1
|
Immler R, Nussbaumer K, Doerner A, El Bounkari O, Huber S, Abisch J, Napoli M, Schmidt S, Margraf A, Pruenster M, Rohwedder I, Lange-Sperandio B, Mall MA, de Jong R, Ohnmacht C, Bernhagen J, Voehringer D, Marth JD, Frommhold D, Sperandio M. CCR3-dependent eosinophil recruitment is regulated by sialyltransferase ST3Gal-IV. Proc Natl Acad Sci U S A 2024; 121:e2319057121. [PMID: 38687790 PMCID: PMC11087806 DOI: 10.1073/pnas.2319057121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Eosinophil recruitment is a pathological hallmark of many allergic and helminthic diseases. Here, we investigated chemokine receptor CCR3-induced eosinophil recruitment in sialyltransferase St3gal4-/- mice. We found a marked decrease in eosinophil extravasation into CCL11-stimulated cremaster muscles and into the inflamed peritoneal cavity of St3gal4-/- mice. Ex vivo flow chamber assays uncovered reduced adhesion of St3gal4-/- compared to wild type eosinophils. Using flow cytometry, we show reduced binding of CCL11 to St3gal4-/- eosinophils. Further, we noted reduced binding of CCL11 to its chemokine receptor CCR3 isolated from St3gal4-/- eosinophils. This was accompanied by almost absent CCR3 internalization of CCL11-stimulated St3gal4-/- eosinophils. Applying an ovalbumin-induced allergic airway disease model, we found a dramatic reduction in eosinophil numbers in bronchoalveolar lavage fluid following intratracheal challenge with ovalbumin in St3gal4-deficient mice. Finally, we also investigated tissue-resident eosinophils under homeostatic conditions and found reduced resident eosinophil numbers in the thymus and adipose tissue in the absence of ST3Gal-IV. Taken together, our results demonstrate an important role of ST3Gal-IV in CCR3-induced eosinophil recruitment in vivo rendering this enzyme an attractive target in reducing unwanted eosinophil infiltration in various disorders including allergic diseases.
Collapse
Affiliation(s)
- Roland Immler
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| | - Katrin Nussbaumer
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| | - Axel Doerner
- Department of Neonatology, University of Heidelberg, Heidelberg69120, Germany
| | - Omar El Bounkari
- Division of Vascular Biology, Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, München81377, Germany
| | - Silke Huber
- Institute of Immunology, Ludwig-Maximilians-Universität München, München80336, Germany
| | - Janine Abisch
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| | - Matteo Napoli
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| | - Sarah Schmidt
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| | - Andreas Margraf
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| | - Monika Pruenster
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| | - Ina Rohwedder
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| | - Baerbel Lange-Sperandio
- von Haunersches Kinderspital, Klinikum der Universität München, Ludwig-Maximilians-Universität, München80336, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin13353, Germany
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Berlin10117, Germany
- German Centre for Lung Research, Associated Partner Site, Berlin13353, Germany
| | - Renske de Jong
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, München80802, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, München80802, Germany
| | - Juergen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität, München81377, Germany
- Munich Cluster for Systems Neurology, München81377, Germany
- Munich Heart Alliance, München80336, Germany
| | - David Voehringer
- Institute of Immunology, Ludwig-Maximilians-Universität München, München80336, Germany
- Department of Infection Biology, University of Erlangen, Erlangen91054, Germany
| | - Jamey D. Marth
- Sanford Burnham Prebys Medical Discovery Institute, Infectious and Inflammatory Diseases, San Diego, CA92037
| | - David Frommhold
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
- Children’s Hospital Memmingen, Memmingen87700, Germany
| | - Markus Sperandio
- Institute of Cardiovascular Physiology and Pathophysiology, Walter Brendel Center of Experimental Medicine, Ludwig-Maximilians-UniversitätMünchen, PLanegg-Martinsried82152, Germany
| |
Collapse
|
2
|
Rodriguez AB, Parriott G, Engelhard VH. Tumor necrosis factor receptor regulation of peripheral node addressin biosynthetic components in tumor endothelial cells. Front Immunol 2022; 13:1009306. [PMID: 36189308 PMCID: PMC9520236 DOI: 10.3389/fimmu.2022.1009306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Tumor-associated tertiary lymphoid structures are ectopic lymphoid aggregates that have considerable morphological, cellular, and molecular similarity to secondary lymphoid organs, particularly lymph nodes. Tumor vessels expressing peripheral node addressin (PNAd) are hallmark features of these structures. Previous work from our laboratory demonstrated that PNAd is displayed on intratumoral vasculature of murine tumors, and its expression is controlled by the engagement of lymphotoxin-α3, secreted by effector CD8 T cells, with tumor necrosis factor receptors (TNFR) on tumor endothelial cells (TEC). The goals of the present work were: 1) to identify differences in expression of genes encoding the scaffolding proteins and glycosyl transferases associated with PNAd biosynthesis in TEC and lymph node blood endothelial cells (LN BEC); and 2) to determine which of these PNAd associated components are regulated by TNFR signaling. We found that the same genes encoding scaffolding proteins and glycosyl transferases were upregulated in PNAd+ LN BEC and PNAd+ TEC relative to their PNAdneg counterparts. The lower level of PNAd expression on TEC vs LN BEC was associated with relatively lower expression of these genes, particularly the carbohydrate sulfotransferase Chst4. Loss of PNAd on TEC in the absence of TNFR signaling was associated with lack of upregulation of these same genes. A small subset of PNAd+ TEC remaining in the absence of TNFR signaling showed normal upregulation of a subset of these genes, but reduced upregulation of genes encoding the scaffolding proteins podocalyxin and nepmucin, and carbohydrate sulfotransferase Chst2. Lastly, we found that checkpoint immunotherapy augmented both the fraction of TEC expressing PNAd and their surface level of this ligand. This work points to strong similarities in the regulation of PNAd expression on TEC by TNFR signaling and on LN BEC by lymphotoxin-β receptor signaling, and provides a platform for the development of novel strategies that manipulate PNAd expression on tumor vasculature as an element of cancer immunotherapy.
Collapse
Affiliation(s)
| | | | - Victor H. Engelhard
- Carter Immunology Center and Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
- *Correspondence: Victor H. Engelhard,
| |
Collapse
|
3
|
Gonzalez-Gil A, Porell RN, Fernandes SM, Maenpaa E, Li TA, Li T, Wong PC, Aoki K, Tiemeyer M, Yu ZJ, Orsburn BC, Bumpus NN, Matthews RT, Schnaar RL. Human brain sialoglycan ligand for CD33, a microglial inhibitory Siglec implicated in Alzheimer's disease. J Biol Chem 2022; 298:101960. [PMID: 35452678 PMCID: PMC9130525 DOI: 10.1016/j.jbc.2022.101960] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by accumulation of misfolded proteins. Genetic studies implicate microglia, brain-resident phagocytic immune cells, in AD pathogenesis. As positive effectors, microglia clear toxic proteins, whereas as negative effectors, they release proinflammatory mediators. An imbalance of these functions contributes to AD progression. Polymorphisms of human CD33, an inhibitory microglial receptor, are linked to AD susceptibility; higher CD33 expression correlates with increased AD risk. CD33, also called Siglec-3, is a member of the sialic acid-binding immunoglobulin-type lectin (Siglec) family of immune regulatory receptors. Siglec-mediated inhibition is initiated by binding to complementary sialoglycan ligands in the tissue environment. Here, we identify a single sialoglycoprotein in human cerebral cortex that binds CD33 as well as Siglec-8, the most abundant Siglec on human microglia. The ligand, which we term receptor protein tyrosine phosphatase zeta (RPTPζ)S3L, is composed of sialylated keratan sulfate chains carried on a minor isoform/glycoform of RPTPζ (phosphacan) and is found in the extracellular milieu of the human brain parenchyma. Brains from human AD donors had twofold higher levels of RPTPζS3L than age-matched control donors, raising the possibility that RPTPζS3L overexpression limits misfolded protein clearance contributing to AD pathology. Mice express the same structure, a sialylated keratan sulfate RPTPζ isoform, that binds mouse Siglec-F and crossreacts with human CD33 and Siglec-8. Brains from mice engineered to lack RPTPζ, the sialyltransferase St3gal4, or the keratan sulfate sulfotransferase Chst1 lacked Siglec binding, establishing the ligand structure. The unique CD33 and Siglec-8 ligand, RPTPζS3L, may contribute to AD progression.
Collapse
Affiliation(s)
- Anabel Gonzalez-Gil
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan N Porell
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steve M Fernandes
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eila Maenpaa
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - T August Li
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tong Li
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Philip C Wong
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Zaikuan J Yu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Russell T Matthews
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
4
|
Overlapping and unique substrate specificities of ST3GAL1 and 2 during hematopoietic and megakaryocytic differentiation. Blood Adv 2022; 6:3945-3955. [PMID: 35507766 PMCID: PMC9278294 DOI: 10.1182/bloodadvances.2022007001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022] Open
Abstract
ST3GAL1 and ST3GAL2 have both overlapping and unique substrate specificities in O-glycan sialylation during megakaryopoiesis. O-glycan sialylation is dispensable for MK production but indispensable for MK proplatelet formation.
Although the sialyltransferases ST3GAL1 and ST3GAL2 are known to transfer sialic acid to the galactose residue of type III disaccharides (Galβ1,3GalNAc) in vitro, sialylation of O-linked glycosylated proteins in living cells has been largely attributed to ST3GAL1. To examine the role of ST3GAL2 in O-sialylation, we examined its expression during differentiation of human-induced pluripotent stem cells (iPSCs) into hematopoietic progenitor cells (HPCs) and megakaryocytes (MKs). ST3GAL1 and ST3GAL2 each became highly expressed during the differentiation of iPSCs to HPCs but decreased markedly in their expression upon differentiation into MKs, suggesting coordination of expression during megakaryopoiesis. To further delineate their role in these processes, we generated ST3GAL1-, ST3GAL2-, and doubly deficient human iPSC lines. Binding of the peanut agglutinin lectin, which reports the presence of unsialylated Galβ1,3GalNAc glycan chains, was strongly increased in HPCs and MKs derived from double-knockout iPSCs and remained moderately increased in cells lacking either one of these sialyltransferases, demonstrating that both can serve as functional cellular O-glycan sialyltransferases. Interestingly, the HPC markers CD34 and CD43, as well as MK membrane glycoprotein (GP) GPIbα, were identified as major GP substrates for ST3GAL1 and ST3GAL2. In contrast, O-sialylation of GPIIb relied predominantly on the expression of ST3GAL2. Finally, although disruption of ST3GAL1 and ST3GAL2 had little impact on MK production, their absence resulted in dramatically impaired MK proplatelet formation. Taken together, these data establish heretofore unknown physiological roles for ST3GAL1 and ST3GAL2 in O-linked glycan sialylation in hemato- and megakaryocytopoiesis.
Collapse
|
5
|
Yu L, Peng J, Mineo C. Lipoprotein sialylation in atherosclerosis: Lessons from mice. Front Endocrinol (Lausanne) 2022; 13:953165. [PMID: 36157440 PMCID: PMC9498574 DOI: 10.3389/fendo.2022.953165] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/15/2022] [Indexed: 11/22/2022] Open
Abstract
Sialylation is a dynamically regulated modification, which commonly occurs at the terminal of glycan chains in glycoproteins and glycolipids in eukaryotic cells. Sialylation plays a key role in a wide array of biological processes through the regulation of protein-protein interactions, intracellular localization, vesicular trafficking, and signal transduction. A majority of the proteins involved in lipoprotein metabolism and atherogenesis, such as apolipoproteins and lipoprotein receptors, are sialylated in their glycan structures. Earlier studies in humans and in preclinical models found a positive correlation between low sialylation of lipoproteins and atherosclerosis. More recent works using loss- and gain-of-function approaches in mice have revealed molecular and cellular mechanisms by which protein sialylation modulates causally the process of atherosclerosis. The purpose of this concise review is to summarize these findings in mouse models and to provide mechanistic insights into lipoprotein sialylation and atherosclerosis.
