1
|
Leinung N, Mentrup T, Hodzic S, Schröder B. Molecular and functional in vivo characterisation of murine Dectin-1 isoforms. Eur J Immunol 2024; 54:e2451092. [PMID: 39194380 DOI: 10.1002/eji.202451092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Dectin-1 is a C-type lectin-receptor involved in sensing fungi by innate immune cells. Encoded by the Clec7a gene, Dectin-1 exists in two major splice isoforms, Dectin-1a and 1b, which differ in the presence of a membrane-proximal stalk domain. As reported previously, this domain determines degradative routes for Dectin-1a and 1b leading to the generation of a stable N-terminal fragment exclusively from Dectin-1a. Here, we narrow down the responsible part of the stalk and demonstrate the stabilisation of the Dectin-1a N-terminal fragment in tetraspanin-enriched microdomains. C57BL/6 and BALB/c mice show divergent Dectin-1 isoform expression patterns, which are caused by a single nucleotide polymorphism in exon 3 of the Clec7a gene, leading to a non-sense Dectin-1a mRNA in C57BL/6 mice. Using backcrossing, we generated mice with the C57BL/6 Clec7a allele on a BALB/c background and compared these to the parental strains. Expression of the C57BL/6 allele leads to the exclusive presence of the Dectin-1b protein. Furthermore, it was associated with higher Dectin-1 mRNA expression, but less Dectin-1 at the cell surface according to flow cytometry. In neutrophils, this altered ROS production induced by Dectin-1 model ligands, while cellular responses in macrophages and dendritic cells were not significantly influenced by the Dectin-1 isoform pattern.
Collapse
Affiliation(s)
- Nadja Leinung
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Torben Mentrup
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sajma Hodzic
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bernd Schröder
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Geiselhöringer AL, Kolland D, Patt AJ, Hammann L, Köhler A, Kreft L, Wichmann N, Hils M, Ruedl C, Riemann M, Biedermann T, Anz D, Diefenbach A, Voehringer D, Schmidt-Weber CB, Straub T, Pasztoi M, Ohnmacht C. Dominant immune tolerance in the intestinal tract imposed by RelB-dependent migratory dendritic cells regulates protective type 2 immunity. Nat Commun 2024; 15:9143. [PMID: 39443450 PMCID: PMC11500181 DOI: 10.1038/s41467-024-53112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
Dendritic cells (DCs) are crucial for initiating protective immune responses and have also been implicated in the generation and regulation of Foxp3+ regulatory T cells (Treg cells). Here, we show that in the lamina propria of the small intestine, the alternative NF-κB family member RelB is necessary for the differentiation of cryptopatch and isolated lymphoid follicle-associated DCs (CIA-DCs). Moreover, single-cell RNA sequencing reveals a RelB-dependent signature in migratory DCs in mesenteric lymph nodes favoring DC-Treg cell interaction including elevated expression and release of the chemokine CCL22 from RelB-deficient conventional DCs (cDCs). In line with the key role of CCL22 to facilitate DC-Treg cell interaction, RelB-deficient DCs have a selective advantage to interact with Treg cells in an antigen-specific manner. In addition, DC-specific RelB knockout animals show increased total Foxp3+ Treg cell numbers irrespective of inflammatory status. Consequently, DC-specific RelB knockout animals fail to mount protective Th2-dominated immune responses in the intestine after infection with Heligmosomoides polygyrus bakeri. Thus, RelB expression in cDCs acts as a rheostat to establish a tolerogenic set point that is maintained even during strong type 2 immune conditions and thereby is a key regulator of intestinal homeostasis.
