1
|
Xiao W, Shrimali N, Vigder N, Oldham WM, Clish CB, He H, Wong SJ, Wertheim BM, Arons E, Haigis MC, Leopold JA, Loscalzo J. Branched-chain α-ketoacids aerobically activate HIF1α signalling in vascular cells. Nat Metab 2024:10.1038/s42255-024-01150-4. [PMID: 39472756 DOI: 10.1038/s42255-024-01150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/25/2024] [Indexed: 11/06/2024]
Abstract
Hypoxia-inducible factor 1α (HIF1α) is a master regulator of biological processes in hypoxia. Yet, the mechanisms and biological consequences of aerobic HIF1α activation by intrinsic factors, particularly in normal (primary) cells, remain elusive. Here we show that HIF1α signalling is activated in several human primary vascular cells in normoxia and in vascular smooth muscle cells of normal human lungs. Mechanistically, aerobic HIF1α activation is mediated by paracrine secretion of three branched-chain α-ketoacids (BCKAs), which suppress PHD2 activity via direct inhibition and via LDHA-mediated generation of L-2-hydroxyglutarate. BCKA-mediated HIF1α signalling activation stimulated glycolytic activity and governed a phenotypic switch of pulmonary artery smooth muscle cells, which correlated with BCKA metabolic dysregulation and pathophenotypic changes in pulmonary arterial hypertension patients and male rat models. We thus identify BCKAs as previously unrecognized signalling metabolites that aerobically activate HIF1α and that the BCKA-HIF1α pathway modulates vascular smooth muscle cell function, an effect that may be relevant to pulmonary vascular pathobiology.
Collapse
Affiliation(s)
- Wusheng Xiao
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, School of Public Health, Peking University, Beijing, China
| | - Nishith Shrimali
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Niv Vigder
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Clary B Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Huamei He
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Samantha J Wong
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Bradley M Wertheim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elena Arons
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jane A Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Wang D, Wang M, Sun S, Zhang C, Song Y, Li J, Song B, Lv H, Wang S, Jiang W. Hypoxia-induced NLRP3 inflammasome activation via the HIF-1α/NF-κB signaling pathway in human dental pulp fibroblasts. BMC Oral Health 2024; 24:1156. [PMID: 39343901 PMCID: PMC11441079 DOI: 10.1186/s12903-024-04936-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/19/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Previous studies have reported the link between hypoxic conditions and NLRP3 inflammasome-mediated pulpal inflammation in the progression of pulpitis. However, the underlying mechanism has not been fully elucidated. This study aimed to investigate the role of HIF-1α in the regulation of NLRP3 inflammasome pathway via NF-κB signaling under hypoxic conditions with or without LPS in human dental pulp fibroblasts (HDPFs) during the progression of pulpitis. METHODS HIF-1α plasmids or siRNAs were used to upregulate or downregulate HIF-1α in HDPFs, respectively. The effect of hypoxia with or without LPS on the NF-κB signaling and NLRP3 inflammasome pathway was analyzed by immunofluorescence staining, qRT-PCR, western blotting and ELISA. RESULTS The hypoxic conditions alone induced ASC oligomerization and NLRP3/CASP1 inflammasome pathway activation via NF-κB signaling in a time-dependent manner in HDPFs. The upregulation of HIF-1α further promoted hypoxia-induced ASC oligomerization and NLRP3/CASP1 inflammasome pathway activation via NF-κB signaling compared to the hypoxia-induced group. In comparison, downregulation of HIF-1α inhibited ASC oligomerization and NLRP3/CASP1 inflammasome pathway activation via NF-κB signaling compared to the hypoxia-induced group. Additionally, LPS plus hypoxia further promoted HIF-1α expression and NLRP3/ASC/CASP1 inflammasome pathway activation via NF-κB signaling compared to the hypoxia-induced group. CONCLUSIONS HIF-1α served as a positive regulator of NLRP3/ASC/CASP1 inflammasome pathway activation via NF-κB signaling in HDPFs in the sterile pulpal inflammation and caries-related pulpitis microenvironment. The finding of a novel functional HIF-1α-NF-κB-NLRP3 axis provides insight into the link between the hypoxic microenvironment and pulpal inflammation, thus supporting a promising therapeutic strategy for the control of pulpal inflammation.
Collapse
Affiliation(s)
- Diya Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi, 710032, China
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Minghao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Shukai Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Pediatric Dentistry, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chongyang Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Ya Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Jianing Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi, 710032, China
| | - Bing Song
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi, 710032, China
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haipeng Lv
- Department of Stomatology, Xi'an Daxing Hospital, Xi'an, Shaanxi, China.
| | - Shengchao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi, 710032, China.
| | - Wenkai Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry & Endodontics, School of Stomatology, Fourth Military Medical University, No.145 Western Changle Road, Xi'an, Shaanxi, 710032, China.
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Cardiff, CF14 4XY, UK.
| |
Collapse
|
3
|
Sharma V, Patial V. Insights into the molecular mechanisms of malnutrition-associated steatohepatitis: A review. Liver Int 2024; 44:2156-2173. [PMID: 38775001 DOI: 10.1111/liv.15932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 08/10/2024]
Abstract
Malnutrition is a public health epidemic mainly targeting poverty-stricken people, young ones, older people, pregnant women, and individuals with metabolic disorders. Severe malnutrition is linked with several metabolic defects, such as hepatic dysfunction, hypertension, cardiovascular disease, and osteoarthritis. The proper functioning of the liver plays a crucial role in ensuring the supply of nutrients to the body. Consequently, inadequate nutrition can lead to severe periportal hepatic steatosis due to compromised mitochondrial and peroxisome functions. Reduced protein intake disrupts essential metabolic processes like the TCA cycle, oxidative phosphorylation, and β-oxidation, ultimately affecting ATP production. Furthermore, this can trigger a cascade of events, including disturbances in amino acid metabolism, iron metabolism, and gut microbiota, which activate genes involved in de novo lipogenesis, leading to the accumulation of lipids in the liver. The condition, in prolonged cases, progresses to steatohepatitis and liver fibrosis. Limited therapeutic solutions are available; however, few dietary supplements and drugs have demonstrated positive effects on the growth and health of malnourished individuals. These supplements improve parameters such as inflammatory and oxidative status, reduce triglyceride accumulation, enhance insulin sensitivity, and downregulate gene expression in hepatic lipid metabolism. This review elucidates the various mechanisms involved in malnutrition-associated steatohepatitis and provides an overview of the available approaches for treating this condition.
Collapse
Affiliation(s)
- Vinesh Sharma
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Vikram Patial
- Pharmacology and Toxicology Laboratory, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Xiao W, Shrimali N, Oldham WM, Clish CB, He H, Wong SJ, Wertheim BM, Arons E, Haigis MC, Leopold JA, Loscalzo J. Branched chain α-ketoacids aerobically activate HIF1α signaling in vascular cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.595538. [PMID: 38853866 PMCID: PMC11160772 DOI: 10.1101/2024.05.29.595538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Hypoxia-inducible factor 1α (HIF1α) is a master regulator of numerous biological processes under low oxygen tensions. Yet, the mechanisms and biological consequences of aerobic HIF1α activation by intrinsic factors, particularly in primary cells remain elusive. Here, we show that HIF1α signaling is activated in several human primary vascular cells under ambient oxygen tensions, and in vascular smooth muscle cells (VSMCs) of normal human lung tissue, which contributed to a relative resistance to further enhancement of glycolytic activity in hypoxia. Mechanistically, aerobic HIFα activation is mediated by paracrine secretion of three branched chain α-ketoacids (BCKAs), which suppress prolyl hydroxylase domain-containing protein 2 (PHD2) activity via direct inhibition and via lactate dehydrogenase A (LDHA)-mediated generation of L-2-hydroxyglutarate (L2HG). Metabolic dysfunction induced by BCKAs was observed in the lungs of rats with pulmonary arterial hypertension (PAH) and in pulmonary artery smooth muscle cells (PASMCs) from idiopathic PAH patients. BCKA supplementation stimulated glycolytic activity and promoted a phenotypic switch to the synthetic phenotype in PASMCs of normal and PAH subjects. In summary, we identify BCKAs as novel signaling metabolites that activate HIF1α signaling in normoxia and that the BCKA-HIF1α pathway modulates VSMC function and may be relevant to pulmonary vascular pathobiology.
Collapse
Affiliation(s)
- Wusheng Xiao
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, School of Public Health, Peking University, Beijing 100191, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Compatibility Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Nishith Shrimali
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - William M. Oldham
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Clary B. Clish
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Huamei He
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Samantha J. Wong
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bradley M. Wertheim
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Elena Arons
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Marcia C. Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jane A. Leopold
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joseph Loscalzo
- Divisions of Cardiovascular Medicine and Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Yurakova TR, Gorshkova EA, Nosenko MA, Drutskaya MS. Metabolic Adaptations and Functional Activity of Macrophages in Homeostasis and Inflammation. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:817-838. [PMID: 38880644 DOI: 10.1134/s0006297924050043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 06/18/2024]
Abstract
In recent years, the role of cellular metabolism in immunity has come into the focus of many studies. These processes form a basis for the maintenance of tissue integrity and homeostasis, as well as represent an integral part of the immune response, in particular, inflammation. Metabolic adaptations not only ensure energy supply for immune response, but also affect the functions of immune cells by controlling transcriptional and post-transcriptional programs. Studying the immune cell metabolism facilitates the search for new treatment approaches, especially for metabolic disorders. Macrophages, innate immune cells, are characterized by a high functional plasticity and play a key role in homeostasis and inflammation. Depending on the phenotype and origin, they can either perform various regulatory functions or promote inflammation state, thus exacerbating the pathological condition. Furthermore, their adaptations to the tissue-specific microenvironment influence the intensity and type of immune response. The review examines the effect of metabolic reprogramming in macrophages on the functional activity of these cells and their polarization. The role of immunometabolic adaptations of myeloid cells in tissue homeostasis and in various pathological processes in the context of inflammatory and metabolic diseases is specifically discussed. Finally, modulation of the macrophage metabolism-related mechanisms reviewed as a potential therapeutic approach.
Collapse
Affiliation(s)
- Taisiya R Yurakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Ekaterina A Gorshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Maxim A Nosenko
- Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02F306, Ireland
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
- Division of Immunobiology and Biomedicine, Center of Genetics and Life Sciences, Sirius University of Science and Technology, Federal Territory Sirius, 354340, Russia
| |
Collapse
|
6
|
Yuan Y, Zhang Y, Lu X, Li J, Wang M, Zhang W, Zheng M, Sun Z, Xing Y, Li Y, Qu Y, Jiao Y, Han H, Xie C, Mao T. Novel insights into macrophage immunometabolism in nonalcoholic steatohepatitis. Int Immunopharmacol 2024; 131:111833. [PMID: 38503012 DOI: 10.1016/j.intimp.2024.111833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
Nonalcoholic steatohepatitis (NASH), an inflammatory subtype of nonalcoholic fatty liver disease (NAFLD), is characterized by liver steatosis, inflammation, hepatocellular injury and different degrees of fibrosis, and has been becoming the leading cause of liver-related morbidity and mortality worldwide. Unfortunately, the pathogenesis of NASH has not been completely clarified, and there are no approved therapeutic drugs. Recent accumulated evidences have revealed the involvement of macrophage in the regulation of host liver steatosis, inflammation and fibrosis, and different phenotypes of macrophages have different metabolic characteristics. Therefore, targeted regulation of macrophage immunometabolism may contribute to the treatment and prognosis of NASH. In this review, we summarized the current evidences of the role of macrophage immunometabolism in NASH, especially focused on the related function conversion, as well as the strategies to promote its polarization balance in the liver, and hold promise for macrophage immunometabolism-targeted therapies in the treatment of NASH.
