1
|
Guo H, Zhao Y, Mu R, Zhang G, Chen S, Cao X, Liu K, Liu Y, Dai B, Zhou Y, Wang C, Yang J. The Protective Effect of Chronic Intermittent Hypobaric Hypoxia on Preventing the Destruction of CD34 + Haematopoietic Stem Cells in Aplastic Anaemia by Modulating the Th1/Th2 Balance. Stem Cell Rev Rep 2024; 20:301-312. [PMID: 37831395 DOI: 10.1007/s12015-023-10631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/14/2023]
Abstract
Aplastic anaemia (AA) is a haematopoietic disorder caused by immune-mediated attack on haematopoietic stem cells (HSCs). Stem cell transplantation and immunosuppressive therapy remain the major treatment choice for AA patients but have limited benefits and undesired side effects. The aim of our study was to clarify the protective role of immunity of chronic intermittent hypobaric hypoxia (CIHH) and the underlying mechanism in AA. Our integrative analysis demonstrated that CIHH pre-treatment significantly improved haematopoiesis and survival in an AA rat model. We further confirmed that CIHH pre-treatment was closely associated with the Th1/Th2 balance and a large number of negative regulatory haematopoietic factors, such as TNF-α and IFN-γ, produced by hyperactive Th1 lymphocytes released in AA rats, which induced the death program in a large number of CD34+ HSCs by activating the Fas/FasL apoptosis pathway, while CIHH pre-treatment effectively downregulated the expression of TNF-α and IFN-γ, resulting in a reduction in Fas antigen expression in CD34+ HSCs. In summary, this study provides evidence that CIHH has good protective effect against AA by modulating immune balance in Th1/Th2 cells and may provide a new therapeutic strategy.
Collapse
Affiliation(s)
- Hui Guo
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou, China
- Key Laboratory of Infection and Immunity of CAS, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yilin Zhao
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou, China
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Rui Mu
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Guangdao Zhang
- Department of Prosthodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Shuxian Chen
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xinwei Cao
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Kangcan Liu
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Yiran Liu
- College of Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Baiyun Dai
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou, China
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Chuan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.
| | - Jing Yang
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou, China.
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
2
|
Manesia JK, Maganti HB, Almoflehi S, Jahan S, Hasan T, Pasha R, McGregor C, Dumont N, Laganière J, Audet J, Pineault N. AA2P-mediated DNA demethylation synergizes with stem cell agonists to promote expansion of hematopoietic stem cells. CELL REPORTS METHODS 2023; 3:100663. [PMID: 38070507 PMCID: PMC10783628 DOI: 10.1016/j.crmeth.2023.100663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/28/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
Small molecules have enabled expansion of hematopoietic stem and progenitor cells (HSPCs), but limited knowledge is available on whether these agonists can act synergistically. In this work, we identify a stem cell agonist in AA2P and optimize a series of stem cell agonist cocktails (SCACs) to help promote robust expansion of human HSPCs. We find that SCACs provide strong growth-promoting activities while promoting retention and function of immature HSPC. We show that AA2P-mediated HSPC expansion is driven through DNA demethylation leading to enhanced expression of AXL and GAS6. Further, we demonstrate that GAS6 enhances the serial engraftment activity of HSPCs and show that the GAS6/AXL pathway is critical for robust HSPC expansion.
Collapse
Affiliation(s)
- Javed K Manesia
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada
| | - Harinad B Maganti
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada; Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada
| | - Sakhar Almoflehi
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada; Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada
| | - Suria Jahan
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada; Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada
| | - Tanvir Hasan
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada; Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada
| | - Roya Pasha
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada
| | - Chelsea McGregor
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada
| | | | | | - Julie Audet
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Nicolas Pineault
- Canadian Blood Services, Centre for Innovation, Ottawa, ON, Canada; Biochemistry, Microbiology and Immunology Department, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
3
|
Gutierrez-Guerrero A, Abrey Recalde MJ, Mangeot PE, Costa C, Bernadin O, Périan S, Fusil F, Froment G, Martinez-Turtos A, Krug A, Martin F, Benabdellah K, Ricci EP, Giovannozzi S, Gijsbers R, Ayuso E, Cosset FL, Verhoeyen E. Baboon Envelope Pseudotyped "Nanoblades" Carrying Cas9/gRNA Complexes Allow Efficient Genome Editing in Human T, B, and CD34 + Cells and Knock-in of AAV6-Encoded Donor DNA in CD34 + Cells. Front Genome Ed 2021; 3:604371. [PMID: 34713246 PMCID: PMC8525375 DOI: 10.3389/fgeed.2021.604371] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into human blood cells can be challenging. Here, we have utilized "nanoblades," a new technology that delivers a genomic cleaving agent into cells. These are modified murine leukemia virus (MLV) or HIV-derived virus-like particle (VLP), in which the viral structural protein Gag has been fused to Cas9. These VLPs are thus loaded with Cas9 protein complexed with the guide RNAs. Highly efficient gene editing was obtained in cell lines, IPS and primary mouse and human cells. Here, we showed that nanoblades were remarkably efficient for entry into human T, B, and hematopoietic stem and progenitor cells (HSPCs) thanks to their surface co-pseudotyping with baboon retroviral and VSV-G envelope glycoproteins. A brief incubation of human T and B cells with nanoblades incorporating two gRNAs resulted in 40 and 15% edited deletion in the Wiskott-Aldrich syndrome (WAS) gene locus, respectively. CD34+ cells (HSPCs) treated with the same nanoblades allowed 30-40% exon 1 drop-out in the WAS gene locus. Importantly, no toxicity was detected upon nanoblade-mediated gene editing of these blood cells. Finally, we also treated HSPCs with nanoblades in combination with a donor-encoding rAAV6 vector resulting in up to 40% of stable expression cassette knock-in into the WAS gene locus. Summarizing, this new technology is simple to implement, shows high flexibility for different targets including primary immune cells of human and murine origin, is relatively inexpensive and therefore gives important prospects for basic and clinical translation in the area of gene therapy.
Collapse
Affiliation(s)
- Alejandra Gutierrez-Guerrero
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Maria Jimena Abrey Recalde
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Laboratory of Lentiviral Vectors and Gene Therapy, University Institute of Italian Hospital, National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Philippe E Mangeot
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Caroline Costa
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Ornellie Bernadin
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Séverine Périan
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Floriane Fusil
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Gisèle Froment
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | | | - Adrien Krug
- Université Côte d'Azur, INSERM, Nice, France
| | - Francisco Martin
- Centre for Genomics and Oncological Research (GENYO), Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Karim Benabdellah
- Centre for Genomics and Oncological Research (GENYO), Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Emiliano P Ricci
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, Ecole Normale Supérieure de Lyon (ENS de Lyon), Université Claude Bernard, Inserm, U1210, CNRS, UMR5239, Lyon, France
| | - Simone Giovannozzi
- Laboratory for Viral Vector Technology & Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium.,KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology & Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Eduard Ayuso
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - François-Loïc Cosset
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Els Verhoeyen
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Université Côte d'Azur, INSERM, Nice, France
| |
Collapse
|
4
|
Domm JM, Wootton SK, Medin JA, West ML. Gene therapy for Fabry disease: Progress, challenges, and outlooks on gene-editing. Mol Genet Metab 2021; 134:117-131. [PMID: 34340879 DOI: 10.1016/j.ymgme.2021.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/14/2022]
Abstract
Gene therapy is the delivery of a therapeutic gene for endogenous cellular expression with the goal of rescuing a disease phenotype. It has been used to treat an increasing number of human diseases with many strategies proving safe and efficacious in clinical trials. Gene delivery may be viral or non-viral, performed in vivo or ex vivo, and relies on gene integration or transient expression; all of these techniques have been applied to the treatment of Fabry disease. Fabry disease is a genetic disorder of the α-galactosidase A gene, GLA, that causes an accumulation of glycosphingolipids in cells leading to cardiac, renal and cerebrovascular damage and eventually death. Currently, there are no curative treatments available, and the therapies that are used have significant drawbacks. These treatment concerns have led to the advent of gene therapies for Fabry disease. The first Fabry patients to receive gene therapy were treated with recombinant lentivirus targeting their hematopoietic stem/progenitor cells. Adeno-associated virus treatments have also begun. Alternatively, the field of gene-editing is a new and rapidly growing field. Gene-editing has been used to repair disease-causing mutations or insert genes into cellular DNA. These techniques have the potential to be applied to the treatment of Fabry disease provided the concerns of gene-editing technology, such as safety and efficiency, were addressed. This review focuses on the current state of gene therapy as it is being developed for Fabry disease, including progresses and challenges as well as an overview of gene-editing and how it may be applied to correct Fabry disease-causing mutations in the future.
Collapse
Affiliation(s)
- Jakob M Domm
- Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jeffrey A Medin
- Department of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michael L West
- Department of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
5
|
Chander V, Gangenahalli G. Pluronic-F127/Platelet Microvesicles nanocomplex delivers stem cells in high doses to the bone marrow and confers post-irradiation survival. Sci Rep 2020; 10:156. [PMID: 31932650 PMCID: PMC6957521 DOI: 10.1038/s41598-019-57057-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/21/2019] [Indexed: 01/06/2023] Open
Abstract
Platelet microvesicles (pMVs) are submicron-sized heterogeneous vesicles released upon activation and contain several membrane receptors and proteins (CD41, CD61, CD62, CXCR4, PAR-1, etc.). We have revealed their ability to adhere to the triblock copolymer pluronic-F127 (PF127) and form a platelet microvesicular nanocloud which has the potential to enhance the transvascular migration of hematopoietic stem cells across the sinusoidal endothelium to the bone marrow. Besides, the pMVs nanoclouds bestow survival benefits when present on the cells used for infusion, particularly with PF127-stabilized with chitosan-alginate (PF127-CA HSCs). The vesicles were found to be firmly associated with PF127 in the nanocloud, which was detected by confocal laser scanning microscopy. The abrogation of CXCR4/SDF-1 axis regulating the transmigration of the cells by antagonist AMD3100 revealed that the enriched CXCR4 receptors on pMVs robustize the transmigration of the infused cells. The homing of the cells led to effective engraftment and faster regeneration of the critical blood lineages, which elicited 100% survival of the mice receiving lethal doses of radiation. The Human Long-Term Culture Initiating Cells (LTC-ICs), Severe Combined Immunodeficient (SCID) - Repopulating Cells (SRCs) and Colony Forming Cells (CFCs) responsible for the regeneration, but present in extremely low numbers in the infused cell dose, have enabled the cells to reach the bone marrow in high numbers. This potential of the PF127 to sequester the pMVs and its application to achieve over 10-fold delivery of HSCs across the trans-endothelial checkpoint has so far not been reported. Thus, this mechanistic innovation is a potential post-exposure life-saving regimen capable of circumventing the irreparable damage to the bone marrow caused by lethal doses of radiation.
