneration scores were evaluated. Treatment with cinnamaldehyde was effective in providing neuroprotection and attenuating cerebral vasospasm after subarachnoid hemorrhage in rabbits. It effectively increased the cross-sectional areas of the basilar artery and reduced the arterial wall thickness; in addition, hippocampal degeneration scores were lower in the cinnamaldehyde group. The findings of this study showed, for the first time to our knowledge, that cinnamaldehyde exhibits neuroprotective activity against subarachnoid hemorrhage-induced early brain injury and that it can prevent vasospasm. Potential mechanisms underlying the neuroprotection and vasodilation were discussed. Cinnamaldehyde could play a role in subarachnoid hemorrhage treatment.
Collapse
Affiliation(s)
- Bora Gürer
- Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Zümrütevler mh. Emek cad. Nish Adalar Sitesi 36. Blok Daire 38, 34852, Maltepe, İstanbul, Turkey.
| | - Hayri Kertmen
- Diskapi Yildirim Beyazit Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Ankara, Turkey
| | - Pınar Kuru Bektaşoğlu
- Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Zümrütevler mh. Emek cad. Nish Adalar Sitesi 36. Blok Daire 38, 34852, Maltepe, İstanbul, Turkey
- Department of Physiology, Marmara University School of Medicine, Istanbul, Turkey
| | - Özden Çağlar Öztürk
- Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Zümrütevler mh. Emek cad. Nish Adalar Sitesi 36. Blok Daire 38, 34852, Maltepe, İstanbul, Turkey
| | - Hüseyin Bozkurt
- Department of Neurosurgery, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Ata Türker Arıkök
- Diskapi Yildirim Beyazit Education and Research Hospital, Department of Pathology, University of Health Sciences, Ankara, Turkey
| | - Erhan Çelikoğlu
- Fatih Sultan Mehmet Education and Research Hospital, Department of Neurosurgery, University of Health Sciences, Zümrütevler mh. Emek cad. Nish Adalar Sitesi 36. Blok Daire 38, 34852, Maltepe, İstanbul, Turkey
| |
Collapse
|
30
|
Jeong HG, Cha BG, Kang DW, Kim DY, Ki SK, Kim SI, Han JH, Yang W, Kim CK, Kim J, Lee SH. Ceria Nanoparticles Synthesized With Aminocaproic Acid for the Treatment of Subarachnoid Hemorrhage. Stroke 2019; 49:3030-3038. [PMID: 30571409 DOI: 10.1161/strokeaha.118.022631] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background and Purpose- Despite early aneurysm repair and aggressive management for complications, subarachnoid hemorrhage (SAH) results in at least 25% mortality rate and 50% persistent neurological deficit. We investigated whether ceria nanoparticles which have potent antioxidative activities can protect against subarachnoid hemorrhage via attenuating fatal brain injuries. Methods- Uniform, 3 nm, water-dispersed ceria nanoparticles were prepared from short sol-gel reaction of cerium (III) ions with aminocaproic acid in aqueous phase. SAH was induced by endovascular perforation of middle cerebral artery of rats. A single dose of ceria nanoparticles (0.5 mg Ce/kg) or saline control was randomly administered intravenously at an hour post-SAH. Neuronal death, macrophage infiltration, SAH grade, and brain edema were evaluated at 72 hours. Mortality and neurological function were assessed for 14 days. Results- The obtained ceria nanoparticles with high Ce3+ to Ce4+ ratio demonstrated potent antioxidative, cytoprotective, and anti-inflammatory activities in vitro. In rodent SAH models, the severity of hemorrhage was comparable between the ceria nanoparticles- and saline-treated groups. However, ceria nanoparticles significantly reduced neuronal death, macrophage infiltration, and brain edema after SAH. Ceria nanoparticles successfully improved survival rates (88.2% in the ceria nanoparticles group versus 21.1% in the control group; P<0.001) and neurological outcomes (modified Garcia score: 12.1±0.5 in the ceria nanoparticles group versus 4.4±0.5 in the control group; P<0.001) of the animals with SAH. Conclusions- Ceria nanoparticles, totally synthesized in aqueous phase using aminocaproic acid, demonstrated promising results against SAH via potent antioxidative, neuroprotective and anti-inflammatory activities. Given the obvious limitations of current therapies for SAH, ceria nanoparticles can be a potential therapeutic agent which might result in a paradigm shift in SAH treatment.
Collapse
Affiliation(s)
- Han-Gil Jeong
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Bong Geun Cha
- School of Chemical Engineering (B.G.C., J.K.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Dong-Wan Kang
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Do Yeon Kim
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Seul Ki Ki
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Song I Kim
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Ju Hee Han
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Wookjin Yang
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Chi Kyung Kim
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea.,Department of Neurology, Korea University Guro Hospital and Korea University College of Medicine, Seoul (C.K.K.)
| | - Jaeyun Kim
- School of Chemical Engineering (B.G.C., J.K.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Technology (SAIHST) (J.K.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea.,Biomedical Institute for Convergence (BICS) (J.K.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Seung-Hoon Lee
- From the Laboratory of Innovative Nanotechnology, Biomedical Research Institute and Department of Neurology, Seoul National University Hospital, Republic of Korea (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.).,Korean Cerebrovascular Research Institute, Seoul (H.-G.J., D.-W.K., D.Y.K., S.K.K., S.I.K., J.h.H., W.Y., C.K.K., S.-H.L.), Sungkyunkwan University (SKKU), Suwon, Republic of Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea (S.-H.L.)
| |
Collapse
|
31
|
You S, Zheng D, Delcourt C, Sato S, Cao Y, Zhang S, Yang J, Wang X, Lindley RI, Robinson T, Anderson CS, Chalmers J. Determinants of Early Versus Delayed Neurological Deterioration in Intracerebral Hemorrhage. Stroke 2019; 50:1409-1414. [PMID: 31136288 DOI: 10.1161/strokeaha.118.024403] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Shoujiang You
- From the Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, China (S.Y., Y.C.)
| | - Danni Zheng
- Centre for Big Data Research in Health, University of New South Wales, Sydney, Australia (D.Z.)
