1
|
Singla K, M P SK, Bhattacharjya A, Saxena R, Choudhary N, Goyal B. Bilirubin in wound healing: A double-edged sword. Cell Biochem Funct 2023; 41:953-958. [PMID: 37653690 DOI: 10.1002/cbf.3849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/27/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
The impact of bilirubin levels on wound healing remains a topic of controversy. The present study is a literature review that examines the impact of increased levels of bilirubin in the bloodstream on the process of wound healing. The physiological pathways and their interrelationships, as well as the relevant research publications, were comprehensively addressed in our discussion. The present study undertook a comprehensive review of the extant literature pertaining to the impact of bilirubin concentration on the process of wound healing, with particular emphasis on its association with reactive oxygen species. This scholarly article provides an overview of several studies that elucidate the mechanisms and correlation between bilirubin and the process of wound healing. The impact of bilirubin on wound healing has been observed, and it appears to function as a modulator. This review demonstrates that there exists a spectrum of bilirubin concentrations that can function as precise regulators, although this range falls under pathological hyperbilirubinemia. Further research is required to determine the precise boundary of this range. Within a certain range, bilirubin serves as a positive regulator in the process of wound healing. Beyond this range, it has the potential to function as a negative regulator.
Collapse
Affiliation(s)
- Kshitij Singla
- All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Sarath Krishnan M P
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | | | - Rahul Saxena
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Nitin Choudhary
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| | - Bela Goyal
- Department of Biochemistry, All India Institute of Medical Sciences, Rishikesh, Uttarakhand, India
| |
Collapse
|
2
|
Jin Q, Chen M, Jin Z, Jiang Y, Hong H, Qian Y, Liu W, Gao X, Jiang L, Xu J, Liu Q, Wei Z. Quercetin alleviates gliotoxin-induced duckling tissue injury by inhibiting oxidative stress, inflammation and increasing heterophil extracellular traps release. Food Chem Toxicol 2023; 176:113748. [PMID: 36990423 DOI: 10.1016/j.fct.2023.113748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Aspergillus fumigatus causes aspergillosis with high morbidity and mortality in the duck industry. As a vital virulence factor produced by A. fumigatus, gliotoxin (GT) is widely present in food and feed, threatening duck industry and human health. Quercetin is a polyphenol flavonoid compound from natural plants with anti-inflammatory and antioxidant functions. However, the effects of quercetin on ducklings with GT poisoning are unknown. The model of ducklings with GT poisoning was established, and the protective effects and molecular mechanisms of quercetin on ducklings with GT poisoning were investigated. Ducklings were divided into control, GT, and quercetin groups. A model of GT (2.5 mg/kg) poisoning in ducklings was successfully established. Quercetin protected GT-induced liver and kidney functions and alleviated GT-induced alveolar wall thickening in lungs, cell fragmentation, and inflammatory cell infiltration in liver and kidney. Quercetin decreased malondialdehyde (MDA) and increased superoxide dismutase (SOD) and catalase (CAT) after GT treatment. Quercetin significantly reduced GT-induced mRNA expression levels of inflammatory factors. Furthermore, quercetin increased GT-reduced heterophil extracellular traps (HETs) in serum. These results indicated that quercetin protected ducklings against GT poisoning by inhibiting oxidative stress, inflammation and increasing HETs release, which confirms the potential applicability of quercetin in treating GT-induced duckling poisoning.
Collapse
|
3
|
Mohamed OAA, Tesen HS, Hany M, Sherif A, Abdelwahab MM, Elnaggar MH. The role of hypoxia on prostate cancer progression and metastasis. Mol Biol Rep 2023; 50:3873-3884. [PMID: 36787054 PMCID: PMC10042974 DOI: 10.1007/s11033-023-08251-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/04/2023] [Indexed: 02/15/2023]
Abstract
Prostate cancer is the second most common cancer diagnosed in men and the fifth-leading cause of cancer death in men worldwide. Like any solid tumor, the hypoxic microenvironment of prostatic cancer drives hypoxia-inducible factors (HIFs) to mediate cell adaptions to hypoxic conditions. HIFs direct different signaling pathways such as PI3K/Akt/mTOR, NOX, and Wnt/β-Catenin to tumor progression depending on the degree of hypoxia. HIFs regulate cytoskeleton protein expression, promoting epithelial-mesenchymal transition (EMT), which occurs when cancer cells lose cell-to-cell adhesions and start invasion and metastasis. Through activating pathways, the hypoxic microenvironment maintains the self-renewal, potency, and anti-apoptotic function of prostate cancer cells and induces tumor metastasis and transformation. These pathways could serve as a potential target for prostate cancer therapy. HIFs increase the expression of androgen receptors on cancer cells maintaining the growth and survival of prostate cancer and the development of its castration resistance. In this review, we elaborate on the role of hypoxia in prostatic cancer pathogenesis and different hypoxia-induced mechanisms.
Collapse
Affiliation(s)
- Osama A A Mohamed
- Biotechnology Department, Faculty of Science, Mansoura University, Dakahlia, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| | - Heba S Tesen
- Faculty of Medicine, Ain Shams University, Cairo, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| | - Marwa Hany
- Biotechnology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Aya Sherif
- Chemistry & Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| | - Maya Magdy Abdelwahab
- Faculty of Medicine, Helwan University, Cairo, Egypt. .,Biomedical Research Department, Tetraploid Team, Cairo, Egypt.
| | - Muhammed H Elnaggar
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt.,Biomedical Research Department, Tetraploid Team, Cairo, Egypt
| |
Collapse
|
4
|
Agmatine Mitigates Inflammation-Related Oxidative Stress in BV-2 Cells by Inducing a Pre-Adaptive Response. Int J Mol Sci 2022; 23:ijms23073561. [PMID: 35408922 PMCID: PMC8998340 DOI: 10.3390/ijms23073561] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/19/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation and microglial activation, common components of most neurodegenerative diseases, can be imitated in vitro by challenging microglia cells with Lps. We here aimed to evaluate the effects of agmatine pretreatment on Lps-induced oxidative stress in a mouse microglial BV-2 cell line. Our findings show that agmatine suppresses nitrosative and oxidative burst in Lps-stimulated microglia by reducing iNOS and XO activity and decreasing O2- levels, arresting lipid peroxidation, increasing total glutathione content, and preserving GR and CAT activity. In accordance with these results, agmatine suppresses inflammatory NF-kB, and stimulates antioxidant Nrf2 pathway, resulting in decreased TNF, IL-1 beta, and IL-6 release, and reduced iNOS and COX-2 levels. Together with increased ARG1, CD206 and HO-1 levels, our results imply that, in inflammatory conditions, agmatine pushes microglia towards an anti-inflammatory phenotype. Interestingly, we also discovered that agmatine alone increases lipid peroxidation end product levels, induces Nrf2 activation, increases total glutathione content, and GPx activity. Thus, we hypothesize that some of the effects of agmatine, observed in activated microglia, may be mediated by induced oxidative stress and adaptive response, prior to Lps stimulation.
Collapse
|
5
|
Wang H, Riemann M, Liu Q, Siegrist J, Nick P. Glycyrrhizin, the active compound of the TCM drug Gan Cao stimulates actin remodelling and defence in grapevine. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110712. [PMID: 33288019 DOI: 10.1016/j.plantsci.2020.110712] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 06/12/2023]
Abstract
Actin remodelling by a membrane-associated oxidative process can sense perturbations of membrane integrity and activate defence. In the current work, we show that glycyrrhizin, a muscle relaxant used in Traditional Chinese Medicine, can activate oxidative burst and actin remodelling in tobacco BY-2 cells, which could be suppressed by diphenylene iodonium, an inhibitor of NADPH oxidases. Glycyrrhizin caused a dose-dependent delay of proliferation, and induced cell death, which was suppressed by addition of indole-acetic acid, a natural auxin that can mitigate RboH dependent actin remodelling. To test, whether the actin remodelling induced by glycyrrhizin was followed by activation of defence, several events of basal immunity were probed. We found that glycyrrhizin induced a transient extracellular alkalinisation, indicative of calcium influx. Furthermore, transcripts of phytoalexins genes, were activated in cells of the grapevine Vitis rupestris, and this induction was followed by accumulation of the glycosylated stilbene α-piceid. We also observed that glycyrrhizin was able to induce actin bundling in leaves of a transgenic grape, especially in guard cells. We discuss these data in frame of a model, where glycyrrhizin, through stimulation of RboH, can cause actin remodelling, followed by defence responses, such as calcium influx, induction of phytoalexins transcripts, and accumulation of stilbene glycosides.
Collapse
Affiliation(s)
- Hao Wang
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany.
| | - Michael Riemann
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany.
| | - Qiong Liu
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany.
| | - Johannes Siegrist
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany.