Collapse
Affiliation(s)
- Vikas Chander
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, 110054, India
| | - Gurudutta Gangenahalli
- Division of Stem Cell and Gene Therapy Research, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organization, Delhi, 110054, India.
| |
Collapse
|
6
|
Skayneh H, Jishi B, Hleihel R, Hamieh M, Darwiche N, Bazarbachi A, El Sabban M, El Hajj H. A Critical Review of Animal Models Used in Acute Myeloid Leukemia Pathophysiology. Genes (Basel) 2019; 10:E614. [PMID: 31412687 PMCID: PMC6722578 DOI: 10.3390/genes10080614] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most frequent, complex, and heterogeneous hematological malignancies. AML prognosis largely depends on acquired cytogenetic, epigenetic, and molecular abnormalities. Despite the improvement in understanding the biology of AML, survival rates remain quite low. Animal models offer a valuable tool to recapitulate different AML subtypes, and to assess the potential role of novel and known mutations in disease progression. This review provides a comprehensive and critical overview of select available AML animal models. These include the non-mammalian Zebrafish and Drosophila models as well as the mammalian rodent systems, comprising rats and mice. The suitability of each animal model, its contribution to the advancement of knowledge in AML pathophysiology and treatment, as well as its advantages and limitations are discussed. Despite some limitations, animal models represent a powerful approach to assess toxicity, and permit the design of new therapeutic strategies.
Collapse
Affiliation(s)
- Hala Skayneh
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Batoul Jishi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Rita Hleihel
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Maguy Hamieh
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Ali Bazarbachi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| | - Hiba El Hajj
- Department of Experimental Pathology, Microbiology and Immunology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
- Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon.
| |
Collapse
|
7
|
Erdem Kuruca S, Çetin MB, Akgün Dar K, Özerkan D. Protective effects of cytokine combinations against the apoptotic activity of glucocorticoids on CD34 + hematopoietic stem/progenitor cells. Cytotechnology 2019; 71:67-77. [PMID: 30603917 DOI: 10.1007/s10616-018-0265-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 10/09/2018] [Indexed: 12/26/2022] Open
Abstract
Haematopoietic stem cells can self-renew and produce progenitor cells, which have a high proliferation capacity. Chemotherapeutic drugs are toxic to normal cells as well as cancer cells, and glucocorticoids (GCs), which are essential drugs for many chemotherapeutic protocols, efficiently induce apoptosis not only in malignant cells but also in normal haematopoietic cells. Studies have shown that haematopoietic cytokines can prevent the apoptosis induced by chemotherapy and decrease the toxic effects of these drugs. However, the apoptosis induction mechanism of GCs in CD34+ haematopoietic cells and the anti-apoptotic effects of cytokines have not been well elucidated. In this study, we investigated the apoptotic effects of GCs on CD34+, a haematopoietic stem/progenitor cell (HSPC) population, and demonstrated the protective effects of haematopoietic cytokines. We used a cytokine cocktail containing early-acting cytokines, namely, interleukin-3 (IL-3), thrombopoietin, stem cell factor and flt3/flk2 ligand, and dexamethasone and prednisolone were used as GCs. Apoptotic mechanisms were assessed by immunohistochemical staining and quantified using H-scoring. Dexamethasone and prednisolone induced apoptosis in CD34+ HSPCs. GC treatment caused a significant increase in apoptotic Fas, caspase-3, cytochrome c and Bax, but a significant decrease in anti-apoptotic Bcl-2. Furthermore, as expected, cytokines caused a significant decrease in all apoptotic markers and a significant increase in Bcl-2. Thus, our findings suggest that CD34+ HSPCs are an extremely sensitive target for GCs and that cytokines protect these cells from GC-induced apoptosis.
Collapse
Affiliation(s)
- Serap Erdem Kuruca
- Deparment of Physiology, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Muzaffer Beyza Çetin
- Deparment of Physiology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Kadriye Akgün Dar
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Dilşad Özerkan
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey.
| |
Collapse
|
8
|
Abu-Khader A, Law KW, Jahan S, Manesia JK, Pasha R, Hovey O, Pineault N. Paracrine Factors Released by Osteoblasts Provide Strong Platelet Engraftment Properties. Stem Cells 2018; 37:345-356. [PMID: 30520180 DOI: 10.1002/stem.2956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 12/27/2022]
Abstract
Ex vivo expansion of hematopoietic stem cell (HSCs) and progenitors may one day overcome the slow platelet engraftment kinetics associated with umbilical cord blood transplantation. Serum-free medium conditioned with osteoblasts (i.e., osteoblast-conditioned medium [OCM]) derived from mesenchymal stromal cells (MSC) was previously shown to increase cell growth and raise the levels of human platelets in mice transplanted with OCM-expanded progenitors. Herein, we characterized the cellular and molecular mechanisms responsible for these osteoblast-derived properties. Limiting dilution transplantation assays revealed that osteoblasts secrete soluble factors that synergize with exogenously added cytokines to promote the production of progenitors with short-term platelet engraftment activities, and to a lesser extent with long-term platelet engraftment activities. OCM also modulated the expression repertoire of cell-surface receptors implicated in the trafficking of HSC and progenitors to the bone marrow. Furthermore, OCM contains growth factors with prosurvival and proliferation activities that synergized with stem cell factor. Insulin-like growth factor (IGF)-2 was found to be present at higher levels in OCM than in control medium conditioned with MSC. Inhibition of the IGF-1 receptor, which conveys IGF-2' intracellular signaling, largely abolished the growth-promoting activity of OCM on immature CD34+ subsets and progenitors in OCM cultures. Finally, IGF-1R effects appear to be mediated in part by the coactivator β-catenin. In summary, these results provide new insights into the paracrine regulatory activities of osteoblasts on HSC, and how these can be used to modulate the engraftment properties of human HSC and progenitors expanded in culture. Stem Cells 2019;37:345-356.
Collapse
Affiliation(s)
- Ahmad Abu-Khader
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan
| | - Kyle W Law
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Suria Jahan
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Biochemistry, Microbiology, and Immunology Department, University of Ottawa, Ottawa, Canada
| | - Javed K Manesia
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Roya Pasha
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada
| | - Owen Hovey
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Biochemistry, Microbiology, and Immunology Department, University of Ottawa, Ottawa, Canada
| | - Nicolas Pineault
- Canadian Blood Services, Centre for Innovation, Ottawa, Ontario, Canada.,Biochemistry, Microbiology, and Immunology Department, University of Ottawa, Ottawa, Canada
| |
Collapse
|
9
|
Measles virus envelope pseudotyped lentiviral vectors transduce quiescent human HSCs at an efficiency without precedent. Blood Adv 2017; 1:2088-2104. [PMID: 29296856 DOI: 10.1182/bloodadvances.2017007773] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/18/2017] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic stem cell (HSC)-based gene therapy trials are now moving toward the use of lentiviral vectors (LVs) with success. However, one challenge in the field remains: efficient transduction of HSCs without compromising their stem cell potential. Here we showed that measles virus glycoprotein-displaying LVs (hemagglutinin and fusion protein LVs [H/F-LVs]) were capable of transducing 100% of early-acting cytokine-stimulated human CD34+ (hCD34+) progenitor cells upon a single application. Strikingly, these H/F-LVs also allowed transduction of up to 70% of nonstimulated quiescent hCD34+ cells, whereas conventional vesicular stomatitis virus G (VSV-G)-LVs reached 5% at the most with H/F-LV entry occurring exclusively through the CD46 complement receptor. Importantly, reconstitution of NOD/SCIDγc-/- (NSG) mice with H/F-LV transduced prestimulated or resting hCD34+ cells confirmed these high transduction levels in all myeloid and lymphoid lineages. Remarkably, for resting CD34+ cells, secondary recipients exhibited increasing transduction levels of up to 100%, emphasizing that H/F-LVs efficiently gene-marked HSCs in the resting state. Because H/F-LVs promoted ex vivo gene modification of minimally manipulated CD34+ progenitors that maintained stemness, we assessed their applicability in Fanconi anemia, a bone marrow (BM) failure with chromosomal fragility. Notably, only H/F-LVs efficiently gene-corrected minimally stimulated hCD34+ cells in unfractionated BM from these patients. These H/F-LVs improved HSC gene delivery in the absence of cytokine stimulation while maintaining their stem cell potential. Thus, H/F-LVs will facilitate future clinical applications requiring HSC gene modification, including BM failure syndromes, for which treatment has been very challenging up to now.
Collapse
|
10
|
Clément F, Grockowiak E, Zylbersztejn F, Fossard G, Gobert S, Maguer-Satta V. Stem cell manipulation, gene therapy and the risk of cancer stem cell emergence. Stem Cell Investig 2017; 4:67. [PMID: 28815178 DOI: 10.21037/sci.2017.07.03] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 07/13/2017] [Indexed: 12/15/2022]
Abstract
Stem cells (SCs) have been extensively studied in the context of regenerative medicine. Human hematopoietic stem cell (HSC)-based therapies have been applied to treat leukemic patients for decades. Handling of mesenchymal stem cells (MSCs) has also raised hopes and concerns in the field of tissue engineering. Lately, discovery of cell reprogramming by Yamanaka's team has profoundly modified research strategies and approaches in this domain. As we gain further insight into cell fate mechanisms and identification of key actors and parameters, this also raises issues as to the manipulation of SCs. These include the engraftment of manipulated cells and the potential predisposition of those cells to develop cancer. As a unique and pioneer model, the use of HSCs to provide new perspectives in the field of regenerative and curative medicine will be reviewed. We will also discuss the potential use of various SCs from embryonic to adult stem cells (ASCs), including induced pluripotent stem cells (iPSCs) as well as MSCs. Furthermore, to sensitize clinicians and researchers to unresolved issues in these new therapeutic approaches, we will highlight the risks associated with the manipulation of human SCs from embryonic or adult origins for each strategy presented.
