1
|
Thenmozhi AJ, Raja TRW, Janakiraman U, Manivasagam T. Retraction Note: Neuroprotective Effect of Hesperidin on Aluminium Chloride Induced Alzheimer's Disease in Wistar Rats. Neurochem Res 2024; 49:3179. [PMID: 39174868 DOI: 10.1007/s11064-024-04232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Affiliation(s)
- Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| | - Tharsius Raja William Raja
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Udaiyappan Janakiraman
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| |
Collapse
|
2
|
Chen SY, Chiang IC, Chen YY, Hsu YH, Yen GC. Recent advances in the potential of Phyllanthus emblica L. and its related foods for combating metabolic diseases through methylglyoxal trapping. Food Res Int 2024; 194:114907. [PMID: 39232532 DOI: 10.1016/j.foodres.2024.114907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Methylglyoxal (MG) serves as the primary precursor for the nonenzymatic glycation of proteins and DNA, leading to advanced glycation end products (AGEs). Regular intake of dietary MG is strongly correlated with low-grade inflammation, potentially accelerating the pathogenesis of metabolic diseases, including obesity, diabetes, cancers, liver diseases, Alzheimer's disease, cardiovascular diseases, aging, and bone loss. Although pharmaceutical agents (pimagedine and candesartan) have been developed to inhibit MG formation, they often come with serious side effects (nausea, diarrhea, headache, gastrointestinal disturbance, symptomatic hypotension, abnormal renal and liver function tests, development of antinuclear antibody, pernicious-like anemia, and hyperkalemia), highlighting the need for an efficient and safe approach to scavenging MG. Phyllanthus emblica Linn fruit, a nutritious edible fruit, and medicinal plant contains over 300 bioactive compounds. Among twenty-three herbals, 100 μg/mL of the aqueous extract of Phyllanthus emblica fruit (APF) exhibits the highest potency in trapping MG, achieving an 87.3 % reduction under d-fructose induced BSA-AGEs formation. However, there are few reports detailing APF and its related foods' specific impact on disease prevention through MG trapping. This review summarizes the mechanisms through which MG is linked to the development of metabolic diseases and provides several strategies for reducing MG levels using APF and its bioactive compounds. The potential antiglycation properties of APF may offer new applications in the food industry and pharmacological research.
Collapse
Affiliation(s)
- Sheng-Yi Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - I-Chen Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Ying-Ying Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Yi-Hsien Hsu
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan
| | - Gow-Chin Yen
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan; Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
3
|
Attia FM, Kassab RB, Ahmed-Farid OA, Abdel Moneim AE, El-Yamany NA. Zinc Oxide Nanoparticles Attenuated Neurochemical and Histopathological Alterations Associated with Aluminium Chloride Intoxication in Rats. Biol Trace Elem Res 2024:10.1007/s12011-024-04292-4. [PMID: 38963645 DOI: 10.1007/s12011-024-04292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
The present investigation explored the potential neuroprotective role of zinc oxide nanoparticles (ZnONPs) on aluminum chloride (AlCl3)-mediated Alzheimer's disease (AD)-like symptoms. Rats were distributed into four treatment groups equally: control, ZnONPs (4 mg/kg b.wt.), AlCl3 (100 mg/kg b.wt.), and ZnONPs + AlCl3 groups. Rats were treated for 42 consecutive days. ZnONPs injection into AlCl3-treated rats suppressed the development of oxidative challenge in the cortical and hippocampal tissues, as demonstrated by the decreased neuronal pro-oxidants (malondialdehyde and nitric oxide), and the increased glutathione and catalase levels. Additionally, ZnONPs injection showed anti-inflammatory potency in response to AlCl3 by decreasing levels of tumor necrosis factor-α and interleukin-1β. Moreover, pretreatment with ZnONPs prevented neuronal cell loss by decreasing the level of pro-apoptotic caspase-3 and enhancing the anti-apoptotic B cell lymphoma 2. Furthermore, ZnONPs ameliorated the disturbed acetylcholinesterase activity, monoamines (norepinephrine, dopamine, and serotonin), excitatory (glutamic and aspartic acids), and inhibitory amino acids (GABA and glycine) in response to AlCl3 exposure. These findings indicate that ZnONPs may have the potential as an alternative therapy to minimize or prevent the neurological deficits in AD model by exhibiting antioxidative, anti-inflammation, anti-apoptosis, and neuromodulatory effects.
Collapse
Affiliation(s)
- Fatma M Attia
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt.
- Biology Department, Faculty of Science and Arts, Almakhwah, Al Baha University, Al Baha, Saudi Arabia.
| | | | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Nabil A El-Yamany
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
4
|
Kumar Nelson V, Jha NK, Nuli MV, Gupta S, Kanna S, Gahtani RM, Hani U, Singh AK, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Al Othaim A, Begum SS, Ahmad F, Mishra PC, Jha SK, Ojha S. Unveiling the impact of aging on BBB and Alzheimer's disease: Factors and therapeutic implications. Ageing Res Rev 2024; 98:102224. [PMID: 38346505 DOI: 10.1016/j.arr.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 05/12/2024]
Abstract
Alzheimer's disease (AD) is a highly prevalent neurodegenerative condition that has devastating effects on individuals, often resulting in dementia. AD is primarily defined by the presence of extracellular plaques containing insoluble β-amyloid peptide (Aβ) and neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (P-tau). In addition, individuals afflicted by these age-related illnesses experience a diminished state of health, which places significant financial strain on their loved ones. Several risk factors play a significant role in the development of AD. These factors include genetics, diet, smoking, certain diseases (such as cerebrovascular diseases, obesity, hypertension, and dyslipidemia), age, and alcohol consumption. Age-related factors are key contributors to the development of vascular-based neurodegenerative diseases such as AD. In general, the process of aging can lead to changes in the immune system's responses and can also initiate inflammation in the brain. The chronic inflammation and the inflammatory mediators found in the brain play a crucial role in the dysfunction of the blood-brain barrier (BBB). Furthermore, maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. Therefore, in this review, we discussed the role of age and its related factors in the breakdown of the blood-brain barrier and the development of AD. We also discussed the importance of different compounds, such as those with anti-aging properties, and other compounds that can help maintain the integrity of the blood-brain barrier in the prevention of AD. This review builds a strong correlation between age-related factors, degradation of the BBB, and its impact on AD.
Collapse
Affiliation(s)
- Vinod Kumar Nelson
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Sandeep Kanna
- Department of pharmaceutics, Chalapathi Institute of Pharmaceutical Sciences, Chalapathi Nagar, Guntur 522034, India
| | - Reem M Gahtani
- Departement of Clinical Laboratory Sciences, King Khalid University, Abha, Saudi Arabia
| | - Umme Hani
- Department of pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Arun Kumar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Ayoub Al Othaim
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - S Sabarunisha Begum
- Department of Biotechnology, P.S.R. Engineering College, Sivakasi 626140, India
| | - Fuzail Ahmad
- Respiratory Care Department, College of Applied Sciences, Almaarefa University, Diriya, Riyadh, 13713, Saudi Arabia
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, P.O. Box 15551, United Arab Emirates
| |
Collapse
|
5
|
Kazmi I, Afzal M, Imam F, Alzarea SI, Patil S, Mhaiskar A, Shah U, Almalki WH. Barbaloin's Chemical Intervention in Aluminum Chloride Induced Cognitive Deficits and Changes in Rats through Modulation of Oxidative Stress, Cytokines, and BDNF Expression. ACS OMEGA 2024; 9:6976-6985. [PMID: 38371830 PMCID: PMC10870395 DOI: 10.1021/acsomega.3c08791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 01/05/2024] [Indexed: 02/20/2024]
Abstract
Alzheimer's disease (AD) is a long-term neurodegenerative condition characterized by impaired cognitive functions, particularly in the domains of learning and memory. Finding promising options for AD can be successful with a medication repurposing strategy. The goal of the research was to examine the neuroprotective characteristics of barbaloin in aluminum chloride (AlCl3)-induced cognitive deficits and changes in rats through modulation of oxidative stress, cytokines, and brain-derived neurotrophic factor (BDNF) expression. Thirty male Wistar rats were subjected to AlCl3 at a dosage of 100 mg/kg via the per oral route (p.o.), which induced cognitive decline. Morris water maze (MWM) is used to assess behavioral metrics. Assays for catalase (CAT), malondialdehyde (MDA), reduced glutathione (GSH), acetylcholinesterase (AChE), choline-acetyltransferase (ChAT), interleukins-1β (IL-1β), superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), nuclear factor kappa-B (NF-κB), interleukins-6 (IL-6), BDNF, and neurotransmitter levels [dopamine (DA), acetylcholine (Ach), and γ-aminobutyric acid (GABA)] were performed. Results: The transfer latency time was notably decreased, and substantial modifications in the concentrations of GSH, MDA, CAT, SOD, AChE, ChAT and observed modulations in the formation of interleukins-6 (IL-6), TNF-α, IL-1β, BDNF, and NF-κB were also evidenced after the treatment of rats with barbaloin in comparison to AlCl3-induced control groups. Significant alterations in neurotransmitter levels (DA, Ach, and GABA) were also seen in barbaloin-treated groups in comparison to AlCl3-induced groups. The current investigation has provided evidence that the administration of barbaloin yielded notable enhancements in cognitive function in rats through the inhibition of MDA, enhancing endogenous antioxidant enzymes, reduction of cytokine levels, and enhancement of neurotransmitter contents in the brain. These effects were observed in comparison to a control group treated with AlCl3 and can be attributable to barbaloin's strong anti-inflammatory and antioxidant properties, and metal chelating properties may contribute to its neuroprotective effects. Barbaloin may also promote neuronal survival and enhance learning and memory by upregulating the expression of BDNF.
Collapse
Affiliation(s)
- Imran Kazmi
- Department
of Biochemistry, Faculty of Sciences, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Afzal
- Department
of Pharmaceutical Sciences, Pharmacy Program,
Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Faisal Imam
- Department
of Pharmacology and Toxicology, College
of Pharmacy, King Saud University, P.O.
Box 2457, Riyadh 11451, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Aljouf, Sakaka 72341, Saudi Arabia
| | - Shaktipal Patil
- Department
of Pharmacology, H. R. Patel Institute of
Pharmaceutical Education and Research, Karwand naka, Shirpur 425405, Maharashtra, India
- Department
of Chemistry, Nootan Pharmacy College, Sankalchand
Patel University, Visnagar 384315, Gujarat, India
| | - Amrapali Mhaiskar
- Department
of Pharmacology, R. C. Patel Institute of
Pharmaceutical Education and Research, Karwand naka, Shirpur 425405, Maharashtra, India
| | - Ujashkumar Shah
- Department
of Chemistry, Nootan Pharmacy College, Sankalchand
Patel University, Visnagar 384315, Gujarat, India
| | - Waleed Hassan Almalki
- Department
of Pharmacology, College of Pharmacy, Umm
Al-Qura University, Makkah 21955, Saudi Arabia
| |
Collapse
|
6
|
Dhapola R, Kumari S, Sharma P, HariKrishnaReddy D. Insight into the emerging and common experimental in-vivo models of Alzheimer's disease. Lab Anim Res 2023; 39:33. [PMID: 38082453 PMCID: PMC10712122 DOI: 10.1186/s42826-023-00184-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 05/30/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial, rapidly progressing neurodegenerative disorder. As the exact cause of the disease is still unclear, the drug development is very challenging. This review encompasses the commonly used AD models involving various chemicals, heavy metals and endogenous substances induced models and the transgenic models. It also provides insight into the reliable emerging models of AD that may overcome the shortcomings associated with available models. Chemicals like streptozotocin, scopolamine, colchicine and okadaic acid render the animal susceptible to neuroinflammation and oxidative stress induced neurodegeneration along with amyloid-β deposition and tau hyperphosphorylation. Similarly, endogenous substances like acrolein and amyloid-β 1-42 are efficient in inducing the major pathologies of AD. Heavy metals like aluminum and fluoride and mixture of these have been reported to induce neurotoxicity therefore are used as animal models for AD. Transgenic models developed as a result of knock-in or knock-out of certain genes associated with AD including PDAPP, APP23, Tg2576, APP/PS1, 3 × Tg and 5 × FAD have also been incorporated in this study. Further, emerging and advanced pathomimetic models of AD are provided particular interest here which will add on to the current knowledge of animal models and may aid in the drug development process and deepen our understanding related to AD pathogenesis. These newly discovered models include oAβ25-35 model, transgenic model expressing 82-kDa ChAT, oDGal mouse and APP knock-in rat. This study may aid in the selection of suitable model for development of novel potent therapeutics and for exploring detailed pathogenic mechanism of AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Sneha Kumari
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Prajjwal Sharma
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India
| | - Dibbanti HariKrishnaReddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, 151401, India.