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia (D.Z., C.D., X.W., C.S.A., J.C.)
| | - Candice Delcourt
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia (D.Z., C.D., X.W., C.S.A., J.C.)
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW, Australia (C.D., C.S.A.)
| | - Shoichiro Sato
- Department of Cerebrovascular Medicine, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan (S.S.)
| | - Yongjun Cao
- From the Department of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou, China (S.Y., Y.C.)
| | - Shihong Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China (S.Z.)
| | - Jie Yang
- Department of Neurology, the First Affiliated Hospital of Chengdu Medical College, China (J.Y.)
| | - Xia Wang
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia (D.Z., C.D., X.W., C.S.A., J.C.)
| | | | - Thompson Robinson
- Department of Cardiovascular Sciences and National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, United Kingdom (T.R.)
| | - Craig S. Anderson
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia (D.Z., C.D., X.W., C.S.A., J.C.)
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, NSW, Australia (C.D., C.S.A.)
- The George Institute China at Peking University Health Science Center, Beijing, PR China (C.S.A.)
| | - John Chalmers
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, Australia (D.Z., C.D., X.W., C.S.A., J.C.)
| | | |
Collapse
|
32
|
Li Y, Corriveau M, Aagaard-Kienitz B, Ahmed A, Niemann D. Differences in Pressure Within the Sac of Human Ruptured and Nonruptured Cerebral Aneurysms. Neurosurgery 2019; 84:1261-1268. [PMID: 29741656 DOI: 10.1093/neuros/nyy182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 04/10/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Hemodynamics plays a critical role in the development, growth, and rupture of intracranial aneurysms. This data could be vital in determining individual aneurysm rupture risk and could facilitate our understanding of aneurysms. OBJECTIVE To present the largest prospective cross-sectional cohort study of intrasaccular pressure recordings of ruptured and nonruptured intracranial aneurysms and describe the hemodynamic differences that exist between ruptured and nonruptured aneurysms. METHODS During endovascular treatment, a standard 1.8-Fr 200 m length microcatheter was navigated into the dome of the aneurysm prior to coil embolization. With the microcatheter centralized within the dome of the aneurysm, an arterial pressure transducer was attached to the proximal end of the microcatheter to measure the stump pressure inside the aneurysm dome. RESULTS In 68 aneurysms (28 ruptured, 40 nonruptured), we observed that ruptured cerebral aneurysms had a lower systolic and mean arterial pressure compared to nonruptured cohort (P = .0008). Additionally, the pulse pressures within the dome of ruptured aneurysms were significantly more narrow than that of unruptured aneurysms (P = .0001). These findings suggest that there may be an inherent difference between ruptured and nonruptured aneurysms and such recordings obtained during routine digital subtraction angiography could potentially become a widely applied technique to augment risk stratification of aneurysms. CONCLUSION Our preliminary data present new evidence distinguishing ruptured from unruptured aneurysms that may have a critical role as a predictive parameter to stratify the natural history of nonruptured intracranial aneurysms and as a new avenue for future investigation.
Collapse
Affiliation(s)
- Yiping Li
- Department of Neurological Surgery, Neuro Interventional Radiology, University of Wisconsin Medical School, Madison, Wisconsin
| | - Mark Corriveau
- Department of Neurological Surgery, Neuro Interventional Radiology, University of Wisconsin Medical School, Madison, Wisconsin
| | - Beverly Aagaard-Kienitz
- Department of Neurological Surgery, Neuro Interventional Radiology, University of Wisconsin Medical School, Madison, Wisconsin
| | - Azam Ahmed
- Department of Neurological Surgery, Neuro Interventional Radiology, University of Wisconsin Medical School, Madison, Wisconsin
| | - David Niemann
- Department of Neurological Surgery, Neuro Interventional Radiology, University of Wisconsin Medical School, Madison, Wisconsin
| |
Collapse
|
33
|
Hartings JA, York J, Carroll CP, Hinzman JM, Mahoney E, Krueger B, Winkler MKL, Major S, Horst V, Jahnke P, Woitzik J, Kola V, Du Y, Hagen M, Jiang J, Dreier JP. Subarachnoid blood acutely induces spreading depolarizations and early cortical infarction. Brain 2019; 140:2673-2690. [PMID: 28969382 DOI: 10.1093/brain/awx214] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/10/2017] [Indexed: 01/05/2023] Open
Abstract
See Ghoshal and Claassen (doi:10.1093/brain/awx226) for a scientific commentary on this article.