Collapse
Affiliation(s)
- Flora Clément
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France
| | - Elodie Grockowiak
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France
| | - Florence Zylbersztejn
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France
| | - Gaëlle Fossard
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France.,Centre Hospitalier Lyon Sud, Hematology Department, Tours, France
| | - Stéphanie Gobert
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France
| | - Véronique Maguer-Satta
- Univ Lyon, Université Claude Bernard Lyon 1, Lyon, F-69008, France.,Univ Lyon, Université Claude Bernard Lyon 1, INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, F-69008, France
| |
Collapse
|
11
|
Kode J, Khattry N, Bakshi A, Amrutkar V, Bagal B, Karandikar R, Rane P, Fujii N, Chiplunkar S. Study of stem cell homing & self-renewal marker gene profile of ex vivo expanded human CD34 + cells manipulated with a mixture of cytokines & stromal cell-derived factor 1. Indian J Med Res 2017; 146:56-70. [PMID: 29168461 PMCID: PMC5719609 DOI: 10.4103/ijmr.ijmr_1319_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND & OBJECTIVES Next generation transplantation medicine aims to develop stimulating cocktail for increased ex vivo expansion of primitive hematopoietic stem and progenitor cells (HSPC). The present study was done to evaluate the cocktail GF (Thrombopoietin + Stem Cell factor + Flt3-ligand) and homing-defining molecule Stromal cell-derived factor 1 (SDF1) for HSPC ex vivo expansion. METHODS Peripheral blood stem cell (n=74) harvests were analysed for CD34hiCD45lo HSPC. Immunomagnetically enriched HSPC were cultured for eight days and assessed for increase in HSPC, colony forming potential in vitro and in vivo engrafting potential by analyzing human CD45+ cells. Expression profile of genes for homing and stemness were studied using microarray analysis. Expression of adhesion/homing markers were validated by flow cytometry/ confocal microscopy. RESULTS CD34hiCD45lo HSPC expansion cultures with GF+SDF1 demonstrated increased nucleated cells (n=28, P+ cells (n=8, P=0.021) and increased colony forming units (cfu) compared to unstimulated and GF-stimulated HSPC. NOD-SCID mice transplanted with GF+SDF1-HSPC exhibited successful homing/engraftment (n=24, PInterpretation & conclusions: Cocktail of cytokines and SDF1 showed good potential to successfully expand HSPC which exhibited enhanced ability to generate multilineage cells in short-term and long-term repopulation assay. This cocktail-mediated stem cell expansion has potential to obviate the need for longer and large volume apheresis procedure making it convenient for donors.
Collapse
Affiliation(s)
- Jyoti Kode
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute (HBNI), Dr. LH Hiranandani Hospital, Mumbai, India
- Reprint requests: Dr. Jyoti Kode, Advanced Centre for Treatment, Research & Education in Cancer, Chiplunkar Laboratory, Tata Memorial Centre, Kharghar, Navi Mumbai, Mumbai 410 210, Maharashtra, India e-mail:
| | - Navin Khattry
- Bone Marrow Transplant Unit, Department of Medical Oncology, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Ashish Bakshi
- Department of Medical Oncology, Dr. LH Hiranandani Hospital, Mumbai, India
| | - Vasanti Amrutkar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Bhausaheb Bagal
- Bone Marrow Transplant Unit, Department of Medical Oncology, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Rohini Karandikar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Pallavi Rane
- Clinical Trial Unit, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Nobutaka Fujii
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Shubhada Chiplunkar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research & Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute (HBNI), Dr. LH Hiranandani Hospital, Mumbai, India
| |
Collapse
|
12
|
Olszewska-Pazdrak B, McVicar SD, Rayavara K, Moya SM, Kantara C, Gammarano C, Olszewska P, Fuller GM, Sower LE, Carney DH. Nuclear Countermeasure Activity of TP508 Linked to Restoration of Endothelial Function and Acceleration of DNA Repair. Radiat Res 2016; 186:162-74. [PMID: 27388041 DOI: 10.1667/rr14409.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
There is increasing evidence that radiation-induced damage to endothelial cells and loss of endothelial function may contribute to both acute radiation syndromes and long-term effects of whole-body nuclear irradiation. Therefore, several drugs are being developed to mitigate the effects of nuclear radiation, most of these drugs will target and protect or regenerate leukocytes and platelets. Our laboratory has demonstrated that TP508, a 23-amino acid thrombin peptide, activates endothelial cells and stem cells to revascularize and regenerate tissues. We now show that TP508 can mitigate radiation-induced damage to endothelial cells in vitro and in vivo. Our in vitro results demonstrate that human endothelial cells irradiation attenuates nitric oxide (NO) signaling, disrupts tube formation and induces DNA double-strand breaks (DSB). TP508 treatment reverses radiation effects on NO signaling, restores tube formation and accelerates the repair of radiation-induced DSB. The radiation-mitigating effects of TP508 on endothelial cells were also seen in CD-1 mice where systemic injection of TP508 stimulated endothelial cell sprouting from aortic explants after 8 Gy irradiation. Systemic doses of TP508 that mitigated radiation-induced endothelial cell damage, also significantly increased survival of CD-1 mice when injected 24 h after 8.5 Gy exposure. These data suggest that increased survival observed with TP508 treatment may be due to its effects on vascular and microvascular endothelial cells. Our study supports the usage of a regenerative drug such as TP508 to activate endothelial cells as a countermeasure for mitigating the effects of nuclear radiation.
Collapse
Affiliation(s)
- Barbara Olszewska-Pazdrak
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and
| | - Scott D McVicar
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and
| | | | - Stephanie M Moya
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and
| | - Carla Kantara
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and.,b Chrysalis BioTherapeutics, Inc., Galveston, Texas
| | - Chris Gammarano
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and
| | - Paulina Olszewska
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and
| | | | | | - Darrell H Carney
- a Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas and.,b Chrysalis BioTherapeutics, Inc., Galveston, Texas
| |
Collapse
|
13
|
Psatha N, Karponi G, Yannaki E. Optimizing autologous cell grafts to improve stem cell gene therapy. Exp Hematol 2016; 44:528-39. [PMID: 27106799 DOI: 10.1016/j.exphem.2016.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 10/21/2022]
Abstract
Over the past decade, stem cell gene therapy has achieved unprecedented curative outcomes for several genetic disorders. Despite the unequivocal success, clinical gene therapy still faces challenges. Genetically engineered hematopoietic stem cells are particularly vulnerable to attenuation of their repopulating capacity once exposed to culture conditions, ultimately leading to low engraftment levels posttransplant. This becomes of particular importance when transduction rates are low or/and competitive transplant conditions are generated by reduced-intensity conditioning in the absence of a selective advantage of the transduced over the unmodified cells. These limitations could partially be overcome by introducing megadoses of genetically modified CD34(+) cells into conditioned patients or by transplanting hematopoietic stem cells hematopoietic stem cells with high engrafting and repopulating potential. On the basis of the lessons gained from cord blood transplantation, we summarize the most promising approaches to date of increasing either the numbers of hematopoietic stem cells for transplantation or/and their engraftability, as a platform toward the optimization of engineered stem cell grafts.
Collapse
Affiliation(s)
- Nikoletta Psatha
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Medicine, University of Washington, Seattle, WA
| | - Garyfalia Karponi
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece
| | - Evangelia Yannaki
- Gene and Cell Therapy Center, Hematology Department-BMT Unit, George Papanicolaou Hospital, Thessaloniki, Greece; Department of Medicine, University of Washington, Seattle, WA.
| |
Collapse
|
14
|
Early production of human neutrophils and platelets posttransplant is severely compromised by growth factor exposure. Exp Hematol 2016; 44:635-40. [PMID: 27090409 DOI: 10.1016/j.exphem.2016.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/06/2016] [Accepted: 04/06/2016] [Indexed: 01/24/2023]
Abstract
The critical human cells that produce neutrophils and platelets within 3 weeks in recipients of hematopoietic transplants are thought to produce these mature blood cells with the same kinetics in sublethally irradiated immunodeficient mice. Quantification of their numbers indicates their relative underrepresentation in cord blood (CB), likely explaining the clinical inadequacy of single CB units in rescuing hematopoiesis in myelosuppressed adult patients. We here describe that exposure of CD34(+) CB cells ex vivo to growth factors that markedly expand their numbers and colony-forming cell content also rapidly (within 24 hours) produce a significant and sustained net loss of their original short-term repopulating activity. This loss of short-term in vivo repopulating activity affects early platelet production faster than early neutrophil output, consistent with their origin from distinct input populations. Moreover, this growth factor-mediated loss is not abrogated by published strategies to increase progenitor homing despite evidence that the effect on rapid neutrophil production is paralleled in time and amount by a loss of the homing of their committed clonogenic precursors to the bone marrow. These results highlight the inability of in vitro or phenotype assessments to reliably predict clinical engraftment kinetics of cultured CB cells.
Collapse
|
15
|
Houghton BC, Booth C, Thrasher AJ. Lentivirus technologies for modulation of the immune system. Curr Opin Pharmacol 2015; 24:119-27. [PMID: 26363252 DOI: 10.1016/j.coph.2015.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 01/21/2023]
Abstract
Lentiviral vectors (LVV) are important tools for the treatment of immune system disorders. Integration of therapeutic genetic material into the haematopoietic stem cell compartment using LVV can mediate long-term correction of haematopoietic lineages, thereby correcting disease phenotypes. Twenty years of vector development have successfully brought LVV to the clinic, with follow up studies of clinical trials treating primary immunodeficiencies now being reported. Results have demonstrated clear improvements in the quality of life for patients with a number of conditions in the absence of the severe adverse events observed in earlier retroviral gene therapy trials. Growing interest in gene modified adoptive T cell transfer as an alternative strategy has driven further technology innovation, including characterisation of novel viral envelopes. We will also discuss the progression of gene editing technology to preclinical investigations in models of immune deficiency.