Collapse
Affiliation(s)
- Liming Yu
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jun Peng
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- *Correspondence: Chieko Mineo,
| |
Collapse
|
6
|
The sialyltransferase ST3Gal-IV guides murine T-cell progenitors to the thymus. Blood Adv 2021; 4:1930-1941. [PMID: 32380539 DOI: 10.1182/bloodadvances.2019001046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/12/2020] [Indexed: 12/15/2022] Open
Abstract
T lymphocytes are important players in beneficial and detrimental immune responses. In contrast to other lymphocyte populations that develop in the bone marrow, T-cell precursors need to migrate to the thymus for further development. The interaction of P-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) is crucial for thymic entry of T-cell precursors during settings of T-cell lineage reconstitution. PSGL-1 has to be sialylated to function as a ligand for P-selectin, and the sialyltransferase ST3Gal-IV might play a critical role in this process. We therefore investigated the role of ST3Gal-IV for T-cell development using competitive mixed bone marrow chimeric mice. We found that ST3Gal-IV is dispensable for homing and engraftment of hematopoietic precursors in the bone marrow. However, ST3Gal-IV deficiency affects seeding of the thymus by early T-cell progenitors, leading to impaired restoration of the peripheral T-cell compartment. This defect could be restored by ectopic retroviral expression of ST3Gal-IV in hematopoietic stem cells derived from ST3Gal-IV-deficient donor mice. Our findings show that ST3Gal-IV plays a critical and nonredundant role for efficient T-cell lineage reconstitution after bone marrow transplantation.
Collapse
|
7
|
Chen Y, Hu J, Chen Y. Platelet desialylation and TFH cells-the novel pathway of immune thrombocytopenia. Exp Hematol Oncol 2021; 10:21. [PMID: 33722280 PMCID: PMC7958461 DOI: 10.1186/s40164-021-00214-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/07/2021] [Indexed: 12/15/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by immune-mediated destruction of one's own platelets. The progression of thrombocytopenia involves an imbalance of platelet production and clearance. B cells can induce autoantibodies, and T cells contribute to the pathological progression as well. Some patients with ITP have a poor response to common first-line therapies. Recent studies have shown that a novel Fc-independent platelet clearance pathway is associated with poor prognosis in these patients. By this pathway, desialylated platelets can be cleared by Ashwell-Morell receptor (AMR) on hepatocytes. Research has demonstrated that patients with refractory ITP usually have a high level of desialylation, indicating the important role of sialylation on platelet membrane glycoprotein (GP) in patients with primary immune thrombocytopenia, and neuraminidase 1(NEU1) translocation might be involved in this process. Patients with ITP who are positive for anti-GPIbα antibodies have a poor prognosis, which indicates that anti-GPIbα antibodies are associated with this Fc-independent platelet clearance pathway. Experiments have proven that these antibodies could lead to the desialylation of GPs on platelets. The T follicular helper (TFH) cell level is related to the expression of the anti-GPIbα antibody, which indicates its role in the progression of desialylation. This review will discuss platelet clearance and production, especially the role of the anti-GPIbα antibody and desialylation in the pathophysiology of ITP and therapy for this disease.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Yingyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China.
| |
Collapse
|
8
|
Rab11-mediated post-Golgi transport of the sialyltransferase ST3GAL4 suggests a new mechanism for regulating glycosylation. J Biol Chem 2021; 296:100354. [PMID: 33524390 PMCID: PMC7949161 DOI: 10.1016/j.jbc.2021.100354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/20/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
Glycosylation, the most common posttranslational modification of proteins, is a stepwise process that relies on tight regulation of subcellular glycosyltransferase location to control the addition of each monosaccharide. Glycosyltransferases primarily reside and function in the endoplasmic reticulum (ER) and the Golgi apparatus; whether and how they traffic beyond the Golgi, how this trafficking is controlled, and how it impacts glycosylation remain unclear. Our previous work identified a connection between N-glycosylation and Rab11, a key player in the post-Golgi transport that connects recycling endosomes and other compartments. To learn more about the specific role of Rab11, we knocked down Rab11 in HeLa cells. Our findings indicate that Rab11 knockdown results in a dramatic enhancement in the sialylation of N-glycans. Structural analyses of glycans using lectins and LC-MS revealed that α2,3-sialylation is selectively enhanced, suggesting that an α2,3-sialyltransferase that catalyzes the sialyation of glycoproteins is activated or upregulated as the result of Rab11 knockdown. ST3GAL4 is the major α2,3-sialyltransferase that acts on N-glycans; we demonstrated that the localization of ST3GAL4, but not the levels of its mRNA, protein, or donor substrate, was altered by Rab11 depletion. In knockdown cells, ST3GAL4 is densely distributed in the trans-Golgi network, compared with the wider distribution in the Golgi and in other peripheral puncta in control cells, whereas the α2,6-sialyltransferase ST6GAL1 is predominantly localized to the Golgi regardless of Rab11 knockdown. This indicates that Rab11 may negatively regulate α2,3-sialylation by transporting ST3GAL4 to post-Golgi compartments (PGCs), which is a novel mechanism of glycosyltransferase regulation.
Collapse
|
9
|
Indellicato R, Domenighini R, Malagolini N, Cereda A, Mamoli D, Pezzani L, Iascone M, dall'Olio F, Trinchera M. A novel nonsense and inactivating variant of ST3GAL3 in two infant siblings suffering severe epilepsy and expressing circulating CA19.9. Glycobiology 2020; 30:95-104. [PMID: 31584066 DOI: 10.1093/glycob/cwz079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/09/2019] [Accepted: 09/24/2019] [Indexed: 01/06/2023] Open
Abstract
Three missense variants of ST3GAL3 are known to be responsible for a congenital disorder of glycosylation determining a neurodevelopmental disorder (intellectual disability/epileptic encephalopathy). Here we report a novel nonsense variant, p.Y220*, in two dichorionic infant twins presenting a picture of epileptic encephalopathy with impaired neuromotor development. Upon expression in HEK-293T cells, the variant appears totally devoid of enzymatic activity in vitro, apparently accumulated with respect to the wild-type or the missense variants, as detected by western blot, and in large part properly localized in the Golgi apparatus, as assessed by confocal microscopy. Both patients were found to efficiently express the CA19.9 antigen in the serum despite the total loss of ST3GAL3 activity, which thus appears replaceable from other ST3GALs in the synthesis of the sialyl-Lewis a epitope. Kinetic studies of ST3GAL3 revealed a strong preference for lactotetraosylceramide as acceptor and gangliotetraosylceramide was also efficiently utilized in vitro. Moreover, the p.A13D missense variant, the one maintaining residual sialyltransferase activity, was found to have much lower affinity for all suitable substrates than the wild-type enzyme with an overall catalytic efficiency almost negligible. Altogether the present data suggest that the apparent redundancy of ST3GALs deduced from knock-out mouse models only partially exists in humans. In fact, our patients lacking ST3GAL3 activity synthesize the CA19.9 epitope sialyl-Lewis a, but not all glycans necessary for fine brain functions, where the role of minor gangliosides deserves further attention.
Collapse
Affiliation(s)
- Rossella Indellicato
- Department of Health Sciences, San Paolo Hospital, University of Milan, via Antonio di Rudinì 8, 20142 Milano, Italy
| | - Ruben Domenighini
- Department of Health Sciences, San Paolo Hospital, University of Milan, via Antonio di Rudinì 8, 20142 Milano, Italy
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via San Giacomo 14, 40126 Bologna, Italy
| | - Anna Cereda
- Department of Pediatrics, ASST Papa Giovanni XXIII, via OMS 1, 24127 Bergamo, Italy
| | - Daniela Mamoli
- Neuropsichiatria infantile, ASST Papa Giovanni XXIII, via OMS 1, 24127 Bergamo, Italy
| | - Lidia Pezzani
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, via OMS 1, 24127 Bergamo, Italy
| | - Maria Iascone
- Laboratory of Medical Genetics, ASST Papa Giovanni XXIII, via OMS 1, 24127 Bergamo, Italy
| | - Fabio dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, via San Giacomo 14, 40126 Bologna, Italy
| | - Marco Trinchera
- Department of Medicine and Surgery (DMC), University of Insubria, via JH Dunant 5, 21100 Varese, Italy
| |
Collapse
|
10
|
D’Addio M, Frey J, Otto VI. The manifold roles of sialic acid for the biological functions of endothelial glycoproteins. Glycobiology 2020; 30:490-499. [PMID: 32039454 PMCID: PMC7372927 DOI: 10.1093/glycob/cwaa008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vascular endothelia are covered with a dense glycocalix that is heavily sialylated. Sialylation of vascular glycoconjugates is involved in the regulation of cell-cell interactions, be it among endothelial cells at cell junctions or between endothelial and blood-borne cells. It also plays important roles in modulating the binding of soluble ligands and the signaling by vascular receptors. Here, we provide an overview over the sialylation-function relationships of glycoproteins expressed in the blood and lymphatic vasculature. We first describe cellular interactions in which sialic acid contributes in a stereospecific manner to glycan epitopes recognized by glycan-binding proteins. Our major focus is however on the rarely discussed examples of vascular glycoproteins whose biological functions are modulated by sialylation through other mechanisms.
Collapse
Affiliation(s)
- Marco D’Addio
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Jasmin Frey
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Vivianne I Otto
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
11
|
Tvaroška I, Selvaraj C, Koča J. Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review. Molecules 2020; 25:molecules25122835. [PMID: 32575485 PMCID: PMC7355470 DOI: 10.3390/molecules25122835] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde’s two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.