Collapse
Affiliation(s)
- Anna-Lena Geiselhöringer
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Daphne Kolland
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Arisha Johanna Patt
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Linda Hammann
- Division of Clinical Pharmacology, LMU University Hospital, LMU, Munich, Germany
| | - Amelie Köhler
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Luisa Kreft
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
- Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15, 72076, Tuebingen, Germany
| | - Nina Wichmann
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Miriam Hils
- Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Christiane Ruedl
- School of Biological Sciences, Nanyang Technological University Singapore, Singapore, Singapore
| | - Marc Riemann
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy Biederstein, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - David Anz
- Division of Clinical Pharmacology, LMU University Hospital, LMU, Munich, Germany
- Department of Medicine II, LMU University Hospital, LMU, Munich, Germany
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, 12203, Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum, an Institute of the Leibniz Association, 10117, Berlin, Germany
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, 91054, Germany
| | - Carsten B Schmidt-Weber
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
- Member of the German Center of Lung Research (DZL), Partner Site Munich, Munich, Germany
| | - Tobias Straub
- Bioinformatics Core Unit, Biomedical Center, Ludwig-Maximilians-University, 82152, Planegg, Germany
| | - Maria Pasztoi
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany.
| |
Collapse
|
3
|
Malla R, Marni R, Chakraborty A. Exploring the role of CD151 in the tumor immune microenvironment: Therapeutic and clinical perspectives. Biochim Biophys Acta Rev Cancer 2023; 1878:188898. [PMID: 37094754 DOI: 10.1016/j.bbcan.2023.188898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023]
Abstract
CD151 is a transmembrane protein implicated in tumor progression and has been shown to regulate various cellular and molecular mechanisms contributing to malignancy. More recently, the role of CD151 in the tumor immune microenvironment (TIME) has gained attention as a potential target for cancer therapy. This review aims to explore the role of CD151 in the TIME, focusing on the therapeutic and clinical perspectives. The role of CD151 in regulating the interactions between tumor cells and the immune system will be discussed, along with the current understanding of the molecular mechanisms underlying these interactions. The current state of the development of CD151-targeted therapies and the potential clinical applications of these therapies will also be reviewed. This review provides an overview of the current knowledge on the role of CD151 in the TIME and highlights the potential of CD151 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Dept of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India.
| | - Rakshmita Marni
- Cancer Biology Laboratory, Dept of Biochemistry and Bioinformatics, GIS, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | | |
Collapse
|
4
|
Horbay R, Hamraghani A, Ermini L, Holcik S, Beug ST, Yeganeh B. Role of Ceramides and Lysosomes in Extracellular Vesicle Biogenesis, Cargo Sorting and Release. Int J Mol Sci 2022; 23:ijms232315317. [PMID: 36499644 PMCID: PMC9735581 DOI: 10.3390/ijms232315317] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cells have the ability to communicate with their immediate and distant neighbors through the release of extracellular vesicles (EVs). EVs facilitate intercellular signaling through the packaging of specific cargo in all type of cells, and perturbations of EV biogenesis, sorting, release and uptake is the basis of a number of disorders. In this review, we summarize recent advances of the complex roles of the sphingolipid ceramide and lysosomes in the journey of EV biogenesis to uptake.
Collapse
Affiliation(s)
- Rostyslav Horbay
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Ali Hamraghani
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Leonardo Ermini
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Sophie Holcik
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Shawn T. Beug
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centre for Infection, Immunity and Inflammation (CI3), University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8L1, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| | - Behzad Yeganeh
- Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Correspondence: (S.T.B.); or (B.Y.); Tel.: +1-613-738-4176 (B.Y.); Fax: +1-613-738-4847 (S.T.B. & B.Y.)