Early cortical infarcts are common in poor-grade patients after aneurysmal subarachnoid haemorrhage. There are no animal models of these lesions and mechanisms are unknown, although mass cortical spreading depolarizations are hypothesized as a requisite mechanism and clinical marker of infarct development. Here we studied acute sequelae of subarachnoid haemorrhage in the gyrencephalic brain of propofol-anaesthetized juvenile swine using subdural electrode strips (electrocorticography) and intraparenchymal neuromonitoring probes. Subarachnoid infusion of 1–2 ml of fresh blood at 200 µl/min over cortical sulci caused clusters of spreading depolarizations (count range: 12–34) in 7/17 animals in the ipsilateral but not contralateral hemisphere in 6 h of monitoring, without meaningful changes in other variables. Spreading depolarization clusters were associated with formation of sulcal clots (P < 0.01), a high likelihood of adjacent cortical infarcts (5/7 versus 2/10, P < 0.06), and upregulation of cyclooxygenase-2 in ipsilateral cortex remote from clots/infarcts. In a second cohort, infusion of 1 ml of clotted blood into a sulcus caused spreading depolarizations in 5/6 animals (count range: 4–20 in 6 h) and persistent thick clots with patchy or extensive infarction of circumscribed cortex in all animals. Infarcts were significantly larger after blood clot infusion compared to mass effect controls using fibrin clots of equal volume. Haematoxylin and eosin staining of infarcts showed well demarcated zones of oedema and hypoxic-ischaemic neuronal injury, consistent with acute infarction. The association of spreading depolarizations with early brain injury was then investigated in 23 patients [14 female; age (median, quartiles): 57 years (47, 63)] after repair of ruptured anterior communicating artery aneurysms by clip ligation (n = 14) or coiling (n = 9). Frontal electrocorticography [duration: 54 h (34, 66)] from subdural electrode strips was analysed over Days 0–3 after initial haemorrhage and magnetic resonance imaging studies were performed at ∼ 24–48 h after aneurysm treatment. Patients with frontal infarcts only and those with frontal infarcts and/or intracerebral haemorrhage were both significantly more likely to have spreading depolarizations (6/7 and 10/12, respectively) than those without frontal brain lesions (1/11, P’s < 0.05). These results suggest that subarachnoid clots in sulci/fissures are sufficient to induce spreading depolarizations and acute infarction in adjacent cortex. We hypothesize that the cellular toxicity and vasoconstrictive effects of depolarizations act in synergy with direct ischaemic effects of haemorrhage as mechanisms of infarct development. Results further validate spreading depolarizations as a clinical marker of early brain injury and establish a clinically relevant model to investigate causal pathologic sequences and potential therapeutic interventions.
Collapse
Affiliation(s)
- Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,UC Gardner Neuroscience Institute and Mayfield Clinic, Cincinnati, OH, USA
| | - Jonathan York
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christopher P Carroll
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jason M Hinzman
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric Mahoney
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bryan Krueger
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Maren K L Winkler
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Germany.,Department of Neurology, Charité University Medicine Berlin, Germany.,Department of Experimental Neurology, Charité University Medicine Berlin, Germany
| | - Viktor Horst
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Germany
| | - Paul Jahnke
- Department of Radiology Charité University Medicine Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Charité University Medicine Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Germany
| | - Yifeng Du
- Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH, USA
| | - Matthew Hagen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jianxiong Jiang
- Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH, USA
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Germany.,Department of Neurology, Charité University Medicine Berlin, Germany.,Department of Experimental Neurology, Charité University Medicine Berlin, Germany
| |
Collapse
|
34
|
Li Z, Han X. Resveratrol alleviates early brain injury following subarachnoid hemorrhage: possible involvement of the AMPK/SIRT1/autophagy signaling pathway. Biol Chem 2019; 399:1339-1350. [PMID: 30067508 DOI: 10.1515/hsz-2018-0269] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/17/2018] [Indexed: 12/20/2022]
Abstract
Resveratrol (RSV) attenuates early brain injury (EBI) after subarachnoid hemorrhage (SAH). This study aimed to investigate whether the effects of RSV on SAH-induced EBI were mediated via the AMPK/SIRT1/autophagy pathway. A SAH rat model was established and oxyhemoglobin (Oxyhb)-induced primary cortical neurons were prepared to mimic SAH in vitro. The results showed that RSV significantly reduced microglia activation and the release of inflammatory cytokines, resulting in the alleviation of neurological behavior impairment, brain edema and neural apoptosis at 24 h post-SAH. However, RSV failed to ameliorate neurological deficits, brain edema and neural apoptosis when SAH injury lasted for 72 h. Additionally, at 24 h post-SAH, RSV-administered rats showed a significant increase in the LC3-II/I ratio and the phosphorylation state of AMPK and SIRT1 protein expression in brain tissues. Further in vitro studies revealed that RSV notably reduced the release of inflammatory cytokines and neural apoptosis in neurons at 24 post-Oxyhb, which was abolished by 3MA (an autophagy inhibitor) and Compound C (an AMPK inhibitor). Moreover, Compound C decreased LC3-II/I ratio and inhibited SIRT1 protein expression, whereas 3MA had no significant effects on AMPK/SIRT1-related proteins. In conclusion, the AMPK/SIRT1/autophagy pathway plays an important role in the alleviation of SAH-induced EBI by RSV.
