1
|
Hershenson R, Nardi-Agmon I, Leshem-Lev D, Kornowski R, Eisen A. The effect of empagliflozin on circulating endothelial progenitor cells in patients with diabetes and stable coronary artery disease. Cardiovasc Diabetol 2024; 23:386. [PMID: 39468546 PMCID: PMC11520434 DOI: 10.1186/s12933-024-02466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/10/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is associated with premature atherosclerotic disease, coronary artery disease (CAD) and chronic heart failure (HF), leading to increased morbidity and mortality. Sodium-Glucose Co-transporter 2 Inhibitors (SGLT2i) exhibit cardioprotective benefits beyond glucose lowering, reducing the risk of major cardiovascular events (MACE) and HF hospitalizations in patients with DM and CAD. Endothelial progenitor cells (EPCs) are bone marrow-derived cells involved in vascular repair, mobilized in response to vascular injury. The number and function of circulating EPCs (cEPCs) are negatively affected by cardiovascular risk factors, including DM. This study aimed to examine the response of cEPCs to SGLT2i treatment in DM patients with stable CAD. METHODS A prospective single-center study included patients with DM and stable CAD who were started on an SGLT2i (empagliflozin). Peripheral blood samples were collected at baseline, 1 month, and 3 months to evaluate cEPC levels and function by flow cytometry, immunohistochemistry and MTT assays. RESULTS Eighteen patients were included in the study (median age 73, (IQR 69, 77) years, 67% male). After 1 month of treatment with empagliflozin, there was no significant change in cEPCs level or function. However, following 3 months of treatment, a significant increase was observed both in cell levels (CD34(+)/VEGFR-2(+): from 0.49% (IQR 0.32, 0.64) to 1.58% (IQR 0.93, 1.82), p = 0.0006; CD133(+)/VEGFR-2(+): from 0.38% (IQR 0.27, 0.6) to 0.82% (IQR 0.7, 1.95), p = 0.0001) and in cell function (from 0.25 CFUs (IQR 0, 0.5) at baseline, to 2 CFUs (IQR 1, 2) at 3 months, p = 0.0012). CONCLUSIONS Empagliflozin treatment in patients with DM and stable CAD increases cEPC levels and function, implying a cardioprotective mechanism. These findings highlight the potential of SGLT2i in treating cardiovascular diseases, warranting further research to explore these effects and their long-term implications.
Collapse
Affiliation(s)
- Roy Hershenson
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel.
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Inbar Nardi-Agmon
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Dorit Leshem-Lev
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Felsenstein Medical Research Center, Rabin Medical Center, Petah Tikva, Israel
| | - Ran Kornowski
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Alon Eisen
- Department of Cardiology, Rabin Medical Center, 39 Jabotinsky St., 49100, Petah Tikva, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Feizi S, Jafari F, Hooshmandi S, Esfandiari H. Topical erythropoietin for the management of scleral necrosis after ocular chemical burns. Burns 2024; 50:1614-1620. [PMID: 38604821 DOI: 10.1016/j.burns.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/25/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
PURPOSE To evaluate the efficacy of topical erythropoietin for chemical burn induced scleral necrosis. METHODS This study included 18 eyes of 16 patients with chemical burn induced scleral necrosis who presented within 6 weeks of the injury. In the prospective arm, 11 eyes received topical erythropoietin, 3000 IU/mL every 6 h, along with standard medical treatment. Retrospectively, we included 7 consecutive eyes of 7 patients who were managed with conventional treatment as historical control group. The main outcome measure was healing of avascular scleral lesions. The secondary outcome measure was complete re-epithelization of cornea. RESULTS Mean patient age was 39.8 ± 16.2 years in the erythropoietin group, and they presented 16.6 ± 15.2 days after acute chemical injury. Scleral necrosis improved in all eyes after 30.7 ± 23.2 days of treatment with topical erythropoietin. Corneal epithelial defects were completely healed in 10 eyes 61.9 ± 50.7 days after the start of the medication. In comparison, standard medical treatment alone did not improve scleral necrosis in the historical control group, necessitating ocular surface reconstruction including conjunctival advancement (1 eye) and tenonplasty (6 eyes). CONCLUSION The results of our study showed that topical erythropoietin was effective in the management of chemical burn induced scleral necrosis. This treatment could avoid ocular surface reconstruction procedures in inflamed eyes.
Collapse
Affiliation(s)
- Sepehr Feizi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fatema Jafari
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadid Hooshmandi
- Ocular Tissue Engineering Research Center, Research Institute for Ophthalmology and Vision Science, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Esfandiari
- Department of Ophthalmology, Olmsted Medical Center, Rochester, MN, USA
| |
Collapse
|
3
|
Kobayashi Y, Taniguchi R, Shirasaki E, Yoshimoto YS, Aoi W, Kuwahata M. Continuous training in young athletes decreases hepcidin secretion and is positively correlated with serum 25(OH)D and ferritin. PeerJ 2024; 12:e17566. [PMID: 38948227 PMCID: PMC11214734 DOI: 10.7717/peerj.17566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Background Iron deficiency is known to impair muscle function and reduce athletic performance, while vitamin D has been reported to induce iron deficiency. However, the mechanism underlying exercise-induced changes in iron metabolism and the involvement of vitamins in this mechanism are unclear. The present study examined changes in biological iron metabolism induced by continuous training and the effects of vitamin D on these changes. Methods Diet, physical characteristics, and blood test data were collected from 23 female high school students in a dance club on the last day of each of a 2-month continuous training period and a 2-week complete rest periods. Results Serum hepcidin-25 levels were significantly lower during the training period than the rest period (p = 0.013), as were the red blood cell count, hemoglobin, and hematocrit (all p < 0.001). Serum erythropoietin was significantly higher (p = 0.001) during the training period. Significant positive correlations were observed between 25(OH)D levels and serum iron, serum ferritin, and transferrin saturation during the training period. Multiple regression analysis with serum 25(OH)D level as the dependent variable and serum ferritin and iron levels as independent variables during the training period revealed a significant association with serum ferritin. Conclusion Continuous training may promote hemolysis and erythropoiesis, contributing to the suppression of hepcidin expression. The relationship between serum 25(OH)D and iron in vivo may be closely related to metabolic changes induced by the exercise load.
Collapse
Affiliation(s)
- Yukiko Kobayashi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Rikako Taniguchi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Emiko Shirasaki
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Yuko Segawa Yoshimoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Wataru Aoi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Masashi Kuwahata
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
4
|
Rezvani A, Masoompour SM, Azarpira N, Monjazeb R, Akbarzadeh M, Salimi M, Shahriarirad R. Serum levels of erythropoietin in patients with chronic obstructive pulmonary disease and anemia. Sci Rep 2023; 13:6990. [PMID: 37117600 PMCID: PMC10147932 DOI: 10.1038/s41598-023-34290-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 04/27/2023] [Indexed: 04/30/2023] Open
Abstract
The important association of erythropoietin (EPO) serum levels and chronic obstructive pulmonary disease (COPD) with anemia has been inadequately studied and remains a controversial issue. We aimed to shed light on this matter by comparing EPO levels in anemic and non-anemic COPD patients, along with a review of published literature. This cross-sectional study was conducted on COPD patients referred to the pulmonary clinic of Shahid Faghihi Hospital and Motahari clinic, Shiraz, Iran, for one year. We measured complete blood count, red blood cell indices, serum iron, TIBC and ferritin levels, serum EPO levels, and body mass index. Among 35 patients in this study, 28 males and 7 females were enrolled with a mean age of 54.57 ± 8.07 years. The average Forced expiratory volume in first second (FEV1) was 37.26 ± 7.33% and FEV1/FVC was 0.46 ± 0.12. Mean EPO levels were 30.29 ± 2.066 mU/mL. No statistically significant association was observed among erythropoietin levels and Hb, COPD severity, and age. There was no significant difference in EPO levels between anemic and non-anemic patients. EPO level, against the traditional expectation, didn't increase in COPD patients. EPO production also didn't compensate for the anemia of chronic disease which considers as a common comorbid disorder in these patients.
Collapse
Affiliation(s)
- Alireza Rezvani
- Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Seyed Masoom Masoompour
- Non-communicable Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Raha Monjazeb
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Akbarzadeh
- Department of Internal Medicine, Lar University of Medical Sciences, Lar, Iran
| | - Maryam Salimi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shahriarirad
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| |
Collapse
|
5
|
Shi X, Seidle KA, Simms KJ, Dong F, Chilian WM, Zhang P. Endothelial progenitor cells in the host defense response. Pharmacol Ther 2023; 241:108315. [PMID: 36436689 PMCID: PMC9944665 DOI: 10.1016/j.pharmthera.2022.108315] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Extensive injury of endothelial cells in blood vasculature, especially in the microcirculatory system, frequently occurs in hosts suffering from sepsis and the accompanied systemic inflammation. Pathological factors, including toxic components derived from invading microbes, oxidative stress associated with tissue ischemia/reperfusion, and vessel active mediators generated during the inflammatory response, are known to play important roles in mediating endothelial injury. Collapse of microcirculation and tissue edema developed from the failure of endothelial barrier function in vital organ systems, including the lung, brain, and kidney, are detrimental, which often predict fatal outcomes. The host body possesses a substantial capacity for maintaining vascular homeostasis and repairing endothelial damage. Bone marrow and vascular wall niches house endothelial progenitor cells (EPCs). In response to septic challenges, EPCs in their niche environment are rapidly activated for proliferation and angiogenic differentiation. In the meantime, release of EPCs from their niches into the blood stream and homing of these vascular precursors to tissue sites of injury are markedly increased. The recruited EPCs actively participate in host defense against endothelial injury and repair of damage in blood vasculature via direct differentiation into endothelial cells for re-endothelialization as well as production of vessel active mediators to exert paracrine and autocrine effects on angiogenesis/vasculogenesis. In recent years, investigations on significance of EPCs in host defense and molecular signaling mechanisms underlying regulation of the EPC response have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches for effective prevention and treatment of sepsis-induced vascular injury as well as vital organ system failure.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kelly A Seidle
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Kevin J Simms
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Feng Dong
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America
| | - Ping Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University College of Medicine, Rootstown, OH 44272, United States of America.
| |
Collapse
|
6
|
Shcheblykin DV, Bolgov AA, Pokrovskii MV, Stepenko JV, Tsuverkalova JM, Shcheblykina OV, Golubinskaya PA, Korokina LV. Endothelial dysfunction: developmental mechanisms and therapeutic strategies. RESEARCH RESULTS IN PHARMACOLOGY 2022. [DOI: 10.3897/rrpharmacology.8.80376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Every year the importance of the normal functioning of the endothelial layer of the vascular wall in maintaining the health of the body becomes more and more obvious.
The physiological role of the endothelium: The endothelium is a metabolically active organ actively involved in the regulation of hemostasis, modulation of inflammation, maintenance of hemovascular homeostasis, regulation of angiogenesis, vascular tone, and permeability.
Risk factors for the development of endothelial dysfunction: Currently, insufficient bioavailability of nitric oxide is considered the most significant risk factor for endothelial dysfunction.
Mechanisms of development of endothelial dysfunction: The genesis of endothelial dysfunction is a multifactorial process. Among various complex mechanisms, this review examines oxidative stress, inflammation, hyperglycemia, vitamin D deficiency, dyslipidemia, excess visceral fat, hyperhomocysteinemia, hyperuricemia, as well as primary genetic defect of endotheliocytes, as the most common causes in the population underlying the development of endothelial dysfunction.
Markers of endothelial dysfunction in various diseases: This article discusses the main biomarkers of endothelial dysfunction currently used, as well as promising biomarkers in the future for laboratory diagnosis of this pathology.
Therapeutic strategies: Therapeutic approaches to the endothelium in order to prevent or reduce a degree of damage to the vascular wall are briefly described.
Conclusion: Endothelial dysfunction is a typical pathological process involved in the pathogenesis of many diseases. Thus, pharmacological agents with endothelioprotective properties can provide more therapeutic benefits than a drug without such an effect.
