1
|
Buesche G, Teoman H, Schneider RK, Ribezzo F, Ebert BL, Giagounidis A, Göhring G, Schlegelberger B, Bock O, Ganser A, Aul C, Germing U, Kreipe H. Evolution of severe (transfusion-dependent) anaemia in myelodysplastic syndromes with 5q deletion is characterized by a macrophage-associated failure of the eythropoietic niche. Br J Haematol 2022; 198:114-130. [PMID: 35362549 DOI: 10.1111/bjh.18163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/16/2022] [Accepted: 03/13/2022] [Indexed: 01/01/2023]
Abstract
Evolution of erythrocyte transfusion-dependent (RBC-TD) anaemia associated with haploinsufficiency of the ribosomal protein subunit S14 gene (RPS14) is a characteristic complication of myelodysplastic syndromes (MDS) with del(5q) [MDS.del(5q)]. Evaluating 39 patients with MDS.del(5q), <5% of anaemia progression was attributable to RPS14-dependent alterations of normoblasts, pro-erythroblasts, or CD34+ CD71+ precursors. Ninety-three percent of anaemia progression and 70% of the absolute decline in peripheral blood Hb value were attributable to disappearance of erythroblastic islands (Ery-Is). Ery-Is loss occurred independently of blast excess, TP53 mutation, additional chromosome aberrations and RPS14-dependent alterations of normoblasts and pro-erythroblasts. It was associated with RPS14-dependent intrinsic (S100A8+ ) and extrinsic [tumour necrosis factor α (TNF-α)-overproduction] alterations of (CD169+ ) marrow macrophages (p < 0.00005). In a mouse model of RPS14 haploinsufficiency, Ery-Is disappeared to a similar degree: approximately 70% of Ery-Is loss was related to RPS14-dependent S100A8 overexpression of marrow macrophages, less than 20% to that of CD71high Ter119- immature precursors, and less than 5% to S100A8/p53 overexpression of normoblasts or pro-erythroblasts. Marked Ery-Is loss predicted reduced efficacy (erythrocyte transfusion independence) of lenalidomide therapy (p = 0.0006). Thus, erythroid hypoplasia, a characteristic complication of MDS.del(5q), seems to result primarily from a macrophage-associated failure of the erythropoietic niche markedly reducing the productive capacity of erythropoiesis as the leading factor in anaemia progression and evolution of RBC-TD in MDS.del(5q).
Collapse
Affiliation(s)
- Guntram Buesche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Huesniye Teoman
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Rebekka K Schneider
- Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Flavia Ribezzo
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, RWTH Aachen University, Aachen, Germany
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Aristoteles Giagounidis
- Department of Oncology, Hematology, and Palliative Treatment, Marien-Hospital, Düsseldorf, Germany
| | - Gudrun Göhring
- Institute of Human Genetics, Hannover Medical School, Hannover, Germany
| | | | - Oliver Bock
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Arnold Ganser
- Department of Hematology, Hemostasis, Oncology, and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Carlo Aul
- Department 2, Oncology and Hematology, St. Johannes Hospital, Duisburg, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Duesseldorf, Germany
| | - Hans Kreipe
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Sphingolipids in Hematopoiesis: Exploring Their Role in Lineage Commitment. Cells 2021; 10:cells10102507. [PMID: 34685487 PMCID: PMC8534120 DOI: 10.3390/cells10102507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/30/2021] [Accepted: 09/18/2021] [Indexed: 11/17/2022] Open
Abstract
Sphingolipids, associated enzymes, and the sphingolipid pathway are implicated in complex, multifaceted roles impacting several cell functions, such as cellular homeostasis, apoptosis, cell differentiation, and more through intrinsic and autocrine/paracrine mechanisms. Given this broad range of functions, it comes as no surprise that a large body of evidence points to important functions of sphingolipids in hematopoiesis. As the understanding of the processes that regulate hematopoiesis and of the specific characteristics that define each type of hematopoietic cells is being continuously refined, the understanding of the roles of sphingolipid metabolism in hematopoietic lineage commitment is also evolving. Recent findings indicate that sphingolipid alterations can modulate lineage commitment from stem cells all the way to megakaryocytic, erythroid, myeloid, and lymphoid cells. For instance, recent evidence points to the ability of de novo sphingolipids to regulate the stemness of hematopoietic stem cells while a substantial body of literature implicates various sphingolipids in specialized terminal differentiation, such as thrombopoiesis. This review provides a comprehensive discussion focused on the mechanisms that link sphingolipids to the commitment of hematopoietic cells to the different lineages, also highlighting yet to be resolved questions.
Collapse
|
3
|
You K, Gu H, Yuan Z, Xu X. Tumor Necrosis Factor Alpha Signaling and Organogenesis. Front Cell Dev Biol 2021; 9:727075. [PMID: 34395451 PMCID: PMC8361451 DOI: 10.3389/fcell.2021.727075] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/08/2021] [Indexed: 01/04/2023] Open
Abstract
Tumor necrosis factor alpha (TNF-α) plays important roles in processes such as immunomodulation, fever, inflammatory response, inhibition of tumor formation, and inhibition of viral replication. TNF-α and its receptors are ubiquitously expressed in developing organs and they regulate the survival, proliferation, and apoptosis of embryonic stem cells (ESCs) and progenitor cells. TNF-α is an important inflammatory factor that also regulates the inflammatory response during organogenesis, and its cytotoxic effects can interfere with normal developmental processes, even leading to the onset of diseases. This review summarizes the various roles of TNF-α in organogenesis in terms of its secreting pattern, concentration-dependent activities, and interactions with other signaling pathways. We also explored new potential functions of TNF-α.
Collapse
Affiliation(s)
- Kai You
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xuewen Xu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Rheumatic Heart Disease and Its Association with H. pylori Infection. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.2.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute rheumatic fever (ARF) triggered by Group A streptococcus bacterium due to post-infectious and non-supportive pharyngeal infection. Depending on certain conditions, such as genetic predisposition to the disease, the prevalence of various cases of rheumatism and socioeconomic status in different regions, ARF can have different clinical manifestations. The disease typically manifested by one or more acute episodes, whereas 30-50% of all repeated ARF status can result in chronic rheumatic heart disease (RHD) with gradual and irreversible heart valve damage and also have been found to be correlated with a raised risk of myocardial infarction (MI), cardiovascular disease (CVD) and dyslipidemia. The RHD is the only long-term consequence of ARF and the most serious. The development to chronic RHD is determined by many factors, most notably the frequent episodes of rheumatic fever (RF). The RHD is known socially and economically as being the most frequent heart disease in vulnerable populations. H.pylori infection has been proposed to be involved RHD greater than that of the normal healthy people. H.pylori can be considered as one of the probable risk factor for RHD.It was concluded that patients with H. Pylori should be advised to follow up in cardiology clinics to avoid any complications.