Collapse
Affiliation(s)
- Zhiguo Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jian She Road, Zhengzhou 450052, Henan, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jian She Road, Zhengzhou 450052, Henan, China
| |
Collapse
|
35
|
Vadokas G, Koehler S, Weiland J, Lilla N, Stetter C, Westermaier T. Early Antiinflammatory Therapy Attenuates Brain Damage After Sah in Rats. Transl Neurosci 2019; 10:104-111. [PMID: 31098320 PMCID: PMC6487785 DOI: 10.1515/tnsci-2019-0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 03/18/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Early inflammatory processes may play an important role in the development of early brain injury (EBI) after subarachnoid hemorrhage (SAH). Experimental studies suggest that anti-inflammatory and membrane-stabilizing drugs might have beneficial effects, although the underlying mechanisms are not fully understood. The aim of this study was to investigate the effect of early treatment with methylprednisolone and minocycline on cerebral perfusion and EBI after experimental SAH. METHODS Male Sprague-Dawley rats were subjected to SAH using the endovascular filament model. 30 minutes after SAH, they were randomly assigned to receive an intravenous injection of methylprednisolone (16mg/kg body weight, n=10), minocycline (45mg/kg body weight, n=10) or saline (n=11). Mean arterial blood pressure (MABP), intracranial pressure (ICP) and local cerebral blood flow (LCBF) over both hemispheres were recorded continuously for three hours following SAH. Neurological assessment was performed after 24 hours. Hippocampal damage was analyzed by immunohistochemical staining (caspase 3). RESULTS Treatment with methylprednisolone or minocycline did not result in a significant improvement of MABP, ICP or LCBF. Animals of both treatment groups showed a non-significant trend to better neurological recovery compared to animals of the control group. Mortality was reduced and hippocampal damage significantly attenuated in both methylprednisolone and minocycline treated animals. CONCLUSION The results of this study suggest that inflammatory processes may play an important role in the pathophysiology of EBI after SAH. Early treatment with the anti-inflammatory drugs methylprednisolone or minocycline in the acute phase of SAH has the potential to reduce brain damage and exert a neuroprotective effect.
Collapse
Affiliation(s)
- Georg Vadokas
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
- Department of Urology, Canisius Wilhelmina Hospital Nijmegen, Weg door Jonkerbos 100, 6532 SZ Nijmegen, Netherlands
| | - Stefan Koehler
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| | - Judith Weiland
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| | - Nadine Lilla
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| | - Christian Stetter
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| | - Thomas Westermaier
- Department of Neurosurgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080Würzburg, Germany
| |
Collapse
|
36
|
Doukas A, Barth H, Petridis KA, Mehdorn M, von der Brelie C. Misdiagnosis of acute subarachnoid hemorrhage in the era of multimodal diagnostic options. Am J Emerg Med 2019; 37:2079-2083. [PMID: 30876772 DOI: 10.1016/j.ajem.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 01/24/2023] Open
Abstract
OBJECTIVE Patients suffering from aneurysmatic Subarachnoid Hemorrhage (SAH) may present with a variety of symptoms. The aim of this study is to evaluate the spectrum of misdiagnoses and to analyze the significance of delay of correct diagnosis on the clinical outcome. METHODS The data was collected prospectively from 2003 to 2013. Patients diagnosed with disease different from aneurysmal SAH by the initially treating physician, and admitted to our department with a delay of at least 24 h after the beginning of the symptoms, were included in this study. We analyzed the various diagnoses that were ascertained instead of SAH and which medical specialty had provided them. RESULTS Overall 704 patients were treated with acute SAH. The inclusion criteria were matched in 76 patients (13.7%). Eleven specialties were involved in the initial patients' treatment. The time interval between initial symptoms and neurosurgical admission varied enormously. Statistically, higher Hunt & Hess score did not lead to an earlier diagnosis (p = 0.56) nor did localisation of the aneurysm (p = 0.75). Lower Fisher score was led to delayed diagnosis (p = 0.02). Delay of diagnosis was not significantly associated with the outcome (p = 0.08) whereas Hunt & Hess grade on admission was a strong predictor for bad outcome (p = 0.00001) as was cerebral vasospasm on the first angiogram (p < 0.05). CONCLUSION A straightforward diagnosis of SAH despite diffuse and unspecific symptoms is crucial for the successful treatment of these patients, especially with high grade SAH.
Collapse
Affiliation(s)
- Alexandros Doukas
- Clinic of Neurosurgery, University Clinics Schleswig, Holstein Campus Kiel Arnold-Heller str. 3, 24105, Germany.
| | - Harald Barth
- Clinic of Neurosurgery, University Clinics Schleswig, Holstein Campus Kiel Arnold-Heller str. 3, 24105, Germany
| | - K Athanasios Petridis
- Clinic of Neurosurgery, University Clinic Düsseldorf, Moorenstr. 5, 40255 Düsseldorf, Germany
| | - Maximilian Mehdorn
- Clinic of Neurosurgery, University Clinics Schleswig, Holstein Campus Kiel Arnold-Heller str. 3, 24105, Germany
| | - Christian von der Brelie
- Clinic of Neurosurgery, University Clinic Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
37
|