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, D-76131 Karlsruhe, Germany.
| |
Collapse
|
6
|
Casamassima D, Palazzo M, Vizzarri F, Ondruska L, Massanyi P, Corino C. Effect of dietary Lippia citriodora extract on reproductive and productive performance and plasma biochemical parameters in rabbit does. ANIMAL PRODUCTION SCIENCE 2017. [DOI: 10.1071/an14845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two doses of natural extract from Lippia citriodora (titrated in verbascoside) were assessed in New Zealand White rabbit does evaluating selected reproductive, productive and plasma biochemical parameters. After 1 week of adaptation period, the trial on 45 rabbit does for three consecutive reproductive cycles was conducted; does were divided into three groups of 15 animals each, homogenous by age (1 year ± 2 weeks), bodyweight (4.77 ± 0.21 kg) and parity (2 ± 1). A control group (CON) did not receive the dietary supplement in the feed and the other two groups received 1 g of natural extract supplement in the feed (5 mg verbascoside/kg feed; LNE) and 2 g of natural extract (10 mg verbascoside/kg feed; HNE). The use of a dietary NE supplement improved kit bodyweight at weaning (934 vs 1104 g; P < 0.001), and average daily weight gain from birth to weaning (24.7 vs 29.7 g/day; P < 0.001), with no NE dose effect. In the LNE and HNE groups serum triglycerides, total cholesterol, low density lipoprotein cholesterol, bilirubin, and activities of alkaline phosphatase, alanine aminotransferase (P < 0.05) and aspartate aminotransferase (P < 0.01) decreased and high density lipoprotein cholesterol (P < 0.01) increased, according to the cycle effect. The dietary supplement also improved blood oxidative status markers in the experimental groups due to an increase in the concentrations of plasma vitamin A and E (P < 0.01) and a decrease in plasma reactive oxygen metabolites and thiobarbituric acid reactive substances values (P < 0.01). In conclusion, the dietary Lippia NE supplement improved selected productive and reproductive parameters and the animal welfare of does, expressed by a general improvement of blood profile, with no effect of the dose.
Collapse
|
7
|
Cortier M, Boina-Ali R, Racoeur C, Paul C, Solary E, Jeannin JF, Bettaieb A. H89 enhances the sensitivity of cancer cells to glyceryl trinitrate through a purinergic receptor-dependent pathway. Oncotarget 2016; 6:6877-86. [PMID: 25762630 PMCID: PMC4466656 DOI: 10.18632/oncotarget.3124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/09/2015] [Indexed: 01/08/2023] Open
Abstract
High doses of the organic nitrate glyceryl trinitrate (GTN), a nitric oxide (NO) donor, are known to trigger apoptosis in human cancer cells. Here, we show that such a cytotoxic effect can be obtained with subtoxic concentrations of GTN when combined with H89, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulphonamide.2HCl. This synergistic effect requires the generation of reactive oxygen species (ROS) from H89 and NO from GTN treatment that causes cGMP production and PKG activation. Furthermore, the GTN/H89 synergy was attenuated by inhibition of P2-purinergic receptors with suramin and competition with ATP/UDP. By down-regulating genes with antisense oligonucleotides, P2-purinergic receptors P2X3, P2Y1, and P2Y6 were found to have a role in creating this cytotoxic effect. Thus, H89 likely acts as an ATP mimetic synergizing with GTN to trigger apoptosis in aggressive cancer cells.
Collapse
Affiliation(s)
- Marion Cortier
- EPHE, Tumor Immunology and Immunotherapy Laboratory, Dijon, F-21000, France.,Inserm U866, Dijon, F-21000, France.,EA7269, University of Burgundy, Dijon, F-21000, France
| | - Rahamata Boina-Ali
- EPHE, Tumor Immunology and Immunotherapy Laboratory, Dijon, F-21000, France.,Inserm U866, Dijon, F-21000, France.,EA7269, University of Burgundy, Dijon, F-21000, France
| | - Cindy Racoeur
- EPHE, Tumor Immunology and Immunotherapy Laboratory, Dijon, F-21000, France.,Inserm U866, Dijon, F-21000, France.,EA7269, University of Burgundy, Dijon, F-21000, France
| | - Catherine Paul
- EPHE, Tumor Immunology and Immunotherapy Laboratory, Dijon, F-21000, France.,Inserm U866, Dijon, F-21000, France.,EA7269, University of Burgundy, Dijon, F-21000, France
| | - Eric Solary
- Inserm U866, Dijon, F-21000, France.,Inserm UMR1009, Gustave Roussy Institute, Villejuif F-94805, France.,University Paris-Sud, Faculty of Medicine, Le Kremlin-Bicêtre, F-94800, France
| | - Jean-François Jeannin
- EPHE, Tumor Immunology and Immunotherapy Laboratory, Dijon, F-21000, France.,Inserm U866, Dijon, F-21000, France.,EA7269, University of Burgundy, Dijon, F-21000, France
| | - Ali Bettaieb
- EPHE, Tumor Immunology and Immunotherapy Laboratory, Dijon, F-21000, France.,Inserm U866, Dijon, F-21000, France.,EA7269, University of Burgundy, Dijon, F-21000, France
| |
Collapse
|
8
|
Jensen HA, Bunaciu RP, Varner JD, Yen A. GW5074 and PP2 kinase inhibitors implicate nontraditional c-Raf and Lyn function as drivers of retinoic acid-induced maturation. Cell Signal 2015; 27:1666-75. [PMID: 25817574 PMCID: PMC4529126 DOI: 10.1016/j.cellsig.2015.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023]
Abstract
The multivariate nature of cancer necessitates multi-targeted therapy, and kinase inhibitors account for a vast majority of approved cancer therapeutics. While acute promyelocytic leukemia (APL) patients are highly responsive to retinoic acid (RA) therapy, kinase inhibitors have been gaining momentum as co-treatments with RA for non-APL acute myeloid leukemia (AML) differentiation therapies, especially as a means to treat relapsed or refractory AML patients. In this study GW5074 (a c-Raf inhibitor) and PP2 (a Src-family kinase inhibitor) enhanced RA-induced maturation of t(15;17)-negative myeloblastic leukemia cells and rescued response in RA-resistant cells. PD98059 (a MEK inhibitor) and Akti-1/2 (an Akt inhibitor) were less effective, but did tend to promote maturation-uncoupled G1/G0 arrest, while wortmannin (a PI3K inhibitor) did not enhance differentiation surface marker expression or growth arrest. PD98059 and Akti-1/2 did not enhance differentiation markers and have potential, antagonistic off-targets effects on the aryl hydrocarbon receptor (AhR), but neither could the AhR agonist 6-formylindolo(3,2-b)carbazole (FICZ) rescue differentiation events in the RA-resistant cells. GW5074 rescued early CD38 expression in RA-resistant cells exhibiting an early block in differentiation before CD38 expression, while for RA-resistant cells with differentiation blocked later, PP2 rescued the later differentiation marker CD11b; but surprisingly, the combination of the two was not synergistic. Kinases c-Raf, Src-family kinases Lyn and Fgr, and PI3K display highly correlated signaling changes during RA treatment, while activation of traditional downstream targets (Akt, MEK/ERK), and even the surface marker CD38, were poorly correlated with c-Raf or Lyn during differentiation. This suggests that an interrelated kinase module involving c-Raf, PI3K, Lyn and perhaps Fgr functions in a nontraditional way during RA-induced maturation or during rescue of RA induction therapy using inhibitor co-treatment in RA-resistant leukemia cells.
Collapse
Affiliation(s)
- Holly A Jensen
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Rodica P Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Jeffrey D Varner
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
9
|
Lapo RA, Gogny M, Chatagnon G, Lalanne V, Harfoush K, Assane M, Desfontis JC, Mallem MY. Equine digital veins are more sensitive to superoxide anions than digital arteries. Eur J Pharmacol 2014; 740:66-71. [PMID: 25014758 DOI: 10.1016/j.ejphar.2014.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 06/16/2014] [Accepted: 06/17/2014] [Indexed: 11/24/2022]
Abstract
This work was designed to investigate (i) the effect of superoxide dismutase (SOD) inhibition on endothelial function and (ii) the free radical-induced endothelial dysfunction in equine digital veins (EDVs) and equine digital arteries (EDAs) isolated from healthy horses. EDV and EDA rings were suspended in a 5 ml organ bath containing Krebs solution. After a 60 min equilibration period, EDV and EDA rings were contracted with phenylephrine. Then, cumulative concentration-response curves (CCRCs) to acetylcholine were performed. In both EDVs and EDAs, acetylcholine (1 nM to 10 µM) produced concentration-dependent relaxation. We investigated the influence of SOD inhibition by diethyldithiocarbamate (DETC; 100 µM), a CuZnSOD inhibitor, on EDAs and EDVs relaxant responses to acetylcholine. Acetylcholine -mediated relaxation was impaired by DETC only in EDVs. SOD activity assayed by a xanthine-xanthine oxidase method was higher in EDAs compared with EDVs (P<0.05). CCRCs to acetylcholine established in the presence of pyrogallol (30 µM) or homocysteine (20 µM), two superoxide anions generating systems showed that in both EDVs and EDAs, the acetylcholine-mediated relaxation was significantly impaired by pyrogallol and homocysteine. This impairment was more pronounced in EDVs than in EDAs. Moreover, the pyrogallol-induced impairment of acetylcholine-mediated relaxation was potentiated by DETC to a greater extent in EDVs. We concluded that due to the lower activity of SOD, EDVs are more sensitive to superoxide anions than EDAs. So, any alteration of superoxide anions metabolism is likely to have a more important impact on venous rather than arterial relaxation.