Collapse
|
5
|
Peters MAE, Greischar MA, Mideo N. Challenges in forming inferences from limited data: a case study of malaria parasite maturation. J R Soc Interface 2021; 18:20210065. [PMID: 33906391 DOI: 10.1098/rsif.2021.0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Inferring biological processes from population dynamics is a common challenge in ecology, particularly when faced with incomplete data. This challenge extends to inferring parasite traits from within-host infection dynamics. We focus on rodent malaria infections (Plasmodium berghei), a system for which previous work inferred an immune-mediated extension in the length of the parasite development cycle within red blood cells. By developing a system of delay-differential equations to describe within-host infection dynamics and simulating data, we demonstrate the potential to obtain biased estimates of parasite (and host) traits when key biological processes are not considered. Despite generating infection dynamics using a fixed parasite developmental cycle length, we find that known sources of measurement bias in parasite stage and abundance data can affect estimates of parasite developmental duration, with stage misclassification driving inferences about extended cycle length. We discuss alternative protocols and statistical methods that can mitigate such misestimation.
Collapse
Affiliation(s)
- Madeline A E Peters
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto Ontario, Canada
| | - Megan A Greischar
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto Ontario, Canada
| |
Collapse
|
6
|
Grzywa TM, Justyniarska M, Nowis D, Golab J. Tumor Immune Evasion Induced by Dysregulation of Erythroid Progenitor Cells Development. Cancers (Basel) 2021; 13:870. [PMID: 33669537 PMCID: PMC7922079 DOI: 10.3390/cancers13040870] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer cells harness normal cells to facilitate tumor growth and metastasis. Within this complex network of interactions, the establishment and maintenance of immune evasion mechanisms are crucial for cancer progression. The escape from the immune surveillance results from multiple independent mechanisms. Recent studies revealed that besides well-described myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs) or regulatory T-cells (Tregs), erythroid progenitor cells (EPCs) play an important role in the regulation of immune response and tumor progression. EPCs are immature erythroid cells that differentiate into oxygen-transporting red blood cells. They expand in the extramedullary sites, including the spleen, as well as infiltrate tumors. EPCs in cancer produce reactive oxygen species (ROS), transforming growth factor β (TGF-β), interleukin-10 (IL-10) and express programmed death-ligand 1 (PD-L1) and potently suppress T-cells. Thus, EPCs regulate antitumor, antiviral, and antimicrobial immunity, leading to immune suppression. Moreover, EPCs promote tumor growth by the secretion of growth factors, including artemin. The expansion of EPCs in cancer is an effect of the dysregulation of erythropoiesis, leading to the differentiation arrest and enrichment of early-stage EPCs. Therefore, anemia treatment, targeting ineffective erythropoiesis, and the promotion of EPC differentiation are promising strategies to reduce cancer-induced immunosuppression and the tumor-promoting effects of EPCs.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Magdalena Justyniarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| | - Dominika Nowis
- Laboratory of Experimental Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Jakub Golab
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland; (T.M.G.); (M.J.)
| |
Collapse
|
7
|
Role of Extrinsic Apoptotic Signaling Pathway during Definitive Erythropoiesis in Normal Patients and in Patients with β-Thalassemia. Int J Mol Sci 2020; 21:ijms21093325. [PMID: 32397135 PMCID: PMC7246929 DOI: 10.3390/ijms21093325] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Apoptosis is a process of programmed cell death which has an important role in tissue homeostasis and in the control of organism development. Here, we focus on information concerning the role of the extrinsic apoptotic pathway in the control of human erythropoiesis. We discuss the role of tumor necrosis factor α (TNFα), tumor necrosis factor ligand superfamily member 6 (FasL), tumor necrosis factor-related apoptosis-inducing (TRAIL) and caspases in normal erythroid maturation. We also attempt to initiate a discussion on the observations that mature erythrocytes contain most components of the receptor-dependent apoptotic pathway. Finally, we point to the role of the extrinsic apoptotic pathway in ineffective erythropoiesis of different types of β-thalassemia.
Collapse
|
8
|
Schneider RK, Schenone M, Ferreira MV, Kramann R, Joyce CE, Hartigan C, Beier F, Brümmendorf TH, Germing U, Platzbecker U, Büsche G, Knüchel R, Chen MC, Waters CS, Chen E, Chu LP, Novina CD, Lindsley RC, Carr SA, Ebert BL. Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by S100A8 and S100A9. Nat Med 2016; 22:288-97. [PMID: 26878232 PMCID: PMC4870050 DOI: 10.1038/nm.4047] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 01/14/2016] [Indexed: 12/19/2022]
Abstract
Impaired erythropoiesis in the deletion 5q (del(5q)) subtype of myelodysplastic syndrome (MDS) has been linked to heterozygous deletion of RPS14, which encodes the ribosomal protein small subunit 14. We generated mice with conditional inactivation of Rps14 and demonstrated an erythroid differentiation defect that is dependent on the tumor suppressor protein p53 (encoded by Trp53 in mice) and is characterized by apoptosis at the transition from polychromatic to orthochromatic erythroblasts. This defect resulted in age-dependent progressive anemia, megakaryocyte dysplasia and loss of hematopoietic stem cell (HSC) quiescence. As assessed by quantitative proteomics, mutant erythroblasts expressed higher levels of proteins involved in innate immune signaling, notably the heterodimeric S100 calcium-binding proteins S100a8 and S100a9. S100a8--whose expression was increased in mutant erythroblasts, monocytes and macrophages--is functionally involved in the erythroid defect caused by the Rps14 deletion, as addition of recombinant S100a8 was sufficient to induce a differentiation defect in wild-type erythroid cells, and genetic inactivation of S100a8 expression rescued the erythroid differentiation defect of Rps14-haploinsufficient HSCs. Our data link Rps14 haploinsufficiency in del(5q) MDS to activation of the innate immune system and induction of S100A8-S100A9 expression, leading to a p53-dependent erythroid differentiation defect.