Collapse
|
7
|
Feizi S, Alemzadeh-Ansari M, Baradaran-Rafii A, Esfandiari H, Kheirkhah A. Topical Erythropoietin for Treatment of Scleral Necrosis. Ocul Immunol Inflamm 2022; 30:1701-1706. [PMID: 34124987 DOI: 10.1080/09273948.2021.1934485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE To investigate the safety and efficacy of topical erythropoietin for the treatment of scleral necrosis. METHODS This study enrolled eight consecutive patients with scleral necrosis due to previous ocular surgery, rheumatoid arthritis-associated necrotizing anterior scleritis, and thermal and chemical burns. Conventional treatments failed to heal avascular scleral lesions in all eyes. Patients were treated with topical erythropoietin (3000 IU/mL) four times a day. RESULTS The mean patient age was 37.6 ± 15.5 years. The interval between the development of scleral necrosis and initiation of topical erythropoietin was 25.6 ± 12.0 days. The necrotic sclera completely healed within 31.9 ± 16.9 days in all patients. The avascular lesions did not recur, and there was no evidence of side effects during the study. CONCLUSION Our results showed that topical erythropoietin could be safely used to manage scleral necrosis. Randomized clinical trials are needed to further explore the efficacy of this intervention in patients with avascular scleral lesions.
Collapse
Affiliation(s)
- Sepehr Feizi
- Ophthalmic Research Center, Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Esfandiari
- Department of Ophthalmology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ahmad Kheirkhah
- Department of Ophthalmology, Long School of Medicine, University of Texas Health at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
8
|
Healing the Broken Hearts: A Glimpse on Next Generation Therapeutics. HEARTS 2022. [DOI: 10.3390/hearts3040013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide, accounting for 32% of deaths globally and thus representing almost 18 million people according to WHO. Myocardial infarction, the most prevalent adult cardiovascular pathology, affects over half a million people in the USA according to the last records of the AHA. However, not only adult cardiovascular diseases are the most frequent diseases in adulthood, but congenital heart diseases also affect 0.8–1.2% of all births, accounting for mild developmental defects such as atrial septal defects to life-threatening pathologies such as tetralogy of Fallot or permanent common trunk that, if not surgically corrected in early postnatal days, they are incompatible with life. Therefore, both congenital and adult cardiovascular diseases represent an enormous social and economic burden that invariably demands continuous efforts to understand the causes of such cardiovascular defects and develop innovative strategies to correct and/or palliate them. In the next paragraphs, we aim to briefly account for our current understanding of the cellular bases of both congenital and adult cardiovascular diseases, providing a perspective of the plausible lines of action that might eventually result in increasing our understanding of cardiovascular diseases. This analysis will come out with the building blocks for designing novel and innovative therapeutic approaches to healing the broken hearts.
Collapse
|
9
|
Custodia A, Ouro A, Sargento-Freitas J, Aramburu-Núñez M, Pías-Peleteiro JM, Hervella P, Rosell A, Ferreira L, Castillo J, Romaus-Sanjurjo D, Sobrino T. Unraveling the potential of endothelial progenitor cells as a treatment following ischemic stroke. Front Neurol 2022; 13:940682. [PMID: 36158970 PMCID: PMC9492921 DOI: 10.3389/fneur.2022.940682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ischemic stroke is becoming one of the most common causes of death and disability in developed countries. Since current therapeutic options are quite limited, focused on acute reperfusion therapies that are hampered by a very narrow therapeutic time window, it is essential to discover novel treatments that not only stop the progression of the ischemic cascade during the acute phase, but also improve the recovery of stroke patients during the sub-acute or chronic phase. In this regard, several studies have shown that endothelial progenitor cells (EPCs) can repair damaged vessels as well as generate new ones following cerebrovascular damage. EPCs are circulating cells with characteristics of both endothelial cells and adult stem cells presenting the ability to differentiate into mature endothelial cells and self-renew, respectively. Moreover, EPCs have the advantage of being already present in healthy conditions as circulating cells that participate in the maintenance of the endothelium in a direct and paracrine way. In this scenario, EPCs appear as a promising target to tackle stroke by self-promoting re-endothelization, angiogenesis and vasculogenesis. Based on clinical data showing a better neurological and functional outcome in ischemic stroke patients with higher levels of circulating EPCs, novel and promising therapeutic approaches would be pharmacological treatment promoting EPCs-generation as well as EPCs-based therapies. Here, we will review the latest advances in preclinical as well as clinical research on EPCs application following stroke, not only as a single treatment but also in combination with new therapeutic approaches.
Collapse
Affiliation(s)
- Antía Custodia
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - João Sargento-Freitas
- Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
- Centro Neurociências e Biologia Celular, Coimbra, Portugal
| | - Marta Aramburu-Núñez
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan Manuel Pías-Peleteiro
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Pablo Hervella
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lino Ferreira
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
- Centro Neurociências e Biologia Celular, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, UC, Biotech Parque Tecnológico de Cantanhede, University of Coimbra, Coimbra, Portugal
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Daniel Romaus-Sanjurjo
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- *Correspondence: Daniel Romaus-Sanjurjo
| | - Tomás Sobrino
- NeuroAging Laboratory (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Tomás Sobrino
| |
Collapse
|
10
|
Zhou K, Han J, Wang Y, Xu Y, Zhang Y, Zhu C. The therapeutic potential of bone marrow-derived macrophages in neurological diseases. CNS Neurosci Ther 2022; 28:1942-1952. [PMID: 36066198 PMCID: PMC9627381 DOI: 10.1111/cns.13964] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 02/06/2023] Open
Abstract
Circulating monocytes are precursors of both tissue macrophages and dendritic cells, and they can infiltrate the central nervous system (CNS) where they transform into bone marrow-derived macrophages (BMDMs). BMDMs play essential roles in various CNS diseases, thus modulating BMDMs might be a way to treat these disorders because there are currently no efficient therapeutic methods available for most of these neurological diseases. Moreover, BMDMs can serve as promising gene delivery vehicles following bone marrow transplantation for otherwise incurable genetic CNS diseases. Understanding the distinct roles that BMDMs play in CNS diseases and their potential as gene delivery vehicles may provide new insights and opportunities for using BMDMs as therapeutic targets or delivery vehicles. This review attempts to comprehensively summarize the neurological diseases that might be treated by modulating BMDMs or by delivering gene therapies via BMDMs after bone marrow transplantation.
Collapse
Affiliation(s)
- Kai Zhou
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Jinming Han
- Department of Neurology, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yafeng Wang
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina,Department of Hematology and OncologyChildren's Hospital Affiliated to Zhengzhou University, Henan, Children's Hospital, Zhengzhou Children's HospitalZhengzhouChina
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThe Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for ChildrenChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research CenterThe Third Affiliated Hospital and Institute of Neuroscience, Zhengzhou UniversityZhengzhouChina,Centre for Brain Repair and RehabilitationInstitute of Neuroscience and Physiology, Sahlgrenska Academy, University of GothenburgGothenburgSweden
| |
Collapse
|
11
|
Cung T, Wang H, Hartnett ME. The Effects of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase and Erythropoietin, and Their Interactions in Angiogenesis: Implications in Retinopathy of Prematurity. Cells 2022; 11:cells11121951. [PMID: 35741081 PMCID: PMC9222209 DOI: 10.3390/cells11121951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 01/27/2023] Open
Abstract
Retinopathy of prematurity (ROP) is a leading cause of vision impairment and blindness in premature infants. Oxidative stress is implicated in its pathophysiology. NADPH oxidase (NOX), a major enzyme responsible for reactive oxygen species (ROS) generation in endothelial cells, has been studied for its involvement in physiologic and pathologic angiogenesis. Erythropoietin (EPO) has gained interest recently due to its tissue protective and angiogenic effects, and it has been shown to act as an antioxidant. In this review, we summarize studies performed over the last five years regarding the role of various NOXs in physiologic and pathologic angiogenesis. We also discuss the effect of EPO in tissue and vasoprotection, and the intersection of EPO and NOX-mediated oxidative stress in angiogenesis and the pathophysiology of ROP.
Collapse
|
12
|
Heinisch PP, Bello C, Emmert MY, Carrel T, Dreßen M, Hörer J, Winkler B, Luedi MM. Endothelial Progenitor Cells as Biomarkers of Cardiovascular Pathologies: A Narrative Review. Cells 2022; 11:cells11101678. [PMID: 35626716 PMCID: PMC9139418 DOI: 10.3390/cells11101678] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
Endothelial progenitor cells (EPC) may influence the integrity and stability of the vascular endothelium. The association of an altered total EPC number and function with cardiovascular diseases (CVD) and risk factors (CVF) was discussed; however, their role and applicability as biomarkers for clinical purposes have not yet been defined. Endothelial dysfunction is one of the key mechanisms in CVD. The assessment of endothelial dysfunction in vivo remains a major challenge, especially for a clinical evaluation of the need for therapeutic interventions or for primary prevention of CVD. One of the main challenges is the heterogeneity of this particular cell population. Endothelial cells (EC) can become senescent, and the majority of circulating endothelial cells (CEC) show evidence of apoptosis or necrosis. There are a few viable CECs that have properties similar to those of an endothelial progenitor cell. To use EPC levels as a biomarker for vascular function and cumulative cardiovascular risk, a correct definition of their phenotype, as well as an update on the clinical application and practicability of current isolation methods, are an urgent priority.
Collapse
Affiliation(s)
- Paul Philipp Heinisch
- Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, School of Medicine, Technical University of Munich, 80636 Munich, Germany;
- Division of Congenital and Pediatric Heart Surgery, University Hospital of Munich, Ludwig-Maximilians-Universität, 80636 Munich, Germany
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (M.M.L.)
- Correspondence:
| | - Corina Bello
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (M.M.L.)
| | - Maximilian Y. Emmert
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353 Berlin, Germany;
- Institute of Regenerative Medicine (IREM), University of Zurich, 8952 Schlieren, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Thierry Carrel
- Department of Cardiac Surgery, University Hospital Zurich, 8091 Zurich, Switzerland;
| | - Martina Dreßen
- Department of Cardiovascular Surgery, Institute Insure, German Heart Center Munich, School of Medicine & Health, Technical University of Munich, Lazarettstrasse 36, 80636 Munich, Germany;
| | - Jürgen Hörer
- Department of Congenital and Pediatric Heart Surgery, German Heart Center Munich, School of Medicine, Technical University of Munich, 80636 Munich, Germany;
- Division of Congenital and Pediatric Heart Surgery, University Hospital of Munich, Ludwig-Maximilians-Universität, 80636 Munich, Germany
| | - Bernhard Winkler
- Department of Cardiovascular Surgery, Hospital Hietzing, 1130 Vienna, Austria;
| | - Markus M. Luedi
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (M.M.L.)
| |
Collapse
|
13
|
Li J, Zhang J, Hao Q, Chen H, Cheng X. Erythropoietin for preventing bronchopulmonary dysplasia in preterm infants: A systematic review and meta-analysis. Pediatr Pulmonol 2022; 57:1051-1063. [PMID: 35043596 DOI: 10.1002/ppul.25837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Recombinant erythropoietin (rEPO) has erythropoiesis and anti-inflammatory properties that might help reduce lung injury in preterm infants. OBJECTIVE To conduct a systematic review and meta-analysis to evaluate the possible role of rEPO in altering the risk of bronchopulmonary dysplasia (BPD). METHODS PubMed, EMBASE, Web of Science, and the Cochrane Library databases were searched to identify randomized controlled trials (RCTs) that evaluated the effects of rEPO for the prevention of BPD in preterm infants. RESULTS Fourteen studies (3199 infants) were included. Our results could not demonstrate a significant effect of rEPO on the incidence of BPD36 (risk ratio [RR]: 0.97, 95% confidence interval [CI]: 0.87-1.09, p = 0.63, I2 = 0, 12 RCTs, high-quality evidence), BPD28 (RR: 1.28, 95% CI: 0.91-1.79, p = 0.15, I2 = 17%, three RCTs, low-quality evidence) and oxygen dependence days. The test for subgroup analysis by administration route of rEPO showed similar outcomes above. Some of the included trials reported a significant effect of intravenous rEPO on reduction of sepsis (RR: 0.82, 95% CI: 0.70-0.96, p = 0.01, I2 = 0, high-quality evidence) and any stage necrotizing enterocolitis (NEC) (RR: 0.75, 95% CI: 0.59-0.94, p = 0.01, I2 = 0, moderate-quality evidence). The incidence of mortality and stage II or higher NEC was comparable in rEPO and control infants. CONCLUSION Our results suggest that rEPO does not affect the risk of developing BPD in preterm infants. Adequately powered RCTs are required to further confirm these findings.