Collapse
Affiliation(s)
- Rock Allister Lapo
- Ecole Inter-états des Sciences et Médecine Vétérinaires BP 5077 Dakar, Senegal
| | - Marc Gogny
- LUNAM Université, Oniris, UPSP 5304 de Physiopathologie Animale et Pharmacologie Fonctionnelle, Atlanpole La Chantrerie, BP 40706, Nantes F-44307, France
| | - Gérard Chatagnon
- LUNAM Université, Oniris, Unité de Sécurité Sanitaire des Biotechnologies de la Reproduction, Atlanpole La Chantrerie, BP 40706, Nantes, F-44307, France
| | - Valérie Lalanne
- LUNAM Université, Oniris, UPSP 5304 de Physiopathologie Animale et Pharmacologie Fonctionnelle, Atlanpole La Chantrerie, BP 40706, Nantes F-44307, France
| | - Khaled Harfoush
- LUNAM Université, Oniris, UPSP 5304 de Physiopathologie Animale et Pharmacologie Fonctionnelle, Atlanpole La Chantrerie, BP 40706, Nantes F-44307, France
| | - Moussa Assane
- Ecole Inter-états des Sciences et Médecine Vétérinaires BP 5077 Dakar, Senegal
| | - Jean-Claude Desfontis
- LUNAM Université, Oniris, UPSP 5304 de Physiopathologie Animale et Pharmacologie Fonctionnelle, Atlanpole La Chantrerie, BP 40706, Nantes F-44307, France
| | - Mohamed Yassine Mallem
- LUNAM Université, Oniris, UPSP 5304 de Physiopathologie Animale et Pharmacologie Fonctionnelle, Atlanpole La Chantrerie, BP 40706, Nantes F-44307, France.
| |
Collapse
|
10
|
Ko SH, Lee JK, Lee HJ, Ye SK, Kim HS, Chung MH. 8-Oxo-2′-deoxyguanosine ameliorates features of metabolic syndrome in obese mice. Biochem Biophys Res Commun 2014; 443:610-6. [DOI: 10.1016/j.bbrc.2013.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 12/03/2013] [Indexed: 12/30/2022]
|
11
|
Batista EL, Kantarci AI, Hasturk H, Van Dyke TE. Alternative splicing generates a diacylglycerol kinase α transcript that acts as a dominant-negative modulator of superoxide production in localized aggressive periodontitis. J Periodontol 2013; 85:934-43. [PMID: 24171497 DOI: 10.1902/jop.2013.130468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Diacylglycerol (DAG), levels of which are tightly regulated by diacylglycerol kinases (DGKs), is a lipid mediator linked to key biologic functions. Members of the DGK family undergo alternative splicing, generating the protein diversity necessary to control different intracellular DAG pools. DGKα function is altered in polymorphonuclear neutrophils (PMNs) of patients with localized aggressive periodontitis (LAgP), suggesting a genetic basis. Here, the authors assess DGKα spliced transcripts in human LAgP neutrophils. METHODS In an expression library of a patient with LAgP, PMNs were screened for different DGKα transcripts. Real-time polymerase chain reaction and in vitro expression assays were performed to assess the fate of different transcripts on protein translocation and superoxide production in human leukemia cells (HL-60) and COS-7 cells. RESULTS A DGKα transcript that lacks exon 10 (DGKαΔ10) and generates a premature stop codon and a truncated protein was identified as being upregulated in LAgP neutrophils. In vitro assays revealed that DGKαΔ10 translocation occurred even in the absence of important regulatory motifs. Transfection of HL-60 neutrophil-like cells with the DGKαΔ10 spliced variant induced an increase in the stimulated production of superoxide anion replicating the phenotype of LAgP PMNs. CONCLUSION DGKαΔ10 can act as a dominant-negative transcript that can modulate superoxide production and provides an example of genetic regulation of the inflammatory response that may be relevant to human inflammatory diseases such as LAgP.
Collapse
Affiliation(s)
- Eraldo L Batista
- Department of Diagnostics and Surgical Sciences and Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, MB, Canada; previously, Department of Periodontology and Oral Biology, Boston University Goldman School of Dental Medicine, Boston, MA
| | | | | | | |
Collapse
|
12
|
Jensen HA, Styskal LE, Tasseff R, Bunaciu RP, Congleton J, Varner JD, Yen A. The Src-family kinase inhibitor PP2 rescues inducible differentiation events in emergent retinoic acid-resistant myeloblastic leukemia cells. PLoS One 2013; 8:e58621. [PMID: 23554907 PMCID: PMC3598855 DOI: 10.1371/journal.pone.0058621] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 02/05/2013] [Indexed: 12/29/2022] Open
Abstract
Retinoic acid is an embryonic morphogen and dietary factor that demonstrates chemotherapeutic efficacy in inducing maturation in leukemia cells. Using HL60 model human myeloid leukemia cells, where all-trans retinoic acid (RA) induces granulocytic differentiation, we developed two emergent RA-resistant HL60 cell lines which are characterized by loss of RA-inducible G1/G0 arrest, CD11b expression, inducible oxidative metabolism and p47phox expression. However, RA-treated RA-resistant HL60 continue to exhibit sustained MEK/ERK activation, and one of the two sequentially emergent resistant lines retains RA-inducible CD38 expression. Other signaling events that define the wild-type (WT) response are compromised, including c-Raf phosphorylation and increased expression of c-Cbl, Vav1, and the Src-family kinases (SFKs) Lyn and Fgr. As shown previously in WT HL60 cells, we found that the SFK inhibitor PP2 significantly increases G1/G0 cell cycle arrest, CD38 and CD11b expression, c-Raf phosphorylation and expression of the aforementioned regulators in RA-resistant HL60. The resistant cells were potentially incapable of developing inducible oxidative metabolism. These results motivate the concept that RA resistance can occur in steps, wherein growth arrest and other differentiation events may be recovered in both emergent lines. Investigating the mechanistic anomalies in resistant cell lines is of therapeutic significance and helps to mechanistically understand the response to retinoic acid’s biological effects in WT HL60 cells.
Collapse
Affiliation(s)
- Holly A. Jensen
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Lauren E. Styskal
- Department of Biological Engineering, Cornell University, Ithaca, New York, United States of America
| | - Ryan Tasseff
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Rodica P. Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Johanna Congleton
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey D. Varner
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
13
|
Abstract
Pro-inflammatory stimuli evoke an export of glutamate from microglia that is sufficient to contribute to excitotoxicity in neighbouring neurons. Since microglia also express various glutamate receptors themselves, we were interested in the potential feedback of glutamate on this system. Several agonists of mGluRs (metabotropic glutamate receptors) were applied to primary rat microglia, and the export of glutamate into their culture medium was evoked by LPS (lipopolysaccharide). Agonists of group-II and -III mGluR ACPD [(1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid] and L-AP4 [L-(+)-2-amino-4-phosphonobutyric acid] were both capable of completely blocking the glutamate export without interfering with the production of NO (nitric oxide); the group-I agonist tADA (trans-azetidine-2,4-dicarboxylic acid) was ineffective. Consistent with the possibility of feedback, inhibition of mGluR by MSPG [(R,S)-α-2-methyl-4sulfonophenylglycine] potentiated glutamate export. As the group-II and -III mGluR are coupled to Gαi-containing G-proteins and the inhibition of adenylate cyclase, we explored the role of cAMP in this effect. Inhibition of cAMP-dependent protein kinase [also known as protein kinase A (PKA)] by H89 mimicked the effect of ACPD, and the mGluR agonist had its actions reversed by artificially sustaining cAMP through the PDE (phosphodiesterase) inhibitor IBMX (isobutylmethylxanthine) or the cAMP mimetic dbcAMP (dibutyryl cAMP). These data indicate that mGluR activation attenuates a potentially neurotoxic export of glutamate from activated microglia and implicate cAMP as a contributor to this aspect of microglial action.
Collapse
|
14
|
Pyruvate: immunonutritional effects on neutrophil intracellular amino or alpha-keto acid profiles and reactive oxygen species production. Amino Acids 2010; 40:1077-90. [PMID: 20839016 PMCID: PMC3061003 DOI: 10.1007/s00726-010-0731-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 08/23/2010] [Indexed: 01/19/2023]
Abstract
For the first time the immunonutritional role of pyruvate on neutrophils (PMN), free α-keto and amino acid profiles, important reactive oxygen species (ROS) produced [superoxide anion (O(2) (-)), hydrogen peroxide (H(2)O(2))] as well as released myeloperoxidase (MPO) acitivity has been investigated. Exogenous pyruvate significantly increased PMN pyruvate, α-ketoglutarate, asparagine, glutamine, aspartate, glutamate, arginine, citrulline, alanine, glycine and serine in a dose as well as duration of exposure dependent manner. Moreover, increases in O(2) (-) formation, H(2)O(2)-generation and MPO acitivity in parallel with intracellular pyruvate changes have also been detected. Regarding the interesting findings presented here we believe, that pyruvate fulfils considerably the criteria for a potent immunonutritional molecule in the regulation of the PMN dynamic α-keto and amino acid pools. Moreover it also plays an important role in parallel modulation of the granulocyte-dependent innate immune regulation. Although further research is necessary to clarify pyruvate's sole therapeutical role in critically ill patients' immunonutrition, the first scientific successes seem to be very promising.
Collapse
|
15
|
DZIK JM, ZIELIŃSKI Z, CIEŚLA J, WAŁAJTYS-RODE E. Trichinella spiralisinfection enhances protein kinase C phosphorylation in guinea pig alveolar macrophages. Parasite Immunol 2010; 32:209-20. [DOI: 10.1111/j.1365-3024.2009.01180.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Nakamura S, Kobayashi M, Sugino T, Kajimoto O, Matoba R, Matsubara K. Effect of exercise on gene expression profile in unfractionated peripheral blood leukocytes. Biochem Biophys Res Commun 2009; 391:846-51. [PMID: 19945435 DOI: 10.1016/j.bbrc.2009.11.150] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 11/21/2009] [Indexed: 12/20/2022]
Abstract
A 4-h bout of exercise induces immunomodulatory effects. Peripheral blood was withdrawn before, and at 4, 8 and 24h after the start of exercise. RNA from the unfractionated white blood cells was analyzed using Agilent human 44K microarray. The expression profiles were sorted into seven clusters based on their unique time-dependent kinetics. In a separate experiment, cell-specific markers were collected and compared among the members in each cluster. Two clusters were assigned as representing neutrophils, one as NK cells, and another mostly as T cells. Three clusters seemed to be mixtures of several cell types. Extension of this approach to other systems is discussed.