Collapse
Affiliation(s)
- Rebekka K Schneider
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Monica Schenone
- Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Monica Ventura Ferreira
- Department of Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Rafael Kramann
- Renal Division, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Cailin E Joyce
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Christina Hartigan
- Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Fabian Beier
- Department of Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology and Clinical Immunology, Heinrich Heine University, Düsseldorf, Germany
| | - Uwe Platzbecker
- Department of Medicine I, University Hospital Carl Gustav Carus, University of Technology, Dresden, Germany
| | - Guntram Büsche
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Ruth Knüchel
- Institute of Pathology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Michelle C Chen
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher S Waters
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Edwin Chen
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lisa P Chu
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carl D Novina
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - R Coleman Lindsley
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Steven A Carr
- Department of Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Benjamin L Ebert
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard University and the Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Hedley BD, Allan AL, Xenocostas A. The role of erythropoietin and erythropoiesis-stimulating agents in tumor progression. Clin Cancer Res 2011; 17:6373-80. [PMID: 21750199 DOI: 10.1158/1078-0432.ccr-10-2577] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the past few decades, understanding of the physiologic function of erythropoietin (EPO) has evolved significantly. EPO binds to erythropoietin receptors (EPOR), initiating signaling that stimulates growth, inhibits apoptosis, and induces the differentiation of erythroid progenitors to increase red blood cell mass. EPO has additionally been shown to exert tissue-protective effects on multiple tissues, suggesting a pleiotropic mechanism of action. Erythropoiesis-stimulating agents (ESA) are used clinically for treating cancer-related anemia [chemotherapy-induced anemia (CIA)]. Recent clinical trials have reported increased adverse events and/or reduced survival in ESA-treated cancer patients receiving chemotherapy, potentially related to EPO-induced cancer progression. Signaling pathways downstream of EPO/EPOR have been shown to influence numerous cellular functions in both normal and tumor cells, including proliferation, apoptosis, and drug resistance. Some studies have reported effects on proliferation, reduced chemotherapy efficacy, reduction of apoptosis, and resistance to selective therapies on cancer cell lines, whereas others have shown null effects. In addition, newer targeted cancer therapies that are directed toward specific signaling pathways may be antagonized by ESAs. This molecular interplay between anticancer agents and potential survival signals triggered by ESAs may have been underestimated and may contribute toward decreased survival seen in certain trials. As more targeted anticancer therapies become available, these types of interactions may mitigate therapeutic efficacy by allowing tumor cells to acquire drug resistance. Therefore, a more complete understanding of the complex pathways involved will allow for the rational use of ESAs for the safe treatment of CIA in oncology patients.
Collapse
Affiliation(s)
- Benjamin D Hedley
- Division of Hematology, London Health Sciences Centre, London, Ontario, Canada
| | | | | |
Collapse
|
10
|
c-FLIP is involved in erythropoietin-mediated protection of erythroid-differentiated cells from TNF-alpha-induced apoptosis. Cell Biol Int 2010; 34:621-30. [PMID: 20218968 DOI: 10.1042/cbi20090085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The TNF-alpha (tumour necrosis factor) affects a wide range of biological activities, such as cell proliferation and apoptosis. Cell life or death responses to this cytokine might depend on cell conditions. This study focused on the modulation of factors that would affect the sensitivity of erythroid-differentiated cells to TNF-alpha. Hemin-differentiated K562 cells showed higher sensitivity to TNF-induced apoptosis than undifferentiated cells. At the same time, hemin-induced erythroid differentiation reduced c-FLIP (cellular FLICE-inhibitory protein) expression. However, this negative effect was prevented by prior treatment with Epo (erythropoietin), which allowed the cell line to maintain c-FLIP levels. On the other hand, erythroid-differentiated UT-7 cells - dependent on Epo for survival - showed resistance to TNF-alpha pro-apoptotic action. Only after the inhibition of PI3K (phosphatidylinositol-3 kinase)-mediated pathways, which was accompanied by negative c-FLIP modulation and increased erythroid differentiation, were UT-7 cells sensitive to TNF-alpha-triggered apoptosis. In summary, erythroid differentiation might deregulate the balance between growth promotion and death signals induced by TNF-alpha, depending on cell type and environmental conditions. The role of c-FLIP seemed to be critical in the protection of erythroid-differentiated cells from apoptosis or in the determination of their sensitivity to TNF-mediated programmed cell death. Epo, which for the first time was found to be involved in the prevention of c-FLIP down-regulation, proved to have an anti-apoptotic effect against the pro-inflammatory factor. The identification of signals related to cell life/death switching would have significant implications in the control of proliferative diseases and would contribute to the understanding of mechanisms underlying the anaemia associated with inflammatory processes.
Collapse
|
11
|
Dose-response relationship between norepinephrine and erythropoiesis: evidence for a critical threshold. J Surg Res 2010; 163:e85-90. [PMID: 20605580 DOI: 10.1016/j.jss.2010.03.051] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 03/19/2010] [Accepted: 03/23/2010] [Indexed: 01/06/2023]
Abstract
BACKGROUND Severe traumatic injury elicits a neuroendocrine response that activates the sympathetic nervous system. Our previous work suggests that norepinephrine (NE) influences the bone marrow (BM) erythropoietic response. However, the dose-response relationship between NE and erythropoiesis remains unclear. MATERIALS AND METHODS Two days following chemical sympathectomy with 6-hydroxydopamine (6-OHDA) or injection with saline vehicle (SHAM), male Sprague-Dawley rats were infused continuously with either saline (NS) or increasing doses of NE for 5 d via osmotic pumps. Erythropoiesis was assessed by growth of erythroid progenitor colonies (BFU-E and CFU-E for early and late progenitors, respectively). RESULTS Following chemical sympathectomy with 6-OHDA, both BFU-E and CFU-E growth is inhibited (42%∗ and 43%∗ versus 100% SHAM, ∗P < 0.05). SHAM rats with continuous infusion of exogenous NE show a clear dose-response inhibition of both BFU-E and CFU-E colony growth. In the 6-OHDA rats, continuous infusion of NE restored BFU-E and CFU-E growth at 10(-8) g/h and 10(-9) g/h, respectively. CONCLUSIONS Erythroid precursor colony growth is inhibited in sympathectomized rats. In addition, supraphysiologic doses of exogenous NE inhibit normal erythropoiesis in a dose-dependent fashion. Following chemical sympathectomy with 6-OHDA, exogenous NE restores erythropoiesis in a narrow window. Therefore, NE has a complex interaction within the BM and the elevation of NE following traumatic injury impacts BM erythropoietic function.