| |
Collapse
|
5
|
Gutierrez BC, Ancarola ME, Volpato-Rossi I, Marcilla A, Ramirez MI, Rosenzvit MC, Cucher M, Poncini CV. Extracellular vesicles from Trypanosoma cruzi-dendritic cell interaction show modulatory properties and confer resistance to lethal infection as a cell-free based therapy strategy. Front Cell Infect Microbiol 2022; 12:980817. [PMID: 36467728 PMCID: PMC9710384 DOI: 10.3389/fcimb.2022.980817] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/20/2022] [Indexed: 08/10/2023] Open
Abstract
Extracellular vesicles (EVs) include a heterogeneous group of particles. Microvesicles, apoptotic bodies and exosomes are the most characterized vesicles. They can be distinguished by their size, morphology, origin and molecular composition. To date, increasing studies demonstrate that EVs mediate intercellular communication. EVs reach considerable interest in the scientific community due to their role in diverse processes including antigen-presentation, stimulation of anti-tumoral immune responses, tolerogenic or inflammatory effects. In pathogens, EV shedding is well described in fungi, bacteria, protozoan and helminths parasites. For Trypanosoma cruzi EV liberation and protein composition was previously described. Dendritic cells (DCs), among other cells, are key players promoting the immune response against pathogens and also maintaining self-tolerance. In previous reports we have demonstrate that T. cruzi downregulates DCs immunogenicity in vitro and in vivo. Here we analyze EVs from the in vitro interaction between blood circulating trypomastigotes (Tp) and bone-marrow-derived DCs. We found that Tp incremented the number and the size of EVs in cultures with DCs. EVs displayed some exosome markers and intracellular RNA. Protein analysis demonstrated that the parasite changes the DC protein-EV profile. We observed that EVs from the interaction of Tp-DCs were easily captured by unstimulated-DCs in comparison with EVs from DCs cultured without the parasite, and also modified the activation status of LPS-stimulated DCs. Noteworthy, we found protection in animals treated with EVs-DCs+Tp and challenged with T. cruzi lethal infection. Our goal is to go deep into the molecular characterization of EVs from the DCs-Tp interaction, in order to identify mediators for therapeutic purposes.
Collapse
Affiliation(s)
- Brenda Celeste Gutierrez
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Maria Eugenia Ancarola
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Izadora Volpato-Rossi
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Paraná, Brazil
| | - Antonio Marcilla
- Departamento de Farmacia y Tecnología Farmacéutica y Parasitología, Universitat de Valencia, Valencia, Spain
| | - Marcel Ivan Ramirez
- Programa de Pós-graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Instituto Carlos Chagas - Fiocruz Paraná, Curitiba, Paraná, Brazil
| | - Mara Cecilia Rosenzvit
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Carolina Verónica Poncini
- Instituto de Investigaciones en Microbiología y Parasitología Médicas (IMPaM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| |
Collapse
|
6
|
Estupiñán-Moreno E, Ortiz-Fernández L, Li T, Hernández-Rodríguez J, Ciudad L, Andrés-León E, Terron-Camero LC, Prieto-González S, Espígol-Frigolé G, Cid MC, Márquez A, Ballestar E, Martín J. Methylome and transcriptome profiling of giant cell arteritis monocytes reveals novel pathways involved in disease pathogenesis and molecular response to glucocorticoids. Ann Rheum Dis 2022; 81:1290-1300. [PMID: 35705375 PMCID: PMC9380516 DOI: 10.1136/annrheumdis-2022-222156] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/17/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Giant cell arteritis (GCA) is a complex systemic vasculitis mediated by the interplay between both genetic and epigenetic factors. Monocytes are crucial players of the inflammation occurring in GCA. Therefore, characterisation of the monocyte methylome and transcriptome in GCA would be helpful to better understand disease pathogenesis. METHODS We performed an integrated epigenome-and transcriptome-wide association study in CD14+ monocytes from 82 patients with GCA, cross-sectionally classified into three different clinical statuses (active, in remission with or without glucocorticoid (GC) treatment), and 31 healthy controls. RESULTS We identified a global methylation and gene expression dysregulation in GCA monocytes. Specifically, monocytes from active patients showed a more proinflammatory phenotype compared with healthy controls and patients in remission. In addition to inflammatory pathways known to be involved in active GCA, such as response to IL-6 and IL-1, we identified response to IL-11 as a new pathway potentially implicated in GCA. Furthermore, monocytes from patients in remission with treatment showed downregulation of genes involved in inflammatory processes as well as overexpression of GC receptor-target genes. Finally, we identified changes in DNA methylation correlating with alterations in expression levels of genes with a potential role in GCA pathogenesis, such as ITGA7 and CD63, as well as genes mediating the molecular response to GC, including FKBP5, ETS2, ZBTB16 and ADAMTS2. CONCLUSION Our results revealed profound alterations in the methylation and transcriptomic profiles of monocytes from GCA patients, uncovering novel genes and pathways involved in GCA pathogenesis and in the molecular response to GC treatment.