Collapse
Affiliation(s)
- Seiji Nakamura
- DNA Chip Research Inc, Suehirocho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | | | | | | | | | | |
Collapse
|
17
|
Aoki T, Nishimura M, Kataoka H, Ishibashi R, Nozaki K, Hashimoto N. Reactive oxygen species modulate growth of cerebral aneurysms: a study using the free radical scavenger edaravone and p47phox(-/-) mice. J Transl Med 2009; 89:730-41. [PMID: 19381132 DOI: 10.1038/labinvest.2009.36] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Cerebral aneurysm (CA) is a relatively common disease and can cause a catastrophic subarachnoid hemorrhage with a high mortality and morbidity rate. Despite its clinical and social importance, the detailed mechanism of CA formation remains to be elucidated, resulting in the absence of effective medical treatment against CAs. Recent studies revealed that chronic inflammation in arterial walls by hemodynamic force is implicated in CA formation. Reactive oxygen species (ROS) are a major mediator of inflammation and actively participate in the pathogenesis of various vascular diseases. In the present study, we first assessed the expression of ROS-producing and -eliminating genes in CA walls by immunohistochemistry and RT-PCR analysis. The ROS-producing gene, p47phox, was upregulated in infiltrating macrophages and medial smooth muscle cells in arterial walls. Upregulated ROS-producing genes and suppressed ROS-eliminating genes suggested that ROS overproduction occurred in aneurysmal walls. In situ superoxide imaging by dihydroethidium, which showed ROS overproduction in aneurysmal walls, confirmed this hypothesis. Edaravone, a powerful free radical scavenger, effectively inhibited CA formation by suppressing inflammation-related gene expression in aneurysmal walls. Furthermore, CA formation was markedly inhibited by p47phox deletion in mice and was accompanied by decreased inflammation in aneurysmal walls. These data suggested the active participation of ROS and p47phox in CA formation and the therapeutic potential of an ROS-eliminating agent against CA formation.
Collapse
Affiliation(s)
- Tomohiro Aoki
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Chakroun-Feki N, Therond P, Couturier M, Eustache F, Limea G, Legrand A, Jouannet P, Auger J. Human sperm quality and lipid content after migration into normal ovulatory human cervical mucus containing low numbers of leukocytes. Asian J Androl 2009; 11:308-16. [PMID: 19182821 DOI: 10.1038/aja.2008.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The aim of this study was to investigate whether a relationship exists between the presence of low numbers of leukocytes in normal ovulatory cervical mucus and sperm quality and lipid content after migration. The percentages of live, motile and morphologically normal spermatozoa, movement parameters assessed by computer-aided sperm analysis (CASA), and ionophore-induced acrosome reaction measured by flow cytometry were determined before and after migration. High-performance liquid chromatography with ultraviolet detection was used to measure the sperm lipid content, including the various diacyl subspecies. The number of leukocytes found in solubilized mucus samples was counted using a haemocytometric method. Overall, the presence of leukocytes in the cervical mucus samples did not significantly influence sperm motility and morphology, sperm kinematic parameters, or the sperm content in sphingomyelin or cholesterol. In contrast, after migration, the decrease in various sperm diacyls and the level of induced acrosome reaction was significantly less pronounced in mucus samples containing>or=10(4) leukocytes than in mucus samples with no or rare leukocytes whereas the level of induced acrosome reaction was higher. The present data suggest that the low level of leukocytes found in normal ovulatory cervical mucus could influence the process of sperm lipid remodelling/capacitation.
Collapse
Affiliation(s)
- Nozha Chakroun-Feki
- Laboratory of Reproductive Biology/CECOS (Center of Study and Conservation of human Eggs and Sperm), Cochin Hospital, René Descartes University, Paris 75014, France.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Effects of α-ketoglutarate on neutrophil intracellular amino and α-keto acid profiles and ROS production. Amino Acids 2009; 38:167-77. [DOI: 10.1007/s00726-008-0224-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 11/12/2008] [Indexed: 01/02/2023]
|
20
|
Expression of NADPH oxidases and enhanced H(2)O(2)-generating activity in human coronary artery endothelial cells upon induction with tumor necrosis factor-alpha. Int Immunopharmacol 2008; 8:1377-85. [PMID: 18687299 DOI: 10.1016/j.intimp.2008.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Revised: 05/05/2008] [Accepted: 05/06/2008] [Indexed: 11/21/2022]
Abstract
Tumor necrosis factor (TNF)-alpha, which potentiates reactive oxygen species (ROS) generation, is crucial for the development of coronary arteritis and aneurysm in Kawasaki disease. We hypothesized that vascular NADPH oxidase (Nox) enzymes participate in the TNF-alpha-triggered endothelial damage through elevating ROS generation. Thus, we herein examine the expression of Nox enzymes in human coronary artery endothelial cells (HCAEC) and the effects of TNF-alpha on Nox-mediated ROS generation. We show that HCAEC in culture spontaneously generate H(2)O(2) at basal level (0.53 nmol/min/mg protein). In searching for Nox components responsible for the H(2)O(2) generation, two distinct isoforms of Nox4 are found expressed in HCAEC: the prototype Nox4A and the shorter Nox4B, respectively in the postnuclear supernatant and the nuclear fractions. Other expressed Nox family components are: as mRNAs, Nox4C, Nox4D, Nox1, p51(nox), and Racs; as mRNAs and proteins, Nox2, p22(phox), p47(phox), and p67(phox). The H(2)O(2)-generating activity increases up to three-fold upon inclusion of TNF-alpha in culture, concomitantly with augmented expressions of Nox4A, p22(phox), p47(phox) and p67(phox) proteins. Together, these results suggest that Nox2 and Nox4A enzymes are induced by TNF-alpha endowing HCAEC with enhanced ROS-generating activity, which may play a role in the initial endothelial dysfunction through oxidative stress.
Collapse
|
21
|
Squamosamide derivative FLZ protects dopaminergic neurons against inflammation-mediated neurodegeneration through the inhibition of NADPH oxidase activity. J Neuroinflammation 2008; 5:21. [PMID: 18507839 PMCID: PMC2413210 DOI: 10.1186/1742-2094-5-21] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Accepted: 05/28/2008] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Inflammation plays an important role in the pathogenesis of Parkinson's disease (PD) through over-activation of microglia, which consequently causes the excessive production of proinflammatory and neurotoxic factors, and impacts surrounding neurons and eventually induces neurodegeneration. Hence, prevention of microglial over-activation has been shown to be a prime target for the development of therapeutic agents for inflammation-mediated neurodegenerative diseases. METHODS For in vitro studies, mesencephalic neuron-glia cultures and reconstituted cultures were used to investigate the molecular mechanism by which FLZ, a squamosamide derivative, mediates anti-inflammatory and neuroprotective effects in both lipopolysaccharide-(LPS)- and 1-methyl-4-phenylpyridinium-(MPP+)-mediated models of PD. For in vivo studies, a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-(MPTP-) induced PD mouse model was used. RESULTS FLZ showed potent efficacy in protecting dopaminergic (DA) neurons against LPS-induced neurotoxicity, as shown in rat and mouse primary mesencephalic neuronal-glial cultures by DA uptake and tyrosine hydroxylase (TH) immunohistochemical results. The neuroprotective effect of FLZ was attributed to a reduction in LPS-induced microglial production of proinflammatory factors such as superoxide, tumor necrosis factor-alpha (TNF-alpha), nitric oxide (NO) and prostaglandin E2 (PGE2). Mechanistic studies revealed that the anti-inflammatory properties of FLZ were mediated through inhibition of NADPH oxidase (PHOX), the key microglial superoxide-producing enzyme. A critical role for PHOX in FLZ-elicited neuroprotection was further supported by the findings that 1) FLZ's protective effect was reduced in cultures from PHOX-/- mice, and 2) FLZ inhibited LPS-induced translocation of the cytosolic subunit of p47PHOX to the membrane and thus inhibited the activation of PHOX. The neuroprotective effect of FLZ demonstrated in primary neuronal-glial cultures was further substantiated by an in vivo study, which showed that FLZ significantly protected against MPTP-induced DA neuronal loss, microglial activation and behavioral changes. CONCLUSION Taken together, our results clearly demonstrate that FLZ is effective in protecting against LPS- and MPTP-induced neurotoxicity, and the mechanism of this protection appears to be due, at least in part, to inhibition of PHOX activity and to prevention of microglial activation.
Collapse
|
22
|
Kirschvink N, de Moffarts B, Lekeux P. The oxidant/antioxidant equilibrium in horses. Vet J 2007; 177:178-91. [PMID: 17897849 DOI: 10.1016/j.tvjl.2007.07.033] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 07/19/2007] [Accepted: 07/24/2007] [Indexed: 11/22/2022]
Abstract
Since "free radical research" started in 1954, understanding the role of oxidants and antioxidants in physiological and pathological conditions has increased continuously. Oxidants are essentially generated by metabolic enzymes, inflammatory cells and mitochondrial electron leakage; they are indispensable for the cellular redox regulation and may, under certain conditions, have a pro-inflammatory stimulatory role. Endogenous and exogenous antioxidants counterbalance the oxidative processes and so maintain the oxidant/antioxidant equilibrium. Excessive oxidant generation or antioxidant insufficiency can lead to oxidative stress. The aims of this review are: (1) to provide an insight into the concept of the oxidant/antioxidant equilibrium by briefly introducing the oxidant and the antioxidant systems; (2) to describe how the oxidant/antioxidant equilibrium or oxidative stress can be evaluated in horses, and (3) to summarise current knowledge about oxidative stress in equine medicine and equine exercise physiology.