| |
Collapse
|
7
|
Agarwal D, Malik J, Bhanwala N, Ambatwar R, Kumar S, Chandrakar L, Datusalia AK, Khatik GL. Networkodynamic approach to perceive the key phytoconstituents of E. officinalis (Amla) as natural BACE1 inhibitors: an in-silico study. J Biomol Struct Dyn 2023:1-13. [PMID: 37861402 DOI: 10.1080/07391102.2023.2269260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023]
Abstract
Alzheimer's disease (AD) is a deteriorating neural disorder, and currently, available drugs are ineffective in its treatment. Emblica officinalis (Amla) is widely recognised in the Indian medicinal system for ameliorative effects in managing diabetes, hyperlipidaemia and neurological diseases. Thus, we aimed to identify the active phytoconstituents of E. officinalis and their role in inhibiting the potential targets for the possible treatment of AD. The network pharmacology approach, gene ontology, molecular docking and molecular dynamics simulation (MDS) studies were performed. A total of 36 bioactive components in E. officinalis, 95 predicted anti-AD targets, and 3398 AD-related targets were identified from different databases. The network analysis showed that BACE1, ABCB1 and AChE, CA2 are the most potential AD targets. Based on gene ontology and topology analysis results, BACE1 was a significant target related to AD pathways, and quercetin, kaempferol and myricetin showed the highest interaction with target genes. The molecular docking results found that rutin and quercetin displayed better binding affinities -7.5, -5.67 kcal/mol than the BACE1 bound internal ligand. Furthermore, MDS results suggested that quercetin and rutin could be potential inhibitors against BACE-1 protein and may have therapeutic effects in treating AD. Such promising results could be further helpful in new drug discovery against AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dhairiya Agarwal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Jatin Malik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Neeru Bhanwala
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Ramesh Ambatwar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Sumit Kumar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Lokesh Chandrakar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| | - Gopal L Khatik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, Lucknow, Uttar Pradesh, India
| |
Collapse
|
8
|
Atef MM, Mostafa YM, Ahmed AAM, El-Sayed NM. Simvastatin attenuates aluminium chloride-induced neurobehavioral impairments through activation of TGF-β1/ SMAD2 and GSK3β/β-catenin signalling pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104220. [PMID: 37454825 DOI: 10.1016/j.etap.2023.104220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterised by the presence of β-amyloid plaques and acetylcholine depletion leading to neurobehavioral defects. AD was contributed also with downregulation of TGF-β1/SMAD2 and GSK3β/β-catenin pathways. Simvastatin (SMV) improved memory function experimentally and clinically. Hence, this study aimed to investigate the mechanistic role of SMV against aluminium chloride (AlCl3) induced neurobehavioral impairments. AD was induced by AlCl3 (50 mg/kg) for 6 weeks. Mice received Simvastatin (10 or 20 mg/kg) or Donepezil (3 mg/kg) for 6 weeks after that the histopathological, immunohistochemical and biochemical test were examined. Treatment with SMV improved the memory deterioration induced by AlCl3 with significant recovery of the histopathological changes. This was concomitant with the decrease of AChE and Aβ (1-42). SMV provides its neuroprotective effect through upregulating the protein expression of β-catenin, TGF-β1 and downregulating the expression of GSK3β, TLR4 and p-SMAD2.
Collapse
Affiliation(s)
| | - Yasser M Mostafa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo, Egypt
| | - Amal A M Ahmed
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Norhan M El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
9
|
Ameliorative effects of bromelain on aluminum-induced Alzheimer's disease in rats through modulation of TXNIP pathway. Int J Biol Macromol 2023; 227:1119-1131. [PMID: 36462588 DOI: 10.1016/j.ijbiomac.2022.11.291] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Alzheimer's disease (AD) is known as "type 3 diabetes". As thioredoxin binding protein (TXNIP) has been shown to be involved in brain insulin resistance, the present study evaluated the roles of TXNIP, phospho-insulin receptor substrate 1 (P-IRS-1), and phosphatidyl inositol-3 kinase (PI3K) in the pathogenesis of AD. The potential ameliorative effect of bromelain compared to donepezil was evaluated in an aluminum chloride (AlCl3)-induced AD in rats. Behavioral tests demonstrated similar improvements in exploratory activity, cognitive and spatial memory functions, anxiety, and depression levels between rats treated with bromelain and donepezil. Donepezil was superior to bromelain in improving locomotor activity. Histopathological examinations demonstrated neuronal degeneration in the AlCl3 group that was almost normalized by bromelain and donepezil. Moreover, there was deposition of amyloid plaques in the AlCl3 group that was improved by bromelain and donepezil. Acetylcholine esterase levels were significantly increased in rats treated with AlCl3 group and significantly decreased in rats treated with bromelain and donepezil. Furthermore, AlCl3 group showed a significantly increased TXNIP and P-IRS1 and a significantly reduced PI3K levels. These effects were ameliorated by bromelain and donepezil treatment. The present study demonstrates a previously unreported modulatory effect of bromelain on the TXNIP/P-IRS-1/PI3K axis in AD model.
Collapse
|
10
|
Ghaderi S, Gholipour P, Komaki A, Salehi I, Rashidi K, Esmaeil Khoshnam S, Rashno M. p-Coumaric acid ameliorates cognitive and non-cognitive disturbances in a rat model of Alzheimer’s disease: The role of oxidative stress and inflammation. Int Immunopharmacol 2022; 112:109295. [DOI: 10.1016/j.intimp.2022.109295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/11/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022]
|
11
|
Yan X, Li Q, Jing L, Wu S, Duan W, Chen Y, Chen D, Pan X. Current advances on the phytochemical composition, pharmacologic effects, toxicology, and product development of Phyllanthi Fructus. Front Pharmacol 2022; 13:1017268. [PMID: 36339628 PMCID: PMC9626985 DOI: 10.3389/fphar.2022.1017268] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/30/2022] [Indexed: 12/01/2022] Open
Abstract
Phyllanthi Fructus (PF), the edible fruits of Phyllanthus emblica L., serves as an important resource for some health products, foods and drugs due to its high safety and sufficient nutritional value. In recent years, in vivo and in vitro experiments have been conducted to reveal the active components of PF. More than 180 compounds have been isolated and identified from the PF so far, primarily including tannins, phenolic acids, flavonoids, terpenoids, polysaccharides, fatty acids and amino acids. In traditional Chinese medicine (TCM), PF is used to cure several diseases such as bronchitis, asthma, diabetes, peptic ulcer, hepatopathy, leprosy, and jaundice. Consistent with ethnopharmacology, numerous modern studies have demonstrated that the extracts or monomeric compounds derived from PF exhibit various pharmacological effects including anti-oxidation, anti-bacteria, anti-inflammation, anti-tumour, anti-virus, immunity improvement, hypoglycemic and hypolipidemic effects, and multiple organ protective protection. Toxicological studies on PF indicated the absence of any adverse effects even at a high dose after oral administration. Due to strict quality control, these pharmacological activities and the safety of PF greatly improve the development and utilization of products. Our comprehensive review aims to summarize the phytochemistry, pharmacological effects, toxicology, and product development of PF to provide theoretical guidance and new insights for further research on PF in the future.
Collapse
Affiliation(s)
- Xiaoyu Yan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuju Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Jing
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangyue Wu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Duan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dayi Chen
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Dayi Chen, ; Xiaoqi Pan,
| | - Xiaoqi Pan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Dayi Chen, ; Xiaoqi Pan,
| |
Collapse
|
12
|
Mishra DK, Awasthi H, Srivastava D, Fatima Z. Phytochemical: a treatment option for heavy metal induced neurotoxicity. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2022; 19:513-530. [PMID: 35749142 DOI: 10.1515/jcim-2020-0325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals are known to be carcinogenic, mutagenic, and teratogenic. Some heavy metals are necessary while present in the growing medium in moderate concentrations known to be essential heavy metals as they required for the body functioning as a nutrient. But there are some unwanted metals and are also toxic to the environment and create a harmful impact on the body, which termed to be non-essential heavy metals. Upon exposure, the heavy metals decrease the major antioxidants of cells and enzymes with the thiol group and affect cell division, proliferation, and apoptosis. It interacts with the DNA repair mechanism and initiates the production of reactive oxygen species (ROS). It subsequently binds to the mitochondria and may inhibit respiratory and oxidative phosphorylation in even low concentrations. This mechanism leads to damage antioxidant repair mechanism of neuronal cells and turns into neurotoxicity. Now, phytochemicals have led to good practices in the health system. Phytochemicals that are present in the fruits and herbs can preserve upon free radical damage. Thus, this review paper summarized various phytochemicals which can be utilized as a treatment option to reverse the effect of the toxicity caused by the ingestion of heavy metals in our body through various environmental or lifestyles ways.
Collapse
Affiliation(s)
| | - Himani Awasthi
- Amity Institute of Pharmacy, Amity University, Lucknow, India
| | | | - Zeeshan Fatima
- Amity Institute of Pharmacy, Amity University, Lucknow, India
| |
Collapse
|
13
|
Tyler SEB, Tyler LDK. Therapeutic roles of plants for 15 hypothesised causal bases of Alzheimer's disease. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:34. [PMID: 35996065 PMCID: PMC9395556 DOI: 10.1007/s13659-022-00354-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/15/2022] [Indexed: 05/26/2023]
Abstract
Alzheimer's disease (AD) is progressive and ultimately fatal, with current drugs failing to reverse and cure it. This study aimed to find plant species which may provide therapeutic bioactivities targeted to causal agents proposed to be driving AD. A novel toolkit methodology was employed, whereby clinical symptoms were translated into categories recognized in ethnomedicine. These categories were applied to find plant species with therapeutic effects, mined from ethnomedical surveys. Survey locations were mapped to assess how this data is at risk. Bioactivities were found of therapeutic relevance to 15 hypothesised causal bases for AD. 107 species with an ethnological report of memory improvement demonstrated therapeutic activity for all these 15 causal bases. The majority of the surveys were found to reside within biodiversity hotspots (centres of high biodiversity under threat), with loss of traditional knowledge the most common threat. Our findings suggest that the documented plants provide a large resource of AD therapeutic potential. In demonstrating bioactivities targeted to these causal bases, such plants may have the capacity to reduce or reverse AD, with promise as drug leads to target multiple AD hallmarks. However, there is a need to preserve ethnomedical knowledge, and the habitats on which this knowledge depends.