Collapse
Affiliation(s)
- Yali Yuan
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Ye Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Xinyu Lu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Junxiang Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Muyuan Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Wenji Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | | | | | - Yunqi Xing
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yitong Li
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yingdi Qu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Yao Jiao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China
| | - Haixiao Han
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Chune Xie
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China; Shenzhen Bao'an Traditional Chinese Medicine Hospital, Shenzhen, PR China.
| | - Tangyou Mao
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, PR China.
| |
Collapse
|
7
|
Kadamani KL, Logan SM, Pamenter ME. Does hypometabolism constrain innate immune defense? Acta Physiol (Oxf) 2024; 240:e14091. [PMID: 38288574 DOI: 10.1111/apha.14091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 11/30/2023] [Accepted: 01/01/2024] [Indexed: 02/24/2024]
Abstract
Many animals routinely make energetic trade-offs to adjust to environmental demands and these trade-offs often have significant implications for survival. For example, environmental hypoxia is commonly experienced by many organisms and is an energetically challenging condition because reduced oxygen availability constrains aerobic energy production, which can be lethal. Many hypoxia-tolerant species downregulate metabolic demands when oxygen is limited; however, certain physiological functions are obligatory and must be maintained despite the need to conserve energy in hypoxia. Of particular interest is immunity (including both constitutive and induced immune functions) because mounting an immune response is among the most energetically expensive physiological processes but maintaining immune function is critical for survival in most environments. Intriguingly, physiological responses to hypoxia and pathogens share key molecular regulators such as hypoxia-inducible factor-1α, through which hypoxia can directly activate an immune response. This raises an interesting question: do hypoxia-tolerant species mount an immune response during periods of hypoxia-induced hypometabolism? Unfortunately, surprisingly few studies have examined interactions between immunity and hypometabolism in such species. Therefore, in this review, we consider mechanistic interactions between metabolism and immunity, as well as energetic trade-offs between these two systems, in hypoxia-tolerant animals but also in other models of hypometabolism, including neonates and hibernators. Specifically, we explore the hypothesis that such species have blunted immune responses in hypometabolic conditions and/or use alternative immune pathways when in a hypometabolic state. Evidence to date suggests that hypoxia-tolerant animals do maintain immunity in low oxygen conditions, but that the sensitivity of immune responses may be blunted.
Collapse
Affiliation(s)
- Karen L Kadamani
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Samantha M Logan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Matthew E Pamenter
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Tyler SR, Lozano-Ojalvo D, Guccione E, Schadt EE. Anti-correlated feature selection prevents false discovery of subpopulations in scRNAseq. Nat Commun 2024; 15:699. [PMID: 38267438 PMCID: PMC10808220 DOI: 10.1038/s41467-023-43406-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 11/07/2023] [Indexed: 01/26/2024] Open
Abstract
While sub-clustering cell-populations has become popular in single cell-omics, negative controls for this process are lacking. Popular feature-selection/clustering algorithms fail the null-dataset problem, allowing erroneous subdivisions of homogenous clusters until nearly each cell is called its own cluster. Using real and synthetic datasets, we find that anti-correlated gene selection reduces or eliminates erroneous subdivisions, increases marker-gene selection efficacy, and efficiently scales to millions of cells.
Collapse
Affiliation(s)
- Scott R Tyler
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Daniel Lozano-Ojalvo
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ernesto Guccione
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Therapeutics Discovery, Department of Oncological Sciences and Pharmacological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Bioinformatics for Next Generation Sequencing (BiNGS) Shared Resource Facility, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Yu L, Ran H, Lu Y, Ma Q, Huang H, Liu W. Targeting HIF-1α alleviates the inflammatory responses and rebuilds the CD4 + T cell subsets balance in the experimental autoimmune myasthenia gravis inflammation model via regulating cellular and humoral immunity. Life Sci 2024; 336:122287. [PMID: 37995933 DOI: 10.1016/j.lfs.2023.122287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Cells and tissues in an inflammatory state are usually hypoxic. The hypoxic environment can affect the differentiation of immune cells and produce Hypoxia-inducible Factor-1α (HIF-1α). Inflammation is also a major contributor to the development and deterioration of Myasthenia Gravis (MG). There are limited studies on the immunopathological mechanism and targeted therapy associated with MG exacerbated with inflammation. This research aimed to explore whether BAY 87-2243 (HIF-1α inhibitor) ameliorates the symptoms of the Experimental Autoimmune Myasthenia Gravis (EAMG) inflammation model and study its regulatory mechanism on cellular immunity and humoral immunity. METHODS We first establish the EAMG inflammation model using Lipopolysaccharide (LPS), BAY 87-2243 was applied to the EAMG inflammation model and its therapeutic effects were evaluated in vivo and in vitro experiments. RESULTS The proportion of Treg cells was increased whereas Th1, Th17, and Th1/17 cells were decreased in BAY 87-2243-treated EAMG inflammation model. BAY 87-2243 ameliorated the acetylcholine receptors (AChRs) loss and the complement deposited at the neuromuscular junction of the EAMG inflammation model, declined the levels of IFN-γ, IL-17, and IL-6 in serum, and further attenuated responses in the germinal center and reduced the antibody levels by inhibiting the IL-6-dependent STAT3 axis. CONCLUSION BAY 87-2243 restored the balance of CD4+T cell subsets and reduced the production of the pro-inflammatory cytokines, thus acting as both an immune imbalance regulator and anti-inflammatory. The current study suggests that HIF-1α might be a potential target for the treatment of MG exacerbated with inflammation.
Collapse
Affiliation(s)
- Lu Yu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China; Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Hao Ran
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006, China
| | - Yaru Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Qian Ma
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China
| | - Huan Huang
- Department of Neurology and Psychiatry, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| | - Weibin Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou 510080, China.
| |
Collapse
|
10
|
Xu CQ, Li J, Liang ZQ, Zhong YL, Zhang ZH, Hu XQ, Cao YB, Chen J. Sirtuins in macrophage immune metabolism: A novel target for cardiovascular disorders. Int J Biol Macromol 2024; 256:128270. [PMID: 38000586 DOI: 10.1016/j.ijbiomac.2023.128270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/17/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Sirtuins (SIRT1-SIRT7), as a family of NAD+-dependent protein modifying enzymes, have various catalytic functions, such as deacetylases, dealkalylases, and deribonucleases. The Sirtuins family is directly or indirectly involved in pathophysiological processes such as glucolipid metabolism, oxidative stress, DNA repair and inflammatory response through various pathways and assumes an important role in several cardiovascular diseases such as atherosclerosis, myocardial infarction, hypertension and heart failure. A growing number of studies supports that metabolic and bioenergetic reprogramming directs the sequential process of inflammation. Failure of homeostatic restoration leads to many inflammatory diseases, and that macrophages are the central cells involving the inflammatory response and are the main source of inflammatory cytokines. Regulation of cellular metabolism has emerged as a fundamental process controlling macrophage function, but its exact signaling mechanisms remain to be revealed. Understanding the precise molecular basis of metabolic control of macrophage inflammatory processes may provide new approaches for targeting immune metabolism and inflammation. Here, we provide an update of studies in cardiovascular disease on the function and role of sirtuins in macrophage inflammation and metabolism, as well as drug candidates that may interfere with sirtuins, pointing to future prospects in this field.
Collapse
Affiliation(s)
- Chen-Qin Xu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ji Li
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Qiang Liang
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yi-Lang Zhong
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Hui Zhang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xue-Qing Hu
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States of America
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
11
|
Lu Y, Mu M, RenChen X, Wang W, Zhu Y, Zhong M, Jiang Y, Tao X. 2-Deoxy-D-glucose ameliorates inflammation and fibrosis in a silicosis mouse model by inhibiting hypoxia-inducible factor-1α in alveolar macrophages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115767. [PMID: 38039851 DOI: 10.1016/j.ecoenv.2023.115767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Inhaling silica causes the occupational illness silicosis, which mostly results in the gradual fibrosis of lung tissue. Previous research has demonstrated that hypoxia-inducible factor-1α (HIF-1α) and glycolysis-related genes are up-regulated in silicosis. The role of 2-deoxy-D-glucose (2-DG) as an inhibitor of glycolysis in silicosis mouse models and its molecular mechanisms remain unclear. Therefore, we used 2-DG to observe its effect on pulmonary inflammation and fibrosis in a silicosis mouse model. Furthermore, in vitro cell experiments were conducted to explore the specific mechanisms of HIF-1α. Our study found that 2-DG down-regulated HIF-1α levels in alveolar macrophages induced by silica exposure and reduced the interleukin-1β (IL-1β) level in pulmonary inflammation. Additionally, 2-DG reduced silica-induced pulmonary fibrosis. From these findings, we hypothesize that 2-DG reduced glucose transporter 1 (GLUT1) expression by inhibiting glycolysis, which inhibits the expression of HIF-1α and ultimately reduces transcription of the inflammatory cytokine, IL-1β, thus alleviating lung damage. Therefore, we elucidated the important regulatory role of HIF-1α in an experimental silicosis model and the potential defense mechanisms of 2-DG. These results provide a possible effective strategy for 2-DG in the treatment of silicosis.
Collapse
Affiliation(s)
- Yuting Lu
- School of Public Health, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, China
| | - Min Mu
- School of Public Health, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, China; Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, China; Joint Research Center of Occupational Medicine and Health, Institute of Grand Health, Hefei Comprehensive National Science Center, Anhui University of Science and Technology, China.
| | - Xiaotian RenChen
- School of Public Health, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, China
| | - Wenyang Wang
- School of Public Health, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, China; Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, China
| | - Yingrui Zhu
- School of Public Health, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, China
| | - Meiping Zhong
- School of Public Health, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, China
| | - Yuerong Jiang
- School of Public Health, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, China
| | - Xinrong Tao
- School of Public Health, Anhui University of Science and Technology, China; Key Laboratory of Industrial Dust Prevention and Control, Occupational Safety and Health, Ministry of Education, Anhui University of Science and Technology, China; Anhui Institute of Occupational Safety and Health, Anhui University of Science and Technology, China; Joint Research Center of Occupational Medicine and Health, Institute of Grand Health, Hefei Comprehensive National Science Center, Anhui University of Science and Technology, China
| |
Collapse
|
12
|
Shi X, Gao F, Zhao X, Pei C, Zhu L, Zhang J, Li C, Li L, Kong X. Role of HIF in fish inflammation. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109222. [PMID: 37956798 DOI: 10.1016/j.fsi.2023.109222] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
The hypoxia-inducing factor (HIF) is a central transcription factor in cellular oxygen sensing and regulation. It is common that the inflammation always appears in many diseases, like infectious diseases in fishes, and the inflammation is often accompanied by hypoxia, as a hallmark of inflammation. Besides coordinating cellular responses to low oxygen, HIF-mediated hypoxia signaling pathway is also crucial for immune responses such as the regulations of innate immune cell phenotype and function, as well as metabolic reprogramming under the inflammation. However, the understanding of the molecular mechanisms by which HIFs regulate the inflammatory response in fish is still very limited. Here, we review the characteristics of HIF as well as its roles in innate immune cells and the infections caused by bacteria and viruses. The regulatory effects of HIF on the metabolic reprogramming of innate immune cells are also discussed and the future research directions are outlooked. This paper will serve as a reference for elucidating the molecular mechanism of HIF regulating inflammation and identifying treatment strategies to target HIF for fish disease.
Collapse
Affiliation(s)
- Xiaowei Shi
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China; Sanquan Medical College, Henan Province, PR China
| | - Feng Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianliang Zhao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chao Pei
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Lei Zhu
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Jie Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Chen Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Li Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China
| | - Xianghui Kong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Henan Province, PR China.
| |
Collapse
|
13
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
14
|
Kang GS, Jo HJ, Lee YR, Oh T, Park HJ, Ahn GO. Sensing the oxygen and temperature in the adipose tissues - who's sensing what? Exp Mol Med 2023; 55:2300-2307. [PMID: 37907745 PMCID: PMC10689767 DOI: 10.1038/s12276-023-01113-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 11/02/2023] Open
Abstract
Adipose tissues, composed of various cell types, including adipocytes, endothelial cells, neurons, and immune cells, are organs that are exposed to dynamic environmental challenges. During diet-induced obesity, white adipose tissues experience hypoxia due to adipocyte hypertrophy and dysfunctional vasculature. Under these conditions, cells in white adipose tissues activate hypoxia-inducible factor (HIF), a transcription factor that activates signaling pathways involved in metabolism, angiogenesis, and survival/apoptosis to adapt to such an environment. Exposure to cold or activation of the β-adrenergic receptor (through catecholamines or chemicals) leads to heat generation, mainly in brown adipose tissues through activating uncoupling protein 1 (UCP1), a proton uncoupler in the inner membrane of the mitochondria. White adipose tissues can undergo a similar process under this condition, a phenomenon known as 'browning' of white adipose tissues or 'beige adipocytes'. While UCP1 expression has largely been confined to adipocytes, HIF can be expressed in many types of cells. To dissect the role of HIF in specific types of cells during diet-induced obesity, researchers have generated tissue-specific knockout (KO) mice targeting HIF pathways, and many studies have commonly revealed that intact HIF-1 signaling in adipocytes and adipose tissue macrophages exacerbates tissue inflammation and insulin resistance. In this review, we highlight some of the key findings obtained from these transgenic mice, including Ucp1 KO mice and other models targeting the HIF pathway in adipocytes, macrophages, or endothelial cells, to decipher their roles in diet-induced obesity.