Collapse
Affiliation(s)
- Nathalie Kirschvink
- Animal Physiology, Department for Veterinary Medicine, Faculty of Sciences, University of Namur, Belgium.
| | | | | |
Collapse
|
23
|
Barger SW, Goodwin ME, Porter MM, Beggs ML. Glutamate release from activated microglia requires the oxidative burst and lipid peroxidation. J Neurochem 2007; 101:1205-13. [PMID: 17403030 PMCID: PMC1949347 DOI: 10.1111/j.1471-4159.2007.04487.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
When activated by proinflammatory stimuli, microglia release substantial levels of glutamate, and mounting evidence suggests this contributes to neuronal damage during neuroinflammation. Prior studies indicated a role for the Xc exchange system, an amino acid transporter that antiports glutamate for cystine. Because cystine is used for synthesis of glutathione (GSH) synthesis, we hypothesized that glutamate release is an indirect consequence of GSH depletion by the respiratory burst, which produces superoxide from NADPH oxidase. Microglial glutamate release triggered by lipopolysaccharide was blocked by diphenylene iodonium chloride and apocynin, inhibitors of NADPH oxidase. This glutamate release was also blocked by vitamin E and elicited by lipid peroxidation products 4-hydroxynonenal and acrolein, suggesting that lipid peroxidation makes crucial demands on GSH. Although NADPH oxidase inhibitors also suppressed nitrite accumulation, vitamin E did not; moreover, glutamate release was largely unaffected by nitric oxide donors, inhibitors of nitric oxide synthase, or changes in gene expression. These findings indicate that a considerable degree of the neurodegenerative consequences of neuroinflammation may result from conversion of oxidative stress to excitotoxic stress. This phenomenon entails a biochemical chain of events initiated by a programmed oxidative stress and resultant mass-action amino acid transport. Indeed, some of the neuroprotective effects of antioxidants may be due to interference with these events rather than direct protection against neuronal oxidation.
Collapse
Affiliation(s)
- Steven W Barger
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| | | | | | | |
Collapse
|
24
|
Daniel DS, Dai G, Singh CR, Lindsey DR, Smith AK, Dhandayuthapani S, Hunter RL, Jagannath C. The reduced bactericidal function of complement C5-deficient murine macrophages is associated with defects in the synthesis and delivery of reactive oxygen radicals to mycobacterial phagosomes. THE JOURNAL OF IMMUNOLOGY 2006; 177:4688-98. [PMID: 16982908 DOI: 10.4049/jimmunol.177.7.4688] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Complement C5-deficient (C5(-/-)) macrophages derived from B.10 congenic mice were found to be defective in killing intracellular Mycobacterium tuberculosis (MTB). They were bacteriostatic after activation with IFN-gamma alone but bactericidal in the combined presence of IFN-gamma and C5-derived C5a anaphylatoxin that was deficient among these macrophages. Reduced killing correlated with a decreased production of reactive oxygen species (ROS) in the C5(-/-) macrophages measured using fluorescent probes. Furthermore, a lack of colocalization of p47(phox) protein of the NADPH oxidase (phox) complex with GFP-expressing MTB (gfpMTB) indicated a defective assembly of the phox complex on phagosomes. Reconstitution with C5a, a known ROS activator, enhanced the assembly of phox complex on the phagosomes as well as the production of ROS that inhibited the growth of MTB. Protein kinase C (PKC) isoforms are involved in the phosphorylation and translocation of p47(phox) onto bacterial phagosomes. Western blot analysis demonstrated a defective phosphorylation of PKC (alpha, beta, delta) and PKC-zeta in the cytosol of C5(-/-) macrophages compared with C5 intact (C5(+/+)) macrophages. Furthermore, in situ fluorescent labeling of phagosomes indicated that PKC-beta and PKC-zeta were the isoforms that are not phosphorylated in C5(-/-) macrophages. Because Fc receptor-mediated phox assembly was normal in both C5(-/-) and C5(+/+) macrophages, the defect in phox assembly around MTB phagosomes was specific to C5 deficiency. Reduced bactericidal function of C5(-/-) macrophages thus appears to be due to a defective assembly and production of ROS that prevents effective killing of intracellular MTB.
Collapse
Affiliation(s)
- D Sundarsingh Daniel
- Department of Pathology and Laboratory Medicine, University of Texas Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Marty C, Kozasa T, Quinn MT, Ye RD. Activation state-dependent interaction between Galphai and p67phox. Mol Cell Biol 2006; 26:5190-200. [PMID: 16782902 PMCID: PMC1489143 DOI: 10.1128/mcb.01979-05] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Revised: 11/03/2005] [Accepted: 04/13/2006] [Indexed: 11/20/2022] Open
Abstract
The phagocyte NADPH oxidase consists of multiple protein subunits that interact with each other to form a functional superoxide-generating complex. Although the essential components for superoxide production have been well characterized, other proteins potentially involved in the regulation of NADPH oxidase activation remain to be identified. We report here that the Galphai subunit of heterotrimeric G proteins is a novel binding partner for p67phox in transfected HEK293T cells and peripheral blood polymorphonuclear leukocytes. p67phox preferably interacted with inactive Galphai. Expression of p67phox caused a dose-dependent decrease in intracellular cyclic AMP concentration, suggesting altered function of Galphai. We identified a fragment of p67phox, consisting of the PB1 domain and the C-terminal SH3 domain, to be critical for the interaction with Galphai. Because these domains are involved in the interaction with p47phox and p40phox, the relationship between the respective binding events was investigated. Wild-type Galphai, but not its QL mutant, could promote the interaction between p67phox and p47phox. However, the interaction between p67phox and p40phox was not affected by either Galphai form. These results provide the first evidence for an interaction between p67phox and an alpha subunit of heterotrimeric G proteins, suggesting a potential role for Galphai in the regulation or activation of NADPH oxidase.
Collapse
Affiliation(s)
- Caroline Marty
- Department of Pharmacology, University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
26
|
Sheppard FR, Kelher MR, Moore EE, McLaughlin NJD, Banerjee A, Silliman CC. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukoc Biol 2005; 78:1025-42. [PMID: 16204621 DOI: 10.1189/jlb.0804442] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is part of the microbicidal arsenal used by human polymorphonuclear neutrophils (PMNs) to eradicate invading pathogens. The production of a superoxide anion (O2-) into the phagolysosome is the precursor for the generation of more potent products, such as hydrogen peroxide and hypochlorite. However, this production of O2- is dependent on translocation of the oxidase subunits, including gp91phox, p22phox, p47phox, p67phox, p40phox, and Rac2 from the cytosol or specific granules to the plasma membrane. In response to an external stimuli, PMNs change from a resting, nonadhesive state to a primed, adherent phenotype, which allows for margination from the vasculature into the tissue and chemotaxis to the site of infection upon activation. Depending on the stimuli, primed PMNs display altered structural organization of the NADPH oxidase, in that there is phosphorylation of the oxidase subunits and/or translocation from the cytosol to the plasma or granular membrane, but there is not the complete assembly required for O2- generation. Activation of PMNs is the complete assembly of the membrane-linked and cytosolic NADPH oxidase components on a PMN membrane, the plasma or granular membrane. This review will discuss the individual components associated with the NADPH oxidase complex and the function of each of these units in each physiologic stage of the PMN: rested, primed, and activated.
Collapse
|
27
|
Mühling J, Nickolaus KA, Halabi M, Fuchs M, Krüll M, Engel J, Wolff M, Matejec R, Langefeld TW, Welters ID, Menges T, Dehne MG, Sablotzki A, Hempelmann G. Alterations in neutrophil (PMN) free intracellular alpha-keto acid profiles and immune functions induced by L-alanyl-L-glutamine, arginine or taurine. Amino Acids 2005; 29:289-300. [PMID: 16027960 DOI: 10.1007/s00726-005-0223-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 05/01/2005] [Indexed: 10/25/2022]
Abstract
The objective of this study was to determine the dose as well as duration of exposure-dependent effects of L-alanyl-L-glutamine, arginine or taurine on polymorphonuclear neutrophil (PMN) free alpha-keto acid profiles and, in a parallel study, on PMN immune functions. Exogenous L-alanyl-L-glutamine significantly increased PMN alpha-ketoglutarate, pyruvate PMN superoxide anion (O2-) generation, hydrogen peroxide (H2O2) formation and released myeloperoxidase (MPO) activity. Arginine also led to significant increases in alpha-ketoglutarate, pyruvate, MPO release and H2O2 generation. Formation of O2- on the other hand was decreased by arginine. Incubation with taurine resulted in lower intracellular pyruvate and alpha-ketobutyrate levels, decreased O2- and H2O2 formation and a concomitant significantly increased MPO activity. We therefore believe that considerable changes in PMN free-alpha-keto-acid profiles, induced for example by L-alanyl-L-glutamine, arginine or taurine, may be one of the determinants in cell nutrition that considerably modulates the immunological competence of PMN.