Collapse
Affiliation(s)
| | - Luke D K Tyler
- School of Natural Sciences, Bangor University, Gwynedd, UK
| |
Collapse
|
14
|
Phosphodiesterase (PDE) III inhibitor, Cilostazol, improved memory impairment in aluminum chloride-treated rats: modulation of cAMP/CREB pathway. Inflammopharmacology 2022; 30:2477-2488. [PMID: 35727381 DOI: 10.1007/s10787-022-01010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/05/2022]
Abstract
The most prevalent type of dementia is Alzheimer's disease (AD), which is currently incurable. Existing treatments for Alzheimer's disease, such as acetylcholinesterase inhibitors, are only effective for symptom relief. Disease-modifying medications for Alzheimer's disease are desperately required, given the enormous burdens that the disease places on individuals and communities. Phosphodiesterase (PDE) inhibitors are gaining a lot of attention in the research community because of their potential in treating age-related cognitive decline. Cilostazol is a selective PDE III inhibitor used as antiplatelet agent through cAMP response element-binding (CREB) protein phosphorylation pathway (cAMP/CREB). The neuroprotective effect of cilostazol in AD-like cognitive decline in rats was investigated in this study. After 2 months of intraperitoneal administration of 10 mg/kg aluminum chloride, Morris water maze and Y-maze (behavioral tests) were performed. After that, histological and biochemical examinations of the hippocampal region were carried out. Aluminum chloride-treated rats showed histological, biochemical, and behavioral changes similar to Alzheimer's disease. Cilostazol improved rats' behavioral and histological conditions, raised neprilysin level while reduced levels of amyloid-beta protein and phosphorylated tau protein. It also decreased the hippocampal levels of tumor necrosis factor-alpha, nuclear factor-kappa B, FAS ligand, acetylcholinesterase content, and malondialdehyde. These outcomes demonstrate the protective activity of cilostazol versus aluminum-induced memory impairment.
Collapse
|
15
|
El-Ganainy SO, Soliman OA, Ghazy AA, Allam M, Elbahnasi AI, Mansour AM, Gowayed MA. Intranasal Oxytocin Attenuates Cognitive Impairment, β-Amyloid Burden and Tau Deposition in Female Rats with Alzheimer's Disease: Interplay of ERK1/2/GSK3β/Caspase-3. Neurochem Res 2022; 47:2345-2356. [PMID: 35596040 PMCID: PMC9352611 DOI: 10.1007/s11064-022-03624-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022]
Abstract
Oxytocin is a neuropeptide hormone that plays an important role in social bonding and behavior. Recent studies indicate that oxytocin could be involved in the regulation of neurological disorders. However, its role in modulating cognition in Alzheimer’s disease (AD) has never been explored. Hence, the present study aims to investigate the potential of chronic intranasal oxytocin in halting memory impairment & AD pathology in aluminum chloride-induced AD in female rats. Morris water maze was used to assess cognitive dysfunction in two-time points throughout the treatment period. In addition, neuroprotective effects of oxytocin were examined by assessing hippocampal acetylcholinesterase activity, β-amyloid 1–42 protein, and Tau levels. In addition, ERK1/2, GSK3β, and caspase-3 levels were assessed as chief neurobiochemical mediators in AD. Hippocampi histopathological changes were also evaluated. These findings were compared to the standard drug galantamine alone and combined with oxytocin. Results showed that oxytocin restored cognitive functions and improved animals’ behavior in the Morris test. This was accompanied by a significant decline in acetylcholinesterase activity, 1–42 β-amyloid and Tau proteins levels. Hippocampal ERK1/2 and GSK3β were also reduced, exceeding galantamine effects, thus attenuating AD pathological hallmarks formation. Determination of caspase-3 revealed low cytoplasmic positivity, indicating the ceasing of neuronal death. Histopathological examination confirmed these findings, showing restored hippocampal cells structure. Combined galantamine and oxytocin treatment showed even better biochemical and histopathological profiles. It can be thus concluded that oxytocin possesses promising neuroprotective potential in AD mediated via restoring cognition and suppressing β-amyloid, Tau accumulation, and neuronal death.
Collapse
Affiliation(s)
- Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Omar A Soliman
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Aya A Ghazy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Maram Allam
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Aya I Elbahnasi
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Amira M Mansour
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Mennatallah A Gowayed
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
16
|
Bhat BA, Almilaibary A, Mir RA, Aljarallah BM, Mir WR, Ahmad F, Mir MA. Natural Therapeutics in Aid of Treating Alzheimer's Disease: A Green Gateway Toward Ending Quest for Treating Neurological Disorders. Front Neurosci 2022; 16:884345. [PMID: 35651632 PMCID: PMC9149276 DOI: 10.3389/fnins.2022.884345] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/18/2022] [Indexed: 11/13/2022] Open
Abstract
The current scientific community is facing a daunting challenge to unravel reliable natural compounds with realistic potential to treat neurological disorders such as Alzheimer's disease (AD). The reported compounds/drugs mostly synthetic deemed the reliability and therapeutic potential largely due to their complexity and off-target issues. The natural products from nutraceutical compounds emerge as viable preventive therapeutics to fill the huge gap in treating neurological disorders. Considering that Alzheimer's disease is a multifactorial disease, natural compounds offer the advantage of a multitarget approach, tagging different molecular sites in the human brain, as compared with the single-target activity of most of the drugs so far used to treat Alzheimer's disease. A wide range of plant extracts and phytochemicals reported to possess the therapeutic potential to Alzheimer's disease includes curcumin, resveratrol, epigallocatechin-3-gallate, morin, delphinidins, quercetin, luteolin, oleocanthal, and other phytochemicals such as huperzine A, limonoids, and azaphilones. Reported targets of these natural compounds include inhibition of acetylcholinesterase, amyloid senile plaques, oxidation products, inflammatory pathways, specific brain receptors, etc. We tenaciously aimed to review the in-depth potential of natural products and their therapeutic applications against Alzheimer's disease, with a special focus on a diversity of medicinal plants and phytocompounds and their mechanism of action against Alzheimer's disease pathologies. We strongly believe that the medicinal plants and phytoconstituents alone or in combination with other compounds would be effective treatments against Alzheimer's disease with lesser side effects as compared to currently available treatments.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Albaha University Alaqiq, Alaqiq, Saudi Arabia
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Badr M. Aljarallah
- Department of Gastroenterology and Hepatology, Qassim University, Buraydah, Saudi Arabia
| | - Wajahat R. Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Fuzail Ahmad
- College of Applied Medical Science, Majmaah University, Al Majma’ah, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
17
|
Shabbir A, Rehman K, Akash MSH, Akbar M, Chaudhary Z, Panichayupakaranant P, Shah MA. Differential neuroprotective effect of curcuminoid formulations in aluminum chloride-induced Alzheimer's disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:67981-67996. [PMID: 35525893 DOI: 10.1007/s11356-022-20593-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/29/2022] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is a slowly progressive brain degenerative disorder which gradually impairs memory, thinking, and ability to perform easy routine tasks. This degenerative disorder mainly targets the elderly people and has imposed an endemic burden on society. Hence, there is a crucial need to investigate the efficacious herbal pharmacotherapies that can effectively mitigate and prevent the pathological hallmarks of AD. The current study aims to explore the potential efficacy of curcuminoid-rich extract (CRE) and its ternary complex (TC). Experimental rodents were administered with AlCl3 (300 mg/kg) to induce AD and treated with rivastigmine, curcuminoid crude extract, CRE, and TC orally for three consecutive weeks. Neurobehavioral, biochemical, and histopathological studies were performed from the last week of the study period. The mRNA expression of different pathological biomarkers was estimated by RT-qPCR analysis. The results of the study suggested that CRE and TC significantly improved the behavioral, biochemical parameters and acetylcholinesterase inhibitory activity in treatment groups. Histological analysis was also carried out indicating that the neurodegenerative changes and neuronal loss were stabilized by CRE and TC supplementation. CRE and TC supplementation remarkably downregulated the interleukin-1α, tumor necrosis factor-α, interleukin-1β, acetylcholinesterase, and β-secretase pathological gene expression. Hence, it was concluded that CRE and TC may act as promising candidates in the prevention of AD via numerous underlying signaling pathways.
Collapse
Affiliation(s)
- Anam Shabbir
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan.,LIAS College of Pharmacy, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | | | - Moazzama Akbar
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Zunera Chaudhary
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | | | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Government College University, Faisalabad, Pakistan
| |
Collapse
|
18
|
Functional and Nutraceutical Significance of Amla ( Phyllanthus emblica L.): A Review. Antioxidants (Basel) 2022; 11:antiox11050816. [PMID: 35624683 PMCID: PMC9137578 DOI: 10.3390/antiox11050816] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Phyllanthus emblica L. (also popularly known as amla) is a tree native to the India and Southeast Asia regions that produces fruits rich in bioactive compounds that could be explored as part of the increasing interest in naturally occurring compounds with biological activity. Thus, this review aims to highlight the nutritional aspects, rich phytochemistry and health-promoting effects of amla. Scientific evidence indicates that polyphenols are central components in fruits and other sections of the amla tree, as well as vitamin C. The rich composition of polyphenol and vitamin C imparts an important antioxidant activity along with important in vivo effects that include improved antioxidant status and activity of the endogenous antioxidant defense system. Other potential health benefits are the anti-hyperlipidemia and antidiabetic activities as well as the anticancer, anti-inflammatory, digestive tract and neurological protective activities. The promising results provided by the studies about amla bioactive compounds support their potential role in assisting the promotion of health and prevention of diseases.
Collapse
|
19
|
Saini R, Sharma N, Oladeji OS, Sourirajan A, Dev K, Zengin G, El-Shazly M, Kumar V. Traditional uses, bioactive composition, pharmacology, and toxicology of Phyllanthus emblica fruits: A comprehensive review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114570. [PMID: 34480995 DOI: 10.1016/j.jep.2021.114570] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/15/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The fruits of Phyllanthus emblica Linn or Emblica officinalis Gaertn (Phyllanthaceae), (FPE) commonly known as Indian gooseberry or Amla, gained immense importance in indigenous traditional medicinal systems, including Ayurveda, for its medicinal and nutritional benefits. It is used to cure several diseases such as common cold, fever, cough, asthma, bronchitis, diabetes, cephalalgia, ophthalmopathy, dyspepsia, colic, flatulence, hyperacidity, peptic ulcer, erysipelas, skin diseases, leprosy, hematogenesis, inflammation, anemia, emaciation, hepatopathy, jaundice, diarrhea, dysentery, hemorrhages, leucorrhea, menorrhagia, cardiac disorders, and premature greying of hair. AIM OF THE STUDY In the present review, we presented a comprehensive analysis of the ethnopharmacology, bioactive composition, and toxicity of P. emblica to identify the gap between research and the current applications and to help explore the trends and perspectives for future studies. MATERIALS AND METHODS We collected the literature published before April 2021 on the phytochemistry, pharmacology, and toxicity of FPE. Literature in English from scientific databases such as PubMed, ScienceDirect, Wiley, Springer, and Google Scholar, books. These reports were analyzed and summarized to prepare this review. The plant taxonomy was verified by "The Plant List" database (http://www.theplantlist.org). RESULTS AND CONCLUSION s: FPE have been used as a rich source of vitamin C, minerals, and amino acids. Several bioactive molecules were isolated and identified from FPE such as tannins, flavonoids, saponins, terpenoids, alkaloids, ascorbic acid etc. The in vitro and in vivo pharmacological studies on FPE revealed its antimicrobial, antioxidant, anti-inflammatory, anti-diabetic, anticancer, radioprotective, hepatoprotective, immunomodulatory, hypolipidemic, anti-venom, wound healing, HIV-reverse transcriptase effect. Toxicological studies on fruits indicated the absence of any adverse effect even at a high dose after oral administration. CONCLUSIONS Although FPE showed remarkable therapeutic activities against several diseases such as diabetes, cancer, inflammation, hepatitis B virus, and malaria, there were several drawbacks in some previous reports including the lack of information on the drug dose, standards, controls, and mechanism of action of the extract. Further in-depth studies are required to explain the mechanism of action of the extracts to reveal the role of the bioactive compounds in the reported activities.