Collapse
Affiliation(s)
- Benjamin C Houghton
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Claire Booth
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK; Department of Paediatric Immunology, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK.
| | - Adrian J Thrasher
- Molecular and Cellular Immunology, Institute of Child Health, University College London, London WC1N 1EH, UK; Department of Paediatric Immunology, Great Ormond Street Hospital NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
16
|
Chandrasekaran D, Nakamoto B, Watts KL, Kiem HP, Papayannopoulou T. Modeling promising nonmyeloablative conditioning regimens in nonhuman primates. Hum Gene Ther 2015; 25:1013-22. [PMID: 24937231 DOI: 10.1089/hum.2014.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Minimal conditioning or even no conditioning would be the preferred preparation for most gene therapy applications for nonmalignant diseases. However, reduced intensity conditioning (RIC) regimens in patients with nonhematologic malignancies have not led to long-term engraftment unless a selective advantage was present for the transplanted donor cells. Similar findings have also been observed in a number of large animal studies. Inadequate myelosuppression levels were thought to be responsible for the outcomes. To address this issue several innovative protocols in small animals have been presented with selective hematopoietic myelosuppression and less systemic toxicity. Such protocols promised to curb the transplant-related morbidity and mortality in myeloablative conditioning and provide effective long-term engraftment, especially in patients with gene-corrected autografts. In the present study we have tested some of these promising RIC regimens in nonhuman primates, a clinically relevant large animal model. Our data suggest that transient myelosuppression induced by anti-c-Kit antibody in conjunction with low-dose irradiation may lead to long-term engraftment, albeit at low levels. The animals with busulfan conditioning with or without anti-c-Kit that received gene-modified autologous transplants with green fluorescent protein expression had similar myelosuppression, but failed long-term engraftment and despite immunosuppressive treatment had all the hallmarks seen previously in similar models without immunosuppression. Our preliminary data expand current knowledge of RIC and emphasize the need to explore whether specific and directed myelosuppression alone is adequate in the absence of microenvironmental modulation, or whether innovative combinations are necessary for safe and effective engraftment.
Collapse
Affiliation(s)
- Devikha Chandrasekaran
- 1 Clinical Research Division, Fred Hutchinson Cancer Research Center , Seattle, WA 98109
| | | | | | | | | |
Collapse
|
17
|
Psatha N, Sgouramali E, Gkountis A, Siametis A, Baliakas P, Constantinou V, Athanasiou E, Arsenakis M, Anagnostopoulos A, Papayannopoulou T, Stamatoyannopoulos G, Yannaki E. Superior long-term repopulating capacity of G-CSF+plerixafor-mobilized blood: implications for stem cell gene therapy by studies in the Hbb(th-3) mouse model. Hum Gene Ther Methods 2015; 25:317-27. [PMID: 25333506 DOI: 10.1089/hgtb.2014.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
High numbers of genetically modified hematopoietic stem cells (HSCs) equipped with enhanced engrafting potential are required for successful stem cell gene therapy. By using thalassemia as a model, we investigated the functional properties of hematopoietic stem and progenitor cells (HSPCs) from Hbb(th3)/45.2(+) mice after mobilization with G-CSF, plerixafor, or G-CSF+plerixafor and the engraftment kinetics of primed cells after competitive primary and noncompetitive secondary transplantation. G-CSF+plerixafor yielded the highest numbers of HSPCs, while G-CSF+plerixafor-mobilized Hbb(th3)/45.2(+) cells, either unmanipulated or transduced with a reporter vector, achieved faster hematologic reconstitution and higher levels of donor chimerism over all other types of mobilized cells, after competitive transplantation to B6.BoyJ/45.1(+) recipients. The engraftment benefit observed in the G-CSF+plerixafor group was attributed to the more primitive stem cell phenotype of G-CSF+plerixafor-LSK cells, characterized by higher CD150(+)/CD48 expression. Moreover, secondary G-CSF+plerixafor recipients displayed stable or even higher chimerism levels as compared with primary engrafted mice, thus maintaining or further improving engraftment levels over G-CSF- or plerixafor-secondary recipients. Plerixafor-primed cells displayed the lowest competiveness over all other mobilized cells after primary or secondary transplantation, probably because of the higher frequency of more actively proliferating LK cells. Overall, the higher HSC yields, the faster hematological recovery, and the superiority in long-term engraftment indicate G-CSF+plerixafor-mobilized blood as an optimal graft source, not only for thalassemia gene therapy, but also for stem cell gene therapy applications in general.
Collapse
Affiliation(s)
- Nikoleta Psatha
- 1 Hematology-BMT Unit, Gene and Cell Therapy Center , George Papanicolaou Hospital, Thessaloniki 57010, Greece
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Baboon envelope pseudotyped LVs outperform VSV-G-LVs for gene transfer into early-cytokine-stimulated and resting HSCs. Blood 2014; 124:1221-31. [PMID: 24951430 DOI: 10.1182/blood-2014-02-558163] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hematopoietic stem cell (HSC)-based gene therapy holds promise for the cure of many diseases. The field is now moving toward the use of lentiviral vectors (LVs) as evidenced by 4 successful clinical trials. These trials used vesicular-stomatitis-virus-G protein (VSV-G)-LVs at high doses combined with strong cytokine-cocktail stimulation to obtain therapeutically relevant transduction levels; however, they might compromise the HSC character. Summarizing all these disadvantages, alternatives to VSV-G-LVs are urgently needed. We generated here high-titer LVs pseudotyped with a baboon retroviral envelope glycoprotein (BaEV-LVs), resistant to human complement. Under mild cytokine prestimulation to preserve the HSC characteristics, a single BaEV-LV application at a low dose, resulted in up to 90% of hCD34(+) cell transduction. Even more striking was that these new BaEV-LVs allowed, at low doses, efficient transduction of up to 30% of quiescent hCD34(+) cells, whereas high-dose VSV-G-LVs were insufficient. Importantly, reconstitution of NOD/Lt-SCID/γc(-/-) (NSG) mice with BaEV-LV-transduced hCD34(+) cells maintained these high transduction levels in all myeloid and lymphoid lineages, including early progenitors. This transduction pattern was confirmed or even increased in secondary NSG recipient mice. This suggests that BaEV-LVs efficiently transduce true HSCs and could improve HSC-based gene therapy, for which high-level HSC correction is needed for life-long cure.
Collapse
|
19
|
Shan WL, Ma XL. How to Establish Acute Myeloid Leukemia Xenograft Models Using Immunodeficient Mice. Asian Pac J Cancer Prev 2013; 14:7057-63. [DOI: 10.7314/apjcp.2013.14.12.7057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
20
|
Görgens A, Radtke S, Horn PA, Giebel B. New relationships of human hematopoietic lineages facilitate detection of multipotent hematopoietic stem and progenitor cells. Cell Cycle 2013; 12:3478-82. [PMID: 24189527 DOI: 10.4161/cc.26900] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Three important goals of hematopoietic stem cell research are to understand of how hematopoietic stem cells (HSCs) self-renew, how lineage commitment takes place, and how HSCs can be expanded ex vivo. Research in this area requires a reliable model of hematopoiesis. Performing detailed functional analyses of human hematopoietic progenitor subsets, we recently gained evidence for new hematopoietic lineage relationships. (1) According to our data, neutrophils belong to the same branch of the hematopoietic tree as lymphocytes. In contrast, eosinophils and basophils derive from another branch, the erythro-myeloid branch. Here, after introducing the newly proposed hematopoietic model, we discuss its consequences for the identification and expansion of human multipotent progenitors and suggest a fast and reliable method to screen for multipotent hematopoietic cells in vitro.
Collapse
Affiliation(s)
- André Görgens
- Institute for Transfusion Medicine; University Hospital Essen; University of Duisburg-Essen; Essen, Germany
| | | | | | | |
Collapse
|
21
|
Heterogeneity in hematopoietic stem cell populations: implications for transplantation. Curr Opin Hematol 2013; 20:257-64. [PMID: 23615054 DOI: 10.1097/moh.0b013e328360aaf6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Transplantation of hematopoietic cells is now a well established clinical procedure, although optimal outcomes are not always obtained. This reflects insufficient knowledge of the different subsets of primitive cells required to achieve a rapid and permanent recovery of mature blood cell production. Here we review recent findings that extend our understanding of these cells and their regulation, and implications for the ex-vivo expansion of these cells. RECENT FINDINGS Separate subsets of platelet and neutrophil lineage-restricted human hematopoietic cells with rapid but transient repopulating activities have been identified, thus adding to previous evidence of short-term repopulating cells that generate both of these lineages. New studies also suggest intrinsically determined heterogeneity in differentiation potentialities that are sustained at the stem cell level, and have revealed new ways their self-renewal can be influenced. SUMMARY Hematopoietic repopulation posttransplant is highly complex both in terms of the differing numbers and types of cells required for optimal hematopoietic recoveries and the factors that will determine the composition and behavior of a given inoculum. Successful ex-vivo expansion protocols will, thus, need to incorporate conditions that will produce adequate numbers of all cell types required with retention of their full functionality.
