1
|
Mohabbat M, Barati AH, Azarkeivan A, Eghbali E, Arazi H. Acute and Chronic Effects of Interval Aerobic Exercise on Hepcidin, Ferritin, and Liver Enzymes in Adolescents With Beta-Thalassemia Major. Pediatr Exerc Sci 2024:1-9. [PMID: 39265980 DOI: 10.1123/pes.2023-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/26/2024] [Accepted: 06/19/2024] [Indexed: 09/14/2024]
Abstract
PURPOSE This study aimed to determine the acute and chronic effects of interval aerobic exercise on hepcidin, ferritin, and liver enzymes in adolescents with beta-thalassemia major. METHODS Twenty-six beta-thalassemia major adolescents referred to the Thalassemia Clinic and Research Center were selected as study participants and randomly divided into control (n = 13) and training (n = 13) groups. Participants performed 3 sessions per week for 45 minutes in each session for 8 weeks of aerobic interval exercise with an intensity of 50% to 65% of the heart rate reserve. Blood samples were taken before, immediately after the exercise session, and 48 hours after the last training session, and liver enzymes aspartate aminotransferase, alanine aminotransferase (ALT), alkaline phosphatase (ALP), ferritin, and hepcidin were evaluated. RESULTS The results showed a decrease in aspartate aminotransferase, ALT, ALP, ferritin, and hepcidin levels due to 8 weeks of aerobic interval training (P = .14, P = .97, P = .03, P < .001, P < .001; respectively). Intergroup changes in all variables except ALT and hepcidin were significant (P < .05). Besides, acute aerobic exercise increased levels of aspartate aminotransferase, ALT, ferritin, and hepcidin (P = .04, P = .52, P < .001, P < .001; respectively), whereas ALP levels decreased (P < .001). In addition, changes in ALP and hepcidin levels were significant between the 2 groups (P = .05, P < .001; respectively). CONCLUSION Based on the study's results, it can be concluded that 8 weeks of aerobic interval training can decrease ferritin and hepcidin levels, but acute aerobic exercise increases them.
Collapse
Affiliation(s)
- Majid Mohabbat
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht,Iran
| | - Amir Hossein Barati
- Department of Health and Exercise Rehabilitation, Shahid Beheshti University, Tehran,Iran
| | - Azita Azarkeivan
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran,Iran
| | - Ehsan Eghbali
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht,Iran
| | - Hamid Arazi
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Guilan, Rasht,Iran
- Department of Exercise Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad,Iran
| |
Collapse
|
2
|
Rolić T, Yazdani M, Mandić S, Distante S. Iron Metabolism, Calcium, Magnesium and Trace Elements: A Review. Biol Trace Elem Res 2024:10.1007/s12011-024-04289-z. [PMID: 38969940 DOI: 10.1007/s12011-024-04289-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Iron (Fe) is fundamental to life on earth. In the human body, it is both essential and harmful if above threshold. A similar balance applies to other elements: calcium (Ca), magnesium (Mg), and trace elements including copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd), mercury (Hg), and nickel (Ni). These elements share some proteins involved in the absorption and transport of Fe. Cu and Cd can inhibit Fe absorption, while excess of Fe may antagonize Cu metabolism and reduce ceruloplasmin (Cp). Excessive Fe can hinder Zn absorption and transferrin (Trf) can bind to both Zn and Ni. Ca is able to inhibit the divalent metal transporter 1 (DMT1) in a dose-dependent manner to reduce Fe absorption and low Mg concentrations can exacerbate Fe deficiency. Pb competitively inhibits Fe distribution and elevated Cd absorption reduces Fe uptake. Exposure to Hg is associated with higher ferritin concentrations and Ni alters intracellular Fe metabolism. Fe removal by phlebotomy in hemochromatosis patients has shown to increase the levels of Cd and Pb and alter the concentrations of trace elements in some types of anemia. Yet, the effects of chronic exposure of most trace elements remain poorly understood.
Collapse
Affiliation(s)
- Tara Rolić
- Faculty of Medicine, University of Osijek, Osijek, Croatia
- Osijek University Hospital Centre (Klinički bolnički centar Osijek), Osijek, Croatia
| | | | - Sanja Mandić
- Faculty of Medicine, University of Osijek, Osijek, Croatia
| | | |
Collapse
|
3
|
Olinder J, Stjernqvist MJ, Lindén A, Salomonsson ET, Annborn M, Herwald H, Rydén C. Hepcidin, in contrast to heparin binding protein, does not portend acute kidney injury in patients with community acquired septic shock. PLoS One 2024; 19:e0299257. [PMID: 38696394 PMCID: PMC11065221 DOI: 10.1371/journal.pone.0299257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 02/07/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a common and severe complication in patients treated at an Intensive Care Unit (ICU). The pathogenesis of AKI has been reported to involve hypoperfusion, diminished oxygenation, systemic inflammation, and damage by increased intracellular iron concentration. Hepcidin, a regulator of iron metabolism, has been shown to be associated with sepsis and septic shock, conditions that can result in AKI. Heparin binding protein (HBP) has been reported to be associated with sepsis and AKI. The aim of the present study was to compare serum hepcidin and heparin binding protein (HBP) levels in relation to AKI in patients admitted to the ICU. METHODS One hundred and forty patients with community acquired illness admitted to the ICU within 24 hours after first arrival to the hospital were included in the study. Eighty five of these patients were diagnosed with sepsis and 55 with other severe non-septic conditions. Logistic and linear regression models were created to evaluate possible correlations between circulating hepcidin and heparin-binding protein (HBP), stage 2-3 AKI, peak serum creatinine levels, and the need for renal replacement therapy (RRT). RESULTS During the 7-day study period, 52% of the 85 sepsis and 33% of the 55 non-sepsis patients had been diagnosed with AKI stage 2-3 already at inclusion. The need for RRT was 20% and 15%, respectively, in the groups. Hepcidin levels at admission were significantly higher in the sepsis group compared to the non-sepsis group but these levels did not significantly correlate to the development of stage 2-3 AKI in the sepsis group (p = 0.189) nor in the non-sepsis group (p = 0.910). No significant correlation between hepcidin and peak creatinine levels, nor with the need for RRT was observed. Stage 2-3 AKI correlated, as expected, significantly with HBP levels at admission in both groups (Odds Ratio 1.008 (CI 1.003-1.014, p = 0.005), the need for RRT, as well as with peak creatinine in septic patients. CONCLUSION Initial serum hepcidin, and HBP levels in patients admitted to the ICU are biomarkers for septic shock but in contrast to HBP, hepcidin does not portend progression of disease into AKI or a later need for RRT. Since hepcidin is a key regulator of iron metabolism our present data do not support a decisive role of initial iron levels in the progression of septic shock into AKI.
Collapse
Affiliation(s)
- Jon Olinder
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | | | - Albin Lindén
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | | | - Martin Annborn
- Department of Clinical Sciences, Sections of Anesthesiology and Intensive Care, Lund University, Lund, Sweden
- Department of Anesthesiology and Intensive Care, Helsingborg Hospital, Helsingborg, Sweden
| | - Heiko Herwald
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Cecilia Rydén
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Meng H, Yu Y, Xie E, Wu Q, Yin X, Zhao B, Min J, Wang F. Hepatic HDAC3 Regulates Systemic Iron Homeostasis and Ferroptosis via the Hippo Signaling Pathway. RESEARCH (WASHINGTON, D.C.) 2023; 6:0281. [PMID: 38034086 PMCID: PMC10687581 DOI: 10.34133/research.0281] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023]
Abstract
Histone deacetylases (HDACs) are epigenetic regulators that play an important role in determining cell fate and maintaining cellular homeostasis. However, whether and how HDACs regulate iron metabolism and ferroptosis (an iron-dependent form of cell death) remain unclear. Here, the putative role of hepatic HDACs in regulating iron metabolism and ferroptosis was investigated using genetic mouse models. Mice lacking Hdac3 expression in the liver (Hdac3-LKO mice) have significantly reduced hepatic Hamp mRNA (encoding the peptide hormone hepcidin) and altered iron homeostasis. Transcription profiling of Hdac3-LKO mice suggests that the Hippo signaling pathway may be downstream of Hdac3. Moreover, using a Hippo pathway inhibitor and overexpressing the transcriptional regulator Yap (Yes-associated protein) significantly reduced Hamp mRNA levels. Using a promoter reporter assay, we then identified 2 Yap-binding repressor sites within the human HAMP promoter region. We also found that inhibiting Hdac3 led to increased translocation of Yap to the nucleus, suggesting activation of Yap. Notably, knock-in mice expressing a constitutively active form of Yap (Yap K342M) phenocopied the altered hepcidin levels observed in Hdac3-LKO mice. Mechanistically, we show that iron-overload-induced ferroptosis underlies the liver injury that develops in Hdac3-LKO mice, and knocking down Yap expression in Hdac3-LKO mice reduces both iron-overload- and ferroptosis-induced liver injury. These results provide compelling evidence supporting the notion that HDAC3 regulates iron homeostasis via the Hippo/Yap pathway and may serve as a target for reducing ferroptosis in iron-overload-related diseases.
Collapse
Affiliation(s)
- Hongen Meng
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health,
Zhejiang University School of Medicine, Hangzhou, China
| | - Yingying Yu
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health,
Zhejiang University School of Medicine, Hangzhou, China
| | - Enjun Xie
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health,
Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Wu
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health,
Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangju Yin
- Institute of Emergency Management,
Henan Polytechnic University, Jiaozuo, China
| | - Bin Zhao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, and Innovation Center for Cell Signaling Network, Life Sciences Institute,
Zhejiang University, Hangzhou 310058, China
| | - Junxia Min
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health,
Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The Second Affiliated Hospital, The First Affiliated Hospital, Institute of Translational Medicine, School of Public Health,
Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Formica V, Riondino S, Morelli C, Guerriero S, D'Amore F, Di Grazia A, Del Vecchio Blanco G, Sica G, Arkenau HT, Monteleone G, Roselli M. HIF2α, Hepcidin and their crosstalk as tumour-promoting signalling. Br J Cancer 2023; 129:222-236. [PMID: 37081189 PMCID: PMC10338631 DOI: 10.1038/s41416-023-02266-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/22/2023] Open
Abstract
Not all aspects of the disruption of iron homeostasis in cancer have been fully elucidated. Iron accumulation in cancer cells is frequent for many solid tumours, and this is often accompanied by the contemporary rise of two key iron regulators, HIF2α and Hepcidin. This scenario is different from what happens under physiological conditions, where Hepcidin parallels systemic iron concentrations while HIF2α levels are inversely associated to Hepcidin. The present review highlights the increasing body of evidence for the pro-tumoral effect of HIF2α and Hepcidin, discusses the possible imbalance in HIF2α, Hepcidin and iron homeostasis during cancer, and explores therapeutic options relying on these pathways as anticancer strategies.
Collapse
Affiliation(s)
- Vincenzo Formica
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy.
| | - Silvia Riondino
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Cristina Morelli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
- PhD Program in Systems and Experimental Medicine (XXXV cycle), University of Rome Tor Vergata, Via Montpellier 1, 00133, Rome, Italy
| | - Simona Guerriero
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Federica D'Amore
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| | - Antonio Di Grazia
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | | | - Giuseppe Sica
- Department of Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | - Giovanni Monteleone
- Gastroenterology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mario Roselli
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Viale Oxford, 81, 00133, Rome, Italy
| |
Collapse
|
6
|
Chen J, Fu J, Zhao S, Zhang X, Chao Y, Pan Q, Sun H, Zhang J, Li B, Xue T, Li J, Liu C. Free Radical and Viral Infection: A Review from the Perspective of Ferroptosis. Vet Sci 2023; 10:456. [PMID: 37505861 PMCID: PMC10384322 DOI: 10.3390/vetsci10070456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/30/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Free radicals, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), play critical roles in various physiological activities such as cell differentiation, apoptosis, and vascular tension when existing in cells at low levels. However, excessive amounts of free radicals are harmful, causing DNA damage, lipid peroxidation, protein degeneration, and abnormal cell death. Certain viral infections induce cells to produce excessive free radicals, which in multiple ways help the virus to replicate, mature, and exit. Iron is a necessary element for many intracellular enzymes, involved in both cellular activities and viral replication. Ferroptosis, a programmed cell death mode distinct from apoptosis, necrosis, and pyroptosis, is characterized by lipid peroxide accumulation and damage to the antioxidant system, affecting many cellular processes. Viral infection commonly manifests as decreased glutathione (GSH) content and down-regulated glutathione peroxidase 4 (GPX4) activity, similar to ferroptosis. Recent studies have suggested a possible relationship among free radicals, viral infections and ferroptosis. This review aims to elucidate the molecular mechanism linking free radicals and ferroptosis during viral infections and provide a new theoretical basis for studying viral pathogenesis and control.