Collapse
Affiliation(s)
- Gi-Sue Kang
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Hye-Ju Jo
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Ye-Rim Lee
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Taerim Oh
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Hye-Joon Park
- College of Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - G-One Ahn
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
- College of Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
| |
Collapse
|
15
|
Dzhalilova D, Kosyreva A, Lokhonina A, Tsvetkov I, Vishnyakova P, Makarova O, Fatkhudinov T. Molecular and phenotypic distinctions of macrophages in tolerant and susceptible to hypoxia rats. PeerJ 2023; 11:e16052. [PMID: 37842051 PMCID: PMC10573310 DOI: 10.7717/peerj.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 10/17/2023] Open
Abstract
Individual hypoxia tolerance is a major influence on the course and outcome of infectious and inflammatory diseases. Macrophages, which play central roles in systemic inflammatory response and other immunity reactions, are subject to functional activation orchestrated by several transcription factors including hypoxia inducible factors (HIFs). HIF-1 expression levels and the lipopolysaccharide (LPS)-induced systemic inflammatory response severity have been shown to correlate with hypoxia tolerance. Molecular and functional features of macrophages, depending on the organisms resistance to hypoxia, can determine the severity of the course of infectious and inflammatory diseases, including the systemic inflammatory response. The purpose is the comparative molecular and functional characterization of non-activated and LPS-activated bone marrow-derived macrophages under normoxia in rats with different tolerance to oxygen deprivation. Hypoxia resistance was assessed by gasping time measurement in an 11,500 m altitude-equivalent hypobaric decompression chamber. Based on the outcome, the animals were assigned to three groups termed 'tolerant to hypoxia' (n = 12), 'normal', and 'susceptible to hypoxia' (n = 13). The 'normal' group was excluded from subsequent experiments. One month after hypoxia resistance test, the blood was collected from the tail vein to isolate monocytes. Non-activated and LPS-activated macrophage cultures were investigated by PCR, flow cytometry and Western blot methods. Gene expression patterns of non-activated cultured macrophages from tolerant and susceptible to hypoxia animals differed. We observed higher expression of VEGF and CD11b and lower expression of Tnfa, Il1b and Epas1 in non-activated cultures obtained from tolerant to hypoxia animals, whereas HIF-1α mRNA and protein expression levels were similar. LPS-activated macrophage cultures derived from susceptible to hypoxia animals expressed higher levels of Hif1a and CCR7 than the tolerant group; in addition, the activation was associated with increased content of HIF-1α in cell culture medium. The observed differences indicate a specific propensity toward pro-inflammatory macrophage polarization in susceptible to hypoxia rats.
Collapse
Affiliation(s)
- Dzhuliia Dzhalilova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Anna Kosyreva
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Anastasiya Lokhonina
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| | - Ivan Tsvetkov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Polina Vishnyakova
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Olga Makarova
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
| | - Timur Fatkhudinov
- Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russian Federation
- Research Institute of Molecular and Cellular Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba (RUDN University), Moscow, Russian Federation
| |
Collapse
|
16
|
Sangineto M, Ciarnelli M, Cassano T, Radesco A, Moola A, Bukke VN, Romano A, Villani R, Kanwal H, Capitanio N, Duda L, Avolio C, Serviddio G. Metabolic reprogramming in inflammatory microglia indicates a potential way of targeting inflammation in Alzheimer's disease. Redox Biol 2023; 66:102846. [PMID: 37586250 PMCID: PMC10457454 DOI: 10.1016/j.redox.2023.102846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023] Open
Abstract
Microglia activation drives the pro-inflammatory activity in the early stages of Alzheimer's disease (AD). However, the mechanistic basis is elusive, and the hypothesis of targeting microglia to prevent AD onset is little explored. Here, we demonstrated that upon LPS exposure, microglia shift towards an energetic phenotype characterised by high glycolysis and high mitochondrial respiration with dysfunction. Although the activity of electron transport chain (ETC) complexes is boosted by LPS, this is mostly devoted to the generation of reactive oxygen species. We showed that by inhibiting succinate dehydrogenase (SDH) with dimethyl malonate (DMM), it is possible to modulate the LPS-induced metabolic rewiring, facilitating an anti-inflammatory phenotype. DMM improves mitochondrial function in a direct way and by reducing LPS-induced mitochondrial biogenesis. Moreover, the block of SDH with DMM inhibits the recruitment of hypoxia inducible-factor 1 α (HIF-1α), which mediates the induction of glycolysis and cytokine expression. Similar bioenergetic alterations were observed in the microglia isolated from AD mice (3xTg-AD), which present high levels of circulating LPS and brain toll-like receptor4 (TLR4). Moreover, this well-established model of AD was used to show a potential effect of SDH inhibition in vivo as DMM administration abrogated brain inflammation and modulated the microglia metabolic alterations of 3xTg-AD mice. The RNA-sequencing analysis from a public dataset confirmed the consistent transcription of genes encoding for ETC subunits in the microglia of AD mice (5xFAD). In conclusion, TLR4 activation promotes metabolic changes and the pro-inflammatory activity in microglia, and SDH might represent a promising therapeutic target to prevent AD development.
Collapse
Affiliation(s)
- Moris Sangineto
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| | - Martina Ciarnelli
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Tommaso Cassano
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Antonio Radesco
- Istituto Oncologico "Giovanni Paolo II", I.R.C.S.S. of Bari, Laboratory of Haematological Diagnostics and Cellular Therapy, Bari, Italy
| | - Archana Moola
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Vidyasagar Naik Bukke
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Antonino Romano
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosanna Villani
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Hina Kanwal
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Nazzareno Capitanio
- Biochemistry Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Loren Duda
- Pathology Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Carlo Avolio
- Neurology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Gaetano Serviddio
- C.U.R.E. (University Center for Liver Disease Research and Treatment), Liver Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
17
|
Sharma P, Sri Swetha Victoria V, Praneeth Kumar P, Karmakar S, Swetha M, Reddy A. Cross-talk between insulin resistance and nitrogen species in hypoxia leads to deterioration of tissue and homeostasis. Int Immunopharmacol 2023; 122:110472. [PMID: 37392570 DOI: 10.1016/j.intimp.2023.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/19/2023] [Accepted: 06/07/2023] [Indexed: 07/03/2023]
Abstract
Hypoxia has been linked with insulin resistance as it produces changes in the metabolism of the cell; in which the adipocytes impede the insulin receptor tyrosine, phosphorylation, directing at decreased levels of transport of glucose. At this juncture, we are focusing on cross-talk between insulin resistance and nitrogen species in hypoxia, leading to the deterioration of tissue and homeostasis. Physiological levels of nitric oxide play a very crucial role in acting as a priority effector and signaling molecule, arbitrating the body's responses to hypoxia. Both ROS and RNS are associated with a reduction in IRS1 phosphorylation in tyrosine, which leads to reduced levels of IRS1 content and insulin response, which further leads to insulin resistance. Cellular hypoxia is a trigger to inflammatory mediators which signal tissue impairment and initiate survival requirements. But, hypoxia-mediated inflammation act as a protective role by an immune response and promotes wound healing during infection. In this review, we abridge the crosstalk between the inflammation and highlight the dysregulation in physiological consequences due to diabetes mellitus. Finally, we review various treatments available for its related physiological complications.
Collapse
Affiliation(s)
- Priyanshy Sharma
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - V Sri Swetha Victoria
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - P Praneeth Kumar
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - Sarbani Karmakar
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - Mudduluru Swetha
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India
| | - Amala Reddy
- Animal Cell Culture Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nādu, India.
| |
Collapse
|
18
|
Zhang Y, Lei H, Wang P, Zhou Q, Yu J, Leng X, Ma R, Wang D, Dong K, Xing J, Dong Y. Restoration of dysregulated intestinal barrier and inflammatory regulation through synergistically ameliorating hypoxia and scavenging reactive oxygen species using ceria nanozymes in ulcerative colitis. Biomater Res 2023; 27:75. [PMID: 37507801 PMCID: PMC10375752 DOI: 10.1186/s40824-023-00412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Reactive oxygen species (ROS) overproduction and excessive hypoxia play pivotal roles in the initiation and progression of ulcerative colitis (UC). Synergistic ROS scavenging and generating O2 could be a promising strategy for UC treatment. METHODS Ceria nanozymes (PEG-CNPs) are fabricated using a modified reverse micelle method. We investigate hypoxia attenuating and ROS scavenging of PEG-CNPs in intestinal epithelial cells and RAW 264.7 macrophages and their effects on pro-inflammatory macrophages activation. Subsequently, we investigate the biodistribution, pharmacokinetic properties and long-term toxicity of PEG-CNPs in mice. PEG-CNPs are administered intravenously to mice with 2,4,6-trinitrobenzenesulfonic acid-induced colitis to test their colonic tissue targeting and assess their anti-inflammatory activity and mucosal healing properties in UC. RESULTS PEG-CNPs exhibit multi-enzymatic activity that can scavenge ROS and generate O2, promote intestinal epithelial cell healing and inhibit pro-inflammatory macrophage activation, and have good biocompatibility. After intravenous administration of PEG-CNPs to colitis mice, they can enrich at the site of colonic inflammation, and reduce hypoxia-induced factor-1α expression in intestinal epithelial cells by scavenging ROS to generate O2, thus further promoting disrupted intestinal mucosal barrier restoration. Meanwhile, PEG-CNPs can effectively scavenge ROS in impaired colon tissues and relieve colonic macrophage hypoxia to suppress the pro-inflammatory macrophages activation, thereby preventing UC occurrence and development. CONCLUSION This study has provided a paradigm to utilize metallic nanozymes, and suggests that further materials engineering investigations could yield a facile method based on the pathological characteristics of UC for clinically managing UC.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Hengyu Lei
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Pengchong Wang
- Department of Pharmacy, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qinyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Jie Yu
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xue Leng
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Ruirui Ma
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Danyang Wang
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Kai Dong
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Jianfeng Xing
- Department of Pharmaceutics, School of Pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
19
|
Teng Y, Xu L, Li W, Liu P, Tian L, Liu M. Targeting reactive oxygen species and fat acid oxidation for the modulation of tumor-associated macrophages: a narrative review. Front Immunol 2023; 14:1224443. [PMID: 37545527 PMCID: PMC10401428 DOI: 10.3389/fimmu.2023.1224443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/06/2023] [Indexed: 08/08/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are significant immunocytes infiltrating the tumor microenvironment(TME). Recent research has shown that TAMs exhibit diversity in terms of their phenotype, function, time, and spatial distribution, which allows for further classification of TAM subtypes. The metabolic efficiency of fatty acid oxidation (FAO) varies among TAM subtypes. FAO is closely linked to the production of reactive oxygen species (ROS), which play a role in processes such as oxidative stress. Current evidence demonstrates that FAO and ROS can influence TAMs' recruitment, polarization, and phagocytosis ability either individually or in combination, thereby impacting tumor progression. But the specific mechanisms associated with these relationships still require further investigation. We will review the current status of research on the relationship between TAMs and tumor development from three aspects: ROS and TAMs, FAO and TAMs, and the interconnectedness of FAO, ROS, and TAMs.
Collapse
Affiliation(s)
| | | | | | | | - Linli Tian
- *Correspondence: Linli Tian, ; Ming Liu,
| | - Ming Liu
- *Correspondence: Linli Tian, ; Ming Liu,
| |
Collapse
|
20
|
Qiu B, Yuan P, Du X, Jin H, Du J, Huang Y. Hypoxia inducible factor-1α is an important regulator of macrophage biology. Heliyon 2023; 9:e17167. [PMID: 37484306 PMCID: PMC10361316 DOI: 10.1016/j.heliyon.2023.e17167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/13/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1), a heterodimeric transcription factor composed of the α and β subunits, regulates cellular adaptive responses to hypoxia. Macrophages, which are derived from monocytes, function as antigen-presenting cells that activate various immune responses. HIF-1α regulates the immune response, viability, migration, phenotypic plasticity, and metabolism of macrophages. Specifically, macrophage-derived HIF-1α can prevent excessive pro-inflammatory responses by attenuating the transcriptional activity of nuclear factor-kappa B in vivo and in vitro. HIF-1α modulates macrophage migration by inducing the release of various chemokines and providing necessary energy. HIF-1α promotes macrophage M1 polarization by targeting glucose metabolism. Additionally, HIF-1α induces the upregulation of glycolysis-related enzymes and intermediates of the tricarboxylic acid cycle and pentose phosphate pathway. HIF-1α promotes macrophage apoptosis, necroptosis and reduces autophagy. The current review highlights the mechanisms associated with the regulation of HIF-1α stabilization in macrophages as well as the role of HIF-1α in modulating the physiological functions of macrophages.