Collapse
Affiliation(s)
- Elkyn Estupiñán-Moreno
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Lourdes Ortiz-Fernández
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Tianlu Li
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - Jose Hernández-Rodríguez
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Laura Ciudad
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - Eduardo Andrés-León
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Laura Carmen Terron-Camero
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| | - Sergio Prieto-González
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Georgina Espígol-Frigolé
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Cinta Cid
- Department of Autoimmune Diseases, Hospital Clinic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Ana Márquez
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
- Systemic Autoimmune Diseases Unit, Hospital Clinico San Cecilio, Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, Granada, Spain
| | - Esteban Ballestar
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Badalona, Barcelona, Spain
| | - Javier Martín
- Institute of Parasitology and Biomedicine López-Neyra (IPBLN), Spanish National Research Council (CSIC), Granada, Spain
| |
Collapse
|
7
|
Mata-Martínez P, Bergón-Gutiérrez M, del Fresno C. Dectin-1 Signaling Update: New Perspectives for Trained Immunity. Front Immunol 2022; 13:812148. [PMID: 35237264 PMCID: PMC8882614 DOI: 10.3389/fimmu.2022.812148] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
The C-type lectin receptor Dectin-1 was originally described as the β-glucan receptor expressed in myeloid cells, with crucial functions in antifungal responses. However, over time, different ligands both of microbial-derived and endogenous origin have been shown to be recognized by Dectin-1. The outcomes of this recognition are diverse, including pro-inflammatory responses such as cytokine production, reactive oxygen species generation and phagocytosis. Nonetheless, tolerant responses have been also attributed to Dectin-1, depending on the specific ligand engaged. Dectin-1 recognition of their ligands triggers a plethora of downstream signaling pathways, with complex interrelationships. These signaling routes can be modulated by diverse factors such as phosphatases or tetraspanins, resulting either in pro-inflammatory or regulatory responses. Since its first depiction, Dectin-1 has recently gained a renewed attention due to its role in the induction of trained immunity. This process of long-term memory of innate immune cells can be triggered by β-glucans, and Dectin-1 is crucial for its initiation. The main signaling pathways involved in this process have been described, although the understanding of the above-mentioned complexity in the β-glucan-induced trained immunity is still scarce. In here, we have reviewed and updated all these factors related to the biology of Dectin-1, highlighting the gaps that deserve further research. We believe on the relevance to fully understand how this receptor works, and therefore, how we could harness it in different pathological conditions as diverse as fungal infections, autoimmunity, or cancer.
Collapse
Affiliation(s)
| | | | - Carlos del Fresno
- Immune response and Immunomodulation Group, Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| |
Collapse
|
8
|
Yu N, Liu X, Shi D, Bai L, Niu T, Liu Y. CD63 and C3AR1: The Potential Molecular Targets in the Progression of Septic Shock. Int J Gen Med 2022; 15:711-728. [PMID: 35082520 PMCID: PMC8784317 DOI: 10.2147/ijgm.s338486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/16/2021] [Indexed: 11/23/2022] Open
Abstract
Background The molecular mechanism of septic shock is unknown. We studied the pathogenesis of septic shock and provide a novel strategy for treating and improving the prognosis of septic shock. Methods Gluten-Sensitive Enteropathy (GSE) 131761, GSE119217, GSE26378 datasets were downloaded from the Gene Expression Omnibus (GEO) database. The three datasets included 204 septic shock samples and 48 normal samples. The R packages “affy” and “limma” were employed to identify the differently expressed genes (DEGs) between septic shock and normal samples. Weighted gene co-expression network analysis (WGCNA) was performed to search for modules that play an important role in septic shock. Functional annotation of DEGs and construction and analysis of hub genes were used to explore the pathomechanism of septic