Collapse
Affiliation(s)
- Jing Li
- Department of Neonatology, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, China
| | - Jing Zhang
- Department of Neonatology, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, China
| | - Qingfei Hao
- Department of Neonatology, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, China
| | - Haoming Chen
- Department of Neonatology, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, China
| | - Xiuyong Cheng
- Department of Neonatology, The First Affiliated Hospital of Zheng Zhou University, Zhengzhou, China
| |
Collapse
|
14
|
The impact of different forms of exercise on endothelial progenitor cells in healthy populations. Eur J Appl Physiol 2022; 122:1589-1625. [PMID: 35305142 PMCID: PMC9197818 DOI: 10.1007/s00421-022-04921-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
Abstract
Circulating endothelial progenitor cells (EPCs) contribute to vascular healing and neovascularisation, while exercise is an effective means to mobilise EPCs into the circulation. OBJECTIVES to systematically examine the acute and chronic effects of different forms of exercise on circulating EPCs in healthy populations. METHODS Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were followed. RESULTS thirty-one articles met the inclusion criteria including 747 participants aged 19 to 76 years. All included trials used flow cytometry for identification of circulating EPCs. Eight and five different EPC phenotypes were identified in the acute and chronic trials, respectively. In the acute trials, moderate intensity continuous (MICON), maximal, prolonged endurance, resistance and high intensity interval training (HIIT) exercise protocols were utilised. Prolonged endurance and resistance exercise had the most profound effect on circulating EPCs followed by maximal exercise. In the chronic trials, MICON exercise, HIIT, HIIT compared to MICON and MICON compared to exergame (exercise modality based on an interactive video game) were identified. MICON exercise had a positive effect on circulating EPCs in older sedentary individuals which was accompanied by improvements in endothelial function and arterial stiffness. Long-stage HIIT (4 min bouts) appears to be an effective means and superior than MICON exercise in mobilising circulating EPCs. In conclusion, both in acute and chronic trials the degree of exercise-induced EPC mobilisation depends upon the exercise regime applied. In future, more research is warranted to examine the dose-response relationship of different exercise forms on circulating EPCs using standardised methodology and EPC phenotype.
Collapse
|
15
|
Perdomo S, Brugnini A, Trias N, Menyou A, Silveira G, Ranero S, Lens D, Díaz L, Grille S. Mobilized and apheresis-collected endothelial progenitor cells with plerixafor. J Clin Apher 2022; 37:245-252. [PMID: 35114004 DOI: 10.1002/jca.21967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) are immature cells able to proliferate and contribute to endothelial repair, vascular homeostasis, neovascularization, and angiogenesis. It therefore seems likely that circulating EPCs have therapeutic potential in ischemic and vascular diseases. In this study we evaluated the efficiency of EPC mobilization and collection by large volume leukapheresis in subjects with hematological diseases, treated with plerixafor in association with G-CSF. METHODS Twenty-two patients with lymphoid malignancies underwent rHuG-CSF and plerixafor treatment followed by leukapheresis. Blood samples before and after treatment and apheresis liquid sample were taken and analyzed by flow cytometry in order to quantified EPC. RESULTS The percentage of CD34+ cells and EPCs among circulating total nuclear cells (TNCs) increased significantly by approximately 2-fold and 3-fold, respectively, after plerixafor treatment. Consequently, the absolute number of CD34+ cells and EPCs were increased 4-fold after plerixafor treatment. The median PB concentration of EPCs before and after treatment were 0.77/μL (0.31-2.15) and 3.41/μL (1.78-4.54), respectively, P < .0001. The total EPCs collected per patient were 3.3×107 (0.8×107 -6.8×107 ). CONCLUSION We have shown that plerixafor in combination with G-CSF allows the mobilization and collection of large amounts of EPCs along with CD34+ cells in lymphoid neoplasm patients. The possibility to collect and to store these cells could represent a promising therapeutic tool for the treatment of ischemic complications without the need of in vitro expansion.
Collapse
Affiliation(s)
- Susana Perdomo
- Servicio Médico Integral, Centro de Trasplante de Médula Ósea, Montevideo, Uruguay
| | - Andreina Brugnini
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Natalia Trias
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Alba Menyou
- Servicio Médico Integral, Centro de Trasplante de Médula Ósea, Montevideo, Uruguay
| | - Gonzalo Silveira
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Sabrina Ranero
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| | - Daniela Lens
- Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Lilián Díaz
- Servicio Médico Integral, Centro de Trasplante de Médula Ósea, Montevideo, Uruguay
| | - Sofía Grille
- Servicio Médico Integral, Centro de Trasplante de Médula Ósea, Montevideo, Uruguay.,Laboratorio de Citometría y Biología Molecular, Departamento Básico de Medicina, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,Facultad de Medicina, Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
16
|
Endothelial Progenitor Cells: An Appraisal of Relevant Data from Bench to Bedside. Int J Mol Sci 2021; 22:ijms222312874. [PMID: 34884679 PMCID: PMC8657735 DOI: 10.3390/ijms222312874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
The mobilization of endothelial progenitor cells (EPCs) into circulation from bone marrow is well known to be present in several clinical settings, including acute coronary syndrome, heart failure, diabetes and peripheral vascular disease. The aim of this review was to explore the current literature focusing on the great opportunity that EPCs can have in terms of regenerative medicine.
Collapse
|
17
|
Sun P, Kumar N, Tin A, Zhao J, Brown MR, Lin Z, Yang ML, Zheng Q, Jia J, Bielak LF, Yu B, Boerwinkle E, Hunker KL, Coresh J, Chen YE, Huo Y, Kardia SL, Khoriaty R, Zhou X, Morrison AC, Zhang Y, Ganesh SK. Epidemiologic and Genetic Associations of Erythropoietin With Blood Pressure, Hypertension, and Coronary Artery Disease. Hypertension 2021; 78:1555-1566. [PMID: 34488438 PMCID: PMC8516734 DOI: 10.1161/hypertensionaha.121.17597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Pengfei Sun
- Department of cardiology, Peking University First hospital, Beijing, 100034, China
| | - Nitin Kumar
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Adrienne Tin
- Johns Hopkins Bloomberg School of Public Health, MD, 21205, USA
- University of Mississippi Medical Center, MS, 38677, USA
| | - Jing Zhao
- Department of cardiology, Peking University First hospital, Beijing, 100034, China
| | - Michael R Brown
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zesen Lin
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Min-Lee Yang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Qiwen Zheng
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jia Jia
- Department of cardiology, Peking University First hospital, Beijing, 100034, China
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bing Yu
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Eric Boerwinkle
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kristina L. Hunker
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Josef Coresh
- Johns Hopkins Bloomberg School of Public Health, MD, 21205, USA
| | - Y. Eugene Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Yong Huo
- Department of cardiology, Peking University First hospital, Beijing, 100034, China
| | - Sharon L.R. Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Rami Khoriaty
- Division of Hematology, Department of Internal Medicine and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Xiang Zhou
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Alanna C. Morrison
- Human Genetics Center, Department of Epidemiology, Human Genetics & Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yan Zhang
- Department of cardiology, Peking University First hospital, Beijing, 100034, China
- Institute of Cardiovascular Disease, Peking University First Hospital, Beijing, 100034, China
| | - Santhi K. Ganesh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
18
|
Ishimitsu A, Satonaka H, Furuichi M, Murayama Y, Tojo A, Ishimitsu T. Role of circulating endothelial progenitors in responsiveness to erythropoiesis-stimulating agents in hemodialysis patients. RENAL REPLACEMENT THERAPY 2021. [DOI: 10.1186/s41100-021-00374-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Though treatment of anemia in chronic kidney disease (CKD) patients has been improved remarkably by erythropoiesis-stimulating agents (ESA), hypo-responsiveness to ESA poses a persistent problem in a subgroup of CKD patients, especially those on dialysis, with deteriorated mortality or cardiovascular risks. Pathomechanism of this condition including cardiovascular implications has not been sufficiently investigated.
Methods
Clinical parameters of 101 chronic hemodialysis patients which included those hospitalized in our university hospital were examined cross-sectionally. As a marker estimating ESA hypo-responsiveness, erythropoietin resistance index (ERI) was calculated. Numbers of circulating endothelial progenitor cells (EPC) were measured by flow cytometry. Associations among values were analyzed by methods including multiple linear regression.
Results
Majority (93%) of the subjects were hospitalized patients with various comorbidities. ERI (18.4 [7.2–33.0] IU/week/kg/g/dL) and ESA dose (161.6 [75.0–320.9] IU/week/kg) of all the subjects were relatively high. Factors negatively correlated with EPC included age, HD vintage, CRP, pulse rate, ESA dose and ERI, while male sex and systolic blood pressure were positively correlated. By multiple linear regression analysis, age, sex and ERI (standardized coefficient beta − 0.202, p = 0.039) remained as the independently predicting factors of EPC (log CD133/Flk1+ EPC). Darbepoetin alpha was used in 65 patients, especially predominant when requiring higher ESA doses, but by correlation or multivariable analyses, this did not substantially modify the negative association between ERI and EPC.
Conclusions
ERI was independently associated with EPC paucity in a cohort with various comorbidities. This may suggest a link which connects ESA hypo-responsiveness to compromised cardiovascular prognosis of dialysis patients.
Collapse
|
19
|
Bui KCT, Ellenhorn N, Abbasi A, Villosis MFB, Nguyen M, Truong H, Watson T, Buchanan J, Chen Q. Erythropoietin is not a risk factor for severe retinopathy of prematurity among high risk preterm infants. Early Hum Dev 2021; 161:105440. [PMID: 34407495 DOI: 10.1016/j.earlhumdev.2021.105440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Retinopathy of prematurity (ROP) is a developmental retinal vaso-proliferative disease and a leading cause of blindness in children. Early gestational age, low birth weight and unregulated oxygen exposure are the main risk factors for the development of ROP. There are conflicting reports of a possible association between recombinant Erythropoietin (rhEPO) use and an increased risk for the development of ROP. OBJECTIVE To determine whether rhEPO is an independent risk factor for the development of severe ROP among preterm infants with a gestational age of 23 to 32 weeks and a birth weight <1500 g. METHODS We performed a retrospective study of risk factors for ROP on a cohort of 1762 premature infants born between 2009 and 2014, half of whom received rhEPO. To examine the association between treated ROP and rhEPO, a propensity score (PS) analysis was performed using the inverse probability of treatment weighted (IPTW) approach. RESULTS The incidence of treated ROP was 7.3% (129/1762). PS analysis did not show an association between rhEPO and severe ROP needing treatment or ROP stage 2 or higher, in either the whole population or in the subgroup of babies born at 23 to 28 weeks gestation, in whom the incidence of severe ROP was the highest. Of 117 patients treated for Type 1 or worsening stage 3 ROP, 17 were first diagnosed after NICU discharge. CONCLUSION Our study showed no association between Erythropoietin use and severe ROP and highlights the importance of Ophthalmology follow up after hospital discharge.