Collapse
Affiliation(s)
- Rakshandha Saini
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Post Box No. 9, Head Post Office, Solan, H.P., India
| | - Nitin Sharma
- Department of Biotechnology, Chandigarh Group of Colleges, Landran, Mohali, Punjab, India
| | - Oluwole Solomon Oladeji
- Department of Physical Sciences, Faculty of Pure and Applied Sciences, Landmark University, PMB 1001, Km 4, Ipetu Road, Omu-Aran, Kwara State, Nigeria
| | - Anuradha Sourirajan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Post Box No. 9, Head Post Office, Solan, H.P., India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Post Box No. 9, Head Post Office, Solan, H.P., India
| | - Gökhan Zengin
- Selcuk University, Science Faculty, Department of Biology, Konya, Turkey
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt; Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, 11835, Egypt.
| | - Vikas Kumar
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Post Box No. 9, Head Post Office, Solan, H.P., India.
| |
Collapse
|
20
|
Yadav G, Ansari TM, Shamim A, Roy S, Khan MMU, Ahsan F, Shariq M, Parveen S, Wasim R. Herbal Plethora for Management of Neurodegenerative Disorders:
An Invigorating Outlook. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401317666210913094938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective:
Oxidative stress, proteasomal impairment, mitochondrial dysfunction,
and accumulation of abnormal protein aggregates have shovelled a major section of the senior
population towards neurodegenerative disorders. Although age, genetic and environmental factors
are thought to play a significant role, drug abuse is considered to be a potent trigger in
Parkinsonism among the young generation. The present study is a critical examination of herbal
resources for attenuation of neurodegeneration.
Materials and Methods:
The following electronic databases have been used to search for literature:
MEDLINE, Scopus, PubMed, and EMBASE
Results :
Paying heed to the prevalence of neurodegenerative disorders such as Alzheimer’s and
Parkinson’s, the current review encompasses the pathogenesis of neurodegeneration at the cellular
level and possible prospects to overcome the challenge sailing through the ocean of herbal
boon. The United States’s Alzheimer’s Association states that deaths attributable to heart disease
in the country fell by 11% between 2000 and 2015, while deaths from neurodegenerative
diseases increased by a staggering 123% making it, the world’s sixth-leading cause of death.
The irreversible pathological damage amounts to cognitive loss, dementia, Amyotrophic lateral
sclerosis (ALS), Parkinson’s disease (PD) Alzheimer’s disease (AD).
Various herbal drugs like Brahmi, Shankhpushpi, and Amla are reported to be rich in phytoconstituents
like flavonoids, glycosides, alkaloids, fatty acids, sterols, tannins, saponins, and
terpenes that have remarkable antioxidant potential and could be explored for the same to prevent
neuronal necrosis.
Conclusion:
It is also believed that herbal medicines are more effective and less toxic than
synthetic drugs.
Collapse
Affiliation(s)
- Garima Yadav
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh 226026, India
| | | | - Arshiya Shamim
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Supriya Roy
- Amity Institute of Pharmacy,
Amity University, Lucknow Campus, Uttar Pradesh 226028, India
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry &
Pharmacognosy, Unaizah College of Pharmacy, Al-qassim Unaizah, Kingdom of Saudi Arabia
| | - Farogh Ahsan
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Mohammad Shariq
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Saba Parveen
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Rufaida Wasim
- Faculty of Pharmacy, Integral University, Lucknow, Uttar Pradesh 226026 , India
| |
Collapse
|
21
|
Wong-Guerra M, Montano-Peguero Y, Ramírez-Sánchez J, Jiménez-Martin J, Fonseca-Fonseca LA, Hernández-Enseñat D, Nonose Y, Valdés O, Mondelo-Rodriguez A, Ortiz-Miranda Y, Bergado G, Carmenate T, Soto Del Valle RM, Pardo-Andreu G, Outeiro TF, Padrón-Yaquis AS, Martimbianco de Assis A, O Souza D, Nuñez-Figueredo Y. JM-20 treatment prevents neuronal damage and memory impairment induced by aluminum chloride in rats. Neurotoxicology 2021; 87:70-85. [PMID: 34481871 DOI: 10.1016/j.neuro.2021.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023]
Abstract
The number of people with dementia worldwide is estimated at 50 million by 2018 and continues to rise mainly due to increasing aging and population growth. Clinical impact of current interventions remains modest and all efforts aimed at the identification of new therapeutic approaches are therefore critical. Previously, we showed that JM-20, a dihydropyridine-benzodiazepine hybrid molecule, protected memory processes against scopolamine-induced cholinergic dysfunction. In order to gain further insight into the therapeutic potential of JM-20 on cognitive decline and Alzheimer's disease (AD) pathology, here we evaluated its neuroprotective effects after chronic aluminum chloride (AlCl3) administration to rats and assessed possible alterations in several types of episodic memory and associated pathological mechanisms. Oral administration of aluminum to rodents recapitulates several neuropathological alterations and cognitive impairment, being considered a convenient tool for testing the efficacy of new therapies for dementia. We used behavioral tasks to test spatial, emotional- associative and novel object recognition memory, as well as molecular, enzymatic and histological assays to evaluate selected biochemical parameters. Our study revealed that JM-20 prevented memory decline alongside the inhibition of AlCl3 -induced oxidative stress, increased AChE activity, TNF-α and pro-apoptotic proteins (like Bax, caspase-3, and 8) levels. JM-20 also protected against neuronal damage in the hippocampus and prefrontal cortex. Our findings expanded our understanding of the ability of JM-20 to preserve memory in rats under neurotoxic conditions and confirm its potential capacity to counteract cognitive impairment and etiological factors of AD by breaking the progression of key steps associated with neurodegeneration.
Collapse
Affiliation(s)
- Maylin Wong-Guerra
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yanay Montano-Peguero
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Jeney Ramírez-Sánchez
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Javier Jiménez-Martin
- Department of Physiology, Otago School of Medical Sciences, University of Otago, P.O. Box 913, Dunedin, 9016, New Zealand
| | - Luis Arturo Fonseca-Fonseca
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Daniela Hernández-Enseñat
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yasmine Nonose
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Odalys Valdés
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Abel Mondelo-Rodriguez
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Yaquelin Ortiz-Miranda
- Centro de Inmunología Molecular, Calle 216 esq 15, Atabey, Playa, PO Box 16040, Havana, Cuba
| | - Gretchen Bergado
- Centro de Inmunología Molecular, Calle 216 esq 15, Atabey, Playa, PO Box 16040, Havana, Cuba
| | - Tania Carmenate
- Centro de Inmunología Molecular, Calle 216 esq 15, Atabey, Playa, PO Box 16040, Havana, Cuba
| | | | - Gilberto Pardo-Andreu
- Centro de Estudio para las Investigaciones y Evaluaciones Biológicas, Instituto de Farmacia y Alimentos, Universidad de La Habana, Calle 222, No. 2317, e/ 23 y 31, La Coronela, La Lisa, CP 13600, La Habana, Cuba
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Gottingen, Göttingen, Germany; Max Planck Institute for Experimental Medicine, Goettingen, Germany; Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle, UK
| | - Alejandro Saúl Padrón-Yaquis
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba
| | - Adriano Martimbianco de Assis
- University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK; Post-graduate Program in Health and Behavior, Health Sciences Centre, Universidade Católica de Pelotas, Pelotas, Brazil
| | - Diogo O Souza
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul-UFRGS, Porto Alegre, Brazil
| | - Yanier Nuñez-Figueredo
- Centro de Investigación y Desarrollo de Medicamentos (CIDEM), Ave 26, No.1605, e/Boyeros y Puentes Grandes, CP10600, La Habana, Cuba.
| |
Collapse
|
22
|
Pandey SN, Rangra NK, Singh S, Arora S, Gupta V. Evolving Role of Natural Products from Traditional Medicinal Herbs in the Treatment of Alzheimer's Disease. ACS Chem Neurosci 2021; 12:2718-2728. [PMID: 34010562 DOI: 10.1021/acschemneuro.1c00206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease that causes dementia by impairing mental capacity growth and disrupting neurocognitive activity. Despite recent advancements in AD therapy, therapeutic effectiveness has been small, noncurative, and susceptible to drug resistance. The reality that AD's origin remains unknown and that the blood-brain barrier limits treatment effectiveness are two significant impediments to science. Plants are repositories for novel chemical entities, which provide an exciting avenue for Alzheimer's disease studies. Although several herbal remedies are unquestionably efficient, only a small number have been clinically tested for their active chemical constituents and biological activities. Using published data in the literature, we summarized commonly used medicinal plants and herbs and their phyto components for the care and diagnosis of Alzheimer's disease as an alternative therapy. In this, we summarize the main compounds found in 30 different herbal medicines that target neurodegenerative diseases. Using the experimental study of physicochemical properties, we put forward a hypothesis about potential medicinal plants and the management of Alzheimer's disease. The summary analysis demonstrates that conventional herbal medicines produce compounds with physicochemical properties with a high degree of similarities with existing approved medicines.
Collapse
Affiliation(s)
- Surya Nath Pandey
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Naresh Kumar Rangra
- Faculty of Medical Sciences & Health, Department of Pharmaceutical Sciences, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand 249404, India
| | - Sima Singh
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Saahil Arora
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Varun Gupta
- University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
23
|
Revi N, Rengan AK. Impact of dietary polyphenols on neuroinflammation-associated disorders. Neurol Sci 2021; 42:3101-3119. [PMID: 33988799 DOI: 10.1007/s10072-021-05303-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
Neurodegenerative disorders like Alzheimer's, Parkinson's, and associated dementia typically originate with altered protein folding and aggregation of their β structures in the neurons. This self-aggregation leads to glial activation in the brain, causing neuroinflammation and leads to neuronal death. According to statistics provided by WHO, there are around 50 million people with dementia worldwide and every year, 10 million more cases are projected to increase. Also, around 5-8 percentage of people who are aged above 60 globally has dementia or associated disorders. Over 82 million in 2030 and 152 in 2050 are expected to have dementia. Most of these patients fall into low-middle-income countries which makes it even more essential to find an affordable and effective treatment method. Polyphenols of different origin are studied for their potential role as anti-neuro-inflammatory molecules. This review would summarize recent advances in three widely researched dietary polyphenols projected as potential therapeutic agents for disorders like Alzheimer's, Parkinson's, etc. They are Resveratrol, Catechins, and Tannins. The review would discuss the recent advances and challenges in using these polyphenols using specific examples as potential therapeutic agents against neuroinflammation associated disorders. An abstract of neuroinflammation-associated events and the effects by selected polyphenols.
Collapse
Affiliation(s)
- Neeraja Revi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, India.
| |
Collapse
|
24
|
Dhage PA, Sharbidre AA, Dakua SP, Balakrishnan S. Leveraging hallmark Alzheimer's molecular targets using phytoconstituents: Current perspective and emerging trends. Biomed Pharmacother 2021; 139:111634. [PMID: 33965726 DOI: 10.1016/j.biopha.2021.111634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 01/04/2023] Open
Abstract
Alzheimer's disease (AD), a type of dementia, severely distresses different brain regions. Characterized by various neuropathologies, it interferes with cognitive functions and neuropsychiatrical controls. This progressive deterioration has negative impacts not only on an individual's daily activity but also on social and occupational life. The pharmacological approach has always remained in the limelight for the treatment of AD. However, this approach is condemned with several side effects. Henceforth, a change in treatment approach has become crucial. Plant-based natural products are garnering special attention due to lesser side effects associated with their use. The current review emphasizes the anti-AD properties of phytoconstituents, throws light on those under clinical trials, and compiles information on their specific mode of actions against AD-related different neuropathologies. The phytoconstituents alone or in combinations will surely help discover new potent drugs for the effective treatment of AD with lesser side effects than the currently available pharmacological treatment.
