1
|
Oka S, Watanabe M, Ito E, Takeyama A, Matsuoka T, Takahashi M, Izumi Y, Arichi N, Ohno H, Yamasaki S, Inuki S. Archaeal Glycerolipids Are Recognized by C-Type Lectin Receptor Mincle. J Am Chem Soc 2023; 145:18538-18548. [PMID: 37555666 DOI: 10.1021/jacs.3c05473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Recently, various metabolites derived from host microbes have been reported to modulate the immune system, with potential involvement in health or diseases. Archaea, prokaryotic organisms, are present in the human body, but their connection with the host is largely unknown when compared to other microorganisms such as bacteria. This study focused on unique glycerolipids from symbiotic methanogenic archaea and evaluated their activities toward an innate immune receptor. The results revealed that archaeal lipids were recognized by the C-type lectin receptor Mincle and induced immune responses. A concurrent structure-activity relationship study identified the key structural features of archaeal lipids required for recognition by Mincle. Subsequent gene expression profiling suggested qualitative differences between the symbiotic archaeal lipid and the pathogenic bacteria-derived lipid. These findings have broad implications for understanding the function of symbiotic archaea in host health and diseases.
Collapse
Affiliation(s)
- Shiori Oka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Miyuki Watanabe
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Emi Ito
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Ami Takeyama
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuro Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Watanabe M, Motooka D, Yamasaki S. The kinetics of signaling through the common FcRγ chain determine cytokine profiles in dendritic cells. Sci Signal 2023; 16:eabn9909. [PMID: 36881655 DOI: 10.1126/scisignal.abn9909] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The common Fc receptor γ (FcRγ) chain is a signaling subunit common to several immune receptors, but cellular responses induced by FcRγ-coupled receptors are diverse. We investigated the mechanisms by which FcRγ generates divergent signals when coupled to Dectin-2 and Mincle, structurally similar C-type lectin receptors that induce the release of different cytokines from dendritic cells. Chronological tracing of transcriptomic and epigenetic changes upon stimulation revealed that Dectin-2 induced early and strong signaling, whereas Mincle-mediated signaling was delayed, which reflects their expression patterns. Generation of early and strong FcRγ-Syk signaling by engineered chimeric receptors was sufficient to recapitulate a Dectin-2-like gene expression profile. Early Syk signaling selectively stimulated the activity of the calcium ion-activated transcription factor NFAT, which rapidly altered the chromatin status and transcription of the Il2 gene. In contrast, proinflammatory cytokines, such as TNF, were induced regardless of FcRγ signaling kinetics. These results suggest that the strength and timing of FcRγ-Syk signaling can alter the quality of cellular responses through kinetics-sensing signaling machineries.
Collapse
Affiliation(s)
- Miyuki Watanabe
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan
| | - Daisuke Motooka
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.,Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0871, Japan.,Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka 565-0871, Japan.,Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan.,Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| |
Collapse
|
3
|
Saxena S, Singh A, Singh P. Tumor associated mast cells: biological roles and therapeutic applications. Anat Cell Biol 2020; 53:245-251. [PMID: 32879056 PMCID: PMC7527126 DOI: 10.5115/acb.19.181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 11/27/2022] Open
Abstract
Mast cells (MCs) are immune cells of the myeloid lineage and are present in connective tissues throughout the body. The activation and degranulation of MCs significantly modulates many aspects of physiological and pathological conditions in various settings. Recent data have expanded the concept that inflammation is a critical component for tumor progression. Interestingly, three of the most aggressive human cancers, malignant melanoma, breast carcinoma and colorectal adenocarcinoma, are commonly associated with a marked host response comprising of various inflammatory cells, but especially MCs around the tumor periphery. A systematic review of the literature was performed based on the English titles listed in the PubMed, EBSCO, Cochrane, Science Direct, ISI web Science, and SciELO databases using the keywords. Abstracts and full-text articles were assessed. This review summarizes the current understanding of the role of MCs in tumor progression.
Collapse
Affiliation(s)
- Shikha Saxena
- Department of Oral Pathology, RUHS College of Dental Sciences (Government Dental College), Jaipur, Rajasthan, India
| | - Anil Singh
- Department of Oral Pathology, Saraswati Dental College and Hospital, Lucknow, Uttar Pradesh, India
| | - Priyanka Singh
- Department of Oral Pathology, Faculty of Dental Sciences, King George Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
4
|
Pelaia C, Vatrella A, Crimi C, Gallelli L, Terracciano R, Pelaia G. Clinical relevance of understanding mitogen-activated protein kinases involved in asthma. Expert Rev Respir Med 2020; 14:501-510. [PMID: 32098546 DOI: 10.1080/17476348.2020.1735365] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Mitogen-activated protein kinases (MAPKs) are a large family of evolutionary conserved intracellular enzymes that play a pivotal role in signaling pathways mediating the biologic actions of a wide array of extracellular stimuli.Areas covered: MAPKs are implicated in most pathogenic events involved in asthma, including both inflammatory and structural changes occurring in the airways. Indeed, MAPKs are located at the level of crucial convergence points within the signal transduction networks activated by many cytokines, chemokines, growth factors, and other inducers of bronchial inflammation and remodeling such as immunoglobulin E (IgE) and oxidative stress.Expert opinion: Therefore, given the growing importance of MAPKs in asthma pathobiology, these signaling enzymes are emerging as key intracellular pathways whose upstream activation can be inhibited by biological drugs such as anti-cytokines and anti-IgE.
Collapse
Affiliation(s)
- Corrado Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Alessandro Vatrella
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Luca Gallelli
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Rosa Terracciano
- Department of Health Science, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| | - Girolamo Pelaia
- Department of Medical and Surgical Sciences, University "Magna Græcia" of Catanzaro, Catanzaro, Italy
| |
Collapse
|
5
|
Busold S, Nagy NA, Tas SW, van Ree R, de Jong EC, Geijtenbeek TBH. Various Tastes of Sugar: The Potential of Glycosylation in Targeting and Modulating Human Immunity via C-Type Lectin Receptors. Front Immunol 2020; 11:134. [PMID: 32117281 PMCID: PMC7019010 DOI: 10.3389/fimmu.2020.00134] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
C-type lectin receptors (CLRs) are important in several immune regulatory processes. These receptors recognize glycans expressed by host cells or by pathogens. Whereas pathogens are recognized through their glycans, which leads to protective immunity, aberrant cellular glycans are now increasingly recognized as disease-driving factors in cancer, auto-immunity, and allergy. The vast variety of glycan structures translates into a wide spectrum of effects on the immune system ranging from immune suppression to hyper-inflammatory responses. CLRs have distinct expression patterns on antigen presenting cells (APCs) controlling their role in immunity. CLRs can also be exploited to selectively target specific APCs, modulate immune responses and enhance antigen presentation. Here we will discuss the role of glycans and their receptors in immunity as well as potential strategies for immune modulation. A special focus will be given to different dendritic cell subsets as these APCs are crucial orchestrators of immune responses in infections, cancer, auto-immunity and allergies. Furthermore, we will highlight the potential use of nanoscale lipid bi-layer structures (liposomes) in targeted immunotherapy.
Collapse
Affiliation(s)
- Stefanie Busold
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Noémi A Nagy
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Sander W Tas
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands.,Department of Rheumatology and Clinical Immunology, Amsterdam University Medical Centers, Amsterdam Rheumatology and Immunology Center, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald van Ree
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands.,Department of Otorhinolaryngology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Esther C de Jong
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| | - Teunis B H Geijtenbeek
- Department of Experimental Immunology, Amsterdam University Medical Centers, Amsterdam Institute for Infection and Immunity, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
6
|
Link C, Bujupi F, Krammer PH, Weyd H. Annexin-coated particles induce antigen-specific immunosuppression. Autoimmunity 2020; 53:86-94. [PMID: 31933381 DOI: 10.1080/08916934.2019.1710134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Apoptotic cells mediate the development of tolerogenic dendritic cells (DC) and thus facilitate induction and maintenance of peripheral tolerance. Following the identification of the evolutionary conserved annexin core domain (Anx) as a specific signal on apoptotic cells which antagonises Toll-like receptor (TLR) signalling, we examined whether the tolerogenic capacity of Anx can be exploited to downregulate antigen-specific immune responses. The treatment of bone marrow-derived dendritic cells (BMDC) with particles harbouring Anx as well as the model antigen ovalbumin (OVA) attenuated the response of OVA-specific OT-II T cells. The co-culture of Anx-particle-treated DC and T cells resulted in an anergy-like phenotype characterized by reduced proliferation and cytokine secretion. Here we demonstrate that the anti-inflammatory effects of Anx which are mediated through DC can be used as a tool to generate a particle-based antigen delivery system that promotes antigen-specific immunosuppression. Such Anx-particles may be a new therapeutic approach for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Corinna Link
- Division of Immunogenetics, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Fatmire Bujupi
- Division of Immunogenetics, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Peter H Krammer
- Division of Immunogenetics, German Cancer Research Center, Heidelberg, Germany
| | - Heiko Weyd
- Division of Immunogenetics, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
7
|
Imanishi T, Unno M, Kobayashi W, Yoneda N, Matsuda S, Ikeda K, Hoshii T, Hirao A, Miyake K, Barber GN, Arita M, Ishii KJ, Akira S, Saito T. Reciprocal regulation of STING and TCR signaling by mTORC1 for T-cell activation and function. Life Sci Alliance 2019; 2:2/1/e201800282. [PMID: 30683688 PMCID: PMC6348487 DOI: 10.26508/lsa.201800282] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 12/26/2018] [Accepted: 01/07/2019] [Indexed: 12/12/2022] Open
Abstract
Stimulator of interferon genes (STING) plays a key role in detecting cytosolic DNA and induces type I interferon (IFN-I) responses for host defense against pathogens. Although T cells highly express STING, its physiological role remains unknown. Here, we show that costimulation of T cells with the STING ligand cGAMP and TCR leads to IFN-I production and strongly inhibits T-cell growth. TCR-mediated mTORC1 activation and sustained activation of IRF3 are required for cGAMP-induced IFN-I production, and the mTORC1 activity is partially counteracted by cGAMP, thereby blocking proliferation. This mTORC1 inhibition in response to costimulation depends on IRF3 and IRF7. Effector T cells produce much higher IFN-I levels than innate cells in response to cGAMP. Finally, we demonstrated that STING stimulation in T cells is effective in inducing antitumor responses in vivo. Our studies demonstrate that the outputs of STING and TCR signaling pathways are mutually regulated through mTORC1 to modulate T-cell functions.