Collapse
Affiliation(s)
- J Mühling
- Department of Anaesthesiology, Intensive Care Medicine, Pain Therapy, University Hospital, Justus Liebig University, Giessen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Goodall CP, Bender RC, Broderick EJ, Bayne CJ. Constitutive differences in Cu/Zn superoxide dismutase mRNA levels and activity in hemocytes of Biomphalaria glabrata (Mollusca) that are either susceptible or resistant to Schistosoma mansoni (Trematoda). Mol Biochem Parasitol 2005; 137:321-8. [PMID: 15383302 DOI: 10.1016/j.molbiopara.2004.06.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 06/21/2004] [Accepted: 06/25/2004] [Indexed: 11/15/2022]
Abstract
Genetic strains of the snail Biomphalaria glabrata vary in their resistance to the parasite Schistosoma mansoni. Phagocytic cells (hemocytes) circulating in the hemolymph of B. glabrata play an essential role in the snail's innate immune response. Hemocytes of resistant B. glabrata kill S. mansoni in vitro via a mechanism which involves a respiratory burst. Reactive oxygen species (ROS), which are products of the respiratory burst, can act as mediators of both oxidative damage and of immune-related intracellular signaling pathways. One specific ROS, hydrogen peroxide (H2O2), has been shown to be involved in hemocyte-mediated sporocyst killing. We tested the hypothesis that Cu/Zn superoxide dismutase (SOD), a cytosolic enzyme that catalyzes the conversion of superoxide anion to H2O2, is somehow different between resistant and susceptible snail strains. We report a hemocyte transcript with all the features of a typical cytosolic Cu/Zn SOD (GenBank accession numbers AY505496 and AY505497). The amount of Cu/Zn SOD mRNA in hemocytes from resistant snails was double that of hemocytes from susceptible snails, and this correlated directly with an increased Cu/Zn SOD enzymatic activity in resistant hemocytes. Additional experiments determined that in vitro interaction/encapsulation of sporocysts did not influence Cu/Zn SOD mRNA levels in hemocytes from either snail strain. Thus, resistance in this host-parasite system does not appear to depend on a transcriptional response of hemocyte Cu/Zn SOD, but may be due, at least in part, to a constitutively elevated enzymatic level of Cu/Zn SOD.
Collapse
Affiliation(s)
- Cheri P Goodall
- Department of Zoology, Marine and Freshwater Biomedical Science Center, Oregon State University, Corvallis, OR 97331-2914, USA
| | | | | | | |
Collapse
|
29
|
Groemping Y, Rittinger K. Activation and assembly of the NADPH oxidase: a structural perspective. Biochem J 2005; 386:401-16. [PMID: 15588255 PMCID: PMC1134858 DOI: 10.1042/bj20041835] [Citation(s) in RCA: 425] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Revised: 12/02/2004] [Accepted: 12/10/2004] [Indexed: 11/17/2022]
Abstract
The NADPH oxidase of professional phagocytes is a crucial component of the innate immune response due to its fundamental role in the production of reactive oxygen species that act as powerful microbicidal agents. The activity of this multi-protein enzyme is dependent on the regulated assembly of the six enzyme subunits at the membrane where oxygen is reduced to superoxide anions. In the resting state, four of the enzyme subunits are maintained in the cytosol, either through auto-inhibitory interactions or through complex formation with accessory proteins that are not part of the active enzyme complex. Multiple inputs are required to disrupt these inhibitory interactions and allow translocation to the membrane and association with the integral membrane components. Protein interaction modules are key regulators of NADPH oxidase assembly, and the protein-protein interactions mediated via these domains have been the target of numerous studies. Many models have been put forward to describe the intricate network of reversible protein interactions that regulate the activity of this enzyme, but an all-encompassing model has so far been elusive. An important step towards an understanding of the molecular basis of NADPH oxidase assembly and activity has been the recent solution of the three-dimensional structures of some of the oxidase components. We will discuss these structures in the present review and attempt to reconcile some of the conflicting models on the basis of the structural information available.
Collapse
Key Words
- nadph oxidase
- oxidase assembly
- phosphorylation
- protein–protein interaction
- reactive oxygen species
- ac, acidic cluster
- bc, basic cluster
- cgd, chronic granulomatous disease
- gap, gtpase-activating protein
- gdi, gdp-dissociation inhibitor
- gef, guanine-nucleotide-exchange factor
- gst, glutathione s-transferase
- itc, isothermal titration calorimetry
- mapk, mitogen-activated protein kinase
- pb1, phox and bem1
- pc, phox and cdc24
- phox, phagocytic oxidase
- ppii helix, polyproline type ii helix
- px, phox homology
- prr, proline-rich region
- rms, root mean square
- ros, reactive oxygen species
- sh3, src homology 3
- spr, surface plasmon resonance
- tpr, tetratricopeptide repeat
Collapse
Affiliation(s)
- Yvonne Groemping
- *Abteilung Biomolekulare Mechanismen, Max-Planck-Institut für medizinische Forschung, Heidelberg, Germany
| | - Katrin Rittinger
- †Division of Protein Structure, National Institute for Medical Research, London, U.K
| |
Collapse
|
30
|
Touyz RM, Yao G, Quinn MT, Pagano PJ, Schiffrin EL. p47phox Associates With the Cytoskeleton Through Cortactin in Human Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2005; 25:512-8. [PMID: 15618548 DOI: 10.1161/01.atv.0000154141.66879.98] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We tested the hypothesis that p47phox associates with the actin cytoskeleton, enabling site-directed activation of NAD(P)H oxidase, and assessed whether these actions influence reactive oxygen species (ROS) generation and signaling by angiotensin II (Ang II) in vascular smooth muscle cells (VSMCs) from human resistance and coronary arteries. METHODS AND RESULTS Electroporation of anti-p47phox antibody into VSMCs abrogated Ang II-mediated O2 generation, establishing the requirement for p47phox in this response. Immunfluorescence confocal microscopy demonstrated a cytosolic distribution of p47phox in basal conditions. After Ang II stimulation, p47phox rearranged in a linear fashion, colocalizing with F-actin. Co-immunoprecipitation studies confirmed an association between p47phox and actin and demonstrated an interaction with the actin-binding protein cortactin. Cytoskeletal disruption with cytochalasin prevented p47phox:actin interaction and attenuated ROS formation and p38MAP kinase and Akt phosphorylation by Ang II. Intracellular ROS generation in response to LY83583 (O2 generator) or exogenous H2O2 and Ang II-induced ERK1/2 activation were unaltered by cytochalasin. CONCLUSIONS The p47phox:actin interaction, through cortactin, plays an important role in Ang II-mediated site-directed assembly of functionally active NAD(P)H oxidase, ROS generation, and activation of redox-sensitive p38MAP kinase and Akt, but not ERK1/2. These findings demonstrate the importance of an intact actin-cytoskeleton in NAD(P)H oxidase regulation and redox signaling by Ang II in human VSMCs.
Collapse
Affiliation(s)
- R M Touyz
- Multidisciplinary Research Group on Hypertension, Clinical Research Institute of Montreal, University of Montreal, Canada.
| | | | | | | | | |
Collapse
|
31
|
Nishida S, Yoshida LS, Shimoyama T, Nunoi H, Kobayashi T, Tsunawaki S. Fungal metabolite gliotoxin targets flavocytochrome b558 in the activation of the human neutrophil NADPH oxidase. Infect Immun 2005; 73:235-44. [PMID: 15618159 PMCID: PMC538966 DOI: 10.1128/iai.73.1.235-244.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fungal gliotoxin (GT) is a potent inhibitor of the O(2)(-)-generating NADPH oxidase of neutrophils. We reported that GT-treated neutrophils fail to phosphorylate p47(phox), a step essential for the enzyme activation, because GT prevents the colocalization of protein kinase C betaII with p47(phox) on the membrane. However, it remains unanswered whether GT directly affects any of NADPH oxidase components. Here, we examine the effect of GT on the NADPH oxidase components in the cell-free activation assay. The O(2)(-)-generating ability of membranes obtained from GT-treated neutrophils is 40.0 and 30.6% lower, respectively, than the untreated counterparts when assayed with two distinct electron acceptors, suggesting that flavocytochrome b(558) is affected in cells by GT. In contrast, the corresponding cytosol remains competent for activation. Next, GT addition in vitro to the assay consisting of flavocytochrome b(558) and cytosolic components (native cytosol or recombinant p67(phox), p47(phox), and Rac2) causes a striking inhibition (50% inhibitory concentration = 3.3 microM) when done prior to the stimulation with myristic acid. NADPH consumption is also prevented by GT, but the in vitro assembly of p67(phox), p47(phox), and Rac2 with flavocytochrome b(558) is normal. Posterior addition of GT to the activated enzyme is ineffective. The separate treatment of membranes with GT also causes a marked loss of flavocytochrome b(558)'s ability to reconstitute O(2)(-) generation, supporting the conclusion at the cellular level. The flavocytochrome b(558) heme spectrum of the GT-treated membranes stays, however, unchanged, showing that hemes remain intact. These results suggest that GT directly harms site(s) crucial for electron transport in flavocytochrome b(558), which is accessible only before oxidase activation.