Collapse
Affiliation(s)
- Prajakta A Dhage
- Department of Zoology, K.R.T. Arts, B.H. Commerce and A.M. Science College (KTHM College), Nashik 422002, MS, India
| | - Archana A Sharbidre
- Department of Zoology, Savitribai Phule Pune University, Pune 411007, MS, India.
| | - Sarada P Dakua
- Department of Surgery, Hamad Medical Corporation (HMC), 3050 Doha, Qatar
| | | |
Collapse
|
25
|
Mohamed EA, Ahmed HI, Zaky HS, Badr AM. Sesame oil mitigates memory impairment, oxidative stress, and neurodegeneration in a rat model of Alzheimer's disease. A pivotal role of NF-κB/p38MAPK/BDNF/PPAR-γ pathways. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113468. [PMID: 33049345 DOI: 10.1016/j.jep.2020.113468] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sesame (Sesamum indicum, L., Family: Pedaliaceae) is a notable folk medicine in Middle East, Asia and Africa. Many traditional and pharmacological studies have documented the unique nature of sesame oil (SO). SO has been reported to have many pharmacological effects related to the anti-inflammatory and antioxidant capacity of its components. Neuroinflammation and oxidative stress have been the predominant pathogenic events in Alzheimer's disease (AD) which is one of the most common neurodegenerative diseases. AIM OF STUDY we aimed to explore the neuroprotective effect and the probable mechanisms of SO against aluminium chloride (AlCl3)-induced AD symptoms. MATERIALS AND METHODS Rats were treated daily with AlCl3 (100 mg/kg/i.p.) either alone or with SO (two different doses) for six weeks. Behavioral (Open-field and Morris water maze tests), histopathological, and biochemical examinations were used to evaluate the neuroprotective effect and the underlying mechanisms of SO against AlCl3-induced AD symptoms. RESULTS Our results indicated that SO significantly improved learning and memory impairments induced by AlCl3. Indeed, SO treatment significantly restored the elevated level of acetylcholinesterase (AChE) and amyloid beta (Aβ) overexpression. Moreover, AlCl3 treatment afforded histopathological changes, increase the expression of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in addition to mitigation of oxidative stress status in the brain. SO abolished all these abnormalities. Meanwhile, AlCl3 induced activation of p38 mitogen-activated protein kinase (p38MAPK) and decreased brain-derived neurotrophic factor (BDNF) which were inhibited by SO. Furthermore, SO administration modulated the expression of the peroxisome proliferator-activated receptor gamma (PPAR-γ) and nuclear factor kappa B (NF-κB). CONCLUSIONS In conclusion, the neuroprotective effect of SO involved the modulation of different mechanisms targeting oxidative stress, neuroinflammation, and cognitive functions. SO may modulate different molecular targets involved in AD pathogenesis by alterations of NF-κB/p38MAPK/BDNF/PPAR-γ signalling and this may be attributed to the synergistic effect of their active components.
Collapse
Affiliation(s)
- Eman A Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt.
| | - Hebatalla I Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Heba S Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh, Saudi Arabia; Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Heliopolis, Cairo, Egypt
| |
Collapse
|
26
|
Gantait S, Mahanta M, Bera S, Verma SK. Advances in biotechnology of Emblica officinalis Gaertn. syn. Phyllanthus emblica L.: a nutraceuticals-rich fruit tree with multifaceted ethnomedicinal uses. 3 Biotech 2021; 11:62. [PMID: 33489680 PMCID: PMC7801590 DOI: 10.1007/s13205-020-02615-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/24/2020] [Indexed: 02/06/2023] Open
Abstract
Emblica officinalis Gaertn. syn. Phyllanthus emblica L., universally known as ‘Amla’ or ‘Aonla’ or ‘Indian gooseberry’, is a popular fruit tree belonging to the family Euphorbiaceae and order Geraniales. It is said to be the very first tree that originated on earth, as claimed by age-old Indian mythology. Almost all parts of the tree i.e., root, bark, leaf, flower, fruit and seed are utilized in Ayurvedic and Unani medicinal formulations to improve the overall digestive process, decrease fever, act as a blood purifier, relieve asthma and cough, improve heart health, etc. This tree contains major secondary metabolites like emblicanin-A and emblicanin-B, and also is an affluent source of vitamin-C. Additionally, some other secondary metabolites like tannins, gallic acid, pyrogallol, and pectin are also present in significant amounts. Conventional propagation has been improved via suitable interventions of agrotechnology both in production and protection areas. However, the rate of propagation remains slower; therefore, attempts have been made for biotechnological advancements on E. officinalis. The present review makes an attempt to highlight the botanical description, geographical distribution, ethnopharmacological importance, conventional propagation and protection of this medicinal tree, describing the in vitro-based plant organ and tissue culture methods like direct and indirect organogenesis and somatic embryogenesis along with interventions of molecular marker-based biotechnology and nanotechnology. Further, the prospect of the yet-to-be-explored biotechnological methods for secondary metabolite enhancement like cell suspension, protoplast culture, genetic transformation, etc. and their potential for enhanced emblicanin production have also been discussed in this appraisal.
Collapse
Affiliation(s)
- Saikat Gantait
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, 741252 West Bengal India
| | - Manisha Mahanta
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, 741252 West Bengal India
| | - Soumen Bera
- College of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Burdwan, 713101 West Bengal India
| | - Sandeep Kumar Verma
- Institute of Biological Science, SAGE University, Baypass Road, Kailod Kartal, Indore, 452020 Madhya Pradesh India
| |
Collapse
|
27
|
Abu-Taweel GM, Al-Mutary MG. Pomegranate juice rescues developmental, neurobehavioral and biochemical disorders in aluminum chloride-treated male mice. J Trace Elem Med Biol 2021; 63:126655. [PMID: 33045674 DOI: 10.1016/j.jtemb.2020.126655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/13/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Aluminum (Al) is a harmful metal to organisms and is capable of entering the human body in multiple ways, such as through drinking, breathing, deodorant use, and vaccination. This study examined the prospective toxicity of Al and the protective attributes of pomegranate juice (PJ) on neurobehavioral and biochemical parameters of male mice. METHODS Six groups of male mice were treated for 35 days with 20 % PJ (group II), 40 % PJ (group III), 400 mg/kg Al (group IV), Al + 20 % PJ (group V), Al + 40 % PJ (group VI) or tap water (control, group I). Behavioral assessments were conducted for learning and memory evaluations at the end of experiment. In addition, the forebrain was isolated for biochemical analysis. RESULTS The exposure of male mice to Al decreased learning and memory retention in the shuttle box, Morris water-maze and T-Maze tests. Biochemical analysis revealed significant depletions in neurotransmitters including DA, 5-HT and AChE and oxidative proteins including GSH, GST, CAT and SOD and increased TBARES levels in Al-treated mice compared to untreated mice. Pomegranate juice provided protection against these effects after Al exposure by ameliorating learning and memory retention and oxidative state in a dose-independent manner. CONCLUSION Our data demonstrated that Al exposure caused behavioral and biochemical disorders. Pomegranate juice in lower dose has beneficial properties for health and can be used as a source of antioxidants to reduce the toxicity of Al and other substances.
Collapse
Affiliation(s)
- Gasem Mohammad Abu-Taweel
- Department of Biology, College of Sciences, Jazan University, P.O. Box 2079, Jazan 45142, Saudi Arabia
| | - Mohsen Ghaleb Al-Mutary
- Department of Basic Sciences, College of Education, Imam Abdulrahman Bin Faisal University, P.O. Box 2375, Dammam, 14513, Saudi Arabia; Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| |
Collapse
|
28
|
Abd el‐Rady NM, Ahmed A, Abdel‐Rady MM, Ismail OI. Glucagon-like peptide-1 analog improves neuronal and behavioral impairment and promotes neuroprotection in a rat model of aluminum-induced dementia. Physiol Rep 2021; 8:e14651. [PMID: 33355990 PMCID: PMC7757676 DOI: 10.14814/phy2.14651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a worldwide severe medical and social burden. Liraglutide (LIR) has neuroprotective effects in preclinical animal models. AIM To explore the probable neuroprotective impact of Glucagon-like peptide-1 (GLP-1) on rats' behavior and to elucidate its underlying mechanisms. METHODS A total of 24 male albino rats were assigned to control, LIR (300 µg/kg subcutaneously (s.c.)), AD only (100 mg/kg aluminum chloride (AlCl3 ) orally) and LIR + AD treated groups. Eight radial arm maze was performed. Serum blood glucose, proinflammatory cytokines, oxidative stress markers were measured and hippocampal tissue homogenate neurotransmitters were evaluated. Histopathological and immunofluorescent examinations were performed. RESULTS LIR prevents the impairment of learning and improves both working memory and reference memory through significant reduction of serum tumor necrosis factor (TNF-α), interleukin 6 (IL-6) and interferon-γ (INF-γ) and malondialdehyde (MDA) and through the increase of superoxide dismutase (SOD), dopamine, adrenaline, and noradrenaline. LIR also improves hippocampal histological features of ALCL3 administrated rats and decreases the percentage of neuronal loss. CONCLUSION LIR normalizes ALCL3 -induced dementia. It improves cognitive dysfunction and ameliorates cerebral damage.
Collapse
Affiliation(s)
| | - Amel Ahmed
- Department of Histology and Cell BiologyFaculty of MedicineAssiut UniversityEgypt
| | | | - Omnia I. Ismail
- Department of Human Anatomy and EmbryologyFaculty of MedicineAssiut UniversityAssiutEgypt
| |
Collapse
|
29
|
Yang X, Du W, Zhang Y, Wang H, He M. Neuroprotective Effects of Higenamine Against the Alzheimer's Disease Via Amelioration of Cognitive Impairment, A β Burden, Apoptosis and Regulation of Akt/GSK3β Signaling Pathway. Dose Response 2020; 18:1559325820972205. [PMID: 33354171 PMCID: PMC7734528 DOI: 10.1177/1559325820972205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023] Open
Abstract
The present investigation was envisaged to elucidate the neuroprotective effect of Higenamine (HGN) against aluminum chloride (AlCl3) triggered experimental Alzheimer's disease (AD) rat model. Thirty-six male albino Wister rats were randomized and divided in 6 groups and subjected to experimentation for 6 weeks. Control group, AlCl3 (100 mg/kg orally), HGN (50 mg/kg orally), HGN25, HGN50, HGN75 (HGN 25, 50 and 75 mg/kg respectively and AlCl3 100 mg/kg orally). After completion of 42 days protocol, the animals were subjected to passive avoidance test. The animals were then anesthetized by intramuscularly injecting ketamine hydrochloride (24 mg/kg body weight) and euthanized by cervical amputation. Cortical and hippocampal tissues were carefully removed and were employed for quantification of aluminum and acetylcholinesterase. The tissues were quantified using Western blotting and detection kits for APP, Aβ1-42, β and γ secretases, Bax, Bad, caspases-9, cyto-c, pAkt and pGSK-3β, and oxidative markers. HGN significantly protected AlCl3 induced memory and learning impairments, Al overload, AChE hyperactivity, amyloid β (Aβ) burden and apoptosis in brain tissues via activating Akt/GSK3β pathway. HGN attenuated oxidative damage induced by Al by modulation of oxidative markers. Our findings advocate the neuroprotective effect of HGN in AlCl3 induced AD rat model.