Collapse
|
22
|
Aljitawi OS, Xiao Y, Eskew JD, Parelkar NK, Swink M, Radel J, Lin TL, Kimler BF, Mahnken JD, McGuirk JP, Broxmeyer HE, Vielhauer G. Hyperbaric oxygen improves engraftment of ex-vivo expanded and gene transduced human CD34⁺ cells in a murine model of umbilical cord blood transplantation. Blood Cells Mol Dis 2013; 52:59-67. [PMID: 23953010 DOI: 10.1016/j.bcmd.2013.07.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Delayed engraftment and graft failure represent major obstacles to successful umbilical cord blood (UCB) transplantation. Herein, we evaluated the use of hyperbaric oxygen (HBO) therapy as an intervention to improve human UCB stem/progenitor cell engraftment in an immune deficient mouse model. Six- to eight-week old NSG mice were sublethally irradiated 24 hours prior to CD34⁺ UCB cell transplant. Irradiated mice were separated into a non-HBO group (where mice remained under normoxic conditions) and the HBO group (where mice received 2 hours of HBO therapy; 100% oxygen at 2.5 atmospheres absolute). Four hours after completing HBO therapy, both groups intravenously received CD34⁺ UCB cells that were transduced with a lentivirus carrying luciferase gene and expanded for in vivo imaging. Mice were imaged and then sacrificed at one of 10 times up to 4.5 months post-transplant. HBO treated mice demonstrated significantly improved bone marrow, peripheral blood, and spleen retention and subsequent engraftment. In addition, HBO significantly improved peripheral, spleen and bone marrow engraftment of human myeloid and B-cell subsets. In vivo imaging demonstrated that HBO mice had significantly higher ventral and dorsal bioluminescence values. These studies suggest that HBO treatment of NSG mice prior to UCB CD34⁺ cell infusion significantly improves engraftment.
Collapse
Affiliation(s)
- Omar S Aljitawi
- Division of Hematology/Oncology and Blood and Marrow Transplantation Program, 2330 Shawnee Mission Parkway, University of Kansas Medical Center, Kansas City, KS 66205, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kallinikou K, Anjos-Afonso F, Blundell MP, Ings SJ, Watts MJ, Thrasher AJ, Linch DC, Bonnet D, Yong KL. Engraftment defect of cytokine-cultured adult human mobilized CD34+ cells is related to reduced adhesion to bone marrow niche elements. Br J Haematol 2012; 158:778-87. [DOI: 10.1111/j.1365-2141.2012.09219.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/29/2012] [Indexed: 12/17/2022]
Affiliation(s)
| | - Fernando Anjos-Afonso
- Haematopoietic Stem Cell Laboratory; Cancer Research UK; London Research Institute; London; UK
| | - Michael P. Blundell
- Molecular Immunology Unit; Wolfson Centre for Gene Therapy of Childhood Disease and Centre for Immunodeficiency; UCL Institute of Child Health; London; UK
| | | | | | - Adrian J. Thrasher
- Molecular Immunology Unit; Wolfson Centre for Gene Therapy of Childhood Disease and Centre for Immunodeficiency; UCL Institute of Child Health; London; UK
| | - David C. Linch
- Department of Haematology; Cancer Institute; University College of London; London; UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory; Cancer Research UK; London Research Institute; London; UK
| | - Kwee L. Yong
- Department of Haematology; Cancer Institute; University College of London; London; UK
| |
Collapse
|
24
|
Pharmacological inhibition of caspase and calpain proteases: a novel strategy to enhance the homing responses of cord blood HSPCs during expansion. PLoS One 2012; 7:e29383. [PMID: 22235291 PMCID: PMC3250442 DOI: 10.1371/journal.pone.0029383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 11/28/2011] [Indexed: 02/06/2023] Open
Abstract
Background Expansion of hematopoietic stem/progenitor cells (HSPCs) is a well-known strategy employed to facilitate the transplantation outcome. We have previously shown that the prevention of apoptosis by the inhibition of cysteine proteases, caspase and calpain played an important role in the expansion and engraftment of cord blood (CB) derived HSPCs. We hypothesize that these protease inhibitors might have maneuvered the adhesive and migratory properties of the cells rendering them to be retained in the bone marrow for sustained engraftment. The current study was aimed to investigate the mechanism of the homing responses of CB cells during expansion. Methodology/Principal Findings CB derived CD34+ cells were expanded using a combination of growth factors with and without Caspase inhibitor -zVADfmk or Calpain 1 inhibitor- zLLYfmk. The cells were analyzed for the expression of homing-related molecules. In vitro adhesive/migratory interactions and actin polymerization dynamics of HSPCs were assessed. In vivo homing assays were carried out in NOD/SCID mice to corroborate these observations. We observed that the presence of zVADfmk or zLLYfmk (inhibitors) caused the functional up regulation of CXCR4, integrins, and adhesion molecules, reflecting in a higher migration and adhesive interactions in vitro. The enhanced actin polymerization and the RhoGTPase protein expression complemented these observations. Furthermore, in vivo experiments showed a significantly enhanced homing to the bone marrow of NOD/SCID mice. Conclusion/Significance Our present study reveals another novel aspect of the regulation of caspase and calpain proteases in the biology of HSPCs. The priming of the homing responses of the inhibitor-cultured HSPCs compared to the cytokine-graft suggests that the modulation of these proteases may help in overcoming the major homing defects prevalent in the expansion cultures thereby facilitating the manipulation of cells for transplant procedures.
Collapse
|
25
|
Peled T, Shoham H, Aschengrau D, Yackoubov D, Frei G, Rosenheimer G N, Lerrer B, Cohen HY, Nagler A, Fibach E, Peled A. Nicotinamide, a SIRT1 inhibitor, inhibits differentiation and facilitates expansion of hematopoietic progenitor cells with enhanced bone marrow homing and engraftment. Exp Hematol 2011; 40:342-55.e1. [PMID: 22198152 DOI: 10.1016/j.exphem.2011.12.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 12/05/2011] [Accepted: 12/11/2011] [Indexed: 01/06/2023]
Abstract
Strategies that increase homing to the bone marrow and engraftment efficacy of ex vivo expended CD34(+) cells are expected to enhance their clinical utility. Here we report that nicotinamide (NAM), a form of vitamin B-3, delayed differentiation and increased engraftment efficacy of cord blood-derived human CD34(+) cells cultured with cytokines. In the presence of NAM, the fraction of CD34(+)CD38(-) cells increased and the fraction of differentiated cells (CD14(+), CD11b(+), and CD11c(+)) decreased. CD34(+) cells cultured with NAM displayed increased migration toward stromal cell derived factor-1 and homed to the bone marrow with higher efficacy, thus contributing to their increased engraftment efficacy, which was maintained in competitive transplants with noncultured competitor cells. NAM is a known potent inhibitor of several classes of ribosylase enzymes that require NAD for their activity, as well as sirtuin (SIRT1), class III NAD(+)-dependent-histone-deacetylase. We demonstrated that EX-527, a specific inhibitor of SIRT1 catalytic activity, inhibited differentiation of CD34(+) cells similar to NAM, while specific inhibitors of NAD-ribosylase enzymes did not inhibit differentiation, suggesting that the NAM effect is SIRT1-specific. Our findings suggest a critical function of SIRT1 in the regulation of hematopoietic stem cell activity and imply the clinical utility of NAM for ex vivo expansion of functional CD34(+) cells.
Collapse
|
26
|
Perdomo-Arciniegas AM, Vernot JP. Co-culture of hematopoietic stem cells with mesenchymal stem cells increases VCAM-1-dependent migration of primitive hematopoietic stem cells. Int J Hematol 2011; 94:525-32. [PMID: 22127557 DOI: 10.1007/s12185-011-0970-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 11/09/2011] [Accepted: 11/09/2011] [Indexed: 01/25/2023]
Abstract
Hematopoietic stem cells (HSC) lose their capacity for engraftment during ex vivo cytokine expansion. It has been shown that mesenchymal stem cells (MSC) improve HSC transplantability; however, the molecular mechanisms responsible for this effect have not yet been completely elucidated. This paper reports that expanding HSC in co-culture with MSC enhances a vascular cell adhesion molecule (VCAM-1)-dependent pro-migratory phenotype. MSC did not regulate the HSC expression of CD49d (VCAM-1 counter-receptor molecule), but did decrease the cytokine-induced HSC VCAM-1-mediated pro-adhesive phenotype. Co-culture with MSC reduced the expression of the inactive conformation of lymphocyte function-associated antigen (LFA-1) at the HSC uropod, and induced higher expression of an LFA-1 activation epitope. Interestingly, VCAM-1-dependent HSC migration was modulated by targeting this LFA-1 high affinity form, suggesting integrin cross-regulation. VCAM-1-mediated HSC transmigration appeared to favor the more primitive HSC immunophenotype. Our results suggested that co-culture with MSC improved VCAM-1-dependent migration of primitive HSC, which was affected in ex vivo cytokine-expanded HSCs by a mechanism involving LFA-1 modulation.
Collapse
Affiliation(s)
- Ana-María Perdomo-Arciniegas
- Cellular and Molecular Physiology Group, Physiology Division, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, DC, Colombia.
| | | |
Collapse
|
27
|
A novel lentiviral vector targets gene transfer into human hematopoietic stem cells in marrow from patients with bone marrow failure syndrome and in vivo in humanized mice. Blood 2011; 119:1139-50. [PMID: 22117040 DOI: 10.1182/blood-2011-04-346619] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In vivo lentiviral vector (LV)-mediated gene delivery would represent a great step forward in the field of gene therapy. Therefore, we have engineered a novel LV displaying SCF and a mutant cat endogenous retroviral glycoprotein, RDTR. These RDTR/SCF-LVs outperformed RDTR-LVs for transduction of human CD34(+) cells (hCD34(+)). For in vivo gene therapy, these novel RDTR/SCF-displaying LVs can distinguish between the target hCD34(+) cells of interest and nontarget cells. Indeed, they selectively targeted transduction to 30%-40% of the hCD34(+) cells in cord blood mononuclear cells and in the unfractionated BM of healthy and Fanconi anemia donors, resulting in the correction of CD34(+) cells in the patients. Moreover, RDTR/SCF-LVs targeted transduction to CD34(+) cells with 95-fold selectivity compared with T cells in total cord blood. Remarkably, in vivo injection of the RDTR/SCF-LVs into the BM cavity of humanized mice resulted in the highly selective transduction of candidate hCD34(+)Lin(-) HSCs. In conclusion, this new LV will facilitate HSC-based gene therapy by directly targeting these primitive cells in BM aspirates or total cord blood. Most importantly, in the future, RDTR/SCF-LVs might completely obviate ex vivo handling and simplify gene therapy for many hematopoietic defects because of their applicability to direct in vivo inoculation.
