1
|
Connes P, Stauffer E, Liem RI, Nader E. Exercise and training in sickle cell disease: Safety, potential benefits, and recommendations. Am J Hematol 2024; 99:1988-2001. [PMID: 39132839 DOI: 10.1002/ajh.27454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/23/2024] [Indexed: 08/13/2024]
Abstract
Sickle cell disease (SCD) is a genetic disorder characterized by complex pathophysiological mechanisms leading to vaso-occlusive crisis, chronic pain, chronic hemolytic anemia, and vascular complications, which require considerations for exercise and physical activity. This review aims to elucidate the safety, potential benefits, and recommendations regarding exercise and training in individuals with SCD. SCD patients are characterized by decreased exercise capacity and tolerance. Acute intense exercise may be accompanied by biological changes (acidosis, increased oxidative stress, and dehydration) that could increase the risk of red blood cell sickling and acute clinical complications. However, recent findings suggest that controlled exercise training is safe and well tolerated by SCD patients and could confer benefits in disease management. Regular endurance exercises of submaximal intensity or exercise interventions incorporating resistance training have been shown to improve cardiorespiratory and muscle function in SCD, which may improve quality of life. Recommendations for exercise prescription in SCD should be based on accurate clinical and functional evaluations, taking into account disease phenotype and cardiorespiratory status at rest and in response to exercise. Exercise programs should include gradual progression, incorporating adequate warm-up, cool-down, and hydration strategies. Exercise training represents promising therapeutic strategy in the management of SCD. It is now time to move through the investigation of long-term biological, physiological, and clinical effects of regular physical activity in SCD patients.
Collapse
Affiliation(s)
- Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team «Vascular Biology and Red Blood Cell», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | - Emeric Stauffer
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team «Vascular Biology and Red Blood Cell», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
- Explorations Fonctionnelles Respiratoires, Médecine du sport et de l'Activité Physique, Hospices Civils de Lyon, Hôpital Croix Rousse, Lyon, France
| | - Robert I Liem
- Division of Hematology, Oncology and Stem Cell Transplant, Ann and Robert H Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team «Vascular Biology and Red Blood Cell», Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| |
Collapse
|
2
|
Lee GM, Boyle K, Batchvarova M, Delahunty M, Suggs MA, Arepally GM, Telen MJ. Red cell exchange modulates neutrophil degranulation responses in sickle cell disease. Transfusion 2024; 64:1752-1761. [PMID: 38979976 DOI: 10.1111/trf.17947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Neutrophils in sickle cell disease (SCD) are activated, contributing to disease. Red cell exchange (RCE), with the goal of lowering hemoglobin S (HbS), is an important part of therapy for many SCD patients. Whether RCE impacts neutrophil reactivity is unknown. STUDY DESIGN AND METHODS To determine the effect of RCE on neutrophil activation, SCD patients undergoing RCE in steady-state were enrolled. Neutrophil degranulation responses were examined before/after RCE. Kinetic studies were completed to determine the duration of the effect of RCE on neutrophil function. Degranulation results were examined in relation to white blood cell count, neutrophil count, and HbS levels. The effect of RCE on RBC phosphatidylserine (PS) exposure was examined as a possible contributor to modulation of neutrophil function by RCE. RESULTS Twenty-two patients with SCD, genotype SS, who underwent RCE (average pre-RCE HbS 33 ± 14%) were included for the study. RCE significantly decreased neutrophil degranulation responses. The effect of RCE on neutrophil activation was unrelated to cell count and instead directly correlated with HbS. The effect of RCE on neutrophil activation was sustained over several days post-apheresis. Furthermore, while increased RBC PS exposure results in increased neutrophil degranulation, RCE decreases RBC PS exposure. DISCUSSION To our knowledge, this is the first study demonstrating that RCE significantly decreases neutrophil activation in a sustained HbS-dependent manner. Modulation of PS exposure by RCE may be a contributing mechanism by which RCE modulates neutrophil activation. These studies raise the possibility that modulation of neutrophil activation contributes significantly to the therapeutic effect of RCE.
Collapse
Affiliation(s)
- Grace M Lee
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kimberly Boyle
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Milena Batchvarova
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Martha Delahunty
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Mark A Suggs
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gowthami M Arepally
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
| | - Marilyn J Telen
- Division of Hematology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
- Duke Comprehensive Sickle Cell Center, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
3
|
Bhatt S, Argueta DA, Gupta K, Kundu S. Red Blood Cells as Therapeutic Target to Treat Sickle Cell Disease. Antioxid Redox Signal 2024; 40:1025-1049. [PMID: 37975291 DOI: 10.1089/ars.2023.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Significance: Sickle cell disease (SCD) is the most common inherited diathesis affecting mostly underserved populations globally. SCD is characterized by chronic pain and fatigue, severe acute painful crises requiring hospitalization and opioids, strokes, multiorgan damage, and a shortened life span. Symptoms may appear shortly after birth, and, in less developed countries, most children with SCD die before attaining age 5. Hematopoietic stem cell transplant and gene therapy offer a curative therapeutic approach, but, due to many challenges, are limited in their availability and effectiveness for a majority of persons with SCD. A critical unmet need is to develop safe and effective novel targeted therapies. A wide array of drugs currently undergoing clinical investigation hold promise for an expanded pharmacological armamentarium against SCD. Recent Advances: Hydroxyurea, the most widely used intervention for SCD management, has improved the survival in the Western world and more recently, voxelotor (R-state-stabilizer), l-glutamine, and crizanlizumab (anti-P-selectin antibody) have been approved by the Food and Drug Administration (FDA) for use in SCD. The recent FDA approval emphasizes the need to revisit the advances in understanding the core pathophysiology of SCD to accelerate novel evidence-based strategies to treat SCD. The biomechanical breakdown of erythrocytesis, the core pathophysiology of SCD, is associated with intrinsic factors, including the composition of hemoglobin, membrane integrity, cellular volume, hydration, andoxidative stress. Critical Issues and Future Directions: In this context, this review focuses on advances in emerging nongenetic interventions directed toward the therapeutic targets intrinsic to sickle red blood cells (RBCs), which can prevent impaired rheology of RBCs to impede disease progression and reduce the sequelae of comorbidities, including pain, vasculopathy, and organ damage. In addition, given the intricate pathophysiology of the disease, it is unlikely that a single pharmacotherapeutic intervention will comprehensively ameliorate the multifaceted complications associated with SCD. However, the availability of multiple drug options affords the opportunity for individualized therapeutic regimens tailored to specific SCD-related complications. Furthermore, it opens avenues for combination drug therapy, capitalizing on distinct mechanisms of action and profiles of adverse effects.
Collapse
Affiliation(s)
- Shruti Bhatt
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Donovan A Argueta
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, California, USA
| | - Kalpna Gupta
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, California, USA
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, Goa, India
| |
Collapse
|
4
|
Barak M, Hu C, Matthews A, Fortenberry YM. Current and Future Therapeutics for Treating Patients with Sickle Cell Disease. Cells 2024; 13:848. [PMID: 38786070 PMCID: PMC11120250 DOI: 10.3390/cells13100848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Sickle cell disease (SCD) is the most common genetic blood disorder in the United States, with over 100,000 people suffering from this debilitating disease. SCD is caused by abnormal hemoglobin (Hb) variants that interfere with normal red blood cell (RBC) function. Research on SCD has led to the development and approval of several new SCD therapies in recent years. The recent FDA-approved novel gene therapies are potentially curative, giving patients an additional option besides a hematopoietic bone marrow transplant. Despite the promise of existing therapies, questions remain regarding their long-term pharmacological effects on adults and children. These questions, along with the exorbitant cost of the new gene therapies, justify additional research into more effective therapeutic options. Continual research in this field focuses on not only developing cheaper, more effective cures/treatments but also investigating the physiological effects of the current therapies on SCD patients, particularly on the brain and kidneys. In this article, we undertake a comprehensive review of ongoing clinical trials with completion dates in 2024 or later. Our exploration provides insights into the landscape of current therapeutics and emerging novel therapies designed to combat and potentially eradicate SCD, including the latest FDA-approved gene therapies.
Collapse
Affiliation(s)
| | | | | | - Yolanda M. Fortenberry
- Biology Department, Case Western Reserve University, Cleveland, OH 44106, USA; (M.B.); (C.H.); (A.M.)
| |
Collapse
|
5
|
Cheng HY, Wang W, Wang W, Yang MY, Zhou YY. Interkingdom Hormonal Regulations between Plants and Animals Provide New Insight into Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4-26. [PMID: 38156955 DOI: 10.1021/acs.jafc.3c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Food safety has become an attractive topic among consumers. Raw material production for food is also a focus of social attention. As hormones are widely used in agriculture and human disease control, consumers' concerns about the safety of hormone agents have never disappeared. The present review focuses on the interkingdom regulations of exogenous animal hormones in plants and phytohormones in animals, including physiology and stress resistance. We summarize these interactions to give the public, researchers, and policymakers some guidance and suggestions. Accumulated evidence demonstrates comprehensive hormonal regulation across plants and animals. Animal hormones, interacting with phytohormones, help regulate plant development and enhance environmental resistance. Correspondingly, phytohormones may also cause damage to the reproductive and urinary systems of animals. Notably, the disease-resistant role of phytohormones is revealed against neurodegenerative diseases, cardiovascular disease, cancer, and diabetes. These resistances derive from the control for abnormal cell cycle, energy balance, and activity of enzymes. Further exploration of these cross-kingdom mechanisms would surely be of greater benefit to human health and agriculture development.
Collapse
Affiliation(s)
- Hang-Yuan Cheng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Human Development Family Studies, Iowa State University, 2330 Palmer Building, Ames, Iowa 50010, United States
| | - Wei Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Mu-Yu Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Yu-Yi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| |
Collapse
|
6
|
Goksel E, Ugurel E, Nader E, Boisson C, Muniansi I, Joly P, Renoux C, Gauthier A, Connes P, Yalcin O. A preliminary study of phosphodiesterases and adenylyl cyclase signaling pathway on red blood cell deformability of sickle cell patients. Front Physiol 2023; 14:1215835. [PMID: 37781231 PMCID: PMC10540448 DOI: 10.3389/fphys.2023.1215835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/01/2023] [Indexed: 10/03/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy characterized by chronic anemia, intravascular hemolysis, and the occurrence of vaso-occlusive crises due to the mechanical obstruction of the microcirculation by poorly deformable red blood cells (RBCs). RBC deformability is a key factor in the pathogenesis of SCD, and is affected by various factors. In this study, we investigated the effects of adenylyl cyclase (AC) signaling pathway modulation and different phosphodiesterase (PDE) modulatory molecules on the deformability and mechanical stress responses of RBC from SCD patients (HbSS genotype) by applying 5 Pa shear stress with an ektacytometer (LORRCA). We evaluated RBC deformability before and after the application of shear stress. AC stimulation with Forskolin had distinct effects on RBC deformability depending on the application of 5 Pa shear stress. RBC deformability was increased by Forskolin before shear stress application but decreased after 5 Pa shear stress. AC inhibition with SQ22536 and protein kinase A (PKA) inhibition with H89 increased RBC deformability before and after the shear stress application. Non-selective PDE inhibition with Pentoxifylline increased RBC deformability. However, modulation of the different PDE types had distinct effects on RBC deformability, with PDE1 inhibition by Vinpocetine increasing deformability while PDE4 inhibition by Rolipram decreased RBC deformability after the shear stress application. The effects of the drugs varied greatly between patients suggesting some could benefit from one drug while others not. Developing drugs targeting the AC signaling pathway could have clinical applications for SCD, but more researches with larger patient cohorts are needed to identify the differences in the responses of sickle RBCs.