Collapse
Affiliation(s)
- Bingquan Qiu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Piaoliu Yuan
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Xiaojuan Du
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| |
Collapse
|
21
|
Iacobini C, Vitale M, Pugliese G, Menini S. The "sweet" path to cancer: focus on cellular glucose metabolism. Front Oncol 2023; 13:1202093. [PMID: 37305566 PMCID: PMC10248238 DOI: 10.3389/fonc.2023.1202093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
The hypoxia-inducible factor-1α (HIF-1α), a key player in the adaptive regulation of energy metabolism, and the M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2), a critical regulator of glucose consumption, are the main drivers of the metabolic rewiring in cancer cells. The use of glycolysis rather than oxidative phosphorylation, even in the presence of oxygen (i.e., Warburg effect or aerobic glycolysis), is a major metabolic hallmark of cancer. Aerobic glycolysis is also important for the immune system, which is involved in both metabolic disorders development and tumorigenesis. More recently, metabolic changes resembling the Warburg effect have been described in diabetes mellitus (DM). Scientists from different disciplines are looking for ways to interfere with these cellular metabolic rearrangements and reverse the pathological processes underlying their disease of interest. As cancer is overtaking cardiovascular disease as the leading cause of excess death in DM, and biological links between DM and cancer are incompletely understood, cellular glucose metabolism may be a promising field to explore in search of connections between cardiometabolic and cancer diseases. In this mini-review, we present the state-of-the-art on the role of the Warburg effect, HIF-1α, and PKM2 in cancer, inflammation, and DM to encourage multidisciplinary research to advance fundamental understanding in biology and pathways implicated in the link between DM and cancer.
Collapse
|
22
|
Siggins RW, McTernan PM, Simon L, Souza-Smith FM, Molina PE. Mitochondrial Dysfunction: At the Nexus between Alcohol-Associated Immunometabolic Dysregulation and Tissue Injury. Int J Mol Sci 2023; 24:8650. [PMID: 37239997 PMCID: PMC10218577 DOI: 10.3390/ijms24108650] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Alcohol misuse, directly or indirectly as a result of its metabolism, negatively impacts most tissues, including four with critical roles in energy metabolism regulation: the liver, pancreas, adipose, and skeletal muscle. Mitochondria have long been studied for their biosynthetic roles, such as ATP synthesis and initiation of apoptosis. However, current research has provided evidence that mitochondria participate in myriad cellular processes, including immune activation, nutrient sensing in pancreatic β-cells, and skeletal muscle stem and progenitor cell differentiation. The literature indicates that alcohol impairs mitochondrial respiratory capacity, promoting reactive oxygen species (ROS) generation and disrupting mitochondrial dynamics, leading to dysfunctional mitochondria accumulation. As discussed in this review, mitochondrial dyshomeostasis emerges at a nexus between alcohol-disrupted cellular energy metabolism and tissue injury. Here, we highlight this link and focus on alcohol-mediated disruption of immunometabolism, which refers to two distinct, yet interrelated processes. Extrinsic immunometabolism involves processes whereby immune cells and their products influence cellular and/or tissue metabolism. Intrinsic immunometabolism describes immune cell fuel utilization and bioenergetics that affect intracellular processes. Alcohol-induced mitochondrial dysregulation negatively impacts immunometabolism in immune cells, contributing to tissue injury. This review will present the current state of literature, describing alcohol-mediated metabolic and immunometabolic dysregulation from a mitochondrial perspective.
Collapse
Affiliation(s)
- Robert W. Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Patrick M. McTernan
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Flavia M. Souza-Smith
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (R.W.S.); (P.M.M.); (L.S.); (F.M.S.-S.)
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
23
|
Quiroga J, Alarcón P, Ramírez MF, Manosalva C, Teuber S, Carretta MD, Burgos RA. d-lactate-induced ETosis in cattle polymorphonuclear leucocytes is dependent on the release of mitochondrial reactive oxygen species and the PI3K/Akt/HIF-1 and GSK-3β pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 145:104728. [PMID: 37164278 DOI: 10.1016/j.dci.2023.104728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
d-lactate is a metabolite originating from bacterial metabolism that accumulates as a result of dietary disturbances in cattle, leading to ruminal acidosis. d-lactate exerts functions as a metabolic signal inducing metabolic reprogramming and extracellular trap (ET) release in polymorphonuclear leucocytes (PMNs). We previously demonstrated that d-lactate induces metabolic reprogramming via hypoxia-induced factor 1 alpha (HIF-1α) stabilization in bovine fibroblast-like synoviocytes (FLSs). In the present study, the role of HIF-1 in ET formation induced by d-lactate was assessed. HIF-1α stabilization in PMNs was controlled by mitochondrial reactive oxygen species (mtROS) release. Furthermore, inhibition of mitochondrial complex I and scavenging of mtROS decreased d-lactate-triggered ETosis. d-lactate-enhanced HIF-1α accumulation was dependent on the PI3K/Akt pathway but independent of GSK-3β activity. Pharmacological blockade of the PI3K/Akt/HIF-1 and GSK-3β axes inhibited d-lactate-triggered ETosis and downregulated PDK1 and LDHA expression. However, only GSK-3β inhibition decreased the expression of glycogen metabolism enzymes and prevented the decline in glycogen stores induced by d-lactate exposure. The results of this study suggest that mtROS, PI3K/Akt/HIF-1 and GSK-3β axes regulate carbohydrate metabolism adaptations that support d-lactate-induced ET formation in cattle.
Collapse
Affiliation(s)
- John Quiroga
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María Fernanda Ramírez
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Carolina Manosalva
- Institute of Pharmacy, Faculty of Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Stefanie Teuber
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - María Daniella Carretta
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile
| | - Rafael Agustín Burgos
- Laboratory of Inflammation Pharmacology and Immunometabolism, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Sciences, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
24
|
Waguia Kontchou C, Häcker G. Role of mitochondrial outer membrane permeabilization during bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:83-127. [PMID: 36858657 DOI: 10.1016/bs.ircmb.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Beyond the initial 'powerhouse' view, mitochondria have numerous functions in their mammalian cell and contribute to many physiological processes, and many of these we understand only partially. The control of apoptosis by mitochondria is firmly established. Many questions remain however how this function is embedded into physiology, and how other signaling pathways regulate mitochondrial apoptosis; the interplay of bacteria with the mitochondrial apoptosis pathway is one such example. The outer mitochondrial membrane regulates both import into mitochondria and the release of intermembrane, and in some situations also matrix components from mitochondria, and these mitochondrial components can have signaling function in the cytosol. One function is the induction of apoptotic cell death. An exciting, more recently discovered function is the regulation of inflammation. Mitochondrial molecules, both proteins and nucleic acids, have inflammatory activity when released from mitochondria, an activity whose regulation is intertwined with the activation of apoptotic caspases. Bacterial infection can have more general effects on mitochondrial apoptosis-regulation, through effects on host transcription and other pathways, such as signals controlled by pattern recognition. Some specialized bacteria have products that more specifically regulate signaling to the outer mitochondrial membrane, and to apoptosis; both pro- and anti-apoptotic mechanisms have been reported. Among the intriguing recent findings in this area are signaling contributions of porins and the sub-lethal release of intermembrane constituents. We will here review the literature and place the new developments into the established context of mitochondrial signaling during the contact of bacterial pathogens with human cells.
Collapse
Affiliation(s)
- Collins Waguia Kontchou
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
25
|
English BC, Savage HP, Mahan SP, Diaz-Ochoa VE, Young BM, Abuaita BH, Sule G, Knight JS, O’Riordan MX, Bäumler AJ, Tsolis RM. The IRE1α-XBP1 Signaling Axis Promotes Glycolytic Reprogramming in Response to Inflammatory Stimuli. mBio 2023; 14:e0306822. [PMID: 36475773 PMCID: PMC9973330 DOI: 10.1128/mbio.03068-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 12/14/2022] Open
Abstract
Immune cells must be able to adjust their metabolic programs to effectively carry out their effector functions. Here, we show that the endoplasmic reticulum (ER) stress sensor Inositol-requiring enzyme 1 alpha (IRE1α) and its downstream transcription factor X box binding protein 1 (XBP1) enhance the upregulation of glycolysis in classically activated macrophages (CAMs). The IRE1α-XBP1 signaling axis supports this glycolytic switch in macrophages when activated by lipopolysaccharide (LPS) stimulation or infection with the intracellular bacterial pathogen Brucella abortus. Importantly, these different inflammatory stimuli have distinct mechanisms of IRE1α activation; while Toll-like receptor 4 (TLR4) supports glycolysis under both conditions, TLR4 is required for activation of IRE1α in response to LPS treatment but not B. abortus infection. Though IRE1α and XBP1 are necessary for maximal induction of glycolysis in CAMs, activation of this pathway is not sufficient to increase the glycolytic rate of macrophages, indicating that the cellular context in which this pathway is activated ultimately dictates the cell's metabolic response and that IRE1α activation may be a way to fine-tune metabolic reprogramming. IMPORTANCE The immune system must be able to tailor its response to different types of pathogens in order to eliminate them and protect the host. When confronted with bacterial pathogens, macrophages, frontline defenders in the immune system, switch to a glycolysis-driven metabolism to carry out their antibacterial functions. Here, we show that IRE1α, a sensor of ER stress, and its downstream transcription factor XBP1 support glycolysis in macrophages during infection with Brucella abortus or challenge with Salmonella LPS. Interestingly, these stimuli activate IRE1α by independent mechanisms. While the IRE1α-XBP1 signaling axis promotes the glycolytic switch, activation of this pathway is not sufficient to increase glycolysis in macrophages. This study furthers our understanding of the pathways that drive macrophage immunometabolism and highlights a new role for IRE1α and XBP1 in innate immunity.
Collapse
Affiliation(s)
- Bevin C. English
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Hannah P. Savage
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Scott P. Mahan
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Vladimir E. Diaz-Ochoa
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Briana M. Young
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Basel H. Abuaita
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Gautam Sule
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jason S. Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mary X. O’Riordan
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| | - Renée M. Tsolis
- Department of Medical Microbiology and Immunology, University of California—Davis, Davis, California, USA
| |
Collapse
|
26
|
Chen Z, Han F, Du Y, Shi H, Zhou W. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:70. [PMID: 36797231 PMCID: PMC9935926 DOI: 10.1038/s41392-023-01332-8] [Citation(s) in RCA: 188] [Impact Index Per Article: 188.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/20/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Having a hypoxic microenvironment is a common and salient feature of most solid tumors. Hypoxia has a profound effect on the biological behavior and malignant phenotype of cancer cells, mediates the effects of cancer chemotherapy, radiotherapy, and immunotherapy through complex mechanisms, and is closely associated with poor prognosis in various cancer patients. Accumulating studies have demonstrated that through normalization of the tumor vasculature, nanoparticle carriers and biocarriers can effectively increase the oxygen concentration in the tumor microenvironment, improve drug delivery and the efficacy of radiotherapy. They also increase infiltration of innate and adaptive anti-tumor immune cells to enhance the efficacy of immunotherapy. Furthermore, drugs targeting key genes associated with hypoxia, including hypoxia tracers, hypoxia-activated prodrugs, and drugs targeting hypoxia-inducible factors and downstream targets, can be used for visualization and quantitative analysis of tumor hypoxia and antitumor activity. However, the relationship between hypoxia and cancer is an area of research that requires further exploration. Here, we investigated the potential factors in the development of hypoxia in cancer, changes in signaling pathways that occur in cancer cells to adapt to hypoxic environments, the mechanisms of hypoxia-induced cancer immune tolerance, chemotherapeutic tolerance, and enhanced radiation tolerance, as well as the insights and applications of hypoxia in cancer therapy.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fangfang Han
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China.,The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yan Du
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Huaqing Shi
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China
| | - Wence Zhou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, China. .,Lanzhou University Sencond Hospital, Lanzhou, Gansu, China.
| |
Collapse
|
27
|
Hashimoto Y, Tsuzuki-Nakao T, Kida N, Matsuo Y, Maruyama T, Okada H, Hirota K. Inflammatory Cytokine-Induced HIF-1 Activation Promotes Epithelial-Mesenchymal Transition in Endometrial Epithelial Cells. Biomedicines 2023; 11:biomedicines11010210. [PMID: 36672719 PMCID: PMC9855875 DOI: 10.3390/biomedicines11010210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
The endometrium undergoes repeated proliferation and shedding during the menstrual cycle. Significant changes to this environment include fluctuations in the partial pressure of oxygen, exposure to a high-cytokine environment associated with intrauterine infection, and inflammation. Chronic endometritis is a condition wherein mild inflammation persists in the endometrium and is one of the causes of implantation failure and miscarriage in early pregnancy. It is thought that the invasion of embryos into the endometrium requires epithelial-mesenchymal transition (EMT)-associated changes in the endometrial epithelium. However, the effects of inflammation on the endometrium remain poorly understood. In this study, we investigated the effects of the intrauterine oxygen environment, hypoxia-inducible factor (HIF), and inflammation on the differentiation and function of endometrial epithelial cells. We elucidated the ways in which inflammatory cytokines affect HIF activity and EMT in an immortalized cell line (EM-E6/E7/TERT) derived from endometrial epithelium. Pro-inflammatory cytokines caused significant accumulation of HIF-1α protein, increased HIF-1α mRNA levels, and enhanced hypoxia-induced accumulation of HIF-1α protein. The combined effect of inflammatory cytokines and hypoxia increased the expression of EMT-inducing factors and upregulated cell migration. Our findings indicate that pro-inflammatory factors, including cytokines and LPS, work synergistically with hypoxia to activate HIF-1 and promote EMT in endometrial epithelial cells.