Dinc N, Won SY, Quick-Weller J, Berkefeld J, Seifert V, Marquardt G. Prognostic variables and outcome in relation to different bleeding patterns in arteriovenous malformations. Neurosurg Rev 2019; 42:731-736. [DOI: 10.1007/s10143-019-01091-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/12/2019] [Accepted: 02/25/2019] [Indexed: 12/27/2022]
|
38
|
Wang X, Han C, Xing D, Wang C, Ding X. Early management of poor-grade aneurysmal subarachnoid hemorrhage: A prognostic analysis of 104 patients. Clin Neurol Neurosurg 2019; 179:4-8. [PMID: 30776564 DOI: 10.1016/j.clineuro.2019.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 11/19/2022]
Abstract
OBJECTIVE This study aimed to investigate the efficacy of early management for poor-grade aneurysmal subarachnoid hemorrhage (aSAH; WFNS grade IV and V), and analyze the prognostic factors. PATIENTS AND METHODS A total of 104 consecutive patients with poor-grade aSAH from the Department of Neurosurgery, the Second Hospital of Shandong University were enrolled between January 2010 and December 2017. All these patients underwent early microsurgical clipping or endovascular coiling within three days after onset. Microsurgical clipping or endovascular coiling was selected according to aneurysm patterns, patient clinical status, interdisciplinary consultation, and the decision-making of the family. The individual prognosis was evaluated using the modified Rankin scale (mRS), while the prognostic factors were analyzed using multivariate logistic regression analysis. RESULTS There were 58 patients with grade IV aSAH and 46 patients with grade V aSAH. Microsurgical clipping was performed in 71 cases, while endovascular coiling was performed in 33 cases. According to the statistical results, microsurgical clipping was preferred by patients with CT Fisher grade III-IV, WFNS grade V, cerebral hernia, intracranial hematoma and preoperative rebleeding. At six months after onset, the overall rate of favorable outcome (mRS ≤ 2) was 36.5%. Furthermore, the favorable outcome rate was 56.9% in grade IV patients and 11.1% in grade V patients. Moreover, the univariate and multivariate logistic regression analyses revealed that CT Fisher grade I-II, WFNS grade IV and endovascular coiling were associated with a favorable prognosis, while the CT low-density area was slightly correlated to a poor prognosis. CONCLUSION The treatment of aSAH at the early stage by microsurgical clipping or endovascular coiling should be highlighted, especially for patients with WFNS grade IV. CT Fisher grade I-II, WFNS grade IV and endovascular coiling may predict a favorable prognosis, and the CT low-density area appeared to be a possible risk factor for poor prognosis.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Chao Han
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Deguang Xing
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Chengwei Wang
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan 250033, Shandong, China
| | - Xuan Ding
- Department of Neurosurgery, The Second Hospital of Shandong University, Jinan 250033, Shandong, China.
| |
Collapse
|
39
|
Malinova V, Tsogkas I, Behme D, Rohde V, Psychogios MN, Mielke D. Defining cutoff values for early prediction of delayed cerebral ischemia after subarachnoid hemorrhage by CT perfusion. Neurosurg Rev 2019; 43:581-587. [DOI: 10.1007/s10143-019-01082-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/13/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
|
40
|
Ischemic Lesions in Acute and Subacute Perimesencephalic Subarachnoid Hemorrhage. AJR Am J Roentgenol 2018; 212:418-424. [PMID: 30557051 DOI: 10.2214/ajr.18.19700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Perimesencephalic hemorrhage (PMH) is a subtype of nonaneurysmal subarachnoid hemorrhage (SAH). In patients with aneurysmal SAH, the occurrence of acute ischemic lesions is associated with severity and poor outcome. We investigated the frequency of ischemic lesions on DWI in patients with PMH and compared it with the frequency of ischemic lesions in patients with aneurysmal SAH. SUBJECTS AND METHODS From a prospective cohort of 80 patients with acute spontaneous SAH, we included 15 patients with PMH and 39 patients with aneurysmal SAH who were matched on the basis of their clinical condition (World Federation of Neurological Societies grade 1 or 2). MRI was performed less than 72 hours after SAH, 8-10 days after SAH, or at both points in time. The number and distribution of lesions previously seen on DWI that were also seen on a second MRI examination were assessed. Nonparametric tests were used to compare groups. RESULTS Early acute ischemic lesions (those identified < 72 hours after SAH) were found in 46.2% of patients with PMH and in 62.9% of patients with aneurysmal SAH. No significant differences in the number of acute ischemic lesions between groups were noted less than 72 hours after SAH (median, 0.5 lesion [interquartile range {IQR}, two lesions] in patients with PMH vs one lesion [IQR, three lesions] in patients with aneurysmal SAH [p = 0.48] or 8-10 days after SAH (median, 0.5 lesion [IQR, four lesions] in patients with PMH vs 1.5 lesions [IQR, three lesions] in patients with aneurysmal SAH [p = 0.26]). However, 58.3% of patients with aneurysmal SAH had new infarcts at 8-10 days, compared with 7.1% of patients with PMH. Patients with PMH had diffuse ischemic lesions, whereas patients with aneurysmal SAH in the anterior circulation had mainly supratentorial lesions. CONCLUSION Early ischemic lesions appeared on DWI both in patients with PMH and in patients with aneurysmal SAH. The number of lesions increased during the time window for vasospasm, mainly in patients with aneurysmal SAH. Further studies are required to better understand the pathophysiologic mechanisms behind early ischemia in patients with PMH and their impact on prognosis.