Collapse
Affiliation(s)
- Jun Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jinping Fu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Sha Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xiaoxi Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yuyang Chao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qunxing Pan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huawei Sun
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jingfeng Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Tao Xue
- College of Medicine, Linyi University, Linyi 276000, China
| | - Jingui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chuanmin Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Nanjing 210014, China
- Key Laboratory of Veterinary Diagnosis, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Medicine, Linyi University, Linyi 276000, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Satué K, Fazio E, La Fauci D, Bruschetta G, Medica P. Adaptive response of estrogen-iron axis in pregnant Purebred Spanish mares of different age. J Equine Vet Sci 2023:104827. [PMID: 37247748 DOI: 10.1016/j.jevs.2023.104827] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
The maintenance of iron (Fe) homeostasis is vital for the physiological function along life. In sexually mature humans and experimental animals, estrogens downregulate hepcidin (Hpc) expression, in order to improve the intestinal absorption and to mobilize Fe stores for maternal erythropoietic expansion and placental development. However, changes of these mechanisms related to regulation of Hpc on the availability of Fe during gestation with advancing age in mares, remain unknown. The objective of this study was to evaluate the interrelationships between serum Fe, Ferritin (Ferr) and Hpc with estrone (E1) and estradiol-17β (E2) concentrations in pregnant mares of different ages. Blood samples were taken from 40 pregnant Spanish Purebred mares belonging to 4 different age groups, 10 subjects for each group: 4-6 years, 7-9 years, 10-12 years, and > 12 years were used in this study. Fe concentrations of 4-6 and 7-9 years groups were higher (P < .01) than 10-12 and >12 years groups. Ferr concentrations of 4-6 years group were higher (P < .01) than other groups. Hpc concentrations increased and E1 decreased (P < .01) in > 12 years group compared to other age groups. E2 concentrations of 7-9, 10-12 and >12 years groups were higher (P < .01) than those of 4-6 years group; 7-9 years group had higher E2 concentrations (P < .01) than > 12 years group. Fe and Ferr were negatively correlated with Hpc (r = -0.81 and r = -0.67, respectively). E1 and E2 were negatively correlated with Fe (r = -0.23 and r = -0.11, respectively). E2 was positively correlated with Hpc (r = 0.78). In pregnant Spanish Purebred mare, the increase of estrogens, according to the more efficient iron status in response to Hpc inhibition and consequent mobilization of circulating and iron reserve, shows the existence of "estrogen-iron axis" in young mares. Nevertheless, these mechanisms are reversed in old mares, suggesting a less efficient iron metabolism with advancing age. It is hoped that new investigations are needed to understand in depth and clarify further the complex metabolic and hormonal mechanisms involved also in equine species.
Collapse
Affiliation(s)
- Katiuska Satué
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, CEU-Cardenal Herrera University, Tirant lo Blanc, 7, Alfara del Patriarca, 46115 Valencia, Spain.
| | - Esterina Fazio
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Deborah La Fauci
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Giuseppe Bruschetta
- Department of Veterinary Sciences, Biochemistry Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| | - Pietro Medica
- Department of Veterinary Sciences, Veterinary Physiology Unit, Polo Universitario Annunziata, Via Palatucci 13, 98168, Messina, Italy
| |
Collapse
|
8
|
Gajewska J, Ambroszkiewicz J, Szamotulska K, Rowicka G, Strucińska M, Klemarczyk W, Chełchowska M. Associations between Oxidant/Antioxidant Status and Circulating Adipokines in Non-Obese Children with Prader-Willi Syndrome. Antioxidants (Basel) 2023; 12:antiox12040927. [PMID: 37107302 PMCID: PMC10136220 DOI: 10.3390/antiox12040927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidative stress is implicated in the pathophysiology of Prader-Willi syndrome (PWS), but there are no data on these disorders in non-obese children with PWS. Therefore, the presented study examined total oxidant capacity (TOC), total antioxidant capacity (TAC), the oxidative stress index (OSI), and adipokine levels in 22 non-obese children with PWS during dietary intervention and growth hormone treatment compared with 25 non-obese healthy children. Serum concentrations of TOC, TAC, nesfatin-1, leptin, hepcidin, ferroportin, and ferritin were determined using immunoenzymatic methods. We found that TOC concentrations were higher by 50% (p = 0.006) in patients with PWS than in healthy children, but no significant differences in TAC concentrations were observed between these groups. The OSI was higher in children with PWS than in the controls (p = 0.002). We found positive associations between TOC values and the percentage of the Estimated Energy Requirement, body mass index (BMI) Z-score, percentage of fat mass, and leptin, nesfatin-1, and hepcidin concentrations in patients with PWS. A positive association was also found between the OSI and nesfatin-1 levels. These observations suggest that higher daily energy intake and weight gain may be accompanied by an increasing prooxidant state in these patients. Adipokines such as leptin, nesfatin-1, or hepcidin may also play a role in the prooxidant state in non-obese children with PWS.
Collapse
Affiliation(s)
- Joanna Gajewska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland
| | - Jadwiga Ambroszkiewicz
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland
| | - Katarzyna Szamotulska
- Department of Epidemiology and Biostatistics, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Grażyna Rowicka
- Department of Nutrition, Institute of Mother and Child, 01-211 Warsaw, Poland
| | | | - Witold Klemarczyk
- Department of Nutrition, Institute of Mother and Child, 01-211 Warsaw, Poland
| | - Magdalena Chełchowska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland
| |
Collapse
|
9
|
Abstract
The cardiovascular system requires iron to maintain its high energy demands and metabolic activity. Iron plays a critical role in oxygen transport and storage, mitochondrial function, and enzyme activity. However, excess iron is also cardiotoxic due to its ability to catalyze the formation of reactive oxygen species and promote oxidative damage. While mammalian cells have several redundant iron import mechanisms, they are equipped with a single iron-exporting protein, which makes the cardiovascular system particularly sensitive to iron overload. As a result, iron levels are tightly regulated at many levels to maintain homeostasis. Iron dysregulation ranges from iron deficiency to iron overload and is seen in many types of cardiovascular disease, including heart failure, myocardial infarction, anthracycline-induced cardiotoxicity, and Friedreich's ataxia. Recently, the use of intravenous iron therapy has been advocated in patients with heart failure and certain criteria for iron deficiency. Here, we provide an overview of systemic and cellular iron homeostasis in the context of cardiovascular physiology, iron deficiency, and iron overload in cardiovascular disease, current therapeutic strategies, and future perspectives.
Collapse
Affiliation(s)
- Konrad Teodor Sawicki
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Adam De Jesus
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
| | - Hossein Ardehali
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL 60611
- Division of Cardiology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
10
|
Rakshit S, Sahu N, Nirala SK, Bhadauria M. Protective activity of purpurin against d-galactosamine and lipopolysaccharide-induced hepatorenal injury by upregulation of heme oxygenase-1 in the RBC degradation cycle. J Biochem Mol Toxicol 2022; 36:e23168. [PMID: 35838105 DOI: 10.1002/jbt.23168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 05/09/2022] [Accepted: 07/01/2022] [Indexed: 11/11/2022]
Abstract
Acute liver failure, associated with oxidative stress and sustained inflammation is the major clinical manifestation of liver diseases with a high mortality rate due to limited therapeutic options. Purpurin is a bioactive compound of Rubia cordifolia that has been used in textile staining, as a food additive, and as a treatment of multiple chronic and metabolic diseases associated with inflammation and oxidative stress. The present work aimed to investigate the protective efficacy of purpurin against hepatorenal damage. Thirty-six female albino rats were equally assigned into six groups. Purpurin was administered orally once a day for 6 days at doses of 05, 10, and 20 mg/kg, respectively. Intraperitoneal injection of lipopolysaccharide (50 μg/kg) was administered to the animals on 6th day evening, 1 h after d-galactosamine (300 mg/kg) administration to induce hepatorenal injury. The results revealed that purpurin alleviated alterations in serological and hematological parameters as well as restored histoarchitectural and cellular integrity of the liver and kidney. Purpurin restored superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase, and glutathione content in hepatorenal tissues. Accompanied by the diminution of increased bilirubin and biliverdin, purpurin also diminished total cholesterol, triglyceride, and lipid peroxidation in hepatorenal tissues. Purpurin markedly attenuated the elevation of CYP2E1, restored glutathione-S-transferase, and prevented DNA damage in hepatorenal tissues. Purpurin reduced iron overload by reducing heme depletion and recycling of ferritin and hemosiderin. It also reinforced biliverdin reductase, heme oxygenase-1 to employ hepatorenal protection by regulating antioxidant enzymes and other pathways that produced NADPH. Thus, it may be concluded that purpurin has protective potential against acute hepatorenal injury.
Collapse
Affiliation(s)
- Samrat Rakshit
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Nisha Sahu
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Satendra Kumar Nirala
- Laboratory of Natural Products, Department of Rural Technology and Social Development, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| | - Monika Bhadauria
- Toxicology and Pharmacology Laboratory, Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India
| |
Collapse
|
11
|
Is the Role of Hepcidin and Erythroferrone in the Pathogenesis of Beta Thalassemia the Key to Developing Novel Treatment Strategies? THALASSEMIA REPORTS 2022. [DOI: 10.3390/thalassrep12030017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Thalassemia is a disease of erythrocytes that varies largely on its genetic composition and associated clinical presentation. Though some patients may remain asymptomatic, those with a complicated course may experience severe anemia early in childhood, carrying into adulthood and requiring recurrent blood transfusions as a pillar of symptom management. Due to the consequences of ineffective erythropoiesis and frequent transfusions, patients with severe beta thalassemia may be subsequently susceptible to hemochromatosis. In light of the established role of hepcidin and erythroferrone in the pathogenesis of beta thalassemia, this review aims to discuss current clinical trials and studies in the field while presenting clinical implications of the HAMP gene polymorphisms and novel treatments. Research suggested incorporating erythroferrone and serum hepcidin testing as a part of routine workups for beta thalassemia, as they could be a predictive tool for early iron accumulation. Furthermore, ameliorating low hepcidin and high erythroferrone appeared to be crucial in treating beta thalassemia and its complications due to iron overload. Currently, hepcidin-like compounds, such as minihepcidins, LJPC-401, PTG-300, VIT-2763, and agents that promote hepcidin production by inhibiting TMPRSS6 expression or erythroferrone, were shown to be effective in restoring iron homeostasis in preliminary studies. Moreover, the natural bioactives astragalus polysaccharide and icariin have been recently recognized as hepcidin expression inductors.
Collapse
|
12
|
AbdelHafez MA. Protective and therapeutic potentials of HDL and ApoA1 in COVID-19 elderly and chronic illness patients. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2022; 46:222. [PMID: 35915785 PMCID: PMC9330984 DOI: 10.1186/s42269-022-00886-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease-2019 (COVID-19). Elderly subjects, obese, and patients with chronic illnesses, are the most affected group. HDL has pleiotropic physiological functions that are affected with alteration(s) in its structure. MAIN TEXT Inflammation whether septic, immune, or other affects HDL structure and function. COVID-19 is associated with systemic immune-inflammation due to cytokine surge. Viral interaction with erythrocytes and hemoglobin-related compounds (may cause anemia and hypoxia) and other factors may affect HDL function. Trials have been conducted to resume HDL functions using peptide preparation, nutritional, and herbal elements. CONCLUSIONS In this review article, I'll discuss the use of reconstituted HDL (rHDL), Apo-A1 mimetic peptide D-4F, ω-3 polyunsaturated fatty acids, and the powdered roots and/or extract of Saussurea lappa (costus) to avoid comorbidity and mortality of COVID-19 in patients with chronic illness or elderly-age mortality.