Collapse
Affiliation(s)
- Evrim Goksel
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Koc University, Istanbul, Türkiye
- Graduate School of Health Sciences, Koc University, Istanbul, Türkiye
| | - Elif Ugurel
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Koc University, Istanbul, Türkiye
| | - Elie Nader
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Camille Boisson
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Ingrid Muniansi
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Philippe Joly
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Celine Renoux
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | | | - Philippe Connes
- Laboratoire Interuniversitaire de Biologie de la Motricité (LIBM) EA7424, Team “Vascular Biology and Red Blood Cell”, Université Claude Bernard Lyon 1, Lyon, France
- Laboratoire d’Excellence du Globule Rouge (Labex GR-Ex), PRES Sorbonne, Paris, France
| | - Ozlem Yalcin
- Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Türkiye
- Department of Physiology, School of Medicine, Koc University, Istanbul, Türkiye
| |
Collapse
|
7
|
Goreke U, Iram S, Singh G, Domínguez-Medina S, Man Y, Bode A, An R, Little JA, Wirth CL, Hinczewski M, Gurkan UA. Catch bonds in sickle cell disease: Shear-enhanced adhesion of red blood cells to laminin. Biophys J 2023; 122:2564-2576. [PMID: 37177783 PMCID: PMC10323024 DOI: 10.1016/j.bpj.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Could the phenomenon of catch bonding-force-strengthened cellular adhesion-play a role in sickle cell disease, where abnormal red blood cell (RBC) adhesion obstructs blood flow? Here, we investigate the dynamics of sickle RBCs adhering to a surface functionalized with the protein laminin (a component of the extracellular matrix around blood vessels) under physiologically relevant microscale flow. First, using total internal reflectance microscopy we characterize the spatial fluctuations of the RBC membrane above the laminin surface before detachment. The complex dynamics we observe suggest the possibility of catch bonding, where the mean detachment time of the cell from the surface initially increases to a maximum and then decreases as a function of shear force. We next conduct a series of shear-induced detachment experiments on blood samples from 25 sickle cell disease patients, quantifying the number and duration of adhered cells under both sudden force jumps and linear force ramps. The experiments reveal that a subset of patients does indeed exhibit catch bonding. By fitting the data to a theoretical model of the bond dynamics, we can extract the mean bond lifetime versus force for each patient. The results show a striking heterogeneity among patients, both in terms of the qualitative behavior (whether or not there is catch bonding) and in the magnitudes of the lifetimes. Patients with large bond lifetimes at physiological forces are more likely to have certain adverse clinical features, like a diagnosis of pulmonary arterial hypertension and intracardiac shunts. By introducing an in vitro platform for fully characterizing RBC-laminin adhesion dynamics, our approach could contribute to the development of patient-specific antiadhesive therapies for sickle cell disease. The experimental setup is also easily generalizable to studying adhesion dynamics in other cell types, for example, leukocytes or cancer cells, and can incorporate disease-relevant environmental conditions like oxygen deprivation.
Collapse
Affiliation(s)
- Utku Goreke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Shamreen Iram
- Department of Physics, Case Western Reserve University, Cleveland, Ohio
| | - Gundeep Singh
- Department of Physics, Case Western Reserve University, Cleveland, Ohio
| | - Sergio Domínguez-Medina
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Allison Bode
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Jane A Little
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Christopher L Wirth
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, Ohio.
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
8
|
Ferreira de Matos C, Comont T, Castex MP, Lafaurie M, Walter O, Moulis G, Dion J, Cougoul P. Risk of vaso-occlusive episodes in patients with sickle cell disease exposed to systemic corticosteroids: a comprehensive review. Expert Rev Hematol 2022; 15:1045-1054. [PMID: 36412212 DOI: 10.1080/17474086.2022.2149488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Sickle cell disease (SCD) is the most frequent inherited disorder in the world. It is caused by a single amino acid mutation on the beta-globin chain, which lead to red blood cell deformation, haemolysis, and chronic inflammation. Clinical consequences are vaso-occlusives crisis, acute chest syndrome, thrombosis, infection, and chronic endothelial injury. AREAS COVERED Corticosteroids are an old therapeutic class, that are inexpensive and widely available, which can be administered in different forms. Their adverse effects are numerous and well-known. This class could appear to be useful in SCD treatment due to its anti-inflammatory effect. Moreover, corticosteroids remain an essential therapeutic class for many indications, besides SCD. Although specific adverse effects of corticosteroids have been suspected in SCD patients for decades, recent papers has reported strong evidence of specific and severe adverse effects in this population. Based on a literature review, we will discuss pathophysiological considerations, consequences, and practical use of corticosteroids in SCD. EXPERT OPINION High corticosteroid doses, for any indication , induce vaso-occlusive crises, acute chest syndrome, and re-hospitalization in patients with SCD. There is no evidence of any benefits of corticosteroid use in the SCD acute events. Prevention by hydroxyurea and/or red blood cell transfusion or exchange should be discussed when corticosteroid use is indispensable.
Collapse
Affiliation(s)
| | - Thibault Comont
- Internal Medicine Department, Toulouse University Hospital, Toulouse, France
| | - Marie-Pierre Castex
- Pediatric Oncology Immunology Hematology Unit, Children's University Hospital - Toulouse University Hospital, Toulouse, France
| | - Margaux Lafaurie
- CIC 1436, Team Pharmacologie en Population, Cohortes, Biobanques (PEPSS), Toulouse, France.,Department of Clinical Pharmacology, Toulouse University Hospital, Toulouse, France
| | - Ondine Walter
- Internal Medicine Department, Toulouse University Hospital, Toulouse, France.,CIC 1436, Team Pharmacologie en Population, Cohortes, Biobanques (PEPSS), Toulouse, France
| | - Guillaume Moulis
- Internal Medicine Department, Toulouse University Hospital, Toulouse, France.,CIC 1436, Team Pharmacologie en Population, Cohortes, Biobanques (PEPSS), Toulouse, France
| | - Jérémie Dion
- Internal Medicine Department, Toulouse University Hospital, Toulouse, France
| | - Pierre Cougoul
- Internal Medicine Department, Toulouse University Hospital, Toulouse, France
| |
Collapse
|
9
|
An R, Gurkan UA. Emerging functional microfluidic assays for the study of thromboinflammation in sickle cell disease. Curr Opin Hematol 2022; 29:327-334. [PMID: 35916533 PMCID: PMC10440906 DOI: 10.1097/moh.0000000000000731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW This review briefly summarizes the significant impact of thromboinflammation in sickle cell disease in relation to recent advances in biomarkers that are used in functional microfluidic assays. RECENT FINDINGS Sickle cell disease (SCD) is an inherited hemoglobinopathy that affects 100 000 Americans and millions worldwide. Patients with SCD exhibit chronic haemolysis, chronic inflammation and thrombosis, and vaso-occlusion, triggering various clinical complications, including organ damage and increased mortality and morbidity. Recent advances in functional microfluidic assays provide direct biomarkers of disease, including abnormal white blood cell and red blood cell adhesion, cell aggregation, endothelial degradation and contraction, and thrombus formation. SUMMARY Novel and emerging functional microfluidic assays are a promising and feasible strategy to comprehensively characterize thromboinflammatory reactions in SCD, which can be used for personalized risk assessment and tailored therapeutic decisions.
Collapse
Affiliation(s)
- Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Umut A. Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Azul M, Vital EF, Lam WA, Wood DK, Beckman JD. Microfluidic methods to advance mechanistic understanding and translational research in sickle cell disease. Transl Res 2022; 246:1-14. [PMID: 35354090 PMCID: PMC9218997 DOI: 10.1016/j.trsl.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
Sickle cell disease (SCD) is caused by a single point mutation in the β-globin gene of hemoglobin, which produces an altered sickle hemoglobin (HbS). The ability of HbS to polymerize under deoxygenated conditions gives rise to chronic hemolysis, oxidative stress, inflammation, and vaso-occlusion. Herein, we review recent findings using microfluidic technologies that have elucidated mechanisms of oxygen-dependent and -independent induction of HbS polymerization and how these mechanisms elicit the biophysical and inflammatory consequences in SCD pathophysiology. We also discuss how validation and use of microfluidics in SCD provides the opportunity to advance development of numerous therapeutic strategies, including curative gene therapies.
Collapse
Affiliation(s)
- Melissa Azul
- Department of Pediatrics, Mayo Clinic, Rochester, Minnesota
| | - Eudorah F Vital
- Wallace H. Coulter Department of Biomedical Engineering and Institute for Electronics and Nanotechnology, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Wilbur A Lam
- Wallace H. Coulter Department of Biomedical Engineering and Institute for Electronics and Nanotechnology, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - David K Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Joan D Beckman
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
11
|
MicroRNAs miR-451a and Let-7i-5p Profiles in Circulating Exosomes Vary among Individuals with Different Sickle Hemoglobin Genotypes and Malaria. J Clin Med 2022; 11:jcm11030500. [PMID: 35159951 PMCID: PMC8837188 DOI: 10.3390/jcm11030500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 01/22/2023] Open
Abstract
Sickle cell disease (SCD) occurs when two alleles of mutated hemoglobin (HbS or HbC) are inherited (HbSS and HbSC) rather than one (HbAS or HbAC), which indicates a person carries the sickle cell trait. The high prevalence of these two alleles in Africa have been associated with reduced malaria susceptibility. Recent in vitro research has been shown that microRNAs (miRNAs) miR-451a and let-7i-5p are differentially expressed in HbSS erythrocytes compared to healthy controls (HbAA) and are overexpressed in Plasmodium-infected malaria erythrocytes. However, these miRNAs have not been fully examined in the plasma of people with different sickle hemoglobin genotypes. Plasma circulating miRNAs are commonly encapsulated in extracellular vesicles, such as exosomes, and are thought to play a role in disease development. Circulating exosomal miR-451a and let-7i-5p were quantified from individuals with various hemoglobin genotypes (HbAA, HbAS, HbAC, HbSS, HbSC, and HbCC) with (+) and without (-) malaria. The results showed a higher level of exosomal let-7i-5p and miR-451a in HbSS-. Exosomal let-7i-5p and miR-451a levels were lower in HbSS+ compared to other genotypes. Based on the area under the curve (AUC) of the Receiver Operating Characteristics (ROCs), both exosomal miRNAs may be useful disease biomarkers for SCD with malaria. Finally, miR-451a and let-7i-5p modulate genes involved in inflammation, making them potential biomarkers of pathogenesis for both diseases.
Collapse
|
12
|
Wang Q, Zennadi R. The Role of RBC Oxidative Stress in Sickle Cell Disease: From the Molecular Basis to Pathologic Implications. Antioxidants (Basel) 2021; 10:antiox10101608. [PMID: 34679742 PMCID: PMC8533084 DOI: 10.3390/antiox10101608] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited monogenic disorder and the most common severe hemoglobinopathy in the world. SCD is characterized by a point mutation in the β-globin gene, which results in hemoglobin (Hb) S production, leading to a variety of mechanistic and phenotypic changes within the sickle red blood cell (RBC). In SCD, the sickle RBCs are the root cause of the disease and they are a primary source of oxidative stress since sickle RBC redox state is compromised due to an imbalance between prooxidants and antioxidants. This imbalance in redox state is a result of a continuous production of reactive oxygen species (ROS) within the sickle RBC caused by the constant endogenous Hb autoxidation and NADPH oxidase activation, as well as by a deficiency in the antioxidant defense system. Accumulation of non-neutralized ROS within the sickle RBCs affects RBC membrane structure and function, leading to membrane integrity deficiency, low deformability, phosphatidylserine exposure, and release of micro-vesicles. These oxidative stress-associated RBC phenotypic modifications consequently evoke a myriad of physiological changes involved in multi-system manifestations. Thus, RBC oxidative stress in SCD can ultimately instigate major processes involved in organ damage. The critical role of the sickle RBC ROS production and its regulation in SCD pathophysiology are discussed here.