Collapse
Affiliation(s)
- Takayuki Imanishi
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Midori Unno
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wakana Kobayashi
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Natsumi Yoneda
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoshi Matsuda
- Department of Cell Signaling, Institute of Biomedical Sciences, Kansai Medical University, Hirakata, Japan
| | - Kazutaka Ikeda
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Japan Agency for Medical Research and Development (AMED)-PRIME, Japan Agency for Medical Research and Development, Tokyo, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Takayuki Hoshii
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Kensuke Miyake
- Division of Innate Immunity, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Glen N Barber
- Department of Cell Biology and the Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan.,Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Suita, Japan.,Laboratory of Adjuvant Innovation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takashi Saito
- Laboratory for Cell Signaling, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan .,Laboratory for Cell Signaling, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Mehta RS, Rezvani K. Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer. Front Immunol 2018; 9:283. [PMID: 29497427 PMCID: PMC5818392 DOI: 10.3389/fimmu.2018.00283] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/31/2018] [Indexed: 12/12/2022] Open
Abstract
Adoptive cell therapy has emerged as a powerful treatment for advanced cancers resistant to conventional agents. Most notable are the remarkable responses seen in patients receiving autologous CD19-redirected chimeric antigen receptor (CAR) T cells for the treatment of B lymphoid malignancies; however, the generation of autologous products for each patient is logistically cumbersome and has restricted widespread clinical use. A banked allogeneic product has the potential to overcome these limitations, yet allogeneic T-cells (even if human leukocyte antigen-matched) carry a major risk of graft-versus-host disease (GVHD). Natural killer (NK) cells are bone marrow-derived innate lymphocytes that can eliminate tumors directly, with their activity governed by the integration of signals from activating and inhibitory receptors and from cytokines including IL-15, IL-12, and IL-18. NK cells do not cause GVHD or other alloimmune or autoimmune toxicities and thus, can provide a potential source of allogeneic “off-the-shelf” cellular therapy, mediating major anti-tumor effects without inducing potentially lethal alloreactivity such as GVHD. Given the multiple unique advantages of NK cells, researchers are now exploring the use of CAR-engineered NK cells for the treatment of various hematological and non-hematological malignancies. Herein, we review preclinical data on the development of CAR-NK cells, advantages, disadvantages, and current obstacles to their clinical use.
Collapse
|
9
|
Targeting Intramembrane Protein-Protein Interactions: Novel Therapeutic Strategy of Millions Years Old. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 111:61-99. [PMID: 29459036 PMCID: PMC7102818 DOI: 10.1016/bs.apcsb.2017.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Intramembrane protein-protein interactions (PPIs) are involved in transmembrane signal transduction mediated by cell surface receptors and play an important role in health and disease. Recently, receptor-specific modulatory peptides rationally designed using a general platform of transmembrane signaling, the signaling chain homooligomerization (SCHOOL) model, have been proposed to therapeutically target these interactions in a variety of serious diseases with unmet needs including cancer, sepsis, arthritis, retinopathy, and thrombosis. These peptide drug candidates use ligand-independent mechanisms of action (SCHOOL mechanisms) and demonstrate potent efficacy in vitro and in vivo. Recent studies surprisingly revealed that in order to modify and/or escape the host immune response, human viruses use similar mechanisms and modulate cell surface receptors by targeting intramembrane PPIs in a ligand-independent manner. Here, I review these intriguing mechanistic similarities and discuss how the viral strategies optimized over a billion years of the coevolution of viruses and their hosts can help to revolutionize drug discovery science and develop new, disruptive therapies. Examples are given.
Collapse
|
10
|
Nunomura S, Ra C, Terui T, Okayama Y. Disulfide-linked dimerization of the FcRγ chain is required for positive and negative regulation of mast cell activation via FcεRI. Allergol Int 2017. [PMID: 28629706 DOI: 10.1016/j.alit.2017.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Satoshi Nunomura
- Allergy and Immunology Project Team, Nihon University School of Medicine, Tokyo, Japan; Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan; Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan.
| | - Chisei Ra
- Allergy and Immunology Project Team, Nihon University School of Medicine, Tokyo, Japan; Department of Microbiology, Nihon University School of Medicine, Tokyo, Japan; Department of Clinical Laboratory, Asahi General Hospital, Chiba, Japan
| | - Tadashi Terui
- Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshimichi Okayama
- Allergy and Immunology Project Team, Nihon University School of Medicine, Tokyo, Japan; Division of Medical Education Planning and Development, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Khorasanizadeh M, Eskian M, Gelfand EW, Rezaei N. Mitogen-activated protein kinases as therapeutic targets for asthma. Pharmacol Ther 2017; 174:112-126. [DOI: 10.1016/j.pharmthera.2017.02.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
12
|
Mechanism of the antigen-independent cytokinergic SPE-7 IgE activation of human mast cells in vitro. Sci Rep 2015; 5:9538. [PMID: 25892150 PMCID: PMC4402612 DOI: 10.1038/srep09538] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/09/2015] [Indexed: 12/27/2022] Open
Abstract
Release of pro-inflammatory mediators by mast cells is a key feature of allergic disease. The ‘dogma’ is that IgE molecules merely sensitise mast cells by binding FcεRI prior to cross-linking by multivalent allergen, receptor aggregation and mast cell activation. However, certain monoclonal IgE antibodies have been shown to elicit mast cell activation in an antigen-independent cytokinergic manner, and DNP-specific murine SPE-7 IgE is the most highly cytokinergic antibody known. We show that both monovalent hapten and recombinant SPE-7 IgE Fab inhibit its cytokinergic activity as measured by mast cell degranulation and TNF-α release. Using SPE-7 IgE, a non-cytokinergic human IgE and a poorly cytokinergic murine IgE, we reveal that interaction of the Fab region of ‘free’ SPE-7 IgE with the Fab of FcεRI-bound SPE-7 IgE is the basis of its cytokinergic activity. We rule out involvement of IgE Fc, Cε1 and Cλ/κ domains, and propose that ‘free’ SPE-7 IgE binds to FcεRI-bound SPE-7 IgE by an Fv-Fv interaction. Initial formation of a tri-molecular complex (one ‘free’ IgE molecule cross-linking two receptor-bound IgE molecules) leads to capture of further ‘free’ and receptor-bound IgEs to form larger clusters that trigger mast cell activation.
Collapse
|
13
|
Clustering of CARMA1 through SH3-GUK domain interactions is required for its activation of NF-κB signalling. Nat Commun 2015; 6:5555. [PMID: 25602919 DOI: 10.1038/ncomms6555] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/13/2014] [Indexed: 12/12/2022] Open
Abstract
CARMA1-mediated NF-κB activation controls lymphocyte activation through antigen receptors and survival of some malignant lymphomas. CARMA1 clusters are formed on physiological receptor-mediated activation or by its oncogenic mutation in activated B-cell-diffuse large B-cell lymphomas (ABC-DLBCLs) with constitutive NF-κB activation. However, regulatory mechanisms and relevance of CARMA1 clusters in the NF-κB pathway are unclear. Here we show that SH3 and GUK domain interactions of CARMA1 link CARMA1 clustering to signal activation. SH3 and GUK domains of CARMA1 interact by either intra- or intermolecular mechanisms, which are required for activation-induced assembly of CARMA1. Disruption of these interactions abolishes the formation of CARMA1 microclusters at the immunological synapse, CARMA-regulated signal activation following antigen receptor stimulation as well as spontaneous CARMA1 clustering and NF-κB activation by the oncogenic CARMA1 mutation in ABC-DLBCLs. Thus, the SH3-GUK interactions that regulate CARMA1 cluster formations are promising therapeutic targets for ABC-DLBCLs.
Collapse
|
14
|
Suzuki R, Scheffel J, Rivera J. New insights on the signaling and function of the high-affinity receptor for IgE. Curr Top Microbiol Immunol 2015; 388:63-90. [PMID: 25553795 DOI: 10.1007/978-3-319-13725-4_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clustering of the high-affinity receptor for immunoglobulin E (FcεRI) through the interaction of receptor-bound immunoglobulin E (IgE) antibodies with their cognate antigen is required to couple IgE antibody production to cellular responses and physiological consequences. IgE-induced responses through FcεRI are well known to defend the host against certain infectious agents and to lead to unwanted allergic responses to normally innocuous substances. However, the cellular and/or physiological response of individuals that produce IgE antibodies may be markedly different and such antibodies (even to the same antigenic epitope) can differ in their antigen-binding affinity. How affinity variation in the interaction of FcεRI-bound IgE antibodies with antigen is interpreted into cellular responses and how the local environment may influence these responses is of interest. In this chapter, we focus on recent advances that begin to unravel how FcεRI distinguishes differences in the affinity of IgE-antigen interactions and how such discrimination along with surrounding environmental stimuli can shape the (patho) physiological response.