Collapse
Affiliation(s)
- Mohamed Aly AbdelHafez
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Cairo University, Kasr AlAiny, Al-Manyal, Cairo, Cairo 11562 Egypt
| |
Collapse
|
13
|
Rahimian R, Belliveau C, Chen R, Mechawar N. Microglial Inflammatory-Metabolic Pathways and Their Potential Therapeutic Implication in Major Depressive Disorder. Front Psychiatry 2022; 13:871997. [PMID: 35782423 PMCID: PMC9245023 DOI: 10.3389/fpsyt.2022.871997] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence supports the notion that neuroinflammation plays a critical role in the etiology of major depressive disorder (MDD), at least in a subset of patients. By virtue of their capacity to transform into reactive states in response to inflammatory insults, microglia, the brain's resident immune cells, play a pivotal role in the induction of neuroinflammation. Experimental studies have demonstrated the ability of microglia to recognize pathogens or damaged cells, leading to the activation of a cytotoxic response that exacerbates damage to brain cells. However, microglia display a wide range of responses to injury and may also promote resolution stages of inflammation and tissue regeneration. MDD has been associated with chronic priming of microglia. Recent studies suggest that altered microglial morphology and function, caused either by intense inflammatory activation or by senescence, may contribute to depression and associated impairments in neuroplasticity. In this context, modifying microglia phenotype by tuning inflammatory pathways might have important translational relevance to harness neuroinflammation in MDD. Interestingly, it was recently shown that different microglial phenotypes are associated with distinct metabolic pathways and analysis of the underlying molecular mechanisms points to an instrumental role for energy metabolism in shaping microglial functions. Here, we review various canonical pro-inflammatory, anti-inflammatory and metabolic pathways in microglia that may provide new therapeutic opportunities to control neuroinflammation in brain disorders, with a strong focus on MDD.
Collapse
Affiliation(s)
- Reza Rahimian
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
| | - Claudia Belliveau
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Rebecca Chen
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, McGill Group for Suicide Studies, Verdun, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Devlin P, Davies A, Dugan C, Richards T, Miles LF. Non-erythropoiesis-stimulating agent, non-iron therapies for the management of anaemia: protocol for a scoping review. BMJ Open 2022; 12:e059059. [PMID: 35410937 PMCID: PMC9003621 DOI: 10.1136/bmjopen-2021-059059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Preoperative anaemia is associated with poor postoperative outcomes and is the strongest predictor of allogenic blood transfusion, which contributes further to patient morbidity. Emphasis has been placed on correcting anaemia prior to surgery to mitigate these outcomes. Conflicting evidence exists regarding the benefit of currently recommended interventions. With greater understanding of iron haemostasis and erythropoiesis, novel therapies have been identified. These are at varying stages of development with some demonstrating promising results in patients with chronic kidney disease. It is not known how these agents have been studied outside this population, particularly in the perioperative context. To address this, we will conduct a scoping review of the published literature to chart the evidence. METHODS AND ANALYSIS The scoping review will be reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews framework. The electronic database search will include Scopus, MEDLINE (Ovid) and Excerpta Medica database (Ovid), with no language restrictions, and will include all publications since 1 January 2010. This review will have three objectives: (1) to describe the mechanisms of action for novel agents, (2) to describe the level of evidence and stage of development of novel agents in a perioperative setting, and (3) to determine the potential agents suitable for prospective controlled trials in a preoperative or postoperative patient cohort and aiming to improve patient-centred outcomes. The review process will involve two reviewers with a third reviewer resolving disagreements. Data will be extracted and organised with subsequent analysis. ETHICS AND DISSEMINATION This scoping review does not require research ethics approval. The results will be published in a peer-reviewed journal and inform the development of future prospective trials based on established evidence from potential therapeutic agents. TRIAL REGISTRATION NUMBER This protocol has been registered prospectively on the Open Science Framework registry (DOI:10.17605/OSF.IO/SM3UH, https://osf.io/sm3uh/?view_only=39876ccf7a4348dfbd566535b957a7db).Cite Now.
Collapse
Affiliation(s)
- Paula Devlin
- Department of Critical Care, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amelia Davies
- Department of Surgery, The University of Western Australia, Perth, Western Australia, Australia
| | - Cory Dugan
- Department of Surgery, The University of Western Australia, Perth, Western Australia, Australia
| | - Toby Richards
- Department of Surgery, The University of Western Australia, Perth, Western Australia, Australia
| | - Lachlan F Miles
- Department of Critical Care, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Duan F, Zhong M, Ye J, Wang L, Jiang C, Yuan Z, Bi X, Huang J. The Iron-Inflammation Axis in Early-Stage Triple-Negative Breast Cancer. Front Cell Dev Biol 2022; 10:784179. [PMID: 35281097 PMCID: PMC8904738 DOI: 10.3389/fcell.2022.784179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/09/2022] [Indexed: 01/19/2023] Open
Abstract
The iron-related homeostasis and inflammatory biomarker have been identified as prognostic factors for cancers. We aimed to explore the prognostic value of a novel comprehensive biomarker, the iron-monocyte-to-lymphocyte ratio (IronMLR) score, in patients with early-stage triple-negative breast cancer (TNBC) in this study. We retrospectively analysed a total of 257 early-stage TNBC patients treated at Sun Yat-sen University Cancer Center (SYSUCC) between March 2006 and October 2016. Their clinicopathological information and haematological data tested within 1 week of the diagnosis were collected. According to the IronMLR score cutoff value of 6.07 μmol/L determined by maximally selected rank statistics, patients were stratified into the low- and high-IronMLR groups, after a median follow-up of 92.3 months (95% confidence interval [CI] 76.0–119.3 months), significant differences in 5-years disease-free survival (DFS) rate (81.2%, 95% CI 76.2%–86.5% vs. 65.5%, 95% CI 50.3%–85.3%, p = 0.012) and 5-years overall survival (OS) rate (86.0%, 95% CI 81.6%–90.7% vs. 65.5%, 95% CI 50.3%–85.3%, p = 0.011) were seen between two groups. Further multivariate Cox regression analysis revealed the IronMLR score as an independent predictor for DFS and OS, respectively, we then established a prognostic nomogram integrating the IronMLR score, T stage and N stage for individualized survival predictions. The prognostic model showed good predictive performance with a C-index of DFS 0.725 (95% CI 0.662–0.788) and OS 0.758 (95% CI 0.689–0.826), respectively. Besides, calibration curves for 1-, 3-, 5-DFS, and OS represented satisfactory consistency between actual and nomogram predicted survival. In conclusion, the Iron-inflammation axis might be a potential prognostic biomarker of survival outcomes for patients with early-stage TNBC, prognostic nomograms based on it with good predictive performance might improve individualized survival predictions.
Collapse
Affiliation(s)
- Fangfang Duan
- Department of Medical Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Muyi Zhong
- Department of Breast Oncology, Dongguan People's Hospital, Dongguan, China
| | - Jinhui Ye
- Department of Breast Oncology, The First People's Hospital of Zhaoqing, Zhaoqing, China
| | - Li Wang
- Department of Medical Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chang Jiang
- Department of Medical Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhongyu Yuan
- Department of Medical Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiwen Bi
- Department of Medical Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiajia Huang
- Department of Medical Oncology, The State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
16
|
Phoaubon S, Lertsuwan K, Teerapornpuntakit J, Charoenphandhu N. Hepcidin induces intestinal calcium uptake while suppressing iron uptake in Caco-2 cells. PLoS One 2021; 16:e0258433. [PMID: 34644351 PMCID: PMC8513844 DOI: 10.1371/journal.pone.0258433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022] Open
Abstract
Abnormal calcium absorption and iron overload from iron hyperabsorption can contribute to osteoporosis as found in several diseases, including hemochromatosis and thalassemia. Previous studies in thalassemic mice showed the positive effects of the iron uptake suppressor, hepcidin, on calcium transport. However, whether this effect could be replicated in other conditions is not known. Therefore, this study aimed to investigate the effects of hepcidin on iron and calcium uptake ability under physiological, iron uptake stimulation and calcium uptake suppression. To investigate the potential mechanism, effects of hepcidin on the expression of iron and calcium transporter and transport-associated protein in Caco-2 cells were also determined. Our results showed that intestinal cell iron uptake was significantly increased by ascorbic acid together with ferric ammonium citrate (FAC), but this phenomenon was suppressed by hepcidin. Interestingly, hepcidin significantly increased calcium uptake under physiological condition but not under iron uptake stimulation. While hepcidin significantly suppressed the expression of iron transporter, it had no effect on calcium transporter expression. This indicated that hepcidin-induced intestinal cell calcium uptake did not occur through the stimulation of calcium transporter expression. On the other hand, 1,25(OH)2D3 effectively induced intestinal cell calcium uptake, but it did not affect intestinal cell iron uptake or iron transporter expression. The 1,25(OH)2D3-induced intestinal cell calcium uptake was abolished by 12 mM CaCl2; however, hepcidin could not rescue intestinal cell calcium uptake suppression by CaCl2. Taken together, our results showed that hepcidin could effectively and concurrently induce intestinal cell calcium uptake while reducing intestinal cell iron uptake under physiological and iron uptake stimulation conditions, suggesting its therapeutic potential for inactive calcium absorption, particularly in thalassemic patients or patients who did not adequately respond to 1,25(OH)2D3.
Collapse
Affiliation(s)
- Supathra Phoaubon
- Doctor of Philosophy Program in Biochemistry (International Program), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kornkamon Lertsuwan
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand
| |
Collapse
|
17
|
Moinipour N, Barati M, Sahebkar A, Iranshahy M, Shakeri A. Protective effects of curcumin against iron-induced toxicity. Curr Pharm Biotechnol 2021; 23:1020-1027. [PMID: 34521323 DOI: 10.2174/1389201022666210914122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022]
Abstract
Iron is an essential element in cellular metabolism that participates in many biochemical reactions. Nevertheless, iron overload in the body is the cause of damage in some organs including liver, glands, brain, heart, gastrointestinal tract and lung. Iron chelation therapy could be considered as an effective approach for removing excess iron. Deferoxamine, deferiprone and deferasirox are three common iron chelators in clinical practice but cause several side effects. In this context, the use of curcumin, a dietary phytochemical derived from turmeric, as a natural and safe antioxidant with iron-chelating activity may be a useful strategy for the management of iron overload. This review focuses on the deleterious effect of iron accumulation in different organs of the body as well as the therapeutic potential of curcumin against iron-induced toxicity.
Collapse
Affiliation(s)
- Nastaran Moinipour
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Mahdi Barati
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
18
|
Insights into the Role of the Discontinuous TM7 Helix of Human Ferroportin through the Prism of the Asp325 Residue. Int J Mol Sci 2021; 22:ijms22126412. [PMID: 34203920 PMCID: PMC8232785 DOI: 10.3390/ijms22126412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022] Open
Abstract
The negatively charged Asp325 residue has proved to be essential for iron export by human (HsFPN1) and primate Philippine tarsier (TsFpn) ferroportin, but its exact role during the iron transport cycle is still to be elucidated. It has been posited as being functionally equivalent to the metal ion-coordinating residue His261 in the C-lobe of the bacterial homolog BbFpn, but the two residues arise in different sequence motifs of the discontinuous TM7 transmembrane helix. Furthermore, BbFpn is not subject to extracellular regulation, contrary to its mammalian orthologues which are downregulated by hepcidin. To get further insight into the molecular mechanisms related to iron export in mammals in which Asp325 is involved, we investigated the behavior of the Asp325Ala, Asp325His, and Asp325Asn mutants in transiently transfected HEK293T cells, and performed a comparative structural analysis. Our biochemical studies clearly distinguished between the Asp325Ala and Asp325His mutants, which result in a dramatic decrease in plasma membrane expression of FPN1, and the Asp325Asn mutant, which alters iron egress without affecting protein localization. Analysis of the 3D structures of HsFPN1 and TsFpn in the outward-facing (OF) state indicated that Asp325 does not interact directly with metal ions but is involved in the modulation of Cys326 metal-binding capacity. Moreover, models of the architecture of mammalian proteins in the inward-facing (IF) state suggested that Asp325 may form an inter-lobe salt-bridge with Arg40 (TM1) when not interacting with Cys326. These findings allow to suggest that Asp325 may be important for fine-tuning iron recognition in the C-lobe, as well as for local structural changes during the IF-to-OF transition at the extracellular gate level. Inability to form a salt-bridge between TM1 and TM7b during iron translocation could lead to protein instability, as shown by the Asp325Ala and Asp325His mutants.
Collapse
|
19
|
Shi H, Almutairi M, Moskovitz J, Xu YG. Recent advances in iron homeostasis and regulation - a focus on epigenetic regulation and stroke. Free Radic Res 2021; 55:375-383. [PMID: 33345646 DOI: 10.1080/10715762.2020.1867314] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Iron is an element with redox properties. It is active sites of many enzymes and plays an important role in various cellular and biological functions including ATP production and DNA synthesis. However, as a redox element, iron promotes free radical generation and lipid peroxidation, causing oxidative damage and cell death. Iron-mediated oxidation is a central player in ferroptosis, a type of cell death process that is different from apoptosis and necrosis. Thus, iron metabolism and homeostasis are sophisticatedly regulated. There has been exciting progress in understanding iron metabolism and regulation since hepcidin was recognized as the central regulator of iron homeostasis. Hepcidin mainly regulates the iron export function of the ferrous iron permease, ferroportin, which is the only known iron exporter expressed by mammalian cells. Particularly, epigenetic regulation has been a recent focus on iron homeostasis. Epigenetic phenomena have been demonstrated to modulate key proteins including hepcidin in iron metabolism. Here, we review the rapid progress in recent years in understanding molecular mechanisms of iron homeostasis with a focus on epigenetic regulation of hepcidin, ferritin, and ferroptosis. Interactions between methionine oxidation and iron is also discussed. Furthermore, many studies have suggested that the severity of neuronal damage after stroke is proportional to the magnitude of brain iron accumulation. Recent discoveries regarding iron metabolism in stroke is briefly discussed. Understanding the underlying mechanism in iron regulation could provide insight into the treatment of various intractable diseases including stroke.