Collapse
|
13
|
Lizarralde-Iragorri MA, Lefevre SD, Cochet S, El Hoss S, Brousse V, Filipe A, Dussiot M, Azouzi S, Le Van Kim C, Rodrigues-Lima F, Français O, Le Pioufle B, Klei T, van Bruggen R, El Nemer W. Oxidative stress activates red cell adhesion to laminin in sickle cell disease. Haematologica 2021; 106:2478-2488. [PMID: 32855277 PMCID: PMC8409043 DOI: 10.3324/haematol.2020.261586] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Vaso-occlusive crises are the hallmark of sickle cell disease (SCD). They are believed to occur in two steps, starting with adhesion of deformable low-dense red blood cells (RBCs), or other blood cells such as neutrophils, to the wall of post-capillary venules, followed by trapping of the denser RBCs or leukocytes in the areas of adhesion because of reduced effective lumen-diameter. In SCD, RBCs are heterogeneous in terms of density, shape, deformability and surface proteins, which accounts for the differences observed in their adhesion and resistance to shear stress. Sickle RBCs exhibit abnormal adhesion to laminin mediated by Lu/BCAM protein at their surface. This adhesion is triggered by Lu/BCAM phosphorylation in reticulocytes but such phosphorylation does not occur in mature dense RBCs despite firm adhesion to laminin. In this study, we investigated the adhesive properties of sickle RBC subpopulations and addressed the molecular mechanism responsible for the increased adhesion of dense RBCs to laminin in the absence of Lu/BCAM phosphorylation. We provide evidence for the implication of oxidative stress in post-translational modifications of Lu/BCAM that impact its distribution and cis-interaction with glycophorin C at the cell surface activating its adhesive function in sickle dense RBCs.
Collapse
Affiliation(s)
- Maria Alejandra Lizarralde-Iragorri
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Sophie D. Lefevre
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Sylvie Cochet
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Sara El Hoss
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Valentine Brousse
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
- Service de Pédiatrie Générale et Maladies Infectieuses, Hôpital Universitaire Necker Enfants Malades, Paris, France
| | - Anne Filipe
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
- Université de Paris, BFA, UMR 8251, CNRS, Paris, France
| | - Michael Dussiot
- Institut Imagine, INSERM U1163, CNRS UMR8254, Université Paris Descartes, Hôpital Necker Enfants Malades, Paris, France
| | - Slim Azouzi
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | - Caroline Le Van Kim
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| | | | - Olivier Français
- ESYCOM, Université Gustave Eiffel, CNRS UMR 9007, ESIEE Paris, Marne-la-Vallee, France
| | - Bruno Le Pioufle
- Université Paris-Saclay, ENS Paris-Saclay, CNRS Institut d'Alembert, LUMIN, Gif sur Yvette, France
| | - Thomas Klei
- Department of Blood Cell Research, Sanquin Research and Lab Services and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Robin van Bruggen
- Department of Blood Cell Research, Sanquin Research and Lab Services and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Wassim El Nemer
- Université de Paris, UMR S1134, BIGR, INSERM, Paris, France
- Institut National de la Transfusion Sanguine, Paris, France
- Laboratoire d’Excellence GR-Ex, Paris, France
| |
Collapse
|
14
|
The Gardos effect drives erythrocyte senescence and leads to Lu/BCAM and CD44 adhesion molecule activation. Blood Adv 2021; 4:6218-6229. [PMID: 33351118 DOI: 10.1182/bloodadvances.2020003077] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Senescence of erythrocytes is characterized by a series of changes that precede their removal from the circulation, including loss of red cell hydration, membrane shedding, loss of deformability, phosphatidyl serine exposure, reduced membrane sialic acid content, and adhesion molecule activation. Little is known about the mechanisms that initiate these changes nor is it known whether they are interrelated. In this study, we show that Ca2+-dependent K+ efflux (the Gardos effect) drives erythrocyte senescence. We found that increased intracellular Ca2+ activates the Gardos channel, leading to shedding of glycophorin-C (GPC)-containing vesicles. This results in a loss of erythrocyte deformability but also in a marked loss of membrane sialic acid content. We found that GPC-derived sialic acid residues suppress activity of both Lutheran/basal cell adhesion molecule (Lu/BCAM) and CD44 by the formation of a complex on the erythrocyte membrane, and Gardos channel-mediated shedding of GPC results in Lu/BCAM and CD44 activation. This phenomenon was observed as erythrocytes aged and on erythrocytes that were otherwise prone to clearance from the circulation, such as sickle erythrocytes, erythrocytes stored for transfusion, or artificially dehydrated erythrocytes. These novel findings provide a unifying concept on erythrocyte senescence in health and disease through initiation of the Gardos effect.
Collapse
|
15
|
Zhou DB, Castanos MV, Pinhas A, Gillette P, Migacz JV, Rosen RB, Glassberg J, Chui TYP. Quantification of intermittent retinal capillary perfusion in sickle cell disease. BIOMEDICAL OPTICS EXPRESS 2021; 12:2825-2840. [PMID: 34123506 PMCID: PMC8176806 DOI: 10.1364/boe.418874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 05/22/2023]
Abstract
Pathophysiology of sickle cell disease (SCD) features intermittent vaso-occlusion of microcirculatory networks that facilitate ischemic damage. Past research has, however, relied on static images to characterize this active disease state. This study develops imaging metrics to more fully capture dynamic vascular changes, quantifying intermittent retinal capillary perfusion in unaffected controls and SCD patients using sequential optical coherence tomography angiography (OCT-A) scans. The results reveal significant dynamic variation of capillary perfusion in SCD patients compared to controls. This measurement of vaso-occlusive burden in patients would provide utility in monitoring of the disease state and in evaluating treatment efficacy.
Collapse
Affiliation(s)
- Davis B. Zhou
- Ophthalmology, New York Eye
and Ear Infirmary of Mount Sinai, 310 East 14th St.,
Suite 500, S. Bldg., New York, NY 10003, USA
- Ophthalmology, Icahn School of
Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York,
NY 10029, USA
| | - Maria V. Castanos
- Ophthalmology, New York Eye
and Ear Infirmary of Mount Sinai, 310 East 14th St.,
Suite 500, S. Bldg., New York, NY 10003, USA
| | - Alexander Pinhas
- Ophthalmology, New York Eye
and Ear Infirmary of Mount Sinai, 310 East 14th St.,
Suite 500, S. Bldg., New York, NY 10003, USA
| | - Peter Gillette
- Internal Medicine, SUNY
Downstate Medical Center, 450 Clarkson Avenue Brooklyn,
NY 11203, USA
| | - Justin V. Migacz
- Ophthalmology, New York Eye
and Ear Infirmary of Mount Sinai, 310 East 14th St.,
Suite 500, S. Bldg., New York, NY 10003, USA
| | - Richard B. Rosen
- Ophthalmology, New York Eye
and Ear Infirmary of Mount Sinai, 310 East 14th St.,
Suite 500, S. Bldg., New York, NY 10003, USA
- Ophthalmology, Icahn School of
Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York,
NY 10029, USA
| | - Jeffrey Glassberg
- Emergency Medicine, Icahn
School of Medicine at Mount Sinai, 3 East 101st Street,
Box 1620, New York, NY 10029, USA
| | - Toco Y. P. Chui
- Ophthalmology, New York Eye
and Ear Infirmary of Mount Sinai, 310 East 14th St.,
Suite 500, S. Bldg., New York, NY 10003, USA
- Ophthalmology, Icahn School of
Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York,
NY 10029, USA
| |
Collapse
|
16
|
Thakkar M, Bednarz B. WALANT and sickle cell disease: A cautionary tale. J Plast Reconstr Aesthet Surg 2021; 74:1633-1701. [PMID: 33726989 DOI: 10.1016/j.bjps.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 02/26/2021] [Indexed: 11/19/2022]
Affiliation(s)
- M Thakkar
- Department of Plastic and Reconstructive Surgery, St Mary's Hospital, Praed Street, London W2 1NY, United Kingdom.
| | - B Bednarz
- Department of Plastic and Reconstructive Surgery, Southmead Hospital, Southmead Road, BS10 5NB, United Kingdom
| |
Collapse
|
17
|
Sinha S, Jit BP, Patro ARK, Ray A, Dehury S, Sahoo S, Behera RK, Mohanty PK, Panigrahi P, Das P. Influence of rs1042713 and rs1042714 polymorphisms of β2-adrenergic receptor gene with erythrocyte cAMP in sickle cell disease patients from Odisha State, India. Ann Hematol 2020; 99:2737-2745. [PMID: 32918113 DOI: 10.1007/s00277-020-04254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
The vaso-occlusive crisis (VOCs) in sickle cell disease (SCD) is often associated with stress. Epinephrine released during stress acts via beta 2-adrenergic receptors (β2-AR or ADRB2) to stimulate the synthesis of cyclic adenosine monophosphate (cAMP) in the red blood cells (RBCs). Higher cAMP levels promote adhesion of sickled RBCs to vascular endothelium, a major contributor for VOCs. Several single-nucleotide polymorphisms (SNPs) of the β2-AR gene have been reported; two of them at codon 16 (rs1042713) and codon 27 (rs1042714) have been extensively studied for their clinical relevance. Therefore, we assessed the influence of polymorphism at these two sites of the β2-AR gene on the RBC cAMP concentrations with and without epinephrine stimulation in SCD subjects. We determined the frequency distribution of different genotypes of codon 16 and codon 27 of the β2-AR gene using the Sanger sequencing method in the SCD subjects. We measured the RBC-cAMP levels at baseline and after stimulation with epinephrine, to ascertain the influence of different genotypes in determining cAMP levels. There was no difference in the socio-demographic and hematological indicators in different genotypes of both codon 16 and 27. In the sham-treated erythrocytes, the cAMP levels were significantly different with three genotypes of codon 16 (F = 3.39, P = 0.036; one way ANOVA) but not with different genotypes of codon 27. A significant increase in cAMP levels was noticed with epinephrine treatment in all genotypes of codons 16 and 27 (P = 0.001; Wilcoxon signed-rank test). However, the extent of increase in the epinephrine-treated cAMP values from the sham-treated (baseline) cAMP values was significantly different between the three genotypes of codon 16 (H = 8.74; P = 0.012; Kruskal-Wallis test) but not in codon 27 genotypes. Polymorphism in codon 16 (rs1042713) of the β2-AR gene influences cAMP concentrations in the RBC both before and after epinephrine treatment. Higher cAMP levels may lead to increased adhesion of sickle cell RBCs to vascular endothelium and may increase the frequency of VOCs.