Collapse
Affiliation(s)
- Ryo Suzuki
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | | |
Collapse
|
15
|
Iborra S, Sancho D. Signalling versatility following self and non-self sensing by myeloid C-type lectin receptors. Immunobiology 2014; 220:175-84. [PMID: 25269828 DOI: 10.1016/j.imbio.2014.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/01/2014] [Accepted: 09/05/2014] [Indexed: 01/06/2023]
Abstract
Among myeloid immune receptors, C-type lectin receptors (CLRs) have a remarkable capacity to sense a variety of self and non-self ligands. The coupling of CLRs to different signal transduction modules is influenced not only by the receptor, but also by the nature, density and architecture of the ligand, which can affect the rate of receptor internalization and trafficking to diverse intracellular compartments. Understanding how the variety of self and non-self ligands triggers differential CLR signalling and function presents a fascinating biological challenge. Non-self ligands usually promote inflammation and immunity, whereas self ligands are frequently involved in communication and tolerance. But pathogens can mimic self-inhibitory signals to escape immune surveillance, and endogenous ligands can contribute to the sensing of pathogens through CLRs. In this review, we survey the complexity and flexibility in functional outcome found in the myeloid CLRs, which is not only based on their differing intracellular motifs, but is also conditioned by the physical nature, affinity and avidity of the ligand.
Collapse
Affiliation(s)
- Salvador Iborra
- Department of Vascular Biology and Inflammation, CNIC-Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| | - David Sancho
- Department of Vascular Biology and Inflammation, CNIC-Fundación Centro Nacional de Investigaciones Cardiovasculares "Carlos III", Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
16
|
Yonekawa A, Saijo S, Hoshino Y, Miyake Y, Ishikawa E, Suzukawa M, Inoue H, Tanaka M, Yoneyama M, Oh-Hora M, Akashi K, Yamasaki S. Dectin-2 is a direct receptor for mannose-capped lipoarabinomannan of mycobacteria. Immunity 2014; 41:402-413. [PMID: 25176311 DOI: 10.1016/j.immuni.2014.08.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 08/07/2014] [Indexed: 11/15/2022]
Abstract
Mycobacteria possess various immunomodulatory molecules on the cell wall. Mannose-capped lipoarabinomannan (Man-LAM), a major lipoglycan of Mycobacterium tuberculosis, has long been known to have both inhibitory and stimulatory effects on host immunity. However, the direct Man-LAM receptor that explains its pleiotropic activities has not been clearly identified. Here, we report that a C-type lectin receptor Dectin-2 (gene symbol Clec4n) is a direct receptor for Man-LAM. Man-LAM activated bone-marrow-derived dendritic cells (BMDCs) to produce pro- and anti-inflammatory cytokines, whereas it was completely abrogated in Clec4n(-/-) BMDCs. Man-LAM promoted antigen-specific T cell responses through Dectin-2 on DCs. Furthermore, Man-LAM induced experimental autoimmune encephalitis (EAE) as an adjuvant in mice, whereas Clec4n(-/-) mice were resistant. Upon mycobacterial infection, Clec4n(-/-) mice showed augmented lung pathology. These results demonstrate that Dectin-2 contributes to host immunity against mycobacterial infection through the recognition of Man-LAM.
Collapse
Affiliation(s)
- Akiko Yonekawa
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan; PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Yoshihiko Hoshino
- Leprosy Research Center, National Institute of Infectious Diseases, Tokyo 189-0002, Japan
| | - Yasunobu Miyake
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Eri Ishikawa
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Maho Suzukawa
- Center for Pulmonary Diseases, National Hospital Organization, Tokyo National Hospital, Tokyo 204-8585, Japan
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Masato Tanaka
- Laboratory for Immune Regulation, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Masatsugu Oh-Hora
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; PRESTO, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan; Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan.
| |
Collapse
|
17
|
Hwang SL, Lu Y, Li X, Kim YD, Cho YS, Jahng Y, Son JK, Lee YJ, Kang W, Taketomi Y, Murakami M, Moon TC, Chang HW. ERK1/2 antagonize AMPK-dependent regulation of FcεRI-mediated mast cell activation and anaphylaxis. J Allergy Clin Immunol 2014; 134:714-721.e7. [PMID: 24948367 DOI: 10.1016/j.jaci.2014.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 03/26/2014] [Accepted: 05/05/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Extracellular signal-regulated kinases 1/2 (ERK1/2) make important contributions to allergic responses via their regulation of degranulation, eicosanoid production, and cytokine expression by mast cells, yet the mechanisms underlying their positive effects on FcεRI-dependent signaling are not fully understood. Recently, we reported that mast cell activation and anaphylaxis are negatively regulated by AMP-activated protein kinase (AMPK). However, little is known about the relationship between ERK1/2-mediated positive and the AMPK-mediated negative regulation of FcεRI signaling in mast cells. OBJECTIVE We investigated possible interactions between ERK1/2 and AMPK in the modulation of mast cell signaling and anaphylaxis. METHODS Wild-type or AMPKα2(-/-) mice, or bone marrow-derived mast cells obtained from these mice, were treated with either chemical agents or small interfering RNAs that modulated the activity or expression of ERK1/2 or AMPK to evaluate the functional interplay between ERK1/2 and AMPK in FcεRI-dependent signaling. RESULTS The ERK1/2 pathway inhibitor U0126 and the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside similarly inhibited FcεRI-mediated mast cell signals in vitro and anaphylaxis in vivo. ERK1/2-specific small interfering RNA also mimicked this effect on FcεRI signals. Moreover, AMPKα2 knockdown or deficiency led to increased FcεRI-mediated mast cell activation and anaphylaxis that were insensitive to U0126 or activator 5-aminoimidazole-4-carboxamide-1-β-4-ribofuranoside, suggesting that the suppression of FcεRI signals by the inhibition of the ERK1/2 pathway relies largely on AMPK activation. ERK1/2 controlled AMPK activity by regulating its subcellular translocation. CONCLUSIONS ERK1/2 ablated the AMPK-dependent negative regulatory axis, thereby activating FcεRI signals in mast cells.
Collapse
Affiliation(s)
| | - Yue Lu
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xian Li
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Yong Deuk Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - You Sook Cho
- Department of Allergy and Clinical Immunology, Asan Medical Center, College of Medicine, Ulsan University, Seoul, Korea
| | - Yurndong Jahng
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Jong-Keun Son
- College of Pharmacy, Yeungnam University, Gyeongsan, Korea
| | - Youn Ju Lee
- Department of Pharmacology, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Wonku Kang
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Yoshitaka Taketomi
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Makoto Murakami
- Lipid Metabolism Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Tae Chul Moon
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
18
|
Kim DY, Kang TB, Shim DW, Sun X, Han JW, Ji YE, Kim TJ, Koppula S, Lee KH. Emodin attenuates A23187-induced mast cell degranulation and tumor necrosis factor-α secretion through protein kinase C and IκB kinase 2 signaling. Eur J Pharmacol 2013; 723:501-6. [PMID: 24239713 DOI: 10.1016/j.ejphar.2013.09.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/17/2013] [Accepted: 09/24/2013] [Indexed: 12/31/2022]
Abstract
Mast cells are known to play a pivotal role in allergic diseases. Cross-linking of the high-affinity IgE receptor (FcεRI) is known to be one of the major causes that lead to degranulation and allergic inflammation. An increase in intracellular calcium (Ca(2+)) concentration also triggers degranulation, bypassing receptor activation. Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is known to exhibit a variety of pharmacological activities including anti-allergic effects. However, the detailed molecular mechanisms involved in exhibiting anti-allergic effects by emodin were remained to be clarified. In the present investigation we report the regulatory function of emodin on the allergic signal mediators through Ca(2+) ionophore activation in mast cells. Emodin significantly inhibited A23187-induced tumor necrosis factor-α production and degranulation through the attenuation of protein kinase C, IκB kinase 2, and soluble N-ethylmaleimide-sensitive fusion factor attachment protein receptor complex formation, bypassing FcεRI activation. Data from our study indicated that emodin acts by regulating multiple signaling pathways in inhibiting the allergic reactions in mast cells.