Collapse
|
28
|
Non-invasive tracking of human haemopoietic CD34(+) stem cells in vivo in immunodeficient mice by using magnetic resonance imaging. Eur Radiol 2011; 20:2184-93. [PMID: 20393719 DOI: 10.1007/s00330-010-1773-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 02/04/2010] [Accepted: 02/05/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To assess migration of CD34(+) human stem cells to the bone marrow of athymic mice by using magnetic resonance (MR) imaging and Resovist, a contrast agent containing superparamagnetic iron oxide (SPIO) particles. METHODS All animal and human procedures were approved by our institution's ethics committee, and women had given consent to donate umbilical cord blood (UCB). Balb/c-AnN Foxn1(nu)/Crl mice received intravenous injection of 1 x 10(6) (n=3), 5 x 10(6) (n=3) or 1 x 10(7) (n=3) human Resovist-labelled CD34(+) cells; control mice received Resovist (n=3). MR imaging was performed before, 2 and 24 h after transplantation. Signal intensities of liver, muscle and bone marrow were measured and analysed by ANOVA and post hoc Student's t tests. MR imaging data were verified by histological and immunological detection of both human cell surface markers and carboxydextrancoating of the contrast agent. RESULTS CD34(+) cells were efficiently labelled by Resovist without impairment of functionality. Twenty-four hours after administration of labelled cells, MR imaging revealed a significant signal decline in the bone marrow, and histological and immunological analyses confirmed the presence of transplanted human CD34(+) cells. CONCLUSION Intravenously administered Resovist-labelled CD34(+) cells home to bone marrow of mice. Homing can be tracked in vivo by using clinical 1.5-T MR imaging technology.
Collapse
|
29
|
Frecha C, Fusil F, Cosset FL, Verhoeyen E. In vivo gene delivery into hCD34+ cells in a humanized mouse model. Methods Mol Biol 2011; 737:367-90. [PMID: 21590405 DOI: 10.1007/978-1-61779-095-9_15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vivo targeted gene delivery to hematopoietic stem cells (HSCs) would mean a big step forward in the field of gene therapy. This would imply that the risk of cell differentiation and loss of homing/-engraftment is reduced, as there is no need for purification of the target cell. In vivo gene delivery also bypasses the issue that no precise markers that permit the isolation of a primitive hHSC exist up to now. Indeed, in vivo gene transfer could target all HSCs in their stem-cell niche, including those cells that are "missed" by the purification criteria. Moreover, for the majority of diseases, there is a requirement of a minimal number of gene-corrected cells to be reinfused to allow an efficient long-term engraftment. This requisite might become a limiting factor when treating children with inherited disorders, due to the low number of bone marrow (BM) CD34(+) HSCs that can actually be isolated. These problems could be overcome by using efficient in vivo HSC-specific lentiviral vectors (LVs). Additionally, vectors for in vivo HSC transduction must be specific for the target cell, to avoid vector spreading while enhancing transduction efficiency. Of importance, a major barrier in LV transduction of HSCs is that 75% of HSCs are residing in the G0 phase of the cell cycle and are not very permissive for classical VSV-G-LV transduction. Therefore, we engineered "early-activating-cytokine (SCF or/and TPO)" displaying LVs that allowed a slight and transient stimulation of hCD34(+) cells resulting in efficient lentiviral gene transfer while preserving the "stemness" of the targeted HSCs. The selective transduction of HSCs by these vectors was demonstrated by their capacity to promote selective transduction of CD34(+) cells in in vitro-derived, long-term culture-initiating cell colonies and long-term NOD/SCID repopulating cells. A second generation of these "early-acting-cytokine"-displaying lentiviral vectors has now been developed that is fit for targeted in vivo gene delivery to hCD34(+) cells. In the method presented here, we describe the in vivo gene delivery into hCD34(+) cells by intramarrow injection of these new vectors into humanized BALB/c Rag2( null )/IL2rgc ( null ) (BALB/c RAGA) mice.
Collapse
Affiliation(s)
- Cecilia Frecha
- Human Virology Department, INSERM U758, Ecole Normale Supérieure de Lyon, and Université de Lyon 1, Lyon, France
| | | | | | | |
Collapse
|
30
|
Wang X, Zhang W, Ishii T, Sozer S, Wang J, Xu M, Hoffman R. Correction of the abnormal trafficking of primary myelofibrosis CD34+ cells by treatment with chromatin-modifying agents. Cancer Res 2009; 69:7612-8. [PMID: 19752087 DOI: 10.1158/0008-5472.can-09-1823] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The abnormal trafficking of CD34+ cells is a unique characteristic of primary myelofibrosis (PMF). We have further studied the behavior of PMF CD34+ cells by examining their homing to the marrow and the spleens of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. Following the infusion of PMF and normal granulocyte colony-stimulating factor-mobilized peripheral blood (mPB) CD34+ cells into NOD/SCID mice, reduced numbers of PMF CD34+ cells and granulocyte-macrophage colony-forming unit (CFU-GM) compared with mPB were detected in the marrow of these mice, whereas similar numbers of PMF and mPB CD34+ cells and CFU-GM homed to their spleens. The abnormal homing of PMF CD34+ cells was associated with reduced expression of CXCR4, but was not related to the presence of JAK2V617F. The sequential treatment of PMF CD34+ cells with the chromatin-modifying agents 5-aza-2'-deoxycytidine (5azaD) and trichostatin A (TSA), but not treatment with small molecule inhibitors of JAK2, resulted in the generation of increased numbers of CD34+CXCR4+ cells, which was accompanied by enhanced homing of PMF CD34+ cells to the marrow but not the spleens of NOD/SCID mice. Following 5azaD/TSA treatment, JAK2V617F-negative PMF hematopoietic progenitor cells preferentially homed to the marrow but not the spleens of recipient mice. Our data suggest that PMF CD34+ cells are characterized by a reduced ability to home to the marrow but not the spleens of NOD/SCID mice and that this homing defect can be corrected by sequential treatment with chromatin-modifying agents.
Collapse
Affiliation(s)
- Xiaoli Wang
- Division of Hematology/Oncology, Tisch Cancer Institute, Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
The recovery of tissues and organs from ionizing irradiation is critically dependent on the repopulation of resident stem cells, defined as the subset of cells with capacity for both self-renewal and differentiation. Stem cells of both hematopoietic and epithelial origin reside in defined areas of the cellular microenvironment (recently defined as the stem cell "niche"). Experiments using serial repopulation assays in serial generations of total body irradiated mice receiving transplanted marrow and in continuous bone marrow cultures both identified specific microanatomic sites that comprise the bone marrow stem cell niche. Supportive cells of the hematopoietic microenvironment not only contribute to stem cell repopulation capacity but also to the maintenance of their quiescent or nonproliferative state, which allows the most primitive hematopoietic stem cells to stay in a noncycling state protected from both direct ionizing radiation-induced cell-cycle phase-specific killing and indirect cytokine and free radical mediated killing. Recent evidence has defined both cell contact and humoral mechanisms of protection of hematopoietic stem cells by stromal cells. There is also recent evidence for multilineage differentiation capacity of cells of the hematopoietic microenvironment termed bone marrow stromal cells (mesenchymal stem cells). Both hematopoietic stem cells and mesenchymal stem cell populations have been shown to be involved in the repair of ionizing irradiation damage of distant epithelial as well as other hematopoietic sites through their capacity to migrate through the circulation. The radiobiology of these 2 bone marrow stem cell populations is the subject of intense investigation. This review defines the status of research in the areas of stem cell quiescence, niche contact, and migratory responses to ionizing irradiation.
Collapse
Affiliation(s)
- Joel S Greenberger
- Radiation Oncology, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
32
|
Askenasy N, Stein J, Farkas DL. Imaging Approaches to Hematopoietic Stem and Progenitor Cell Function and Engraftment. Immunol Invest 2009; 36:713-38. [DOI: 10.1080/08820130701715803] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
33
|
Nuclear factor-{kappa}B is not essential for NADPH oxidase activity in neutrophils from anhidrotic ectodermal dysplasia patients. Blood 2009; 113:5362-3. [PMID: 19470438 DOI: 10.1182/blood-2009-02-203562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
34
|
Response: Homing defect in hematopoietic cells from Fanconi anemia patients. Blood 2009. [DOI: 10.1182/blood-2009-01-198077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
35
|
Foguenne J, Di Stefano I, Giet O, Beguin Y, Gothot A. Ex vivo expansion of hematopoietic progenitor cells is associated with downregulation of alpha4 integrin- and CXCR4-mediated engraftment in NOD/SCID beta2-microglobulin-null mice. Haematologica 2009; 94:185-94. [PMID: 19144663 DOI: 10.3324/haematol.13206] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Several studies indicate that ex vivo cytokine-supported expansion induces defective hematopoietic stem cell engraftment. We investigated the role of alpha4 integrin, alpha5 integrin and CXCR4 in engraftment of unmanipulated and cytokine-treated human cord blood CD34(+) cells. DESIGN AND METHODS Uncultured or expanded CD34(+) cells were infused in NOD/SCID-beta(2)microglobulin-null mice. The function of alpha4, and alpha5 integrins and CXCR4 was assessed by incubating cells with specific neutralizing antibodies, prior to transplant. The activation state of alpha4 integrin was further tested by adhesion and migration assays. RESULTS Neutralization of either alpha4 integrin or CXCR4 abolished engraftment of uncultured CD34(+) cells at 6 week spost-transplant, while alpha5 integrin neutralization had no significant effect. However, after short-term ex vivo culture, blocking alpha4 integrin or CXCR4 did not affect repopulating activity whereas neutralization of alpha5 integrin inhibited engraftment. Using soluble vascular cell adhesion molecule-1 binding assays, we observed that alpha4 integrin affinity in fresh CD34(+) cells was low and susceptible to stimulation while in cultured CD34(+) cells, it was high and insensitive to further activation. In addition, stromal cell-derived factor-1 stimulated migration across vascular cell adhesion molecule-1 in fresh CD34(+) cells but not in cultured CD34(+) cells. CONCLUSIONS Our data show that ex vivo culture of hematopoietic progenitor cells is associated with downregulation of both alpha4 integrin- and CXCR4-mediated engraftment. Further investigations suggest that this is caused by supraphysiological increase of alpha4 integrin affinity, which impairs directional migration across vascular cell adhesion molecule-1 in response to stromal cell-derived factor-1. Such changes may underlie the engraftment defect of cytokine-stimulated CD34(+) cells.