shock. The receiver operating characteristic (ROC) curves were obtained using MedCalc software. The drug molecules that could regulate hub genes associated with septic shock were searched for in the CMap database. An animal model of septic shock was constructed to analyze the role of these hub genes. Results The merged series contained 321 up-regulated and 255 down-regulated genes. WGCNA showed the brown module had the highest correlation with the status of septic shock. GO and KEGG enrichment analysis results of the brown module genes showed they were mainly enriched in “leukocyte differentiation”, “Ras-proximate-1 (Rap1) signaling pathway”, and “cytokine–cytokine receptor interaction”. Through construction and analysis of a protein–protein interaction (PPI) network, cluster of differentiation 63 (CD63) and complement component 3a receptor 1 (C3AR1) were identified as hub genes of septic shock. The area under curve (AUC) of C3AR1 for the septic shock is 0.772 (P<0.001), and the AUC of CD63 for the septic shock is 0.871 (P<0.001). Small molecule drugs were filtered by the number of instances (n>3) and P-values <0.05, including “monensin”, “verteporfin”, “ikarugamycin”, “tetrahydroalstonine”, “cefamandole”, “etoposide”. In the animal model, the relative expression levels of interleukin-6 (IL-6), Tumor Necrosis Factor-α (TNF-α), and lactic acid were significantly higher in the septic shock group compared with the control group. Results of Real Time Quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) analysis for CD63 and C3AR1 showed that their relative expression levels were significantly lower in the septic shock group compared with the control group (P<0.05). Conclusion CD63 and C3AR1 are significant hub genes of septic shock and may represent potential molecular targets for future studies of septic shock.
Collapse
Affiliation(s)
- Ning Yu
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Xuefang Liu
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Dandan Shi
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Long Bai
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Tianfu Niu
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
| | - Ya Liu
- Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China
- Correspondence: Ya Liu, Department of Anaesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050004, People’s Republic of China, Email ;
| |
Collapse
|
9
|
Abstract
CD63 is one of the tetraspanin protein family members that is ubiquitously expressed on exosomes and is involved in the signal transduction of various types of immune cells. It may thus contribute to immunometabolic mechanisms of cellular and organ dysfunction in sepsis. Nonetheless, the association of exosomal CD63 with the severity and mortality of sepsis is not well known. Therefore, in the present study, the overall levels of exosomal CD63 were evaluated to ascertain whether they were associated with organ failure and mortality in patients with sepsis. Exosomal CD63 was measured from prospectively enrolled critically-ill patients with sepsis (n = 217) and healthy control (n = 20). To detect and quantify exosomes in plasma, a commercially available enzyme-linked immunosorbent assay kit was used according to the manufacturer's protocol. The total number of exosomal CD63 was determined by quantifying the immunoreactive CD63. The association between plasma levels of exosomal CD63 and sequential organ failure assessment (SOFA) score was assessed by a linear regression method. The best cut-off level of exosomal CD63 for 28-day mortality prediction was determined by Youden's index. Among 217 patients with sepsis, 143 (66%) patients were diagnosed with septic shock. Trends of increased exosomal CD63 levels were observed in control, sepsis, and septic-shock groups (6.6 µg/mL vs. 42 µg/mL vs. 90 µg/mL, p < 0.001). A positive correlation between exosomal CD63 and SOFA scores was observed in patients with sepsis (r value = 0.35). When patients were divided into two groups according to the best cut-off level, the group with higher exosomal CD63 levels (more than 126 µg/mL) was significantly associated with 28-day and in-hospital mortality. Moreover, the Kaplan-Meier survival method showed a significant difference in 90-day survival between patients with high- and low-exosomal CD63 levels (log-rank p = 0.005). Elevated levels of exosomal CD63 were associated with the severity of organ failure and predictive of mortality in critically ill patients with sepsis.