Collapse
|
12
|
CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood 2010; 115:5232-40. [PMID: 20385788 DOI: 10.1182/blood-2009-05-223727] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Activating alleles of Janus kinase 2 (JAK2) such as JAK2(V617F) are central to the pathogenesis of myeloproliferative neoplasms (MPN), suggesting that small molecule inhibitors targeting JAK2 may be therapeutically useful. We have identified an aminopyrimidine derivative (CYT387), which inhibits JAK1, JAK2, and tyrosine kinase 2 (TYK2) at low nanomolar concentrations, with few additional targets. Between 0.5 and 1.5muM CYT387 caused growth suppression and apoptosis in JAK2-dependent hematopoietic cell lines, while nonhematopoietic cell lines were unaffected. In a murine MPN model, CYT387 normalized white cell counts, hematocrit, spleen size, and restored physiologic levels of inflammatory cytokines. Despite the hematologic responses and reduction of the JAK2(V617F) allele burden, JAK2(V617F) cells persisted and MPN recurred upon cessation of treatment, suggesting that JAK2 inhibitors may be unable to eliminate JAK2(V617F) cells, consistent with preliminary results from clinical trials of JAK2 inhibitors in myelofibrosis. While the clinical benefit of JAK2 inhibitors may be substantial, not the least due to reduction of inflammatory cytokines and symptomatic improvement, our data add to increasing evidence that kinase inhibitor monotherapy of malignant disease is not curative, suggesting a need for drug combinations to optimally target the malignant cells.
Collapse
|
13
|
Tefferi A, Verstovsek S, Barosi G, Passamonti F, Roboz GJ, Gisslinger H, Paquette RL, Cervantes F, Rivera CE, Deeg HJ, Thiele J, Kvasnicka HM, Vardiman JW, Zhang Y, Bekele BN, Mesa RA, Gale RP, Kantarjian HM. Pomalidomide is active in the treatment of anemia associated with myelofibrosis. J Clin Oncol 2009; 27:4563-9. [PMID: 19652059 DOI: 10.1200/jco.2008.21.7356] [Citation(s) in RCA: 165] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Thalidomide and lenalidomide can alleviate anemia in myelofibrosis. However, their value is undermined by their respective potential to cause peripheral neuropathy and myelosuppression. We therefore evaluated the safety and therapeutic activity of another immunomodulatory drug, pomalidomide. METHODS In a phase II randomized, multicenter, double-blind, adaptive design study, four treatment arms were evaluated: pomalidomide (2 mg/d) plus placebo, pomalidomide (2 mg/d) plus prednisone, pomalidomide (0.5 mg/d) plus prednisone, and prednisone plus placebo. Pomalidomide was administered for up to 12 28-day treatment cycles. Prednisone (30 mg/d) was given in a tapering dose schedule during the first three cycles. Response was assessed by International Working Group criteria. RESULTS Eighty-four patients with myelofibrosis-associated anemia were randomly assigned to the aforementioned treatment arms: 22, 19, 22, and 21, respectively. Response in anemia was documented in 20 patients, including 15 who became transfusion independent. Response rates in the four treatment arms were 23% (95% CI, 5% to 41%), 16% (95% CI, 0% to 33%), 36% (95% CI, 16% to 56%), and 19% (95% CI, 2% to 36%). The corresponding figures for patients receiving > or = 3 cycles of treatment (n = 62) were 38%, 23%, 40%, and 25%. Response to pomalidomide with or without prednisone was durable (range, 3.2 to 16.9+ months) and significantly better in the absence of leukocytosis (37% v 8%; P = .01); JAK2V617F or cytogenetic status did not affect response. Grade > or = 3 toxicities were infrequent and included (in each treatment arm) neutropenia (9%; 16%; 5%; 5%), thrombocytopenia (14%; 16%; 9%; 5%), and thrombosis (9%; 5%; 0%; 0%). CONCLUSION Pomalidomide therapy at 0.5 or 2 mg/d with or without an abbreviated course of prednisone is well tolerated in patients with myelofibrosis and active in the treatment of anemia.
Collapse
|
14
|
Bugelski PJ, Capocasale RJ, Makropoulos D, Marshall D, Fisher PW, Lu J, Achuthanandam R, Spinka-Doms T, Kwok D, Graden D, Volk A, Nesspor T, James IE, Huang C. CNTO 530: molecular pharmacology in human UT-7EPO cells and pharmacokinetics and pharmacodynamics in mice. J Biotechnol 2007; 134:171-80. [PMID: 18242752 DOI: 10.1016/j.jbiotec.2007.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 12/10/2007] [Indexed: 11/30/2022]
Abstract
CNTO 530 is a 58 kD antibody Fc domain fusion protein, created using Centocor's MIMETIBODY platform, that contains two EMP1 sequences as a pharmacophore. CNTO 530 has no sequence homology with EPO but acts as a novel erythropoietin receptor agonist. In UT-7(EPO) cells, CNTO 530 caused protein phosporylation of the erythropoietin receptor associated signaling pathway (Jak2, STAT5, AKT and ERK1/2). CNTO 530 also rescued these cells from apoptosis and mediated proliferation. In mice, pharmacokinetic analysis showed that CNTO 530 was slowly cleared from circulation with a t(1/2) approximately 40 h. Pharmacodynamic analysis in mice showed that a single sc dose of CNTO 530 caused a long-lived stimulation of erythropoiesis that translated into increases in red blood cell counts and hemoglobin values that were maintained for at least 28 d. In conclusion, CNTO 530 is a long-lived EPO-R agonist that stimulates erythropoiesis in a manner similar to epoetin-alpha. These data suggest that CNTO 530 may be an effective treatment of anemia in humans.