Collapse
|
36
|
Trannoy LL, van Hensbergen Y, Lagerberg JW, Brand A. Photodynamic treatment with mono-phenyl-tri-(N-methyl-4-pyridyl)-porphyrin for pathogen inactivation in cord blood stem cell products. Transfusion 2008; 48:2629-37. [DOI: 10.1111/j.1537-2995.2008.01907.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Wulf-Goldenberg A, Eckert K, Fichtner I. Cytokine-pretreatment of CD34+ cord blood stem cells in vitro reduces long-term cell engraftment in NOD/SCID mice. Eur J Cell Biol 2008; 87:69-80. [DOI: 10.1016/j.ejcb.2007.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 08/07/2007] [Accepted: 08/07/2007] [Indexed: 11/26/2022] Open
|
38
|
Ex Vivo Culture of Human Cord Blood Hematopoietic Stem/Progenitor Cells Adversely Influences Their Distribution to Other Bone Marrow Compartments After Intra-Bone Marrow Transplantation. Stem Cells 2008; 26:543-9. [DOI: 10.1634/stemcells.2007-0476] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Rabin N, Kyriakou C, Coulton L, Gallagher OM, Buckle C, Benjamin R, Singh N, Glassford J, Otsuki T, Nathwani AC, Croucher PI, Yong KL. A new xenograft model of myeloma bone disease demonstrating the efficacy of human mesenchymal stem cells expressing osteoprotegerin by lentiviral gene transfer. Leukemia 2007; 21:2181-91. [PMID: 17657224 DOI: 10.1038/sj.leu.2404814] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We describe a new model of myeloma bone disease in which beta2m NOD/SCID mice injected with KMS-12-BM cells develop medullary disease after tail vein administration. Micro-computed tomography analysis demonstrated significant bone loss in the tibiae and vertebrae of diseased animals compared to controls, with loss of cortical bone (P<0.01), as well as trabecular bone volume, thickness and number (P<0.05 for all). Bone marrow of diseased animals demonstrated an increase in osteoclasts (P<0.01) and reduction in osteoblasts (P<0.01) compared to control animals. Both bone loss and osteoclast increase correlated with the degree of disease involvement. Mesenchymal stem cells (MSCs) were lentivirally transduced to express human osteoprotegerin (hOPG). Systemic administration of OPG expressing MSC reduced osteoclast activation (P<0.01) and trabecular bone loss in the vertebrae (P<0.05) and tibiae of diseased animals, to levels comparable to non-diseased controls. Because of its predominantly medullary involvement and quantifiable parameters of bone disease, the KMS-12-BM xenogeneic model provides unique opportunities to test therapies targeted at the bone marrow microenvironment.
Collapse
Affiliation(s)
- N Rabin
- Department of Haematology, University College London, London, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Chang AH, Sadelain M. The Genetic Engineering of Hematopoietic Stem Cells: the Rise of Lentiviral Vectors, the Conundrum of the LTR, and the Promise of Lineage-restricted Vectors. Mol Ther 2007; 15:445-56. [PMID: 17228317 DOI: 10.1038/sj.mt.6300060] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recent studies on the integration patterns of different categories of retroviral vectors, the genotoxicity of long-terminal repeats (LTRs) and other genetic elements, the rise of lentiviral technology and the emergence of regulated vector systems providing tissue-restricted transgene expression and RNA interference, are profoundly changing the landscape of stem cell-based therapies. New developments in vector design and an increasing understanding of the mechanisms underlying insertional oncogenesis are ushering in a new phase in hematopoietic stem cell (HSC) engineering, thus bringing the hitherto exclusive reliance on LTR-driven, gamma-retroviral vectors to an end. Based on their ability to transduce non-dividing cells and their genomic stability, lentiviral vectors offer new prospects for the manipulation of HSCs. Tissue-specific vectors, as exemplified by globin vectors, not only provide therapeutic efficacy, but may also enhance safety, insofar that they restrict transgene expression in stem cells, progenitor cells and blood cells in all but the transcriptionally targeted lineage. This review provides a survey of these advances as well as several remaining challenges, focusing in particular on the importance of achieving adequate levels of protein expression from a limited number of vector copies per cell-ideally one to two.
Collapse
Affiliation(s)
- Alex H Chang
- Laboratory of Gene Transfer and Gene Expression, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | | |
Collapse
|
41
|
Chan SL, Choi M, Wnendt S, Kraus M, Teng E, Leong HF, Merchav S. Enhanced In Vivo Homing of Uncultured and Selectively Amplified Cord Blood CD34+Cells by Cotransplantation with Cord Blood-Derived Unrestricted Somatic Stem Cells. Stem Cells 2007; 25:529-36. [PMID: 17068185 DOI: 10.1634/stemcells.2005-0639] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mesenchymal stem cells have been implicated as playing an important role in stem cell engraftment. Recently, a new pluripotent population of umbilical cord blood (UCB) cells, unrestricted somatic stem cells (USSCs), with intrinsic and directable potential to develop into mesodermal, endodermal, and ectodermal fates, has been identified. In this study, we evaluated the capacity of ex vivo expanded USSCs to influence the homing of UCB-derived CD34(+) cells into the marrow and spleen of nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice. USSCs induced a significant enhancement of CD34(+) cell homing to both bone marrow and spleen (2.2 +/- 0.3- and 2.4 +/- 0.6-fold, respectively; p < .05), with a magnitude similar to that induced by USSCs that had been thawed prior to transplantation. The effect of USSCs was dose-dependent and detectable at USSC:CD34(+) ratios of 1:1 and above. Enhanced marrow homing by USSCs was unaltered by extensive culture passaging of the cells, as similar enhancement was observed for both early-passage (passage 5 [p5]) and late-passage (p10) USSCs. The homing effect of USSCs was also reflected in an increased proportion of NOD/SCID mice exhibiting significant human cell engraftment 6 weeks after transplantation, with a similar distribution of myeloid and lymphoid components. USSCs enhanced the homing of cellular products of ex vivo expanded UCB lineage-negative (lin(-)) cells, generated in 14-day cultures by Selective Amplification. The relative proportion of homing CD34(+) cells within the culture-expanded cell population was unaltered by USSC cotransplantation. Production of stromal-derived factor-1 (SDF-1) by USSCs was detected by both gene expression and protein released into culture media of these cells. Knockdown of SDF-1 production by USSCs using lentiviral-SiRNA led to a significant (p < .05) reduction in USSC-mediated enhancement of CD34(+) homing. Our findings thus suggest a clinical potential for using USSCs in facilitating homing and engraftment for cord blood transplant recipients.
Collapse
|
42
|
Ebeling P, Bach P, Sorg U, Schneider A, Trarbach T, Dilloo D, Hanenberg H, Niesert S, Seeber S, Moritz T, Flasshove M. Evaluation of different protocols for gene transfer into non-obese diabetes/severe combined immunodeficiency disease mouse repopulating cells. J Cancer Res Clin Oncol 2006; 133:199-209. [PMID: 17053889 DOI: 10.1007/s00432-006-0158-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 09/04/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE Although gene transfer with retroviral vectors has shown distinct clinical success in defined settings, efficient genetic manipulation of hematopoietic progenitor cells remains a challenge. To address this issue we have evaluated different transduction protocols and retroviral constructs in the non-obese diabetes (NOD)/severe combined immunodeficiency disease (SCID) xenograft model. METHODS An extended transduction protocol requiring 144 h of in vitro manipulation was compared to a more conventional protocol requiring 96 h only. RESULT While pretransplantation analysis of cells transduced with a retroviral vector, expressing the enhanced green fluorescent protein (EGFP) marker gene, demonstrated significantly higher overall transduction rates for the extended protocol (33.6 +/- 2.3 vs. 22.1 +/- 3.8%), EGFP expression in CD34+ cells before transplantation (4.0 +/- 0.9 vs. 11.6 +/- 2.5%), engraftment of human cells in NOD/SCID bone marrow 4 weeks after transplantation (4.5 +/- 1.7 vs. 36.5 +/- 9.4%) and EGFP expression in these cells (0 +/- 0 vs. 11.3 +/- 2.8%) were significantly impaired. When the 96 h protocol was used in combination with the spleen focus forming virus (SFFV)/murine embryonic stem cell (MESV) hybrid vector SFbeta11-EGFP, high transduction rates for CD45+ (41.0 +/- 5.3%) and CD34+ (38.5 +/- 3.7%) cells prior to transplantation, as well as efficient human cell engraftment in NOD/SCID mice 4 weeks after transplantation (32.4 +/- 3.5%), was detected. Transgene expression was observed in B-lymphoid (15.9 +/- 2.0%), myeloid (36.5 +/- 3.5%) and CD34+ cells (10.1 +/- 1.5%). CONCLUSION Our data show that CD34+ cells maintained in cytokines for multiple days may differentiate and loose their capacity to contribute to the haematological reconstitution of NOD/SCID mice. In addition, the SFFV/MESV hybrid vector SFbeta11-EGFP allows efficient transduction of and gene expression in haematopoietic progenitor cells.