Collapse
Affiliation(s)
- Xiaona Yang
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Wanliang Du
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yun Zhang
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Hui Wang
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Maolin He
- Department of Neurology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
30
|
Uddin MJ, Zidorn C. Traditional Herbal Medicines Against CNS Disorders from Bangladesh. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:377-410. [PMID: 33057963 PMCID: PMC7648845 DOI: 10.1007/s13659-020-00269-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/03/2020] [Indexed: 05/07/2023]
Abstract
The majority of the population in Bangladesh uses traditional plant-based medicines to manage various ailments, including central nervous system (CNS) disorders. This review presents ethnobotanical information and relevant scientific studies on plants used in traditional healthcare for the management of various CNS disorders in Bangladesh. The information on the medicinal plants of Bangladesh effective against CNS disorders published in scientific journals, books, and reports was compiled from different electronic databases using specific key words. The present article provides comprehensive information on a total of 224 medicinal plant species belonging to 81 families used for the treatment of CNS disorders by the various peoples of Bangladesh. In total, we reviewed more than 290 relevant papers. In this study, leaves were found as the most often used plant organ, followed by roots, fruits, whole plants, barks, seeds, stems, rhizomes, and flowers. The Fabaceae family contributes the highest number of used species, followed by Rubiaceae, Lamiaceae, Cucurbitaceae, Vitaceae, Euphorbiaceae, Malvaceae, and Zingiberaceae. The most frequently used species (in decreasing order) are Asparagus racemosus, Centella asiatica, Stephania japonica, Aegle marmelos, Coccinia grandis, Tabernaemontana divaricata, Bacopa monnieri, Abroma augusta, and Scoparia dulcis. This review may serve as a starting point for a rational search for neuroactive natural products against CNS disorders within the Flora of Bangladesh.
Collapse
Affiliation(s)
- Md. Josim Uddin
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, 4318 Bangladesh
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118 Kiel, Germany
| |
Collapse
|
31
|
Flores-Cuadra JA, Madrid A, Fernández PL, Pérez-Lao AR, Oviedo DC, Britton GB, Carreira MB. Critical Review of the Alzheimer's Disease Non-Transgenic Models: Can They Contribute to Disease Treatment? J Alzheimers Dis 2020; 82:S227-S250. [PMID: 33216029 DOI: 10.3233/jad-200870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is a growing neurodegenerative disease without effective treatments or therapies. Despite the use of different approaches and an extensive variety of genetic amyloid based models, therapeutic strategies remain elusive. AD is characterized by three main pathological hallmarks that include amyloid-β plaques, neurofibrillary tangles, and neuroinflammatory processes; however, many other pathological mechanisms have been described in the literature. Nonetheless, the study of the disease and the screening of potential therapies is heavily weighted toward the study of amyloid-β transgenic models. Non-transgenic models may aid in the study of complex pathological states and provide a suitable complementary alternative to evaluating therapeutic biomedical and intervention strategies. In this review, we evaluate the literature on non-transgenic alternatives, focusing on the use of these models for testing therapeutic strategies, and assess their contribution to understanding AD. This review aims to underscore the need for a shift in preclinical research on intervention strategies for AD from amyloid-based to alternative, complementary non-amyloid approaches.
Collapse
Affiliation(s)
- Julio A Flores-Cuadra
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Alanna Madrid
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Patricia L Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Ambar R Pérez-Lao
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Diana C Oviedo
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá.,Escuela de Psicología, Facultad de Ciencias Sociales, Universidad Católica Santa María La Antigua (USMA), Panamá
| | - Gabrielle B Britton
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| | - Maria B Carreira
- Centro de Neurociencias, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, República de Panamá
| |
Collapse
|
32
|
Khalid A, Abbasi UA, Amber S, Sumera, Mirza FJ, Asif M, Javed A, Zahid S. Methylphenidate and Rosmarinus officinalis improves cognition and regulates inflammation and synaptic gene expression in AlCl 3-induced neurotoxicity mouse model. Mol Biol Rep 2020; 47:7861-7870. [PMID: 33011892 DOI: 10.1007/s11033-020-05864-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/04/2020] [Accepted: 09/25/2020] [Indexed: 12/27/2022]
Abstract
Methylphenidate (MPH), a psychotropic medication is commonly used for children with attention deficit hyperactivity disorder (ADHD). In this study we elucidated the neuroprotective and anti-inflammatory effects of MPH and Rosmarinus officinalis (rosemary) extract, an ancient aromatic herb with several applications in traditional medicine. Briefly, six groups of mice (n = 8 each group), were specified for the study and behavioral analysis was performed to analyze spatial memory followed by histological assessment and gene expression analysis of synaptic (Syn I, II and III) and inflammatory markers (IL-6, TNFα and GFAP) via qRT-PCR, in an AlCl3-induced mouse model for neurotoxicity. The behavioral analysis demonstrated significant cognitive decline, memory defects and altered gene expression in AlCl3-treated group. Rosemary extract significantly decreased the expression of inflammatory and synaptic markers to the similar levels as that of MPH. The present findings suggested the neuroprotective potential of Rosmarinus officinalis extract. However, further characterization of its anti-inflammatory and neuroprotective properties and MPH is required to strategize future treatments for several neurological and neurodegenerative disorders, including Alzheimer's disease.
Collapse
Affiliation(s)
- Anibah Khalid
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Umme Aimen Abbasi
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sanila Amber
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sumera
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Fatima Javed Mirza
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Asif
- Department of Histopathology, Armed Forces Institute of Pathology, Rawalpindi, Pakistan
| | - Aneela Javed
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Zahid
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
| |
Collapse
|
33
|
Attia H, Albuhayri S, Alaraidh S, Alotaibi A, Yacoub H, Mohamad R, Al-Amin M. Biotin, coenzyme Q10, and their combination ameliorate aluminium chloride-induced Alzheimer's disease via attenuating neuroinflammation and improving brain insulin signaling. J Biochem Mol Toxicol 2020; 34:e22519. [PMID: 32383521 DOI: 10.1002/jbt.22519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/05/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
Insulin is important for brain function and neuronal survival. Insulin signaling is initiated by the phosphorylation of insulin receptor substrate-1 (IRS-1) at tyrosine (pTyr) residue. However, IRS-1 is inhibited by phosphorylation at serine (pSer). In Alzheimer's disease (AD), oxidative stress and accumulation of amyloid beta (Aβ) induce neuroinflammation, which augments pSer-IRS-1 and reduces pTyr-IRS-1 disturbing insulin signaling pathway. Coenzyme Q10 (CoQ10) and biotin possess antioxidant and anti-inflammatory properties, and, in this study, their impact on insulin signaling is investigated in an aluminium chloride (AlCl3 ) model of AD. AD was induced by oral administration of AlCl3 (75 mg/kg) for 60 days. Biotin (2 mg/kg), CoQ10 (10 mg/kg), and their combination were supplemented concomitantly with AlCl3 for 60 days. Memory test and histological examination were performed. Brain levels of lipid peroxides, antioxidants (reduced glutathione and superoxide dismutase), inflammatory markers (tumor necrosis factor-α, interleukin-6 [IL-6], IL-1, and nuclear factor κB), and phosphorylated Akt (survival kinase) as well as protein levels of Aβ, IRS-1 (pTyr and pSer), and caspase-3 (apoptotic marker) were determined. AlCl3 resulted in impaired memory, significant increase in Aβ, lipid peroxides, inflammatory markers, caspase-3, and pSer-IRS-1, with significant reduction of the antioxidants, pTyr-IRS-1, and p-Akt reflecting Aβ-induced inflammation and defective insulin signaling. Histological examination revealed focal aggregations of inflammatory cells and neuronal degeneration. The biochemical deviations and histological changes were attenuated by the concomitant treatment with biotin and, to greater extent, with CoQ10 and the combination. In conclusion, biotin and CoQ10 could protect against AD via attenuating inflammatory response and enhancing insulin signaling.
Collapse
Affiliation(s)
- Hala Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | | | - Sadeem Alaraidh
- College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amirah Alotaibi
- College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hazar Yacoub
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Raeesa Mohamad
- Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Maha Al-Amin
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Khalaf NEA, El Banna FM, Youssef MY, Mosaad YM, Daba MHY, Ashour RH. Clopidogrel combats neuroinflammation and enhances learning behavior and memory in a rat model of Alzheimer's disease. Pharmacol Biochem Behav 2020; 195:172956. [PMID: 32474163 DOI: 10.1016/j.pbb.2020.172956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIM Alzheimer's disease (AD) is a progressive neurodegenerative disease. Multiple molecular mechanisms have been employed in its pathogenesis such as Amyloid β (Aβ) formation, tau protein hyperphosphorylation, reduced acetylcholine (ACh) level, and neuroinflammation. This study aimed to assess the possible neuroprotective effect of clopidogrel in AD model induced by aluminum chloride (AlCl3) in rats. METHODS Sixty adult male Sprague-Dawley rats were divided into four different groups: Control, AlCl3, AlCl3 + donepezil, and AlCl3 + Clopidogrel. AlCl3 and the drugs were given orally once/day for 42 days. The spatial learning and memory and recognition memory were evaluated using Morris Water Maze (MWM) and Novel Object Recognition (NOR) tests, respectively. After euthanasia, hippocampal acetylcholinesterase (AChE) activity, tumor necrosis factor-alpha (TNF-α), and interleukin-1β (IL-1β) levels were biochemically assessed. Moreover, amyloid precursor protein (APP) mRNA gene expression was analyzed in the hippocampi of all rats. Histopathology for amyloid plaques was done. RESULTS Clopidogrel co-treatment significantly ameliorated the cognitive deficits induced by AlCl3 in rats. Besides, clopidogrel significantly reduced AChE activity, TNF-α and IL-1β concentrations, and APP mRNA gene expression in the hippocampi of rats compared to AlCl3 rats. The decrease of hippocampal TNF-α and IL-1β concentrations by clopidogrel was significant compared to donepezil co-treated rats. Clopidogrel co-treatment lessened amyloid plaque deposition in the hippocampal tissues of rats compared to AlCl3 rats. CONCLUSION These findings demonstrate that clopidogrel could alleviate learning and memory deficit induced by AlCl3 in rats and significantly reduced AChE activity. The neuroprotective outcome of clopidogrel might be assigned to its anti-inflammatory effect.
Collapse
Affiliation(s)
- Noura El Adle Khalaf
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Egypt.
| | | | | | | | | | - Rehab Hamdy Ashour
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Egypt.
| |
Collapse
|
35
|
Nashine S, Kanodia R, Nesburn AB, Soman G, Kuppermann BD, Kenney MC. Nutraceutical effects of Emblica officinalis in age-related macular degeneration. Aging (Albany NY) 2020; 11:1177-1188. [PMID: 30792375 PMCID: PMC6402529 DOI: 10.18632/aging.101820] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 02/06/2019] [Indexed: 12/29/2022]
Abstract
Emblica officinalis Gaetrn (i.e., Phyllanthus emblica/ Indian gooseberry/ Amla) (EO) has been used extensively as a nutraceutical in several diseases since it is known to boost immunity and offers numerous health benefits such as antioxidant, anti-inflammatory, and anti-aging effects. The goal of our study was to test the hypothesis that EO will rescue human AMD RPE transmitochondrial cells from mitochondria-induced cellular damage. AMD RPE transmitochondrial cell lines were created by fusion of mitochondria DNA-deficient APRE-19 (Rho0) cells with platelets isolated from AMD patients, and therefore had identical nuclei but differed in mitochondrial DNA content. These AMD RPE cells were treated with EO extract followed by characterization of effects of EO using cellular and molecular assays. Herein, EO significantly improved live cell number and mitochondrial membrane potential, reduced apoptosis and oxidative stress, down-regulated VEGF, and up-regulated PGC-1α. In conclusion, EO improved cellular and mitochondrial health, thereby playing a key cytoprotective role in AMD in vitro. Further studies are required to examine the mechanisms that mediate the cytoprotective effects of EO.