Collapse
Affiliation(s)
- Satoshi Nishida
- Department of Infectious Diseases, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Sawicki G, Dakour J, Morrish DW. Functional proteomics of neurokinin B in the placenta indicates a novel role in regulating cytotrophoblast antioxidant defences. Proteomics 2004; 3:2044-51. [PMID: 14625867 DOI: 10.1002/pmic.200300537] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neurokinin B (NKB) has recently been demonstrated to be secreted from the placenta in abnormally high amounts in preeclampsia (PE) and to cause hypertension in rats, suggesting it may be a mediator of some pathophysiological features of PE. It is also known that NKB receptors exist in the placenta. To determine the effect of high levels of NKB on the placenta, we have performed proteomics on five separate preparations of cultured purified human term cytotrophoblast cells. The results showed a statistically significant decrease in 20 proteins, of which five were unknown proteins. Proteins important in antioxidant defenses that decreased were thioredoxin, cyclophilin A, cytokeratin 1, and peroxiredoxin 5. Two proteins that inhibit intravascular anticoagulation, cytokeratin 1 and annexin 11 were also decreased. Pathways involving pro-inflammatory cytokine activation of NF-kappa B are opposed by Raf kinase inhibitor protein, which was also decreased. Cofilin 1, a protein involved in defense against bacteria, was also decreased. Among other proteins that were suppressed by NKB were proteasome proteins, desmoplakin, and calgizzarin. Western blots confirmed the decrease in cytokeratin 1 and cyclophilin A protein after NKB exposure. In PE, there is reduced antioxidant activity and increased intravascular coagulation. The findings that high levels of NKB, similar to those observed in PE, can impair these two classes of activity support the hypothesis that high NKB levels may contribute to the pathogenesis of PE.
Collapse
Affiliation(s)
- Grzegorz Sawicki
- Department of Pharmacology, Cardiovascular Research Group, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
33
|
Kobayashi T, Ogawa Y, Watanabe Y, Furuya M, Kataoka S, Garcia del Saz E, Tsunawaki S, Dinauer MC, Seguchi H. Mitochondrial transmembrane potential is diminished in phorbol myristate acetate-stimulated peritoneal resident macrophages isolated from wild-type mice, but not in those from gp91-phox-deficient mice. Histochem Cell Biol 2004; 122:323-32. [PMID: 15243751 DOI: 10.1007/s00418-004-0674-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2004] [Indexed: 12/31/2022]
Abstract
Macrophages produce superoxide (O2-) during phagocytosis or upon stimulation with a variety of agents including phorbol myristate acetate (PMA) through the activation of NADPH oxidase, and the formed O2- is converted to other reactive oxygen species (ROS) such as hydrogen peroxide (H2O2). The aim of the present study was to elucidate the effect of the intracellularly produced ROS on mitochondrial transmembrane potential (MTP) in mouse (C57BL/6) peritoneal resident macrophages stimulated with PMA. Using a fluorescent dye, succinimidyl ester of dichlorodihydrofluorescein (H2DCFDA), O2- was visualized in intracellular compartments in a certain subpopulation of macrophages isolated from wild-type mice. Cells deficient in gp91-phox, one of the membrane components of NADPH oxidase, were negative for the fluorescence. When cells were loaded with both H2DCFDA and MitoCapture, a fluorescent dye for mitochondria, mitochondrial fluorescence was diminished in O2- -producing cells, but not in O2- -deficient cells. Flow cytometry also revealed the decrease of mitochondrial fluorescence in wild-type cells, but not in gp91-phox-deficient cells. The loss of mitochondrial fluorescence was prevented by microinjection of catalase into cells. The present findings demonstrate that MTP is diminished by ROS, including the H2O2 dismutated from O2-, produced intracellularly by activation of the NADPH oxidase in mouse peritoneal resident macrophages stimulated with PMA.
Collapse
Affiliation(s)
- Toshihiro Kobayashi
- Department of Anatomy and Cell Biology, Kochi Medical School, Kochi University, Kohasu, Okoh-cho, Nankoku, 783-5305 Kochi, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tsunawaki S, Yoshida LS, Nishida S, Kobayashi T, Shimoyama T. Fungal metabolite gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase. Infect Immun 2004; 72:3373-82. [PMID: 15155643 PMCID: PMC415710 DOI: 10.1128/iai.72.6.3373-3382.2004] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactive oxygen species are a critical weapon in the killing of Aspergillus fumigatus by polymorphonuclear leukocytes (PMN), as demonstrated by severe aspergillosis in chronic granulomatous disease. In the present study, A. fumigatus-produced mycotoxins (fumagillin, gliotoxin [GT], and helvolic acid) are examined for their effects on the NADPH oxidase activity in human PMN. Of these mycotoxins, only GT significantly and stoichiometrically inhibits phorbol myristate acetate (PMA)-stimulated O2- generation, while the other two toxins are ineffective. The inhibition is dependent on the disulfide bridge of GT, which interferes with oxidase activation but not catalysis of the activated oxidase. Specifically, GT inhibits PMA-stimulated events: p47phox phosphorylation, its incorporation into the cytoskeleton, and the membrane translocation of p67phox, p47phox, and p40phox, which are crucial steps in the assembly of the active NADPH oxidase. Thus, damage to p47phox phosphorylation is likely a key to inhibiting NADPH oxidase activation. GT does not inhibit the membrane translocation of Rac2. The inhibition of p47phox phosphorylation is due to the defective membrane translocation of protein kinase C (PKC) betaII rather than an effect of GT on PKC betaII activity, suggesting a failure of PKC betaII to associate with the substrate, p47phox, on the membrane. These results suggest that A. fumigatus may confront PMN by inhibiting the assembly of the NADPH oxidase with its hyphal product, GT.
Collapse
Affiliation(s)
- Shohko Tsunawaki
- Department of Infectious Diseases, National Research Institute for Child Health and Development, Setagaya, Tokyo 154-8567, Japan.
| | | | | | | | | |
Collapse
|
35
|
El Abbouyi A, Toumi M, El Hachimi Y, Jossang A. In vitro effects of aqueous seeds extract of Acacia cyanophylla on the opsonized zymosan-induced superoxide anions production by rat polymorphonuclear leukocytes. JOURNAL OF ETHNOPHARMACOLOGY 2004; 91:159-165. [PMID: 15036483 DOI: 10.1016/j.jep.2003.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Revised: 12/02/2003] [Accepted: 12/02/2003] [Indexed: 05/24/2023]
Abstract
In vitro studies were carried out in rat pleural polymorphonuclear leukocytes (PMNs) activated by opsonized zymosan (OZ) to investigate the effects of aqueous extract from Acacia cyanophylla seeds on superoxide anions generation. PMNs were collected, after induction of an acute inflammatory reaction, by injection in the rat pleural cavity, of a suspension of calcium pyrophosphate (CaPP) crystals (pleurisy with CaPP) or serum (pleurisy with serum). The results obtained indicate that Acacia cyanophylla aqueous seeds extract had, in vitro, a significant stimulatory effect, in a dose dependent manner, on the PMN superoxide anions generation. It also corrected the diminution of superoxide anions production induced by diclofenac pre-treated PMNs. It could be concluded from the results of this study that the stimulatory properties of Acacia cyanophylla seeds aqueous extract may at least be due to the presence of polyphenols such tannins and/or lignins. Further investigations are needed to determine clearly the mechanisms mediating the generation of superoxide radicals in this phenomenon.
Collapse
Affiliation(s)
- Ahmed El Abbouyi
- Laboratoire de Biochimie Appliquée et Biotechnologies, BP 20, Faculté des Sciences, El Jadida 24000, Morocco.
| | | | | | | |
Collapse
|
36
|
Li G, Kobayashi T, Tsunawaki S, Ogawa Y, Seguchi H. Gliotoxin Inhibits Superoxide Production and Exocytosis of the Oxidant-producing Intracellular Compartments in Human Neutrophils Stimulated with Phorbol Myristate Acetate. Acta Histochem Cytochem 2004. [DOI: 10.1267/ahc.37.183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Guangjun Li
- Department of Anatomy and Cell Biology, Kochi Medical School, Kochi University
| | - Toshihiro Kobayashi
- Department of Anatomy and Cell Biology, Kochi Medical School, Kochi University
| | - Shohko Tsunawaki
- Department of Infectious Diseases, National Research Institute for Child Health and Development
| | - Yasuhiro Ogawa
- Department of Radiology, Kochi Medical School, Kochi University
| | - Harumichi Seguchi
- Department of Anatomy and Cell Biology, Kochi Medical School, Kochi University
| |
Collapse
|
37
|
Clément MV, Hirpara JL, Pervaiz S. Decrease in intracellular superoxide sensitizes Bcl-2-overexpressing tumor cells to receptor and drug-induced apoptosis independent of the mitochondria. Cell Death Differ 2003; 10:1273-85. [PMID: 12894215 DOI: 10.1038/sj.cdd.4401302] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
At least two mechanisms of early cytosolic acidification during apoptotic signaling have been described, one that involves caspase 8 activation downstream of receptor ligation and another dependent on mitochondria-derived hydrogen peroxide during merocil-induced apoptosis. Here, we show that Bcl-2 inhibits both mechanisms of acidification. Moreover, Bcl-2 overexpression resulted in a slightly elevated constitutive level of superoxide anion and pH in CEM leukemia cells. Interestingly, decreasing intracellular superoxide concentration with an inhibitor of the beta-nicotinamide adenine dinucleotide phosphate oxidase or by transient transfection with a dominant-negative form of the guanosine triphosphate-binding protein Rac1 resulted in a significant increase in the sensitivity of CEM/Bcl-2 cells to CD95- or merocil-induced apoptosis. This increase in sensitivity was a direct result of a significant increase in caspase 8 activation and caspase 8-dependent acidification in the absence of caspase 9 activity or cytochrome c release. These findings suggest a mechanism of switching from mitochondria-dependent to mitochondria-independent death signaling in the same cell, provided the intracellular milieu is permissive for upstream caspase 8 activation, and could have implications for favorably tailoring tumor cells for drug treatment even when the mitochondrial pathway is compromised by Bcl-2.