Collapse
Affiliation(s)
- Shalini Sinha
- School of Biological Sciences, AIPH University, Bhubaneswar, Odisha, India
| | - Bimal Prasad Jit
- School of Biological Sciences, AIPH University, Bhubaneswar, Odisha, India.,Sickle Cell Clinic and Molecular Biology Laboratory, Veer Surendra Sai Institute of Medical Sciences and Research, Burla, Sambalpur, Odisha, India.,School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha, India
| | - A Raj Kumar Patro
- Kalinga Institute of Medical Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Aisurya Ray
- Infectious Disease Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Snehadhini Dehury
- Sickle Cell Clinic and Molecular Biology Laboratory, Veer Surendra Sai Institute of Medical Sciences and Research, Burla, Sambalpur, Odisha, India
| | - Sarmila Sahoo
- Sickle Cell Clinic and Molecular Biology Laboratory, Veer Surendra Sai Institute of Medical Sciences and Research, Burla, Sambalpur, Odisha, India
| | - Rajendra Kumar Behera
- School of Life Sciences, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha, India
| | - Pradeep Kumar Mohanty
- Sickle Cell Clinic and Molecular Biology Laboratory, Veer Surendra Sai Institute of Medical Sciences and Research, Burla, Sambalpur, Odisha, India.,Department of Medicine, Veer Surendra Sai Institute of Medical Sciences and Research, Burla, Sambalpur, Odisha, India
| | - Pinaki Panigrahi
- Department of Pediatrics, International Microbiome Research, Georgetown University Medical Center, Washington, DC, USA
| | - Padmalaya Das
- School of Biological Sciences, AIPH University, Bhubaneswar, Odisha, India.
| |
Collapse
|
18
|
Jin J, Xie S, Sun Q, Huang Z, Chen K, Guo D, Rao X, Deng Y, Liu Y, Li S, Cui W, Maibam VC, Wang J, Zhuo W, Zhou T. Upregulation of BCAM and its sense lncRNA BAN are associated with gastric cancer metastasis and poor prognosis. Mol Oncol 2020; 14:829-845. [PMID: 31951095 PMCID: PMC7138403 DOI: 10.1002/1878-0261.12638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/03/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022] Open
Abstract
Patients with metastatic gastric cancer (GC) have a poor prognosis; however, the molecular mechanism of GC metastasis remains unclear. Here, we employed bioinformatics to systematically screen the metastasis-associated genes and found that the levels of basal cell adhesion molecule (BCAM) were significantly increased in GC tissues from patients with metastasis, as compared to those without metastasis. The upregulation of BCAM was also significantly associated with a shorter survival time. Depletion of BCAM inhibited GC cell migration and invasion. Knockout (KO) of BCAM by the CRISPR/Cas9 system reduced the invasion and metastasis of GC cells. To explore the mechanism of BCAM upregulation, we identified a previously uncharacterized BCAM sense lncRNA that spanned from exon 6 to intron 6 of BCAM, and named it as BCAM-associated long noncoding RNA (BAN). Knockdown of BAN inhibited BCAM expression at both mRNA and protein levels. Knockdown of BAN suppressed GC cell migration and invasion, which was effectively rescued by ectopic expression of BCAM. Further clinical data showed that BAN upregulation was associated with GC metastasis and poor prognosis. Importantly, BAN expression was also significantly associated with that of BCAM in GC tissues. Taken together, these results indicate that increased expression of BCAM and its sense lncRNA BAN promote GC cell invasion and metastasis, and are associated with poor prognosis of GC patients.
Collapse
Affiliation(s)
- Juan Jin
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Xie
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Sun
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhenxia Huang
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The First People's Hospital of Xiaoshan District, Hangzhou, China
| | - Kanghua Chen
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongyang Guo
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xianping Rao
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yujie Deng
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiman Liu
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuang Li
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenyu Cui
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Valentina Chanu Maibam
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junni Wang
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Kidney Disease Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Tianhua Zhou
- Department of Cell Biology and Department of Gastroenterology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Gastroenterology, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,Department of Molecular Genetics, University of Toronto, ON, Canada
| |
Collapse
|
19
|
Ballas SK. The Evolving Pharmacotherapeutic Landscape for the Treatment of Sickle Cell Disease. Mediterr J Hematol Infect Dis 2020; 12:e2020010. [PMID: 31934320 PMCID: PMC6951351 DOI: 10.4084/mjhid.2020.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/17/2019] [Indexed: 01/02/2023] Open
Abstract
Sickle cell disease (SCD) is an extremely heterogeneous disease that has been associated with global morbidity and early mortality. More effective and inexpensive therapies are needed. During the last five years, the landscape of the pharmacotherapy of SCD has changed dramatically. Currently, 54 drugs have been used or under consideration to use for the treatment of SCD. These fall into 3 categories: the first category includes the four drugs (Hydroxyurea, L-Glutamine, Crizanlizumab tmca and Voxelotor) that have been approved by the United States Food and Drug Administration (FDA) based on successful clinical trials. The second category includes 22 drugs that failed, discontinued or terminated for now and the third category includes 28 drugs that are actively being considered for the treatment of SCD. Crizanlizumab and Voxelotor are included in the first and third categories because they have been used in more than one trial. New therapies targeting multiple pathways in the complex pathophysiology of SCD have been achieved or are under continued investigation. The emerging trend seems to be the use of multimodal drugs (i.e. drugs that have different mechanisms of action) to treat SCD similar to the use of multiple chemotherapeutic agents to treat cancer.
Collapse
Affiliation(s)
- Samir K Ballas
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
20
|
Abstract
Identification of novel therapeutic targets has improved diagnostics and treatment of many diseases. Many innovative treatment strategies have been developed based on the newly identified biomarkers and key molecules. Most of the research focused on ways to manipulate signaling pathways by activating or suppressing them, validate new therapeutic targets for treatment, and epigenetic treatment of diseases. With the identification of aberrations in multiple growth pathways, the focus then shifted to the small molecules involved in these pathways for targeted therapy. In this communication/short review, we highlight the importance of identification of abnormal activation of the mitogen-activated protein kinase (MAPK), ERK1/2, and its upstream mediator MEK1/2, in erythrocytes in patients with sickle cell disease (SCD) critical for the adhesive interactions of these cells with the endothelium, and leukocytes promoting circulatory obstruction leading to tissue ischemia and infraction. We also discuss how targeting this signaling cascade with MEK1/2 inhibitors can reverse acute vasoocclusive crises in SCD.
Collapse
Affiliation(s)
- Rahima Zennadi
- Division of Hematology and Duke Comprehensive Sickle Cell Center, Department of Medicine, Duke University Medical Center, North Carolina, USA
| |
Collapse
|
21
|
Carden MA, Little J. Emerging disease-modifying therapies for sickle cell disease. Haematologica 2019; 104:1710-1719. [PMID: 31413089 PMCID: PMC6717563 DOI: 10.3324/haematol.2018.207357] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Sickle cell disease afflicts millions of people worldwide and approximately 100,000 Americans. Complications are myriad and arise as a result of complex pathological pathways ‘downstream’ to a point mutation in DNA, and include red blood cell membrane damage, inflammation, chronic hemolytic anemia with episodic vaso-occlusion, ischemia and pain, and ultimately risk of cumulative organ damage with reduced lifespan of affected individuals. The National Heart, Lung, and Blood Institute’s 2014 evidence-based guideline for sickle cell disease management states that additional research is needed before investigational curative therapies will be widely available to most patients with sickle cell disease. To date, sickle cell disease has been cured by hematopoietic stem cell transplantation in approximately 1,000 people, most of whom were children, and significantly ameliorated by gene therapy in a handful of subjects who have only limited follow-up thus far. During a timespan in which over 20 agents were approved for the treatment of cystic fibrosis by the Food and Drug Administration, similar approval was granted for only two drugs for sickle cell disease (hydroxyurea and L-glutamine) despite the higher prevalence of sickle cell disease. This trajectory appears to be changing, as the lack of multimodal agent therapy in sickle cell disease has spurred engagement among many in academia and industry who, in the last decade, have developed new drugs poised to prevent complications and alleviate suffering. Identified therapeutic strategies include fetal hemoglobin induction, inhibition of intracellular HbS polymerization, inhibition of oxidant stress and inflammation, and perturbation of the activation of the endothelium and other blood components (e.g. platelets, white blood cells, coagulation proteins) involved in the pathophysiology of sickle cell disease. In this article, we present a crash-course review of disease-modifying approaches (minus hematopoietic stem cell transplant and gene therapy) for patients with sickle cell disease currently, or recently, tested in clinical trials in the era following approval of hydroxyurea.
Collapse
Affiliation(s)
- Marcus A Carden
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of North Carolina Chapel Hill School of Medicine.,Department of Medicine, Division of Hematology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Jane Little
- Department of Medicine, Division of Hematology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, NC, USA
| |
Collapse
|
22
|
Pretini V, Koenen MH, Kaestner L, Fens MHAM, Schiffelers RM, Bartels M, Van Wijk R. Red Blood Cells: Chasing Interactions. Front Physiol 2019; 10:945. [PMID: 31417415 PMCID: PMC6684843 DOI: 10.3389/fphys.2019.00945] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Human red blood cells (RBC) are highly differentiated cells that have lost all organelles and most intracellular machineries during their maturation process. RBC are fundamental for the nearly all basic physiologic dynamics and they are key cells in the body's respiratory system by being responsible for the oxygen transport to all cells and tissues, and delivery of carbon dioxide to the lungs. With their flexible structure RBC are capable to deform in order to travel through all blood vessels including very small capillaries. Throughout their in average 120 days lifespan, human RBC travel in the bloodstream and come in contact with a broad range of different cell types. In fact, RBC are able to interact and communicate with endothelial cells (ECs), platelets, macrophages, and bacteria. Additionally, they are involved in the maintenance of thrombosis and hemostasis and play an important role in the immune response against pathogens. To clarify the mechanisms of interaction of RBC and these other cells both in health and disease as well as to highlight the role of important key players, we focused our interest on RBC membrane components such as ion channels, proteins, and phospholipids.
Collapse
Affiliation(s)
- Virginia Pretini
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Mischa H. Koenen
- Department of Laboratory of Translational Immunology and Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Marcel H. A. M. Fens
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marije Bartels
- Paediatric Haematology Department, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Richard Van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
23
|
Jit BP, Mohanty PK, Pradhan A, Purohit P, Das K, Patel S, Meher S, Sinha S, Mohanty JR, Behera RK, Das P. Erythrocyte cAMP in Determining Frequency of Acute Pain Episodes in Sickle Cell Disease Patients from Odisha State, India. Hemoglobin 2019; 43:88-94. [PMID: 31290363 DOI: 10.1080/03630269.2019.1623248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Vaso-occlusive crisis (VOC) occurs more frequently during stress in sickle cell disease patients. Epinephrine released during stress increases adhesion of sickled red blood cells (RBCs) to endothelium and to leukocytes, a process mediated through erythrocyte cyclic adenosine monophosphate (cAMP). Increased adhesion of sickled RBCs retards blood flow through the capillaries and promotes vaso-occlusion. Therefore, we examined the association of RBC-cAMP levels with frequency of acute pain episodes in sickle cell disease subjects. Using a case control study design, we measured RBC-cAMP levels, fetal hemoglobin (Hb F), α-thalassemia (α-thal) and other hematological parameters at baseline (sham treated) and after stimulation with epinephrine. The cases consisted of sickle cell disease subjects with three or more acute pain episodes in the last 12 months, and those without a single acute pain episode in the last 12 months were considered as controls. Significantly higher cAMP values were found in cases than the controls, in both sham treated (p < 0.001) and epinephrine treated RBCs (p < 0.001) by Wilcoxon Rank Sum test. However, significant association of cAMP values was observed both on univariate [odds ratio (OR): 4.8, 95% confidence interval (95% CI): 1.51-15.19, p < 0.008) and multivariate logistic regression analyses only in epinephrine treated (OR: 5.07, 95% CI: 1.53-16.82, p < 0.008) but not in sham-treated RBCs. In the covariates, Hb F consistently showed protective effects in univariate as well as in multivariate analyses. Frequent acute pain episodes are associated with higher cAMP levels than those with less frequent pain episodes, only after stimulation with epinephrine but not with baseline level.