Collapse
Affiliation(s)
- Kim Chi T Bui
- Department of Pediatrics, Kaiser Permanente Los Angeles, California, United States of America.
| | - Naomi Ellenhorn
- Department of Ophthalmology, Kaiser Permanente Los Angeles, California, United States of America
| | - Afshan Abbasi
- Department of Pediatrics, Kaiser Permanente Downey, California, United States of America
| | - Maria Fe B Villosis
- Department of Pediatrics, Kaiser Permanente Panorama City, California, United States of America
| | - Marielle Nguyen
- Department of Pediatrics, Kaiser Permanente Orange County, California, United States of America
| | - Huy Truong
- Department of Pediatrics, Kaiser Permanente Fontana, California, United States of America
| | - Tameka Watson
- Department of Pediatrics, Kaiser Permanente Los Angeles, California, United States of America
| | - Joanna Buchanan
- Department of Pediatrics, Kaiser Permanente Los Angeles, California, United States of America
| | - Qiaoling Chen
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, California, United States of America
| |
Collapse
|
20
|
Tsiftsoglou AS. Erythropoietin (EPO) as a Key Regulator of Erythropoiesis, Bone Remodeling and Endothelial Transdifferentiation of Multipotent Mesenchymal Stem Cells (MSCs): Implications in Regenerative Medicine. Cells 2021; 10:cells10082140. [PMID: 34440909 PMCID: PMC8391952 DOI: 10.3390/cells10082140] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Human erythropoietin (EPO) is an N-linked glycoprotein consisting of 166 aa that is produced in the kidney during the adult life and acts both as a peptide hormone and hematopoietic growth factor (HGF), stimulating bone marrow erythropoiesis. EPO production is activated by hypoxia and is regulated via an oxygen-sensitive feedback loop. EPO acts via its homodimeric erythropoietin receptor (EPO-R) that increases cell survival and drives the terminal erythroid maturation of progenitors BFU-Es and CFU-Es to billions of mature RBCs. This pathway involves the activation of multiple erythroid transcription factors, such as GATA1, FOG1, TAL-1, EKLF and BCL11A, and leads to the overexpression of genes encoding enzymes involved in heme biosynthesis and the production of hemoglobin. The detection of a heterodimeric complex of EPO-R (consisting of one EPO-R chain and the CSF2RB β-chain, CD131) in several tissues (brain, heart, skeletal muscle) explains the EPO pleotropic action as a protection factor for several cells, including the multipotent MSCs as well as cells modulating the innate and adaptive immunity arms. EPO induces the osteogenic and endothelial transdifferentiation of the multipotent MSCs via the activation of EPO-R signaling pathways, leading to bone remodeling, induction of angiogenesis and secretion of a large number of trophic factors (secretome). These diversely unique properties of EPO, taken together with its clinical use to treat anemias associated with chronic renal failure and other blood disorders, make it a valuable biologic agent in regenerative medicine for the treatment/cure of tissue de-regeneration disorders.
Collapse
Affiliation(s)
- Asterios S Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
21
|
Neovascularization and tissue regeneration by endothelial progenitor cells in ischemic stroke. Neurol Sci 2021; 42:3585-3593. [PMID: 34216308 DOI: 10.1007/s10072-021-05428-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/19/2021] [Indexed: 12/26/2022]
Abstract
Endothelial progenitor cells (EPCs) are immature endothelial cells (ECs) capable of proliferating and differentiating into mature ECs. These progenitor cells migrate from bone marrow (BM) after vascular injury to ischemic areas, where they participate in the repair of injured endothelium and new blood vessel formation. EPCs also secrete a series of protective cytokines and growth factors that support cell survival and tissue regeneration. Thus, EPCs provide novel and promising potential therapies to treat vascular disease, including ischemic stroke. However, EPCs are tightly regulated during the process of vascular repair and regeneration by numerous endogenous cytokines that are associated closely with the therapeutic efficacy of the progenitor cells. The regenerative capacity of EPCs also is affected by a range of exogenous factors and drugs as well as vascular risk factors. Understanding the functional properties of EPCs and the factors related to their regenerative capacity will facilitate better use of these progenitor cells in treating vascular disease. Here, we review the current knowledge of EPCs in cerebral neovascularization and tissue regeneration after cerebral ischemia and the factors associated with their regenerative function to better understand the underlying mechanisms and provide more effective strategies for the use of EPCs in treating ischemic stroke.
Collapse
|
22
|
Naito T, Shun M, Nishimura H, Gibo T, Tosaka M, Kawashima M, Ando A, Ogawa T, Sanaka T, Nitta K. Pleiotropic effect of erythropoiesis-stimulating agents on circulating endothelial progenitor cells in dialysis patients. Clin Exp Nephrol 2021; 25:1111-1120. [PMID: 34106373 DOI: 10.1007/s10157-021-02071-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/26/2021] [Indexed: 01/18/2023]
Abstract
BACKGROUND Recent studies have suggested that erythropoiesis-stimulating agents (ESAs) may accelerate not only angiogenesis but also vasculogenesis, beyond erythropoiesis. METHODS We conducted a 12-week prospective study in 51 dialysis patients; 13 were treated with recombinant human erythropoietin (EPO, 5290.4 ± 586.9 IU/week), 16 with darbepoetin (DA, 42.9 ± 4.3 µg/week), 12 with epoetin β pegol (CERA, 40.5 ± 4.1 µg/week) and 10 with no ESAs. Vascular mediators comprising endothelial progenitor cells (EPCs), vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2), and high-sensitivity C-reactive protein (hs-CRP) were measured at 0 and 12 weeks. EPCs were measured by flow cytometry as CD45lowCD34+CD133+ cells. RESULTS The EPC count increased significantly to a greater extent in the EPO group than in the other three group, and increased significantly from 0 to 12 weeks in a EPO dose-dependent manner. In both the DA and CERA groups, the EPC count did not change at 12 weeks. Serum levels of VEGF, MMP-2 and hs-CRP were not affected by ESA treatment in all groups. In the CERA group, serum ferritin decreased significantly compared to the no-ESA group and correlated with CERA dose, although use of iron was permitted if required during the prospective study period of 12 weeks. CONCLUSIONS When patients on dialysis were treated with clinical doses of various ESAs, only EPO induced a significant increase of circulating EPCs from bone marrow, whereas, DA and CERA had no effect.
Collapse
Affiliation(s)
- Takashi Naito
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan.
- Department of Medicine, Medical Center East, Tokyo Women's Medical University, Tokyo, Japan.
- Hiyoshi Sezai Clinic, 2-5-2-4F, Hiyoshi, Kohokuku, Yokohama, Kanagawa, 223-0061, Japan.
| | - Manabe Shun
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Hideki Nishimura
- Department of Medicine, Medical Center East, Tokyo Women's Medical University, Tokyo, Japan
| | - Tomoki Gibo
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Mai Tosaka
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Moe Kawashima
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Akitoshi Ando
- Department of Medicine, Tokyo Rosai Hospital, Tokyo, Japan
| | - Tetsuya Ogawa
- Department of Medicine, Medical Center East, Tokyo Women's Medical University, Tokyo, Japan
| | - Tsutomu Sanaka
- Life Style Disease Center, Edogawa Hospital, Tokyo, Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
23
|
Zhou D, Huang Z, Zhu X, Hong T, Zhao Y. Combination of endothelial progenitor cells and BB-94 significantly alleviates brain damage in a mouse model of diabetic ischemic stroke. Exp Ther Med 2021; 22:789. [PMID: 34055088 PMCID: PMC8145984 DOI: 10.3892/etm.2021.10221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a complication of chronic macrovascular disease in type 2 diabetes. However, the pathogenesis of diabetic ischemic stroke has not yet been fully clarified. The aim of the present study was to investigate the underlying effects of endothelial progenitor cells (EPCs) and the matrix metalloproteinase inhibitor BB-94 on diabetic stroke. In vitro experiments were performed using oxygen-glucose deprivation/reoxygenation (OGD/R) model cells, established using HT22 mouse hippocampal cells. MTT assays and flow cytometry revealed that BB-94 prominently induced the proliferation of the OGD/R model cells and prevented their apoptosis. When EPCs and BB-94 were applied to the OGD/R model cells in combination, proliferation was further accelerated and oxidative damage was attenuated. In vivo experiments were also performed using a middle cerebral artery occlusion (MCAO) mouse model. The results of modified neurological severity scoring and oxidative stress marker analysis demonstrated that EPCs and BB-94 prominently alleviated cerebral ischemia/reperfusion injury in the MCAO model mice. Furthermore, reverse transcription-quantitative PCR and western blot assays revealed that EPCs in combination with BB-94 significantly downregulated the expression of matrix metalloproteinases (MMPs) and upregulated the expression of tissue inhibitor of metalloproteinases 1 in OGD/R cells and MCAO model mice. The results suggest that EPCs were successfully isolated and identified, and the OGD/R cell and MCAO mouse models were successfully established. They also indicate that EPCs alone or in combination with BB-94 may exert protective effects against ischemic stroke via the reduction of MMP expression.
Collapse
Affiliation(s)
- Daixuan Zhou
- Queen Mary College, Nanchang University, Nanchang, Jiangxi 330031, P.R. China
| | - Zhi Huang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Xiaoxi Zhu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330029, P.R. China
| | - Yuanli Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| |
Collapse
|
24
|
Richardson NL, O'Malley LJ, Weissberger D, Tumber A, Schofield CJ, Griffith R, Jones NM, Hunter L. Discovery of neuroprotective agents that inhibit human prolyl hydroxylase PHD2. Bioorg Med Chem 2021; 38:116115. [PMID: 33862469 DOI: 10.1016/j.bmc.2021.116115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022]
Abstract
Prolyl hydroxylase (PHD) enzymes play a critical role in the cellular responses to hypoxia through their regulation of the hypoxia inducible factor α (HIF-α) transcription factors. PHD inhibitors show promise for the treatment of diseases including anaemia, cardiovascular disease and stroke. In this work, a pharmacophore-based virtual high throughput screen was used to identify novel potential inhibitors of human PHD2. Two moderately potent new inhibitors were discovered, with IC50 values of 4 μM and 23 μM respectively. Cell-based studies demonstrate that these compounds exhibit protective activity in neuroblastoma cells, suggesting that they have the potential to be developed into clinically useful neuroprotective agents.
Collapse
Affiliation(s)
- Nicole L Richardson
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia
| | - Laura J O'Malley
- School of Medical Sciences, University of New South Wales (UNSW), Sydney, Australia
| | - Daniel Weissberger
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Resistance, 12, Mansfield Road, Department of Chemistry, University of Oxford, OX1 3TA, United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Resistance, 12, Mansfield Road, Department of Chemistry, University of Oxford, OX1 3TA, United Kingdom
| | - Renate Griffith
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia
| | - Nicole M Jones
- School of Medical Sciences, University of New South Wales (UNSW), Sydney, Australia.
| | - Luke Hunter
- School of Chemistry, University of New South Wales (UNSW), Sydney, Australia.
| |
Collapse
|
25
|
Toleubayev M, Dmitriyeva M, Kozhakhmetov S, Sabitova A. Efficacy of erythropoietin for wound healing: A systematic review of the literature. Ann Med Surg (Lond) 2021; 65:102287. [PMID: 33948167 PMCID: PMC8079955 DOI: 10.1016/j.amsu.2021.102287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives To systematically review the available literature on the efficacy of erythropoietin for wound healing in human patients. Design The review was reported following Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. A descriptive-analytical method was used to analyse and integrate review findings. Data sources A primary search of electronic databases was performed using a combination of search terms related to the following areas of interest: ‘efficacy’, ‘erythropoietin’ and ‘wound healing’. A secondary search of the grey literature was conducted in addition to checking the reference list of included studies and review papers. Results Seven distinct studies involving 150 patients met the inclusion criteria for the review. The included studies suggest that topical and subcutaneous application of erythropoietin improves the wound healing process via faster re-epithelialization and reducing wound area and depth. Conclusions There were a limited number of studies and a great degree of heterogeneity of evidence due to differences in the course of concomitant illness, wound aetiology, and the time and dosing regimens adopted. Further research adopting validated and consistent outcome measures is recommended to determine the efficacy and safety of erythropoietin for wound healing. Topical and subcutaneous application of erythropoietin improves the wound healing process in human patients. Topical and subcutaneous application of erythropoietin contributes to reducing wound area and depth in human patients. Topical and subcutaneous application of erythropoietin has the potential to prevent wounds from becoming chronic.
Collapse
Affiliation(s)
- Medet Toleubayev
- Department of Plastic Surgery, Astana Medical University, Nur-Sultan, Kazakhstan
| | - Mariya Dmitriyeva
- Department of Plastic Surgery, Astana Medical University, Nur-Sultan, Kazakhstan
| | - Saken Kozhakhmetov
- Department of Plastic Surgery, Astana Medical University, Nur-Sultan, Kazakhstan
| | - Alina Sabitova
- Unit for Social and Community Psychiatry, WHO Collaborating Centre for Mental Health Service Development, Queen Mary University of London, London, UK
| |
Collapse
|
26
|
Pecoraro AR, Hosfield BD, Li H, Shelley WC, Markel TA. Angiogenesis: A Cellular Response to Traumatic Injury. Shock 2021; 55:301-310. [PMID: 32826807 DOI: 10.1097/shk.0000000000001643] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
ABSTRACT The development of new vasculature plays a significant role in a number of chronic disease states, including neoplasm growth, peripheral arterial disease, and coronary artery disease, among many others. Traumatic injury and hemorrhage, however, is an immediate, often dramatic pathophysiologic insult that can also necessitate neovascularization to promote healing. Traditional understanding of angiogenesis involved resident endothelial cells branching outward from localized niches in the periphery. Additionally, there are a small number of circulating endothelial progenitor cells that participate directly in the process of neovessel formation. The bone marrow stores a relatively small number of so-called pro-angiogenic hematopoietic progenitor cells-that is, progenitor cells of a hematopoietic potential that differentiate into key structural cells and stimulate or otherwise support local cell growth/differentiation at the site of angiogenesis. Following injury, a number of cytokines and intercellular processes are activated or modulated to promote development of new vasculature. These processes initiate and maintain a robust response to vascular insult, allowing new vessels to canalize and anastomose and provide timely oxygen delivering to healing tissue. Ultimately as we better understand the key players in the process of angiogenesis we can look to develop novel techniques to promote healing following injury.