Collapse
Affiliation(s)
- Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - Raj Kanodia
- Rhinoplasty Surgeon, Dr. Raj Kanodia Medical Group, Beverly Hills, CA 90210, USA
| | - Anthony B Nesburn
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA.,Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Girish Soman
- Nisarga Biotech Pvt Ltd, Janai Malai, Satara, Maharashtra, 415004, India
| | - Baruch D Kuppermann
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - M Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA.,Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
36
|
Mustafa HN. Neuro-amelioration of cinnamaldehyde in aluminum-induced Alzheimer’s disease rat model. J Histotechnol 2019; 43:11-20. [DOI: 10.1080/01478885.2019.1652994] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Hesham N. Mustafa
- Anatomy Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
37
|
Husain I, Zameer S, Madaan T, Minhaj A, Ahmad W, Iqubaal A, Ali A, Najmi AK. Exploring the multifaceted neuroprotective actions of Emblica officinalis (Amla): a review. Metab Brain Dis 2019; 34:957-965. [PMID: 30848470 DOI: 10.1007/s11011-019-00400-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
Today, neurological disorders such as epilepsy, depression, tardive dyskinesia, and stress, and neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, dementia, and Huntington's disease affect millions of people all over the world. Existing pharmacological interventions do not meet the desired therapeutic benefits for a significant number of patients, and hence, numerous research studies are in progress to find novel therapies for these disorders. Herbal drugs, which have been used in traditional medicine for centuries, are also being explored and scientifically evaluated for the treatment of these neurological disorders. While substantial evidence exists for the antioxidant, anti-inflammatory, anti-hyperlipidemic, and anti-hyperglycemic effects of Emblica officinalis, in vivo and in vitro studies, have also revealed its beneficial therapeutic activities in numerous neurological disorders. These diverse neuroprotective pharmacodynamic actions of E. officinalis corroborated by accumulating evidence in pre-clinical research studies deserve the attention of the scientific community to develop viable pharmacotherapeutic strategies. The present review elaborates upon the latest scientific evidence pertaining to the pharmacological effects of E. officinalis in numerous neurological and neurodegenerative disorders and also gives way for future research in this area.
Collapse
Affiliation(s)
- Ibraheem Husain
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Zameer
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Tushar Madaan
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Akram Minhaj
- Department of Pharmacology, Maulana Azad Medical College & Hospital, Delhi, 110062, India
| | - Wasim Ahmad
- College of Pharmacy, Mohammad Al-Mana College for Health Sciences, Safa, Dammam, 34222, Saudi Arabia
| | - Asif Iqubaal
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India
| | - Abuzer Ali
- College of Pharmacy, Taif University, Haweiah, Taif, 21974, Saudi Arabia
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
38
|
Telmisartan Protects Against Aluminum-Induced Alzheimer-like Pathological Changes in Rats. Neurotox Res 2019; 37:275-285. [PMID: 31332715 DOI: 10.1007/s12640-019-00085-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/23/2019] [Accepted: 06/28/2019] [Indexed: 12/23/2022]
Abstract
Currently, there is no effective mean for treatment or prevention of Alzheimer's disease (AD). Commonly used AD drugs have a moderate effect and treat only the associated symptoms, therefore there is a strong need to search for more effective agents. Our goal is to examine telmisartan neuroprotective effect in aluminum-induced cognitive impairment in rats. Aluminum chloride (10 mg/kg, i.p) was administered for 2 months then behavioral tests (Y-maze and Morris water maze) were done. Hippocampal biochemical and histological analysis were then carried out. AD-like histological, biochemical, and behavioral alterations appeared in aluminum-treated rats. Telmisartan improved rats' condition on behavioral and histological levels. It reversed the increase in hippocampal amyloid beta protein, phosphorylated tau protein contents together with augmentation of neprilysin level, it also diminished levels of nuclear factor kappa-B, FAS ligand, tumor necrosis factor-alpha, malondialdehyde, and acetylcholinesterase content.These findings show the protective action of telmisartan against AD-like pathological alterations.
Collapse
|
39
|
Physical & mental activities enhance the neuroprotective effect of vinpocetine & coenzyme Q10 combination against Alzheimer & bone remodeling in rats. Life Sci 2019; 229:21-35. [PMID: 31063734 DOI: 10.1016/j.lfs.2019.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/22/2019] [Accepted: 05/03/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alzheimer's disease is a neurodegenerative disorder characterized by a progressive decline of cognitive abilities as well as bone loss. Physical and mental activities maintain cognitive functions as well as increase bone mass by inhibiting bone resorption. VIN and CoQ10 are neuroprotective drugs that possess anti-inflammatory and antioxidant properties. AIMS To study the effect of PH&M on enhancing the neuroprotective role of VIN and CoQ10 combination during induction of AD model in rats besides their role against bone mass loss associated with AD model. MAIN METHODS Six groups of rats were received saline, AlCl3, and PH&M daily either alone or with a combination of VIN and CoQ10 for 4 weeks. Various biochemical analyses were performed to evaluate the extent of brain damage such as ACHE, β-secretase, chitinase, Aβ, tau protein, and monoamines besides the inflammatory and antioxidant parameters. Serum levels of minerals as well as 25-OHD, PTH, RANKL, and OPG levels were measured to detect the extent of bone impairment. Also, histopathological changes were evaluated in different brain regions and hind paw. KEY FINDINGS VIN and CoQ10 combination together with PH&M significantly attenuated the neurodegeneration induced by AlCl3 administration through the improvement of AD markers in brain tissue as well as oxidant and inflammatory markers. Bone resorption markers, serum minerals, and PTH levels were also normalized too. SIGNIFICANCE Neuroprotective drugs together with PH&M have a more protective effect against AD and bone loss rather than PH&M alone.
Collapse
|
40
|
Yamakami Y, Morino K, Takauji Y, Kasukabe R, Miki K, Hossain MN, Ayusawa D, Fujii M. Extract of Emblica officinalis enhances the growth of human keratinocytes in culture. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2019; 17:141-146. [PMID: 30709781 DOI: 10.1016/j.joim.2019.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/18/2018] [Indexed: 10/27/2022]
Abstract
OBJECTIVE Keratinocytes are the predominant cell type in the epidermis and play key roles in epidermal function. Thus, identification of the compounds that regulate the growth of keratinocytes is of importance. Here we searched for such compounds from the herbs used in traditional medicine Ayurveda. METHODS Human keratinocytes were cultured in the presence or absence of the herbal extracts for 2 weeks; the effect of the extracts on cell growth was determined by staining the cells with Coomassie brilliant blue. To detect the compounds that regulate the growth of keratinocytes, the herbal extracts were subjected to high-performance liquid chromatography (HPLC). RESULTS We found that the extract of Emblica officinalis enhanced the growth of keratinocytes in culture. Further, we fractionated the extract of E. officinalis using HPLC and identified the fractions responsible for the enhanced growth of keratinocytes. CONCLUSION The extract of E. officinalis enhanced the growth of human keratinocytes in culture. E. officinalis contains the compounds that would be beneficial for human skin health because enhanced growth of keratinocytes would promote wound healing.
Collapse
Affiliation(s)
- Yoshimi Yamakami
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Kyoko Morino
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yuki Takauji
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan; Ichiban Life Corporation, Naka-ku, Yokohama 231-0048, Japan
| | - Ryuichiro Kasukabe
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Kensuke Miki
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan; Ichiban Life Corporation, Naka-ku, Yokohama 231-0048, Japan
| | | | - Dai Ayusawa
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan; Ichiban Life Corporation, Naka-ku, Yokohama 231-0048, Japan
| | - Michihiko Fujii
- Graduate School of Nanobioscience, Yokohama City University, Kanazawa-ku, Yokohama 236-0027, Japan.
| |
Collapse
|
41
|
Asiatic Acid Attenuated Aluminum Chloride-Induced Tau Pathology, Oxidative Stress and Apoptosis Via AKT/GSK-3β Signaling Pathway in Wistar Rats. Neurotox Res 2019; 35:955-968. [PMID: 30671870 DOI: 10.1007/s12640-019-9999-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 12/22/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022]
Abstract
Asiatic acid (AA), a triterpenoid present in Centella asiatica, possesses the ability to cross blood brain barrier and received considerable attention for its neuroprotective role. We have reported the benefit of AA against aluminum chloride (AlCl3)-induced amyloid pathology, enhanced acetylcholine esterase (AChE) activity, and inflammation in Alzheimer's disease (AD) like model rats. Based on that, to find the exact mechanism of action of AA, the present study was designed to evaluate the oxidative stress, tau pathology, apoptosis, and Akt/GSK3β signaling pathway on AlCl3-induced neurotoxicity in Wistar rats. AD-like pathology was induced by oral administration of AlCl3 (100 mg/kg b.w.) for 6 weeks, which demonstrated a significant reduction in spatial memory performance, anxiety, and motor dysfunction and diminished the expression of cyclin-dependent kinase 5 (CDK 5-enzyme implicated in the phosphorylation of tau proteins), pTau, oxidative stress, and apoptosis, whereas oral ingestion of AA (75 mg/kg b.w.) for 7 weeks attenuated the above-said indices, which could be by activating Akt/GSK3β pathway. Current results suggested that AA could be able to modulate various pathological features of AD and could hold promise in AD treatment.
Collapse
|
42
|
Patel SS, Raghuwanshi R, Masood M, Acharya A, Jain SK. Medicinal plants with acetylcholinesterase inhibitory activity. Rev Neurosci 2018; 29:491-529. [PMID: 29303784 DOI: 10.1515/revneuro-2017-0054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/23/2017] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease, a progressive neurodegenerative disease, is characterised by hypofunction of acetylcholine (ACh) neurotransmitter in the distinct region of brain. Acetylcholinesterase (AChE) is an enzyme that metabolises the ACh at synaptic cleft resulting in Alzheimer's disease. Medicinal plants have been used to treat numerous ailments and improve human health from ancient time. A traditional system of medicine is long recognised for its effective management of neurological disorders. The present review confers the scope of some common medicinal plants with a special focus on AChE-mediated central nervous system complications especially Alzheimer's disease. Literature suggests that medicinal plants reduce neuronal dysfunctions by reducing AChE activity in different brain regions. In some instances, activation of AChE activity by medicinal plants also showed therapeutic potential. In conclusion, medicinal plants have a wide scope and possess therapeutic potential to efficiently manage neurological disorders associated with AChE dysregulation.
Collapse
Affiliation(s)
- Sita Sharan Patel
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Ramsaneh Raghuwanshi
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Misha Masood
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Ashish Acharya
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| | - Surendra Kumar Jain
- Department of Pharmacology, Sagar Institute of Research and Technology-Pharmacy, Bhopal 462041, Madhya Pradesh, India
| |
Collapse
|
43
|
Dhivya Bharathi M, Justin-Thenmozhi A, Manivasagam T, Ahmad Rather M, Saravana Babu C, Mohamed Essa M, Guillemin GJ. Amelioration of Aluminum Maltolate-Induced Inflammation and Endoplasmic Reticulum Stress-Mediated Apoptosis by Tannoid Principles of Emblica officinalis in Neuronal Cellular Model. Neurotox Res 2018; 35:318-330. [PMID: 30242626 DOI: 10.1007/s12640-018-9956-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/24/2018] [Accepted: 09/07/2018] [Indexed: 01/04/2023]
Abstract
The neuroprotective role of tannoid principles of Emblica officinalis (EoT), an Indian and Chinese traditional medicinal plant against memory loss in aluminum chloride-induced in vivo model of Alzheimer's disease through attenuating AChE activity, oxidative stress, amyloid and tau toxicity, and apoptosis, was recently reported in our lab. However, to further elucidate the mechanism of neuroprotective effect of EoT, the current study was designed to evaluate endoplasmic reticulum stress-suppressing and anti-inflammatory role of EoT in PC 12 and SH-SY 5Y cells. These cells were divided into four groups: control (aluminum maltolate (Al(mal)3), EoT + Al(mal)3, and EoT alone based on 3-(4, 5-dimethyl 2-yl)-2, and 5-diphenyltetrazolium bromide (MTT) assay. EoT significantly reduced Al(mal)3-induced cell death and attenuated ROS, mitochondrial membrane dysfunction, and apoptosis (protein expressions of Bax; Bcl-2; cleaved caspases 3, 6, 9, 12; and cytochrome c) by regulating endoplasmic reticulum stress (PKR-like ER kinase (PERK), α subunit of eukaryotic initiation factor 2 (EIF2-α), C/EBP-homologous protein (CHOP), and high-mobility group box 1 protein (HMGB1)). Moreover, inflammatory response (NF-κB, IL-1β, IL-6, and TNF-α) and Aβ toxicity (Aβ1-42) triggered by Al(mal)3 was significantly normalized by EoT. Our results suggested that EoT could be a possible/promising and novel therapeutic lead against Al-induced neurotoxicity. However, further extensive research is needed to prove its efficacy in clinical studies.