Collapse
Affiliation(s)
- Bimal P Jit
- a School of Life Sciences , AIPH University , Bhubaneswar , Odisha State , India.,b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India.,c School of Life Sciences , Sambalpur University , Jyoti Vihar, Burla , Sambalpur , Odisha State , India
| | - Pradeep K Mohanty
- b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India.,d Department of Medicine , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India
| | - Avinash Pradhan
- e Central Institute of Freshwater Aquaculture , Bhubaneswar , Odisha State , India
| | - Prasanta Purohit
- b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India.,f Multidisciplinary Research Unit , Maharaja Krishna Chandra Gajapati Medical College , Berhampur , Odisha State , India
| | - Kishalaya Das
- b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India
| | - Siris Patel
- b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India
| | - Satyabrata Meher
- b Sickle Cell Clinic and Molecular Biology Laboratory , Veer Surendra Sai Institute of Medical Sciences and Research , Burla, Sambalpur , Odisha State , India
| | - Shalini Sinha
- a School of Life Sciences , AIPH University , Bhubaneswar , Odisha State , India
| | - Jyoti R Mohanty
- a School of Life Sciences , AIPH University , Bhubaneswar , Odisha State , India
| | - Rajendra Kumar Behera
- c School of Life Sciences , Sambalpur University , Jyoti Vihar, Burla , Sambalpur , Odisha State , India
| | - Padmalaya Das
- a School of Life Sciences , AIPH University , Bhubaneswar , Odisha State , India
| |
Collapse
|
24
|
Zhang J, Jones SM, Lykotrafitis G, Andemariam B. Valsartan impedes epinephrine-induced ICAM-4 activation on normal, sickle cell trait and sickle cell disease red blood cells. PLoS One 2019; 14:e0216467. [PMID: 31083675 PMCID: PMC6513067 DOI: 10.1371/journal.pone.0216467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/23/2019] [Indexed: 11/18/2022] Open
Abstract
Abnormal red blood cell (RBC) adhesion to endothelial αvβ3 plays a crucial role in triggering vaso-occlusive episodes in sickle cell disease (SCD). It is known that epinephrine, a β-adrenergic receptor (β-AR) stimulator, increases the RBC surface density of active intercellular adhesion molecule-4 (ICAM-4) which binds to the endothelial αvβ3. It has also been demonstrated that in human embryonic kidney 293 cells, mouse cardiomyocytes, and COS-7 cell lines, the β-adrenergic and renin-angiotensin systems are interrelated and that there is a direct interaction and cross-regulation between β-AR and angiotensin II type 1 receptor (AT1R). Selective blockade of AT1R reciprocally inhibits the downstream signaling of β-ARs, similar to the inhibition observed in the presence of a β-AR-blocker. However, it is not known if this mechanism is active in human RBCs. Here, we studied the effect of valsartan, an AT1R blocker, on the surface density of active ICAM-4 receptors in normal, sickle cell trait, and homozygous sickle RBCs. We applied single molecule force spectroscopy to detect active ICAM-4 receptors on the RBC plasma membrane with and without the presence of valsartan and epinephrine. We found that epinephrine significantly increased whereas valsartan decreased their surface density. Importantly, we found that pretreatment of RBCs with valsartan significantly impeded the activation of ICAM-4 receptors induced by epinephrine. The observed reduced expression of active ICAM-4 receptors on the RBC plasma membrane leads us to conjecture that valsartan may be used as a supporting remedy for the prevention and treatment of vaso-occlusive crisis in SCD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
| | - Sasia-Marie Jones
- New England Sickle Cell Institute, Division of Hematology-Oncology, Neag Comprehensive Cancer Center, UCONN Health, University of Connecticut, Farmington, Connecticut, United States of America
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail: (GL); (BA)
| | - Biree Andemariam
- New England Sickle Cell Institute, Division of Hematology-Oncology, Neag Comprehensive Cancer Center, UCONN Health, University of Connecticut, Farmington, Connecticut, United States of America
- * E-mail: (GL); (BA)
| |
Collapse
|
25
|
Kapoor S, Little JA, Pecker LH. Advances in the Treatment of Sickle Cell Disease. Mayo Clin Proc 2018; 93:1810-1824. [PMID: 30414734 DOI: 10.1016/j.mayocp.2018.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/08/2018] [Accepted: 08/07/2018] [Indexed: 12/26/2022]
Abstract
Sickle cell disease (SCD) is a monogenic disorder that afflicts approximately 100,000 Americans and millions of people worldwide. It is characterized by hemolytic anemia, vaso-occlusive crises, relentless end-organ injury, and premature death. Currently, red blood cell transfusion and hydroxyurea are the major disease-modifying therapies available for SCD. Hematopoetic stem cell transplant is curative, but barriers to treatment are substantial and include a lack of suitable donors, immunologic transplant rejection, long-term adverse effects, prognostic uncertainty, and poor end-organ function, which is especially problematic for older patients. Gene therapy to correct the βs point mutation is under investigation as another curative modality. Deeper insights into the pathophysiology of SCD have led to the development of novel agents that target cellular adhesion, inflammation, oxidant injury, platelets and/or coagulation, vascular tone, and hemoglobin polymerization. These agents are in preclinical and clinical trials. One such agent, L-glutamine, decreases red blood cell oxidant injury and is recently US Food and Drug Administration approved to prevent acute pain episodes of SCD in patients 5 years of age or older. The purpose of this review is to describe the currently established therapies, barriers to curative therapies, and novel therapeutic agents that can target sickle cell hemoglobin polymerization and/or its downstream sequelae. A PubMed search was conducted for articles published up to May 15, 2018, using the search terms sickle cell disease, novel treatments, hematopoietic stem cell transplantation, and gene therapy. Studies cited include case series, retrospective studies, prospective clinical trials, meta-analyses, online abstracts, and original reviews.
Collapse
Affiliation(s)
- Sargam Kapoor
- Division of Hematology/Oncology, Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH; Division of Hematology/Oncology, Case Western Reserve University, Cleveland, OH
| | - Jane A Little
- Division of Hematology/Oncology, Department of Medicine, University Hospitals Cleveland Medical Center, Cleveland, OH; Division of Hematology/Oncology, Case Western Reserve University, Cleveland, OH
| | - Lydia H Pecker
- Division of Pediatric Hematology, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
26
|
Ovchynnikova E, Aglialoro F, von Lindern M, van den Akker E. The Shape Shifting Story of Reticulocyte Maturation. Front Physiol 2018; 9:829. [PMID: 30050448 PMCID: PMC6050374 DOI: 10.3389/fphys.2018.00829] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
The final steps of erythropoiesis involve unique cellular processes including enucleation and reorganization of membrane proteins and the cytoskeleton to produce biconcave erythrocytes. Surprisingly this process is still poorly understood. In vitro erythropoiesis protocols currently produce reticulocytes rather than biconcave erythrocytes. In addition, immortalized lines and iPSC-derived erythroid cell suffer from low enucleation and suboptimal final maturation potential. In light of the increasing prospect to use in vitro produced erythrocytes as (personalized) transfusion products or as therapeutic delivery agents, the mechanisms driving this last step of erythropoiesis are in dire need of resolving. Here we review the elusive last steps of reticulocyte maturation with an emphasis on protein sorting during the defining steps of reticulocyte formation during enucleation and maturation.
Collapse
Affiliation(s)
- Elina Ovchynnikova
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Francesca Aglialoro
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research, Amsterdam, Netherlands.,Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
27
|
Abstract
Non-adherence and deformability are the key intrinsic biomechanical features of the red blood cell (RBC), which allow it to tightly squeeze and pass through even the narrowest of microcirculatory networks. Blockage of microcirculatory flow, also known as vaso-occlusion, is a consequence of abnormal cellular adhesion to the vascular endothelium. In sickle cell disease (SCD), an inherited anaemia, even though RBCs have been shown to be heterogeneous in adhesiveness and deformability, this has not been studied in the context of physiologically relevant dynamic shear gradients at the microscale. We developed a microfluidic system that simulates physiologically relevant shear gradients of microcirculatory blood flow at a constant single volumetric flow rate. Using this system, shear dependent adhesion of RBCs from 28 subjects with SCD and from 11 healthy subjects was investigated using vascular endothelial protein functionalized microchannels. We defined a new term, RBC Shear Gradient Microfluidic Adhesion (SiGMA) index to assess shear dependent RBC adhesion in a subject-specific manner. We have shown for the first time that shear dependent adhesion of RBCs is heterogeneous in a microfluidic flow model, which correlates clinically with inflammatory markers and iron overload in subjects with SCD. This study reveals the complex dynamic interactions between RBC-mediated microcirculatory occlusion and clinical outcomes in SCD. These interactions may also be relevant to other microcirculatory disorders and microvascular diseases.
Collapse
Affiliation(s)
- Erdem Kucukal
- Department of Mechanical and Aerospace Engineering, Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Glennan 616B, 10900 Euclid Ave., Cleveland, OH, USA.
| | - Jane A Little
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA and Seidman Cancer Center at University Hospitals, Case Medical Center, Cleveland, OH, USA
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Biomanufacturing and Microfabrication Laboratory, Case Western Reserve University, Glennan 616B, 10900 Euclid Ave., Cleveland, OH, USA. and Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA and Department of Orthopaedics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
28
|
Abstract
Sickle cell disease (SCD) is a group of inherited disorders caused by mutations in HBB, which encodes haemoglobin subunit β. The incidence is estimated to be between 300,000 and 400,000 neonates globally each year, the majority in sub-Saharan Africa. Haemoglobin molecules that include mutant sickle β-globin subunits can polymerize; erythrocytes that contain mostly haemoglobin polymers assume a sickled form and are prone to haemolysis. Other pathophysiological mechanisms that contribute to the SCD phenotype are vaso-occlusion and activation of the immune system. SCD is characterized by a remarkable phenotypic complexity. Common acute complications are acute pain events, acute chest syndrome and stroke; chronic complications (including chronic kidney disease) can damage all organs. Hydroxycarbamide, blood transfusions and haematopoietic stem cell transplantation can reduce the severity of the disease. Early diagnosis is crucial to improve survival, and universal newborn screening programmes have been implemented in some countries but are challenging in low-income, high-burden settings.
Collapse
|
29
|
Glycophorin-C sialylation regulates Lu/BCAM adhesive capacity during erythrocyte aging. Blood Adv 2018; 2:14-24. [PMID: 29344581 DOI: 10.1182/bloodadvances.2017013094] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/30/2017] [Indexed: 11/20/2022] Open
Abstract
Lutheran/basal cell adhesion molecule (Lu/BCAM) is a transmembrane adhesion molecule expressed by erythrocytes and endothelial cells that can interact with the extracellular matrix protein laminin-α5. In sickle cell disease, Lu/BCAM is thought to contribute to adhesion of sickle erythrocytes to the vascular wall, especially during vaso-occlusive crises. On healthy erythrocytes however, its function is unclear. Here we report that Lu/BCAM is activated during erythrocyte aging. We show that Lu/BCAM-mediated binding to laminin-α5 is restricted by interacting, in cis, with glycophorin-C-derived sialic acid residues. Following loss of sialic acid during erythrocyte aging, Lu/BCAM is released from glycophorin-C and allowed to interact with sialic acid residues on laminin-α5. Decreased glycophorin-C sialylation, as observed in individuals lacking exon 3 of glycophorin-C, the so-called Gerbich phenotype, was found to correlate with increased Lu/BCAM-dependent binding to laminin-α5. In addition, we identified the sialic acid-binding site within the third immunoglobulin-like domain within Lu/BCAM that accounts for the interaction with glycophorin-C and laminin-α5. Last, we present evidence that neuraminidase-expressing pathogens, such as Streptococcus pneumoniae, can similarly induce Lu/BCAM-mediated binding to laminin-α5, by cleaving terminal sialic acid residues from the erythrocyte membrane. These results shed new light on the mechanisms contributing to increased adhesiveness of erythrocytes at the end of their lifespan, possibly facilitating their clearance. Furthermore, this work may contribute to understanding the pathology induced by neuraminidase-positive bacteria, because they are especially harmful to patients suffering from sickle cell disease and are associated with the occurrence of vaso-occlusive crises.