Collapse
|
41
|
Early Administration of Hypertonic-Hyperoncotic Hydroxyethyl Starch (HyperHES) Improves Cerebral Blood Flow and Outcome After Experimental Subarachnoid Hemorrhage in Rats. World Neurosurg 2018; 116:e57-e65. [DOI: 10.1016/j.wneu.2018.03.205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 11/21/2022]
|
42
|
Al-Mufti F, Amuluru K, Damodara N, El-Ghanem M, Nuoman R, Kamal N, Al-Marsoummi S, Morris NA, Dangayach NS, Mayer SA. Novel management strategies for medically-refractory vasospasm following aneurysmal subarachnoid hemorrhage. J Neurol Sci 2018; 390:44-51. [DOI: 10.1016/j.jns.2018.02.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/01/2018] [Accepted: 02/22/2018] [Indexed: 11/27/2022]
|
43
|
Qi W, Cao D, Li Y, Peng A, Wang Y, Gao K, Tao C, Wu Y. Atorvastatin ameliorates early brain injury through inhibition of apoptosis and ER stress in a rat model of subarachnoid hemorrhage. Biosci Rep 2018; 38:BSR20171035. [PMID: 29592873 PMCID: PMC5997796 DOI: 10.1042/bsr20171035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 12/15/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is a severe cerebrovascular disease with very poor prognosis. The aim of the present study was to evaluate the protective effects of atorvastatin on early brain injury (EBI) after SAH using a perforation SAH model. Male Sprague-Dawley rats were randomly divided into four groups: the sham group, the SAH group (model group), SAH + 10 mg.kg-1day-1 atorvastatin (low atorvastatin group), and SAH + 20 mg.kg-1day-1 atorvastatin (high atorvastatin group). Atorvastatin was administered orally by gastric gavage for 15 days before operation. At 24 h after SAH, we evaluated the effects of atorvastatin on brain water content, apoptosis by TUNEL assay and scanning electron microscope (SEM), and the expression of apoptosis-related proteins by immunofluorescence and Western blotting analysis. Compared with the sham group, we observed increased brain water content, significant apoptosis, and elevated levels of apoptosis-related proteins including caspase-3, CCAAT enhancer-binding protein homologous protein (CHOP), the 78-kDa glucose-regulated protein (GRP78), and aquaporin-4 (AQP4) in the SAH group. Atorvastatin administration under all doses could significantly reduce brain water content, apoptosis, and the expression levels of caspase-3, CHOP, GRP78, and AQP4 at 24 h after SAH. Our data show that early treatment with atorvastatin effectively ameliorates EBI after SAH through anti-apoptotic effects and the effects might be associated inhibition of caspase-3 and endoplasmic reticulum (ER) stress related proteins CHOP and GRP78.
Collapse
Affiliation(s)
- Wentao Qi
- Department of Neurosurgery,The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Demao Cao
- Department of Neurosurgery,The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Yucheng Li
- Department of Neurosurgery,The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Aijun Peng
- Department of Neurosurgery,The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Youwei Wang
- Department of Neurosurgery,The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Kai Gao
- Department of Neurosurgery,The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Cunshan Tao
- Department of Neurosurgery,The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Yongkang Wu
- Department of Neurosurgery,The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| |
Collapse
|
44
|
Onichimowski D, Nosek K, Goraj R, Jalali R, Wińska A, Pawlos A, Tuyakov B. Use of levosimendan in the treatment of cerebral vascular vasospasm: a case study. Drug Des Devel Ther 2018; 12:1777-1783. [PMID: 29950812 PMCID: PMC6018894 DOI: 10.2147/dddt.s158237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Despite the progress in the management of cerebral arterial aneurysms, subarachnoid hemorrhage (SAH) remains the major cause of neurological disability. While SAH-related deaths usually occur as a result of brain impairment due to hemorrhage, permanent neurological deficits are caused by cerebral ischemia due to edema and spasm of cerebral arteries. Additionally, ~20%-30% of patients with SAH develop secondary cardiomyopathy; this phenomenon is known as neurogenic stress cardiomyopathy (NSC), which is associated with increased mortality and poor long-term prognosis. Levosimendan is a new inotropic drug that causes calcium sensitization of troponin C, thus increasing contraction force of myofilaments. The drug also causes opening of ATP-dependent potassium channels in vascular smooth muscles, which results in dilatation of veins and arteries, including cerebral arteries. To date, there have been several reports of levosimendan application in patients with SAH and neurogenic stress cardiomyopathy, and the effect of the drug on vasospasm has been previously advocated. This paper presents a case report of a 57-year-old patient with massive SAH, where levosimendan was used for reducing vasospasm.
Collapse
Affiliation(s)
- Dariusz Onichimowski
- Department of Anesthesiology and Intensive Care, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Krzysztof Nosek
- Department of Neurology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Radosław Goraj
- Department of Anesthesiology and Intensive Care, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Rakesh Jalali
- Department of Emergency Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Aleksandra Wińska
- Department of Neurology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Aleksandra Pawlos
- Department of Pharmacology and Toxicology, Center for Experimental Medicine, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Bułat Tuyakov
- Department of Anesthesiology and Intensive Care, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
45
|
Jing C, Zhang H, Shishido H, Keep RF, Hua Y. Association of Brain CD163 Expression and Brain Injury/Hydrocephalus Development in a Rat Model of Subarachnoid Hemorrhage. Front Neurosci 2018; 12:313. [PMID: 29867324 PMCID: PMC5964168 DOI: 10.3389/fnins.2018.00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 04/23/2018] [Indexed: 11/13/2022] Open
Abstract
Hemoglobin contributes to brain cell damage and death following subarachnoid hemorrhage (SAH). While CD163, a hemoglobin scavenger receptor, can mediate the clearance of extracellular hemoglobin it has not been well-studied in SAH. In the current study, a filament perforation SAH model was performed in male rats. T2-weighted and T2*-weighted scans were carried out using a 7.0-Tesla MR scanner 24 h after perforation. T2 lesions and hydrocephalus were determined on T2-weighted images. A grading system based on MRI was used to assess SAH severity. The effects of SAH on CD163 were determined by immunohistochemistry staining and Western blots. SAH led to a marked increase in CD163 levels in cortex, white matter and periventricular regions from days 1 to 7. CD163 stained cells were co-localized with neurons, microglia/macrophages, oligodendrocytes and cleaved caspase-3-positive cells, but not astrocytes. Furthermore, CD163 protein levels were increased in rats with higher SAH grades, the presence of T2 lesions on MRI, or hydrocephalus. In conclusion, CD163 expression is markedly upregulated after SAH. It is associated with more severe hemorrhage, as well as MRI T2 lesion and hydrocephalus development.