Collapse
Affiliation(s)
- Igor Tvaroška
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovak Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| | - Chandrabose Selvaraj
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| |
Collapse
|
12
|
Lim H, Lee J, You B, Oh JH, Mok HJ, Kim YS, Yoon BE, Kim BG, Back SK, Park JS, Kim KP, Schnaar RL, Lee SJ. GT1b functions as a novel endogenous agonist of toll-like receptor 2 inducing neuropathic pain. EMBO J 2020; 39:e102214. [PMID: 32030804 DOI: 10.15252/embj.2019102214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/19/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022] Open
Abstract
Spinal cord microglia contribute to nerve injury-induced neuropathic pain. We have previously demonstrated that toll-like receptor 2 (TLR2) signaling is critical for nerve injury-induced activation of spinal cord microglia, but the responsible endogenous TLR2 agonist has not been identified. Here, we show that nerve injury-induced upregulation of sialyltransferase St3gal2 in sensory neurons leads to an increase in expression of the sialylated glycosphingolipid, GT1b. GT1b ganglioside is axonally transported to the spinal cord dorsal horn and contributes to characteristics of neuropathic pain such as mechanical and thermal hypersensitivity. Spinal cord GT1b functions as an TLR2 agonist and induces proinflammatory microglia activation and central sensitization. Pharmacological inhibition of GT1b synthesis attenuates nerve injury-induced spinal cord microglia activation and pain hypersensitivity. Thus, the St3gal2-GT1b-TLR2 axis may offer a novel therapeutic target for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Hyoungsub Lim
- Department of Neuroscience and Physiology, Dental Research Institute, BK21-Plus, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jaesung Lee
- Department of Neuroscience and Physiology, Dental Research Institute, BK21-Plus, School of Dentistry, Seoul National University, Seoul, Korea
| | - Byunghyun You
- Department of Neuroscience and Physiology, Dental Research Institute, BK21-Plus, School of Dentistry, Seoul National University, Seoul, Korea
| | - Jae Hoon Oh
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Hyuck Jun Mok
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yongin, Korea
| | - Yoo Sung Kim
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Bo-Eun Yoon
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Byung Gon Kim
- Department of Brain Science and Neurology, Ajou University School of Medicine, Suwon, Korea
| | - Seung Keun Back
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, Korea
| | - Jong-Sang Park
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yongin, Korea
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sung Joong Lee
- Department of Neuroscience and Physiology, Dental Research Institute, BK21-Plus, School of Dentistry, Seoul National University, Seoul, Korea
| |
Collapse
|
13
|
Gomes C, Almeida A, Barreira A, Calheiros J, Pinto F, Abrantes R, Costa A, Polonia A, Campos D, Osório H, Sousa H, Pinto-de-Sousa J, Kolarich D, Reis CA. Carcinoembryonic antigen carrying SLe X as a new biomarker of more aggressive gastric carcinomas. Am J Cancer Res 2019; 9:7431-7446. [PMID: 31695778 PMCID: PMC6831293 DOI: 10.7150/thno.33858] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/10/2019] [Indexed: 01/05/2023] Open
Abstract
Malignant transformation of gastric cells is accompanied by the deregulated expression of glycosyltransferases leading to the biosynthesis of tumor-associated glycans such as the sialyl-Lewis X antigen (SLex). SLex presence on cell surface glycoconjugates increases the invasive capacity of gastric cancer cells and is associated with tumor metastasis. ST3Gal IV enzyme is involved in the synthesis of SLex antigen and overexpressed in gastric carcinomas. Herein, we identified the glycoproteins carrying SLex in gastric cancer cells overexpressing ST3Gal IV enzyme and evaluated their biomarker potential for gastric carcinoma. Methods: SLex modified glycoproteins were identified applying western blot and mass spectrometry. Immunoprecipitation, proximity ligation assay (PLA), E-selectin binding assay and CRISPR/cas9 knockout experiments were performed to characterize the presence of SLex on the identified glycoprotein. Protein N-glycans of the SLex protein carrier were in deep analyzed by porous-graphitized-carbon liquid-chromatography and tandem mass spectrometry glycomics. In silico expression analysis of α2-3 sialyltransferase ST3Gal IV and SLex protein carrier was performed and the conjoint expression of the SLex modified glycoproteins evaluated by immunohistochemistry and PLA in a series of gastric carcinomas. Results: Carcinoembryonic antigen (CEA; CEACAM5) was identified and validated by different methodologies as a major carrier of SLex. N-glycomics of CEA revealed that complex N-glycans are capped with α2-3 linked sialic acid (Neu5Acα2-3Galβ1-4GlcNAc). Data set analysis of ST3Gal IV and CEA showed that ST3Gal IV expression was associated with patient´s poor survival, whereas CEA did not show any prognostic value. The co-expression of both CEA and SLeX was observed in 86,3% of gastric carcinoma cases and 74,5% of the total cases displayed the conjoint CEA+SLexin situ PLA expression. This expression was associated with clinicopathological features of the tumors, including infiltrative pattern of tumor growth, presence of venous invasion and patient's poor survival. CEA immunoprecipitation from gastric carcinoma tissues also confirmed the presence of SLex. Conclusion: CEA is the major glycoprotein carrying SLex in gastric carcinoma and the conjoint detection of CEA-SLex is associated with aggressive tumor features highlighting its PLA detection as a biomarker of gastric cancer patient prognosis for theranostic applications.
Collapse
|
14
|
The Link between Gaucher Disease and Parkinson's Disease Sheds Light on Old and Novel Disorders of Sphingolipid Metabolism. Int J Mol Sci 2019; 20:ijms20133304. [PMID: 31284408 PMCID: PMC6651136 DOI: 10.3390/ijms20133304] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 06/26/2019] [Accepted: 06/29/2019] [Indexed: 12/23/2022] Open
Abstract
Sphingolipid metabolism starts with the biosynthesis of ceramide, a bioactive lipid and the backbone for the biosynthesis of complex sphingolipids such as sphingomyelin and glycosphingolipids. These are degraded back to ceramide and then to sphingosine, which enters the ceramide–sphingosine-1-phosphate signaling pathway or is further degraded. Several enzymes with multiple catalytic properties and subcellular localizations are thus involved in such metabolism. Hereditary defects of lysosomal hydrolases have been known for several years to be the cause of lysosomal storage diseases such as gangliosidoses, Gaucher disease, Niemann–Pick disease, Krabbe disease, Fabry disease, and Farber disease. More recently, many other inborn errors of sphingolipid metabolism have been recognized, involving enzymes responsible for the biosynthesis of ceramide, sphingomyelin, and glycosphingolipids. Concurrently, epidemiologic and biochemical evidence has established a link between Gaucher disease and Parkinson’s disease, showing that glucocerebrosidase variants predispose individuals to α-synuclein accumulation and neurodegeneration even in the heterozygous status. This appears to be due not only to lysosomal overload of non-degraded glucosylceramide, but to the derangement of vesicle traffic and autophagy, including mitochondrial autophagy, triggered by both sphingolipid intermediates and misfolded proteins. In this review, old and novel disorders of sphingolipid metabolism, in particular those of ganglioside biosynthesis, are evaluated in light of recent investigations of the link between Gaucher disease and Parkinson’s disease, with the aim of better understanding their pathogenic mechanisms and addressing new potential therapeutic strategies.
Collapse
|
15
|
Weil BR, Neelamegham S. Selectins and Immune Cells in Acute Myocardial Infarction and Post-infarction Ventricular Remodeling: Pathophysiology and Novel Treatments. Front Immunol 2019; 10:300. [PMID: 30873166 PMCID: PMC6400985 DOI: 10.3389/fimmu.2019.00300] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/05/2019] [Indexed: 12/21/2022] Open
Abstract
The glycosciences aim to understand the impact of extracellular and intracellular carbohydrate structures on biological function. These glycans primarily fall into three major groups: lipid-linked carbohydrates that are referred to as glycosphingolipids or simply glycolipids; relatively short carbohydrate chains that are often O- or N-linked to proteins yielding common glycoproteins; and extended linear polymeric carbohydrate structures that are referred to as glycosaminoglycans (GAGs). Whereas, the impact of such carbohydrate structures has been extensively examined in cancer biology, their role in acute and chronic heart disease is less studied. In this context, a growing body of evidence indicates that glycans play an important role in immune mediated cell recruitment to damaged heart tissue to initiate wound healing and repair after injury. This is particularly important following ischemia and reperfusion that occurs in the heart in the setting of acute myocardial infarction. Here, immune system-mediated repair of the damaged myocardium plays a critical role in determining post-infarction ventricular remodeling, cardiac function, and patient outcome. Further, alterations in immune cell activity can promote the development of heart failure. The present review summarizes our current understanding of the phases of immune-mediated repair following myocardial infarction. It discusses what is known regarding glycans in mediating the recruitment of circulating immune cells during the early inflammatory stage of post-infarction repair, with focus on the selectin family of adhesion molecules. It offers future directions for research aimed at utilizing our knowledge of mechanisms underlying immune cell recruitment to either modulate leukocyte recruitment to the injured tissue or enhance the targeted delivery of biologic therapeutics such as stem cells in an attempt to promote repair of the damaged heart.
Collapse
Affiliation(s)
- Brian R Weil
- Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Sriram Neelamegham
- Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, United States.,Department of Chemical & Biological Engineering, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
16
|
A patient-specific induced pluripotent stem cell model for West syndrome caused by ST3GAL3 deficiency. Eur J Hum Genet 2018; 26:1773-1783. [PMID: 30089820 DOI: 10.1038/s41431-018-0220-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023] Open
Abstract
ST3GAL3 encodes the Golgi enzyme beta-galactoside-alpha-2,3-sialyltransferase-III that in humans forms, among others, the sialyl Lewis a (sLea) epitope on proteins. Functionally deleterious variants in this gene were previously identified in patients with either non-syndromic or syndromic intellectual disability such as West syndrome, an age-dependent epileptic encephalopathic syndrome associated with developmental arrest or regression. The aim of this study was to further elucidate the molecular and cellular mechanisms causing West syndrome by lack of ST3GAL3 function. For this purpose we generated induced pluripotent stem cell (iPSC) lines from fibroblasts obtained from a patient with West syndrome, carrying a variant in exon 12 (c.958G>C, p.(Ala320Pro)) of ST3GAL3, and a healthy sibling, using lentiviral reprogramming. iPSCs and cortical neurons derived thereof were analysed by lectin blots, mRNA sequencing, adherence assays, and FACS. While no significant difference was observed at stem cell or fibroblast level between patient and control cells, patient-derived cortical neurons displayed an altered lectin blot staining pattern, enhanced adherence to a poly-L-ornithine/laminin-coated surface and decreased levels of neurons expressing T-box transcription factor brain 1. Our results suggest that changes in the sialylation pattern on the surface of specific neuronal cell types affect adhesive interactions during development, which in turn may cause subtle changes in tissue composition that could result in the occurrence of epilepsy and might impair neural development to an extent that is detrimental to the development and maintenance of normal cognitive functions.
Collapse
|
17
|
Trinchera M, Parini R, Indellicato R, Domenighini R, dall'Olio F. Diseases of ganglioside biosynthesis: An expanding group of congenital disorders of glycosylation. Mol Genet Metab 2018; 124:230-237. [PMID: 29983310 DOI: 10.1016/j.ymgme.2018.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
Among the numerous congenital disorders of glycosylation concerning glycoproteins, only a single mutation in ganglioside biosynthesis had been reported until a few years ago: one in the ST3GAL5 gene, encoding GM3 synthase. More recently, additional mutations in the same gene were reported, together with several distinct mutations in the B4GALNT1 gene, encoding GM2/GD2/GA2 synthase. Patients suffering from ST3GAL5 deficiency present a devastating syndrome characterized by early onset and dramatic neurological and cognitive impairment, sometimes associated with dyspigmentation and an increased blood lactate concentration. On the other hand, B4GALNT1 mutations give rise to a form of complicated hereditary spastic paraplegia (HSP), previously referred to as HSP26. It is characterized by the late onset of lower limb weakness and mild to moderate intellectual impairment, which is usually not progressive. In addition to the most typical signs, some patients present ocular and endocrine signs, pes cavus, and psychiatric illness. Since the nineties, mice lacking genes for single glycosyltransferases involved in ganglioside biosynthesis, including ST3GAL5 and B4GALNT1, were created and studied. The resulting phenotypes were frequently mild or very mild, so double knock-out animals were created to effectively study the function of gangliosides. The main clinical and biochemical features of patients suffering from GM3 synthase or GM2/GD2/GA2 synthase deficiency, compared with the phenotypes described in mice that are null for single or multiple glycosyltransferase genes, provide suggestions to improve the recognition of novel mutations and potentially related disorders.
Collapse
Affiliation(s)
- Marco Trinchera
- Department of Medicine and Surgery (DMC), University of Insubria, 21100 Varese, Italy.
| | - Rossella Parini
- Pediatric Unit, Fondazione MBBM, San Gerardo Hospital, 20900 Monza, Italy
| | - Rossella Indellicato
- Department of Health Sciences, San Paolo Hospital, University of Milan, 20142 Milano, Italy
| | - Ruben Domenighini
- Department of Health Sciences, San Paolo Hospital, University of Milan, 20142 Milano, Italy
| | - Fabio dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
18
|
Yang WH, Heithoff DM, Aziz PV, Sperandio M, Nizet V, Mahan MJ, Marth JD. Recurrent infection progressively disables host protection against intestinal inflammation. Science 2018; 358:358/6370/eaao5610. [PMID: 29269445 DOI: 10.1126/science.aao5610] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/13/2017] [Indexed: 12/15/2022]
Abstract
Intestinal inflammation is the central pathological feature of colitis and the inflammatory bowel diseases. These syndromes arise from unidentified environmental factors. We found that recurrent nonlethal gastric infections of Gram-negative Salmonella enterica Typhimurium (ST), a major source of human food poisoning, caused inflammation of murine intestinal tissue, predominantly the colon, which persisted after pathogen clearance and irreversibly escalated in severity with repeated infections. ST progressively disabled a host mechanism of protection by inducing endogenous neuraminidase activity, which accelerated the molecular aging and clearance of intestinal alkaline phosphatase (IAP). Disease was linked to a Toll-like receptor 4 (TLR4)-dependent mechanism of IAP desialylation with accumulation of the IAP substrate and TLR4 ligand, lipopolysaccharide-phosphate. The administration of IAP or the antiviral neuraminidase inhibitor zanamivir was therapeutic by maintaining IAP abundance and function.