Collapse
|
30
|
Carden MA, Fay ME, Lu X, Mannino RG, Sakurai Y, Ciciliano JC, Hansen CE, Chonat S, Joiner CH, Wood DK, Lam WA. Extracellular fluid tonicity impacts sickle red blood cell deformability and adhesion. Blood 2017; 130:2654-2663. [PMID: 28978568 PMCID: PMC5731085 DOI: 10.1182/blood-2017-04-780635] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 09/24/2017] [Indexed: 01/04/2023] Open
Abstract
Abnormal sickle red blood cell (sRBC) biomechanics, including pathological deformability and adhesion, correlate with clinical severity in sickle cell disease (SCD). Clinical intravenous fluids (IVFs) of various tonicities are often used during treatment of vaso-occlusive pain episodes (VOE), the major cause of morbidity in SCD. However, evidence-based guidelines are lacking, and there is no consensus regarding which IVFs to use during VOE. Further, it is unknown how altering extracellular fluid tonicity with IVFs affects sRBC biomechanics in the microcirculation, where vaso-occlusion takes place. Here, we report how altering extracellular fluid tonicity with admixtures of clinical IVFs affects sRBC biomechanical properties by leveraging novel in vitro microfluidic models of the microcirculation, including 1 capable of deoxygenating the sRBC environment to monitor changes in microchannel occlusion risk and an "endothelialized" microvascular model that measures alterations in sRBC/endothelium adhesion under postcapillary venular conditions. Admixtures with higher tonicities (sodium = 141 mEq/L) affected sRBC biomechanics by decreasing sRBC deformability, increasing sRBC occlusion under normoxic and hypoxic conditions, and increasing sRBC adhesion in our microfluidic human microvasculature models. Admixtures with excessive hypotonicity (sodium = 103 mEq/L), in contrast, decreased sRBC adhesion, but overswelling prolonged sRBC transit times in capillary-sized microchannels. Admixtures with intermediate tonicities (sodium = 111-122 mEq/L) resulted in optimal changes in sRBC biomechanics, thereby reducing the risk for vaso-occlusion in our models. These results have significant translational implications for patients with SCD and warrant a large-scale prospective clinical study addressing optimal IVF management during VOE in SCD.
Collapse
Affiliation(s)
- Marcus A Carden
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Emory University School of Medicine, Atlanta, GA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA
| | - Meredith E Fay
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Emory University School of Medicine, Atlanta, GA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA
| | - Xinran Lu
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN
| | - Robert G Mannino
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Emory University School of Medicine, Atlanta, GA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA
| | - Yumiko Sakurai
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Emory University School of Medicine, Atlanta, GA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA
| | - Jordan C Ciciliano
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Emory University School of Medicine, Atlanta, GA
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, and
| | - Caroline E Hansen
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Emory University School of Medicine, Atlanta, GA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA
| | - Satheesh Chonat
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Emory University School of Medicine, Atlanta, GA
| | - Clinton H Joiner
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Emory University School of Medicine, Atlanta, GA
| | - David K Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN
| | - Wilbur A Lam
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Aflac Cancer & Blood Disorders Center, Emory University School of Medicine, Atlanta, GA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA
| |
Collapse
|
31
|
Li X, Li H, Chang HY, Lykotrafitis G, Em Karniadakis G. Computational Biomechanics of Human Red Blood Cells in Hematological Disorders. J Biomech Eng 2017; 139:2580906. [PMID: 27814430 DOI: 10.1115/1.4035120] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Indexed: 02/02/2023]
Abstract
We review recent advances in multiscale modeling of the biomechanical characteristics of red blood cells (RBCs) in hematological diseases, and their relevance to the structure and dynamics of defective RBCs. We highlight examples of successful simulations of blood disorders including malaria and other hereditary disorders, such as sickle-cell anemia, spherocytosis, and elliptocytosis.
Collapse
Affiliation(s)
- Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912 e-mail:
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269;Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - George Em Karniadakis
- Fellow ASME Division of Applied Mathematics, Brown University, Providence, RI 02912 e-mail:
| |
Collapse
|
32
|
Chang HY, Chang HM, Wu TJ, Chaing CY, Tzai TS, Cheng HL, Raghavaraju G, Chow NH, Liu HS. The role of Lutheran/basal cell adhesion molecule in human bladder carcinogenesis. J Biomed Sci 2017; 24:61. [PMID: 28841878 PMCID: PMC6389174 DOI: 10.1186/s12929-017-0360-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/03/2017] [Indexed: 11/25/2022] Open
Abstract
Background Lutheran/basal cell adhesion molecule (Lu/BCAM) is a membrane bound glycoprotein. This study was performed to investigate the role and downstream signaling pathway of Lu/BCAM in human bladder tumorigenesis. Methods Five human bladder cancer (E6, RT4, TSGH8301, TCCSUP and J82), one stable mouse fibroblast cell line (NIH-Lu) expressing Lu/BCAM transgene and sixty human uroepithelial carcinoma specimens were analyzed by real-time PCR, immunohistochemistry (IHC), immunofluorescence (IFA) staining, Western blotting and promoter luciferase assay for Lu/BCAM, respectively. The tumorigenicity of Lu/BCAM was demonstrated by focus formation, colony-forming ability, tumour formation, cell adhesion and migration. Results H-rasV12 was revealed to up-regulate Lu/BCAM at both transcriptional and translation levels. Lu/BCAM expression was detected on the membrane of primary human bladder cancer cells. Over-expression of Lu/BCAM in NIH-Lu stable cells increased focus number, colony formation and cell adhesion accompanied with F-actin rearrangement and decreased cell migration compared with parental NIH3T3 fibroblasts. In the presence of laminin ligand, Lu/BCAM overexpression further suppressed cell migration accompanied with increased cell adhesion. We further revealed that laminin-Lu/BCAM-induced cell adhesion and F-actin rearrangement were through increased Erk phosphorylation with an increase of RhoA and a decrease of Rac1 activity. Similarly, high Lu/BCAM expression was detected in the tumors of human renal pelvis, ureter and bladder, and was significantly associated with advanced tumor stage (p = 0.02). Patients with high Lu/BCAM expression showed a trend toward larger tumor size (p = 0.07) and lower disease-specific survival (p = 0.08), although not reaching statistical significance. Conclusion This is the first report showing that Lu/BCAM, in the presence of its ligand laminin, is oncogenic in human urothelial cancers and may have potential as a novel therapeutic target. Electronic supplementary material The online version of this article (doi:10.1186/s12929-017-0360-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong-Yi Chang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.,Department of Urology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Hsin-Mei Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Tsung-Jung Wu
- Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Chang-Yao Chaing
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Tzong-Shin Tzai
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Hong-Lin Cheng
- Department of Urology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Giri Raghavaraju
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Nan-Haw Chow
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China. .,Department of Pathology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.
| | - Hsiao-Sheng Liu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China. .,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China. .,Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.
| |
Collapse
|
33
|
Zhang J, Abiraman K, Jones SM, Lykotrafitis G, Andemariam B. Regulation of Active ICAM-4 on Normal and Sickle Cell Disease RBCs via AKAPs Is Revealed by AFM. Biophys J 2017; 112:143-152. [PMID: 28076805 DOI: 10.1016/j.bpj.2016.11.3204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 11/15/2022] Open
Abstract
Human healthy (wild-type (WT)) and homozygous sickle (SS) red blood cells (RBCs) express a large number of surface receptors that mediate cell adhesion between RBCs, and between RBCs and white blood cells, platelets, and the endothelium. In sickle cell disease (SCD), abnormal adhesion of RBCs to endothelial cells is mediated by the intercellular adhesion molecule-4 (ICAM-4), which appears on the RBC membrane and binds to the endothelial αvβ3 integrin. This is a key factor in the initiation of vaso-occlusive episodes, the hallmark of SCD. A better understanding of the mechanisms that control RBC adhesion to endothelium may lead to novel approaches to both prevention and treatment of vaso-occlusive episodes in SCD. One important mechanism of ICAM-4 activation occurs via the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA)-dependent signaling pathway. Here, we employed an in vitro technique called single-molecule force spectroscopy to study the effect of modulation of the cAMP-PKA-dependent pathway on ICAM-4 receptor activation. We quantified the frequency of active ICAM-4 receptors on WT-RBC and SS-RBC membranes, as well as the median unbinding force between ICAM-4 and αvβ3. We showed that the collective frequency of unbinding events in WT-RBCs is not significantly different from that of SS-RBCs. This result was confirmed by confocal microscopy experiments. In addition, we showed that incubation of normal RBCs and SS-RBCs with epinephrine, a catecholamine that binds to the β-adrenergic receptor and activates the cAMP-PKA-dependent pathway, caused a significant increase in the frequency of active ICAM-4 receptors in both normal RBCs and SS-RBCs. However, the unbinding force between ICAM-4 and the corresponding ligand αvβ3 remained the same. Furthermore, we demonstrated that forskolin, an adenylyl cyclase activator, significantly increased the frequency of ICAM-4 receptors in WT-RBCs and SS-RBCs, confirming that the activation of ICAM-4 is regulated by the cAMP-PKA pathway. Finally, we showed that A-kinase anchoring proteins play an essential role in ICAM-4 activation.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut
| | - Krithika Abiraman
- Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut
| | - Sasia-Marie Jones
- New England Sickle Cell Institute, Division of Hematology-Oncology, Neag Comprehensive Cancer Center, UCONN Health, University of Connecticut, Farmington, Connecticut
| | - George Lykotrafitis
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut; Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut.
| | - Biree Andemariam
- New England Sickle Cell Institute, Division of Hematology-Oncology, Neag Comprehensive Cancer Center, UCONN Health, University of Connecticut, Farmington, Connecticut.
| |
Collapse
|
34
|
Muthuswamy R, Okada NJ, Jenkins FJ, McGuire K, McAuliffe PF, Zeh HJ, Bartlett DL, Wallace C, Watkins S, Henning JD, Bovbjerg DH, Kalinski P. Epinephrine promotes COX-2-dependent immune suppression in myeloid cells and cancer tissues. Brain Behav Immun 2017; 62:78-86. [PMID: 28212885 DOI: 10.1016/j.bbi.2017.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/14/2017] [Accepted: 02/13/2017] [Indexed: 01/17/2023] Open
Abstract
Activation of the sympathetic nervous system (e.g., due to stress) has been implicated in cancer progression and recurrence, but its cancer-promoting effects have been variable between different studies. Here, we report that although catecholamines, mediators of systemic sympathetic activity, display only weak immunosuppressive impact on their own, their combination with inflammatory signals leads to the induction of COX-2 and multiple COX-2-dependent suppressive factors in human myeloid cells and cancer tissues. Human macrophages exposed to epinephrine and TNFα, or macrophages generated in 6day cultures in the presence of epinephrine, expressed high levels of COX-2, IDO and IL-10, and strongly suppressed both the proliferation and IFNγ production of CD8+ T cells. These suppressive effects of epinephrine were counteracted by celecoxib, a selective inhibitor of COX-2 activity, which inhibited the induction of immunosuppressive factors (including the elevated expression of COX-2 itself) and the ability of epinephrine-exposed macrophages to suppress CD8+ T cell responses. The activation of the COX-2/PGE2 system and COX-2-dependent suppressive events were also observed in ex vivo human breast and colon cancer explant cultures and were similarly counteracted by celecoxib. Our preliminary data also indicate elevated COX-2 expression in mammary tumors of chronic stress-exposed mice. The current demonstration of the interplay between inflammation and the induction of immunosuppressive factors by catecholamines suggest a contextual impact of stress, helping to explain variable results of epidemiologic studies of the link between sympathetic activity and cancer progression, and implicating COX-2 blockade as a potential means to mitigate stress-related immune suppression.
Collapse
Affiliation(s)
| | - Nana J Okada
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Frank J Jenkins
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA; The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Kandace McGuire
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Priscilla F McAuliffe
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - David L Bartlett
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA
| | - Callen Wallace
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Simon Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jill D Henning
- Department of Psychiatry, Psychology and Behavioral & Community Health Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Biology, University of Pittsburgh at Johnstown, Johnstown, PA 15904, USA
| | - Dana H Bovbjerg
- The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Department of Psychiatry, Psychology and Behavioral & Community Health Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Pawel Kalinski
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA; The University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA; Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
35
|
Alapan Y, Fraiwan A, Kucukal E, Hasan MN, Ung R, Kim M, Odame I, Little JA, Gurkan UA. Emerging point-of-care technologies for sickle cell disease screening and monitoring. Expert Rev Med Devices 2016; 13:1073-1093. [PMID: 27785945 PMCID: PMC5166583 DOI: 10.1080/17434440.2016.1254038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Sickle Cell Disease (SCD) affects 100,000 Americans and more than 14 million people globally, mostly in economically disadvantaged populations, and requires early diagnosis after birth and constant monitoring throughout the life-span of the patient. Areas covered: Early diagnosis of SCD still remains a challenge in preventing childhood mortality in the developing world due to requirements of skilled personnel and high-cost of currently available modalities. On the other hand, SCD monitoring presents insurmountable challenges due to heterogeneities among patient populations, as well as in the same individual longitudinally. Here, we describe emerging point-of-care micro/nano platform technologies for SCD screening and monitoring, and critically discuss current state of the art, potential challenges associated with these technologies, and future directions. Expert commentary: Recently developed microtechnologies offer simple, rapid, and affordable screening of SCD and have the potential to facilitate universal screening in resource-limited settings and developing countries. On the other hand, monitoring of SCD is more complicated compared to diagnosis and requires comprehensive validation of efficacy. Early use of novel microdevices for patient monitoring might come in especially handy in new clinical trial designs of emerging therapies.