Collapse
Affiliation(s)
- Yoshiko Hashimoto
- Department of Obstetrics and Gynecology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1191, Japan
| | - Tomoko Tsuzuki-Nakao
- Department of Obstetrics and Gynecology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1191, Japan
| | - Naoko Kida
- Department of Obstetrics and Gynecology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1191, Japan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Hidetaka Okada
- Department of Obstetrics and Gynecology, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1191, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan
- Correspondence: ; Tel.: +81-72-804-0101
| |
Collapse
|
28
|
Macrophages and Intervertebral Disc Degeneration. Int J Mol Sci 2023; 24:ijms24021367. [PMID: 36674887 PMCID: PMC9863885 DOI: 10.3390/ijms24021367] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
The intervertebral disc (IVD) aids in motion and acts to absorb energy transmitted to the spine. With little inherent regenerative capacity, degeneration of the intervertebral disc results in intervertebral disc disease, which contributes to low back pain and significant disability in many individuals. Increasing evidence suggests that IVD degeneration is a disease of the whole joint that is associated with significant inflammation. Moreover, studies show elevated macrophage accumulation within the IVD with increasing levels of disease severity; however, we still need to understand the roles, be they causative or consequential, of macrophages during the degenerative process. In this narrative review, we discuss hallmarks of IVD degeneration, showcase evidence of macrophage involvement during disc degeneration, and explore burgeoning research aimed at understanding the molecular pathways regulating macrophage functions during intervertebral disc degeneration.
Collapse
|
29
|
Gupta S, Sarangi PP. Inflammation driven metabolic regulation and adaptation in macrophages. Clin Immunol 2023; 246:109216. [PMID: 36572212 DOI: 10.1016/j.clim.2022.109216] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/01/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
Macrophages are a diverse population of phagocytic immune cells involved in the host defense mechanisms and regulation of homeostasis. Usually, macrophages maintain healthy functioning at the cellular level, but external perturbation in their balanced functions can lead to acute and chronic disease conditions. By sensing the cues from the tissue microenvironment, these phagocytes adopt a plethora of phenotypes, such as inflammatory or M1 to anti-inflammatory (immunosuppressive) or M2 subtypes, to fulfill their spectral range of functions. The existing evidence in the literature supports that in macrophages, regulation of metabolic switches and metabolic adaptations are associated with their functional behaviors under various physiological and pathological conditions. Since these macrophages play a crucial role in many disorders, therefore it is necessary to understand their heterogeneity and metabolic reprogramming. Consequently, these macrophages have also emerged as a promising target for diseases in which their role is crucial in driving the disease pathology and outcome (e.g., Cancers). In this review, we discuss the recent findings that link many metabolites with macrophage functions and highlight how this metabolic reprogramming can improve our understanding of cellular malfunction in the macrophages during inflammatory disorders. A systematic analysis of the interconnecting crosstalk between metabolic pathways with macrophages should inform the selection of immunomodulatory therapies for inflammatory diseases.
Collapse
Affiliation(s)
- Saloni Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
30
|
Dzhalilova DS, Kosyreva AM, Tsvetkov IS, Zolotova NA, Sentyabreva AV, Makarova OV. Morphofunctional Changes in the Thymus in Prepubertal Male Wistar Rats in LPS-Induced Systemic Inflammatory Response in Relation to Hypoxia Tolerance. Bull Exp Biol Med 2023; 174:385-390. [PMID: 36723748 DOI: 10.1007/s10517-023-05713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 02/02/2023]
Abstract
The dynamics of morphofunctional changes in the thymus during the LPS-induced systemic inflammatory response was assessed in prepubertal male Wistar rats in relationship with the resistance to hypoxia. The systemic inflammatory response was modeled by intraperitoneal administration of E. coli O26:B6 LPS. In histological sections of the thymus, the relative number of thymic bodies and proliferative activity of cells were evaluated. The relative number of CD3+CD4+, CD3+CD8+, and CD4+CD8+ cells in the thymus was determined by flow cytometry. The content of HIF-1α and endotoxin was determined in the blood serum. The expression level of Nfkb mRNA was assessed in the liver. The most pronounced changes in the indicators of the functional state of the thymus were detected 3 and 6 h after LPS administration following the increase in the content of HIF-1α and endotoxin in blood serum and Nfkb mRNA expression in the liver. In the thymus, a decrease in the number of thymic bodies consisting of 3-5 epithelial cells and an increase in the number of bodies consisting of 5 or more cells was observed. In 24 h after LPS administration, the relative number of CD3+CD4+ and CD3+CD8+ cells in the thymus decreased. At the same time, the number of Ki-67+ cells in the subcapsular zone of the thymus increased 6 and 24 h after LPS administration. These data should be taken into account in the development of approaches to the treatment of infectious and inflammatory diseases in prepubertal children.
Collapse
Affiliation(s)
- D Sh Dzhalilova
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky National Research Centre of Surgery, Moscow, Russia.
| | - A M Kosyreva
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - I S Tsvetkov
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - N A Zolotova
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - A V Sentyabreva
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - O V Makarova
- A. P. Avtsyn Research Institute of Human Morphology, B. V. Petrovsky National Research Centre of Surgery, Moscow, Russia
| |
Collapse
|
31
|
Zhang Y, Shen W, Ding J, Gao X, Wu X, Zhu J. Comparative Transcriptome Analysis of Head Kidney of Aeromonas hydrophila-infected Hypoxia-tolerant and Normal Large Yellow Croaker. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1039-1054. [PMID: 36129638 DOI: 10.1007/s10126-022-10158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The large yellow croaker (Larimichthys crocea) is one of the most economically important marine fish on the southeast coast of China and much of its yield is usually lost by hypoxia. To address this problem and lay a foundation for culturing a new strain of large yellow croaker with hypoxia tolerance, our research group screened a hypoxia-tolerant population of L. crocea. Surprisingly, we also found that hypoxia-tolerant population exhibited higher survival when infected with pathogens compared to the normal population during the farming operation. In order to understand the mechanism underlying the higher survival rate of the hypoxia-tolerant population and enrich the head kidney immune mechanism of L. crocea infected with pathogens, we compared and analyzed the head kidney transcriptome of the hypoxia-tolerant and normal individuals under Aeromonas hydrophila infection. We obtained 159.68 GB high-quality reads, of which more than 87.61% were successfully localized to the reference genome of L. crocea. KEGG analysis revealed differentially expressed genes in the signaling pathways involving immunity, cell growth and death, transport and catabolism, and metabolism. Among these, the toll-like receptor signaling pathway, Nod-like receptor signaling pathway, cytokine-cytokine receptor interaction, phagosome, apoptosis, and OXPHOS pathways were enriched in both groups after infection compared to before, and were enriched in infected tolerant individuals compared to normal individuals. In addition, we found that the expression of hif1α and its downstream genes were higher in the hypoxia-sensitive group of fish than in the normal group. In conclusion, our results showed some signaling pathways and hub genes, which may participate in A. hydrophila defense in the head kidney of two populations, and may contribute to the higher survival rate in the hypoxia-tolerant population. Overall, these findings increase our understanding of the defense mechanism within the head kidney of L. crocea under A. hydrophila infection, and suggest a preliminary hypothesis for why hypoxia-tolerant individuals may exhibit a higher survival rates after infection. Our study provides scientific evidence for the breeding of a new hypoxia-tolerant strain of L. crocea for aquaculture.
Collapse
Affiliation(s)
- Yibo Zhang
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Weiliang Shen
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China.
| | - Jie Ding
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Xinming Gao
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Xiongfei Wu
- Zhejiang Key Laboratory of Aquatic Germplasm Resources, Ningbo Academy of Oceanology and Fishery, Ningbo, Zhejiang, China
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, College of Marine Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
32
|
da Silva-Ferreira S, Duarte-Oliveira C, Antunes D, Barbosa-Matos C, Mendes-Frias A, Torrado E, Costa S, Silvestre R, Cunha C, Carvalho A. Hypoxia inducible-factor 1 alpha regulates neutrophil recruitment during fungal-elicited granulomatous inflammation. Front Cell Infect Microbiol 2022; 12:1005839. [PMID: 36275017 PMCID: PMC9582458 DOI: 10.3389/fcimb.2022.1005839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic pulmonary aspergillosis (CPA) is a devastating disease with increasing prevalence worldwide. The characteristic granulomatous-like inflammation poses as the major setback to effective antifungal therapies by limiting drug access to fungi. These inflammatory lung structures are reported to be severely hypoxic; nevertheless, the underlying mechanisms whereby these processes contribute to fungal persistence remain largely unknown. Hypoxia-inducible factor 1 alpha (HIF-1α), besides being the major cellular response regulator to hypoxia, is a known central immune modulator. Here, we used a model of Aspergillus fumigatus airway infection in myeloid-restricted HIF-1α knock-out (mHif1α-/-) mice to replicate the complex structures resembling fungal granulomas and evaluate the contribution of HIF-1α to antifungal immunity and disease development. We found that fungal-elicited granulomas in mHif1α-/- mice had significantly smaller areas, along with extensive hyphal growth and increased lung fungal burden. This phenotype was associated with defective neutrophil recruitment and an increased neutrophil death, therefore highlighting a central role for HIF-1α-mediated regulation of neutrophil function in the pathogenesis of chronic fungal infection. These results hold the promise of an improved capacity to manage the progression of chronic fungal disease and open new avenues for additional therapeutic targets and niches of intervention.