Collapse
Affiliation(s)
- Dong-Young Kim
- Department of Biotechnology, College of Biomedical & Health Science, Research Institute of Inflammatory Diseases, Konkuk University, Chungju, Chungbuk 380-701, Republic of Korea
| | - Tae-Bong Kang
- Department of Biotechnology, College of Biomedical & Health Science, Research Institute of Inflammatory Diseases, Konkuk University, Chungju, Chungbuk 380-701, Republic of Korea
| | - Do-Wan Shim
- Department of Biotechnology, College of Biomedical & Health Science, Research Institute of Inflammatory Diseases, Konkuk University, Chungju, Chungbuk 380-701, Republic of Korea
| | - Xiao Sun
- Department of Biotechnology, College of Biomedical & Health Science, Research Institute of Inflammatory Diseases, Konkuk University, Chungju, Chungbuk 380-701, Republic of Korea
| | - Ji-Won Han
- Department of Biotechnology, College of Biomedical & Health Science, Research Institute of Inflammatory Diseases, Konkuk University, Chungju, Chungbuk 380-701, Republic of Korea
| | - Young-Eun Ji
- Department of Biotechnology, College of Biomedical & Health Science, Research Institute of Inflammatory Diseases, Konkuk University, Chungju, Chungbuk 380-701, Republic of Korea
| | - Tack-Joong Kim
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Sushruta Koppula
- Department of Biotechnology, College of Biomedical & Health Science, Research Institute of Inflammatory Diseases, Konkuk University, Chungju, Chungbuk 380-701, Republic of Korea
| | - Kwang-Ho Lee
- Department of Biotechnology, College of Biomedical & Health Science, Research Institute of Inflammatory Diseases, Konkuk University, Chungju, Chungbuk 380-701, Republic of Korea.
| |
Collapse
|
19
|
Miyake Y, Toyonaga K, Mori D, Kakuta S, Hoshino Y, Oyamada A, Yamada H, Ono KI, Suyama M, Iwakura Y, Yoshikai Y, Yamasaki S. C-type lectin MCL is an FcRγ-coupled receptor that mediates the adjuvanticity of mycobacterial cord factor. Immunity 2013; 38:1050-62. [PMID: 23602766 DOI: 10.1016/j.immuni.2013.03.010] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 03/27/2013] [Indexed: 01/29/2023]
Abstract
Cord factor, also called trehalose-6,6'-dimycolate (TDM), is a potent mycobacterial adjuvant. We herein report that the C-type lectin MCL (also called Clec4d) is a TDM receptor that is likely to arise from gene duplication of Mincle (also called Clec4e). Mincle is known to be an inducible receptor recognizing TDM, whereas MCL was constitutively expressed in myeloid cells. To examine the contribution of MCL in response to TDM adjuvant, we generated MCL-deficient mice. TDM promoted innate immune responses, such as granuloma formation, which was severely impaired in MCL-deficient mice. TDM-induced acquired immune responses, such as experimental autoimmune encephalomyelitis (EAE), was almost completely dependent on MCL, but not Mincle. Furthermore, by generating Clec4e(gfp) reporter mice, we found that MCL was also crucial for driving Mincle induction upon TDM stimulation. These results suggest that MCL is an FcRγ-coupled activating receptor that mediates the adjuvanticity of TDM.
Collapse
Affiliation(s)
- Yasunobu Miyake
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bax HJ, Keeble AH, Gould HJ. Cytokinergic IgE Action in Mast Cell Activation. Front Immunol 2012; 3:229. [PMID: 22888332 PMCID: PMC3412263 DOI: 10.3389/fimmu.2012.00229] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/14/2012] [Indexed: 12/20/2022] Open
Abstract
Some 10 years ago it emerged that at sufficiently high concentrations certain monoclonal mouse IgEs exert previously unsuspected effects on mast cells. Thus they can both promote survival and induce activation of mast cells without the requirement for antigens. This was a wake up call that appears to have been missed (or dismissed) by the majority of immunologists. The structural attributes responsible for the potency of the so-called “highly cytokinergic” or HC IgEs have not yet been determined, but the events that ensue when such IgEs bind to the high-affinity receptor, FcεRI, on mast cells have been thoroughly studied, and are strikingly similar to those engendered by antigens when they form cross-linked complexes with the receptors. We review the evidence for the cytokinergic activity of IgE, and the structural features and known properties of immunoglobulins, and of IgE in particular, most likely to be implicated in the phenomenon. We suggest that IgEs with cytokinergic activity may be generated by local germinal center reactions in the target organs of allergy. We consider also the important implications that the existence of cytokinergic IgE may have for a fuller understanding of adaptive immunity and of the action of IgE in asthma and other diseases.
Collapse
Affiliation(s)
- Heather J Bax
- Randall Division of Cell and Molecular Biophysics, King's College London London, UK
| | | | | |
Collapse
|
21
|
Xiong H, Dolpady J, Wabl M, Curotto de Lafaille MA, Lafaille JJ. Sequential class switching is required for the generation of high affinity IgE antibodies. ACTA ACUST UNITED AC 2012; 209:353-64. [PMID: 22249450 PMCID: PMC3280879 DOI: 10.1084/jem.20111941] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Generation of anaphylaxis-inducing high affinity IgE requires sequential class switching. IgE antibodies with high affinity for their antigens can be stably cross-linked at low concentrations by trace amounts of antigen, whereas IgE antibodies with low affinity bind their antigens weakly. In this study, we find that there are two distinct pathways to generate high and low affinity IgE. High affinity IgE is generated through sequential class switching (μ→γ→ε) in which an intermediary IgG phase is necessary for the affinity maturation of the IgE response, where the IgE inherits somatic hypermutations and high affinity from the IgG1 phase. In contrast, low affinity IgE is generated through direct class switching (μ→ε) and is much less mutated. Mice deficient in IgG1 production cannot produce high affinity IgE, even after repeated immunizations. We demonstrate that a small amount of high affinity IgE can cause anaphylaxis and is pathogenic. Low affinity IgE competes with high affinity IgE for binding to Fcε receptors and prevents anaphylaxis and is thus beneficial.
Collapse
Affiliation(s)
- Huizhong Xiong
- Skirball Institute of Biomolecular Medicine, The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
22
|
Barbosa-Lorenzi VC, Buranello PADA, Roque-Barreira MC, Jamur MC, Oliver C, Pereira-da-Silva G. The lectin ArtinM binds to mast cells inducing cell activation and mediator release. Biochem Biophys Res Commun 2011; 416:318-24. [PMID: 22108054 DOI: 10.1016/j.bbrc.2011.11.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 11/06/2011] [Indexed: 01/06/2023]
Abstract
Mast cells are inflammatory cells that respond to signals of innate and adaptive immunity with immediate and delayed release of mediators. ArtinM, a lectin from Artocarpus integrifolia with immunomodulatory activities, is able to induce mast cell activation, but the mechanisms remain unknown. This study sought to further investigate the effects of the lectin on mast cells. We showed that ArtinM binds to mast cells, possibly to the high affinity receptor for immunoglobulin E (IgE) - FcεRI - and/or to IgE bound to FcεRI. Binding of the lectin resulted in protein tyrosine phosphorylation and release of the pre- and newly-formed mediators, β-hexosaminidase and LTB(4) by mast cells, activities that were potentiated in the presence of IgE. ArtinM also induced the activation of the transcription factors NFκB and NFAT, resulting in expression of some of their target genes such as IL-4 and TNF-α. In view of the established significance of mast cells in many immunological and inflammatory reactions, a better understanding of the mechanisms involved in mast cell activation by ArtinM is crucial to the pharmacological application of the lectin.
Collapse
|
23
|
Fuller DM, Zhu M, Ou-Yang CW, Sullivan SA, Zhang W. A tale of two TRAPs: LAT and LAB in the regulation of lymphocyte development, activation, and autoimmunity. Immunol Res 2011; 49:97-108. [PMID: 21136199 DOI: 10.1007/s12026-010-8197-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Transmembrane adaptor proteins (TRAPs) link antigen receptor engagement to downstream cellular processes. Although these proteins typically lack intrinsic enzymatic activity, they are phosphorylated on multiple tyrosine residues following lymphocyte activation, allowing them to function as scaffolds for the assembly of multi-molecular signaling complexes. Among the many TRAPs that have been discovered in recent years, the LAT (linker for activation of T cells) family of adaptor proteins plays an important role in the positive and negative regulation of lymphocyte maturation, activation, and differentiation. Of the two members in this family, LAT is an indispensable component controlling T cell and mast cell activation and function; LAB (linker for activation of B cells), also called NTAL, is necessary to fine-tune lymphocyte activation and may be a key regulator of innate immune responses. Here, we review recent advances on the function of LAT and LAB in the regulation of development and activation of immune cells.
Collapse
Affiliation(s)
- Deirdre M Fuller
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
24
|
Kashiwakura JI, Otani IM, Kawakami T. Monomeric IgE and mast cell development, survival and function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 716:29-46. [PMID: 21713650 DOI: 10.1007/978-1-4419-9533-9_3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mast cells play a major role in allergy and anaphylaxis, as well as a protective role in immunity against bacteria and venoms (innate immunity) and T-cell activation (acquired immunity).1,2 It was long thought that two steps are essential to mast cell activation. The first step (sensitization) occurs when antigen-specific IgE binds to its high-affinity IgE receptor (FcεRI) expressed on the surface of mast cells. The second step occurs when antigen (Ag) or anti-IgE binds antigen-specific IgE antibodies bound to FcεRI present on the mast cell surface (this mode of stimulation hereafter referred to as IgE+Ag or IgE+anti-IgE stimulation, respectively).Conventional wisdom has been that monomeric IgE plays only an initial, passive role in mast cell activation. However, recent findings have shown that IgE binding to its receptor FcεRI can mediate mast cell activation events even in the absence of antigen (this mode of stimulation hereafter referred to as IgE(-Ag) stimulation). Different subtypes of monomeric IgEs act via IgE(-Ag) stimulation to elicit varied effects on mast cells function, survival and differentiation. This chapter will describe the role of monomeric IgE molecules in allergic reaction, the various effects and mechanisms of action of IgE(-Ag) stimulation on mast cells and what possible developments may arise from this knowledge in the future. Since mast cells are involved in a variety of pathologic and protective responses, understanding the role that monomeric IgE plays in mast cell function, survival and differentiation will hopefully lead to better understanding and treatment of asthma and other allergic diseases, as well as improved understanding of host response to infections.