Collapse
Affiliation(s)
- Yunus Alapan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Arwa Fraiwan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Erdem Kucukal
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - M. Noman Hasan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Ryan Ung
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Myeongseop Kim
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
| | - Isaac Odame
- Division of Haematology/Oncology, The Hospital for Sick Children; Toronto, Canada
- Department of Pediatrics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jane A. Little
- Department of Hematology and Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Seidman Cancer Center at University Hospitals, Case Medical Center, Cleveland, OH, USA
| | - Umut A. Gurkan
- Case Biomanufacturing and Microfabrication Laboratory, Mechanical and Aerospace Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Biomedical Engineering Department, Case Western Reserve University, Cleveland, OH, USA
- Department of Orthopedics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
36
|
Telen MJ. Developing new pharmacotherapeutic approaches to treating sickle-cell disease. ACTA ACUST UNITED AC 2016; 12:239-247. [PMID: 28484512 DOI: 10.1111/voxs.12305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Survival for patients with SCD has been prolonged by improvements in supportive care, including vaccinations, antibiotic prophylaxis, and overall medical management, including tra nsfusion. However, there remains only one approved, partially effective drug for sickle cell disease-hydroxyurea (hydroxycarbamide). The world desperately needs better ways of both treating and preventing the recurrent painful vaso-occlusive episodes pathognomonic of sickle cell disease as well as the end-organ damage that still leads inexorably to severely shortened life expectancies throughout the world. Based on accumulating knowledge about how the abnormal red blood cells of sickle cell disease cause the double scourge of acute painful episodes and progressive end-organ damage, both pharmaceutical enterprises and individual investigators are now pursuing multiple new avenues for treating sickle cell disease. As a result, many compounds are in active development, both in preclinical models as well as in phase I, II, and III clinical trials. These agents target many pathophysiologic processes thought to be critical in sickle cell disease, including the chemical and physical behavior of haemoglobin S, cell adhesion, coagulation pathways, platelet activation, inflammatory pathways, and upregulation of haemoglobin F expression. In addition, recent explorations of the genetic variations that predispose to certain types of sickle cell disease-related tissue injury, such as stroke or nephropathy, are expected to lead to identification of drugs targeting the pathways uncovered by such work. Thus, the next five to ten years holds a promise of new treatments for sickle cell disease.
Collapse
Affiliation(s)
- Marilyn J Telen
- Division of Hematology, Department of Medicine, Duke Comprehensive Sickle Cell Center, Duke University, Durham, NC, USA, Box 2615 DUMC, Durham, NC 27710, TEL: +1 919 684 5378, FAX: +1 919 681 7688,
| |
Collapse
|
37
|
Li X, Dao M, Lykotrafitis G, Karniadakis GE. Biomechanics and biorheology of red blood cells in sickle cell anemia. J Biomech 2016; 50:34-41. [PMID: 27876368 DOI: 10.1016/j.jbiomech.2016.11.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/02/2016] [Indexed: 01/12/2023]
Abstract
Sickle cell anemia (SCA) is an inherited blood disorder that causes painful crises due to vaso-occlusion of small blood vessels. The primary cause of the clinical phenotype of SCA is the intracellular polymerization of sickle hemoglobin resulting in sickling of red blood cells (RBCs) in deoxygenated conditions. In this review, we discuss the biomechanical and biorheological characteristics of sickle RBCs and sickle blood as well as their implications toward a better understanding of the pathophysiology and pathogenesis of SCA. Additionally, we highlight the adhesive heterogeneity of RBCs in SCA and their specific contribution to vaso-occlusive crisis.
Collapse
Affiliation(s)
- Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - George Lykotrafitis
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; Department of Mechanical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
38
|
Sickle cell disease biochip: a functional red blood cell adhesion assay for monitoring sickle cell disease. Transl Res 2016; 173:74-91.e8. [PMID: 27063958 PMCID: PMC4959913 DOI: 10.1016/j.trsl.2016.03.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/08/2016] [Accepted: 03/12/2016] [Indexed: 01/10/2023]
Abstract
Sickle cell disease (SCD) afflicts millions of people worldwide and is associated with considerable morbidity and mortality. Chronic and acute vaso-occlusion are the clinical hallmarks of SCD and can result in pain crisis, widespread organ damage, and early movtality. Even though the molecular underpinnings of SCD were identified more than 60 years ago, there are no molecular or biophysical markers of disease severity that are feasibly measured in the clinic. Abnormal cellular adhesion to vascular endothelium is at the root of vaso-occlusion. However, cellular adhesion is not currently evaluated clinically. Here, we present a clinically applicable microfluidic device (SCD biochip) that allows serial quantitative evaluation of red blood cell (RBC) adhesion to endothelium-associated protein-immobilized microchannels, in a closed and preprocessing-free system. With the SCD biochip, we have analyzed blood samples from more than 100 subjects and have shown associations between the measured RBC adhesion to endothelium-associated proteins (fibronectin and laminin) and individual RBC characteristics, including hemoglobin content, fetal hemoglobin concentration, plasma lactate dehydrogenase level, and reticulocyte count. The SCD biochip is a functional adhesion assay, reflecting quantitative evaluation of RBC adhesion, which could be used at baseline, during crises, relative to various long-term complications, and before and after therapeutic interventions.
Collapse
|
39
|
White J, Krishnamoorthy S, Gupta D, Lancelot M, Moore N, Sarnaik S, Hobbs WE, Light DR, Hines P. VLA-4 blockade by natalizumab inhibits sickle reticulocyte and leucocyte adhesion during simulated blood flow. Br J Haematol 2016; 174:970-82. [PMID: 27291690 DOI: 10.1111/bjh.14158] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/14/2016] [Indexed: 11/29/2022]
Abstract
Very Late Antigen-4 (VLA-4, α4β1-integrin, ITGA4) orchestrates cell-cell and cell-endothelium adhesion. Given the proposed role of VLA-4 in sickle cell disease (SCD) pathophysiology, we evaluated the ability of the VLA-4 blocking antibody natalizumab to inhibit SCD blood cell adhesion. Natalizumab recognized surface VLA-4 on leucocytes and reticulocytes in whole blood from SCD subjects. SCD reticulocytes were positive for VLA-4, while VLA-4 staining of non-SCD reticulocytes was undetectable. Titrations with natalizumab revealed the presence of saturable levels of VLA-4 on both SCD reticulocytes and leucocytes similar to healthy subject leucocytes. Under physiological flow conditions, the adhesion of SCD whole blood cells and isolated SCD leucocytes to immobilized vascular cell adhesion molecule 1 (VCAM-1) was blocked by natalizumab in a dose-dependent manner, which correlated with cell surface receptor binding. Natalizumab also inhibited >50% of whole blood cell binding to TNF-α activated human umbilical vein endothelial cell monolayers under physiological flow at clinically relevant concentrations (10 to 100 μg/ml). This indicates that VLA-4 is the dominant receptor that drives SCD reticulocyte and mononuclear cell adhesion to VCAM-1 and that the VLA-4 adhesion to VCAM-1 is a significant contributor to SCD blood cell adhesion to endothelium. Thus, VLA-4 blockade may be beneficial in sickle cell disease.
Collapse
Affiliation(s)
- Jennell White
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | | | | | - Moira Lancelot
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | | | - Sharada Sarnaik
- Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA
| | | | | | - Patrick Hines
- Carman and Ann Adams Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Critical Care Medicine, Children's Hospital of Michigan, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
40
|
Beyond hydroxyurea: new and old drugs in the pipeline for sickle cell disease. Blood 2016; 127:810-9. [PMID: 26758919 DOI: 10.1182/blood-2015-09-618553] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/21/2015] [Indexed: 01/09/2023] Open
Abstract
Despite Food and Drug Administration (FDA) approval of hydroxyurea to reduce the frequency of vaso-occlusive episodes, sickle cell disease (SCD) has continued to be treated primarily with analgesics for pain relief. However, elucidation of the multiple pathophysiologic mechanisms leading to vaso-occlusion and tissue injury in SCD has now resulted in a burgeoning effort to identify new treatment modalities to prevent or ameliorate the consequences of the disease. Development of new drugs as well as investigation of drugs previously used in other settings have targeted cell adhesion, inflammatory pathways, upregulation of hemoglobin F, hemoglobin polymerization and sickling, coagulation, and platelet activation. Although these efforts have not yet yielded drugs ready for FDA approval, several early studies have been extremely encouraging. Moreover, the marked increase in clinical pharmaceutical research addressing SCD and the new and old drugs in the pipeline make it reasonable to expect that we will soon have new treatments for SCD.
Collapse
|
41
|
Niesor EJ, Benghozi R, Amouyel P, Ferdinand KC, Schwartz GG. Adenylyl Cyclase 9 Polymorphisms Reveal Potential Link to HDL Function and Cardiovascular Events in Multiple Pathologies: Potential Implications in Sickle Cell Disease. Cardiovasc Drugs Ther 2015; 29:563-572. [PMID: 26619842 DOI: 10.1007/s10557-015-6626-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adenylyl cyclase 9 (ADCY9) mediates β2-adrenoceptor (β2-AR) signalling. Both proteins are associated with caveolae, specialized cholesterol-rich membrane substructures. Apolipoprotein A1 (ApoA1), the major protein component of high-density lipoprotein (HDL), removes cholesterol from cell membrane and caveolae and may thereby influence β2-AR signalling, shown in vitro to be modulated by cholesterol. Patients with Sickle Cell Disease (SCD) typically have low HDL and ApoA1 levels. In patients, mainly of African origin, with SCD, β2-AR activation may trigger adhesion of red blood cells to endothelial cells, leading to vascular occlusive events. Moreover, ADCY9 polymorphism is associated with risk of stroke in SCD. In recent clinical trials, ADCY9 polymorphism was found to be a discriminant factor associated with the risk of cardiovascular (CV) events in Caucasian patients treated with the HDL-raising compound dalcetrapib. We hypothesize that these seemingly disparate observations share a common mechanism related to interaction of HDL/ApoA1 and ADCY9 on β2-AR signalling. This review also raises the importance of characterizing polymorphisms that determine the response to HDL-raising and -mimicking agents in the non-Caucasian population at high risk of CV diseases and suffering from SCD. This may facilitate personalized CV treatments.
Collapse
Affiliation(s)
- Eric J Niesor
- F.Hoffmann-La Roche Ltd, Basel, Switzerland. .,Pre-β1 Consulting, 13c Chemin de Bonmont, 1260, Nyon, Switzerland.
| | - Renée Benghozi
- F.Hoffmann-La Roche Ltd, Basel, Switzerland.,Cerenis Therapeutics Holding, Labège, France
| | | | | | | |
Collapse
|
42
|
Abstract
Although production of hemoglobin S, the genetic defect that causes sickle cell disease (SCD), directly affects only red blood cells, the manifestations of SCD are pervasive, and almost every cell type and organ system in the body can be involved. Today, the vast majority of patients with SCD who receive modern health care reach adulthood thanks to vaccine prophylaxis and improvements in supportive care, including transfusion. However, once patients reach adulthood, they commonly experience recurrent painful vaso-occlusive crises and frequently have widespread end-organ damage and severely shortened life expectancies. Over the last several decades, research has elucidated many of the mechanisms whereby abnormal red blood cells produce such ubiquitous organ damage. With these discoveries have come new ways to measure disease activity. In addition, new pharmaceutical interventions are now being developed to address what has been learned about disease mechanisms.