Collapse
Affiliation(s)
- Sara da Silva-Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Cláudio Duarte-Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Daniela Antunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Catarina Barbosa-Matos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Ana Mendes-Frias
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Sandra Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s– PT Government Associate Laboratory, Guimarães/Braga, Portugal
- *Correspondence: Agostinho Carvalho,
| |
Collapse
|
33
|
High Glucose and Carbonyl Stress Impair HIF-1-Regulated Responses and the Control of Mycobacterium tuberculosis in Macrophages. mBio 2022; 13:e0108622. [PMID: 36121152 PMCID: PMC9600926 DOI: 10.1128/mbio.01086-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diabetes mellitus (DM) increases the risk of developing tuberculosis (TB), but the mechanisms behind diabetes-TB comorbidity are still undefined. Here, we studied the role of hypoxia-inducible factor-1 (HIF-1), a main regulator of metabolic and inflammatory responses, in the outcome of Mycobacterium tuberculosis infection of bone marrow-derived macrophages (BMM). We observed that M. tuberculosis infection of BMM increased the expression of HIF-1α and HIF-1-regulated genes. Treatment with the hypoxia mimetic deferoxamine (DFO) further increased levels of HIF-1-regulated immune and metabolic molecules and diminished the intracellular bacterial load in BMM and in the lungs of infected mice. The expression of HIF-1-regulated immunometabolic genes was reduced, and the intracellular M. tuberculosis levels were increased in BMM incubated with high-glucose levels or with methylglyoxal (MGO), a reactive carbonyl compound elevated in DM. In line with the in vitro findings, high M. tuberculosis levels and low HIF-1-regulated transcript levels were found in the lungs from hyperglycemic Leprdb/db compared with wild-type mice. The increased intracellular M. tuberculosis growth and the reduced expression of HIF-1-regulated metabolic and inflammatory genes in BMM incubated with MGO or high glucose were reverted by additional treatment with DFO. Hif1a-deficient BMM showed ablated responses of immunometabolic transcripts after mycobacterial infection at normal or high-glucose levels. We propose that HIF-1 may be targeted for the control of M. tuberculosis during DM. IMPORTANCE People living with diabetes who are also infected with M. tuberculosis are more likely to develop tuberculosis disease (TB). Why diabetic patients have an increased risk for developing TB is not well understood. Macrophages, the cell niche for M. tuberculosis, can express microbicidal mechanisms or be permissive to mycobacterial persistence and growth. Here, we showed that high glucose and carbonyl stress, which mediate diabetes pathogenesis, impair the control of intracellular M. tuberculosis in macrophages. Infection with M. tuberculosis stimulated the expression of genes regulated by the transcription factor HIF-1, a major controller of the responses to hypoxia, resulting in macrophage activation. High glucose and carbonyl compounds inhibited HIF-1 responses by macrophages. Mycobacterial control in the presence of glucose or carbonyl stress was restored by DFO, a compound that stabilizes HIF-1. We propose that HIF-1 can be targeted to reduce the risk of developing TB in people with diabetes.
Collapse
|
34
|
Exploring the Expression of Pro-Inflammatory and Hypoxia-Related MicroRNA-20a, MicroRNA-30e, and MicroRNA-93 in Periodontitis and Gingival Mesenchymal Stem Cells under Hypoxia. Int J Mol Sci 2022; 23:ijms231810310. [PMID: 36142220 PMCID: PMC9499533 DOI: 10.3390/ijms231810310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/21/2022] [Accepted: 08/28/2022] [Indexed: 11/22/2022] Open
Abstract
Hypoxia associated with inflammation are common hallmarks observed in several diseases, and it plays a major role in the expression of non-coding RNAs, including microRNAs (miRNAs). In addition, the miRNA target genes for hypoxia-inducible factor-1α (HIF-1α) and nuclear factor of activated T cells-5 (NFAT5) modulate the adaptation to hypoxia. The objective of the present study was to explore hypoxia-related miRNA target genes for HIF-1α and NFAT5, as well as miRNA-20a, miRNA-30e, and miRNA-93 expression in periodontitis versus healthy gingival tissues and gingival mesenchymal stem cells (GMSCs) cultured under hypoxic conditions. Thus, a case-control study was conducted, including healthy and periodontitis subjects. Clinical data and gingival tissue biopsies were collected to analyze the expression of miRNA-20a, miRNA-30e, miRNA-93, HIF-1α, and NFAT5 by qRT-PCR. Subsequently, GMSCs were isolated and cultured under hypoxic conditions (1% O2) to explore the expression of the HIF-1α, NFAT5, and miRNAs. The results showed a significant upregulation of miRNA-20a (p = 0.028), miRNA-30e (p = 0.035), and miRNA-93 (p = 0.026) in periodontitis tissues compared to healthy gingival biopsies. NFAT5 mRNA was downregulated in periodontitis tissues (p = 0.037), but HIF-1α was not affected (p = 0.60). Interestingly, hypoxic GMSCs upregulated the expression of miRNA-20a and HIF-1α, but they downregulated miRNA-93e. In addition, NFAT5 mRNA expression was not affected in hypoxic GMSCs. In conclusion, in periodontitis patients, the expression of miRNA-20a, miRNA-30e, and miRNA-93 increased, but a decreased expression of NFAT5 mRNA was detected. In addition, GMSCs under hypoxic conditions upregulate the HIF-1α and increase miRNA-20a (p = 0.049) expression. This study explores the role of inflammatory and hypoxia-related miRNAs and their target genes in periodontitis and GMSCs. It is crucial to determine the potential therapeutic target of these miRNAs and hypoxia during the periodontal immune–inflammatory response, which should be analyzed in greater depth in future studies.
Collapse
|
35
|
Morris G, Gevezova M, Sarafian V, Maes M. Redox regulation of the immune response. Cell Mol Immunol 2022; 19:1079-1101. [PMID: 36056148 PMCID: PMC9508259 DOI: 10.1038/s41423-022-00902-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
AbstractThe immune-inflammatory response is associated with increased nitro-oxidative stress. The aim of this mechanistic review is to examine: (a) the role of redox-sensitive transcription factors and enzymes, ROS/RNS production, and the activity of cellular antioxidants in the activation and performance of macrophages, dendritic cells, neutrophils, T-cells, B-cells, and natural killer cells; (b) the involvement of high-density lipoprotein (HDL), apolipoprotein A1 (ApoA1), paraoxonase-1 (PON1), and oxidized phospholipids in regulating the immune response; and (c) the detrimental effects of hypernitrosylation and chronic nitro-oxidative stress on the immune response. The redox changes during immune-inflammatory responses are orchestrated by the actions of nuclear factor-κB, HIF1α, the mechanistic target of rapamycin, the phosphatidylinositol 3-kinase/protein kinase B signaling pathway, mitogen-activated protein kinases, 5' AMP-activated protein kinase, and peroxisome proliferator-activated receptor. The performance and survival of individual immune cells is under redox control and depends on intracellular and extracellular levels of ROS/RNS. They are heavily influenced by cellular antioxidants including the glutathione and thioredoxin systems, nuclear factor erythroid 2-related factor 2, and the HDL/ApoA1/PON1 complex. Chronic nitro-oxidative stress and hypernitrosylation inhibit the activity of those antioxidant systems, the tricarboxylic acid cycle, mitochondrial functions, and the metabolism of immune cells. In conclusion, redox-associated mechanisms modulate metabolic reprogramming of immune cells, macrophage and T helper cell polarization, phagocytosis, production of pro- versus anti-inflammatory cytokines, immune training and tolerance, chemotaxis, pathogen sensing, antiviral and antibacterial effects, Toll-like receptor activity, and endotoxin tolerance.
Collapse
|
36
|
Li S, Ma R, Hu XY, Li HB, Geng WC, Kong X, Zhang C, Guo DS. Drug in Drug: A Host-Guest Formulation of Azocalixarene with Hydroxychloroquine for Synergistic Anti-Inflammation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203765. [PMID: 35680644 DOI: 10.1002/adma.202203765] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Macrocyclic delivery and therapeutics are two significant topics in supramolecular biomedicine. The functional integration of these topics would open new avenues for treating diseases synergistically. However, these two individual topics have only been occasionally merged, probably because of the lack of functionalized design of macrocyclic host and the lack of efficient recognition between host and guest drugs. Herein, a "drug-in-drug" strategy is proposed, in which an active drug is encapsulated by a macrocycle possessing therapeutic activity to form a multifunctional supramolecular active pharmaceutical ingredient. As a proof-of-concept, a complex of hydroxychloroquine (HCQ) with sulfonated azocalix[4]arene (HCQ@SAC4A) is prepared to treat rheumatoid arthritis (RA) in a combined fashion. SAC4A is a therapeutic agent that exhibits scavenging capacity for reactive oxygen species and exerts an anti-inflammatory effect. It is also a hypoxia-responsive carrier that can deliver HCQ directly to the inflammatory articular cavity. Consequently, HCQ@SAC4A achieves the synergistic anti-inflammatory effect on both inflamed RAW 264.7 cells and RA rats. This effect is attributed to the temporal and spatial consistency of the two active ingredients of the complex. As a new paradigm for combinational therapy, the drug-in-drug strategy advances in easy preparation, mix-and-match combination, and precise ratiometric control.
Collapse
Affiliation(s)
- Shihui Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Rong Ma
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Wen-Chao Geng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xianglei Kong
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Chao Zhang
- Orthopedics Department, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300380, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
37
|
Cluff E, Magdaleno CC, Fernandez E, House T, Swaminathan S, Varadaraj A, Rajasekaran N. Hypoxia-inducible factor-1 alpha expression is induced by IL-2 via the PI3K/mTOR pathway in hypoxic NK cells and supports effector functions in NKL cells and ex vivo expanded NK cells. Cancer Immunol Immunother 2022; 71:1989-2005. [PMID: 34999917 PMCID: PMC9294031 DOI: 10.1007/s00262-021-03126-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells are cytotoxic innate lymphocytes that are specialized to kill tumor cells. NK cells are responsive to the primary cytokine IL-2 in the tumor microenvironment (TME), to activate its effector functions against tumors. Despite their inherent ability to kill tumor cells, dysfunctional NK cells observed within advanced solid tumors are associated with poor patient survival. Hypoxia in the TME is a major contributor to immune evasion in solid tumors that could contribute to impaired NK cell function. HIF-1α is a nodal regulator of hypoxia in driving the adaptive cellular responses to changes in oxygen concentrations. Whether HIF-1α is expressed in hypoxic NK cells in the context of IL-2 and whether its expression regulates NK cell effector function are unclear. Here, we report that freshly isolated NK cells from human peripheral blood in hypoxia could not stabilize HIF-1α protein coincident with impaired anti-tumor cytotoxicity. However, ex vivo expansion of these cells restored HIF-1α levels in hypoxia to promote antitumor cytotoxic functions. Similarly, the human NK cell line NKL expressed HIF-1α upon IL-2 stimulation in hypoxia and exhibited improved anti-tumor cytotoxicity and IFN-γ secretion. We found that ex vivo expanded human NK cells and NKL cells required the concerted activation of PI3K/mTOR pathway initiated by IL-2 signaling in combination with hypoxia for HIF-1α stabilization. These findings highlight that HIF-1α stabilization in hypoxia maximizes NK cell effector function and raises the prospect of NK cells as ideal therapeutic candidates for solid tumors.
Collapse
Affiliation(s)
- Emily Cluff
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA
| | - Carina C Magdaleno
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA
| | - Emyly Fernandez
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA
| | - Trenton House
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Archana Varadaraj
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA
| | - Narendiran Rajasekaran
- Department of Chemistry and Biochemistry, Northern Arizona University, 700 S Osbourne Drive, Flagstaff, AZ, 86004, USA.
| |
Collapse
|
38
|
Ferrer JLM, Garcia RL. Antioxidant Systems, lncRNAs, and Tunneling Nanotubes in Cell Death Rescue from Cigarette Smoke Exposure. Cells 2022; 11:2277. [PMID: 35892574 PMCID: PMC9330437 DOI: 10.3390/cells11152277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Cigarette smoke is a rich source of carcinogens and reactive oxygen species (ROS) that can damage macromolecules including DNA. Repair systems can restore DNA integrity. Depending on the duration or intensity of stress signals, cells may utilize various survival and adaptive mechanisms. ROS levels are kept in check through redundant detoxification processes controlled largely by antioxidant systems. This review covers and expands on the mechanisms available to cigarette smoke-exposed cancer cells for restoring the redox balance. These include multiple layers of transcriptional control, each of which is posited to be activated upon reaching a particular stress threshold, among them the NRF2 pathway, the AP-1 and NF-kB pathways, and, finally, TP53, which triggers apoptosis if extreme toxicity is reached. The review also discusses long noncoding RNAs, which have been implicated recently in regulating oxidative stress-with roles in ROS detoxification, the inflammatory response, oxidative stress-induced apoptosis, and mitochondrial oxidative phosphorylation. Lastly, the emerging roles of tunneling nanotubes in providing additional mechanisms for metabolic rescue and the regulation of redox imbalance are considered, further highlighting the expanded redox reset arsenal available to cells.