Collapse
Affiliation(s)
- M-V Clément
- 1Department of Biochemistry, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260, Singapore
| | | | | |
Collapse
|
38
|
Lassègue B, Clempus RE. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 2003; 285:R277-97. [PMID: 12855411 DOI: 10.1152/ajpregu.00758.2002] [Citation(s) in RCA: 648] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The importance of reactive oxygen species (ROS) in vascular physiology and pathology is becoming increasingly evident. All cell types in the vascular wall produce ROS derived from superoxide-generating protein complexes similar to the leukocyte NADPH oxidase. Specific features of the vascular enzymes include constitutive and inducible activities, substrate specificity, and intracellular superoxide production. Most phagocyte enzyme subunits are found in vascular cells, including the catalytic gp91phox (aka, nox2), which was the earliest member of the newly discovered nox family. However, smooth muscle frequently expresses nox1 rather than gp91phox, and nox4 is additionally present in all cell types. In cell culture, agonists increase ROS production by activating multiple signals, including protein kinase C and Rac, and by upregulating oxidase subunits. The oxidases are also upregulated in vascular disease and are involved in the development of atherosclerosis and a significant part of angiotensin II-induced hypertension, possibly via nox1 and nox4. Likewise, enhanced vascular oxidase activity is associated with diabetes. Therefore, members of this enzyme family appear to be important in vascular biology and disease and constitute promising targets for future therapeutic interventions.
Collapse
|
39
|
Jiang F, Guo Y, Salvemini D, Dusting GJ. Superoxide dismutase mimetic M40403 improves endothelial function in apolipoprotein(E)-deficient mice. Br J Pharmacol 2003; 139:1127-34. [PMID: 12871831 PMCID: PMC1573947 DOI: 10.1038/sj.bjp.0705354] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
1. Overproduction of superoxide anions in the vascular wall contributes to endothelial dysfunction in vascular disease. A superoxide-generating reduced beta-nicotinamide adenine dinucleotide phosphate (NADPH) oxidase has recently been identified as a major source of oxidative radicals in vascular tissues. We studied the effects of a synthetic manganese-containing superoxide dismutase (SOD) mimetic, M40403, on NADPH oxidase-dependent superoxide generation and on endothelial dysfunction. 2. In rat aortic smooth muscle cells, NADPH (100 micro M) markedly stimulated superoxide production as detected by lucigenin (5 micro M)-enhanced chemiluminescence. M40403 reduced NADPH oxidase-dependent superoxide production in a concentration-dependent manner, with IC(50) being 31.6 micro M. In contrast, native Cu/Zn SOD (up to 300 U ml(-1)) had no effect. Angiotensin II (100 nM) increased the NADPH oxidase activity by 70%, and treatment with M40403 (10 micro M) reduced this increased superoxide to the control level. 3. In aortae from apolipoprotein(E)-deficient mice (apoE(0)) with hyperlipidemia and atherosclerosis, superoxide production is largely derived from NADPH oxidase. The attenuation of endothelial nitric oxide vasodilator function parallels the increase in vascular superoxide production at different stages of the disease. Acute incubation of such aortic rings with M40403 significantly suppressed superoxide production and improved endothelium-dependent vasorelaxation to a level comparable to that in wildtype control mice. 4. In summary, the cell-permeable SOD mimetic M40403 was found to reverse endothelial dysfunction in apoE(0) aorta ex vivo by decreasing NADPH oxidase-dependent superoxide levels. The advantages of synthetic SOD mimetics over the native Cu/Zn SOD enzyme, such as greater cell permeability and stability, confer significant therapeutic potential in vascular disease.
Collapse
Affiliation(s)
- Fan Jiang
- Howard Florey Institute, The University of Melbourne, Victoria 3010, Australia
| | - Yanan Guo
- Howard Florey Institute, The University of Melbourne, Victoria 3010, Australia
| | | | - Gregory J Dusting
- Howard Florey Institute, The University of Melbourne, Victoria 3010, Australia
- Author for correspondence:
| |
Collapse
|
40
|
Odani K, Kobayashi T, Ogawa Y, Yoshida S, Seguchi H. ML-7 inhibits exocytosis of superoxide-producing intracellular compartments in human neutrophils stimulated with phorbol myristate acetate in a myosin light chain kinase-independent manner. Histochem Cell Biol 2003; 119:363-70. [PMID: 12750906 DOI: 10.1007/s00418-003-0531-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2003] [Indexed: 01/25/2023]
Abstract
ML-7, (5-iodonaphthalene-1-sulfonyl) homopiperazine, is commonly employed as a myosin light chain kinase (MLCK) inhibitor. In the present study, we demonstrated that ML-7 affects the superoxide (O(2)(-))-producing system of human neutrophils in an MLCK-independent manner. Human neutrophils were stimulated with phorbol myristate acetate (PMA), which does not activate MLCK. ML-7 inhibited extracellular release, but not intracellular production of O(2)(-) in the stimulated cells. Fluorescence microscopy revealed the generation of O(2)(-) at intracellular compartments in the stimulated cells exposed to ML-7. At the electron microscopic level, the reaction product of NADPH oxidase activity was found in intracellular compartments. ML-7 strongly inhibited the association of the oxidant-producing intracellular compartments with the plasma membrane. Furthermore, the upregulation of alkaline phosphatase activity, a marker enzyme of the oxidant-producing intracellular compartments, was also inhibited by ML-7. These findings indicate that ML-7 inhibits the fusion of the oxidant-producing intracellular compartments to the plasma membrane resulting in the inhibition of the extracellular release of O(2)(-) in PMA-stimulated human neutrophils in an MLCK-independent manner.
Collapse
Affiliation(s)
- Keita Odani
- Department of Radiology, Kochi Medical School, Nankoku, 783-5305 Kochi, Japan
| | | | | | | | | |
Collapse
|
41
|
Murakami A, Takahashi D, Koshimizu K, Ohigashi H. Synergistic suppression of superoxide and nitric oxide generation from inflammatory cells by combined food factors. Mutat Res 2003; 523-524:151-61. [PMID: 12628513 DOI: 10.1016/s0027-5107(02)00331-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In contrast to chemopreventive strategies using individual agents, a combination of specified compounds may be effectual to achieve desirable results with higher efficacy and lower toxicity. In the present in vitro study, we examined combinations of agents and assessed which concentrations were appropriate to yield notable synergism. L-N(G)-Monomethyl-L-arginine (L-NMMA), a synthetic inducible nitric oxide synthase (iNOS) inhibitor, and zerumbone, a natural sesquiterpene that suppresses iNOS de novo synthesis, were combined at various concentrations, with the aim to diminish combined lipopolysaccharide- and interferon-gamma-induced nitric oxide generation in a murine macrophage line, RAW264.7. Although the combinatorial effects (CEs) were antagonistic or additive at higher concentrations, significant synergism was obtained at lower concentrations where each agent alone did not cause significant inhibition. Similarly, the CEs were synergistic when (-)-epigallocatechin gallate (EGCG) and genistein were combined at lower concentrations, whereas those of two iNOS inhibitors, L-NMMA and L-N(G)-aminoethyl-L-ornithine, were either additive or antagonistic at all concentrations tested, suggesting that a combination of given agents with different action mechanisms is a prerequisite for synergistic effects. For suppression of phorbol ester-induced superoxide anion radical (O(2)*(-)) generation in differentiated HL-60 cells, the CEs of 1'-acetoxycahvicol acetate (ACA), a phenyl propanoid that suppresses O(2)*(-) generation, and O(2)*(-) dismutase were also synergistic, though only at lower concentrations. The CEs of ACA/EGCG were antagonistic or additive, even at low concentrations, suggesting that the signal transduction pathways triggered by these agents are antagonistic. The present findings suggest that individual food phytochemicals have complex interactions that can be antagonistic, additive, and/or synergistic in biological systems, depending upon certain environmental factors including concentrations. Further, these results support and emphasize the concept that combinations of different types of chemicals at low concentrations are one of the essential areas of study for chemopreventive strategies.
Collapse
Affiliation(s)
- Akira Murakami
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
42
|
Forman HJ, Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 2002; 166:S4-8. [PMID: 12471082 DOI: 10.1164/rccm.2206007] [Citation(s) in RCA: 620] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Phagocytes such as neutrophils and macrophages produce reactive oxygen species (ROS) during phagocytosis or stimulation with a wide variety of agents through activation of nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase that is assembled at the plasma membrane from resident plasma membrane and cytosolic protein components. One of the subunits of the phagocyte NADPH oxidase is now recognized as a member of a family of NADPH oxidases, or NOX, present in cells other than phagocytes. Physiologic generation of ROS has been implicated in a variety of physiologic responses from transcriptional activation to cell proliferation and apoptosis. The increase in superoxide and hydrogen peroxide (H2O2) that results from stimulation of the NADPH oxidase is transient, in part due to the presence of the antioxidant enzymes, which return their concentrations to the prestimulation steady state level. Thus, the antioxidant enzymes may function in the "turn-off" phase of signal transduction by ROS. During its transient elevation, H2O2 may act as a modifier of key signaling enzymes through reversible oxidation of critical thiols. The rapid reaction of thiols with H2O2 when in their unprotonated state would provide a potential mechanism for the specificity that is necessary for physiologic cell signaling.
Collapse
Affiliation(s)
- Henry Jay Forman
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama 35294,
| | | |
Collapse
|
43
|
Kobayashi T, Seguchi H. Cytochemistry of NADPH Oxidase Activity in Human Neutrophils. Acta Histochem Cytochem 2001. [DOI: 10.1267/ahc.34.85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|