Collapse
|
10
|
Liyanage DS, Omeka WKM, Yang H, Lim C, Kwon H, Choi CY, Lee J. Expression profiling, immune functions, and molecular characteristics of the tetraspanin molecule CD63 from Amphiprion clarkii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104168. [PMID: 34118281 DOI: 10.1016/j.dci.2021.104168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/05/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
CD63, a member of the tetraspanin family, is involved in the activation of immune cells, antiviral immunity, and signal transduction. The economically important anemonefishes Amphiprion sp. often face disease outbreaks, and the present study aimed to characterize CD63 in Amphiprion clarkii (denoted AcCD63) to enable better disease management. The in-silico analysis revealed that the AcCD63 transcript is 723 bp long and encodes 240 amino acids. The 26.2 kDa protein has a theoretical isoelectric point of 5.51. Similar to other tetraspanins, AcCD63 consists of four domains: short N-/C-terminal domains and small/large extracellular loops. Pairwise sequence alignment revealed that AcCD63 has the highest identity (100%) and similarity (99.2%) with CD63 from Amphiprion ocellaris. Multiple sequence alignment identified a conserved tetraspanin CCG motif, PXSCC motif, and C-terminal lysosome-targeting GYEVM motif. The quantitative polymerase chain reaction analysis showed that AcCD63 was highly expressed in the spleen and head kidney tissue, with low levels of expression in the liver. Temporal expression patterns of AcCD63 were measured in the head kidney and blood tissue after injection of polyinosinic:polycytidylic acid (poly (I:C)), lipolysacharides (LPS), or Vibrio harveyi (V. harveyi). AcCD63 was upregulated at 12 h post-injection with poly (I:C) or V. harveyi, and at 24 h post-injection with all stimulants in the head kidney. At 24 h post-injection, poly (I:C) and LPS upregulated, whereas V. harveyi downregulated AcCD63 expression in the blood. All viral hemorrhagic septicemia virus transcripts (M, G, N, RdRp, P, and NV) were downregulated in response to AcCD63 overexpression, and removal of viral particles occurred via the involvement of AcCD63. The expression of antiviral genes MX dynamin-like GTPase 1, interferon regulatory factor 3, interferon-stimulated gene 15, interferon-gamma, and viperin in CD63-overexpressing fathead minnow cells was downregulated. Collectively, our findings suggest that AcCD63 is an immunologically important gene involved in the A. clarkii pathogen stress response.
Collapse
Affiliation(s)
- D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hyukjae Kwon
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Cheol Young Choi
- Division of Marine Bioscience, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
11
|
Gao Y, Li H, Li Z, Xie L, Liu X, Huang Z, Chen B, Lin X, Wang X, Zheng Y, Su W. Single-Cell Analysis Reveals the Heterogeneity of Monocyte-Derived and Peripheral Type-2 Conventional Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:837-848. [PMID: 34282004 DOI: 10.4049/jimmunol.2100094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/24/2021] [Indexed: 01/13/2023]
Abstract
Dendritic cells (DCs) are critical for pathogen recognition and Ag processing/presentation. Human monocyte-derived DCs (moDCs) have been extensively used in experimental studies and DC-based immunotherapy approaches. However, the extent of human moDC and peripheral DCs heterogeneity and their interrelationship remain elusive. In this study, we performed single-cell RNA sequencing of human moDCs and blood DCs. We identified seven subtypes within moDCs: five corresponded to type 2 conventional DCs (cDC2s), and the other two were CLEC10A+CD127+ cells with no resemblance to any peripheral DC subpopulations characterized to date. Moreover, we defined five similar subtypes in human cDC2s, revealed the potential differentiation trajectory among them, and unveiled the transcriptomic differences between moDCs and cDC2s. We further studied the transcriptomic changes of each moDC subtype during maturation, demonstrating SLAMF7 and IL15RA as maturation markers and CLEC10A and SIGLEC10 as markers for immature DCs. These findings will enable more accurate functional/developmental analyses of human cDC2s and moDCs.