Collapse
Affiliation(s)
| | - Reynaldo L. Garcia
- Disease Molecular Biology and Epigenetics Laboratory, National Institute of Molecular Biology and Biotechnology, University of the Philippines Diliman, Quezon City 1101, Philippines;
| |
Collapse
|
39
|
Zevini A, Palermo E, Di Carlo D, Alexandridi M, Rinaldo S, Paone A, Cutruzzola F, Etna MP, Coccia EM, Olagnier D, Hiscott J. Inhibition of Glycolysis Impairs Retinoic Acid-Inducible Gene I–Mediated Antiviral Responses in Primary Human Dendritic Cells. Front Cell Infect Microbiol 2022; 12:910864. [PMID: 35923800 PMCID: PMC9339606 DOI: 10.3389/fcimb.2022.910864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/17/2022] [Indexed: 12/25/2022] Open
Abstract
Dendritic cells (DCs) are important mediators of the induction and regulation of adaptive immune responses following microbial infection and inflammation. Sensing environmental danger signals including viruses, microbial products, or inflammatory stimuli by DCs leads to the rapid transition from a resting state to an activated mature state. DC maturation involves enhanced capturing and processing of antigens for presentation by major histocompatibility complex (MHC) class I and class II, upregulation of chemokines and their receptors, cytokines and costimulatory molecules, and migration to lymphoid tissues where they prime naive T cells. Orchestrating a cellular response to environmental threats requires a high bioenergetic cost that accompanies the metabolic reprogramming of DCs during activation. We previously demonstrated that DCs undergo a striking functional transition after stimulation of the retinoic acid-inducible gene I (RIG-I) pathway with a synthetic 5′ triphosphate containing RNA (termed M8), consisting of the upregulation of interferon (IFN)–stimulated antiviral genes, increased DC phagocytosis, activation of a proinflammatory phenotype, and induction of markers associated with immunogenic cell death. In the present study, we set out to determine the metabolic changes associated with RIG-I stimulation by M8. The rate of glycolysis in primary human DCs was increased in response to RIG-I activation, and glycolytic reprogramming was an essential requirement for DC activation. Pharmacological inhibition of glycolysis in monocyte-derived dendritic cells (MoDCs) impaired type I IFN induction and signaling by disrupting the TBK1-IRF3-STAT1 axis, thereby countering the antiviral activity induced by M8. Functionally, the impaired IFN response resulted in enhanced viral replication of dengue, coronavirus 229E, and Coxsackie B5.
Collapse
Affiliation(s)
- Alessandra Zevini
- Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Enrico Palermo
- Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
- *Correspondence: John Hiscott, ; Enrico Palermo,
| | - Daniele Di Carlo
- Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Magdalini Alexandridi
- Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Serena Rinaldo
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Alessio Paone
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Francesca Cutruzzola
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Marilena P. Etna
- Department of Infectious Diseases, Istituto Superiore Sanità, Rome, Italy
| | - Eliana M. Coccia
- Department of Infectious Diseases, Istituto Superiore Sanità, Rome, Italy
| | - David Olagnier
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - John Hiscott
- Pasteur Laboratories, Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
- *Correspondence: John Hiscott, ; Enrico Palermo,
| |
Collapse
|
40
|
Hayek I, Szperlinski M, Lührmann A. Coxiella burnetii Affects HIF1α Accumulation and HIF1α Target Gene Expression. Front Cell Infect Microbiol 2022; 12:867689. [PMID: 35755850 PMCID: PMC9218251 DOI: 10.3389/fcimb.2022.867689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
HIF1α is an important transcription factor regulating not only cellular responses to hypoxia, but also anti-infective defense responses. We recently showed that HIF1α hampers replication of the obligate intracellular pathogen Coxiella burnetii which causes the zoonotic disease Q fever. Prior to development of chronic Q fever, it is assumed that the bacteria enter a persistent state. As HIF1α and/or hypoxia might be involved in the induction of C. burnetii persistence, we analyzed the role of HIF1α and hypoxia in the interaction of macrophages with C. burnetii to understand how the bacteria manipulate HIF1α stability and activity. We demonstrate that a C. burnetii-infection initially induces HIF1α stabilization, which decreases then over the course of an infection. This reduction depends on bacterial viability and a functional type IV secretion system (T4SS). While neither the responsible T4SS effector protein(s) nor the molecular mechanism leading to this partial HIF1α destabilization have been identified, our results demonstrate that C. burnetii influences the expression of HIF1α target genes in multiple ways. Therefore, a C. burnetii infection promotes HIF1α-mediated upregulation of several metabolic target genes; affects apoptosis-regulators towards a more pro-apoptotic signature; and under hypoxic conditions, shifts the ratio of the inflammatory genes analyzed towards a pro-inflammatory profile. Taken together, C. burnetii modulates HIF1α in a still elusive manner and alters the expression of multiple HIF1α target genes.
Collapse
Affiliation(s)
- Inaya Hayek
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Manuela Szperlinski
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
41
|
TLR4 Agonist and Hypoxia Synergistically Promote the Formation of TLR4/NF-κB/HIF-1α Loop in Human Epithelial Ovarian Cancer. Anal Cell Pathol (Amst) 2022; 2022:4201262. [PMID: 35464826 PMCID: PMC9023210 DOI: 10.1155/2022/4201262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/11/2022] [Accepted: 03/15/2022] [Indexed: 12/04/2022] Open
Abstract
Inflammation and hypoxia are involved in numerous cancer progressions. Reportedly, the toll-like receptor 4 (TLR4)/nuclear factor kappa B (NF-κB) pathway and hypoxia-inducible factor-1α (HIF-1α) are activated and closely related to the chemoresistance and poor prognosis of epithelial ovarian cancer (EOC). However, the potential correlation between TLR4/NF-κB and HIF-1α remains largely unknown in EOC. In our study, the possible positive correlation among TLR4, NF-κB, and HIF-1α proteins was investigated in the EOC tissues. Our in vitro results demonstrated that LPS can induce and activate HIF-1α through the TLR4/NF-κB signaling in A2780 and SKOV3 cells. Moreover, hypoxia-induced TLR4 expression and the downstream transcriptional activity of NF-κB were HIF-1α-dependent. The cross talk between the TLR4/NF-κB signaling pathway and HIF-1α was also confirmed in the nude mice xenograft model. Therefore, we first proposed the formation of a TLR4/NF-κB/HIF-1α loop in EOC. The positive feedback loop enhanced the susceptibility and responsiveness to inflammation and hypoxia, which synergistically promote the initiation and progression of EOC. The novel mechanism may act as a future therapeutic candidate for the treatment of EOC.
Collapse
|
42
|
Eades L, Drozd M, Cubbon RM. Hypoxia signalling in the regulation of innate immune training. Biochem Soc Trans 2022; 50:413-422. [PMID: 35015075 PMCID: PMC9022967 DOI: 10.1042/bst20210857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022]
Abstract
Innate immune function is shaped by prior exposures in a phenomenon often referred to as 'memory' or 'training'. Diverse stimuli, ranging from pathogen-associated molecules to atherogenic lipoproteins, induce long-lasting training, impacting on future responses, even to distinct stimuli. It is now recognised that epigenetic modifications in innate immune cells, and their progenitors, underpin these sustained behavioural changes, and that rewired cellular metabolism plays a key role in facilitating such epigenetic marks. Oxygen is central to cellular metabolism, and cells exposed to hypoxia undergo profound metabolic rewiring. A central effector of these responses are the hypoxia inducible factors (or HIFs), which drive transcriptional programmes aiming to adapt cellular homeostasis, such as by increasing glycolysis. These metabolic shifts indirectly promote post-translational modification of the DNA-binding histone proteins, and also of DNA itself, which are retained even after cellular oxygen tension and metabolism normalise, chronically altering DNA accessibility and utilisation. Notably, the activity of HIFs can be induced in some normoxic circumstances, indicating their broad importance to cell biology, irrespective of oxygen tension. Some HIFs are implicated in innate immune training and hypoxia is present in many disease states, yet many questions remain about the association between hypoxia and training, both in health and disease. Moreover, it is now appreciated that cellular responses to hypoxia are mediated by non-HIF pathways, suggesting that other mechanisms of training may be possible. This review sets out to define what is already known about the topic, address gaps in our knowledge, and provide recommendations for future research.
Collapse
Affiliation(s)
- Lauren Eades
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Clarendon Way, Leeds LS2 9JT, U.K
| | - Michael Drozd
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Clarendon Way, Leeds LS2 9JT, U.K
| | - Richard M. Cubbon
- Leeds Institute of Cardiovascular and Metabolic Medicine, The University of Leeds, Clarendon Way, Leeds LS2 9JT, U.K
| |
Collapse
|
43
|
Van Raemdonck K, Umar S, Palasiewicz K, Meyer A, Volin MV, Chang HJ, Al-Awqati M, Zomorrodi RK, Shahrara S. Metabolic reprogramming of macrophages instigates CCL21-induced arthritis. Immunol Cell Biol 2022; 100:127-135. [PMID: 34779007 PMCID: PMC8810694 DOI: 10.1111/imcb.12512] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 02/03/2023]
Abstract
This study was designed to delineate the functional significance of CCL21 in metabolic reprogramming in experimental arthritis and differentiated rheumatoid arthritis (RA) macrophages (MΦs). To characterize the influence of CCL21 on immunometabolism, its mechanism of action was elucidated by dysregulating glucose uptake in preclinical arthritis and RA MΦs. In CCL21 arthritic joints, the glycolytic intermediates hypoxia-inducible factor 1α (HIF1α), cMYC and GLUT1 were overexpressed compared with oxidative regulators estrogen-related receptor γ and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1)-α. Interestingly, 2-deoxy-D-glucose (2-DG) therapy mitigated CCL21-induced arthritis by restraining the number of joint F4/80+ iNOS+ MΦs without impacting F4/80+ Arginase+ MΦs. Similar to the preclinical findings, blockade of glycolysis negated CCL21-polarized CD14+ CD86+ GLUT+ MΦ frequency; however, CD14+ CD206+ GLUT+ MΦs were not implicated in this process. In CCL21-induced arthritis and differentiated RA MΦs, the inflammatory imprint was uniquely intercepted by 2-DG via interleukin-6 (IL-6) downregulation. Despite the more expansive inflammatory response of CCL21 in the arthritic joints relative to the differentiated RA MΦs, 2-DG was ineffective in joint tumor necrosis factor-α, IL-1β, CCL2 and CCL5 enrichment. By contrast, disruption of glycolysis markedly impaired CCL21-induced HIF1α and cMYC signaling in arthritic mice. Notably, in RA MΦs, glycolysis interception was directed toward dysregulating CCL21-enhanced HIF1α transcription. Nonetheless, in concurrence with the diminished IL-6 levels, CCL21 differentiation of CD14+ CD86+ GLUT1+ MΦs was reversed by glycolysis and HIIF1α inhibition. Moreover, in the CCL21 experimental arthritis or differentiated RA MΦs, the malfunctioning metabolic machinery was accompanied by impaired oxidative phosphorylation because of reduced PGC1α or peroxisome proliferator-activated receptor-γ expression. CCL21 reconfigures naïve myeloid cells into glycolytic RA CD14+ CD86+ GLUT+ IL-6high HIF1αhigh MΦs. Therefore, inhibiting the CCL21/CCR7 pathway may provide a promising therapeutic strategy.
Collapse
Affiliation(s)
- Katrien Van Raemdonck
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Anja Meyer
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL 60515, USA
| | - Huan J Chang
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Mina Al-Awqati
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
- Department of Medicine, Division of Rheumatology, The University of Illinois at Chicago, IL 60612, USA
| |
Collapse
|
44
|
Naler LB, Hsieh YP, Geng S, Zhou Z, Li L, Lu C. Epigenomic and transcriptomic analyses reveal differences between low-grade inflammation and severe exhaustion in LPS-challenged murine monocytes. Commun Biol 2022; 5:102. [PMID: 35091696 PMCID: PMC8799722 DOI: 10.1038/s42003-022-03035-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 01/05/2022] [Indexed: 12/28/2022] Open
Abstract
Emerging studies suggest that monocytes can be trained by bacterial endotoxin to adopt distinct memory states ranging from low-grade inflammation to immune exhaustion. While low-grade inflammation may contribute to the pathogenesis of chronic diseases, exhausted monocytes with pathogenic and immune-suppressive characteristics may underlie the pathogenesis of polymicrobial sepsis including COVID-19. However, detailed processes by which the dynamic adaption of monocytes occur remain poorly understood. Here we exposed murine bone-marrow derived monocytes to chronic lipopolysaccharide (LPS) stimulation at low-dose or high-dose, as well as a PBS control. The cells were profiled for genome-wide H3K27ac modification and gene expression. The gene expression of TRAM-deficient and IRAK-M-deficient monocytes with LPS exposure was also analyzed. We discover that low-grade inflammation preferentially utilizes the TRAM-dependent pathway of TLR4 signaling, and induces the expression of interferon response genes. In contrast, high dose LPS uniquely upregulates exhaustion signatures with metabolic and proliferative pathways. The extensive differences in the epigenomic landscape between low-dose and high-dose conditions suggest the importance of epigenetic regulations in driving differential responses. Our data provide potential targets for future mechanistic or therapeutic studies.