Collapse
Affiliation(s)
- Jun-Ichi Kashiwakura
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| | | | | |
Collapse
|
25
|
|
26
|
Fuller DM, Zhang W. Regulation of lymphocyte development and activation by the LAT family of adapter proteins. Immunol Rev 2010; 232:72-83. [PMID: 19909357 DOI: 10.1111/j.1600-065x.2009.00828.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transmembrane adapter proteins (TRAPs) are critical components of signaling pathways in lymphocytes, linking antigen receptor engagement to downstream cellular processes. While these proteins lack intrinsic enzymatic activity, their phosphorylation following receptor ligation allows them to function as scaffolds for the assembly of multi-molecular signaling complexes. Many TRAPs have recently been discovered, and numerous studies demonstrate their roles in the positive and negative regulation of lymphocyte maturation, activation, and differentiation. One such example is the linker for activation of T cells (LAT) family of adapter proteins. While LAT has been shown to play an indispensable role in T-cell and mast cell function, the other family members, linker for activation of B cells (LAB) and linker for activation of X cells (LAX), are necessary to fine-tune immune responses. In addition to its well-established role in the positive regulation of lymphocyte activation, LAT exerts an inhibitory effect on T-cell receptor-mediated signaling. Furthermore, LAT, along with LAB and LAX, plays a crucial role in establishing and maintaining tolerance. Here, we review recent data concerning the regulation of lymphocyte development and activation by the LAT family of proteins.
Collapse
Affiliation(s)
- Deirdre M Fuller
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
27
|
Bridgeman JS, Hawkins RE, Bagley S, Blaylock M, Holland M, Gilham DE. The optimal antigen response of chimeric antigen receptors harboring the CD3zeta transmembrane domain is dependent upon incorporation of the receptor into the endogenous TCR/CD3 complex. THE JOURNAL OF IMMUNOLOGY 2010; 184:6938-49. [PMID: 20483753 DOI: 10.4049/jimmunol.0901766] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Chimeric Ag receptors (CARs) expressed in T cells permit the redirected lysis of tumor cells in an MHC-unrestricted manner. In the Jurkat T cell model system, expression of a carcinoembryonic Ag-specific CD3zeta CAR (MFEzeta) resulted in an increased sensitivity of the transduced Jurkat cell to generate cytokines when stimulated through the endogenous TCR complex. This effect was driven through two key characteristics of the MFEzeta CAR: 1) receptor dimerization and 2) the interaction of the CAR with the endogenous TCR complex. Mutations of the CAR transmembrane domain that abrogated these interactions resulted in a reduced functional capacity of the MFEzeta CAR to respond to carcinoembryonic Ag protein Ag. Taken together, these results indicate that CARs containing the CD3zeta transmembrane domain can form a complex with the endogenous TCR that may be beneficial for optimal T cell activation. This observation has potential implications for the future design of CARs for cancer therapy.
Collapse
Affiliation(s)
- John S Bridgeman
- Cell Therapy Group, Cancer Research UK Department of Medical Oncology, Paterson Institute for Cancer Research, Manchester, UK
| | | | | | | | | | | |
Collapse
|
28
|
Sigalov AB. The SCHOOL of nature: I. Transmembrane signaling. SELF/NONSELF 2010; 1:4-39. [PMID: 21559175 PMCID: PMC3091606 DOI: 10.4161/self.1.1.10832] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 11/30/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022]
Abstract
Receptor-mediated transmembrane signaling plays an important role in health and disease. Recent significant advances in our understanding of the molecular mechanisms linking ligand binding to receptor activation revealed previously unrecognized striking similarities in the basic structural principles of function of numerous cell surface receptors. In this work, I demonstrate that the Signaling Chain Homooligomerization (SCHOOL)-based mechanism represents a general biological mechanism of transmembrane signal transduction mediated by a variety of functionally unrelated single- and multichain activating receptors. within the SCHOOL platform, ligand binding-induced receptor clustering is translated across the membrane into protein oligomerization in cytoplasmic milieu. This platform resolves a long-standing puzzle in transmembrane signal transduction and reveals the major driving forces coupling recognition and activation functions at the level of protein-protein interactions-biochemical processes that can be influenced and controlled. The basic principles of transmembrane signaling learned from the SCHOOL model can be used in different fields of immunology, virology, molecular and cell biology and others to describe, explain and predict various phenomena and processes mediated by a variety of functionally diverse and unrelated receptors. Beyond providing novel perspectives for fundamental research, the platform opens new avenues for drug discovery and development.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
29
|
Fifadara NH, Aye CC, Raghuwanshi SK, Richardson RM, Ono SJ. CCR1 expression and signal transduction by murine BMMC results in secretion of TNF-alpha, TGFbeta-1 and IL-6. Int Immunol 2009; 21:991-1001. [PMID: 19592420 PMCID: PMC11513774 DOI: 10.1093/intimm/dxp066] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 06/10/2009] [Indexed: 12/27/2022] Open
Abstract
Chemokine receptors (CCRs) are important co-stimulatory molecules found on many blood cells and associated with various diseases. The expression and function of CCRs on mast cells has been quite controversial. In this study, we report for the first time that murine bone marrow-derived mast cells (BMMC) express messenger RNA and protein for CCR1. BMMC cultured in the presence of murine recombinant stem cell factor and murine IL-3 expressed CCR1 after 5-6 weeks. We also report for the first time that mBMMC(CCR1+) cells endogenously express neurokinin receptor-1 and intercellular adhesion molecule-1. To examine the activity of CCR1 on these BMMC, we simultaneously stimulated two receptors: CCR1 by its ligand macrophage inflammatory protein-1alpha and the IgE receptor FcepsilonRI by antigen cross-linking. We found that co-stimulation enhanced BMMC degranulation compared with FcepsilonRI stimulation alone, as assessed by beta-hexosaminidase activity (85 versus 54%, P < 0.0001) and Ca(2+) influx (223 versus 183 nM, P < 0.05). We also observed significant increases in mast cell secretion of key growth factors, cytokines and chemokine mediators upon CCR1-FcepsilonRI co-stimulation. These factors include transforming growth factor beta-1, tumor necrosis factor-alpha and the cytokine IL-6. Taken together, our data indicate that CCR1 plays a key role in BMMC function. These findings contribute to our understanding of mechanisms for immune cell trafficking during inflammation.
Collapse
Affiliation(s)
- Nimita H Fifadara
- Department of Opthalmology, Dobbs Ocular Immunology Laboratories, Emory Eye Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | | | | | |
Collapse
|
30
|
Jung ID, Lee HS, Lee HY, Choi OH. FcepsilonRI-mediated mast cell migration: signaling pathways and dependence on cytosolic free Ca2+ concentration. Cell Signal 2009; 21:1698-705. [PMID: 19632319 DOI: 10.1016/j.cellsig.2009.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/09/2009] [Accepted: 07/16/2009] [Indexed: 11/26/2022]
Abstract
IgE-sensitized rat basophilic leukemia (RBL)-2H3 mast cells have been shown to migrate towards antigen. In the present study we tried to identify the mechanism by which antigen causes mast cell migration. Antigen caused migration of RBL-2H3 cells at the concentration ranges of 1000-fold lower than those required for degranulation and the dose response was biphasic. This suggests that mast cells can detect very low concentration gradients of antigen (pg/ml ranges), which initiate migration until they degranulate near the origin of antigen, of which concentration is in the ng/ml ranges. Similar phenomenon was observed in human mast cells (HMCs) derived from CD34(+) progenitors. As one mechanism of mast cell migration, we tested the involvement of sphingosine 1-phosphate (S1P). Fc epsilon RI-mediated cell migration was dependent on the production of S1P but independent of a S1P receptor or its signaling pathways as determined with S1P receptor antagonist VPC23019 and Gi protein inhibitor pertussis toxin (PTX). This indicated that the site of action of S1P produced by antigen stimulation was intracellular. However, S1P-induced mast cell migration was dependent on S1P receptor activation and inhibited by both VPC23019 and PTX. Cell migration towards antigen or extracellular S1P was dependent on the activation of the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways, while only migration towards antigen was inhibited by the inhibitors of sphingosine kinase and phospholipase C (PLC) and intracellular calcium chelator BAPTA. In summary, our data suggest that the high affinity receptor for IgE (Fc epsilon RI)-mediated mast cell migration is dependent on the production of S1P but independent of S1P receptors. Cell migration mediated by either Fc epsilon RI or S1P receptors involves activation of both PI3K and MAPK.
Collapse
Affiliation(s)
- In Duk Jung
- Department of Medicine, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
31
|
Oda H, Fujimoto M, Patrick MS, Chida D, Sato Y, Azuma Y, Aoki H, Abe T, Suzuki H, Shirai M. RhoH plays critical roles in Fc epsilon RI-dependent signal transduction in mast cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:957-62. [PMID: 19124738 DOI: 10.4049/jimmunol.182.2.957] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RhoH is an atypical small G protein with defective GTPase activity that is specifically expressed in hematopoietic lineage cells. RhoH has been implicated in regulation of several physiological processes including hematopoiesis, integrin activation, and T cell differentiation and activation. In the present study, we investigated the role of RhoH in mast cells by generating RhoH knockout mice. Despite observing normal development of mast cells in vivo, passive systemic anaphylaxis and histamine release were impaired in these mice. We also observed defective degranulation and cytokine production upon FcepsilonRI ligation in RhoH-deficient bone marrow-derived mast cells. Furthermore, FcepsilonRI-dependent activation of Syk and phosphorylation of its downstream targets, including LAT, SLP76, PLCgamma1, and PLCgamma2 were impaired, however phosphorylation of the gamma-subunit of FcepsilonRI remained intact. We also found RhoH-Syk association that was greatly enhanced by active Fyn. Our results indicate that RhoH regulates FcepsilonRI signaling in mast cells by facilitating Syk activation, possibly as an adaptor molecule for Syk.