Collapse
Affiliation(s)
- Won Ho Yang
- Center for Nanomedicine, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Sanford Burnham Prebys Medical Discovery Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Douglas M Heithoff
- Center for Nanomedicine, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Peter V Aziz
- Center for Nanomedicine, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Sanford Burnham Prebys Medical Discovery Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Markus Sperandio
- Walter-Brendel-Centre for Experimental Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael J Mahan
- Center for Nanomedicine, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jamey D Marth
- Center for Nanomedicine, University of California, Santa Barbara, Santa Barbara, CA 93106, USA. .,Sanford Burnham Prebys Medical Discovery Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
19
|
Lee CH, Zhang HH, Singh SP, Koo L, Kabat J, Tsang H, Singh TP, Farber JM. C/EBPδ drives interactions between human MAIT cells and endothelial cells that are important for extravasation. eLife 2018; 7:32532. [PMID: 29469805 PMCID: PMC5869018 DOI: 10.7554/elife.32532] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/21/2018] [Indexed: 12/14/2022] Open
Abstract
Many mediators and regulators of extravasation by bona fide human memory-phenotype T cells remain undefined. Mucosal-associated invariant T (MAIT) cells are innate-like, antibacterial cells that we found excelled at crossing inflamed endothelium. They displayed abundant selectin ligands, with high expression of FUT7 and ST3GAL4, and expressed CCR6, CCR5, and CCR2, which played non-redundant roles in trafficking on activated endothelial cells. MAIT cells selectively expressed CCAAT/enhancer-binding protein delta (C/EBPδ). Knockdown of C/EBPδ diminished expression of FUT7, ST3GAL4 and CCR6, decreasing MAIT cell rolling and arrest, and consequently the cells' ability to cross an endothelial monolayer in vitro and extravasate in mice. Nonetheless, knockdown of C/EBPδ did not affect CCR2, which was important for the step of transendothelial migration. Thus, MAIT cells demonstrate a program for extravasastion that includes, in part, C/EBPδ and C/EBPδ-regulated genes, and that could be used to enhance, or targeted to inhibit T cell recruitment into inflamed tissue.
Collapse
Affiliation(s)
- Chang Hoon Lee
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Hongwei H Zhang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Satya P Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Lily Koo
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Hsinyi Tsang
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Tej Pratap Singh
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Joshua M Farber
- Inflammation Biology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| |
Collapse
|
20
|
Silva M, Videira PA, Sackstein R. E-Selectin Ligands in the Human Mononuclear Phagocyte System: Implications for Infection, Inflammation, and Immunotherapy. Front Immunol 2018; 8:1878. [PMID: 29403469 PMCID: PMC5780348 DOI: 10.3389/fimmu.2017.01878] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/08/2017] [Indexed: 12/20/2022] Open
Abstract
The mononuclear phagocyte system comprises a network of circulating monocytes and dendritic cells (DCs), and “histiocytes” (tissue-resident macrophages and DCs) that are derived in part from blood-borne monocytes and DCs. The capacity of circulating monocytes and DCs to function as the body’s first-line defense against offending pathogens greatly depends on their ability to egress the bloodstream and infiltrate inflammatory sites. Extravasation involves a sequence of coordinated molecular events and is initiated by E-selectin-mediated deceleration of the circulating leukocytes onto microvascular endothelial cells of the target tissue. E-selectin is inducibly expressed by cytokines (tumor necrosis factor-α and IL-1β) on inflamed endothelium, and binds to sialofucosylated glycan determinants displayed on protein and lipid scaffolds of blood cells. Efficient extravasation of circulating monocytes and DCs to inflamed tissues is crucial in facilitating an effective immune response, but also fuels the immunopathology of several inflammatory disorders. Thus, insights into the structural and functional properties of the E-selectin ligands expressed by different monocyte and DC populations is key to understanding the biology of protective immunity and the pathobiology of several acute and chronic inflammatory diseases. This review will address the role of E-selectin in recruitment of human circulating monocytes and DCs to sites of tissue injury/inflammation, the structural biology of the E-selectin ligands expressed by these cells, and the molecular effectors that shape E-selectin ligand cell-specific display. In addition, therapeutic approaches targeting E-selectin receptor/ligand interactions, which can be used to boost host defense or, conversely, to dampen pathological inflammatory conditions, will also be discussed.
Collapse
Affiliation(s)
- Mariana Silva
- Department of Dermatology, Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA, United States
| | - Paula A Videira
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal.,Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Robert Sackstein
- Department of Dermatology, Harvard Skin Disease Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, MA, United States.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
21
|
A vital sugar code for ricin toxicity. Cell Res 2017; 27:1351-1364. [PMID: 28925387 PMCID: PMC5674155 DOI: 10.1038/cr.2017.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/24/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022] Open
Abstract
Ricin is one of the most feared bioweapons in the world due to its extreme toxicity and easy access. Since no antidote exists, it is of paramount importance to identify the pathways underlying ricin toxicity. Here, we demonstrate that the Golgi GDP-fucose transporter Slc35c1 and fucosyltransferase Fut9 are key regulators of ricin toxicity. Genetic and pharmacological inhibition of fucosylation renders diverse cell types resistant to ricin via deregulated intracellular trafficking. Importantly, cells from a patient with SLC35C1 deficiency are also resistant to ricin. Mechanistically, we confirm that reduced fucosylation leads to increased sialylation of Lewis X structures and thus masking of ricin-binding sites. Inactivation of the sialyltransferase responsible for modifications of Lewis X (St3Gal4) increases the sensitivity of cells to ricin, whereas its overexpression renders cells more resistant to the toxin. Thus, we have provided unprecedented insights into an evolutionary conserved modular sugar code that can be manipulated to control ricin toxicity.
Collapse
|
22
|
Zhou H, Li Y, Liu B, Shan Y, Li Y, Zhao L, Su Z, Jia L. Downregulation of miR-224 and let-7i contribute to cell survival and chemoresistance in chronic myeloid leukemia cells by regulating ST3GAL IV expression. Gene 2017; 626:106-118. [DOI: 10.1016/j.gene.2017.05.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/30/2017] [Accepted: 05/11/2017] [Indexed: 12/24/2022]
|
23
|
Abukabda AB, Stapleton PA, McBride CR, Yi J, Nurkiewicz TR. Heterogeneous Vascular Bed Responses to Pulmonary Titanium Dioxide Nanoparticle Exposure. Front Cardiovasc Med 2017; 4:33. [PMID: 28596957 PMCID: PMC5442182 DOI: 10.3389/fcvm.2017.00033] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/01/2017] [Indexed: 01/06/2023] Open
Abstract
A growing body of research links engineered nanomaterial (ENM) exposure to adverse cardiovascular endpoints. The purpose of this study was to evaluate the impact of ENM exposure on vascular reactivity in discrete segments so that we may determine the most sensitive levels of the vasculature where these negative cardiovascular effects are manifest. We hypothesized that acute nano-TiO2 exposure differentially affects reactivity with a more robust impairment in the microcirculation. Sprague-Dawley rats (8–10 weeks) were exposed to nano-TiO2via intratracheal instillation (20, 100, or 200 µg suspended per 250 µL of vehicle) 24 h prior to vascular assessments. A serial assessment across distinct compartments of the vascular tree was then conducted. Wire myography was used to evaluate macrovascular active tension generation specifically in the thoracic aorta, the femoral artery, and third-order mesenteric arterioles. Pressure myography was used to determine vascular reactivity in fourth- and fifth-order mesenteric arterioles. Vessels were treated with phenylephrine, acetylcholine (ACh), and sodium nitroprusside. Nano-TiO2 exposure decreased endothelium-dependent relaxation in the thoracic aorta and femoral arteries assessed via ACh by 53.96 ± 11.6 and 25.08 ± 6.36%, respectively. Relaxation of third-order mesenteric arterioles was impaired by 100 and 20 µg nano-TiO2 exposures with mean reductions of 50.12 ± 8.7 and 68.28 ± 8.7%. Cholinergic reactivity of fourth- and fifth-order mesenteric arterioles was negatively affected by nano-TiO2 with diminished dilations of 82.86 ± 12.6% after exposure to 200 µg nano-TiO2, 42.6 ± 12.6% after 100 µg nano-TiO2, and 49.4 ± 12.6% after 20 µg nano-TiO2. Endothelium-independent relaxation was impaired in the thoracic aorta by 34.05 ± 25% induced by exposure to 200 µg nano-TiO2 and a reduction in response of 49.31 ± 25% caused by 100 µg nano-TiO2. Femoral artery response was reduced by 18 ± 5%, while third-order mesenteric arterioles were negatively affected by 20 µg nano-TiO2 with a mean decrease in response of 38.37 ± 10%. This is the first study to directly compare the differential effect of ENM exposure on discrete anatomical segments of the vascular tree. Pulmonary ENM exposure produced macrovascular and microvascular dysfunction resulting in impaired responses to endothelium-dependent, endothelium-independent, and adrenergic agonists with a more robust dysfunction at the microvascular level. These results provide additional evidence of an endothelium-dependent and endothelium-independent impairment in vascular reactivity.
Collapse
Affiliation(s)
- Alaeddin B Abukabda
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Carroll R McBride
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jinghai Yi
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
24
|
Hobbs SJ, Nolz JC. Regulation of T Cell Trafficking by Enzymatic Synthesis of O-Glycans. Front Immunol 2017; 8:600. [PMID: 28596771 PMCID: PMC5442166 DOI: 10.3389/fimmu.2017.00600] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/08/2017] [Indexed: 12/27/2022] Open
Abstract
Selectins constitute a family of oligosaccharide binding proteins that play critical roles in regulating the trafficking of leukocytes. In T cells, L-selectin (CD62L) controls the capacity for naive and memory T cells to actively survey peripheral lymph nodes, whereas P- and E-selectin capture activated T cells on inflamed vascular endothelium to initiate extravasation into non-lymphoid tissues. The capacity for T cells to interact with all of these selectins is dependent on the enzymatic synthesis of complex O-glycans, and thus, this protein modification plays an indispensable role in regulating the distribution and homing of both naive and previously activated T cells in vivo. In contrast to neutrophils, O-glycan synthesis is highly dynamic in T cell populations and is largely controlled by extracellular stimuli such as antigen recognition or signaling though cytokine receptors. Herein, we review the basic principles of enzymatic synthesis of complex O-glycans, discuss tools and reagents for studying this type of protein modification and highlight our current understanding of how O-glycan synthesis is regulated and subsequently impacts the trafficking potential of diverse T cell populations.