Collapse
Affiliation(s)
- P J Bugelski
- Centocor Research and Development, Radnor, PA 19087, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Abstract
Fucose is present in foods, and it is a major component of human mucin glycoproteins and glycolipids. l-Fucose can also be found at the terminal position of many cell-surface oligosaccharide ligands that mediate cell-recognition and adhesion-signalling pathways. Mucin fucose can be released through the hydrolytic activity of pathogens and indigenous bacteria, leading to the release of free fucose into the intestinal lumen. The immunomodulating effects of free fucose on intestinal epithelial cells (enterocyte-like Caco-2) were investigated. It was found that the presence of l-fucose up regulated genes and secretion of their encoded proteins that are involved in both the innate and adaptive immune responses, possibly via the toll-like receptor-2 signalling pathway. These include TNFSF5, TNFSF7, TNF-alpha, IL12, IL17 and IL18. Besides modulating immune reactions in differentiated Caco-2 cells, fucose induced a set of cytokine genes that are involved in the development and proliferation of immune cells. These include the bone morphogenetic proteins (BMP) BMP2, BMP4, IL5, thrombopoietin and erythropoietin. In addition, the up regulated gene expression of fibroblast growth factor-2 may help to promote epithelial cell restitution in conjunction with the enhanced expression of transforming growth factor-beta mRNA. Since the exogenous fucose was not metabolised by the differentiated Caco-2 cells as a carbon source, the reactions elicited were suggested to be a result of the direct interaction of fucose and differentiated Caco-2 cells. The presence of free fucose may signal the invasion of mucin-hydrolysing microbial cells and breakage of the mucosal barrier. The intestinal epithelial cells respond by up regulation and secretion of cytokines, pre-empting the actual invasion of pathogens.
Collapse
Affiliation(s)
- Wai Ling Chow
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, MD4 A, Singapore 117597, Singapore
| | | |
Collapse
|
17
|
Bugelski PJ, Nesspor T, Volk A, O'Brien J, Makropoulos D, Shamberger K, Fisher PW, James I, Graden D, Capocasale RJ. Pharmacodynamics of Recombinant Human Erythropoietin in Murine Bone Marrow. Pharm Res 2007; 25:369-78. [PMID: 17609863 DOI: 10.1007/s11095-007-9372-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Accepted: 06/06/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE Originally approved for three times/week dosing, recombinant human erythropoietin (rhEPO) is now often used at weekly intervals. We have studied rhEPO in mice to better understand why the extended dosing interval retains efficacy. METHODS C57Bl/6 mice received a single sc. dose of rhEPO (3,000 IU/kg). Bone marrow and blood were collected at 8 h and 1, 2, 5 and 7 days. Staining for TER-119 and CD71, pulse labeling with bromodeoxyuridine, annexin-V binding and vital staining with 7-aminoactinomycin D: were used cell cycle and apoptosis in erythroblasts by four color flow cytometry. RESULTS A wave of proliferation and/or maturation progressed through all erythroblasts, resulting in the emigration of immature reticulocytes into the periphery. An increase in the fraction of erythroblasts in S and G2M was found, but suppression of apoptosis was not. CONCLUSIONS Most of the effects of rhEPO occurred 48 h after dosing, when the concentration of rhEPO was less than 1% of Cmax, suggesting that the processes set in motion by rhEPO can continue after rhEPO concentrations fall. Our observation of apoptosis in erythroblasts even when rhEPO concentrations were high suggests that regulatory mechanisms which down-regulate erythropoiesis are also engaged.
Collapse
Affiliation(s)
- Peter J Bugelski
- Discovery Research, Centocor Research & Development, Inc., Radnor, SP 19087, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bumm TGP, Elsea C, Corbin AS, Loriaux M, Sherbenou D, Wood L, Deininger J, Silver RT, Druker BJ, Deininger MWN. Characterization of murine JAK2V617F-positive myeloproliferative disease. Cancer Res 2007; 66:11156-65. [PMID: 17145859 DOI: 10.1158/0008-5472.can-06-2210] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The JAK2(V617F) mutation is present in almost all patients with polycythemia vera (PV), large proportions of patients with essential thrombocythemia and idiopathic myelofibrosis, and less frequently in atypical myeloproliferative disorders (MPD). We show that transplantation of JAK2(V617F)-transduced bone marrow into BALB/c mice induces MPD reminiscent of human PV, characterized by erythrocytosis, granulocytosis, extramedullary hematopoiesis, and bone marrow fibrosis, but not thrombocytosis. Fluorescence-activated cell sorting of bone marrow and spleen showed proportional expansion of common myeloid progenitors, granulocyte-monocyte and megakaryocyte-erythrocyte progenitors. Megakaryocyte and late erythroid progenitors were dramatically increased, with only modest expansion of early erythroid progenitors. Erythropoietin (Epo) receptor expression was reduced on early, but normal on late erythroblasts. Serum levels of Epo and granulocyte colony-stimulating factor, but not granulocyte macrophage colony-stimulating factor, were reduced, whereas tumor necrosis factor-alpha was increased, possibly exerting a negative effect on JAK2(V617F)-negative hematopoiesis. These data suggest that erythrocytosis and granulocytosis in JAK2(V617F) mice are the net result of a complex interplay between cell intrinsic and extrinsic factors. There were no thromboembolic events and no animals succumbed to their disease, implicating additional factors in the manifestation of human disease. The disease was not transplantable and prolonged observation showed normalization of blood counts in most JAK2(V617F) mice, suggesting that the mutation may not confer self-renewal capacity.