Collapse
Affiliation(s)
- Marilyn J Telen
- Duke University School of Medicine, Box 2615, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
43
|
Muravyov A, Tikhomirova I. Red blood cell microrheological changes and drug transport efficiency. ACTA ACUST UNITED AC 2015. [DOI: 10.3233/jcb-15005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Potential Signal Transduction Regulation by HDL of the β2-Adrenergic Receptor Pathway. Implications in Selected Pathological Situations. Arch Med Res 2015; 46:361-71. [PMID: 26009249 DOI: 10.1016/j.arcmed.2015.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 01/09/2023]
Abstract
The main atheroprotective mechanism of high-density lipoprotein (HDL) has been regarded as reverse cholesterol transport, whereby cholesterol from peripheral tissues is removed and transported to the liver for elimination. Although numerous additional atheroprotective mechanisms have been suggested, the role of HDL in modulating signal transduction of cell membrane-bound receptors has received little attention to date. This potential was recently highlighted following the identification of a polymorphism in the adenylyl cyclase 9 gene (ADCY9) that was shown to be a determining factor in the risk of cardiovascular (CV) events in patients treated with the HDL-raising compound dalcetrapib. Indeed, ADCY9 is part of the signaling pathway of the β2-adrenergic receptor (β2-AR) and both are membrane-bound proteins affected by changes in membrane-rich cholesterol plasma membrane domains (caveolae). Numerous G-protein-coupled receptors (GPCRs) and ion channels are affected by caveolae, with caveolae composition acting as a 'signalosome'. Polymorphisms in the genes encoding ADCY9 and β2-AR are associated with response to β2-agonist drugs in patients with asthma, malaria and with sickle cell disease. Crystallization of the β2-AR has found cholesterol tightly bound to transmembrane structures of the receptor. Cholesterol has also been shown to modulate the activity of this receptor. Apolipoprotein A1 (ApoA1), the major protein component of HDL, destabilizes and removes cholesterol from caveolae with high affinity through interaction with ATP-binding cassette transporter. Furthermore, β2-AR activity may be affected by ApoA1/HDL-targeted therapies. Taken together, these observations suggest a common pathway that potentially links a primary HDL function to the regulation of signal transduction.
Collapse
|
45
|
Randomized phase 2 study of GMI-1070 in SCD: reduction in time to resolution of vaso-occlusive events and decreased opioid use. Blood 2015; 125:2656-64. [PMID: 25733584 DOI: 10.1182/blood-2014-06-583351] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 02/10/2015] [Indexed: 01/26/2023] Open
Abstract
Treatment of vaso-occlusive crises (VOC) or events in sickle cell disease (SCD) remains limited to symptom relief with opioids. Animal models support the effectiveness of the pan-selectin inhibitor GMI-1070 in reducing selectin-mediated cell adhesion and abrogating VOC. We studied GMI-1070 in a prospective multicenter, randomized, placebo-controlled, double-blind, phase 2 study of 76 SCD patients with VOC. Study drug (GMI-1070 or placebo) was given every 12 hours for up to 15 doses. Other treatment was per institutional standard of care. All subjects reached the composite primary end point of resolution of VOC. Although time to reach the composite primary end point was not statistically different between the groups, clinically meaningful reductions in mean and median times to VOC resolution of 41 and 63 hours (28% and 48%, P = .19 for both) were observed in the active treatment group vs the placebo group. As a secondary end point, GMI-1070 appeared safe in acute vaso-occlusion, and adverse events were not different in the two arms. Also in secondary analyses, mean cumulative IV opioid analgesic use was reduced by 83% with GMI-1070 vs placebo (P = .010). These results support a phase 3 study of GMI-1070 (now rivipansel) for SCD VOC. This trial was registered at www.clinicaltrials.gov as #NCT01119833.
Collapse
|
46
|
El Nemer W, De Grandis M, Brusson M. Abnormal adhesion of red blood cells in polycythemia vera: a prothrombotic effect? Thromb Res 2015; 133 Suppl 2:S107-11. [PMID: 24862129 DOI: 10.1016/s0049-3848(14)50018-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Polycythemia vera (PV) is a myeloproliferative neoplasm (MPN) characterised by the V617F activating mutation in the tyrosine kinase JAK2. PV patients exhibit increased haemoglobin levels and red cell mass because of uncontrolled proliferation of the erythroid lineage. Thrombosis and transformation to acute leukaemia are the major causes of morbidity and mortality in this disease. Increased thrombotic risk in PV patients is multifactorial and complex; it is associated with high levels of haemoglobin, impaired rheology and increased viscosity resulting from erythrocytosis. An additional parameter that might contribute to this risk was recently brought to light by work from our group showing abnormal activation of adhesion proteins in PV RBCs. In this review we provide an overview of these recent findings and discuss how the pro-adhesive features of JAK2V617F-positive red blood cells might initiate and contribute to the circulatory complications described in PV.
Collapse
Affiliation(s)
- Wassim El Nemer
- INSERM U1134, F-75739 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France; Institut National de la Transfusion Sanguine F-75739 Paris, France Laboratoire d'Excellence GR-Ex France.
| | - Maria De Grandis
- INSERM U1134, F-75739 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France; Institut National de la Transfusion Sanguine F-75739 Paris, France Laboratoire d'Excellence GR-Ex France
| | - Mégane Brusson
- INSERM U1134, F-75739 Paris, France; Univ Paris Diderot, Sorbonne Paris Cité, UMR_S 1134, F-75739 Paris, France; Institut National de la Transfusion Sanguine F-75739 Paris, France Laboratoire d'Excellence GR-Ex France
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This review discusses the unexpected role of red blood cell (RBC) adhesiveness in the pathophysiology of two red cell diseases, hereditary spherocytosis and polycythemia vera, and two 'nonerythroid' disorders, central retinal vein occlusion and Gaucher disease. These pathologies share common clinical manifestations, that is vaso-occlusion and/or thrombotic events. RECENT FINDINGS Recently, the direct involvement of RBC adhesion to the vascular endothelium has been demonstrated in the occurrence of vaso-occlusive events, in particular in sickle cell disease (SCD). Several erythroid adhesion molecules and their ligands have been identified that belong to different molecular classes (integrins, Ig-like molecules, lipids...) and are activated by a variety of signaling pathways. Among these, the laminin receptor, Lutheran/basal cell adhesion molecule, which is activated by phosphorylation, appears to play a central role in several pathologies. SUMMARY RBC adhesiveness might be involved in complications such as the vaso-occlusive crisis in SCD, thrombosis in polycythemia vera, splenic sequestration in hereditary spherocytosis, occlusions in central retinal vein occlusion and bone infarcts in Gaucher disease. Characterization of this pathological process at the cellular and molecular levels should prove useful to develop new therapeutic approaches based on the blockade of RBC abnormal interactions with vascular endothelium and/or circulating blood cells.
Collapse
|
48
|
White J, Lancelot M, Sarnaik S, Hines P. Increased erythrocyte adhesion to VCAM-1 during pulsatile flow: Application of a microfluidic flow adhesion bioassay. Clin Hemorheol Microcirc 2015; 60:201-13. [PMID: 24898561 PMCID: PMC4923762 DOI: 10.3233/ch-141847] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sickle cell disease (SCD) is characterized by microvascular occlusion mediated by adhesive interactions of sickle erythrocytes (SSRBCs) to the endothelium. Most in vitro flow adhesion assays measure SSRBC adhesion during continuous flow, although in vivo SSRBC adhesive interactions occur during pulsatile flow. Using a well-plate microfluidic flow adhesion system, we demonstrate that isolated SSRBCs adhere to vascular cell adhesion molecule (VCAM-1) at greater levels during pulsatile versus continuous flow. A significant increase in adhesive interactions was observed between all pulse frequencies 1 Hz to 2 Hz (60-120 beats/min) when compared to non-pulsatile flow. Adhesion of isolated SSRBCs and whole blood during pulsatile flow was unaffected by protein kinase A (PKA) inhibition, and exposure of SSRBCs to pulsatile flow did not affect the intrinsic adhesive properties of SSRBCs. The cell type responsible for increased adhesion of whole blood varied from patient to patient. We conclude that low flow periods of the pulse cycle allow more adhesive interactions between sickle erythrocytes and VCAM-1, and sickle erythrocyte adhesion in the context of whole blood may better reflect physiologic cellular interactions. The microfluidic flow adhesion bioassay used in this study may have applications for clinical assessment of sickle erythrocyte adhesion during pulsatile flow.
Collapse
Affiliation(s)
- Jennell White
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Moira Lancelot
- Division of Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI, USA
| | - Sharada Sarnaik
- Division of Hematology/Oncology, Children’s Hospital of Michigan, Detroit, MI, USA
| | - Patrick Hines
- Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA
- Division of Critical Care Medicine, Children’s Hospital of Michigan, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
49
|
Abstract
INTRODUCTION The search for effective therapeutic interventions for sickle cell disease (SCD) has been an ongoing endeavor for over 50 years. During this period, only hydroxyurea (HU), which received US FDA approval in February 1998, was identified as an effective therapeutic agent in preventing or ameliorating the frequency of vaso-occlusive crises, acute chest syndrome and the need for blood transfusion. Approximately 25% of patients with sickle cell anemia (SCA), however, do not respond to HU and some patients experiencing serious side effects of this chemotherapeutic agent. Nevertheless, the success of HU opened the sluice gates to identify other effective drug therapies. The objective of this review is to describe the emerging drug therapies for SCA. AREAS COVERED In this review, we describe the pathophysiology of SCD and provide an in-depth analysis of the current and new pharmacologic therapies in the field. Literature searches involved multiple databases including Medline In-Process & Other Non-Indexed Citations, MEDLINE, Embase, Cochrane Database of Systematic Reviews, and Scopus. EXPERT OPINION SCA is a heterogeneous disease that has caused tremendous global morbidity and early mortality. More effective, individualized and inexpensive therapies are needed. New therapies targeting multiple pathways in its complex pathophysiology are under investigation.
Collapse
Affiliation(s)
- Priya C Singh
- Bayhealth Cancer Institute, Hematology/Oncology , Dover, DE , USA
| | | |
Collapse
|
50
|
AKAP-dependent modulation of BCAM/Lu adhesion on normal and sickle cell disease RBCs revealed by force nanoscopy. Biophys J 2014; 106:1258-67. [PMID: 24655501 DOI: 10.1016/j.bpj.2014.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 02/02/2023] Open
Abstract
Human normal and sickle red blood cells (RBCs) adhere with high affinity to the alpha5 chain of laminin (LAMA5) via the basal cell adhesion molecule/Lutheran (BCAM/Lu) receptor, which is implicated in vasoocclusive episodes in sickle cell disease and activated through the cyclic adenosine monophosphate (cAMP) signaling pathway. However, the effect of the cAMP pathway on the expression of active BCAM/Lu receptors at the single-molecule level is unknown. We established an in vitro technique, based on atomic force microscopy, which enables detection of single BCAM/Lu proteins on the RBC surface and measures the unbinding force between BCAM/Lu and LAMA5. We showed that the expression of active BCAM/Lu receptors is higher in homozygous sickle RBCs (SS-RBCs) than normal RBCs and that it is critically dependent on the cAMP signaling pathway on both normal and SS-RBCs. Of importance, we illustrated that A-kinase anchoring proteins are crucial for BCAM/Lu receptor activation. Furthermore, we found that SS-RBCs from hydroxyurea-treated patients show a lower expression of active BCAM/Lu receptors, a lower unbinding force to LAMA5, and insignificant stimulation by epinephrine as compared to SS-RBCs from untreated patients. To our knowledge, these findings may lead to novel antiadhesive targets for vasoocclusive episodes in sickle cell disease.
Collapse
|