Collapse
Affiliation(s)
- Hiroyo Oda
- Department of Pathology, Research Institute, International Medical Center of Japan, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Signaling Chain Homooligomerization (SCHOOL) Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:121-63. [DOI: 10.1007/978-0-387-09789-3_12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Sly LM, Kalesnikoff J, Lam V, Wong D, Song C, Omeis S, Chan K, Lee CWK, Siraganian RP, Rivera J, Krystal G. IgE-induced mast cell survival requires the prolonged generation of reactive oxygen species. THE JOURNAL OF IMMUNOLOGY 2008; 181:3850-60. [PMID: 18768839 DOI: 10.4049/jimmunol.181.6.3850] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We show in this study that the ability of five different monomeric IgEs to enhance murine bone marrow-derived mast cell (BMMC) survival correlates with their ability to stimulate extracellular calcium (Ca(2+)) entry. However, whereas IgE+Ag more potently stimulates Ca(2+) entry, it does not enhance survival under our conditions. Exploring this further, we found that whereas all five monomeric IgEs stimulate a less robust Ca(2+) entry than IgE+Ag initially, they all trigger a more prolonged Ca(2+) influx, generation of reactive oxygen species (ROS), and ERK phosphorylation. These prolonged signaling events correlate with their survival-enhancing ability and positively feedback on each other to generate the prosurvival cytokine, IL-3. Interestingly, the prolonged ERK phosphorylation induced by IgE appears to be regulated by a MAPK phosphatase rather than MEK. IgE-induced ROS generation, unlike that triggered by IgE+Ag, is not mediated by 5-lipoxygenase. Moreover, ROS inhibitors, which block both IgE-induced ROS production and Ca(2+) influx, convert the prolonged ERK phosphorylation induced by IgE into the abbreviated phosphorylation pattern observed with IgE+Ag and prevent IL-3 generation. In support of the essential role that IgE-induced ROS plays in IgE-enhanced BMMC survival, we found the addition of H(2)O(2) to IgE+Ag-stimulated BMMCs leads to IL-3 secretion.
Collapse
Affiliation(s)
- Laura M Sly
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hunt J, Bracher MG, Shi J, Fleury S, Dombrowicz D, Gould HJ, Sutton BJ, Beavil AJ. Attenuation of IgE affinity for FcepsilonRI radically reduces the allergic response in vitro and in vivo. J Biol Chem 2008; 283:29882-7. [PMID: 18703499 DOI: 10.1074/jbc.m804742200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high affinity of IgE for its receptor, FcepsilonRI (K(a) approximately 10(10) M(-1)), is responsible for the persistence of mast cell sensitization. Cross-linking of FcepsilonRI-bound IgE by multivalent allergen leads to cellular activation and release of pro-inflammatory mediators responsible for the symptoms of allergic disease. We previously demonstrated that limiting the IgE-FcepsilonRI interaction to just one of the two Cepsilon3 domains in IgE-Fc, which together constitute the high affinity binding site, results in 1000-fold reduced affinity. Such attenuation, effected by a small molecule binding to part of the IgE:FcepsilonRI interface or a distant allosteric site, rather than complete blocking of the interaction, may represent a viable approach to the treatment of allergic disease. However, the degree to which the interaction would need to be disrupted is unclear, because the importance of high affinity for immediate hypersensitivity has never been investigated. We have incorporated into human IgE a mutation, R334S, previously characterized in IgE-Fc, which reduces its affinity for FcepsilonRI approximately 50-fold. We have compared the ability of wild type and R334S IgE to stimulate allergen-induced mast cell activation in vitro and in vivo. We confirmed the expected difference in affinity between wild type and mutant IgE for FcepsilonRI (approximately 50-fold) and found that, in vitro, mast cell degranulation was reduced proportionately. The effect in vivo was also marked, with a 75% reduction in the passive cutaneous anaphylaxis response. We have therefore demonstrated that the high affinity of IgE for FcepsilonRI is critical to the allergic response, and that even moderate attenuation of this affinity has a substantial effect in vivo.
Collapse
Affiliation(s)
- James Hunt
- King's College London, Medical Research Council, Randall Division of Cell and Molecular Biophysics, Guy's Campus, London SE1 1UL, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Rab5 is a small GTPase that regulates early endocytic events and is activated by RabGEF1/Rabex-5. Rabaptin-5, a Rab5 interacting protein, was identified as a protein critical for potentiating RabGEF1/Rabex-5's activation of Rab5. Using Rabaptin-5 shRNA knockdown, we show that Rabaptin-5 is dispensable for Rab5-dependent processes in intact mast cells, including high affinity IgE receptor (FcepsilonRI) internalization and endosome fusion. However, Rabaptin-5 deficiency markedly diminished expression of FcepsilonRI and beta1 integrin on the mast cell surface by diminishing receptor surface stability. This in turn reduced the ability of mast cells to bind IgE and significantly diminished both mast cell sensitivity to antigen (Ag)-induced mediator release and Ag-induced mast cell adhesion and migration. These findings show that, although dispensable for canonical Rab5 processes in mast cells, Rabaptin-5 importantly contributes to mast cell IgE-dependent immunologic function by enhancing mast cell receptor surface stability.
Collapse
|
36
|
Yamasaki S, Takase-Utsugi M, Ishikawa E, Sakuma M, Nishida K, Saito T, Kanagawa O. Selective impairment of FcepsilonRI-mediated allergic reaction in Gads-deficient mice. Int Immunol 2008; 20:1289-97. [PMID: 18664516 DOI: 10.1093/intimm/dxn085] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Gads is a Grb2-like adaptor protein expressed in hematopoietic cells. We demonstrated that mast cells from Gads(-/-) mice have selective functional defects. Bone marrow-derived mast cells from Gads(-/-) mice failed to induce Ca(2+) mobilization, degranulation and cytokine production upon cross-linking of FcepsilonRI. In vivo passive cutaneous anaphylaxis was also greatly impaired in Gads(-/-) mice. In contrast, Gads was dispensable for Toll-like receptor-mediated cytokine production in mast cells. Accordingly, mast cell-dependent resistance to acute peritoneal bacterial infection is not reduced in Gads(-/-) mice in vivo. Moreover, mature T and B cell responses and antibody production upon immunization were apparently normal in Gads(-/-) mice. Thus, inhibition of Gads in vivo would suppress the IgE-mediated allergic reaction with minimum adverse effects on both innate and acquired immune responses, and Gads could be an ideal target for the control of allergic responses.
Collapse
Affiliation(s)
- Sho Yamasaki
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Sivalenka RR, Sinha M, Jessberger R. SWAP-70 regulates mast cell FcepsilonRI-mediated signaling and anaphylaxis. Eur J Immunol 2008; 38:841-54. [PMID: 18236401 DOI: 10.1002/eji.200737597] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mast cells, perhaps best known by their ability to trigger allergic reactions after stimulation through the FcepsilonRI, express the unusual phosphatidylinositol 3-kinase (PI3K)-dependent, Rac-binding protein SWAP-70. Here, we show that the IgE-mediated passive cutaneous and the systemic anaphylactic responses are strongly reduced in SWAP-70(-/-) mice. Cultured SWAP-70(-/-) immature bone marrow mast cells (BMMC) are also impaired in FcepsilonRI-mediated degranulation, which can be restored by expression of exogenous wild-type SWAP-70, but less so if a phosphatidylinositol trisphosphate (PIP(3)) binding mutant is expressed. SWAP-70 itself supports inositol-3-phosphate and PIP(3) production, the latter indicating a potential feedback from SWAP-70 towards PI3K. FcepsilonRI-stimulated transcription and release of cytokines is controlled by SWAP-70. Key FcepsilonRI signal transduction events like activation of LAT by phosphorylation, activation of Akt/PKB and of p38 MAP kinase are reduced in SWAP-70(-/-) BMMC, but ERK is strongly hyperactivated. Some requirements for SWAP-70 were apparent only under limited-strength signaling conditions. We suggest that SWAP-70 defines a new element of efficient mast cell activation upon FcepsilonRI signaling, important for the control of mast cell-dependent anaphylaxis.
Collapse
Affiliation(s)
- Raja R Sivalenka
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
38
|
Yamasaki S, Saito T. Progress in allergy signal research on mast cells: signal regulation of multiple mast cell responses through FcepsilonRI. J Pharmacol Sci 2008; 106:336-40. [PMID: 18360089 DOI: 10.1254/jphs.fm0070251] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The crosslinking of FcepsilonRI by IgE and antigen (Ag) on mast cells initiates activation cascades that lead to allergic responses. Although it was thought that IgE binding to FcepsilonRI is a passive "sensitization", recent reports suggest that IgE actively promotes mast cell survival in the absence of Ag. However, it is largely unknown how these distinct responses are delivered through the same receptor, FcepsilonRI, depending on the types of stimli. As an underlying molecular mechanism for the generation of diverse responses through FcepsilonRI, we found that the quantity and the duration of the signal through the FcepsilonRI gamma chain (FcRgamma) determine different mast cell responses. Furthermore, FcRgamma-mediated sustained Erk activation is critical for IgE-induced mast cell survival through autocrine production of IL-3. Transmembrane adaptors LAT and NTAL contribute to the maintenance of prolonged Erk activation through membrane retention of the Ras-activating complex, Grb2-Sos. In this review, the signal regulation for the distinct responses of mast cells through FcepsilonRI are discussed.