Collapse
Affiliation(s)
- Thomas G P Bumm
- Center for Hematologic Malignancies, Oregon Health and Science University Cancer Institute, Portland, OR 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Quinn J, Fisher PW, Capocasale RJ, Achuthanandam R, Kam M, Bugelski PJ, Hrebien L. A statistical pattern recognition approach for determining cellular viability and lineage phenotype in cultured cells and murine bone marrow. Cytometry A 2007; 71:612-24. [PMID: 17542025 DOI: 10.1002/cyto.a.20416] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cellular binding of annexin V and membrane permeability to 7-aminoactinomycin D (7AAD) are important tools for studying apoptosis and cell death by flow cytometry. Combining viability markers with cell surface marker expression is routinely used to study various cell lineages. Current classification methods using strict thresholds, or "gates," on the fluorescent intensity of these markers are subjective in nature and may not fully describe the phenotypes of interest. We have developed objective criteria for phenotypic boundary recognition through the application of statistical pattern recognition. This task was achieved using artificial neural networks (ANNs) that were trained to recognize subsets of cells with known phenotypes, and then used to determine decision boundaries based on statistical measures of similarity. This approach was then used to test the hypothesis that erythropoietin (EPO) inhibits apoptosis and cell death in erythroid precursor cells in murine bone marrow. METHODS Our method was developed for classification of viability using an in vitro cell system and then applied to an ex vivo analysis of murine late-stage erythroid progenitors. To induce apoptosis and cell death in vitro, an EPO-dependent human leukemic cell line, UT-7(EPO) cells were incubated without recombinant human erythropoietin (rhEPO) for 72 h. Five different ANNs were trained to recognize live, apoptotic, and dead cells using a "known" subset of the data for training, and a K-fold cross validation procedure for error estimation. The ANNs developed with the in vitro system were then applied to classify cells from an ex vivo study of rhEPO treated mice. Tg197 (human tumor necrosis-alpha transgenic mice, a model of anemia of chronic disease) received a single s.c. dose of 10,000 U/kg rhEPO and femoral bone marrow was collected 1, 2, 4, and 8 days after dosing. Femoral bone marrow cells were stained with TER-119 PE, CD71 APC enable identification of erythroid precursors, and annexin V FITC and 7AAD to identify the apoptotic and dead cells. During classification forward and side angle light scatter were also input to all pattern recognition systems. RESULTS Similar decision boundaries between live, apoptotic, and dead cells were consistently identified by the neural networks. The best performing network was a radial basis function multi-perceptron that produced an estimated average error rate of 4.5% +/- 0.9%. Using these boundaries, the following results were reached: depriving UT-7(EPO) cells of rhEPO induced apoptosis and cell death while the addition of rhEPO rescued the cells in a dose-dependent manner. In vivo, treatment with rhEPO resulted in an increase of live erythroid cells in the bone marrow to 119.8% +/- 9.8% of control at the 8 day time point. However, a statistically significant transient increase in TER-119(+) CD71(+) 7AAD(+) dead erythroid precursors was observed at the 1 and 2 day time points with a corresponding decrease in TER-119(+) CD71(+) 7AAD(-) Annexin V(-) live erythroid precursors, and no change in the number of TER-119(+) CD71(+) annexin V(+) 7AAD(-) apoptotic erythroid precursors in the bone marrow. CONCLUSIONS A statistical pattern recognition approach to viability classification provides an objective rationale for setting decision boundaries between "positive" and "negative" intensity measures in cytometric data. Using this approach we have confirmed that rhEPO inhibits apoptosis and cell death in an EPO dependent cell line in vitro, but failed to do so in vivo, suggesting EPO may not act as a simple antiapoptotic agent in the bone marrow. Rather, homeostatic mechanisms may regulate the pharmacodynamic response to rhEPO.
Collapse
Affiliation(s)
- John Quinn
- Department of Biomedical Engineering, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Mundle SD, Raza A. Treatment of myelodysplastic syndromes with exogenous erythropoietin: a new therapeutic paradigm. Leukemia 2006; 20:1481-3. [PMID: 16775614 DOI: 10.1038/sj.leu.2404291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Wright HV, Bailey D, Kashyap M, Kepley CL, Drutskaya MS, Nedospasov SA, Ryan JJ. IL-3-mediated TNF production is necessary for mast cell development. THE JOURNAL OF IMMUNOLOGY 2006; 176:2114-21. [PMID: 16455967 DOI: 10.4049/jimmunol.176.4.2114] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mouse mast cell development and survival are largely controlled by the cytokines IL-3 and stem cell factor (SCF). We have found that IL-3 stimulation of bone marrow cells induces the production of TNF via a PI3K- and MAPK kinase/ERK-dependent pathway. Specifically, Mac-1-positive cells were responsible for TNF production, which peaked on days 7-10 of culture and decreased rapidly thereafter. The importance of IL-3-induced TNF secretion was demonstrated by the failure of TNF-deficient bone marrow cells to survive for >3 wk when cultured in IL-3 and SCF, a defect that was reversed by the addition of soluble TNF. The development of human mast cells from bone marrow progenitors was similarly hampered by the addition of TNF-blocking Abs. Cell death was due to apoptosis, which occurred with changes in mitochondrial membrane potential and caspase activation. Apoptosis appeared to be due to loss of IL-3 signaling, because TNF-deficient cells were less responsive than their wild-type counterparts to IL-3-mediated survival. In vitro cultured mast cells from TNF-deficient mice also demonstrated reduced expression of the high affinity IgE receptor, which was restored to normal levels by the addition of soluble TNF. Finally, TNF-deficient mice demonstrated a 50% reduction in peritoneal mast cell numbers, indicating that TNF is an important mast cell survival factor both in vitro and in vivo.
Collapse
Affiliation(s)
- Harry V Wright
- Department of Biology, Virginia Commonwealth University, Richmond, 23284, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Fonseca RB, Mohr AM, Wang L, Sifri ZC, Rameshwar P, Livingston DH. The impact of a hypercatecholamine state on erythropoiesis following severe injury and the role of IL-6. ACTA ACUST UNITED AC 2006; 59:884-9; discussion 889-90. [PMID: 16374277 DOI: 10.1097/01.ta.0000187653.64300.f5] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Severe traumatic injury can lead to hemorrhagic shock-induced bone marrow (BM) dysfunction resulting in persistent anemia. The hypercatacholamine state that accompanies severe injury has been shown to impact the growth of erythroid progenitors. IL-6 has a role both in the acute phase response of trauma and has been implicated in the development of anemia. The aim of this study was to investigate the severity of a hyper-adrenergic stimulus on pluripotent progenitors (GEMM-CFU) as well as erythroid progenitors (BFU-E and CFU-E) and the potential regulatory role of IL-6. METHODS Normal human BM mononuclear cells were isolated and erythropoiesis was assessed by the growth of GEMM-CFU, BFU-E and CFU-E in the presence of adrenergic agonists, norepinephrine (NE) and epinephrine (EPI), at increasing concentrations. Similarly, normal BM stroma cells were grown to confluence then incubated with NE and EPI. Supernatant was harvested and IL-6 levels were determined using ELISA. RESULTS Under physiologic conditions (10(-7) M), NE and EPI increase BFU-E and CFU-E growth (374% and 177% versus 100% control). At severe stress levels (10(-3) M), NE and EPI completely inhibited BFU-E and CFU-E growth (5% and 4% versus 100% control). GEMM-CFU growth was increased by NE and not EPI at 10(-7) M. The presence of NE and EPI increased IL-6 levels in a dose-dependent fashion. CONCLUSIONS The proliferative effect of adrenergic agonists at physiologic levels on normal erythropoiesis begins early during erythroid differentiation. At severe stress levels, BFU-E and CFU-E growth is inhibited. The erythropoietic dysfunction and resultant anemia seen following severe injury may be due to the presence of a severe hypercatecholamine state and may be mediated by IL-6.