Collapse
Affiliation(s)
- Anthony R Pecoraro
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | | | | | | | | |
Collapse
|
27
|
Broadly effective metabolic and immune recovery with C5 inhibition in CHAPLE disease. Nat Immunol 2021; 22:128-139. [PMID: 33398182 PMCID: PMC7856263 DOI: 10.1038/s41590-020-00830-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/28/2020] [Indexed: 01/29/2023]
Abstract
Complement hyperactivation, angiopathic thrombosis and protein-losing enteropathy (CHAPLE disease) is a lethal disease caused by genetic loss of the complement regulatory protein CD55, leading to overactivation of complement and innate immunity together with immunodeficiency due to immunoglobulin wasting in the intestine. We report in vivo human data accumulated using the complement C5 inhibitor eculizumab for the medical treatment of patients with CHAPLE disease. We observed cessation of gastrointestinal pathology together with restoration of normal immunity and metabolism. We found that patients rapidly renormalized immunoglobulin concentrations and other serum proteins as revealed by aptamer profiling, re-established a healthy gut microbiome, discontinued immunoglobulin replacement and other treatments and exhibited catch-up growth. Thus, we show that blockade of C5 by eculizumab effectively re-establishes regulation of the innate immune complement system to substantially reduce the pathophysiological manifestations of CD55 deficiency in humans.
Collapse
|
28
|
Vasileva R, Chaprazov T. Preclinical studies on pleiotropic functions of erythropoietin on bone healing. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2021. [DOI: 10.15547/bjvm.2020-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Erythropoietin (ЕPО) is a glycoprotein hormone, mainly known for its haemopoietic function. For orthopaedics, its pleiotropic effects – osteogenic and angiogenic potential, are of primary interest. The exact mechanism of EPO action is still unclear. The effects of EPO on bone healing were investigated through experiments with rats, mice, rabbits and pigs. Each of used models for experimental bone defects (calvarial models, long bone segmental defects, posterolateral spinal fusion and corticosteroid-induced femoral head osteonecrosis) has specific advantages and flaws. Obtaining specific and correct results is largely dependent on the used model. The brief evaluation of models could serve for standardisation of preclinical studies on bone regeneration.
Collapse
|
29
|
Su T, Huang K, Mathews KG, Scharf VF, Hu S, Li Z, Frame BN, Cores J, Dinh PU, Daniele MA, Ligler FS, Cheng K. Cardiac Stromal Cell Patch Integrated with Engineered Microvessels Improves Recovery from Myocardial Infarction in Rats and Pigs. ACS Biomater Sci Eng 2020; 6:6309-6320. [PMID: 33449654 DOI: 10.1021/acsbiomaterials.0c00942] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vascularized cardiac patch strategy is promising for ischemic heart repair after myocardial infarction (MI), but current fabrication processes are quite complicated. Vascularized cardiac patches that can promote concurrent restoration of both the myocardium and vasculature at the injured site in a large animal model remain elusive. The safety and therapeutic benefits of a cardiac stromal cell patch integrated with engineered biomimetic microvessels (BMVs) were determined for treating MI. By leveraging a microfluidic method employing hydrodynamic focusing, we constructed the endothelialized microvessels and then encapsulated them together with therapeutic cardiosphere-derived stromal cells (CSCs) in a fibrin gel to generate a prevascularized cardiac stromal cell patch (BMV-CSC patch). We showed that BMV-CSC patch transplantation significantly promoted cardiac function, reduced scar size, increased viable myocardial tissue, promoted neovascularization, and suppressed inflammation in rat and porcine MI models, demonstrating enhanced therapeutic efficacy compared to conventional cardiac stromal cell patches. BMV-CSC patches did not increase renal and hepatic toxicity or exhibit immunogenicity. We noted a significant increase in endogenous progenitor cell recruitment to the peri-infarct region of the porcine hearts treated with BMV-CSC patch as compared to those that received control treatments. These findings establish the BMV-CSC patch as a novel engineered-tissue therapeutic for ischemic tissue repair.
Collapse
Affiliation(s)
- Teng Su
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Ke Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Kyle G Mathews
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Valery F Scharf
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Brianna N Frame
- Division of Cardiothoracic Surgery, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jhon Cores
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Phuong-Uyen Dinh
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
| | - Michael A Daniele
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States.,Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ke Cheng
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States.,Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States.,Divison of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
30
|
Intermittent Hypoxic Exposure Reduces Endothelial Dysfunction. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6479630. [PMID: 32923484 PMCID: PMC7453230 DOI: 10.1155/2020/6479630] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/11/2020] [Accepted: 07/09/2020] [Indexed: 12/14/2022]
Abstract
Intermittent exposure to hypoxia (IHE) increases the production of reactive oxygen and nitrogen species as well as erythropoietin (EPO), which stimulates the adaptation to intense physical activity. However, several studies suggest a protective effect of moderate hypoxia in cardiovascular disease (CVD) events. The effects of intense physical activity with IHE on oxi-inflammatory mediators and their interaction with conventional CVD risk factors were investigated. Blood samples were collected from elite athletes (control n = 6, IHE n = 6) during a 6-day IHE cycle using hypoxicator GO2 altitude. IHE was held once a day, at least 2 hours after training. In serum, hydrogen peroxide (H2O2), nitric oxide (NO), 3-nitrotyrosine (3-Nitro), proinflammatory cytokines (IL-1β and TNFα), high sensitivity C-reactive protein (hsCRP), and heat shock protein 27 (HSP27) were determined by the commercial immunoenzyme (ELISA kits) or colorimetric methods. Serum erythropoietin (EPO) level was measured by ELISA kit every day of hypoxia. IHE was found to significantly increase H2O2, NO, and HSP27 but to decrease 3NT concentrations. The changes in 3NT and HSP27 following hypoxia proved to enhance NO bioavailability and endothelial function. In the present study, the oxi-inflammatory mediators IL-1β and hsCRP increased in IHE group but they did not exceed the reference values. The serum EPO level increased on the 3rd day of IHE, then decreased on 5th day of IHE, and correlated with NO/H2O2 ratio (r s = 0.640, P < 0.05). There were no changes in haematological markers contrary to lipoproteins such as low-density lipoprotein (LDL) and non-high-density lipoprotein (non-HDL) which showed a decreasing trend in response to hypoxic exposure. The study demonstrated that IHE combined with sports activity reduced a risk of endothelial dysfunction and atherogenesis in athletes even though the oxi-inflammatory processes were enhanced. Therefore, 6-day IHE seems to be a potential therapeutic and nonpharmacological method to reduce CVD risk, especially in elite athletes participating in strenuous training.
Collapse
|
31
|
Pourtaji A, Jahani V, Sahebkar A, Sathyapalan T, Mohammadpour AH. Application of Erythropoietin in Chronic Heart Failure Treatment. Mini Rev Med Chem 2020; 20:2080-2089. [PMID: 32723269 DOI: 10.2174/1389557520999200728155543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 02/17/2020] [Accepted: 04/22/2020] [Indexed: 11/22/2022]
Abstract
Heart Failure (HF) is recognized as an important public health concern worldwide, especially in developed countries, due to its high rate of morbidity and mortality. Although new pharmacological and non-pharmacological agents have improved the clinical sequelae of HF in patients, its mortality remains high, especially among the elderly. Erythropoietin (EPO), a glycoprotein, besides its traditional role in promoting erythropoiesis and production of erythroid progenitors, its beneficial role in reducing infarct area and improving heart function through EPO-induced antiapoptotic and antioxidant effects have been increasingly recognized. This review gathers the evidence to date about the effectiveness of EPO in HF patients. In addition to the growing evidence of EPO in the treatment of HF in the animal studies for improving cardiac function and infarct size, more clinical studies are needed to assess the role of EPO treatment in the management of HF.
Collapse
Affiliation(s)
- Atena Pourtaji
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vajiheh Jahani
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Thozhukat Sathyapalan
- Academic Diabetes, Endocrinology and Metabolism, Hull York Medical School, University of Hull, York Y0105DD, United Kingdom
| | | |
Collapse
|
32
|
Erythropoietin Preconditioning Mobilizes Endothelial Progenitor Cells to Attenuate Nephron-Sparing Surgery-Induced Ischemia-Reperfusion Injury. Transplant Proc 2020; 52:2955-2963. [PMID: 32703672 DOI: 10.1016/j.transproceed.2020.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/17/2020] [Accepted: 05/12/2020] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to examine the role of endothelial progenitor cells (EPCs) in protection against ischemic-reperfusion injury (IRI) in a nephron-sparing surgery (NSS) rat model using erythropoietin (EPO) preconditioning. Fifty-four male Sprague-Dawley rats were randomly divided into 3 groups for right kidney nephrectomy treatment: sham group (exposure without clamp treatment), NSS group (3 days of peritoneal phosphate buffered saline [PBS] injection before renal blood vessels were clamped for 40 mins and NSS was performed), and EPO group (3 days of EPO abdomen injections prior to renal blood vessel clamping for 40 min before NSS was performed). After 12, 24, and 72 hours, inferior vena cava blood and renal tissues were harvested. The extent of renal injury was assessed, along with EPC number, cell proliferation, angiogenesis, and vascular growth factor expression. EPO preconditioning significantly improved renal function and histologic morphology, indicated by reduced blood urea nitrogen (BUN) ([33.12 ± 1.88] vs [16.03 ± 0.91], P < .05) and serum creatinine (Scr) ([190.2 ± 20.23] vs [77.23 ± 5.82], P < .05) levels and histologic injury scores ([3.20 ± 0.78] vs [1.70 ± 0.67], P < .05). Angiogenesis in peritubular capillaries markedly increased in the EPO group. EPC numbers increased in the kidneys at 24 hours following reperfusion in the EPO group, compared to the NSS group. Furthermore, EPO preconditioning also increased SDF-1α and CXCR7 expression at 24 hours following reperfusion relative to the NSS group. These findings suggest that EPO pretreatment can reduce renal injury in rats caused by IRI. Mechanistically, this may be related to EPC mobilization and recruitment to injured renal tissues by SDF-1α and CXCR7.
Collapse
|
33
|
Heller L, Thinard R, Chevalier M, Arpag S, Jing Y, Greferath R, Heller R, Nicolau C. Secretion of proteins and antibody fragments from transiently transfected endothelial progenitor cells. J Cell Mol Med 2020; 24:8772-8778. [PMID: 32610368 PMCID: PMC7412409 DOI: 10.1111/jcmm.15511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 01/01/2023] Open
Abstract
In neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis and amyotrophic lateral sclerosis, neuroinflammation can lead to blood‐brain barrier (BBB) breakdown. After intravenous or intra‐arterial injection into mice, endothelial progenitor cells (EPCs) home to the damaged BBB to promote neurovascular repair. Autologous EPCs transfected to express specific therapeutic proteins offer an innovative therapeutic option. Here, we demonstrate that EPC transfection by electroporation with plasmids encoding the reporter protein GFP or an anti‐β‐amyloid antibody fragment (Fab) leads to secretion of each protein. We also demonstrate the secreted anti‐β‐amyloid Fab protein functions in β‐amyloid aggregate solubilization.