Collapse
Affiliation(s)
- Samuel J Hobbs
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Jeffrey C Nolz
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States.,Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, United States.,Department of Radiation Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
25
|
Cai H, Zhou H, Miao Y, Li N, Zhao L, Jia L. MiRNA expression profiles reveal the involvement of miR-26a, miR-548l and miR-34a in hepatocellular carcinoma progression through regulation of ST3GAL5. J Transl Med 2017; 97:530-542. [PMID: 28218742 DOI: 10.1038/labinvest.2017.12] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/24/2016] [Accepted: 01/13/2017] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) have key roles in comprehensive physiological and pathological processes by targeting specific genes through translational repression. Identification of miRNAs related to metastasis enables us to obtain better insight into cancer development. In the current study, we investigated the miRNA expressional profiles in the highly invasive human hepatocellular carcinoma cell line MHCC97-H and MHCC97-L with lower metastatic potential using miRNA microarrays. By quantitative real-time PCR, we confirmed the results of miRNA experiments. Thirteen differentially expressed miRNAs were identified between MHCC97-H and MHCC97-L cells; and the same results were found in clinical samples. Using bioinformatic analysis and luciferase reporter assay, we found that ST3GAL5, a sialyltransferase gene, was the direct target of miR-26a, miR-548l and miR-34a. Engineered expression of miR-26a, miR-548l or miR-34a in MHCC97-H or MHCC97-L cells could significantly change their malignant behaviors and oncogenicity in in vitro and in vivo assays. Manipulated expression of ST3GAL5 also led to the alteration of the metastatic potential of MHCC97-H and MHCC97-L cells, in agreement with the effects of above three miRNAs. Altogether, our data indicate that the levels of these miRNAs may be used as biological markers for evaluating hepatocellular carcinoma progression. miR-26a, miR-548l and miR-34a, acting as tumor suppressors, may exert their effects by regulating ST3GAL5.
Collapse
Affiliation(s)
- Hongjiao Cai
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China.,Department of Central Laboratory, Dalian Municipal Central Hospital, Dalian, Liaoning Province, China
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, Dalian, Liaoning Province, China
| | - Yuan Miao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Nana Li
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Lifen Zhao
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| | - Li Jia
- College of Laboratory Medicine, Dalian Medical University, Dalian, Liaoning Province, China
| |
Collapse
|
26
|
Lopez PH, Aja S, Aoki K, Seldin MM, Lei X, Ronnett GV, Wong GW, Schnaar RL. Mice lacking sialyltransferase ST3Gal-II develop late-onset obesity and insulin resistance. Glycobiology 2016; 27:129-139. [PMID: 27683310 DOI: 10.1093/glycob/cww098] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 02/02/2023] Open
Abstract
Sialyltransferases are a family of 20 gene products in mice and humans that transfer sialic acid from its activated precursor, CMP-sialic acid, to the terminus of glycoprotein and glycolipid acceptors. ST3Gal-II (coded by the St3gal2 gene) transfers sialic acid preferentially to the three positions of galactose on the Galβ1-3GalNAc terminus of gangliosides GM1 and GD1b to synthesize GD1a and GT1b, respectively. Mice with a targeted disruption of St3gal2 unexpectedly displayed late-onset obesity and insulin resistance. At 3 months of age, St3gal2-null mice were the same weight as their wild type (WT) counterparts, but by 13 months on standard chow they were visibly obese, 22% heavier and with 37% greater fat/lean ratio than WT mice. St3gal2-null mice became hyperglycemic and displayed impaired glucose tolerance by 9 months of age. They had sharply reduced insulin responsiveness despite equivalent pancreatic islet morphology. Analyses of insulin receptor (IR) tyrosine kinase substrate IRS-1 and downstream target Akt revealed decreased insulin-induced phosphorylation in adipose tissue but not liver or skeletal muscle of St3gal2-null mice. Thin-layer chromatography and mass spectrometry revealed altered ganglioside profiles in the adipose tissue of St3gal2-null mice compared to WT littermates. Metabolically, St3gal2-null mice display a reduced respiratory exchange ratio compared to WT mice, indicating a preference for lipid oxidation as an energy source. Despite their altered metabolism, St3gal2-null mice were hyperactive. We conclude that altered ganglioside expression in adipose tissue results in diminished IR sensitivity and late-onset obesity.
Collapse
Affiliation(s)
| | - Susan Aja
- Center for Metabolic and Obesity Research.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kazuhiro Aoki
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Marcus M Seldin
- Center for Metabolic and Obesity Research.,Department of Physiology
| | - Xia Lei
- Center for Metabolic and Obesity Research.,Department of Physiology
| | - Gabriele V Ronnett
- Center for Metabolic and Obesity Research.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.,Department of Physiology.,Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - G William Wong
- Center for Metabolic and Obesity Research.,Department of Physiology
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences .,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
27
|
Buffone A, Nasirikenari M, Manhardt CT, Lugade A, Bogner PN, Sackstein R, Thanavala Y, Neelamegham S, Lau JTY. Leukocyte-borne α(1,3)-fucose is a negative regulator of β2-integrin-dependent recruitment in lung inflammation. J Leukoc Biol 2016; 101:459-470. [PMID: 27566832 DOI: 10.1189/jlb.3a0516-215rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 01/13/2023] Open
Abstract
Leukocyte recruitment in inflammation is a multistep, sequential cascade where the initial step is the selectin-dependent tethering, followed by the formation of firmer integrin-mediated adhesive forces leading to extravasation. The α(1,3)-fucose-containing sialyl-Lewis X (sLeX) is the archetypical ligand on leukocyte surfaces mediating selectin interactions. Canonically, disruption of α(1,3)-fucose formation ablates selectin-mediated adhesion, dramatically reducing trafficking. We report a paradoxical response to α(1,3)-fucose deficiency in which the loss exacerbated rather than attenuated leukocyte recruitment in a murine model of acute airway inflammation. The architecture of the capillary-dominated vasculature in the lung minimized the importance of the selectin dependent step, and we observed that α(1,3)-fucose deficiency augmented CXCR2-mediated Rap1-GTP signaling to enhance the β2-integrin-ICAM-1-binding axis. The data disclose a previously unknown function for α(1,3)-fucose, in which this structure negatively regulates the integrin activation step in leukocyte recruitment.
Collapse
Affiliation(s)
- Alexander Buffone
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA.,Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York, USA
| | - Mehrab Nasirikenari
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Charles T Manhardt
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Amit Lugade
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Paul N Bogner
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Robert Sackstein
- Department of Dermatology Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; and.,Program of Excellence in Glycosciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Sriram Neelamegham
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, New York, USA
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA;
| |
Collapse
|
28
|
Ebel ME, Kansas GS. Functions of Smad Transcription Factors in TGF-β1-Induced Selectin Ligand Expression on Murine CD4 Th Cells. THE JOURNAL OF IMMUNOLOGY 2016; 197:2627-34. [PMID: 27543612 DOI: 10.4049/jimmunol.1600723] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022]
Abstract
Selectins are carbohydrate-binding adhesion molecules that control leukocyte traffic. Induction of selectin ligands on T cells is controlled primarily by cytokines, including TGF-β1, and requires p38α MAPK, but transcriptional mechanisms that underlie cytokine-driven selectin ligand expression are poorly understood. In this study, we show, using mice with conditional deletions of the TGF-β1-responsive transcription factors Smad2, Smad3, or Smad4, that induction of selectin ligands on CD4 cells in response to TGF-β1 requires Smad4 plus either Smad2 or Smad3. Analysis of CD4 cells from mice with only one functional Smad4 allele revealed a sharp gene dosage effect, suggesting the existence of a threshold of TGF-β1 signal strength required for selectin ligand induction. Both Smad4 plus either Smad2 or Smad3 were selectively required for induction of Fut7 and Gcnt1, glycosyltransferases critical for selectin ligand biosynthesis, but they were not required for St3gal4 or St3gal6 induction. Smad4 plus either Smad2 or Smad3 were also required for induction of Runx transcription factors by TGF-β1. Enforced expression of Runx2, but not Runx1 or Runx3, in Smad2/Smad3 doubly deficient CD4 cells restored selectin ligand expression to wild-type levels. In contrast, enforced expression of Runx1, Runx2, or Runx3 failed to restore differentiation of TGF-β1-dependent Th cell lineages, including Th17, Th9, and induced regulatory T cells. These results show that Smads are directly required for Th cell differentiation independent of Runx induction but only indirectly required via Runx2 for TGF-β1-induced selectin ligand induction on murine CD4 T cells.
Collapse
Affiliation(s)
- Mark E Ebel
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Geoffrey S Kansas
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
29
|
Targeting of Neutrophil Lewis X Blocks Transepithelial Migration and Increases Phagocytosis and Degranulation. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:297-311. [PMID: 26687991 DOI: 10.1016/j.ajpath.2015.10.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/28/2015] [Accepted: 10/02/2015] [Indexed: 12/21/2022]
Abstract
Polymorphonuclear leukocytes (PMNs) are innate immune cells whose principal function is to migrate from the blood to sites of inflammation, where they exert crucial anti-infectious and immunomodulatory effects. However, dysregulated migration of PMNs into mucosal epithelial tissues is characteristic of chronic inflammatory disorders, including inflammatory bowel disease. Carbohydrate-mediated binding interactions between PMN Lewis glycans and endothelial glycan-binding proteins are critical for initial migration of PMN out of the vasculature. However, the role of Lewis glycans during transepithelial migration (TEM) has not been well characterized. Herein, we show that antibody blockade of Lewis X (Le(x)) displayed as terminal glycan residues on the PMN surface blocks chemotaxis and TEM while enhancing PMN-adhesive interactions with intestinal epithelia. Unexpectedly, targeting of subterminal Le(x) residues within glycan chains had no effect on PMN migration or adhesive interactions. There was increased surface expression of Le(x) on PMN after TEM, and blockade of terminal Le(x) regulated post-migratory PMN functions, increasing PMN phagocytosis and the surface mobilization of azurophilic (CD63, myeloperoxidase, and neutrophil elastase) and specific (CD66b and lactoferrin) granule markers. These findings suggest that terminal Le(x) represents a potential target for regulating PMN trafficking and function in inflamed mucosa. Furthermore, given its abundant expression on migrating PMN, Le(x) may be a rational target for modulating inflammation in diseases where dysregulated PMN influx is associated with host tissue damage.
Collapse
|
30
|
Abstract
This review presents principles of glycosylation, describes the relevant glycosylation pathways and their related disorders, and highlights some of the neurological aspects and issues that continue to challenge researchers. More than 100 rare human genetic disorders that result from deficiencies in the different glycosylation pathways are known today. Most of these disorders impact the central and/or peripheral nervous systems. Patients typically have developmental delays/intellectual disabilities, hypotonia, seizures, neuropathy, and metabolic abnormalities in multiple organ systems. Among these disorders there is great clinical diversity because all cell types differentially glycosylate proteins and lipids. The patients have hundreds of misglycosylated products, which afflict a myriad of processes, including cell signaling, cell-cell interaction, and cell migration. This vast complexity in glycan composition and function, along with the limited availability of analytic tools, has impeded the identification of key glycosylated molecules that cause pathologies. To date, few critical target proteins have been pinpointed.
Collapse
|
31
|
Ebel ME, Awe O, Kaplan MH, Kansas GS. Diverse inflammatory cytokines induce selectin ligand expression on murine CD4 T cells via p38α MAPK. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 194:5781-8. [PMID: 25941329 PMCID: PMC4698157 DOI: 10.4049/jimmunol.1500485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/02/2015] [Indexed: 01/03/2023]
Abstract
Selectins are glycan-binding adhesion molecules that mediate the initial steps of leukocyte recognition of endothelium. Cytokines control numerous aspects of CD4 Th cell differentiation, but how cytokines control the induction of ligands for E- and P-selectin on Th cell subsets remains poorly understood. Among 20 cytokines that affect Th cell differentiation, we identified six that induce expression of selectin ligands on murine CD4 T cells above the low levels associated with TCR engagement: IL-12, IL-18, IL-27, IL-9, IL-25, and TGF-β1. Collectively, these six cytokines could potentially account for selectin ligand expression on all of the currently defined nonsessile Th cell lineages, including Th1, Th2, Th9, and Th17 cells, as well as regulatory T cells. Induction of selectin ligand expression by each of these six cytokines was almost completely inhibited by pharmacologic inhibition of p38 MAPK, but not other MAPKs, or by conditional genetic deletion of p38α MAPK. Analysis of the expression of key glycosyltransferase genes revealed that p38α signaling was selectively required for induction of Fut7 and Gcnt1 but not for the induction of St3gal4 or St3gal6. Constitutively active MKK6, an immediate upstream activator of p38 MAPK, induced selectin ligand expression equivalent to that of cytokines, and this induction was completely dependent on the expression of p38α. Our results identify the repertoire of cytokines responsible for selectin ligand induction on CD4 T cells and provide a mechanistic link between Th cell development and T cell migration.