Collapse
Affiliation(s)
- Rodrigo B Fonseca
- Department of Surgery, UMDNJ-New Jersey Medical School, Newark, 07103, USA
| | | | | | | | | | | |
Collapse
|
23
|
Chen J, Jacobs-Helber SM, Barber DL, Sawyer ST. Erythropoietin-dependent autocrine secretion of tumor necrosis factor-alpha in hematopoietic cells modulates proliferation via MAP kinase–ERK-1/2 and does not require tyrosine docking sites in the EPO receptor. Exp Cell Res 2004; 298:155-66. [PMID: 15242770 DOI: 10.1016/j.yexcr.2004.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Revised: 04/05/2004] [Indexed: 01/01/2023]
Abstract
Primary erythroid cells and erythroid cell lines may synthesize and secrete tumor necrosis factor-alpha (TNF-alpha) following stimulation with erythropoietin (EPO). The effect of triggering TNF-alpha synthesis and secretion was investigated in erythroleukemia and myeloid cell lines: HCD57, DA3-EPOR, and BAF3-EPOR. The EPO-induced, membrane-bound form of autocrine TNF-alpha seemed to enhance proliferation of HCD57 and DA3-EPOR cells; however, the concentration of secreted autocrine/paracrine TNF-alpha was never sufficient to have an effect. Autocrine TNF-alpha acts through TNFRII receptors to stimulate proliferation. Modulation of mitogen-activated protein kinase (MAPK)/extracellular signal-related kinase (ERK-1/2) activity by the membrane-bound form of autocrine TNF-alpha apparently played a central role in the control of EPO-dependent proliferation of HCD57 and DA3-EPOR cells. Primary erythroid cells and DA3-EPOR cells were found to express similar, high levels of both TNFRI and TNFRII, showing that differential expression of TNF-alpha receptors does not explain why primary cells are inhibited and DA3-EPOR cells are stimulated by autocrine TNF-alpha. BAF3 cells expressing a mutant EPOR with no cytoplasmic tyrosine residues were capable of triggering EPO-dependent TNF-alpha synthesis and secretion, indicating that tyrosine-docking sites in the EPOR were not required for EPO-dependent TNF-alpha secretion.
Collapse
MESH Headings
- Animals
- Antigens, CD/drug effects
- Antigens, CD/metabolism
- Autocrine Communication/drug effects
- Autocrine Communication/physiology
- Binding Sites/genetics
- Binding Sites/physiology
- Cell Division/drug effects
- Cell Division/physiology
- Cell Line
- Erythropoietin/pharmacology
- Erythropoietin/physiology
- Hematopoiesis/drug effects
- Hematopoiesis/physiology
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Mice
- Mitogen-Activated Protein Kinase 3
- Mitogen-Activated Protein Kinases/metabolism
- Mutation/genetics
- Receptors, Erythropoietin/agonists
- Receptors, Erythropoietin/genetics
- Receptors, Erythropoietin/metabolism
- Receptors, Tumor Necrosis Factor/drug effects
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Tumor Necrosis Factor-alpha/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Jingchun Chen
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond 23298, USA
| | | | | | | |
Collapse
|
24
|
Ohene-Abuakwa Y, Orfali KA, Marius C, Ball SE. Two-phase culture in Diamond Blackfan anemia: localization of erythroid defect. Blood 2004; 105:838-46. [PMID: 15238419 DOI: 10.1182/blood-2004-03-1016] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The erythroid defect in Diamond Blackfan anemia (DBA) is known to be intrinsic to the stem cell, but its molecular pathophysiology remains obscure. Using a 2-phase liquid erythroid culture system, we have demonstrated a consistent defect in DBA, regardless of clinical severity, including 3 first-degree relatives with normal hemoglobin levels but increased erythrocyte adenosine deaminase activity. DBA cultures were indistinguishable from controls until the end of erythropoietin (Epo)-free phase 1, but failed to demonstrate the normal synchronized wave of erythroid expansion and terminal differentiation on exposure to Epo. Dexamethasone increased Epo sensitivity of erythroid progenitor cells, and enhanced erythroid expansion in phase 2 in both normal and DBA cultures. In DBA cultures treated with dexamethasone, Epo sensitivity was comparable to normal, but erythroid expansion remained subnormal. In clonogenic phase 2 cultures, the number of colonies did not significantly differ between normal cultures and DBA, in the presence or absence of dexamethasone, and at both low and high Epo concentrations. However, colonies were markedly smaller in DBA under all conditions. This suggests that the Epo-triggered onset of terminal maturation is intact in DBA, and the defect lies down-stream of the Epo receptor, influencing survival and/or proliferation of erythroid progenitors.
Collapse
Affiliation(s)
- Yaw Ohene-Abuakwa
- Department of Cellular and Molecular Sciences (Haematology), St George's Hospital Medical School, London, United Kingdom
| | | | | | | |
Collapse
|
25
|
Abstract
Erythropoiesis is a complex multistep process encompassing the differentiation of hemopoietic stem cells to mature erythrocytes. The steps involved in this complex differentiation process are numerous and involve first the differentiation to early erythoid progenitors (burst-forming units-erythroid, BFU-E), then to late erythroid progenitors (colony-forming units-erythroid) and finally to morphologically recognizable erythroid precursors. A key event of late stages of erythropoiesis is nuclear condensation, followed by extrusion of the nucleus to produce enucleated reticulocytes and finally mature erythrocytes. During the differentiation process, the cells became progressively sensitive to erythropoietin that controls both the survival and proliferation of erythroid cells. A normal homeostasis of the erythropoietic system requires an appropriate balance between the rate of erythroid cell production and red blood cell destruction. Growing evidences outlined in the present review indicate that apoptotic mechanism play a relevant role in the control of erythropoiesis under physiologic and pathologic conditions. Withdrawal of erythropoietin or stimulation of death receptors such as Fas or TRAIL-Rs leads to activation of a subset of caspase-3, -7 and -8, which then cleave the transcription factors GATA-1 and TAL-1 and trigger apoptosis. In addition, there is evidence that a number of caspases are physiologically activated during erythroid differentiation and are functionally required for erythroid maturation. Several caspase substrates are cleaved in differentiating cells, including the protein acinus whose activation by cleavage is required for chromatin condensation. The studies on normal erythropoiesis have clearly indicated that immature erythroid precursors are sensitive to apoptotic triggering mediated by activation of the intrinsic and extrinsic apoptotic pathways. These apoptotic mechanisms are frequently exacerbated in some pathologic conditions, associated with the development of anemia (ie, thalassemias, multiple myeloma, myelodysplasia, aplastic anemia). The considerable progress in our understanding of the apoptotic mechanisms underlying normal and pathologic erythropoiesis may offer the way to improve the treatment of several pathologic conditions associated with the development of anemia.