Collapse
Affiliation(s)
- Yuehan Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - He Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhaohuai Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Lihui Xie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiuxing Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhaohao Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Binyao Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xianchai Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xianggui Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, China; and .,Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Yingfeng Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China;
| | - Wenru Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China;
| |
Collapse
|
12
|
Kalia N, Singh J, Kaur M. The role of dectin-1 in health and disease. Immunobiology 2021; 226:152071. [PMID: 33588306 DOI: 10.1016/j.imbio.2021.152071] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/07/2021] [Accepted: 01/31/2021] [Indexed: 02/08/2023]
Abstract
Dendritic cell-associated C-type lectin-1 (Dectin-1), also known as β-glucan receptor is an emerging pattern recognition receptor (PRR) which belongs to the family of C-type lectin receptor (CLR). This CLR identifies ligands independently of Ca2+ and is majorly involved in coupling of innate with adaptive immunity. Formerly, Dectin-1 was best known for its role in anti-fungal defense only. However, recent explorations suggested its wider role in defense against variety of infectious diseases caused by pathogens including bacteria, parasites and viruses. In fact, Dectin-1 signaling axis has been suggested to be targeted as an effective therapeutic strategy for cancers. Dectin-1 has also been elucidated ascetically in the heart, respiratory, intestinal, neurological and developmental disorders. Being a defensive PRR, Dectin-1 results in optimal immune responses in collaboration with other PRRs, but the overall evaluation reinforces the hypothesis of disease development on dis-regulation of Dectin-1 activity. This underscores the impact of Dectin-1 polymorphisms in modulating protein expression and generation of non-optimal immune responses through defective collaborations, further underlining their therapeutic potential. To add on, Dectin-1 influence autoimmunity and severe inflammation accredited to recognition of self T cells and apoptotic cells through unknown ligands. Few reports have also testified its redundant role in infections, which makes it a complicated molecule to be fully resolved. Thus, Dectin-1 is a hub that runs a complex collaborative network, whose interactive wire connections to different PRRs are still pending to be revealed. Alternatively, so far focus of almost all the researchers was the two major cell surface isoforms of Dectin-1, despite the fact that its soluble functional intracellular isoform (Dectin-1E) has already been dissected but is indefinable. Therefore, this review intensely recommends the need of future research to resolve the un-resolved and treasure the comprehensive role of Dectin-1 in different clinical outcomes, before determining its therapeutic prospective.
Collapse
Affiliation(s)
- Namarta Kalia
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar 143001, India.
| | - Jatinder Singh
- Department of Molecular Biology & Biochemistry, Guru Nanak Dev University, Amritsar 143001, India
| | - Manpreet Kaur
- Department of Human Genetics, Guru Nanak Dev University, Amritsar 143001, India.
| |
Collapse
|
13
|
Deng Y, Govers C, Ter Beest E, van Dijk AJ, Hettinga K, Wichers HJ. A THP-1 Cell Line-Based Exploration of Immune Responses Toward Heat-Treated BLG. Front Nutr 2021; 7:612397. [PMID: 33521038 PMCID: PMC7838438 DOI: 10.3389/fnut.2020.612397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Allergen recognition and processing by antigen presenting cells is essential for the sensitization step of food allergy. Macrophages and dendritic cells are both phagocytic antigen presenting cells and play important roles in innate immune responses and signaling between the innate and adaptive immune system. To obtain a model system with a homogeneous genetic background, we derived macrophages and dendritic cells from THP-1 monocytes. The difference between macrophages and dendritic cells was clearly shown by differences in their transcription response (microarray) and protein expression levels. Their resemblance to primary cells was analyzed by comparison to properties as described in literature. The uptake of β-lactoglobulin after wet-heating (60°C in solution) by THP-1 derived macrophages was earlier reported to be significantly increased. To analyse the subsequent immune response, we incubated THP-1 derived macrophages and dendritic cells with native and differently processed β-lactoglobulin and determined the transcription and cytokine expression levels of the cells. A stronger transcriptional response was found in macrophages than in dendritic cells, while severely structurally modified β-lactoglobulin induced a more limited transcriptional response, especially when compared to native and limitedly modified β-lactoglobulin. These results show that processing is relevant for the transcriptional response toward β-lactoglobulin of innate immune cells.