Collapse
Affiliation(s)
- Sho Yamasaki
- Laboratory for Cell Signaling, Riken Research Center for Allergy and Immunology, Japan.
| | | |
Collapse
|
39
|
Yamasaki S, Ishikawa E, Sakuma M, Kanagawa O, Cheng AM, Malissen B, Saito T. LAT and NTAL mediate immunoglobulin E-induced sustained extracellular signal-regulated kinase activation critical for mast cell survival. Mol Cell Biol 2007; 27:4406-15. [PMID: 17420272 PMCID: PMC1900065 DOI: 10.1128/mcb.02109-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Immunoglobulin E (IgE) induces mast cell survival in the absence of antigen (Ag) through the high-affinity IgE receptor, Fcepsilon receptor I (FcepsilonRI). Although we have shown that protein tyrosine kinase Syk and sustained extracellular signal-regulated kinase (Erk) activation are required for IgE-induced mast cell survival, how Syk couples with sustained Erk activation is still unclear. Here, we report that the transmembrane adaptors LAT and NTAL are phosphorylated slowly upon IgE stimulation and that sustained but not transient Erk activation induced by IgE was inhibited in LAT(-/-) NTAL(-/-) bone marrow-derived mast cells (BMMCs). IgE-induced survival requires Ras activation, and both were impaired in LAT(-/-) NTAL(-/-) BMMCs. Sos was preferentially required for FcepsilonRI signals by IgE rather than IgE plus Ag. Survival impaired in LAT(-/-) NTAL(-/-) BMMCs was restored to levels comparable to those of the wild type by membrane-targeted Sos, which bypasses the Grb2-mediated membrane recruitment of Sos. The IgE-induced survival of BMMCs lacking Gads, an adaptor critical for the formation of the LAT-SLP-76-phospholipase Cgamma (PLCgamma) complex, was observed to be normal. IgE stimulation induced the membrane retention of Grb2-green fluorescent protein fusion proteins in wild-type but not LAT(-/-) NTAL(-/-) BMMCs. These results suggest that LAT and NTAL contribute to the maintenance of Erk activation and survival through the membrane retention of the Ras-activating complex Grb2-Sos and, further, that the LAT-Gads-SLP-76-PLCgamma and LAT/NTAL-Grb2-Sos pathways are differentially required for degranulation and survival, respectively.
Collapse
Affiliation(s)
- Sho Yamasaki
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Okayama Y, Kawakami T. Development, migration, and survival of mast cells. Immunol Res 2006; 34:97-115. [PMID: 16760571 PMCID: PMC1490026 DOI: 10.1385/ir:34:2:97] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/16/2022]
Abstract
Mast cells play a pivotal role in immediate hypersensitivity and chronic allergic reactions that can contribute to asthma, atopic dermatitis, and other allergic diseases. Because mast cell numbers are increased at sites of inflammation in allergic diseases, pharmacologic intervention into the proliferation, migration, and survival (or apoptosis) of mast cells could be a promising strategy for the management of allergic diseases. Mast cells differentiate from multipotent hematopoietic progenitors in the bone marrow. Stem cell factor (SCF) is a major chemotactic factor for mast cells and their progenitors. SCF also elicits cell-cell and cell-substratum adhesion, facilitates the proliferation, and sustains the survival, differentiation, and maturation, of mast cells. Therefore, many aspects of mast cell biology can be understood as interactions of mast cells and their precursors with SCF and factors that modulate their responses to SCF and its signaling pathways. Numerous factors known to have such a capacity include cytokines that are secreted from activated T cells and other immune cells including mast cells themselves. Recent studies also demonstrated that monomeric IgE binding to FcepsilonRI can enhance mast-cell survival. In this review we discuss the factors that regulate mast cell development, migration, and survival.
Collapse
Affiliation(s)
- Yoshimichi Okayama
- Research Unit for Allergy Transcriptome, Research Center for Allergy and Immunology, RIKEN Yokohama Institute, Yokohama, Japan
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA
| |
Collapse
|
41
|
Yu M, Tsai M, Tam SY, Jones C, Zehnder J, Galli SJ. Mast cells can promote the development of multiple features of chronic asthma in mice. J Clin Invest 2006; 116:1633-41. [PMID: 16710480 PMCID: PMC1462940 DOI: 10.1172/jci25702] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 04/11/2006] [Indexed: 01/18/2023] Open
Abstract
Bronchial asthma, the most prevalent cause of significant respiratory morbidity in the developed world, typically is a chronic disorder associated with long-term changes in the airways. We developed a mouse model of chronic asthma that results in markedly increased numbers of airway mast cells, enhanced airway responses to methacholine or antigen, chronic inflammation including infiltration with eosinophils and lymphocytes, airway epithelial goblet cell hyperplasia, enhanced expression of the mucin genes Muc5ac and Muc5b, and increased levels of lung collagen. Using mast cell-deficient (Kit(W-sh/W-sh) and/or Kit(W/W-v)) mice engrafted with FcRgamma+/+ or FcRgamma-/- mast cells, we found that mast cells were required for the full development of each of these features of the model. However, some features also were expressed, although usually at less than wild-type levels, in mice whose mast cells lacked FcRgamma and therefore could not be activated by either antigen- and IgE-dependent aggregation of Fc epsilonRI or the binding of antigen-IgG1 immune complexes to Fc gammaRIII. These findings demonstrate that mast cells can contribute to the development of multiple features of chronic asthma in mice and identify both Fc Rgamma-dependent and Fc Rgamma-independent pathways of mast cell activation as important for the expression of key features of this asthma model.
Collapse
Affiliation(s)
- Mang Yu
- Department of Pathology and
Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Mindy Tsai
- Department of Pathology and
Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - See-Ying Tam
- Department of Pathology and
Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Carol Jones
- Department of Pathology and
Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - James Zehnder
- Department of Pathology and
Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | - Stephen J. Galli
- Department of Pathology and
Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
42
|
Nigo YI, Yamashita M, Hirahara K, Shinnakasu R, Inami M, Kimura M, Hasegawa A, Kohno Y, Nakayama T. Regulation of allergic airway inflammation through Toll-like receptor 4-mediated modification of mast cell function. Proc Natl Acad Sci U S A 2006; 103:2286-91. [PMID: 16461458 PMCID: PMC1413725 DOI: 10.1073/pnas.0510685103] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In a mouse experimental asthma model, the administration of bacterial lipopolysaccharide (LPS), particularly at low doses, enhances the levels of ovalbumin (OVA)-induced eosinophilic airway inflammation. In an effort to clarify the cellular and molecular basis for the LPS effect, we demonstrate that the OVA-induced eosinophilic inflammation in the lung is dramatically increased by the administration of LPS in wild-type mice, whereas such increase was not observed in mast-cell-deficient mice or Toll-like receptor (TLR)4-deficient mice. Adoptive transfer of bone-marrow-derived mast cells (BMMCs) from wild-type, but not from TLR4-deficient, mice restored the increased eosinophilic inflammation in mast-cell-deficient mice. Wild-type BMMCs pretreated with LPS in vitro also reconstituted the eosinophilic inflammation. Moreover, in vitro analysis revealed that the treatment of BMMCs with LPS resulted in NF-kappaB activation, sustained up-regulation of GATA1 and -2 expression, and increased the capability to produce IL-5 and -13. Dramatic increases in the expression of IL-5 and -13 and Eotaxin 2 were detected in LPS-treated BMMCs after costimulation with LPS and IgE/Ag. Overexpression of GATA1, but not GATA2, in MC9 mast cells resulted in increased transcriptional activity of IL-4, -5, and -13. Furthermore, the levels of transcription of Th2 cytokines in BMMCs were decreased by the introduction of small interfering RNA for GATA1. Thus, mast cells appear to control allergic airway inflammation after their activation and modulation through TLR4-mediated induction of GATA1 and subsequent increase in Th2 cytokine production.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yoichi Kohno
- Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana Chuo-ku, Chiba 260-8670, Japan
| | - Toshinori Nakayama
- Departments of *Immunology and
- To whom correspondence should be addressed at:
Department of Immunology (H3), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. E-mail:
| |
Collapse
|
43
|
Kraft S, Novak N. Fc receptors as determinants of allergic reactions. Trends Immunol 2006; 27:88-95. [PMID: 16324885 DOI: 10.1016/j.it.2005.11.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Revised: 10/24/2005] [Accepted: 11/17/2005] [Indexed: 11/27/2022]
Abstract
Activation of the high-affinity receptor for IgE (FcepsilonRI) on allergic effector cells induces a multitude of positive signals via immunoreceptor tyrosine-based activation motifs, which leads to the rapid manifestation of allergic inflammatory reactions. As a counterbalance, the coaggregation of the IgG receptor FcgammaRIIB mediates inhibitory signals via immunoreceptor tyrosine-based inhibition motifs. Advances in the positive and negative regulation of Fc receptor expression and signaling have shed light on the role of Fc receptors in our immune system, indicating them to be bifunctional, inhibitory and activating structures. Based on these findings, exciting new therapeutic strategies have been developed, such as the use of chimeric fusion proteins, which concomitantly activate FcepsilonRI and FcgammaRIIB. These new approaches successfully take advantage of the bivalent character of Fc receptors and pave the way for innovative strategies to modulate allergic immune reactions.