Collapse
Affiliation(s)
- Honglian Shi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Mohammed Almutairi
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Jackob Moskovitz
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Yuexian G Xu
- Department of Anesthesiology, School of Medicine, University of Kansas, Kansas City, KS, USA
| |
Collapse
|
20
|
Le Tertre M, Ka C, Raud L, Berlivet I, Gourlaouen I, Richard G, Uguen K, Chen JM, Férec C, Fichou Y, Le Gac G. Splicing analysis of SLC40A1 missense variations and contribution to hemochromatosis type 4 phenotypes. Blood Cells Mol Dis 2020; 87:102527. [PMID: 33341511 DOI: 10.1016/j.bcmd.2020.102527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 02/09/2023]
Abstract
Hemochromatosis type 4, or ferroportin disease, is considered as the second leading cause of primary iron overload after HFE-related hemochromatosis. The disease, which is predominantly associated with missense variations in the SLC40A1 gene, is characterized by wide clinical heterogeneity. We tested the possibility that some of the reported missense mutations, despite their positions within exons, cause splicing defects. Fifty-eight genetic variants were selected from the literature based on two criteria: a precise description of the nucleotide change and individual evidence of iron overload. The selected variants were investigated by different in silico prediction tools and prioritized for midigene splicing assays. Of the 15 variations tested in vitro, only two were associated with splicing changes. We confirm that the c.1402G>A transition (p.Gly468Ser) disrupts the exon 7 donor site, leading to the use of an exonic cryptic splicing site and the generation of a truncated reading frame. We observed, for the first time, that the p.Gly468Ser substitution has no effect on the ferroportin iron export function. We demonstrate alternative splicing of exon 5 in different cell lines and show that the c.430A>G (p.Asn144Asp) variant promotes exon 5 inclusion. This could be part of a gain-of-function mechanism. We conclude that splicing mutations rarely contribute to hemochromatosis type 4 phenotypes. An in-depth investigation of exon 5 auxiliary splicing sequences may help to elucidate the mechanism by which splicing regulatory proteins regulate the production of the full length SLC40A1 transcript and to clarify its physiological importance.
Collapse
Affiliation(s)
- Marlène Le Tertre
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France
| | - Chandran Ka
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France
| | - Loann Raud
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; Association Gaétan Saleün, F-29200, France
| | | | - Isabelle Gourlaouen
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France
| | | | - Kévin Uguen
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France
| | - Jian-Min Chen
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France
| | - Claude Férec
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France; Association Gaétan Saleün, F-29200, France
| | - Yann Fichou
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France
| | - Gérald Le Gac
- Univ Brest, Inserm, EFS, UMR1078, GGB, F-29200, France; CHRU de Brest, Service de Génétique Médicale et Biologie de la Reproduction, Laboratoire de Génétique Moléculaire et Histocompatibilité, F-29200, France; Laboratory of Excellence GR-Ex, F-75015, France.
| |
Collapse
|
21
|
Borodina I, Kenny LC, McCarthy CM, Paramasivan K, Pretorius E, Roberts TJ, van der Hoek SA, Kell DB. The biology of ergothioneine, an antioxidant nutraceutical. Nutr Res Rev 2020; 33:190-217. [PMID: 32051057 PMCID: PMC7653990 DOI: 10.1017/s0954422419000301] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/20/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Ergothioneine (ERG) is an unusual thio-histidine betaine amino acid that has potent antioxidant activities. It is synthesised by a variety of microbes, especially fungi (including in mushroom fruiting bodies) and actinobacteria, but is not synthesised by plants and animals who acquire it via the soil and their diet, respectively. Animals have evolved a highly selective transporter for it, known as solute carrier family 22, member 4 (SLC22A4) in humans, signifying its importance, and ERG may even have the status of a vitamin. ERG accumulates differentially in various tissues, according to their expression of SLC22A4, favouring those such as erythrocytes that may be subject to oxidative stress. Mushroom or ERG consumption seems to provide significant prevention against oxidative stress in a large variety of systems. ERG seems to have strong cytoprotective status, and its concentration is lowered in a number of chronic inflammatory diseases. It has been passed as safe by regulatory agencies, and may have value as a nutraceutical and antioxidant more generally.
Collapse
Affiliation(s)
- Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Louise C. Kenny
- Department of Women’s and Children’s Health, Institute of Translational Medicine, University of Liverpool, Crown Street, LiverpoolL8 7SS, UK
| | - Cathal M. McCarthy
- Irish Centre for Fetal and Neonatal Translational Research (INFANT), Cork University Maternity Hospital, Cork, Republic of Ireland
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Republic of Ireland
| | - Kalaivani Paramasivan
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Timothy J. Roberts
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| | - Steven A. van der Hoek
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Building 220, Chemitorvet 200, Technical University of Denmark, 2800Kongens Lyngby, Denmark
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
- Department of Biochemistry, Institute of Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown Street, LiverpoolL69 7ZB, UK
| |
Collapse
|
22
|
Affiliation(s)
- Na Hee Lee
- Department of Pediatrics, Cha Bundang Medical Center, Cha University, Seongnam, Korea
| |
Collapse
|
23
|
Shibabaw T, Teferi B, Molla MD, Ayelign B. Inflammation Mediated Hepcidin-Ferroportin Pathway and Its Therapeutic Window in Breast Cancer. BREAST CANCER-TARGETS AND THERAPY 2020; 12:165-180. [PMID: 33116818 PMCID: PMC7585830 DOI: 10.2147/bctt.s276404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022]
Abstract
Experimental and clinical data strongly support that iron is an essential element which plays a big role in cancer biology. Thus, hepcidin (Hp) and ferroportin (Fpn) are molecules that regulate and maintain the metabolism of iron. A peptide hormone hepcidin limits recycled and stored iron fluxes in macrophage and hepatic hepatocyte, respectively, to the blood stream by promoting degradation of the only iron exporter, Fpn, in the target cells. Moreover, the inflammatory microenvironment of breast cancer and altered hepcidin/ferroportin pathway is intimately linked. Breast cancer exhibits an iron seeking phenotype that is accomplished by tumor-associated macrophage (TAM). Because macrophages contribute to breast cancer growth and progression, this review will discuss TAM with an emphasis on describing how TAM (M2Ф phenotypic) interacts with their surrounding microenvironment and results in dysregulated Hp/Fpn and pathologic accumulation of iron as a hallmark of its malignant condition. Moreover, the underlying stroma or tumor microenvironment releases significant inflammatory cytokines like IL-6 and bone morphogenetic proteins like BMP-2 and 6 leading in aberrant Hp/Fpn pathways in breast cancer. Inflammation is primarily associated with the high intracellular iron levels, deregulated hepcidin/ferroportin pathway, and its upstream signaling in breast cancer. Subsequently, scholars have been reported that reducing iron level and manipulating the signaling molecules involved in iron metabolism can be used as a promising strategy of tumor chemotherapy. Here, we review the key molecular aspects of iron metabolism and its regulatory mechanisms of the hepcidin/ferroportin pathways and its current therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Banchamlak Teferi
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
24
|
Aune ET, Diepeveen LE, Laarakkers CM, Klaver S, Armitage AE, Bansal S, Chen M, Fillet M, Han H, Herkert M, Itkonen O, van de Kerkhof D, Krygier A, Lefebvre T, Neyer P, Rieke M, Tomosugi N, Weykamp CW, Swinkels DW. Optimizing hepcidin measurement with a proficiency test framework and standardization improvement. Clin Chem Lab Med 2020; 59:315-323. [PMID: 33001847 DOI: 10.1515/cclm-2020-0928] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/04/2020] [Indexed: 12/23/2022]
Abstract
Objectives Hepcidin measurement advances insights in pathophysiology, diagnosis, and treatment of iron disorders, but requires analytically sound and standardized measurement procedures (MPs). Recent development of a two-level secondary reference material (sRM) for hepcidin assays allows worldwide standardization. However, no proficiency testing (PT) schemes to ensure external quality assurance (EQA) exist and the absence of a high calibrator in the sRM set precludes optimal standardization. Methods We developed a pilot PT together with the Dutch EQA organization Stichting Kwaliteitsbewaking Medische Laboratoriumdiagnostiek (SKML) that included 16 international hepcidin MPs. The design included 12 human serum samples that allowed us to evaluate accuracy, linearity, precision and standardization potential. We manufactured, value-assigned, and validated a high-level calibrator in a similar manner to the existing low- and middle-level sRM. Results The pilot PT confirmed logistical feasibility of an annual scheme. Most MPs demonstrated linearity (R2>0.99) and precision (duplicate CV>12.2%), although the need for EQA was shown by large variability in accuracy. The high-level calibrator proved effective, reducing the inter-assay CV from 42.0% (unstandardized) to 14.0%, compared to 17.6% with the two-leveled set. The calibrator passed international homogeneity criteria and was assigned a value of 9.07±0.24 nmol/L. Conclusions We established a framework for future PT to enable laboratory accreditation, which is essential to ensure quality of hepcidin measurement and its use in patient care. Additionally, we showed optimized standardization is possible by extending the current sRM with a third high calibrator, although international implementation of the sRM is a prerequisite for its success.
Collapse
Affiliation(s)
- Ellis T Aune
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Hepcidinanalysis.com, Nijmegen, The Netherlands
| | - Laura E Diepeveen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Hepcidinanalysis.com, Nijmegen, The Netherlands
| | - Coby M Laarakkers
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Hepcidinanalysis.com, Nijmegen, The Netherlands
| | - Siem Klaver
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Hepcidinanalysis.com, Nijmegen, The Netherlands
| | - Andrew E Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Sukhvinder Bansal
- Department of Pharmacy, School of Cancer and Pharmaceutical Science, King's College London, London, UK
| | - Michael Chen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Division of Medical Sciences, University of Victoria, Victoria, Canada
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, CIRM, University of Liège, Liège, Belgium
| | | | | | - Outi Itkonen
- Laboratory Division HUSLAB, Helsinki University Central Hospital, Helsinki, Finland
| | - Daan van de Kerkhof
- Algemeen Klinisch Laboratorium, Catharina Ziekenhuis, Eindhoven, The Netherlands
| | - Aleksandra Krygier
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Thibaud Lefebvre
- French Center of Porphyria, INSERM UMR1149, Labex GR-Ex, Louis Mourier Hospital, APHP.Nord-Université de Paris, Paris, France
| | - Peter Neyer
- Institute of Laboratory Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | | | - Naohisa Tomosugi
- Division of Systems Bioscience for Drug Discovery, Medical Research Institute, Kanazawa Medical University, Kahoku, Japan
| | - Cas W Weykamp
- Department of Clinical Chemistry, Queen Beatrix Hospital, Winterswijk, The Netherlands
- SKML, Nijmegen, The Netherlands
| | - Dorine W Swinkels
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Hepcidinanalysis.com, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Translational Metabolic Laboratory (830), Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
25
|
Billesbølle CB, Azumaya CM, Kretsch RC, Powers AS, Gonen S, Schneider S, Arvedson T, Dror RO, Cheng Y, Manglik A. Structure of hepcidin-bound ferroportin reveals iron homeostatic mechanisms. Nature 2020; 586:807-811. [PMID: 32814342 PMCID: PMC7906036 DOI: 10.1038/s41586-020-2668-z] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/15/2020] [Indexed: 01/01/2023]
Abstract
The serum iron level in humans is tightly controlled by the action of the hormone hepcidin on the iron efflux transporter ferroportin. Hepcidin regulates iron absorption and recycling by inducing ferroportin internalization and degradation1. Aberrant ferroportin activity can lead to diseases of iron overload, like hemochromatosis, or iron limitation anemias2. Here, we determined cryogenic electron microscopy (cryo-EM) structures of ferroportin in lipid nanodiscs, both in the apo state and in complex with cobalt, an iron mimetic, and hepcidin. These structures and accompanying molecular dynamics simulations identify two metal binding sites within the N- and C-domains of ferroportin. Hepcidin binds ferroportin in an outward-open conformation and completely occludes the iron efflux pathway to inhibit transport. The carboxy-terminus of hepcidin directly contacts the divalent metal in the ferroportin C-domain. We further show that hepcidin binding to ferroportin is coupled to iron binding, with an 80-fold increase in hepcidin affinity in the presence of iron. These results suggest a model for hepcidin regulation of ferroportin, where only iron loaded ferroportin molecules are targeted for degradation. More broadly, our structural and functional insights are likely to enable more targeted manipulation of the hepcidin-ferroportin axis in disorders of iron homeostasis.