Collapse
Affiliation(s)
- Mathiyazahan Dhivya Bharathi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, 608002, India
| | - Arokiasamy Justin-Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, 608002, India.
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, 608002, India
| | - Mashoque Ahmad Rather
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalai Nagar, Tamil Nadu, 608002, India
| | - Chidambaram Saravana Babu
- Department of Pharmacology, JSS College of Pharmacy, JSS University, SS Nagar, Mysore, Karnataka, 570015, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman.,Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman.,Food and Brain Research Foundation, Chennai, Tamil Nadu, 600094, India
| | - Gilles J Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
44
|
Antioxidant and Neuroprotective Properties of Eugenia dysenterica Leaves. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3250908. [PMID: 30327710 PMCID: PMC6169239 DOI: 10.1155/2018/3250908] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/25/2018] [Accepted: 08/19/2018] [Indexed: 11/19/2022]
Abstract
Eugenia dysenterica ex DC Mart. (Myrtaceae), popularly known as “cagaita,” is a Brazilian plant rich in polyphenols and other antioxidant compounds. Aiming to evaluate the potential use of cagaita in pathologies involving oxidative stress, such as neurodegenerative disorders, this study investigated its antioxidant potential and neuroprotective effect. Electrochemical approaches and aluminium-induced neurotoxicity were used to determine respectively in vitro and in vivo antioxidant properties of cagaita. Voltammetric experiments were carried out in a three-electrode system, whose working electrode consisted of glassy carbon. Male Swiss mice were administered with AlCl3 orally at a dose of 100 mg/kg/day and with cagaita leaf hydroalcoholic extract (CHE) at doses of 10, 100, and 300 mg/kg/day. The redox behavior of CHE presented similar features to that of quercetin, a widely known antioxidant standard. CHE prevented mouse memory impairment which resulted from aluminium intake. In addition, biochemical markers of oxidative stress (catalase, superoxide dismutase activity, and lipid peroxidation) were normalized by CHE treatment. The potential of CHE to prevent aluminium-induced neurotoxicity was reflected at the microscopic level, through the decrease of the number of eosinophilic necrosis phenotypes seen in treated groups. Moreover, the protective effect of CHE was similar to that of quercetin, which was taken as the standard. These findings showed that the CHE of cagaita leaves has a potential to protect the brain against oxidative-induced brain damage.
Collapse
|
45
|
Justin-Thenmozhi A, Dhivya Bharathi M, Kiruthika R, Manivasagam T, Borah A, Essa MM. Attenuation of Aluminum Chloride-Induced Neuroinflammation and Caspase Activation Through the AKT/GSK-3β Pathway by Hesperidin in Wistar Rats. Neurotox Res 2018; 34:463-476. [DOI: 10.1007/s12640-018-9904-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/06/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
|
46
|
Husain I, Akhtar M, Madaan T, Vohora D, Abdin MZ, Islamuddin M, Najmi AK. Tannins Enriched Fraction of Emblica officinalis Fruits Alleviates High-Salt and Cholesterol Diet-Induced Cognitive Impairment in Rats via Nrf2-ARE Pathway. Front Pharmacol 2018; 9:23. [PMID: 29441016 PMCID: PMC5797548 DOI: 10.3389/fphar.2018.00023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/09/2018] [Indexed: 01/06/2023] Open
Abstract
Modern diets containing high quantities of salt and cholesterol have exhibited to cause a considerable effect on our health. Such diets, when consumed in the long term, have also shown to be a precursor to several disorders such as the metabolic disorder and consequently, various other diseases, including cognitive deficits. In the present study, we used a high salt and cholesterol diet (HSCD) to induce cognitive impairment in rats and also investigated the pharmacological action of tannins enriched fractions of Emblica officinalis (EOT) – a fruit that has been traditionally used for the treatment of numerous disorders for centuries. Significant alterations in MDA, GSH, TBARS, GPx, mitochondrial ATP, and mitochondrial membrane potential levels were observed in rats fed HSCD, which indicated presence of oxidative stress. Moreover, classic signs of cognitive impairment and deficits in spatial learning and memory were observed in the neurobehavioral tests. E. officinalis tannins exhibited good affinity to Nrf2 receptors in in silico studies, significantly reversed the changes in the aforementioned biomarkers of oxidative stress which were altered in the model group, as well as improved the performance of rats in Morris water maze task. Our results also reflected that EOT supplementation significantly increased the expression of Nrf2 in the CA1 region of hippocampus and cortex. Additionally, TUNEL assay indicated that EOT supplementation led to reversal of DNA fragmentation and apoptosis caused by HSCD. Immunohistochemical analysis and western blot further revealed a surge in the nuclear location of Nrf2. Through our study, we have demonstrated that cognitive impairment can be caused in rats via HSCD as a result of the oxidative stress induced by the same. Additionally, we have investigated a novel mechanism of action for EOT (which strongly suggests to be via the Nrf2–ARE pathway) and demonstrated that it has the potential to be used in the treatment of cognitive impairment.
Collapse
Affiliation(s)
- Ibraheem Husain
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Tushar Madaan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Divya Vohora
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| | - Malik Z Abdin
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Mohammad Islamuddin
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Abul K Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
47
|
Husain I, Akhtar M, Shaharyar M, Islamuddin M, Abdin MZ, Akhtar MJ, Najmi AK. High-salt- and cholesterol diet-associated cognitive impairment attenuated by tannins-enriched fraction of Emblica officinalis via inhibiting NF-kB pathway. Inflammopharmacology 2018; 26:147-156. [DOI: 10.1007/s10787-017-0437-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/18/2017] [Indexed: 01/20/2023]
|
48
|
Tian L, Hui CW, Bisht K, Tan Y, Sharma K, Chen S, Zhang X, Tremblay ME. Microglia under psychosocial stressors along the aging trajectory: Consequences on neuronal circuits, behavior, and brain diseases. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:27-39. [PMID: 28095309 DOI: 10.1016/j.pnpbp.2017.01.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/30/2016] [Accepted: 01/13/2017] [Indexed: 12/18/2022]
Abstract
Mounting evidence indicates the importance of microglia for proper brain development and function, as well as in complex stress-related neuropsychiatric disorders and cognitive decline along the aging trajectory. Considering that microglia are resident immune cells of the brain, a homeostatic maintenance of their effector functions that impact neuronal circuitry, such as phagocytosis and secretion of inflammatory factors, is critical to prevent the onset and progression of these pathological conditions. However, the molecular mechanisms by which microglial functions can be properly regulated under healthy and pathological conditions are still largely unknown. We aim to summarize recent progress regarding the effects of psychosocial stress and oxidative stress on microglial phenotypes, leading to neuroinflammation and impaired microglia-synapse interactions, notably through our own studies of inbred mouse strains, and most importantly, to discuss about promising therapeutic strategies that take advantage of microglial functions to tackle such brain disorders in the context of adult psychosocial stress or aging-induced oxidative stress.
Collapse
Affiliation(s)
- Li Tian
- Neuroscience Center, University of Helsinki, Viikinkaari 4, Helsinki FIN-00014, Finland; Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China.
| | - Chin Wai Hui
- Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, Canada
| | - Kanchan Bisht
- Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, Canada
| | - Yunlong Tan
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China
| | - Kaushik Sharma
- Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, Canada
| | - Song Chen
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China; Beijing Key Laboratory of Mental Disorders and Center of Schizophrenia, Beijing Institute for Brain Disorders, Beijing Anding Hospital, Capital Medical University, China
| | - Xiangyang Zhang
- Psychiatry Research Center, Beijing Huilongguan Hospital, Peking University, Beijing, China; Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec, Québec, Canada.
| |
Collapse
|
49
|
Prema A, Justin Thenmozhi A, Manivasagam T, Mohamed Essa M, Guillemin GJ. Fenugreek Seed Powder Attenuated Aluminum Chloride-Induced Tau Pathology, Oxidative Stress, and Inflammation in a Rat Model of Alzheimer’s Disease. J Alzheimers Dis 2017; 60:S209-S220. [DOI: 10.3233/jad-161103] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Asokan Prema
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Arokiasamy Justin Thenmozhi
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Thamilarasan Manivasagam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamilnadu, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
- Food and Brain Research Foundation, Chennai, Tamil Nadu, India
| | - Gilles J. Guillemin
- Neuroinflammation group, Faculty of Medicine and Health Sciences, Deb Bailey MND Research Laboratory, Macquarie University, NSW, Australia
| |
Collapse
|
50
|
Wei Y, Liu D, Zheng Y, Li H, Hao C, Ouyang W. Protective effects of kinetin against aluminum chloride and D-galactose induced cognitive impairment and oxidative damage in mouse. Brain Res Bull 2017; 134:262-272. [PMID: 28867383 DOI: 10.1016/j.brainresbull.2017.08.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/09/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022]
Abstract
Increasing evidence indicates that aluminum exposure and oxidative stress play crucial roles in the initiation and development of Alzheimer's disease (AD). Aluminum chloride (AlCl3) and d-galactose (d-gal) combined treatment of mice is considered as an easy and cheap way to obtain an animal model of AD. Kinetin is a plant cytokinin, which is also reported to exert neuro-protective effects in vivo and in vitro. Thus, in this study, neuro-protective effects of kinetin were investigated in an AD model of mice induced by AlCl3 and d-gal. The Morris water maze (MWM) test was performed to directly evaluate neuro-protective effects of kinetin on the memory and spatial learning abilities, while the histopathological changes were examined by hematoxylin and eosin (H & E) staining method. To further investigate mechanisms involved, Al content in cortex and hippocampus was determined. In addition, related detection kits were used to determine acetylcholine (ACh) content and activity of acetylcholinesterase (AChE). Activities of anti-oxidative enzymes including superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), and the content of heme oxygenase-1 (HO-1) were also measured. Besides, the content of oxidative damage bio-markers including 8-iso-prostaglandin F (8-iso-PGF), advanced glycation end products (AGEs) and 8-hydroxy-2-deoxyguanosine (8-OHdG) were determined by ELISA kits. Finally, the distribution of beta-amyloid protein 1-42 (Aβ1-42) was detected by immunohistochemistry (IHC), while the expression levels of amyloidogenic proteins including β-amyloid precursor protein (APP), β-secretase, γ-secretase and Aβ1-42 were detected by western blotting (WB) method. Results showed that kinetin improved performance in MWM test, attenuated histopathological changes, reduced Al level in cortex and hippocampus, increased ACh content and decreased AChE activity. In addition, kinetin elevated activities of anti-oxidative enzymes and reduced the levels of oxidative damage biomarkers in AD model of mice. Furthermore, kinetin also increased the content of HO-1, and inhibited the distribution of Aβ1-42 and the expressions of amyloidogenic proteins (APP, β-secretase, γ-secretase and Aβ1-42) in brain tissue of AD mice. Our results indicate that kinetin has neuro-protective effects on the AD model of mice induced by AlCl3 and d-gal, suggesting that kinetin may be a candidate drug for treatment of AD.
Collapse
Affiliation(s)
- Yunpeng Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dan Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yin Zheng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Honglian Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chaoshuang Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wuqing Ouyang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|