Collapse
Affiliation(s)
- Mark E Ebel
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Olufolakemi Awe
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Mark H Kaplan
- Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; and Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Geoffrey S Kansas
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611;
| |
Collapse
|
32
|
Chachadi VB, Bhat G, Cheng PW. Glycosyltransferases involved in the synthesis of MUC-associated metastasis-promoting selectin ligands. Glycobiology 2015; 25:963-75. [PMID: 25972125 DOI: 10.1093/glycob/cwv030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/29/2015] [Indexed: 12/31/2022] Open
Abstract
The sialyl Lewis a and x (sLe(a/x)) antigens frequently displayed on the surface of tumor cells are involved in metastasis. Their synthesis has been attributed to altered expression of selective glycosyltransferases. Identification of these glycosyltransferases and the glycoproteins that carry these carbohydrate antigens should help advance our understanding of selectin-mediated cancer metastasis. In this study, quantitative real-time polymerase chain reaction analysis coupled with in situ proximity ligation assay and small interference RNA treatment shows involvement of β3galactosyltransferase-V in the synthesis of MUC16-associated sLe(a) in H292 cells. Also, α3fucosyltransferase-V, which is absent in BEAS-2B human immortalized bronchial epithelial cells and A549 lung carcinoma cells, participates in the synthesis of MUC1-associated sLe(x) in CFT1 human immortalized bronchial epithelial cells and H292 lung carcinoma cells. Neither selectin ligand is found on MUC1 in BEAS-2B and A549 cells. Knockdown of either enzyme suppresses migration, and selectin tethering and rolling properties of H292 cells under dynamic flow as determined by wound healing and parallel plate flow chamber assays, respectively. These results provide insights into how the synthesis of mucin-associated selectin ligands and the metastatic properties of cancer cells can be regulated by selective glycosyltransferases that work on mucins. They may help develop novel anticancer drugs.
Collapse
Affiliation(s)
- Vishwanath B Chachadi
- Department of Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA Department of Biochemistry and Molecular Biology, College of Medicine
| | - Ganapati Bhat
- Department of Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA Department of Biochemistry and Molecular Biology, College of Medicine
| | - Pi-Wan Cheng
- Department of Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA Department of Biochemistry and Molecular Biology, College of Medicine Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
33
|
Kiwamoto T, Katoh T, Evans CM, Janssen WJ, Brummet ME, Hudson SA, Zhu Z, Tiemeyer M, Bochner BS. Endogenous airway mucins carry glycans that bind Siglec-F and induce eosinophil apoptosis. J Allergy Clin Immunol 2015; 135:1329-1340.e9. [PMID: 25497369 PMCID: PMC4433759 DOI: 10.1016/j.jaci.2014.10.027] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/17/2014] [Accepted: 10/22/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Sialic acid-binding, immunoglobulin-like lectin (Siglec) F is a glycan-binding protein selectively expressed on mouse eosinophils. Its engagement induces apoptosis, suggesting a pathway for ameliorating eosinophilia in the setting of asthma and other eosinophil-associated diseases. Siglec-F recognizes sialylated sulfated glycans in glycan-binding assays, but the identities of endogenous sialoside ligands and their glycoprotein carriers in vivo are unknown. OBJECTIVES To use mouse lung-derived materials to isolate, biochemically identify, and biologically characterize naturally occurring endogenous glycan ligands for Siglec-F. METHODS Lungs from normal and mucin-deficient mice, as well as mouse tracheal epithelial cells, were investigated in vitro and in vivo for the expression of Siglec-F ligands. Western blotting and cytochemistry used Siglec-F-Fc as a probe for directed purification, followed by liquid chromatography-tandem mass spectrometry of recognized glycoproteins. Purified components were tested in mouse eosinophil-binding assays and flow cytometry-based cell death assays. RESULTS We detected mouse lung glycoproteins that bound to Siglec-F; binding was sialic acid dependent. Proteomic analysis of Siglec-F binding material identified Muc5b and Muc4. Cross-affinity enrichment and histochemical analysis of lungs from mucin-deficient mice assigned and validated the identity of Muc5b as one glycoprotein ligand for Siglec-F. Purified mucin preparations carried sialylated and sulfated glycans, bound to eosinophils and induced their death in vitro. Mice conditionally deficient in Muc5b displayed exaggerated eosinophilic inflammation in response to intratracheal installation of IL-13. CONCLUSIONS These data identify a previously unrecognized endogenous anti-inflammatory property of airway mucins by which their glycans can control lung eosinophilia through engagement of Siglec-F.
Collapse
Affiliation(s)
- Takumi Kiwamoto
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Toshihiko Katoh
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Christopher M. Evans
- Department of Medicine, Division of Pulmonary Medicine, University of Colorado School of Medicine, Denver, CO 80045
| | - William J. Janssen
- Department of Medicine, Division of Pulmonary Medicine, University of Colorado School of Medicine, Denver, CO 80045
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, 80206
| | - Mary E. Brummet
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Sherry A. Hudson
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Zhou Zhu
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | - Michael Tiemeyer
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Bruce S. Bochner
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224
| |
Collapse
|
34
|
Yoo SW, Motari MG, Susuki K, Prendergast J, Mountney A, Hurtado A, Schnaar RL. Sialylation regulates brain structure and function. FASEB J 2015; 29:3040-53. [PMID: 25846372 DOI: 10.1096/fj.15-270983] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/11/2015] [Indexed: 11/11/2022]
Abstract
Every cell expresses a molecularly diverse surface glycan coat (glycocalyx) comprising its interface with its cellular environment. In vertebrates, the terminal sugars of the glycocalyx are often sialic acids, 9-carbon backbone anionic sugars implicated in intermolecular and intercellular interactions. The vertebrate brain is particularly enriched in sialic acid-containing glycolipids termed gangliosides. Human congenital disorders of ganglioside biosynthesis result in paraplegia, epilepsy, and intellectual disability. To better understand sialoglycan functions in the nervous system, we studied brain anatomy, histology, biochemistry, and behavior in mice with engineered mutations in St3gal2 and St3gal3, sialyltransferase genes responsible for terminal sialylation of gangliosides and some glycoproteins. St3gal2/3 double-null mice displayed dysmyelination marked by a 40% reduction in major myelin proteins, 30% fewer myelinated axons, a 33% decrease in myelin thickness, and molecular disruptions at nodes of Ranvier. In part, these changes may be due to dysregulation of ganglioside-mediated oligodendroglial precursor cell proliferation. Neuronal markers were also reduced up to 40%, and hippocampal neurons had smaller dendritic arbors. Young adult St3gal2/3 double-null mice displayed impaired motor coordination, disturbed gait, and profound cognitive disability. Comparisons among sialyltransferase mutant mice provide insights into the functional roles of brain gangliosides and sialoglycoproteins consistent with related human congenital disorders.
Collapse
Affiliation(s)
- Seung-Wan Yoo
- *Department of Pharmacology and Molecular Sciences, Department of Neurology, and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA; Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; and International Center for Spinal Cord Injury, Hugo W. Moser Research Institute, Kennedy Krieger, Baltimore, Maryland, USA
| | - Mary G Motari
- *Department of Pharmacology and Molecular Sciences, Department of Neurology, and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA; Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; and International Center for Spinal Cord Injury, Hugo W. Moser Research Institute, Kennedy Krieger, Baltimore, Maryland, USA
| | - Keiichiro Susuki
- *Department of Pharmacology and Molecular Sciences, Department of Neurology, and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA; Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; and International Center for Spinal Cord Injury, Hugo W. Moser Research Institute, Kennedy Krieger, Baltimore, Maryland, USA
| | - Jillian Prendergast
- *Department of Pharmacology and Molecular Sciences, Department of Neurology, and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA; Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; and International Center for Spinal Cord Injury, Hugo W. Moser Research Institute, Kennedy Krieger, Baltimore, Maryland, USA
| | - Andrea Mountney
- *Department of Pharmacology and Molecular Sciences, Department of Neurology, and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA; Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; and International Center for Spinal Cord Injury, Hugo W. Moser Research Institute, Kennedy Krieger, Baltimore, Maryland, USA
| | - Andres Hurtado
- *Department of Pharmacology and Molecular Sciences, Department of Neurology, and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA; Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; and International Center for Spinal Cord Injury, Hugo W. Moser Research Institute, Kennedy Krieger, Baltimore, Maryland, USA
| | - Ronald L Schnaar
- *Department of Pharmacology and Molecular Sciences, Department of Neurology, and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA; Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA; and International Center for Spinal Cord Injury, Hugo W. Moser Research Institute, Kennedy Krieger, Baltimore, Maryland, USA
| |
Collapse
|
35
|
Glavey SV, Huynh D, Reagan MR, Manier S, Moschetta M, Kawano Y, Roccaro AM, Ghobrial IM, Joshi L, O'Dwyer ME. The cancer glycome: carbohydrates as mediators of metastasis. Blood Rev 2015; 29:269-79. [PMID: 25636501 DOI: 10.1016/j.blre.2015.01.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/06/2015] [Accepted: 01/16/2015] [Indexed: 12/30/2022]
Abstract
Glycosylation is a frequent post-translational modification which results in the addition of carbohydrate determinants, "glycans", to cell surface proteins and lipids. These glycan structures form the "glycome" and play an integral role in cell-cell and cell-matrix interactions through modulation of adhesion and cell trafficking. Glycosylation is increasingly recognized as a modulator of the malignant phenotype of cancer cells, where the interaction between cells and the tumor micro-environment is altered to facilitate processes such as drug resistance and metastasis. Changes in glycosylation of cell surface adhesion molecules such as selectin ligands, integrins and mucins have been implicated in the pathogenesis of several solid and hematological malignancies, often with prognostic implications. In this review we focus on the functional significance of alterations in cancer cell glycosylation, in terms of cell adhesion, trafficking and the metastatic cascade and provide insights into the prognostic and therapeutic implications of recent findings in this fast-evolving niche.
Collapse
Affiliation(s)
- Siobhan V Glavey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Glycoscience Research Group, National University of Ireland, Galway, Ireland.
| | - Daisy Huynh
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Michaela R Reagan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Salomon Manier
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Michele Moschetta
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Yawara Kawano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Aldo M Roccaro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Lokesh Joshi
- Glycoscience Research Group, National University of Ireland, Galway, Ireland.
| | - Michael E O'Dwyer
- Glycoscience Research Group, National University of Ireland, Galway, Ireland; Department of Hematology National University of Ireland, Galway and Galway University Hospital, Ireland.
| |
Collapse
|
36
|
Abstract
Immune responses occur in the midst of a variety of cellular stresses that can severely perturb endoplasmic reticulum (ER) function. The unfolded protein response is a three-pronged signaling axis dedicated to preserving ER homeostasis. In this review, we highlight many important and emerging functional roles for ER stress in immunity, focusing on how the bidirectional cross talk between immunological processes and basic cell biology leads to pleiotropic signaling outcomes and enhanced sensitivity to inflammatory stimuli. We also discuss how dysregulated ER stress responses can provoke many diseases, including autoimmunity, firmly positioning the unfolded protein response as a major therapeutic target in human disease.