Collapse
Affiliation(s)
- Loree Heller
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Reynald Thinard
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA
| | | | - Sezgi Arpag
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA
| | - Yu Jing
- Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, USA
| | - Ruth Greferath
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA
| | - Richard Heller
- Department of Medical Engineering, University of South Florida, Tampa, Florida, USA
| | - Claude Nicolau
- ALSaTECH, Tufts Biolabs Launchpad, Boston, Massachusetts, USA.,Friedman School of Nutrition Science and Policy, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
34
|
Intermittent Hypoxic Exposure with High Dose of Arginine Impact on Circulating Mediators of Tissue Regeneration. Nutrients 2020; 12:nu12071933. [PMID: 32610647 PMCID: PMC7400083 DOI: 10.3390/nu12071933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022] Open
Abstract
Intermittent exposure to hypoxia (IHE) increases production of reactive oxygen and nitrogen species which, as signalling molecules, participate in tissue injury–repair–regeneration cascade. The process is also stimulated by arginine whose bioavailability is a limiting factor for NO synthesis. The effects of IHE in combination with arginine (Arg) intake on myogenesis and angiogenesis mediators were examined in a randomized and placebo-controlled trial. Blood samples were collected from 38 elite athletes on the 1st, 7th and 14th days during the training camp. The oral doses of arginine (2 × 6 g/day) and/or IHE using hypoxicator GO2Altitude (IHE and Arg/IHE) were applied. Serum NO and H2O2 concentrations increased significantly and were related to muscle damage (CK activity >900 IU/mL) in IHE and Arg/IHE compared to placebo. The changes in NO and H2O2 elevated the levels of circulating growth factors such as HGF, IHG-1, PDGFBB, BDNF, VEGF and EPO. Modification of the lipid profile, especially reduced non-HDL, was an additional beneficial effect of hypoxic exposure with arginine intake. Intermittent hypoxic exposure combined with high-dose arginine intake was demonstrated to affect circulating mediators of injury–repair–regeneration. Therefore, a combination of IHE and arginine seems to be a potential therapeutic and non-pharmacological method to modulate the myogenesis and angiogenesis in elite athletes.
Collapse
|
35
|
Yanishi K, Shoji K, Fujioka A, Hori Y, Yukawa A, Matoba S. Impact of Therapeutic Angiogenesis Using Autologous Bone Marrow-derived Mononuclear Cell Implantation in Patients with No-option Critical Limb Ischemia. Ann Vasc Dis 2020; 13:13-22. [PMID: 32273917 PMCID: PMC7140169 DOI: 10.3400/avd.ra.20-00002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recently, the limb salvage rate of patients with critical limb ischemia (CLI) has been improved due to the development of revascularization and wound care treatment. However, many patients with CLI are refractory to standard treatments, including revascularization such as endovascular treatment or surgical bypass. Establishment of a new cell therapy is required to improve the limb salvage rate and prognosis in patients with CLI. In 1997, endothelial progenitor cells were found to be derived from the bone marrow to circulate as CD34 surface antigen positive cells in peripheral blood and to affect therapeutic angiogenesis in ischemic tissues. Later, therapeutic angiogenesis using autologous bone marrow-derived mononuclear cell (BM-MNC) implantation was performed for patients with no-option CLI in clinical practice. Several reports showed the safety and efficacy of the BM-MNC implantation in patients with CLI caused by arteriosclerosis obliterans, thromboangiitis obliterans (TAO), and collagen diseases. In particular, in patients with CLI caused by TAO, limb salvage rate was significantly improved compared with standard treatments. The BM-MNC implantation may be feasible and safe in patients with no-option CLI. Here, we review the efficacy of BM-MNC implantation in no-option CLI, with a focus on therapeutic angiogenesis.
Collapse
Affiliation(s)
- Kenji Yanishi
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Keisuke Shoji
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Ayumu Fujioka
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Yusuke Hori
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Arito Yukawa
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto, Kyoto, Japan
| |
Collapse
|
36
|
Liu W, Varier KM, Sample KM, Zacksenhaus E, Gajendran B, Ben-David Y. Erythropoietin Signaling in the Microenvironment of Tumors and Healthy Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:17-30. [PMID: 32030683 DOI: 10.1007/978-3-030-35582-1_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Erythropoietin (EPO), the primary cytokine of erythropoiesis, stimulates both proliferation and differentiation of erythroid progenitors and their maturation to red blood cells. Basal EPO levels maintain the optimum levels of circulating red blood cells. However, during hypoxia, EPO secretion and its expression is elevated drastically in renal interstitial fibroblasts, thereby increasing the number of erythroid progenitors and accelerating their differentiation to mature erythrocytes. A tight regulation of this pathway is therefore of paramount importance. The biological response to EPO is commenced through the involvement of its cognate receptor, EPOR. The receptor-ligand complex results in homodimerization and conformational changes, which trigger downstream signaling events and cause activation or inactivation of critical transcription factors that promote erythroid expansion. In recent years, recombinant human EPO (rEPO) has been widely used as a therapeutic tool to treat a number of anemias induced by infection, and chemotherapy for various cancers. However, several studies have uncovered a tumor promoting ability of EPO in man, which likely occurs through EPOR or alternative receptor(s). On the other hand, some studies have demonstrated a strong anticancer activity of EPO, although the mechanism still remains unclear. A thorough investigation of EPOR signaling could yield enhanced understanding of the pathobiology for a variety of disorders, as well as the potential novel therapeutic strategies. In this chapter, in addition to the clinical relevance of EPO/EPOR signaling, we review its anticancer efficacy within various tumor microenvironments.
Collapse
Affiliation(s)
- Wuling Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China
| | - Krishnapriya M Varier
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | - Klarke M Sample
- Central Laboratory, Guizhou Provincial People's Hospital, The Affiliated Hospital of Guizhou University, Guiyang, Guizhou, China
| | - Eldad Zacksenhaus
- Department of Medicine, University of Toronto, Toronto, ON, Canada.,Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China.
| | - Yaacov Ben-David
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, Guizhou, China. .,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academic of Sciences, Guiyang, Guizhou, China.
| |
Collapse
|
37
|
Maltaneri RE, Schiappacasse A, Chamorro ME, Nesse AB, Vittori DC. Aquaporin-1 plays a key role in erythropoietin-induced endothelial cell migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118569. [PMID: 31676353 DOI: 10.1016/j.bbamcr.2019.118569] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/29/2019] [Accepted: 10/10/2019] [Indexed: 01/30/2023]
Abstract
Water influx through aquaporin-1 (AQP-1) has been linked to the ability of different cell types to migrate, and therefore plays an important part in processes like metastasis and angiogenesis. Since the erythroid growth factor erythropoietin (Epo) is now recognized as an angiogenesis promoter, we investigated the participation of AQP-1 as a downstream effector of this cytokine in the migration of endothelial cells. Inhibition of AQP-1 with either mercury ions (Hg2+) or a specific siRNA led to an impaired migration of EA.hy926 endothelial cells exposed to Epo (wound-healing assays). Epo also induced the expression of AQP-1 at mRNA and protein levels, an effect which was dependent on the influx of extracellular calcium through L-type calcium channels as well as TRPC3 channels. The relationship between Epo and AQP-1 was further confirmed at shorter exposure times, as the cytokine was unable to trigger calcium influxes in cells where AQP-1 had previously been knocked down. Moreover, Epo promoted changes in the subcellular localization of AQP-1 as well as rearrangements in the actin cytoskeleton, which are consistent with a migratory phenotype. Worthy of note, carbamylated erythropoietin (cEpo), the non-erythropoietic and non-promigratory derivative of Epo, was incapable of AQP-1 modulation. The therapeutical implications of aquaporin targeting in angiogenesis-related diseases highlight the importance of the present results in the context of the relationship between AQP-1 and Epo.
Collapse
Affiliation(s)
- Romina E Maltaneri
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Agustina Schiappacasse
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - María E Chamorro
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Alcira B Nesse
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Daniela C Vittori
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto del Departamento de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.
| |
Collapse
|
38
|
Kaushik K, Das A. Endothelial progenitor cell therapy for chronic wound tissue regeneration. Cytotherapy 2019; 21:1137-1150. [PMID: 31668487 DOI: 10.1016/j.jcyt.2019.09.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
Despite advancements in wound care, healing of chronic diabetic wounds remains a great challenge for the clinical fraternity because of the intricacies of the healing process. Due to the limitations of existing treatment strategies for chronic wounds, stem/progenitor cell transplantation therapies have been explored as an alternative for tissue regeneration at the wound site. The non-healing phenotype of chronic wounds is directly associated with lack of vascularization. Therefore, endothelial progenitor cell (EPC) transplantation is proving to be a promising approach for the treatment of hypo-vascular chronic wounds. With the existing knowledge in EPC biology, significant efforts have been made to enrich EPCs at the chronic wound site, generating EPCs from somatic cells, induced pluripotent stem cells (iPSCs) using transcription factors, or from adult stem cells using chemicals/drugs for use in transplantation, as well as modulating the endogenous dysfunctional/compromised EPCs under diabetic conditions. This review mainly focuses on the pre-clinical and clinical approaches undertaken to date with EPC-based translational therapy for chronic diabetic as well as non-diabetic wounds to evaluate their vascularity-mediated regeneration potential.
Collapse
Affiliation(s)
- Komal Kaushik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IICT Campus, Hyderabad, India.
| |
Collapse
|
39
|
Bui KCT, Kim R, Abbasi A, Nguyen M, Villosis MF, Chen Q. Erythropoietin treatment is associated with a reduction in moderate to severe bronchopulmonary dysplasia in preterm infants. A regional retrospective study. Early Hum Dev 2019; 137:104831. [PMID: 31374455 DOI: 10.1016/j.earlhumdev.2019.104831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/21/2019] [Accepted: 07/24/2019] [Indexed: 11/26/2022]
Abstract
UNLABELLED Erythropoietin treatment is associated with a reduction in moderate to severe bronchopulmonary dysplasia in preterm infants. A regional retrospective study. OBJECTIVE To determine whether premature infants treated with erythropoietin (Epo) in the neonatal period for anemia had a lower incidence of bronchopulmonary dysplasia (BPD), defined as oxygen need at 36 weeks postmenstrual age, and lower rehospitalization rates in the first year of life than infants not exposed. METHODS Retrospective study of a population of infants born at 23 to 32 weeks gestational age, between January 2009 and December 2014, with birthweight ≤1500 g. Patient characteristics, and risk factors for BPD were compared between patients who received erythropoietin, and those not exposed. To examine the association between the outcomes of BPD at 36 weeks PMA, rehospitalization, and erythropoietin treatment, we performed a propensity score (PS) analysis using inverse probability of treatment weighted (IPTW) approach. For comparison, we conducted a logistic regression adjusting for the same covariates used to generate PS using the original population. RESULTS The study population included 1821 preterm infants: 928 received Epo and 893 did not. Epo treatment was associated with a reduction in BPD (18.8% versus 25.9%, p < 0.01) at 36 weeks PMA and reduced median length of stay with lowest BPD rate with Epo initiation before 2 weeks of age. There was no difference in rehospitalization rates in the first year of life. CONCLUSION Erythropoietin treatment was associated with a reduction in BPD but not in rehospitalization rate in the first year of life.
Collapse
Affiliation(s)
- Kim Chi T Bui
- Department of Pediatrics, Kaiser Permanente Los Angeles, United States of America.
| | - Romina Kim
- Department of Pediatrics, Kaiser Permanente Los Angeles, United States of America
| | | | | | | | - Qiaoling Chen
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, United States of America
| |
Collapse
|
40
|
Lin H, Ling Y, Pan J, Gong H. Therapeutic effects of erythropoietin expressed in mesenchymal stem cells for dilated cardiomyopathy in rat. Biochem Biophys Res Commun 2019; 517:575-580. [PMID: 31400858 DOI: 10.1016/j.bbrc.2019.07.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 10/26/2022]
Abstract
Dilated cardiomyopathy (DCM) is considered as the final common response of myocardium to diverse genetic and environmental insults and characterized mainly by left ventricular systolic dysfunction. The current therapies for the treatment of DCM are costly high and outcomes are often unsatisfactory. To date, mesenchymal stem cells (MSCs) have been thought to be an ideal stem cell to repair damaged myocardium but was still within relatively small scales and few cases have been conducted in clinical trials. The use of erythropoietin (EPO), a growth factor produced in the kidneys have been found prevent cardiomyocyte apoptosis. This study was aimed to transplant MSCs into DCM rat bone marrow to express EPO in vivo and investigate the regulation of EPO on cell signaling pathways after transfection. The results found that transplantation of MSCs carrying EPO could significantly relief the cardiac dysfunctions of the DCM rat. This underylying mechanism involved with inhibiting p-NF-κB and p-P38, regulateing and promoting the anti-inflammatory balance, thereby alleviating tissue injury in DCM rats and exhibiting a protective role. Meanwhile, the MSCs + EPO treatment in DCM rat also activated the p-Akt pathway and thus protecting the myocardium from apoptosis in DCM rats. The study revealed an potential therapeutic effect of MSCs and EPO in clinical and provided a molecular mechanism of action for treating DCM.