Collapse
Affiliation(s)
- Lynette B Naler
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Yuan-Pang Hsieh
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Zirui Zhou
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA.
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
45
|
Hypoxia-Inducible Factor Signaling in Inflammatory Lung Injury and Repair. Cells 2022; 11:cells11020183. [PMID: 35053299 PMCID: PMC8774273 DOI: 10.3390/cells11020183] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 01/27/2023] Open
Abstract
Inflammatory lung injury is characterized by lung endothelial cell (LEC) death, alveolar epithelial cell (AEC) death, LEC-LEC junction weakening, and leukocyte infiltration, which together disrupt nutrient and oxygen transport. Subsequently, lung vascular repair is characterized by LEC and AEC regeneration and LEC-LEC junction re-annealing, which restores nutrient and oxygen delivery to the injured tissue. Pulmonary hypoxia is a characteristic feature of several inflammatory lung conditions, including acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and severe coronavirus disease 2019 (COVID-19). The vascular response to hypoxia is controlled primarily by the hypoxia-inducible transcription factors (HIFs) 1 and 2. These transcription factors control the expression of a wide variety of target genes, which in turn mediate key pathophysiological processes including cell survival, differentiation, migration, and proliferation. HIF signaling in pulmonary cell types such as LECs and AECs, as well as infiltrating leukocytes, tightly regulates inflammatory lung injury and repair, in a manner that is dependent upon HIF isoform, cell type, and injury stimulus. The aim of this review is to describe the HIF-dependent regulation of inflammatory lung injury and vascular repair. The review will also discuss potential areas for future study and highlight putative targets for inflammatory lung conditions such as ALI/ARDS and severe COVID-19. In the development of HIF-targeted therapies to reduce inflammatory lung injury and/or enhance pulmonary vascular repair, it will be vital to consider HIF isoform- and cell-specificity, off-target side-effects, and the timing and delivery strategy of the therapeutic intervention.
Collapse
|
46
|
Timmons GA, Carroll RG, O'Siorain JR, Cervantes-Silva MP, Fagan LE, Cox SL, Palsson-McDermott E, Finlay DK, Vincent EE, Jones N, Curtis AM. The Circadian Clock Protein BMAL1 Acts as a Metabolic Sensor In Macrophages to Control the Production of Pro IL-1β. Front Immunol 2021; 12:700431. [PMID: 34858390 PMCID: PMC8630747 DOI: 10.3389/fimmu.2021.700431] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 10/11/2021] [Indexed: 01/15/2023] Open
Abstract
The transcription factor BMAL1 is a clock protein that generates daily or circadian rhythms in physiological functions including the inflammatory response of macrophages. Intracellular metabolic pathways direct the macrophage inflammatory response, however whether the clock is impacting intracellular metabolism to direct this response is unclear. Specific metabolic reprogramming of macrophages controls the production of the potent pro-inflammatory cytokine IL-1β. We now describe that the macrophage molecular clock, through Bmal1, regulates the uptake of glucose, its flux through glycolysis and the Krebs cycle, including the production of the metabolite succinate to drive Il-1β production. We further demonstrate that BMAL1 modulates the level and localisation of the glycolytic enzyme PKM2, which in turn activates STAT3 to further drive Il-1β mRNA expression. Overall, this work demonstrates that BMAL1 is a key metabolic sensor in macrophages, and its deficiency leads to a metabolic shift of enhanced glycolysis and mitochondrial respiration, leading to a heightened pro-inflammatory state. These data provide insight into the control of macrophage driven inflammation by the molecular clock, and the potential for time-based therapeutics against a range of chronic inflammatory diseases.
Collapse
Affiliation(s)
- George A Timmons
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Richard G Carroll
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James R O'Siorain
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Mariana P Cervantes-Silva
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Lauren E Fagan
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Shannon L Cox
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Eva Palsson-McDermott
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Emma E Vincent
- Medical Research Council (MRC) Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom.,Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Annie M Curtis
- School of Pharmacy and Biomolecular Sciences and Tissue Engineering Research Group, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
47
|
Ahmed D, Humphrey A, Roy D, Sheridan ME, Versey Z, Jaworski A, Edwards A, Donner J, Abizaid A, Willmore W, Kumar A, Golshani A, Cassol E. HIF-1α Regulation of Cytokine Production following TLR3 Engagement in Murine Bone Marrow-Derived Macrophages Is Dependent on Viral Nucleic Acid Length and Glucose Availability. THE JOURNAL OF IMMUNOLOGY 2021; 207:2813-2827. [PMID: 34740958 DOI: 10.4049/jimmunol.2001282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 09/16/2021] [Indexed: 12/24/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) is an important regulator of glucose metabolism and inflammatory cytokine production in innate immune responses. Viruses modulate HIF-1α to support viral replication and the survival of infected cells, but it is unclear if this transcription factor also plays an important role in regulating antiviral immune responses. In this study, we found that short and long dsRNA differentially engage TLR3, inducing distinct levels of proinflammatory cytokine production (TNF-α and IL-6) in bone marrow-derived macrophages from C57BL/6 mice. These responses are associated with differential accumulation of HIF-1α, which augments NF-κB activation. Unlike TLR4 responses, increased HIF-1α following TLR3 engagement is not associated with significant alterations in glycolytic activity and was more pronounced in low glucose conditions. We also show that the mechanisms supporting HIF-1α stabilization may differ following stimulation with short versus long dsRNA and that pyruvate kinase M2 and mitochondrial reactive oxygen species play a central role in these processes. Collectively, this work suggests that HIF-1α may fine-tune proinflammatory cytokine production during early antiviral immune responses, particularly when there is limited glucose availability or under other conditions of stress. Our findings also suggest we may be able to regulate the magnitude of proinflammatory cytokine production during antiviral responses by targeting proteins or molecules that contribute to HIF-1α stabilization.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Biology, Carleton University, Ottawa, Ontario, Canada.,Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Allan Humphrey
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Apoptosis Research Centre, The Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - David Roy
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | | | - Zoya Versey
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Allison Jaworski
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Alex Edwards
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - James Donner
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - William Willmore
- Institute of Biochemistry, Carleton University, Ottawa, Ontario, Canada
| | - Ashok Kumar
- Department of Pathology, The Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada; and.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada;
| |
Collapse
|
48
|
Restraint of Fumarate Accrual by HIF-1α Preserves miR-27a-Mediated Limitation of Interleukin 10 during Infection of Macrophages by Histoplasma capsulatum. mBio 2021; 12:e0271021. [PMID: 34749531 PMCID: PMC8576535 DOI: 10.1128/mbio.02710-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hypoxia-inducible factor 1α (HIF-1α) regulates the immunometabolic phenotype of macrophages, including the orchestration of inflammatory and antimicrobial processes. Macrophages deficient in HIF-1α produce excessive quantities of the anti-inflammatory cytokine interleukin 10 (IL-10) during infection with the intracellular fungal pathogen Histoplasma capsulatum (R. A. Fecher, M. C. Horwath, D. Friedrich, J. Rupp, G. S. Deepe, J Immunol 197:565–579, 2016, https://doi.org/10.4049/jimmunol.1600342). Thus, the macrophage fails to become activated in response to proinflammatory cytokines and remains the intracellular niche of the pathogen. Here, we identify the tricarboxylic acid (TCA) cycle metabolite fumarate as the driver of IL-10 during macrophage infection with H. capsulatum in the absence of HIF-1α. Accumulation of fumarate reduced expression of a HIF-1α-dependent microRNA (miRNA), miR-27a, known to mediate decay of Il10 mRNA. Inhibition of fumarate accrual in vivo limited IL-10 and fungal growth. Our data demonstrate the critical role of HIF-1α in shaping appropriate TCA cycle activity in response to infection and highlight the consequences of a dysregulated immunometabolic response.
Collapse
|
49
|
Lantz C, Becker A, Thorp EB. Can polarization of macrophage metabolism enhance cardiac regeneration? J Mol Cell Cardiol 2021; 160:87-96. [PMID: 34293342 PMCID: PMC8571050 DOI: 10.1016/j.yjmcc.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
While largely appreciated for their antimicrobial and repair functions, macrophages have emerged as indispensable for the development, homeostasis, and regeneration of tissue, including regeneration of the neonatal heart. Upon activation, mammalian neonatal macrophages express and secrete factors that coordinate angiogenesis, resolution of inflammation, and ultimately cardiomyocyte proliferation. This is contrary to adult macrophages in the adult heart, which are incapable of inducing significant levels of cardiac regeneration. The underlying mechanisms by which pro-regenerative macrophages are activated and regulated remain vague. A timely hypothesis is that macrophage metabolism contributes to this proliferative and regenerative potential. This is because we now appreciate the significant contributions of metabolites to immune cell programming and function, beyond solely bioenergetics. After birth, the metabolic milieu of the neonate is subject to significant alterations in oxygenation and nutrient supply, which will affect how metabolic substrates are catabolized. In this context, we discuss potential roles for select macrophage metabolic pathways during cardiac regeneration.
Collapse
Affiliation(s)
- Connor Lantz
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Amanda Becker
- Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; The Division of Critical Care Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Edward B Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA; The Heart Center, Stanley Manne Children's Research Institute, Chicago, IL, USA.
| |
Collapse
|
50
|
Pescador N, Francisco V, Vázquez P, Esquinas EM, González-Páramos C, Valdecantos MP, García-Martínez I, Urrutia AA, Ruiz L, Escalona-Garrido C, Foretz M, Viollet B, Fernández-Moreno MÁ, Calle-Pascual AL, Obregón MJ, Aragonés J, Valverde ÁM. Metformin reduces macrophage HIF1α-dependent proinflammatory signaling to restore brown adipocyte function in vitro. Redox Biol 2021; 48:102171. [PMID: 34736121 PMCID: PMC8577482 DOI: 10.1016/j.redox.2021.102171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/25/2022] Open
Abstract
Therapeutic potential of metformin in obese/diabetic patients has been associated to its ability to combat insulin resistance. However, it remains largely unknown the signaling pathways involved and whether some cell types are particularly relevant for its beneficial effects. M1-activation of macrophages by bacterial lipopolysaccharide (LPS) promotes a paracrine activation of hypoxia-inducible factor-1α (HIF1α) in brown adipocytes which reduces insulin signaling and glucose uptake, as well as β-adrenergic sensitivity. Addition of metformin to M1-polarized macrophages blunted these signs of brown adipocyte dysfunction. At the molecular level, metformin inhibits an inflammatory program executed by HIF1α in macrophages by inducing its degradation through the inhibition of mitochondrial complex I activity, thereby reducing oxygen consumption in a reactive oxygen species (ROS)-independent manner. In obese mice, metformin reduced inflammatory features in brown adipose tissue (BAT) such as macrophage infiltration, proinflammatory signaling and gene expression, and restored the response to cold exposure. In conclusion, the impact of metformin on macrophages by suppressing a HIF1α-dependent proinflammatory program is likely responsible for a secondary beneficial effect on insulin-mediated glucose uptake and β-adrenergic responses in brown adipocytes.
Collapse
Affiliation(s)
- Nuria Pescador
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.
| | - Vera Francisco
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Patricia Vázquez
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva María Esquinas
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Cristina González-Páramos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Departamento de Bioquímica. Facultad de Medicina. Universidad Autónoma de Madrid, Spain and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Instituto de Salud Carlos III, Madrid, Spain
| | - M Pilar Valdecantos
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Irma García-Martínez
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Andrés A Urrutia
- Research Unit, Hospital de La Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Spain
| | - Laura Ruiz
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Escalona-Garrido
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc Foretz
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Benoit Viollet
- Université de Paris, Institut Cochin, INSERM, CNRS, F-75014, Paris, France
| | - Miguel Ángel Fernández-Moreno
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Departamento de Bioquímica. Facultad de Medicina. Universidad Autónoma de Madrid, Spain and Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERer), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso L Calle-Pascual
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain; Departamento de Endocrinología y Nutrición, Hospital Clínico San Carlos, Instituto de Investigación Sanitaria Del Hospital Clínico San Carlos (IdISSC), Madrid, Spain; Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - María Jesús Obregón
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain
| | - Julián Aragonés
- Research Unit, Hospital de La Princesa, Instituto Investigación Sanitaria Princesa, Universidad Autónoma de Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERcv), Instituto de Salud Carlos III, Madrid, Spain
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|