Collapse
Affiliation(s)
- Christian B Billesbølle
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Caleigh M Azumaya
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Rachael C Kretsch
- Department of Computer Science, Stanford University, Stanford, CA, USA.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.,Biophysics Program, Stanford University, Stanford, CA, USA
| | - Alexander S Powers
- Department of Computer Science, Stanford University, Stanford, CA, USA.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.,Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Shane Gonen
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA.,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, Biological Sciences III, Irvine, CA, USA
| | - Simon Schneider
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, Frankfurt am Main, Germany
| | - Tara Arvedson
- Department of Oncology Research, Amgen Inc., South San Francisco, CA, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA.,Biophysics Program, Stanford University, Stanford, CA, USA
| | - Yifan Cheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA. .,Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA, USA.
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA. .,Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
26
|
Rauf A, Shariati MA, Khalil AA, Bawazeer S, Heydari M, Plygun S, Laishevtcev A, Hussain MB, Alhumaydhi FA, Aljohani ASM. Hepcidin, an overview of biochemical and clinical properties. Steroids 2020; 160:108661. [PMID: 32450084 DOI: 10.1016/j.steroids.2020.108661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/31/2020] [Accepted: 05/17/2020] [Indexed: 12/16/2022]
Abstract
Hepcidin is a peptide hormone which helps in regulating iron homeostasis in the human body. Iron obtained from daily diet is passed through the intestinal enterocyte apical membrane via divalent metal transporter 1 (DMT1), which is either stored as ferritin or moved into the plasma by hepcidin-ferroportin (Fpn) as an exporter. Hepcidin (hepatic bactericidal protein) is a cysteine rich peptide, was initially identified as a urinary antimicrobial peptide. It contains 25 amino acids and four disulfide bridges. It has significant role in regulation of iron in the body. Stimulation of iron in plasma and further its storage is linked with the production of hepcidin. This enhancement of iron hampers the absorption of iron from the diet. The cause of hereditary recessive anemia also known as Iron-refractory iron deficiency anemia (IRIDA) is characterized by increased hepcidin production due to a gene mutation in the suppressor matriptase-2/TMPRSS6. During infection, hepcidin plays a defensive role against various infections by depleting the extracellular iron from the body. Moreover, hepcidin lowers the concentrations of iron from the duodenal enterocytes, macrophages and also decrease its transport across the placenta.This review highlights the significant role of hepcidin in the iron homeostasis and as an antimicrobial agent.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State University Named After I.S. Turgenev, 302026 Orel, Russia
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Pakistan
| | - Saud Bawazeer
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 42, Saudi Arabia
| | - Mojtaba Heydari
- Poostchi Ophthalmology Research Center, Shiraz University of Medical Sciences, Shiraz, Sciences, Shiraz, Iran
| | - Sergey Plygun
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State University Named After I.S. Turgenev, 302026 Orel, Russia; European Society of Clinical Microbiology and Infectious Diseases, Basel 4051, Switzerland; Russian Research Institute of Phytopathology, Moscow Region 143050, Russia
| | - Alexy Laishevtcev
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel State University Named After I.S. Turgenev, 302026 Orel, Russia; Federal Research Center - All-Russian Scientific Research Institute of Experimental Veterinary Medicine named after K.I. Skryabin and Y.R. Kovalenko of the Russian Academy of Sciences, Moscow 109428, Russia
| | - Muhammad Bilal Hussain
- Institute of Home and Food Sciences, Government College University, Faisalabad, Pakistan
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
27
|
DUAN L, YIN X, MENG H, FANG X, MIN J, WANG F. [Progress on epigenetic regulation of iron homeostasis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:58-70. [PMID: 32621410 PMCID: PMC8800797 DOI: 10.3785/j.issn.1008-9292.2020.02.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Iron homeostasis plays an important role for the maintenance of human health. It is known that iron metabolism is tightly regulated by several key genes, including divalent metal transport-1(DMT1), transferrin receptor 1(TFR1), transferrin receptor 2(TFR2), ferroportin(FPN), hepcidin(HAMP), hemojuvelin(HJV) and Ferritin H. Recently, it is reported that DNA methylation, histone acetylation, and microRNA (miRNA) epigenetically regulated iron homeostasis. Among these epigenetic regulators, DNA hypermethylation of the promoter region of FPN, TFR2, HAMP, HJV and bone morphogenetic protein 6 (BMP6) genes result in inhibitory effect on the expression of these iron-related gene. In addition, histone deacetylase (HADC) suppresses HAMP gene expression. On the contrary, HADC inhibitor upregulates HAMP gene expression. Additional reports showed that miRNA can also modulate iron absorption, transport, storage and utilization via downregulation of DMT1, FPN, TFR1, TFR2, Ferritin H and other genes. It is noteworthy that some key epigenetic regulatory enzymes, such as DNA demethylase TET2 and histone lysine demethylase JmjC KDMs, require iron for the enzymatic activities. In this review, we summarize the recent progress of DNA methylation, histone acetylation and miRNA in regulating iron metabolism and also discuss the future research directions.
Collapse
|
28
|
Sornjai W, Nguyen Van Long F, Pion N, Pasquer A, Saurin JC, Marcel V, Diaz JJ, Mertani HC, Smith DR. Iron and hepcidin mediate human colorectal cancer cell growth. Chem Biol Interact 2020; 319:109021. [PMID: 32092301 DOI: 10.1016/j.cbi.2020.109021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/24/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
High dietary iron intake is a risk factor for the development of colorectal cancer. However, how iron subsequently impacts the proliferation of colorectal cancer cells remains unclear. This study determined the expression of six iron regulatory genes in twenty-one human colorectal cancer (CRC) biopsies and matched normal colonic tissue. The results show that only hepcidin and ferritin heavy chain expression were increased in CRC biopsies as compared to matched normal tissues. Four established human CRC cell lines, HT-29, HCT-116, SW-620 and SW-480 were subsequently examined for their growth in response to increasing concentrations of iron, and iron depletion. Real time cell growth assay showed a significant inhibitory effect of acute iron loading in HCT-116 cells (IC50 = 258.25 μM at 72 h), and no significant effects in other cell types. However, ten week treatment with iron significantly reduced HT-29 and SW-620 cell growth, whereas no effect was seen in HCT-116 and SW-480 cells. Intracellular labile iron depletion induced the complete growth arrest and detachment of all of the CRC cell types except for the SW-620 cell line which was not affected in its growth. Treatment of starved CRC cells with hepcidin, the major regulator of iron metabolism, induced a significant stimulation of HT-29 cell growth but did not affect the growth of the other cell types. Collectively these results show that iron is central to CRC cell growth in a manner that is not identical between acute and chronic loading, and that is specific to the CRC cell type.
Collapse
Affiliation(s)
- Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon Sai 4, Salaya, Nakon Pathom, 73170, Thailand
| | - Flora Nguyen Van Long
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, 69008, France
| | - Nathalie Pion
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, 69008, France
| | - Arnaud Pasquer
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, 69008, France
| | - Jean-Christophe Saurin
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, 69008, France
| | - Virginie Marcel
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, 69008, France
| | - Jean Jacques Diaz
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, 69008, France
| | - Hichem C Mertani
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052-CNRS 5286, Centre Léon Bérard, Université Claude Bernard Lyon I, Université de Lyon, Lyon, 69008, France.
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon Sai 4, Salaya, Nakon Pathom, 73170, Thailand.
| |
Collapse
|
29
|
Baek JH, Shin HKH, Gao Y, Buehler PW. Ferroportin inhibition attenuates plasma iron, oxidant stress, and renal injury following red blood cell transfusion in guinea pigs. Transfusion 2020; 60:513-523. [PMID: 32064619 DOI: 10.1111/trf.15720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/03/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Red blood cell (RBC) transfusions result in the sequestration and metabolism of storage-damaged RBCs within the spleen and liver. These events are followed by increased plasma iron concentrations that can contribute to oxidant stress and cellular injury. We hypothesized that administration of a ferroportin inhibitor (FPN-INH) immediately after acute RBC exchange transfusion could attenuate posttransfusion circulatory compartment iron exposure, by retaining iron in spleen and hepatic macrophages. STUDY DESIGN AND METHODS Donor guinea pig blood was leukoreduced, and RBCs were preserved at 4°C. Recipient guinea pigs (n = 5/group) were exchange transfused with donor RBCs after refrigerator preservation and dosed intravenously with a small-molecule FPN-INH. Groups included transfusion with vehicle (saline), 5 mg/kg or 25 mg/kg FPN-INH. A time course of RBC morphology, plasma non-transferrin-bound iron (NTBI) and plasma hemoglobin (Hb) were evaluated. End-study spleen, liver, and kidney organ iron levels, as well as renal tissue oxidation and injury, were measured acutely (24-hr after transfusion). RESULTS RBC transfusion increased plasma NTBI, with maximal concentrations occurring 8 hours after transfusion. Posttransfusion iron accumulation resulted in tubule oxidation and acute kidney injury. FPN inhibition increased spleen and liver parenchymal/macrophage iron accumulation, but attenuated plasma NTBI, and subsequent renal tissue oxidation/injury. CONCLUSION In situations of acute RBC transfusion, minimizing circulatory NTBI exposure by FPN inhibition may attenuate organ-specific adverse consequences of iron exposure.
Collapse
Affiliation(s)
- Jin Hyen Baek
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center of Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA
| | - Hye Kyung H Shin
- Laboratory of Biochemistry and Vascular Biology, Division of Blood Components and Devices, Center of Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA
| | - Yamei Gao
- Division of Viral Products, Center of Biologics Evaluation and Research (CBER), FDA, Silver Spring, Maryland, USA
| | - Paul W Buehler
- Department of Pathology, Center for Blood Oxygen Transport, Baltimore, Maryland, USA.,Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
30
|
Sant' Ana CT, Antunes PT, Reis TCD, Váz-Tostes MDG, Meira EF, Costa NMB. Bioaccessibility and bioavailability of iron in biofortified germinated cowpea. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6287-6295. [PMID: 31259417 DOI: 10.1002/jsfa.9902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cowpea (Vigna unguiculata L. Walph) is predominantly consumed in the North and Northeast regions of Brazil, and its biofortification with iron seeks to reduce the high prevalence of iron deficiency anemia in these regions. It is commonly eaten cooked; however, in the germinated form, it can improve nutritional quality by reducing the antinutritional factors and consequently improving the bioavailability of elements. The present study aimed to determine the physico-chemical characteristics, bioaccessibility and bioavailability of iron in biofortified germinated cowpea. RESULTS There was no statistical difference between the germinated and cooked beans with regard to centesimal composition. Germinated beans had phytates and tannins similar to cooked beans. The phytate-iron molar ratio for all groups did not present a statistical difference (cooking 3.58 and 3.41; germinated 3.94 and 3.51), nor did the parameters evaluating in vivo iron bioavailability. Total phenolics was higher in the germinated group (cooking 0.56 and 0.64; Germinated 2.05 and 2.45 mg gallic acid kg-1 ). In vitro bioaccessibility of iron of germinated beans presented higher values (P ≤ 0.05) compared to cooked beans. There was higher expression of divalent metal transporter-1 in biofortified and germinated beans. CONCLUSION The iron bioavailability from the biofortified and germinated beans was comparable to ferrous sulfate. Germination can be considered as an alternative and efficient method for consuming cowpea, presenting good iron bioaccessibility and bioavailability. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Cíntia Tomaz Sant' Ana
- Graduate Program in Food Science and Technology, Center for Agrarian Sciences and Engineering, Federal University of Espírito Santo - UFES, Alegre, Brazil
| | - Paula Tavares Antunes
- Graduate Program in Food Science and Technology, Center for Agrarian Sciences and Engineering, Federal University of Espírito Santo - UFES, Alegre, Brazil
| | - Tuane Carrari Dos Reis
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alegre, Brazil
| | - Maria das Graças Váz-Tostes
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alegre, Brazil
| | - Eduardo Frizzera Meira
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alegre, Brazil
| | - Neuza Maria Brunoro Costa
- Graduate Program in Food Science and Technology, Center for Agrarian Sciences and Engineering, Federal University of Espírito Santo - UFES, Alegre, Brazil
- Department of Pharmacy and Nutrition, Center for Exact, Natural and Health Sciences, Federal University of Espírito Santo - UFES, Alegre, Brazil
| |
Collapse
|
31
|
Liu J, Liu W, Liu Y, Miao Y, Guo Y, Song H, Wang F, Zhou H, Ganz T, Yan B, Liu S. New thiazolidinones reduce iron overload in mouse models of hereditary hemochromatosis and β-thalassemia. Haematologica 2019; 104:1768-1781. [PMID: 30792208 PMCID: PMC6717595 DOI: 10.3324/haematol.2018.209874] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/15/2019] [Indexed: 02/06/2023] Open
Abstract
Genetic iron-overload disorders, mainly hereditary hemochromatosis and untransfused β-thalassemia, affect a large population worldwide. The primary etiology of iron overload in these diseases is insufficient production of hepcidin by the liver, leading to excessive intestinal iron absorption and iron efflux from macrophages. Hepcidin agonists would therefore be expected to ameliorate iron overload in hereditary hemochromatosis and β-thalassemia. In the current study, we screened our synthetic library of 210 thiazolidinone compounds and identified three thiazolidinone compounds, 93, 156 and 165, which stimulated hepatic hepcidin production. In a hemochromatosis mouse model with hemochromatosis deficiency, the three compounds prevented the development of iron overload and elicited iron redistribution from the liver to the spleen. Moreover, these compounds also greatly ameliorated iron overload and mitigated ineffective erythropoiesis in β-thalassemic mice. Compounds 93, 156 and 165 acted by promoting SMAD1/5/8 signaling through differentially repressing ERK1/2 phosphorylation and decreasing transmembrane protease serine 6 activity. Additionally, compounds 93, 156 and 165 targeted erythroid regulators to strengthen hepcidin expression. Therefore, our hepcidin agonists induced hepcidin expression synergistically through a direct action on hepatocytes via SMAD1/5/8 signaling and an indirect action via eythroid cells. By increasing hepcidin production, thiazolidinone compounds may provide a useful alternative for the treatment of iron-overload disorders.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- School of Environmental Science and Engineering, Shandong University, Shandong, China
| | - Yang Miao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yifan Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Haoyang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Fudi Wang
- Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, School of Medicine, Zhejiang University, Zhejiang, China
| | - Hongyu Zhou
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China
| | - Tomas Ganz
- Department of Medicine and Department of Pathology, David Geffen School of Medicine at University of California, California, Los Angeles, CA, USA
| | - Bing Yan
- School of Environmental Science and Engineering, Shandong University, Shandong, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Abstract
Anemia is common in everyday clinical practice. In the following, the characteristics of apparently proven as well as new biomarkers are presented - for diagnosis and therapy control, considering their diagnostic value. In spite of new diagnostic tools, the importance of microscopy in hematological manifestations is illustrated. Based on a classification of anemia, a strategy is proposed for an economic diagnosis of different types of anemia and their predisposition.