Collapse
Affiliation(s)
- Chaohui Jing
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
- Department of Neurosurgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Haining Zhang
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Hajime Shishido
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Richard F. Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
46
|
Oligomeric Proantho Cyanidins provides neuroprotection against early brain injury following subarachnoid hemorrhage possibly via anti-oxidative, anti-inflammatory and anti-apoptotic effects. J Clin Neurosci 2017; 46:148-155. [DOI: 10.1016/j.jocn.2017.07.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 04/19/2017] [Accepted: 07/11/2017] [Indexed: 11/21/2022]
|
47
|
Frontera JA, Provencio JJ, Sehba FA, McIntyre TM, Nowacki AS, Gordon E, Weimer JM, Aledort L. The Role of Platelet Activation and Inflammation in Early Brain Injury Following Subarachnoid Hemorrhage. Neurocrit Care 2017; 26:48-57. [PMID: 27430874 DOI: 10.1007/s12028-016-0292-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Early brain injury (EBI) following aneurysmal subarachnoid hemorrhage (SAH) is an important predictor of poor functional outcome, yet the underlying mechanism is not well understood. Animal studies suggest that platelet activation and inflammation with subsequent microthrombosis and ischemia may be a mechanism of EBI. METHODS A prospective, hypothesis-driven study of spontaneous, SAH patients and controls was conducted. Platelet activation [thromboelastography maximum amplitude (MA)] and inflammation [C-reactive protein (CRP)] were measured serially over time during the first 72 h following SAH onset. Platelet activation and inflammatory markers were compared between controls and SAH patients with mild [Hunt-Hess (HH) 1-3] versus severe (HH 4-5) EBI. The association of these biomarkers with 3-month functional outcomes was evaluated. RESULTS We enrolled 127 patients (106 SAH; 21 controls). Platelet activation and CRP increased incrementally with worse EBI/HH grade, and both increased over 72 h (all P < 0.01). Both were higher in severe versus mild EBI (MA 68.9 vs. 64.8 mm, P = 0.001; CRP 12.5 vs. 1.5 mg/L, P = 0.003) and compared to controls (both P < 0.003). Patients with delayed cerebral ischemia (DCI) had more platelet activation (66.6 vs. 64.9 in those without DCI, P = 0.02) within 72 h of ictus. At 3 months, death or severe disability was more likely with higher levels of platelet activation (mRS4-6 OR 1.18, 95 % CI 1.05-1.32, P = 0.007) and CRP (mRS4-6 OR 1.02, 95 % CI 1.00-1.03, P = 0.041). CONCLUSIONS Platelet activation and inflammation occur acutely after SAH and are associated with worse EBI, DCI and poor 3-month functional outcomes. These markers may provide insight into the mechanism of EBI following SAH.
Collapse
Affiliation(s)
- Jennifer A Frontera
- Cerebrovascular Center of the Neurological Institute, Cleveland Clinic, 9500 Euclid Ave. S80, Cleveland, OH, 44195, USA. .,Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - J Javier Provencio
- Department of Neurology and Neuroscience, Brain Immunology and Glia Center, University of Virginia, Charlottesville, VA, USA
| | - Fatima A Sehba
- Department of Neurosurgery, Mount Sinai School of Medicine, New York, NY, USA
| | - Thomas M McIntyre
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Amy S Nowacki
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Errol Gordon
- Department of Critical Care, Mount Sinai School of Medicine, New York, NY, USA
| | - Jonathan M Weimer
- Cerebrovascular Center of the Neurological Institute, Cleveland Clinic, 9500 Euclid Ave. S80, Cleveland, OH, 44195, USA
| | - Louis Aledort
- Department of Medicine, Mount Sinai School of Medicine, New York, NY, USA
| |
Collapse
|
48
|
Rowland MJ, Garry P, Westbrook J, Corkill R, Antoniades CA, Pattinson KTS. Acute impairment of saccadic eye movements is associated with delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Neurosurg 2017; 127:754-760. [DOI: 10.3171/2016.8.jns16408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEDelayed cerebral ischemia (DCI) causing cerebral infarction remains a significant cause of morbidity and mortality following aneurysmal subarachnoid hemorrhage (aSAH). Early brain injury in the first 72 hours following rupture is likely to play a key role in the pathophysiology underlying DCI but remains difficult to quantify objectively. Current diagnostic modalities are based on the concept of vasoconstriction causing cerebral ischemia and infarction and are either invasive or have a steep learning curve and user variability. The authors sought to determine whether saccadic eye movements are impaired following aSAH and whether this measurement in the acute period is associated with the likelihood of developing DCI.METHODSAs part of a prospective, observational cohort study, 24 male and female patients (mean age 53 years old, range 31–70 years old) were recruited. Inclusion criteria included presentation with World Federation of Neurosurgical Societies (WFNS) Grades 1 or 2 (“good grade”) aSAH on admission and endovascular treatment within 72 hours of aneurysmal rupture. DCI and DCI-related cerebral infarction were defined according to consensus guidelines. Saccadometry data were collected at 3 time points in patients: in the first 72 hours, between Days 5 and 10, and at 3 months after aSAH. Data from 10 healthy controls was collected on 1 occasion for comparison.RESULTSAge-adjusted saccadic latency in patients was significantly prolonged in the first 72 hours following aSAH when compared with controls (188.7 msec [95% CI 176.9–202.2 msec] vs 160.7 msec [95% CI 145.6–179.4 msec], respectively; p = 0.0054, t-test). By 3 months after aSAH, there was no significant difference in median saccadic latency compared with controls (188.7 msec [95% CI 176.9–202.2 msec] vs 180.0 msec [95% CI 165.1–197.8 msec], respectively; p = 0.4175, t-test). Patients diagnosed with cerebral infarction due to DCI had a significantly higher age-adjusted saccadic latency in the first 72 hours than those without infarction (240.6 msec [95% CI 216.7–270.3 msec] vs 204.1 msec [95% CI 190.7–219.5 msec], respectively; p = 0.0157, t-test). This difference was more pronounced during Days 5–10 following aSAH, the peak incidence for DCI (303.7 msec [95% CI 266.7–352.7 msec] vs 207.6 msec [95% CI 193.7–223.6 msec], respectively; p < 0.0001, t-test). A binary generalized linear model showed that latency in the first 72 hours was the only significant predictor of cerebral infarction (p = 0.0185).CONCLUSIONSThis is the first study to use saccadometry to measure the saccadic latency of eye movements in patients with aSAH during the acute period following aneurysm rupture. The results showed that median saccadic latency is associated with the risk of developing cerebral infarction due to DCI and may act as a potential objective biomarker to guide the need for intensive care admission and treatment. Future studies will look to formally validate saccadic latency as a biomarker of DCI in a larger cohort and assess whether the addition of saccades improves current clinical models for predicting patients at risk.