Collapse
Affiliation(s)
- U Testa
- Department of Hematology and Oncology, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
26
|
Jacobs-Helber SM, Sawyer ST. Jun N-terminal kinase promotes proliferation of immature erythroid cells and erythropoietin-dependent cell lines. Blood 2004; 104:696-703. [PMID: 15059850 DOI: 10.1182/blood-2003-05-1754] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Erythropoietin (EPO) is the hormone necessary for development of erythrocytes from immature erythroid cells. EPO activates Jun N-terminal kinase (JNK), a member of the mitogen-activated protein kinase (MAPK) family in the EPO-dependent murine erythroid HCD57 cells. Therefore, we tested if JNK activity supported proliferation and/or survival of these cells. Treatment with the JNK inhibitor SP600125 inhibited JNK activity and EPO-dependent proliferation of HCD57 cells and the human EPO-dependent cell lines TF-1 and UT7-EPO. SP600125 also increased the fraction of cells in G2/M. Introduction of a dominant-negative form of JNK1 inhibited EPO-dependent proliferation in HCD57 cells but did not increase the fraction of cells in G2/M. Constitutive JNK activity was observed in primary murine erythroid progenitors. Treatment of primary mouse bone marrow cells with the SP600125 inhibitor reduced the number of erythroid burst-forming units (BFU-e's) but not the more differentiated erythroid colony-forming units (CFU-e's), and SP600125 protected the BFU-e's from apoptosis induced by cytosine arabinoside, demonstrating that the SP600125 inhibited proliferation of the BFU-e's. Therefore, JNK activity appears to be an important regulator of proliferation in immature, primary erythroid cells and 3 erythroid cell lines but may not be required for the survival or proliferation of CFU-e's or proerythroblasts.
Collapse
Affiliation(s)
- Sarah M Jacobs-Helber
- Department of Pharmacology/Toxicology, Virginia Commonwealth University, Richmond, USA
| | | |
Collapse
|
27
|
Uddin S, Ah-Kang J, Ulaszek J, Mahmud D, Wickrema A. Differentiation stage-specific activation of p38 mitogen-activated protein kinase isoforms in primary human erythroid cells. Proc Natl Acad Sci U S A 2004; 101:147-52. [PMID: 14694199 PMCID: PMC314153 DOI: 10.1073/pnas.0307075101] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2003] [Indexed: 11/18/2022] Open
Abstract
p38alpha, p38beta, p38gamma, and p38delta are four isoforms of p38 mitogen-activated protein (MAP) kinase (MAPK) involved in multiple cellular functions such as cell proliferation, differentiation, apoptosis, and inflammation response. In the present study, we examined the mRNA expression pattern of each of the four isoforms during erythroid differentiation of primary erythroid progenitors. We show that p38alpha and p38gamma transcripts are expressed in early hematopoietic progenitors as well as in late differentiating erythroblasts, whereas p38delta mRNA is only expressed and active during the terminal phase of erythroid differentiation. On the other hand, p38beta is minimally expressed in early CD34(+) hematopoietic progenitors but not expressed in lineage-committed erythroid progenitors. We also determined the phosphorylation/activation of p38alpha, MAPK kinase 3/6, and MAPKAP-2 in response to erythropoietin and stem cell factor. We found that phosphorylation of p38alpha, MAPK kinase kinase 3/6 and MAPKAP-2 occurs only upon growth factor withdrawal in primary erythroid progenitors. Moreover, our data indicate that activation of p38alpha does not induce apoptosis or promote proliferation of erythroid progenitors. On the other hand, under steady-state culture conditions, both p38alpha and p38delta isoforms are increasingly phosphorylated activated in the terminal phase of differentiation. This increased phosphorylation/activity was accompanied by up-regulation of heat shock protein 27 phosphorylation. Finally, we demonstrate that tumor necrosis factor alpha, an inflammatory cytokine that is modulated by p38alpha, is expressed by differentiating erythroblasts and inhibition of p38alpha or tumor necrosis factor alpha results in reduction in differentiation. Taken together, our data demonstrate that both p38alpha and delta isoforms function to promote the late-stage differentiation of primary erythroid progenitors and are likely to be involved in functions related to erythrocyte membrane remodeling and enucleation.
Collapse
Affiliation(s)
- Shahab Uddin
- Section of Hematology/Oncology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
OBJECTIVE Reduction in red blood cell mass, as well as structural and functional alterations of erythrocytes, occurs in critical illness. This review discusses these changes in red blood cell physiology, emphasizing the pathogenesis of anemia in intensive care unit patients. DATA SOURCE Studies published in biomedical journals. DATA SYNTHESIS AND CONCLUSION Anemia in intensive care unit patients resembles the anemia of chronic disease, being characterized by diminished erythropoietin production relative to decreased hematocrit, altered iron metabolism, and impaired proliferation and differentiation of erythroid progenitors in the bone marrow. Inflammatory mediators play a major role in the development of insufficient erythropoiesis and altered iron metabolism. Furthermore, a proinflammatory milieu promotes structural and functional alterations of erythrocytes, impairing their deformability and possibly impairing microvascular perfusion. Collectively, these changes in red blood cell physiology can impair oxygen transport to tissues and, thereby, might contribute to the development of multiple organ failure in critical illness.
Collapse
Affiliation(s)
- Marion Scharte
- Klinik und Poliklinik für Anästhesiologie und operativ Intensivmedizin, Universitätsklinikum Münster, Muenster, Germany
| | | |
Collapse
|