Collapse
Affiliation(s)
- Stefan Kraft
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
44
|
Abstract
Cell activation results from the transient displacement of an active balance between positive and negative signaling. This displacement depends in part on the engagement of cell surface receptors by extracellular ligands. Among these are receptors for the Fc portion of immunoglobulins (FcRs). FcRs are widely expressed by cells of hematopoietic origin. When binding antibodies, FcRs provide these cells with immunoreceptors capable of triggering numerous biological responses in response to a specific antigen. FcR-dependent cell activation is regulated by negative signals which are generated together with positive signals within signalosomes that form upon FcR engagement. Many molecules involved in positive signaling, including the FcRbeta subunit, the src kinase lyn, the cytosolic adapter Grb2, and the transmembrane adapters LAT and NTAL, are indeed also involved in negative signaling. A major player in negative regulation of FcR signaling is the inositol 5-phosphatase SHIP1. Several layers of negative regulation operate sequentially as FcRs are engaged by extracellular ligands with an increasing valency. A background protein tyrosine phosphatase-dependent negative regulation maintains cells in a "resting" state. SHIP1-dependent negative regulation can be detected as soon as high-affinity FcRs are occupied by antibodies in the absence of antigen. It increases when activating FcRs are engaged by multivalent ligands and, further, when FcR aggregation increases, accounting for the bell-shaped dose-response curve observed in excess of ligand. Finally, F-actin skeleton-associated high-molecular weight SHIP1, recruited to phosphorylated ITIMs, concentrates in signaling complexes when activating FcRs are coengaged with inhibitory FcRs by immune complexes. Based on these data, activating and inhibitory FcRs could be used for new therapeutic approaches to immune disorders.
Collapse
Affiliation(s)
- Marc Daëron
- Unité d'Allergologie Moléculaire et Cellulaire, Département d'Immunologie, Institut Pasteur, Paris, France
| | | |
Collapse
|
45
|
Yamasaki S, Ishikawa E, Sakuma M, Ogata K, Sakata-Sogawa K, Hiroshima M, Wiest DL, Tokunaga M, Saito T. Mechanistic basis of pre–T cell receptor–mediated autonomous signaling critical for thymocyte development. Nat Immunol 2005; 7:67-75. [PMID: 16327787 DOI: 10.1038/ni1290] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 10/13/2005] [Indexed: 01/08/2023]
Abstract
The pre-T cell receptor (TCR) is crucial for early T cell development and is proposed to function in a ligand-independent way. However, the molecular mechanism underlying the autonomous signals remains elusive. Here we show that the pre-TCR complex spontaneously formed oligomers. Specific charged residues in the extracellular domain of the pre-TCR alpha-chain mediated formation of the oligomers in vitro. Alteration of these residues eliminated the ability of the pre-TCR alpha-chain to support pre-TCR signaling in vivo. Dimerization but not raft localization of CD3epsilon was sufficient to simulate pre-TCR function and promote beta-selection. These results suggest that the pre-TCR complex can deliver its signal autonomously through oligomerization of the pre-TCR alpha-chain mediated by charged residues.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Differentiation/immunology
- Hematopoietic Stem Cells/cytology
- Humans
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Microscopy, Confocal
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/immunology
- T-Lymphocytes/cytology
Collapse
Affiliation(s)
- Sho Yamasaki
- Laboratory for Cell Signaling, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bruhns P, Frémont S, Daëron M. Regulation of allergy by Fc receptors. Curr Opin Immunol 2005; 17:662-9. [PMID: 16214316 DOI: 10.1016/j.coi.2005.09.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 09/19/2005] [Indexed: 12/26/2022]
Abstract
The aggregation of high-affinity IgE receptors (FcepsilonRI) on mast cells and basophils has long been known as the critical event that initiates allergic reactions. Monomeric IgE was recently found to induce a variety of effects when binding to FcepsilonRI. Upregulation of FcepsilonRI only requires binding, whereas other responses require FcepsilonRI aggregation. Interestingly, FcepsilonRI aggregation has recently been understood to generate a mixture of positive and negative intracellular signals. Mast cells and basophils also express low-affinity and, under specific conditions, high-affinity IgG receptors. When co-engaging these receptors with FcepsilonRI, IgG antibodies can amplify or dampen IgE-induced mast cell activation. On the basis of these findings, it has been proposed that FcRs can be used as targets and/or tools for new therapeutic approaches to allergies.
Collapse
Affiliation(s)
- Pierre Bruhns
- Unité d'Allergologie Moléculaire et Cellulaire, Département d'Immunologie, Institut Pasteur, 25 rue du Docteur Roux, 75015 Paris, France
| | | | | |
Collapse
|
47
|
Gosse JA, Wagenknecht-Wiesner A, Holowka D, Baird B. Transmembrane sequences are determinants of immunoreceptor signaling. THE JOURNAL OF IMMUNOLOGY 2005; 175:2123-31. [PMID: 16081778 DOI: 10.4049/jimmunol.175.4.2123] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
To investigate structural features critical for signal initiation by Ag-stimulated immunoreceptors, we constructed a series of single-chain chimeric receptors that incorporate extracellular human Fc epsilonRIalpha for IgE binding, a variable transmembrane (TM) segment, and the ITAM-containing cytoplasmic tail of the TCR zeta-chain. We find that functional responses mediated by these receptors are strongly dependent on their TM sequences, and these responses are highly correlated to cross-link-dependent association with detergent-resistant lipid rafts. For one chimera designated alpha Fzeta, mutation of a TM cysteine abolishes robust signaling and lipid raft association. In addition, TM disulfide-mediated oligomerization of another chimeric receptor, alpha zetazeta, enhances signaling. These results demonstrate an important role for TM segments in immunoreceptor signaling and a strong correspondence between strength of signaling and cross-link-dependent partitioning into ordered membrane domains.
Collapse
Affiliation(s)
- Julie A Gosse
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
48
|
Kawakami T, Kitaura J. Mast cell survival and activation by IgE in the absence of antigen: a consideration of the biologic mechanisms and relevance. THE JOURNAL OF IMMUNOLOGY 2005; 175:4167-73. [PMID: 16177053 PMCID: PMC1415266 DOI: 10.4049/jimmunol.175.7.4167] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mast cells are not only major effector cells in allergy and host defense against parasites and bacteria but also important cellular components in other immune responses. Recent studies on the effects of monomeric IgE on mast cell survival and activation have made an impact on our view of the IgE binding to its high-affinity receptors, Fc epsilonRI. Traditionally, IgE binding to Fc epsilonRI has been considered as a passive action of "sensitization" before receptor aggregation by Ag. However, recent studies indicate that at high concentrations some monoclonal IgEs have effects on mast cells similar to or identical to those induced by IgE+Ag stimulation. These effects may be due to induction of Fc epsilonRI aggregation by these IgEs in the absence of Ag. This review will synthesize recent findings of the heterogeneity of IgEs in their ability to induce survival and activation events, their mechanisms, the potential in vivo significance of IgE-Fc epsilonRI interactions, and the implications of the mouse studies to human diseases.
Collapse
Affiliation(s)
- Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA.
| | | |
Collapse
|
49
|
Current World Literature. Curr Opin Allergy Clin Immunol 2005. [DOI: 10.1097/01.all.0000175939.68435.7e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Kitaura J, Eto K, Kinoshita T, Kawakami Y, Leitges M, Lowell CA, Kawakami T. Regulation of highly cytokinergic IgE-induced mast cell adhesion by Src, Syk, Tec, and protein kinase C family kinases. THE JOURNAL OF IMMUNOLOGY 2005; 174:4495-504. [PMID: 15814670 DOI: 10.4049/jimmunol.174.8.4495] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mast cells play a critical role in IgE-dependent immediate hypersensitivity. Recent studies have shown that, contrary to the traditional view, binding of monomeric IgE to Fc epsilon RI results in a number of biological outcomes in mast cells, including survival. However, IgE molecules display heterogeneity in inducing cytokine production; highly cytokinergic (HC) IgEs cause extensive Fc epsilon RI aggregation, which leads to potent enhancement of survival and other activation events, whereas poorly cytokinergic (PC) IgEs can do so inefficiently. The present study demonstrates that HC, but not PC, IgEs can efficiently induce adhesion and spreading of mouse mast cells on fibronectin-coated plates in slow and sustained kinetics. HC IgE-induced adhesion through beta1 and beta7 integrins promotes survival, IL-6 production, and DNA synthesis. Importantly, we have identified Lyn and Syk as requisite tyrosine kinases and Hck, Btk, and protein kinase C theta as contributory kinases in HC IgE-induced adhesion and spreading, whereas protein kinase C epsilon plays a negative role. Consistent with these results, Lyn, Syk, and Btk are activated in HC IgE-stimulated cells in a slower but more sustained manner, compared with cells stimulated with IgE and Ag. Thus, binding of HC IgEs to Fc epsilon RI induces adhesion of mast cells to fibronectin by modulating cellular activation signals in a unique fashion.
Collapse
Affiliation(s)
- Jiro Kitaura
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, CA 92121, USA
| | | | | | | | | | | | | |
Collapse
|