Collapse
Affiliation(s)
- Matthew J. Rowland
- 1Nuffield Department of Clinical Neurosciences, University of Oxford; and
- 2Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Payashi Garry
- 1Nuffield Department of Clinical Neurosciences, University of Oxford; and
- 2Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Jon Westbrook
- 1Nuffield Department of Clinical Neurosciences, University of Oxford; and
- 2Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Rufus Corkill
- 2Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | | | - Kyle T. S. Pattinson
- 1Nuffield Department of Clinical Neurosciences, University of Oxford; and
- 2Neurosciences Intensive Care Unit, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| |
Collapse
|
49
|
Sokół B, Urbaniak B, Wąsik N, Plewa S, Klupczyńska A, Jankowski R, Więckowska B, Juszkat R, Kokot Z. Amino Acids in Cerebrospinal Fluid of Patients with Aneurysmal Subarachnoid Haemorrhage: An Observational Study. Front Neurol 2017; 8:438. [PMID: 28894433 PMCID: PMC5581324 DOI: 10.3389/fneur.2017.00438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/10/2017] [Indexed: 01/01/2023] Open
Abstract
Background The authors are aware of only one article investigating amino acid concentrations in cerebrospinal fluid (CSF) in patients with ruptured intracranial aneurysms, and this was published 31 years ago. Since then, both management of subarachnoid haemorrhage (SAH) and amino acid assay techniques have seen radical alterations, yet the pathophysiology of SAH remains unclear. Objective To analyse the pattern of concentrations of amino acids and related compounds in patients with different outcomes following aneurysmal SAH. Methods 49 CSF samples were collected from 23 patients on days 0–3, 5, and 10 post-SAH. Concentrations of 33 amino acids and related compounds were assayed by liquid chromatography tandem mass spectrometry in patients with good [Glasgow Outcome Scale (GOS) 1–3] and poor (GOS 4–5) outcome. Results Of the 33 compounds assayed, only hydroxyproline and 3-aminoisobutyric acid appeared not to increase significantly following SAH. In poor outcome patients, we found significantly higher concentrations of aspartic acid (p = 0.038), glutamic acid (p = 0.038), and seven other compounds on days 0–3 post-SAH; glutamic acid (p = 0.041) on day 5 post-SAH, and 2-aminoadipic acid (p = 0.033) on day 10 post-SAH. The most significant correlation with GOS at 3 months was found for aminoadipic acid on day 10 post-SAH (cc = −0.81). Conclusion Aneurysmal rupture leads to a generalised increase of amino acids and related compounds in CSF. The patterns differ between good and poor outcome cases. Increased excitatory amino acids are strongly indicative of poor outcome.
Collapse
Affiliation(s)
- Bartosz Sokół
- Department of Neurosurgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartosz Urbaniak
- Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Norbert Wąsik
- Department of Neurosurgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Szymon Plewa
- Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Agnieszka Klupczyńska
- Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Roman Jankowski
- Department of Neurosurgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Barbara Więckowska
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, Poznan, Poland
| | - Robert Juszkat
- Department of General and Interventional Radiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Zenon Kokot
- Faculty of Pharmacy, Department of Inorganic and Analytical Chemistry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
50
|
Cherian I, Beltran M, Landi A, Alafaci C, Torregrossa F, Grasso G. Introducing the concept of “CSF-shift edema” in traumatic brain injury. J Neurosci Res 2017; 96:744-752. [DOI: 10.1002/jnr.24145] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/11/2017] [Accepted: 08/07/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Iype Cherian
- Department of Neurosurgery; College of Medical Sciences; Bharatpur Nepal
| | - Margarita Beltran
- Servicio de Radiología; Hospital Universitario Miguel Servet; Zaragoza España
| | - Alessandro Landi
- Department of Neurology and Psychiatry, Division of Neurosurgery; “Sapienza” University of Rome; Italy
| | - Concetta Alafaci
- Department of Neurosurgery; University of Messina; Messina Italy
| | - Fabio Torregrossa
- Neurosurgical Clinic, Department of Experimental Biomedicine & Clinical Neurosciences; University of Palermo; Italy
| | - Giovanni Grasso
- Neurosurgical Clinic, Department of Experimental Biomedicine & Clinical Neurosciences; University of Palermo; Italy
| |
Collapse
|