Collapse
Affiliation(s)
- Haihong Lin
- Department of Cardiology, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Yi Ling
- Department of Cardiology, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Juanjuan Pan
- Department of Cardiology, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China.
| |
Collapse
|
41
|
Mucciolo DP, Marcucci R, Sodi A, Cesari F, Murro V, Rogolino A, Rizzo S, Giusti B, Virgili G, Prisco D, Gori AM. Circulating endothelial and progenitor cells in age-related macular degeneration. Eur J Ophthalmol 2019; 30:956-965. [PMID: 31328962 DOI: 10.1177/1120672119863306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate circulating endothelial and circulating progenitor cells as biomarkers in age-related macular degeneration patients (both exudative and atrophic forms) in order to establish the possible clinical implication of their assessment. METHODS We have enrolled 44 age-related macular degeneration patients: 22 patients with a recently diagnosed exudative (neovascular) form (Group A) and 22 patients with an atrophic (dry) form (Group B). The control group consisted of 22 age and sex-matched healthy subjects (Group C). The number of circulating endothelial progenitor cells (CD34+/KDR+, CD133+/KDR+, and CD34+/KDR+/CD133+), circulating progenitor cells (CD34+, CD133+, and CD34+/CD133+), and circulating endothelial cells were determined in the peripheral venous blood samples by flow cytometry. Neovascular age-related macular degeneration patients were evaluated at baseline and 4 weeks after a loading phase of three consequent intravitreal injections of ranibizumab. RESULTS Comparing age-related macular degeneration patients with the control group, endothelial progenitor cell and circulating progenitor cell levels were not significantly different, while age-related macular degeneration patients showed significantly higher levels of circulating endothelial cells (p = 0.001). Anti-vascular endothelial growth factor treatment with intravitreal ranibizumab was associated with a significant reduction of endothelial progenitor cell levels, with no significant influence on circulating progenitor cells and circulating endothelial cells. CONCLUSION We reported higher levels of circulating endothelial cells in age-related macular degeneration patients in comparison with the control group, thereby supporting the hypothesis of an involvement of endothelial dysregulation in the age-related macular degeneration and a reduction of the endothelial progenitor cell level in neovascular age-related macular degeneration patients after three intravitreal injections of ranibizumab.
Collapse
Affiliation(s)
- Dario Pasquale Mucciolo
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Careggi Teaching Hospital, Florence, Italy
| | - Rossella Marcucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Andrea Sodi
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Careggi Teaching Hospital, Florence, Italy
| | - Francesca Cesari
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Vittoria Murro
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Careggi Teaching Hospital, Florence, Italy
| | - Angela Rogolino
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Stanislao Rizzo
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Careggi Teaching Hospital, Florence, Italy
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gianni Virgili
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Careggi Teaching Hospital, Florence, Italy
| | - Domenico Prisco
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Anna Maria Gori
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
42
|
El-Aswad BEDW, Sonbol AA, Moharm IM, El-Refai SA, Seleem HEDM, Soliman SS. Circulating endothelial cells in severe Plasmodium falciparum infection. Parasitol Int 2019; 72:101926. [PMID: 31100355 DOI: 10.1016/j.parint.2019.101926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/28/2022]
Abstract
Plasmodium falciparum infection is associated with diffuse vascular dys-regulation. Levels of blood circulating endothelial cells (CECs; CD146+CD45-) are a marker of vascular injury. This study aimed to measure blood CECs by flow cytometery in patients with acute malaria infection before and after treatment and to evaluate the prognostic value of that measurement for that disease. The subjects were allocated into: Group I: uncomplicated malaria (UM, n = 32), Group II: severe malaria (SM, n = 12), Group III: the treated UM (TUM, n = 32), Group IV: the treated SM (TSM, n = 12) and Group V: healthy controls (HC, n = 25). Before treatment, SM patients showed the highest mean number of CECs (30,658.3 ± 2658.2/5 × 106 peripheral blood mononuclear cells (PBMCs)), followed by UM patients (19,481.56 ± 866.83/5x106PBMCs) and both groups were significantly higher than HC (2034 ± 300.59/5x106PBMCs, P < .001). The level of CECs decreased significantly in both infected groups after treatment; in TUM it became 5602.18 ± 509.72/5 × 106PBMCs and in TSM it reached 8457.5 ± 452.4/5 × 106 PBMCs (both values P < .001 in comparison with SM). By receiver operating characteristic curve analysis, the best cut-off count for CECs which enables prediction of the occurrence of severe malaria infection was 27,150/5 × 106 PBMCs or more, with 100% sensitivity, 100% specificity, and 100% accuracy. CECs had a significant positive correlation with parasitemia index and serum creatinine and a significant negative correlation with hemoglobin concentration in patients with acute malaria. In conclusion, the level of CECs could be used as a biomarker denoting endothelium damage during acute P. falciparum infection, and it correlated with infection severity and predicted its prognosis.
Collapse
Affiliation(s)
- Bahaa El-Deen W El-Aswad
- Department of Medical Parasitology, Faculty of Medicine, Menoufia University, Shebin al-Kom, Egypt.
| | - Ahmed A Sonbol
- Department of Clinical Pathology, Faculty of Medicine, Menoufia University, Shebin al-Kom, Egypt
| | - Ismail M Moharm
- Department of Medical Parasitology, Faculty of Medicine, Menoufia University, Shebin al-Kom, Egypt
| | - Samar A El-Refai
- Department of Medical Parasitology, Faculty of Medicine, Menoufia University, Shebin al-Kom, Egypt
| | - Hosam El-Din M Seleem
- Department of Tropical medicine, Faculty of Medicine, Menoufia University, Shebin al-Kom, Egypt
| | - Shiamaa S Soliman
- Department of Public Health and Community Medicine, Faculty of Medicine, Menoufia University, Shebin al-Kom, Egypt
| |
Collapse
|
43
|
Recla S, Schmidt D, Logeswaran T, Esmaeili A, Schranz D. Pediatric heart failure therapy: why β1-receptor blocker, tissue ACE-I and mineralocorticoid-receptor-blocker? Transl Pediatr 2019; 8:127-132. [PMID: 31161079 PMCID: PMC6514284 DOI: 10.21037/tp.2019.04.08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/28/2019] [Indexed: 11/06/2022] Open
Abstract
Pediatric heart failure (HF) treatment lagged behind the knowledge of pharmacological research and evidence-based clinical experience in adults. Considering the lack of prospective, double blind randomized studies in children, the review is focused on the preferred indication of specific β1-adrenoreceptor blockers (ARB), mineralocorticoid antagonists and tissue angiotensin-converting enzyme inhibitors (ACE-I). Our recommendations are based on the specificity in children, the effectiveness and the side-effect profile of HF-drugs, the receptor-physiological knowledge and the negative results of the few pediatric HF studies with an "evidence study label". In the interest of our pediatric patients, effective HF treatment has not longer to be postponed by balancing between evidence-based versus pathophysiology-based approach. At our institution, bisoprolol, lisinopril and spironolactone (BLS) are used treating HF in patients with left-right shunt lesions, reduced ejection fraction as well as during the inter-stage after HLHS-Hybrid approach. Chronic use of diuretics and fluid restriction is avoided, if always possible; intravascular volume deficiency stimulates further the neurohumoral axis. Pediatric HF needs to be treated with a strategy respecting the variable pathophysiology and the differences of receptor physiology between children and adult patients. The personalized treatment can be easily proofed by the surrogate parameters as heart rate, breath pattern, weight gain and image-derived parameters as well as biomarkers. Effective HF-therapy is also the basis for novel regenerative strategies in particular for young children with "end-stage" HF avoiding cardiac transplant or death.
Collapse
Affiliation(s)
- Sabine Recla
- Pediatric Heart Center, Justus-Liebig University, Giessen, Germany
| | - Dorle Schmidt
- Pediatric Heart Center, Justus-Liebig University, Giessen, Germany
| | | | - Anoosh Esmaeili
- Department of Pediatric Cardiology, Johann-Wolfgang Goethe University, Frankfurt, Germany
| | - Dietmar Schranz
- Pediatric Heart Center, Justus-Liebig University, Giessen, Germany
- Department of Pediatric Cardiology, Johann-Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
44
|
Zubareva EV, Nadezhdin SV, Burda YE, Nadezhdina NA, Gashevskaya A. Pleiotropic effects of Erythropoietin. Influence of Erythropoietin on processes of mesenchymal stem cells differentiation. RESEARCH RESULTS IN PHARMACOLOGY 2019. [DOI: 10.3897/rrpharmacology.5.33457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Structure and synthesis of Erythropoietin: Erythropoietin (EPO) is a glycoprotein hormone.Recombinant Erythropoietin (Epoetin): Human recombinant erythropoietin is characterised as a factor which stimulates differentiation and proliferation of erythroid precursor cells, and as a tissue protective factor.Anti-ischemic effects of recombinant Erythropoietin: Erythropoietin is one of the most perspective humoral agents which are involved in the preconditioning phenomenon.Erythropoietin receptors and signal transduction pathways: Erythropoietin effects on cells through their interconnection with erythropoietin receptors, which triggers complex intracellular signal cascades, such as JAK2/STAT signaling pathway, phosphatidylinositol 3-kinase (PI3K), protein kinase C, mitogen-activated protein kinase (MAPK), and nuclear factor (NF)-κB signaling pathways.Mechanisms of the effect of Erythropoietin on hematopoietic and non-hematopoietic cells and tissues: In addition to regulation of haemopoiesis, erythropoietin mediates bone formation as it has an effect on hematopoietic stem cells and osteoblastic niche, and this illustrates connection between the processes of haematopoiesis and osteopoiesis which take place in the red bone marrow.The effect of Erythropoietin on mesenchymal stem cells and process of bone tissue formation: Erythropoietin promotes mesenchymal stem cells proliferation, migration and differentiation in osteogenic direction. The evidence of which is expression of bone phenotype by cells under the influence of EPO, including activation of bone specific transcription factors Runx2, osteocalcin and bone sialoprotein.Conclusion: Erythropoietin has a pleiotropic effect on various types of cells and tissues. But the mechanisms which are involved in the process of bone tissue restoration via erythropoietin are still poorly understood.
Collapse
|
45
|
O'Leary OE, Canning P, Reid E, Bertelli PM, McKeown S, Brines M, Cerami A, Du X, Xu H, Chen M, Dutton L, Brazil DP, Medina RJ, Stitt AW. The vasoreparative potential of endothelial colony-forming cells in the ischemic retina is enhanced by cibinetide, a non-hematopoietic erythropoietin mimetic. Exp Eye Res 2019; 182:144-155. [PMID: 30876881 DOI: 10.1016/j.exer.2019.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 01/24/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Retinal ischemia remains a common sight threatening end-point in blinding diseases such as diabetic retinopathy and retinopathy of prematurity. Endothelial colony forming cells (ECFCs) represent a subpopulation of endothelial progenitors with therapeutic utility for promoting reparative angiogenesis in the ischaemic retina. The current study has investigated the potential of enhancing this cell therapy approach by the dampening of the pro-inflammatory milieu typical of ischemic retina. Based on recent findings that ARA290 (cibinetide), a peptide based on the Helix-B domain of erythropoietin (EPO), is anti-inflammatory and tissue-protective, the effect of this peptide on ECFC-mediated vascular regeneration was studied in the ischemic retina. METHODS The effects of ARA290 on pro-survival signaling and function were assessed in ECFC cultures in vitro. Efficacy of ECFC transplantation therapy to promote retinal vascular repair in the presence and absence of ARA290 was studied in the oxygen induced retinopathy (OIR) model of retinal ischemia. The inflammatory cytokine profile and microglial activation were studied as readouts of inflammation. RESULTS ARA290 activated pro-survival signaling and enhanced cell viability in response to H2O2-mediated oxidative stress in ECFCs in vitro. Preconditioning of ECFCs with EPO or ARA290 prior to delivery to the ischemic retina did not enhance vasoreparative function. ARA290 delivered systemically to OIR mice reduced pro-inflammatory expression of IL-1β and TNF-α in the mouse retina. Following intravitreal transplantation, ECFCs incorporated into the damaged retinal vasculature and significantly reduced avascular area. The vasoreparative function of ECFCs was enhanced in the presence of ARA290 but not EPO. DISCUSSION Regulation of the pro-inflammatory milieu of the ischemic retina can be enhanced by ARA290 and may be a useful adjunct to ECFC-based cell therapy for ischemic retinopathies.