Collapse
Affiliation(s)
- Sarah E Bettigole
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065; ,
| | | |
Collapse
|
37
|
ST3Gal-4 is the primary sialyltransferase regulating the synthesis of E-, P-, and L-selectin ligands on human myeloid leukocytes. Blood 2014; 125:687-96. [PMID: 25498912 DOI: 10.1182/blood-2014-07-588590] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The precise glycosyltransferase enzymes that mediate selectin-ligand biosynthesis in human leukocytes are unknown. This knowledge is important because selectin-mediated cell tethering and rolling is a critical component of both normal immune response and various vascular disorders. We evaluated the role of 3 α(2,3)sialyltransferases, ST3Gal-3, -4, and -6, which act on the type II N-Acetyllactosamine structure (Galβ1,4GlcNAc) to create sialyl Lewis-X (sLe(X)) and related sialofucosylated glycans on human leukocytes of myeloid lineage. These genes were either silenced using lentiviral short hairpin RNA (shRNA) or functionally ablated using the clustered regularly interspaced short palindromic repeat/Cas9 technology. The results show that ST3Gal-4, but not ST3Gal-3 or -6, is the major sialyltransferase regulating the biosynthesis of E-, P-, and L-selectin ligands in humans. Reduction in ST3Gal-4 activity lowered cell-surface HECA-452 epitope expression by 75% to 95%. Glycomics profiling of knockouts demonstrate an almost complete loss of the sLe(X) epitope on both leukocyte N- and O-glycans. In cell-adhesion studies, ST3Gal-4 knockdown/knockout cells displayed 90% to 100% reduction in tethering and rolling density on all selectins. ST3Gal-4 silencing in neutrophils derived from human CD34(+) hematopoietic stem cells also resulted in 80% to 90% reduction in cell adhesion to all selectins. Overall, a single sialyltransferase regulates selectin-ligand biosynthesis in human leukocytes, unlike mice where multiple enzymes contribute to this function.
Collapse
|
38
|
Macauley MS, Arlian BM, Rillahan CD, Pang PC, Bortell N, Marcondes MCG, Haslam SM, Dell A, Paulson JC. Systemic blockade of sialylation in mice with a global inhibitor of sialyltransferases. J Biol Chem 2014; 289:35149-58. [PMID: 25368325 DOI: 10.1074/jbc.m114.606517] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sialic acid terminates glycans of glycoproteins and glycolipids that play numerous biological roles in health and disease. Although genetic tools are available for interrogating the effects of decreased or abolished sialoside expression in mice, pharmacological inhibition of the sialyltransferase family has, to date, not been possible. We have recently shown that a sialic acid analog, 2,4,7,8,9-pentaacetyl-3Fax-Neu5Ac-CO2Me (3F-NeuAc), added to the media of cultured cells shuts down sialylation by a mechanism involving its intracellular conversion to CMP-3F-NeuAc, a competitive inhibitor of all sialyltransferases. Here we show that administering 3F-NeuAc to mice dramatically decreases sialylated glycans in cells of all tissues tested, including blood, spleen, liver, brain, lung, heart, kidney, and testes. A single dose results in greatly decreased sialoside expression for over 7 weeks in some tissues. Although blockade of sialylation with 3F-NeuAc does not affect viability of cultured cells, its use in vivo has a deleterious "on target" effect on liver and kidney function. After administration of 3F-NeuAc, liver enzymes in the blood are dramatically altered, and mice develop proteinuria concomitant with dramatic loss of sialic acid in the glomeruli within 4 days, leading to irreversible kidney dysfunction and failure to thrive. These results confirm a critical role for sialosides in liver and kidney function and document the feasibility of pharmacological inhibition of sialyltransferases for in vivo modulation of sialoside expression.
Collapse
Affiliation(s)
- Matthew S Macauley
- From the Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science and
| | - Britni M Arlian
- From the Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science and
| | - Cory D Rillahan
- From the Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science and the Division of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, and
| | - Poh-Choo Pang
- the Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nikki Bortell
- the Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La, Jolla, California 92037
| | - Maria Cecilia G Marcondes
- the Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La, Jolla, California 92037
| | - Stuart M Haslam
- the Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anne Dell
- the Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - James C Paulson
- From the Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science and
| |
Collapse
|
39
|
Wright RD, Cooper D. Glycobiology of leukocyte trafficking in inflammation. Glycobiology 2014; 24:1242-51. [DOI: 10.1093/glycob/cwu101] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
40
|
A family with distal myopathy with rimmed vacuoles associated with thrombocytopenia. Neurol Sci 2014; 35:1479-81. [DOI: 10.1007/s10072-014-1790-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 04/02/2014] [Indexed: 11/25/2022]
|
41
|
Döring Y, Noels H, Mandl M, Kramp B, Neideck C, Lievens D, Drechsler M, Megens RTA, Tilstam PV, Langer M, Hartwig H, Theelen W, Marth JD, Sperandio M, Soehnlein O, Weber C. Deficiency of the sialyltransferase St3Gal4 reduces Ccl5-mediated myeloid cell recruitment and arrest: short communication. Circ Res 2014; 114:976-81. [PMID: 24425712 DOI: 10.1161/circresaha.114.302426] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
RATIONALE Sialylation by α2,3-sialyltransferases has been shown to be a crucial glycosylation step in the generation of functional selectin ligands. Recent evidence suggests that sialylation also affects the binding of chemokines to their corresponding receptor. OBJECTIVE Because the chemokine receptors for Ccl5 and Ccl2 are important in atherogenic recruitment of neutrophils and monocytes, we here investigated the role of α2,3-sialyltransferase IV (ST3Gal-IV) in Ccl5- and Ccl2-mediated myeloid cell arrest and further studied its relevance in a mouse model of atherosclerosis. METHODS AND RESULTS St3Gal4-deficient myeloid cells showed a reduced binding of Ccl5 and an impaired Ccl5-triggered integrin activation. Correspondingly, Ccl5-induced arrest on tumor necrosis factor-α-stimulated endothelium was almost completely abrogated, as observed in flow chamber adhesion assays and during ex vivo perfusion or intravital microscopy of carotid arteries. Moreover, Ccl5-triggered neutrophil and monocyte extravasation into the peritoneal cavity was severely reduced in St3Gal4(-/-) mice. In contrast, St3Gal4 deficiency did not significantly affect Ccl2 binding and only marginally decreased Ccl2-induced flow arrest of myeloid cells. In agreement with the crucial role of leukocyte accumulation in atherogenesis, and the importance of Ccl5 chemokine receptors mediating myeloid cell recruitment to atherosclerotic vessels, St3Gal4 deficiency drastically reduced the size, stage, and inflammatory cell content of atherosclerotic lesions in Apoe(-/-) mice on high-fat diet. CONCLUSIONS In summary, these findings identify ST3Gal-IV as a promising target to reduce inflammatory leukocyte recruitment and arrest.
Collapse
Affiliation(s)
- Yvonne Döring
- From Institute for Cardiovascular Prevention (Y.D., M.M., B.K., C.N., D.L., M.D., R.T.A.M., M.L., H.H., O.S., C.W.), and Walter Brendel Centre of Experimental Medicine (M.S.), Ludwig-Maximilians University, Munich, Germany; Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany (H.N., P.V.T., W.T.); Center for Nanomedicine, Sanford-Burnham Medical Research Institute, University of California, Santa Barbara, CA (J.D.M.); DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (M.S., O.S., C.W.); Academic Medical Center, Amsterdam, the Netherlands (O.S.); and Cardiovascular Research Institute Maastricht, Maastricht, the Netherlands (R.T.A.M., C.W.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Brockhausen I, Anastassiades TP. Inflammation and arthritis: perspectives of the glycobiologist. Expert Rev Clin Immunol 2014; 4:173-91. [DOI: 10.1586/1744666x.4.2.173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
43
|
Kiwamoto T, Brummet ME, Wu F, Motari MG, Smith DF, Schnaar RL, Zhu Z, Bochner BS. Mice deficient in the St3gal3 gene product α2,3 sialyltransferase (ST3Gal-III) exhibit enhanced allergic eosinophilic airway inflammation. J Allergy Clin Immunol 2013; 133:240-7.e1-3. [PMID: 23830412 DOI: 10.1016/j.jaci.2013.05.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/23/2013] [Accepted: 05/16/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Sialic acid-binding immunoglobulin-like lectin (Siglec)-F is a proapoptotic receptor on mouse eosinophils, but little is known about its natural tissue ligand. OBJECTIVE We previously reported that the St3gal3 gene product α2,3 sialyltransferase (ST3Gal-III) is required for constitutive Siglec-F lung ligand synthesis. We therefore hypothesized that attenuation of ST3Gal-III will decrease Siglec-F ligand levels and enhance allergic eosinophilic airway inflammation. METHODS C57BL/6 wild-type mice and St3gal3 heterozygous or homozygous deficient (St3gal3(+/-) and St3gal3(-/-)) mice were used. Eosinophilic airway inflammation was induced through sensitization to ovalbumin (OVA) and repeated airway OVA challenge. Siglec-F human IgG1 fusion protein (Siglec-F-Fc) was used to detect Siglec-F ligands. Lung tissue and bronchoalveolar lavage fluid (BALF) were analyzed for inflammation, as well as various cytokines and chemokines. Serum was analyzed for allergen-specific immunoglobulin levels. RESULTS Western blotting with Siglec-F-Fc detected approximately 500-kDa and approximately 200-kDa candidate Siglec-F ligands that were less abundant in St3gal3(+/-) lung extracts and nearly absent in St3gal3(-/-) lung extracts. After OVA sensitization and challenge, Siglec-F ligands were increased in wild-type mouse lungs but less so in St3gal3 mutants, whereas peribronchial and BALF eosinophil numbers were greater in the mutants, with the following rank order: St3gal3(-/-) ≥ St3gal3(+/-) > wild-type mice. Levels of various cytokines and chemokines in BALF were not significantly different among these 3 types of mice, although OVA-specific serum IgG1 levels were increased in St3gal3(-/-) mice. CONCLUSIONS After OVA sensitization and challenge, St3gal3(+/-) and St3gal3(-/-) mice have more intense allergic eosinophilic airway inflammation and less sialylated Siglec-F ligands in their airways. One possible explanation for these findings is that levels of sialylated airway ligands for Siglec-F might be diminished in mice with attenuated levels of ST3Gal-III, resulting in a reduction in a natural proapoptotic pathway for controlling airway eosinophilia.
Collapse
Affiliation(s)
- Takumi Kiwamoto
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Mary E Brummet
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Fan Wu
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Mary G Motari
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - David F Smith
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Ga
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Zhou Zhu
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Bruce S Bochner
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
44
|
Nabors LK, Wang LD, Wagers AJ, Kansas GS. Overlapping roles for endothelial selectins in murine hematopoietic stem/progenitor cell homing to bone marrow. Exp Hematol 2013; 41:588-96. [PMID: 23499761 PMCID: PMC3700604 DOI: 10.1016/j.exphem.2013.02.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 12/11/2022]
Abstract
Selectins are carbohydrate-binding adhesion molecules that are critically involved in leukocyte recognition of endothelium. The endothelial selectins have been implicated in homing of hematopoietic stem and progenitor cells (HSPCs) to the bone marrow (BM) during bone marrow transplant (BMT), but the precise roles of individual selectins in this process have never been defined. BMT of lethally irradiated mice lacking both endothelial selectins (E/P KO) with limiting numbers of wild type BM cells rescued significantly fewer E/P KO than WT recipients, but higher numbers of transplanted WT cells rescued E/P KOs in a dose-dependent fashion. Short-term homing assays confirmed a substantial defect in HSPC homing to BM in E/P KO mice. In contrast, BMT of E-selectin null or P-selectin null mice at limiting cell number uniformly rescued greater than 95% of the transplanted animals. Consistent with these functional results, flow cytometric analysis revealed both E-selectin ligands and P-selectin ligands on distinct subsets of HSPC. These results demonstrate overlapping functions for the endothelial selectins in HSPC homing to BM in the setting of BMT, and define a novel aspect of HSPC heterogeneity linked to selectin ligand expression.