Collapse
Affiliation(s)
- Verena Jansen
- LADR Laborzentrum an den Immanuel Kliniken, MVZ Laborverbund GmbH, Neuendorfstraße 16A, D-16761 Hennigsdorf bei Berlin, Germany.
| |
Collapse
|
33
|
Mora J, Mertens C, Meier JK, Fuhrmann DC, Brüne B, Jung M. Strategies to Interfere with Tumor Metabolism through the Interplay of Innate and Adaptive Immunity. Cells 2019; 8:cells8050445. [PMID: 31083487 PMCID: PMC6563030 DOI: 10.3390/cells8050445] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 01/19/2023] Open
Abstract
The inflammatory tumor microenvironment is an important regulator of carcinogenesis. Tumor-infiltrating immune cells promote each step of tumor development, exerting crucial functions from initiation, early neovascularization, to metastasis. During tumor outgrowth, tumor-associated immune cells, including myeloid cells and lymphocytes, acquire a tumor-supportive, anti-inflammatory phenotype due to their interaction with tumor cells. Microenvironmental cues such as inflammation and hypoxia are mainly responsible for creating a tumor-supportive niche. Moreover, it is becoming apparent that the availability of iron within the tumor not only affects tumor growth and survival, but also the polarization of infiltrating immune cells. The interaction of tumor cells and infiltrating immune cells is multifaceted and complex, finally leading to different activation phenotypes of infiltrating immune cells regarding their functional heterogeneity and plasticity. In recent years, it was discovered that these phenotypes are mainly implicated in defining tumor outcome. Here, we discuss the role of the metabolic activation of both tumor cells and infiltrating immune cells in order to adapt their metabolism during tumor growth. Additionally, we address the role of iron availability and the hypoxic conditioning of the tumor with regard to tumor growth and we describe the relevance of therapeutic strategies to target such metabolic characteristics.
Collapse
Affiliation(s)
- Javier Mora
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Christina Mertens
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Julia K Meier
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Germany.
- Project Group Translational Medicine and Pharmacology TMP, Fraunhofer Institute for Molecular Biology and Applied Ecology, 60596 Frankfurt, Germany.
| | - Michaela Jung
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| |
Collapse
|
34
|
Asif S, Begemann M, Raza S. Polycythemia in Patients With Hereditary Hemochromatosis: Real or Myth? J Clin Med Res 2019; 11:422-427. [PMID: 31143309 PMCID: PMC6522237 DOI: 10.14740/jocmr3816] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/09/2019] [Indexed: 11/28/2022] Open
Abstract
Background Hereditary hemochromatosis (HH) is an autosomal recessive disorder affecting iron metabolism, resulting in iron accumulation in tissue parenchymal cells. Missense mutations result in homozygosity or heterozygosity for substitutions in the HFE gene, with the most common being C282Y and H63D. Methods With an aim to evaluate an association between polycythemia and HH, retrospective chart review was performed for 152 patients with known HFE mutations. Parameters reviewed included individual HFE genotypes, gender distribution, hemoglobin (Hgb) and hematocrit (Hct) levels, median ferritin levels and whether or not phlebotomy was required. Results Of 152 patients, 96 (63.2%) were men and 56 (36.8%) were women. Median Hgb and Hct were noted to be higher in men compared to women irrespective of HFE status. Mean age was 60.5 years (range 22 - 93 years). Regarding HFE mutation, 44 (28.9%) patients were C282Y/C282Y, 10 (6.6%) were H63D/H63D and 27 (17.8%) had one copy of each mutation. One patient in the study group was H63D/S65C. Median Hgb and Hct were noted to be 15.5 g/dL and 44.9% respectively in C282Y/C282Y subjects, 16.0 g/dL and 47% in H63D/H63D subjects, 15.8 g/dL and 46% in C282Y/H63D subjects, 16g/dL and 47% in those with single C282Y mutation and 16.6g/dL and 48% in those with single H63D mutation. A total of 67.1% subjects received phlebotomy. A total of 21.7% patients in this cohort were active tobacco users and only 8.6% had an established pulmonary diagnosis, including obstructive sleep apnea (OSA) and chronic obstructive pulmonary disease (COPD). Elevated Hgb levels were noted despite absence of an established reason for secondary polycythemia. Anemia was not encountered despite concurrent medical conditions that would usually be associated with anemia, including gastrointestinal bleeding or end-stage renal disease (ESRD). Conclusions Elevated Hgb and Hct levels in HH may be secondary to increased iron uptake by erythroid cell precursors in the bone marrow, in setting of increased availability of both transferrin-bound as well as non-transferrin-bound iron (NTBI). Additional studies need to be pursued to explore the association between HFE mutations and secondary polycythemia.
Collapse
Affiliation(s)
- Samia Asif
- Saint Luke's Cancer Institute, Kansas City, MO 64111, USA.,University of Missouri, Kansas City, MO 64111, USA
| | - Madeline Begemann
- Saint Luke's Cancer Institute, Kansas City, MO 64111, USA.,University of Missouri, Kansas City, MO 64111, USA
| | - Shahzad Raza
- Saint Luke's Cancer Institute, Kansas City, MO 64111, USA.,University of Missouri, Kansas City, MO 64111, USA
| |
Collapse
|
35
|
Iron in Lung Pathology. Pharmaceuticals (Basel) 2019; 12:ph12010030. [PMID: 30781366 PMCID: PMC6469192 DOI: 10.3390/ph12010030] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/30/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022] Open
Abstract
The lung presents a unique challenge for iron homeostasis. The entire airway is in direct contact with the environment and its iron particulate matter and iron-utilizing microbes. However, the homeostatic and adaptive mechanisms of pulmonary iron regulation are poorly understood. This review provides an overview of systemic and local lung iron regulation, as well as the roles of iron in the development of lung infections, airway disease, and lung injury. These mechanisms provide an important foundation for the ongoing development of therapeutic applications.
Collapse
|
36
|
Zhang X, Xiao Y, Fan Y. Investigating the Reliability of HbA1c Monitoring for Blood Glucose Control During Late Pregnancy in Patients with Gestational Diabetes Mellitus (GDM) with and without β-Thalassemia Minor. Diabetes Ther 2018; 9:2305-2313. [PMID: 30284689 PMCID: PMC6250624 DOI: 10.1007/s13300-018-0516-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Patients with gestational diabetes mellitus (GDM) need strict blood glucose control to reduce the incidence of perinatal complications in the mother or infant. The purpose of this study was to investigate whether the glycated hemoglobin (HbA1c) values of GDM patients were affected by β-thalassemia minor and to subsequently discuss the limitations of HbA1c monitoring for blood glucose control. METHODS 41 GDM patients with β-thalassemia minor were enrolled to serve as the study group. 93 GDM patients without thalassemia were randomly selected as a control group. Clinical data on the 134 mothers as well as their newborns were retrospectively analyzed. The blood glucose values of the participants at various times during the gestation period were compared between the groups, as were their HbA1c and ferritin levels and iron deficiency rates in late pregnancy (36-38 weeks of gestation). Pearson's coefficient was calculated to determine the correlations between HbA1c and ferritin in both the study and control groups. RESULTS The study and control groups did not show any significant differences in newborn birth weight, maternal age, maternal pre-pregnancy body mass index (BMI), gestational age, newborn sex, gravidity, and parity. The blood glucose values of the participants at different times during the gestation period also did not differ significantly between the study group and the control group. However, the late-pregnancy HbA1c level (5.23 ± 0.49%) and iron deficiency rate (12.19%) in the study group were significantly lower than those in the control group (5.42 ± 0.43% and 58.06%, respectively); P < 0.05. Also, the late-pregnancy ferritin level in the study group (46.59 ± 18.03 ng/mL) was significantly higher than that in the control group (25.58 ± 11.42 ng/mL); P < 0.05. In addition, a significant negative correlation was observed between HbA1c and ferritin in both the study group (R = - 0.459, P = 0.003) and the control group (R = - 0.358, P = 0.010). CONCLUSIONS The HbA1c level is affected by many factors. Using serum HbA1c values to monitor blood glucose in GDM patients with β-thalassemia minor may lead to a mistaken assumption of low blood glucose levels, so HbA1c may not be a suitable indicator for monitoring blood glucose in pregnant women, particularly GDM patients with β-thalassemia minor.
Collapse
Affiliation(s)
- Xueqin Zhang
- Department of Obstetrics, Maternal and Child Healthcare Hospital of Xiamen City, Xiamen, Fujian, China
| | - Yunshan Xiao
- Department of Obstetrics, Maternal and Child Healthcare Hospital of Xiamen City, Xiamen, Fujian, China.
| | - Yanfeng Fan
- Department of Obstetrics, Maternal and Child Healthcare Hospital of Xiamen City, Xiamen, Fujian, China
| |
Collapse
|
37
|
Ferroportin-Hepcidin Axis in Prepubertal Obese Children with Sufficient Daily Iron Intake. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102156. [PMID: 30275363 PMCID: PMC6210055 DOI: 10.3390/ijerph15102156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/12/2022]
Abstract
Iron metabolism may be disrupted in obesity, therefore, the present study assessed the iron status, especially ferroportin and hepcidin concentrations, as well as associations between the ferroportin-hepcidin axis and other iron markers in prepubertal obese children. The following were determined: serum ferroportin, hepcidin, ferritin, soluble transferrin receptor (sTfR), iron concentrations and values of hematological parameters as well as the daily dietary intake in 40 obese and 40 normal-weight children. The ferroportin/hepcidin and ferritin/hepcidin ratios were almost two-fold lower in obese children (p = 0.001; p = 0.026, respectively). Similar iron concentrations (13.2 vs. 15.2 µmol/L, p = 0.324), the sTfR/ferritin index (0.033 vs. 0.041, p = 0.384) and values of hematological parameters were found in obese and control groups, respectively. Iron daily intake in the obese children examined was consistent with recommendations. In this group, the ferroportin/hepcidin ratio positively correlated with energy intake (p = 0.012), dietary iron (p = 0.003) and vitamin B12 (p = 0.024). In the multivariate regression model an association between the ferroportin/hepcidin ratio and the sTfR/ferritin index in obese children (β = 0.399, p = 0.017) was found. These associations did not exist in the controls. The results obtained suggest that in obese children with sufficient iron intake, the altered ferroportin-hepcidin axis may occur without signs of iron deficiency or iron deficiency anemia. The role of other micronutrients, besides dietary iron, may also be considered in the iron status of these children.