Collapse
Affiliation(s)
- Olivia E O'Leary
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Paul Canning
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Emma Reid
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Pietro M Bertelli
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Stuart McKeown
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | | | | | - Xuan Du
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Heping Xu
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Mei Chen
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Louise Dutton
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Derek P Brazil
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Reinhold J Medina
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Alan W Stitt
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom.
| |
Collapse
|
46
|
Xu X, Gu Z, Chen X, Shi C, Liu C, Liu M, Wang L, Sun M, Zhang K, Liu Q, Shen Y, Lin C, Yang B, Sun H. An injectable and thermosensitive hydrogel: Promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater 2019; 86:235-246. [PMID: 30611793 DOI: 10.1016/j.actbio.2019.01.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/18/2022]
Abstract
Periodontitis is an inflammatory disease induced by complex interactions between host immune system and plaque microorganism. Alveolar bone resorption caused by periodontitis is considered to be one of the main reasons for tooth loss in adults. To terminate the alveolar bone resorption, simultaneous anti-inflammation and periodontium regeneration is required, which has not appeared in the existing methods. In this study, chitosan (CS), β-sodium glycerophosphate (β-GP), and gelatin were used to prepare an injectable and thermosensitive hydrogel, which could continuously release aspirin and erythropoietin (EPO) to exert pharmacological effects of anti-inflammation and tissue regeneration, respectively. The releasing profile showed that aspirin and EPO could be continuously released from the hydrogels, which exhibited no toxicity both in vitro and in vivo, for at least 21 days. Immunohistochemistry staining and micro-CT analyses indicated that administration of CS/β-GP/gelatin hydrogels loaded with aspirin/EPO could terminate the inflammation and recover the height of the alveolar bone, which is further confirmed by histological observations. Our results suggested that CS/β-GP/gelatin hydrogels are easily prepared as drug-loading vectors with excellent biocompatibility, and the CS/β-GP/gelatin hydrogels loaded with aspirin/EPO are quite effective in anti-inflammation and periodontium regeneration, which provides a great potential candidate for periodontitis treatment in the dental clinic. Statement of Significance To terminate the alveolar bone resorption caused by periodontitis, simultaneous anti-inflammation and periodontium regeneration is required, which has not appeared in the existing methods. Here, (1) the chitosan (CS)/β-sodium glycerophosphate/gelatin hydrogels loaded with aspirin/erythropoietin (EPO) can form at body temperature in 5 min with excellent biocompatibility in vitro and in vivo; (2) The faster release of aspirin than EPO in the early stage is beneficial for anti-inflammation and provides a microenvironment for ensuring the regeneration function of EPO in the following step. In vivo experiments revealed that the hydrogels are effective in the control of inflammation and regeneration of the periodontium. These results indicate that our synthesized hydrogels have a great potential in the future clinical application.
Collapse
|
47
|
Cycloxygenase-2 inhibition potentiates trans-differentiation of Wharton's jelly–mesenchymal stromal cells into endothelial cells: Transplantation enhances neovascularization-mediated wound repair. Cytotherapy 2019; 21:260-273. [DOI: 10.1016/j.jcyt.2019.01.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/23/2018] [Accepted: 01/12/2019] [Indexed: 01/08/2023]
|
48
|
Yamada Y, Minatoguchi S, Endo N, Kanamori H, Kawasaki M, Nishigaki K, Mikami A, Minatoguchi S. Post-MI treatment with G-CSF and EPO-liposome with SLX repairs infarcted myocardium through EPCs mobilization and activation of prosurvival signals in rabbits. Pharmacol Res Perspect 2019; 7:e00451. [PMID: 30598826 PMCID: PMC6302719 DOI: 10.1002/prp2.451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 01/02/2023] Open
Abstract
We investigated whether combination therapy of G-CSF and erythropoietin (EPO)-liposome with Siaryl Lewis X (SLX) is more cardioprotective than G-CSF or EPO-liposome with SLX alone. For the purpose of generating myocardial infarction (MI), rabbits underwent 30 minutes of coronary occlusion and 14 days of reperfusion. We administered saline (control group, i.v.,), G-CSF (G group, 10 μg/kg/day × 5 days, i.c., starting at 24 hours after reperfusion), EPO-liposome with SLX (LE group, i.v., 2500 IU/kg EPO containing liposome with SLX, immediately after reperfusion), and G-CSF + EPO-liposome with SLX (LE + G group) to the rabbits. The MI size was the smallest in the LE+G group (14.7 ± 0.8%), and smaller in the G group (22.4 ± 1.5%) and LE group (18.5 ± 1.1%) than in the control group (27.8 ± 1.5%). Compared with the control group, the cardiac function and remodeling of the G, LE, and LE + G groups were improved, and LE + G group tended to show the best improvement. The number of CD31-positive microvessels was the greatest in the LE + G group, greater in the G and LE groups than in the control group. Higher expressions of phosphorylated (p)-Akt and p-ERK were observed in the ischemic area of the LE and LE + G groups. The number of CD34+/CXCR4+ cells was significantly higher in the G and LE + G groups. The cardiac SDF-1 was more expressed in the G and LE + G groups. In conclusion, Post-MI combination therapy with G-CSF and EPO-liposome with SLX is more cardioprotective than G-CSF or EPO-liposome with SLX alone through EPCs mobilization, neovascularization, and activation of prosurvival signals.
Collapse
Affiliation(s)
- Yoshihisa Yamada
- Department of CardiologyGifu University Graduate School of MedicineGifuJapan
| | - Shingo Minatoguchi
- Department of CardiologyGifu University Graduate School of MedicineGifuJapan
| | - Noriko Endo
- Department of CardiologyGifu University Graduate School of MedicineGifuJapan
| | - Hiromitsu Kanamori
- Department of CardiologyGifu University Graduate School of MedicineGifuJapan
| | - Masanori Kawasaki
- Department of CardiologyGifu University Graduate School of MedicineGifuJapan
| | | | - Atsushi Mikami
- Department of CardiologyGifu University Graduate School of MedicineGifuJapan
| | - Shinya Minatoguchi
- Department of CardiologyGifu University Graduate School of MedicineGifuJapan
- CardiologyGifu Municipal HospitalGifuJapan
| |
Collapse
|
49
|
Isacoff WH, Reber HA, Bedford R, Hoos W, Rahib L, Upfill-Brown A, Donahue T, Hines OJ. Low-Dose Continuous 5-Fluorouracil Combined with Leucovorin, nab-Paclitaxel, Oxaliplatin, and Bevacizumab for Patients with Advanced Pancreatic Cancer: A Retrospective Analysis. Target Oncol 2018; 13:461-468. [PMID: 29882102 PMCID: PMC6096752 DOI: 10.1007/s11523-018-0572-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Continuous-infusion 5-fluorouracil (5FU) and calcium leucovorin plus nab-paclitaxel and oxaliplatin have been shown to be active in patients with pancreatic cancer. As a protracted low-dose infusion, 5FU is antiangiogenic, and has synergy with bevacizumab. As shown in the treatment of breast cancer, bevacizumab and nab-paclitaxel are also synergetic. OBJECTIVE In this paper we retrospectively analyze the survival of 65 patients with advanced pancreatic cancer who were treated with low-dose continuous (metronomic) chemotherapy given in conjunction with conventional anti-VEGF therapy. PATIENTS AND METHODS Since July of 2008, we have treated 65 patients with 5FU (180 mg/m2/day × 14 days) via an ambulatory pump. Calcium leucovorin (20 mg/m2 IV), nab-paclitaxel (60 mg/m2) IV as a 30-min infusion, and oxaliplatin (50 mg/m2) IV as a 60-min infusion were given on days 1, 8, and 15. Bevacizumab (5 mg/kg) IV over 30 min was administered on days 1 and 15. Cycles were repeated every 28-35 days. There were 42 women and 23 men, and the median age was 59 years. Forty-six patients had stage IV disease. RESULTS The median survival was 19 months, with 82% of patients surviving 12 months or longer. The overall response rate was 49%. There were 28 patients who had received prior treatment, 15 of whom responded to therapy. Fifty-two patients had elevated CA 19-9 prior to treatment. Of these, 21 patients had 90% or greater reduction in CA 19-9 levels. This cohort had an objective response rate of 71% and a median survival of 27 months. Thirty patients stopped treatment due to disease progression, and an additional 22 stopped because of toxicity. One patient died while on therapy. CONCLUSIONS This non-gemcitabine-based regimen resulted in higher response rates and better survival than what is commonly observed with therapy given at conventional dosing schedules. Low-dose continuous (metronomic therapy) cytotoxic chemotherapy combined with antiangiogenic therapy is safe and effective.
Collapse
Affiliation(s)
- William H Isacoff
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), 1301 20th Street, Suite 280, Santa Monica, CA, 90404, USA.
| | - Howard A Reber
- Department of Surgery, Division of General Surgery, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Rudolph Bedford
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), 1301 20th Street, Suite 280, Santa Monica, CA, 90404, USA
| | - William Hoos
- Pancreatic Action Network, Manhattan Beach, CA, USA
| | - Lola Rahib
- Pancreatic Action Network, Manhattan Beach, CA, USA
| | - Alexander Upfill-Brown
- Department of Medicine, David Geffen School of Medicine at University of California Los Angeles (UCLA), 1301 20th Street, Suite 280, Santa Monica, CA, 90404, USA
| | - Timothy Donahue
- Department of Surgery, Division of General Surgery, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - O Joe Hines
- Department of Surgery, Division of General Surgery, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
50
|
Del Papa N, Pignataro F. The Role of Endothelial Progenitors in the Repair of Vascular Damage in Systemic Sclerosis. Front Immunol 2018; 9:1383. [PMID: 29967618 PMCID: PMC6015881 DOI: 10.3389/fimmu.2018.01383] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 06/04/2018] [Indexed: 01/17/2023] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disease characterized by a complex pathological process where the main scenario is represented by progressive loss of microvascular bed, with the consequent progressive fibrotic changes in involved organ and tissues. Although most aspects of vascular injury in scleroderma are poorly understood, recent data suggest that the scleroderma impairment of neovascularization could be related to both angiogenesis and vasculogenesis failure. Particularly, compensatory angiogenesis does not occur normally in spite of an important increase in many angiogenic factors either in SSc skin or serum. Besides insufficient angiogenesis, the contribution of defective vasculogenesis to SSc vasculopathy has been extensively studied. Over the last decades, our understanding of the processes responsible for the formation of new vessels after tissue ischemia has increased. In the past, adult neovascularization was thought to depend mainly on angiogenesis (a process by which new vessels are formed by the proliferation and migration of mature endothelial cells). More recently, increased evidence suggests that stem cells mobilize from the bone marrow into the peripheral blood (PB), differentiate in circulating endothelial progenitors (EPCs), and home to site of ischemia to contribute to de novo vessel formation. Significant advances have been made in understanding the biology of EPCs, and molecular mechanisms regulating EPC function. Autologous EPCs now are becoming a novel treatment option for therapeutic vascularization and vascular repair, mainly in ischemic diseases. However, different diseases, such as cardiovascular diseases, diabetes, and peripheral artery ischemia are related to EPC dysfunction. Several studies have shown that EPCs can be detected in the PB of patients with SSc and are impaired in their function. Based on an online literature search (PubMed, EMBASE, and Web of Science, last updated December 2017) using keywords related to “endothelial progenitor cells” and “Systemic Sclerosis,” “scleroderma vasculopathy,” “angiogenesis,” “vasculogenesis,” this review gives an overview on the large body of data of current research in this issue, including controversies over the identity and functions of EPCs, their meaning as biomarker of SSc microangiopathy and their clinical potency.
Collapse
|