Collapse
Affiliation(s)
- L. Karina Nabors
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Leo D. Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, 7 Divinity Ave, Cambridge, MA
- Joslin Diabetes Center, One Joslin Place, Boston, MA
- Dana-Farber/Children’s Hospital Cancer Center, Boston, MA
| | - Amy J. Wagers
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, 7 Divinity Ave, Cambridge, MA
- Joslin Diabetes Center, One Joslin Place, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Geoffrey S. Kansas
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
45
|
Gomes C, Osório H, Pinto MT, Campos D, Oliveira MJ, Reis CA. Expression of ST3GAL4 leads to SLe(x) expression and induces c-Met activation and an invasive phenotype in gastric carcinoma cells. PLoS One 2013; 8:e66737. [PMID: 23799130 PMCID: PMC3682978 DOI: 10.1371/journal.pone.0066737] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 05/09/2013] [Indexed: 02/04/2023] Open
Abstract
Sialyl-Lewis X (SLe(x)) is a sialylated glycan antigen expressed on the cell surface during malignant cell transformation and is associated with cancer progression and poor prognosis. The increased expression of sialylated glycans is associated with alterations in the expression of sialyltransferases (STs). In this study we determined the capacity of ST3GAL3 and ST3GAL4 sialyltransferases to synthesize the SLe(x) antigen in MKN45 gastric carcinoma cells and evaluated the effect of SLe(x) overexpression in cancer cell behavior both in vitro and in vivo using the chicken chorioallantoic membrane (CAM) model. The activation of tyrosine kinase receptors and their downstream molecular targets was also addressed. Our results showed that the expression of ST3GAL4 in MKN45 gastric cancer cells leads to the synthesis of SLe(x) antigens and to an increased invasive phenotype both in vitro and in the in vivo CAM model. Analysis of phosphorylation of tyrosine kinase receptors showed a specific increase in c-Met activation. The characterization of downstream molecular targets of c-Met activation, involved in the invasive phenotype, revealed increased phosphorylation of FAK and Src proteins and activation of Cdc42, Rac1 and RhoA GTPases. Inhibition of c-Met and Src activation abolished the observed increased cell invasive phenotype. In conclusion, the expression of ST3GAL4 leads to SLe(x) antigen expression in gastric cancer cells which in turn induces an increased invasive phenotype through the activation of c-Met, in association with Src, FAK and Cdc42, Rac1 and RhoA GTPases activation.
Collapse
Affiliation(s)
- Catarina Gomes
- Institute of Molecular Pathology and Immunology of the University of Porto, IPATIMUP, Porto, Portugal
| | - Hugo Osório
- Institute of Molecular Pathology and Immunology of the University of Porto, IPATIMUP, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marta Teixeira Pinto
- Institute of Molecular Pathology and Immunology of the University of Porto, IPATIMUP, Porto, Portugal
| | - Diana Campos
- Institute of Molecular Pathology and Immunology of the University of Porto, IPATIMUP, Porto, Portugal
| | - Maria José Oliveira
- Instituto de Engenharia Biomédica, INEB, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Celso A. Reis
- Institute of Molecular Pathology and Immunology of the University of Porto, IPATIMUP, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute of Biomedical Sciences of Abel Salazar, ICBAS, Porto, Portugal
- * E-mail:
| |
Collapse
|
46
|
Mondal N, Buffone A, Neelamegham S. Distinct glycosyltransferases synthesize E-selectin ligands in human vs. mouse leukocytes. Cell Adh Migr 2013; 7:288-92. [PMID: 23590904 PMCID: PMC3711995 DOI: 10.4161/cam.24714] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The binding of selectins to carbohydrate epitopes expressed on leukocytes is the first step in a multi-step cell adhesion cascade that controls the rate of leukocyte recruitment at sites of inflammation. The glycans that function as selectin-ligands are post-translationally synthesized by the serial action of Golgi resident enzymes called glycosyltransferases (glycoTs). Whereas much of our current knowledge regarding the role of glycoTs in constructing selectin-ligands comes from reconstituted biochemical investigations or murine models, tools to assess the impact of these enzymes on the human ligands are relatively underdeveloped. This is significant since the selectin-ligands, particularly those that bind E-selectin, vary between different leukocyte cell populations and they are also different in humans compared with mice. To address this shortcoming, a recent study by Buffone et al. (2013) outlines a systematic strategy to knockdown upto three glycoTs simultaneously in human leukocytes. The results suggest that the fucosyltransferases (FUTs) regulating selectin-ligand synthesis may be species-specific. In particular, they demonstrate that FUT9 plays a significant role during human, but not mouse, leukocyte-endothelial interactions. Overall, this article discusses the relative roles of the FUTs during human L-, E-, and P-selectin-ligand biosynthesis, and the potential that the knockdown strategy outlined here may assess the role of other glycoTs in human leukocytes also.
Collapse
Affiliation(s)
- Nandini Mondal
- Chemical and Biological Engineering and The NY State Center for Excellence in Bioinformatics and Life Sciences, State University of New York, Buffalo, NY, USA
| | | | | |
Collapse
|
47
|
Ednie AR, Horton KK, Wu J, Bennett ES. Expression of the sialyltransferase, ST3Gal4, impacts cardiac voltage-gated sodium channel activity, refractory period and ventricular conduction. J Mol Cell Cardiol 2013; 59:117-27. [PMID: 23471032 DOI: 10.1016/j.yjmcc.2013.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 12/19/2022]
Abstract
The sequential glycosylation process typically ends with sialic acid residues added through trans-Golgi sialyltransferase activity. Individuals afflicted with congenital disorders of glycosylation often have reduced glycoprotein sialylation and present with multi-system symptoms including hypotonia, seizures, arrhythmia and cardiomyopathy. Cardiac voltage-gated Na(+) channel (Nav) activity can be influenced by sialic acids likely contributing to an external surface potential causing channels to gate at less depolarized voltages. Here, a possible pathophysiological role for reduced sialylation is investigated by questioning the impact of gene deletion of the uniformly expressed beta-galactoside alpha-2,3-sialyltransferase 4 (ST3Gal4) on cardiac Nav activity, cellular refractory period and ventricular conduction. Whole-cell patch-clamp experiments showed that ventricular Nav from ST3Gal4 deficient mice (ST3Gal4(-/-)) gated at more depolarized potentials, inactivated more slowly and recovered from fast inactivation more rapidly than WT controls. Current-clamp recordings indicated a 20% increase in time to action potential peak and a 30ms decrease in ST3Gal4(-/-) myocyte refractory period, concurrent with increased Nav recovery rate. Nav expression, distribution and maximal Na(+) current levels were unaffected by ST3Gal4 expression, indicating that reduced sialylation does not impact Nav surface expression and distribution. However, enzymatic desialylation suggested that ST3Gal4(-/-) ventricular Nav are less sialylated. Consistent with the shortened myocyte refractory period, epicardial conduction experiments using optical mapping techniques demonstrated a 27% reduction in minimum ventricular refractory period and increased susceptibility to arrhythmias in ST3Gal4(-/-) ventricles. Thus, deletion of a single sialyltransferase significantly impacts ventricular myocyte electrical signaling. These studies offer insight into diseases of glycosylation that are often associated with pathological changes in excitability and highlight the importance of glycosylation in cardiac physiology.
Collapse
Affiliation(s)
- Andrew R Ednie
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
48
|
Chachadi VB, Ali MF, Cheng PW. Prostatic cell-specific regulation of the synthesis of MUC1-associated sialyl Lewis a. PLoS One 2013; 8:e57416. [PMID: 23451223 PMCID: PMC3579856 DOI: 10.1371/journal.pone.0057416] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 01/24/2013] [Indexed: 11/21/2022] Open
Abstract
Sialyl Lewis antigens are selectin ligands involved in leukocyte trafficking and cancer metastasis. Biosynthesis of these selectin ligands occurs by the sequential actions of several glycosyltransferases in the Golgi apparatus following synthesis of the protein backbone in the endoplasmic reticulum. In this study, we examine how the synthesis of sialyl Lewis a (sLea) is regulated in prostatic cells and identify a mucin that carries this glycotope. We treat human prostatic cells including one normal and three cancerous cells with histone deacetylase inhibitors, valproic acid, tricostatin A (TSA), and suberoylanilide hydroxamic acid (SAHA), and then monitor the expression of sLea. We have found that SAHA enhances the production of sLea in normal prostatic RWPE-1 cells but not prostatic cancer cells. Employing siRNA technology and co-immunoprecipitation, we show that the sLea is associated with MUC1, which is confirmed by confocal immunofluorescence microscopy and proximity ligation assay. The SAHA-induced production of sLea in RWPE-1 cells is resulted from upregulation of B3GALT1 gene via enhancement of acetylated histone-3 and histone-4. Interestingly, PC3 and LNCaP C-81 cells do not produce detectable amounts of sLea despite expressing high levels of B3GALT1. However, the MUC1-associated sLea is generated in these cells after introduction of MUC1 cDNA. We conclude that the synthesis of sLea is controlled by not only peptide backbone of the glycoprotein but also glycoprotein-specific glycosyltransferases involved in the synthesis of sLea. Further, the SAHA induction of this selectin ligand in normal prostatic cells may pose a potentially serious side effect of this drug recently approved by the US Food and Drug Administration.
Collapse
Affiliation(s)
- Vishwanath B. Chachadi
- Department of Research Service, Veterans Administration Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States of America
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Mohamed F. Ali
- Department of Research Service, Veterans Administration Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States of America
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Pi-Wan Cheng
- Department of Research Service, Veterans Administration Nebraska-Western Iowa Health Care System, Omaha, Nebraska, United States of America
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
49
|
Schmidt S, Moser M, Sperandio M. The molecular basis of leukocyte recruitment and its deficiencies. Mol Immunol 2012; 55:49-58. [PMID: 23253941 DOI: 10.1016/j.molimm.2012.11.006] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/05/2012] [Accepted: 11/05/2012] [Indexed: 12/19/2022]
Abstract
The innate immune system responds to inflammation, infection and injury by recruiting neutrophils and other leukocytes. These cells are able to leave the intravascular compartment in a process called leukocyte recruitment. This process involves several distinct steps: selectin-mediated rolling, firm adhesion via integrins, postarrest modifications including adhesion strengthening and leukocyte crawling and finally transmigration into tissue. Genetic defects affecting the different steps of the cascade can result in severe impairment in leukocyte recruitment. So far, three leukocyte adhesion deficiencies (LAD I-III) have been described in humans. These LADs are rare autosomal recessive inherited disorders and, although clinically distinct, exhibit several common features including recurrent bacterial infections and leukocytosis. In LAD-I, mutations within the β2-integrin gene result in a severe defect in β2 integrin-mediated firm leukocyte adhesion. Defects in the posttranslational fucosylation of selectin ligands dramatically reduce leukocyte rolling and lead to LAD-II. Finally, LAD-III, also known as LAD-I variant, is caused by impaired integrin activation due to mutations within the kindlin-3 gene. This review provides an overview on the molecular basis of leukocyte adhesion and its deficiencies.
Collapse
Affiliation(s)
- Sarah Schmidt
- Walter Brendel Center for Experimental Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | |
Collapse
|
50
|
Edvardson S, Baumann AM, Mühlenhoff M, Stephan O, Kuss AW, Shaag A, He L, Zenvirt S, Tanzi R, Gerardy-Schahn R, Elpeleg O. West syndrome caused byST3Gal-IIIdeficiency. Epilepsia 2012; 54:e24-7. [DOI: 10.1111/epi.12050] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|