Collapse
|
38
|
Niu Q, He P, Xu S, Ma R, Ding Y, Mu L, Li S. Fluoride-induced iron overload contributes to hepatic oxidative damage in mouse and the protective role of Grape seed proanthocyanidin extract. J Toxicol Sci 2018; 43:311-319. [PMID: 29743442 DOI: 10.2131/jts.43.311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Emerging evidence has demonstrated that iron overload plays an important role in oxidative stress in the liver. This study aimed to explore whether fluoride-induced hepatic oxidative stress is associated with iron overload and whether grape seed proanthocyanidin extract (GSPE) alleviates oxidative stress by reducing iron overload. Forty Kunming male mice were randomly divided into 4 groups and treated for 5 weeks with distilled water (control), sodium fluoride (NaF) (100 mg/L), GSPE (400 mg/kg bw), or NaF (100 mg/L) + GSPE (400 mg/kg bw). Mice exposed to NaF showed typical poisoning changes of morphology, increased aspartate aminotransferase and alanine aminotransferase activities in the liver. NaF treatment also increased MDA accumulation, decreased GSH-Px, SOD and T-AOC levels in liver, indicative of oxidative stress. Intriguingly, all these detrimental effects were alleviated by GSPE. Further study revealed that NaF induced disorders of iron metabolism, as manifested by elevated iron level with increased hepcidin but decreased ferroportin expression, which contributed to hepatic oxidative stress. Importantly, the iron dysregulation induced by NaF could be normalized by GSPE. Collectively, these data provide a novel insight into mechanisms underlying fluorosis and highlight the potential of GSPE as a naturally occurring prophylactic treatment for fluoride-induced hepatotoxicity associated with iron overload.
Collapse
Affiliation(s)
- Qiang Niu
- Department of Public Health, Medical College, Shihezi University, China
| | - Ping He
- Occupational disease prevention and control of hospital of the Xinjiang Uygur Autonomous Region, China
| | - Shangzhi Xu
- Department of Public Health, Medical College, Shihezi University, China
| | - Ruling Ma
- Department of Public Health, Medical College, Shihezi University, China
| | - Yusong Ding
- Department of Public Health, Medical College, Shihezi University, China
| | - Lati Mu
- Department of Public Health, Medical College, Shihezi University, China
| | - Shugang Li
- Department of Public Health, Medical College, Shihezi University, China
| |
Collapse
|
39
|
Lam CSP, Doehner W, Comin-Colet J. Iron deficiency in chronic heart failure: case-based practical guidance. ESC Heart Fail 2018; 5:764-771. [PMID: 30073785 PMCID: PMC6165963 DOI: 10.1002/ehf2.12333] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/18/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022] Open
Abstract
In patients with chronic heart failure, iron deficiency, even in the absence of anaemia, can aggravate the underlying disease and have a negative impact on clinical outcomes and quality of life. The 2016 European Society of Cardiology guidelines for the diagnosis and treatment of acute and chronic heart failure recognize iron deficiency as a co‐morbidity in chronic heart failure and recommend iron status screening in all newly diagnosed patients with chronic heart failure. Furthermore, the guidelines specifically recommend considerations of intravenous iron therapy, ferric carboxymaltose, for the treatment of iron deficiency. However, in spite of these recommendations, iron deficiency remains often overlooked and undertreated. This may be due, in part, to the lack of clinical context and practical guidance accompanying the guidelines for the treating physician. Here, we provide practical guidance complemented by a case study to assist and improve the timely diagnosis, treatment, and routine management of iron deficiency in patients with chronic heart failure.
Collapse
Affiliation(s)
- Carolyn S P Lam
- National Heart Centre Singapore, Duke-NUS Medical School, Singapore.,University Medical Centre Groningen, Groningen, The Netherlands
| | - Wolfram Doehner
- Centre for Stroke Research CSB, Department of Cardiology, Virchow Campus, Berlin Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josep Comin-Colet
- Community Heart Failure Programme, Department of Cardiology, Bellvitge University Hospital, University of Barcelona, Barcelona, Spain.,Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | | |
Collapse
|
40
|
An P, Wang H, Wu Q, Wang J, Xia Z, He X, Wang X, Chen Y, Min J, Wang F. Smad7 deficiency decreases iron and haemoglobin through hepcidin up-regulation by multilayer compensatory mechanisms. J Cell Mol Med 2018; 22:3035-3044. [PMID: 29575577 PMCID: PMC5980186 DOI: 10.1111/jcmm.13546] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/02/2018] [Indexed: 01/06/2023] Open
Abstract
To maintain iron homoeostasis, the iron regulatory hormone hepcidin is tightly controlled by BMP-Smad signalling pathway, but the physiological role of Smad7 in hepcidin regulation remains elusive. We generated and characterized hepatocyte-specific Smad7 knockout mice (Smad7Alb/Alb ), which showed decreased serum iron, tissue iron, haemoglobin concentration, up-regulated hepcidin and increased phosphor-Smad1/5/8 levels in both isolated primary hepatocytes and liver tissues. Increased levels of hepcidin lead to reduced expression of intestinal ferroportin and mild iron deficiency anaemia. Interestingly, we found no difference in hepcidin expression or phosphor-Smad1/5/8 levels between iron-challenged Smad7Alb/Alb and Smad7flox/flox , suggesting other factors assume the role of iron-induced hepcidin regulation in Smad7 deletion. We performed RNA-seq to identify differentially expressed genes in the liver. Significantly up-regulated genes were then mapped to pathways, revealing TGF-β signalling as one of the most relevant pathways, including the up-regulated genes Smad6, Bambi and Fst (Follistatin). We found that Smad6 and Bambi-but not Follistatin-are controlled by the iron-BMP-Smad pathway. Overexpressing Smad6, Bambi or Follistatin in cells significantly reduced hepcidin expression. Smad7 functions as a key regulator of iron homoeostasis by negatively controlling hepcidin expression, and Smad6 and Smad7 have non-redundant roles. Smad6, Bambi and Follistatin serve as additional inhibitors of hepcidin in the liver.
Collapse
Affiliation(s)
- Peng An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Qian Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaming Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhidan Xia
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyan He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinhui Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Junxia Min
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fudi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
41
|
Al-Khabori M, Daar S. Understanding Iron Metabolism: Lessons from Transfusion-dependent Thalassemia. Oman Med J 2018; 33:1-2. [PMID: 29467991 DOI: 10.5001/omj.2018.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
| | - Shahina Daar
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
42
|
Amid A, Chen S, Athale U, Charpentier K, Merelles-Pulcini M, Odame I, Kirby-Allen M. Iron overload in transfusion-dependent survivors of hemoglobin Bart's hydrops fetalis. Haematologica 2018; 103:e184-e187. [PMID: 29371322 DOI: 10.3324/haematol.2017.178368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Ali Amid
- Division of Hematology/Oncology, Children's Hospital of Eastern Ontario, Ottawa, ON .,Department of Pediatrics, University of Ottawa, Ottawa, ON
| | - Shiyi Chen
- Department of Biostatistics, Hospital for Sick Children, Toronto, ON
| | - Uma Athale
- Division of Hematology/Oncology, McMaster Children's Hospital, Hamilton, ON.,Department of Pediatrics, McMaster University, Hamilton, ON
| | - Karen Charpentier
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON
| | | | - Isaac Odame
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON.,Department of Paediatrics, University of Toronto, ON, Canada
| | - Melanie Kirby-Allen
- Division of Haematology/Oncology, Hospital for Sick Children, Toronto, ON.,Department of Paediatrics, University of Toronto, ON, Canada
| |
Collapse
|
43
|
Santhanakrishnan R. Understanding Iron Deficiency in Heart Failure: Clinical Significance and Management. US CARDIOLOGY REVIEW 2018. [DOI: 10.15420/usc.2017.30.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Iron deficiency (ID) has been increasingly recognized as an important co-morbidity associated with heart failure (HF). ID significantly impairs exercise tolerance and is an independent predictor of poor outcomes in people with HF irrespective of their anemic status. Diagnosis of ID in people with HF is often missed and therefore routine screening for ID is necessary for these patients. IV iron repletion has been recommended in HF treatment guidelines to improve symptoms and exercise capacity. People with ID and HF who are treated with IV iron have an improved quality of life, better 6-minute walk test results and New York Heart Association functional class. The effect of iron therapy on re-hospitalization and mortality rates in people with HF remains unclear. Large-dose oral iron treatment has been found to be ineffective in improving symptoms in people with HF. This review summarizes the current knowledge on prevalence, clinical relevance, and the molecular mechanism of ID in patients with chronic HF and the available evidence for the use of parenteral iron therapy.
Collapse
|
44
|
Jaratsittisin J, Sornjai W, Svasti S, Fucharoen S, Roytrakul S, Smith DR. Modulation of hepcidin expression by normal control and beta0-thalassemia/Hb E erythroblasts. Hematology 2017; 23:423-428. [DOI: 10.1080/10245332.2017.1405571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
| | - Wannapa Sornjai
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Saovaros Svasti
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Suthat Fucharoen
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| | - Sittiruk Roytrakul
- National Science and Technology Development Agency, National Center for Genetic Engineering and Biotechnology (BIOTEC), Pathum Thani, Thailand
| | - Duncan R. Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Thailand
| |
Collapse
|
45
|
Cappellini MD, Comin-Colet J, de Francisco A, Dignass A, Doehner W, Lam CS, Macdougall IC, Rogler G, Camaschella C, Kadir R, Kassebaum NJ, Spahn DR, Taher AT, Musallam KM. Iron deficiency across chronic inflammatory conditions: International expert opinion on definition, diagnosis, and management. Am J Hematol 2017; 92:1068-1078. [PMID: 28612425 PMCID: PMC5599965 DOI: 10.1002/ajh.24820] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
Iron deficiency, even in the absence of anemia, can be debilitating, and exacerbate any underlying chronic disease, leading to increased morbidity and mortality. Iron deficiency is frequently concomitant with chronic inflammatory disease; however, iron deficiency treatment is often overlooked, partially due to the heterogeneity among clinical practice guidelines. In the absence of consistent guidance across chronic heart failure, chronic kidney disease and inflammatory bowel disease, we provide practical recommendations for iron deficiency to treating physicians: definition, diagnosis, and disease‐specific diagnostic algorithms. These recommendations should facilitate appropriate diagnosis and treatment of iron deficiency to improve quality of life and clinical outcomes.