Collapse
Affiliation(s)
- Peter Ebeling
- Department of Internal Medicine (Cancer Research), University of Duisburg-Essen Medical School, Hufelandstrasse 55, 45122 Essen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hall KM, Horvath TL, Abonour R, Cornetta K, Srour EF. Decreased homing of retrovirally transduced human bone marrow CD34+ cells in the NOD/SCID mouse model. Exp Hematol 2006; 34:433-42. [PMID: 16569590 DOI: 10.1016/j.exphem.2005.12.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/16/2005] [Accepted: 12/20/2005] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Many clinical gene therapy trials have described poor engraftment of retrovirally transduced CD34(+) cells. Because engraftment is dependent upon successful homing of graft cells to the bone marrow (BM), we examined whether retroviral-mediated gene transfer (RMGT) induces a homing defect in CD34(+) cells. METHODS Homing of fluorescently labeled human BM CD34(+) cells transduced with three separate retroviral vectors (MFG-eGFP, LNC-eGFP, and LXSN) was assessed in nonobese diabetic/severe combined immunodeficient mice. RESULTS Homing of transduced CD34(+) cells was significantly decreased 20 hours after transplantation compared with freshly isolated control and cultured untransduced control cells. Specifically, homing of GFP(+) cells in the graft was preferentially decreased thus skewing the contribution of transduced cells to engraftment. Transduced cells were not selectively trapped in other organs and BM-homed transduced cells did not undergo apoptosis at a higher rate than untransduced cells. Adhesion molecule expression and binding activity was not altered by RMGT. This homing defect was reversed when transduced cells were cultured over CH-296 for 2 additional days with SCF only. CONCLUSION These data suggest that RMGT of hematopoietic cells may compromise their homing potential and implicate transduction-induced reduced homing in the observed low engraftment of retrovirally transduced CD34(+) cells. These results may have a direct clinical application in gene therapy protocols.
Collapse
Affiliation(s)
- Kristin M Hall
- Department of Microbiology and Immunology, Division of Hematology/Oncology, Indian University School of Medicine, Indianapolis, 46202, USA
| | | | | | | | | |
Collapse
|
44
|
Nilsson SK, Simmons PJ, Bertoncello I. Hemopoietic stem cell engraftment. Exp Hematol 2006; 34:123-9. [PMID: 16459179 DOI: 10.1016/j.exphem.2005.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 08/16/2005] [Accepted: 08/16/2005] [Indexed: 11/20/2022]
Affiliation(s)
- Susan K Nilsson
- Stem Cell Biology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | | | | |
Collapse
|
45
|
Li Q, Cai H, Liu Q, Tan WS. Differential Gene Expression of Human CD34+ Hematopoietic Stem and Progenitor Cells Before and After Culture. Biotechnol Lett 2006; 28:389-94. [PMID: 16614904 DOI: 10.1007/s10529-005-6064-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Accepted: 12/14/2005] [Indexed: 11/28/2022]
Abstract
Ex vivo expanded CD34+ hematopoietic stem and progenitor cells (HSPCs) have compromised homing and engraftment capacities. To investigate underlying mechanisms for functional changes of expanded HSPCs, we compared gene expression profiling of cultured and fresh CD34+ cells derived from cord blood using SMART-PCR and cDNA array: 20 genes were up-regulated while 25 genes were down-regulated in cultured CD34+ HSPCs. These differentially expressed genes are involved primarily in proliferation, differentiation, apoptosis, and homing.
Collapse
Affiliation(s)
- Qunliang Li
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | | | | | | |
Collapse
|
46
|
Santoni de Sio FR, Cascio P, Zingale A, Gasparini M, Naldini L. Proteasome activity restricts lentiviral gene transfer into hematopoietic stem cells and is down-regulated by cytokines that enhance transduction. Blood 2006; 107:4257-65. [PMID: 16469870 PMCID: PMC1464833 DOI: 10.1182/blood-2005-10-4047] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The therapeutic potential of hematopoietic stem cell (HSC) gene therapy can be fully exploited only by reaching efficient gene transfer into HSCs without compromising their biologic properties. Although HSCs can be transduced by HIV-derived lentiviral vectors (LVs) in short ex vivo culture, they display low permissivity to the vector, requiring cytokine stimulation to reach high-frequency transduction. Using stringent assays of competitive xenograft repopulation, we show that early-acting cytokines synergistically enhanced human HSC gene transfer by LVs without impairing engraftment and repopulation capacity. Using S-phase suicide assays, we show that transduction enhancement by cytokines was not dependent on cell cycle progression and that LVs can transduce quiescent HSCs. Pharmacologic inhibition of the proteasome during transduction dramatically enhanced HSC gene transfer, allowing the reach of very high levels of vector integration in their progeny in vivo. Thus, LVs are effectively restricted at a postentry step by the activity of this proteolytic complex. Unexpectedly, cytokine stimulation rapidly and substantially down-regulated proteasome activity in hematopoietic progenitors, highlighting one mechanism by which cytokines may enhance permissiveness to LV gene transfer. These findings demonstrate that antiviral responses ultimately mediated by proteasomes strongly limit the efficiency of HSC transduction by LVs and establish improved conditions for HSC-based gene therapy.
Collapse
|
47
|
Kyriakou CA, Yong KL, Benjamin R, Pizzey A, Dogan A, Singh N, Davidoff AM, Nathwani AC. Human mesenchymal stem cells (hMSCs) expressing truncated soluble vascular endothelial growth factor receptor (tsFlk-1) following lentiviral-mediated gene transfer inhibit growth of Burkitt's lymphoma in a murine model. J Gene Med 2006; 8:253-64. [PMID: 16288493 DOI: 10.1002/jgm.840] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Efficient gene transfer to bone marrow derived mesenchymal stem cells (MSC) would provide an important opportunity to express potent anticancer agents in the tumour microenvironment because of their contribution to the tumour stroma. METHODS HIV-based lentiviral vectors were pseudotyped with four different envelope proteins; amphotropic murine leukaemia virus (ampho), murine leukaemia virus (10A1), feline endogenous virus (RD114), and the vesicular stomatitis virus glycoprotein (VSVG). These pseudotypes were examined for transduction efficiency in human bone marrow derived MSC. The effect of lentiviral expression of truncated soluble vascular endothelial growth factor decoy receptor (tsFlk-1) in MSC on growth of Raji cells was determined, both in vitro and in vivo. RESULTS All lentiviral vectors produced significant levels of transduction at an multiplicity of infection (MOI) of 1, those bearing the RD114 envelope glycoprotein consistently produced higher transduction levels (mean 70 +/- 6%) compared with the other pseudotyped lentiviral vectors, although there was significant inter-donor variation. Stable transgene expression was achieved after multiple rounds of transduction with VSVG-pseudotyped particles, without alteration in the differentiative capacity of transduced cells. Co-injection of MSC stably expressing tsFlk-1 with Raji Burkitt's lymphoma cells significantly impaired subcutaneous tumour growth in immunodeficient mice when compared to controls where either unmanipulated MSC or GFP-expressing MSC were used. CONCLUSIONS Human MSC are easily transduced by pseudotyped lentiviral particles but there is inter-donor variation in transduction efficiency. Gene-modified MSC expressing a gene of therapeutic potential can moderate growth of haematological malignancies.
Collapse
Affiliation(s)
- Chara A Kyriakou
- Department of Haematology, University College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
48
|
McCormack E, Bruserud O, Gjertsen BT. Animal models of acute myelogenous leukaemia - development, application and future perspectives. Leukemia 2005; 19:687-706. [PMID: 15759039 DOI: 10.1038/sj.leu.2403670] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
From the early inception of the transplant models through to contemporary genetic and xenograft models, evolution of murine leukaemic model systems have been critical to our general comprehension and treatment of cancer, and, more specifically, disease states such as acute myelogenous leukaemia (AML). However, even with modern advances in therapeutics and molecular diagnostics, the majority of AML patients die from their disease. Thus, in the absence of definitive in vitro models which precisely recapitulate the in vivo setting of human AMLs and failure of significant numbers of new drugs late in clinical trials, it is essential that murine AML models are developed to exploit more specific, targeted therapeutics. While various model systems are described and discussed in the literature from initial transplant models such as BNML and spontaneous murine leukaemia virus models, to the more definitive genetic and clinically significant NOD/SCID xenograft models, there exists no single compendium which directly assesses, reviews or compares the relevance of these models. Thus, the function of this article is to provide clinicians and experimentalists a chronological, comprehensive appraisal of all AML model systems, critical discussion on the elucidation of their roles in our understanding of AML and consideration to their efficacy in the development of AML chemotherapeutics.
Collapse
Affiliation(s)
- E McCormack
- Hematology Section, Institute of Medicine, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
49
|
Zielske SP, Braun SE. Cytokines: Value-Added Products in Hematopoietic Stem Cell Gene Therapy. Mol Ther 2004; 10:211-9. [PMID: 15294167 DOI: 10.1016/j.ymthe.2004.05.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2004] [Accepted: 05/17/2004] [Indexed: 10/26/2022] Open
Affiliation(s)
- Steven P Zielske
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| | | |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Although the concept of engraftment and clinical reconstitution of the bone marrow was described several decades ago, the analysis of individual steps within this process remains a major focus of much current research in stem cell biology. In particular, this extends to the identification and characterization of the specific stem cell niche first proposed by Schofield in 1978. It is appropriate, therefore, that on the 25th anniversary of this publication, that we review recent progress in our understanding of the location and composition of the bone marrow stem cell niche and of the mechanisms involved in the initial phases of hematopoietic stem cell engraftment. RECENT FINDINGS During the past 12 months there have been significant advancements in our understanding of the interplay of molecules involved in the homing of hematopoietic stem cells to the bone marrow. In addition, innovative methodologies have become available for the visualization of hematopoietic stem cells within the bone marrow in situ. In an important development in this area, studies our now focusing on events after transendothelial migration into the marrow cords, including mechanisms involved in hematopoietic stem cell migration to and lodgment within the hematopoietic stem cell niche. Furthermore, there have been numerous new reports analyzing the molecular regulation of hematopoietic stem cells within the bone marrow niche in situ. SUMMARY Overall, recent advancements in our understanding of hematopoietic stem cell biology and, in particular, the interaction of hematopoietic stem cells with the hematopoietic microenvironment paves the way for expanded use in regenerative medicine.
Collapse
Affiliation(s)
- Susan K Nilsson
- Stem Cell Laboratory, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | |
Collapse
|