Collapse
Affiliation(s)
- Maria Domenica Cappellini
- Rare Diseases Centre; Department of Medicine and Medical Specialties, Fondazione IRCCS Ca'Granda-Ospedale Maggiore Policlinico; Milan Italy
- Department of Clinical Sciences and Community Health; Università degli Studi di Milano; Milan Italy
| | - Josep Comin-Colet
- Community Heart Failure Program; Department of Cardiology, Bellvitge University Hospital, University of Barcelona and Biomedical Research Institut (IDIBELL), Hospitalet de Liobregat; Barcelona Spain
| | - Angel de Francisco
- Department of Nephrology; Valdecilla Universitario Hospital, University of Cantabria; Santander Spain
| | - Axel Dignass
- Department of Medicine I; Agaplesion Markus Hospital; Frankfurt Germany
| | - Wolfram Doehner
- Center for Stroke Research CSB and Department of Cardiology; Virchow Campus, Charité Universitätsmedizin Berlin; Berlin Germany
| | - Carolyn S. Lam
- Department of Cardiology; National Heart Centre Singapore and Duke-NUS Medical School; Singapore
| | - Iain C. Macdougall
- Department of Renal Medicine; King's College Hospital; London United Kingdom
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology; University of Zurich; Zurich Switzerland
| | - Clara Camaschella
- Division of Genetics and Cell Biology; San Raffaele Scientific Institute and Vita-Salute University; Milan Italy
| | - Rezan Kadir
- Department of Obstetrics & Gynaecology; Royal Free Foundation Hospital and University College Hospital; London United Kingdom
| | - Nicholas J. Kassebaum
- Institute for Health Metrics and Evaluation, University of Washington; Seattle Washington, DC
- Department of Anesthesiology and Pain Medicine; Seattle Children's Hospital, University of Washington; Seattle Washington, DC
| | - Donat R. Spahn
- Institute of Anaesthesiology, University of Zurich and University Hospital Zurich; Zurich Switzerland
| | - Ali T. Taher
- Department of Internal Medicine; American University of Beirut Medical Center; Beirut Lebanon
| | | | | |
Collapse
|
46
|
Le Tertre M, Ka C, Guellec J, Gourlaouen I, Férec C, Callebaut I, Le Gac G. Deciphering the molecular basis of ferroportin resistance to hepcidin: Structure/function analysis of rare SLC40A1 missense mutations found in suspected hemochromatosis type 4 patients. Transfus Clin Biol 2017; 24:462-467. [PMID: 28826751 DOI: 10.1016/j.tracli.2017.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 07/20/2017] [Indexed: 01/25/2023]
Abstract
Genetic medicine applied to the study of hemochromatosis has identified the systemic loop controlling iron homeostasis, centered on hepcidin-ferroportin interaction. Current challenges are to dissect the molecular pathways underlying liver hepcidin synthesis in response to circulatory iron, HFE, TFR2, HJV, TMPRSS6 and BMP6 functions, and to define the major structural elements of hepcidin-ferroportin interaction. We built a first 3D model of human ferroportin structure, using the crystal structure of EmrD, a bacterial drug efflux transporter of the Major Facilitator Superfamily, as template. The model enabled study of disease-associated mutations, and guided mutagenesis experiments to determine the role of conserved residues in protein stability and iron transport. Results revealed novel amino acids that are critical for the iron export function and the hepcidin-mediated inhibition mechanism: for example, tryptophan 42, localized in the extracellular end of the ferroportin pore and involved in both biological functions. Here, we propose a strategy that is not limited to structure analysis, but integrates information from different sources, including human disease-associated mutations and functional in vitro assays. The first major hypothesis of this PhD thesis is that ferroportin resistance to hepcidin relies on different molecular mechanisms that are critical for ferroportin endocytosis, and include at least three fundamental steps: (i) hepcidin binding to ferroportin, (ii) structural reorganization of the N- and C-ter ferroportin lobes, and (iii) ferroportin ubiquitination.
Collapse
Affiliation(s)
- M Le Tertre
- Inserm UMR1078, faculté de médecine et des sciences de la santé, université Bretagne Loire-université de Bretagne Occidentale, IBSAM, IBRBS, 22, rue Camille-Desmoulins, 29200 Brest, France; Laboratory of Excellence GR-Ex, institut Imagine, 24, boulevard du Montparnasse, 75015, Paris, France; Laboratoire de génétique moléculaire et histocompatibilité, hôpital Morvan, CHRU de Brest, 2, avenue Foch, 29200 Brest, France.
| | - C Ka
- Inserm UMR1078, faculté de médecine et des sciences de la santé, université Bretagne Loire-université de Bretagne Occidentale, IBSAM, IBRBS, 22, rue Camille-Desmoulins, 29200 Brest, France; Laboratory of Excellence GR-Ex, institut Imagine, 24, boulevard du Montparnasse, 75015, Paris, France; Laboratoire de génétique moléculaire et histocompatibilité, hôpital Morvan, CHRU de Brest, 2, avenue Foch, 29200 Brest, France
| | - J Guellec
- Inserm UMR1078, faculté de médecine et des sciences de la santé, université Bretagne Loire-université de Bretagne Occidentale, IBSAM, IBRBS, 22, rue Camille-Desmoulins, 29200 Brest, France; Laboratory of Excellence GR-Ex, institut Imagine, 24, boulevard du Montparnasse, 75015, Paris, France; Association Gaetan-Saleun, 29, rue Félix-Le-Dantec, 29200 Brest, France
| | - I Gourlaouen
- Inserm UMR1078, faculté de médecine et des sciences de la santé, université Bretagne Loire-université de Bretagne Occidentale, IBSAM, IBRBS, 22, rue Camille-Desmoulins, 29200 Brest, France; Laboratory of Excellence GR-Ex, institut Imagine, 24, boulevard du Montparnasse, 75015, Paris, France; Établissement français du sang, Bretagne, site de Brest, 46 rue Félix-Le-Dantec, 29200 Brest, France
| | - C Férec
- Inserm UMR1078, faculté de médecine et des sciences de la santé, université Bretagne Loire-université de Bretagne Occidentale, IBSAM, IBRBS, 22, rue Camille-Desmoulins, 29200 Brest, France; Laboratoire de génétique moléculaire et histocompatibilité, hôpital Morvan, CHRU de Brest, 2, avenue Foch, 29200 Brest, France; Établissement français du sang, Bretagne, site de Brest, 46 rue Félix-Le-Dantec, 29200 Brest, France
| | - I Callebaut
- Muséum d'histoire naturelle, IRD UMR 206, case 115, IMPMC, Sorbonne universités-UMR CNRS 7590, UPMC université Paris 06, 4, place Jussieu, 75252 Paris cedex 05, France
| | - G Le Gac
- Inserm UMR1078, faculté de médecine et des sciences de la santé, université Bretagne Loire-université de Bretagne Occidentale, IBSAM, IBRBS, 22, rue Camille-Desmoulins, 29200 Brest, France; Laboratory of Excellence GR-Ex, institut Imagine, 24, boulevard du Montparnasse, 75015, Paris, France; Laboratoire de génétique moléculaire et histocompatibilité, hôpital Morvan, CHRU de Brest, 2, avenue Foch, 29200 Brest, France; Établissement français du sang, Bretagne, site de Brest, 46 rue Félix-Le-Dantec, 29200 Brest, France
| |
Collapse
|
47
|
Guo S, Jiang X, Wang Y, Chen L, Li H, Li X, Jia Y. The protective role of TET2 in erythroid iron homeostasis against oxidative stress and erythropoiesis. Cell Signal 2017; 38:106-115. [PMID: 28697999 DOI: 10.1016/j.cellsig.2017.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 01/01/2023]
Abstract
Although previous studies suggested that stress erythropoiesis and iron metabolism regulate each other to increase iron availability for hemoglobin synthesis, the molecular bases determining its different traits remain elusive. In addition, global DNA demethylation has been reported during mouse erythropoiesis in vivo. However, the understanding of iron-related genes through DNA demethylation under stress erythropoiesis is largely unknown. In the current study, we found disordered iron homeostasis and misregulated hepcidin-ferroportin axis under stress erythropoiesis. Interestingly, global 5hmC content and TET2 expression were significantly induced by oxidative stress, whereas antioxidant had the opposite's effect. Mechanistic investigation manifested that TET2-mediated DNA demethylation promotes the expression of ferroportin and erythroferrone against oxidative stress. Besides, the expression of NRF2 was significantly increased by TET2-mediated DNA demethylation during stress erythropoiesis. Elevated NRF2 expression could also modulate the activation of ferroportin and erythroferrone through a canonical antioxidant response element within its promoter. These direct and indirect pathways of TET2 synergistically cooperated to mediating iron metabolism during stress erythropoiesis. Our work revealed a critical role of TET2-mediated DNA demethylation against oxidative stress, and provided the molecular mechanisms underlying the epigenetic regulation of iron homeostasis in response to stress erythropoiesis.
Collapse
Affiliation(s)
- Shanqi Guo
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xingkang Jiang
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanyuan Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liwei Chen
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huzi Li
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xiaojiang Li
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
48
|
Uwaezuoke SN. Vitamin D deficiency and anemia risk in children: a review of emerging evidence. PEDIATRIC HEALTH MEDICINE AND THERAPEUTICS 2017; 8:47-55. [PMID: 29388633 PMCID: PMC5774601 DOI: 10.2147/phmt.s129362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There has been renewed scientific interest in the sequelae of vitamin D deficiency, given the emerging evidence on the diverse biologic functions of vitamin D, besides its fundamental role in bone and mineral metabolism. For the past decade, the evidence in the medical literature pointing to a relationship between anemia risk and vitamin D deficiency has been accumulating. This paper critically reviews the current evidence linking vitamin D deficiency to anemia risk in children. The synthesized evidence indicates that the studies, which were preponderantly conducted among the adult population, not only reported a bidirectional relationship between vitamin D deficiency and anemia but also showed a racial effect. In studies conducted among children, similar results were reported. Although the causal association of vitamin D deficiency with anemia risk (especially iron-deficiency anemia) remains debatable, the noncalcemic actions of the vitamin and its analogs hold prospects for several novel clinical applications. There is, however, unanimity in many reports suggesting that vitamin D deficiency is directly associated with anemia of chronic disease or inflammation. Despite the advances in unraveling the role of vitamin D in iron homeostasis, further research is still required to validate causality in the relationship between vitamin D deficiency and anemia, as well as to determine its optimal dosing, the ideal recipients for therapeutic intervention, and the preferred analogs to administer.
Collapse
Affiliation(s)
- Samuel N Uwaezuoke
- Department of Paediatrics, College of Medicine, University of Nigeria, Nsukka.,Department of Paediatrics, University of Nigeria Teaching Hospital, Ituku-Ozalla, Nigeria
| |
Collapse
|
49
|
Ma J, Li R, Liu Y, Qu G, Liu J, Guo W, Song H, Li X, Liu Y, Xia T, Yan B, Liu S. Carbon Nanotubes Disrupt Iron Homeostasis and Induce Anemia of Inflammation through Inflammatory Pathway as a Secondary Effect Distant to Their Portal-of-Entry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603830. [PMID: 28195425 DOI: 10.1002/smll.201603830] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/26/2016] [Indexed: 06/06/2023]
Abstract
Although numerous toxicological studies have been performed on carbon nanotubes (CNTs), a few studies have investigated their secondary and indirect effects beyond the primary target tissues/organs. Here, a cascade of events are investigated: the initiating event and the subsequent key events necessary for the development of phenotypes, namely CNT-induced pro-inflammatory effects on iron homeostasis and red blood cell formation, which are linked to anemia of inflammation (AI). A panel of CNTs are prepared including pristine multiwall CNTs (P-MWCNTs), aminated MWCNTs (MWCNTs-NH2 ), polyethylene glycol MWCNTs (MWCNTs-PEG), polyethyleneimine MWCNTs (MWCNTs-PEI), and carboxylated MWCNTs (MWCNTs-COOH). It has been demonstrated that all CNT materials provoke inflammatory cytokine interleukin-6 (IL-6) production and stimulate hepcidin induction, associated with disordered iron homeostasis, irrespective of exposure routes including intratracheal, intravenous, and intraperitoneal administration. Meanwhile, PEG and COOH modifications can ameliorate the activation of IL-6-hepcidin signaling. Long-term exposure of MWCNTs results in AI and extramedullary erythropoiesis. Thus, an adverse outcome pathway is identified: MWCNT exposure leads to inflammation, hepatic hepcidin induction, and disordered iron metabolism. Together, the combined data depict the hazardous secondary toxicity of CNTs in incurring anemia through inflammatory pathway. This study will also open a new avenue for future investigations on CNT-induced indirect and secondary adverse effects.
Collapse
Affiliation(s)
- Juan Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Ruibin Li
- Division of NanoMedicine, Department of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Yin Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jing Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wenli Guo
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Haoyang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xinghong Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yajun Liu
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Tian Xia
- Beijing Jishuitan Hospital, Peking University Health Science Center, Beijing, 100035, China
| | - Bing Yan
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
50
|
Chikazawa S, Dunning MD. A review of anaemia of inflammatory disease in dogs and cats. J Small Anim Pract 2017; 57:348-53. [PMID: 27385622 DOI: 10.1111/jsap.12498] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 03/06/2016] [Accepted: 03/07/2016] [Indexed: 12/12/2022]
Abstract
Anaemia of inflammatory disease is a common cause of anaemia in routine veterinary practice. It is most often mild to moderate, normocytic, normochromic and non-regenerative. Shortened red cell life span, inhibition of iron metabolism and impaired bone marrow response to erythropoietin all contribute to its development. Although anaemia of inflammatory disease is a well-known cause of anaemia in dogs and cats, there is a lack of epidemiological information because specific diagnostic criteria have not been established in veterinary species. Anaemia of inflammatory disease is associated with a poor outcome in various disease states in human medicine; however, its clinical significance and treatment in veterinary medicine are not well understood. This review article describes anaemia of inflammatory disease in dogs and cats and considers its potential significance.
Collapse
Affiliation(s)
- S Chikazawa
- Department of Small Animal Internal Medicine, School of Veterinary Medicine, Kitasato University, 23-35-1 Towada, Aomori 034-8628, Japan
| | - M D Dunning
- Department of Medicine and Health Sciences, School of Veterinary Medicine, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD
| |
Collapse
|