Collapse
Affiliation(s)
- Ying Deng
- Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands.,Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Coen Govers
- Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands
| | - Ellen Ter Beest
- Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands.,Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Aalt-Jan van Dijk
- Bioinformatics Group, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Kasper Hettinga
- Food Quality and Design, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Harry J Wichers
- Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands.,Food Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
14
|
Tetraspanins: useful multifunction proteins for the possible design and development of small-molecule therapeutic tools. Drug Discov Today 2020; 26:56-68. [PMID: 33137483 DOI: 10.1016/j.drudis.2020.10.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
Tetraspanins constitute a well-conserved superfamily of four-span small membrane proteins (TM4SF), with >30 members in humans, with important roles in numerous mechanisms of cell biology. Moreover, tetraspanins associate with either specific partner proteins or another tetraspanin, generating a network of interactions involved in cell and membrane compartmentalization and having a role in cellular development, proliferation, activation, motility, and membrane fusions. Therefore, tetraspanins are considered regulators of cellular signaling and are often depicted as 'molecular facilitators'. In view of these many physiological functions, it is likely that these molecules are important actors in pathological processes. In this review, we present the main characteristics of this superfamily, providing a more detailed description of some significant representatives and discuss their relevance as potential targets for the design and development of small-molecule therapeutics in different pathologies.
Collapse
|
15
|
Liu C, Yang C, Wang M, Jiang S, Yi Q, Wang W, Wang L, Song L. A CD63 Homolog Specially Recruited to the Fungi-Contained Phagosomes Is Involved in the Cellular Immune Response of Oyster Crassostrea gigas. Front Immunol 2020; 11:1379. [PMID: 32793193 PMCID: PMC7387653 DOI: 10.3389/fimmu.2020.01379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/29/2020] [Indexed: 02/02/2023] Open
Abstract
Cluster of differentiation 63 (CD63), a four-transmembrane glycoprotein in the subfamily of tetraspanin, has been widely recognized as a gateway from the infection of foreign invaders to the immune defense of hosts. Its role in Pacific oyster Crassostrea gigas is, however, yet to be discovered. This work makes contributions by identifying CgCD63H, a CD63 homolog with four transmembrane domains and one conservative CCG motif, and establishing its role as a receptor that participates in immune recognition and hemocyte phagocytosis. The presence of CgCD63H messenger RNA (mRNA) in hepatopancreas, labial palps, gill, and hemocytes is confirmed. The expression level of mRNA in hemocytes is found significantly (p < 0.01) upregulated after the injection of Vibrio splendidus. CgCD63H protein, typically distributed over the plasma membrane of oyster hemocytes, is recruited to the Yarrowia lipolytica-containing phagosomes after the stimulation of Y. lipolytica. The recombinant CgCD63H protein expresses binding capacity to glucan (GLU), peptidoglycan (PGN), and lipopolysaccharide (LPS) in the presence of lyophilized hemolymph. The phagocytic rate of hemocytes toward V. splendidus and Y. lipolytica is significantly inhibited (p < 0.01) after incubation with anti-CgCD63H antibody. Our work further suggests that CgCD63H functions as a receptor involved in the immune recognition and hemocyte phagocytosis against invading pathogen, which can be a marker candidate for the hemocyte typing in C. gigas.
Collapse
Affiliation(s)
- Conghui Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China
| |
Collapse
|
16
|
Samson GPB, Legler DF. Membrane Compartmentalization and Scaffold Proteins in Leukocyte Migration. Front Cell Dev Biol 2020; 8:285. [PMID: 32411706 PMCID: PMC7198906 DOI: 10.3389/fcell.2020.00285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/02/2020] [Indexed: 01/14/2023] Open
Abstract
Leukocyte migration across vessels into and within peripheral and lymphoid tissues is essential for host defense against invading pathogens. Leukocytes are specialized in sensing a variety of guidance cues and to integrate environmental stimuli to navigate in a timely and spatially controlled manner. These extracellular signals must be transmitted across the leukocyte’s plasma membrane in a way that intracellular signaling cascades enable directional cell movement. Therefore, the composition of the membrane in concert with proteins that influence the compartmentalization of the plasma membrane or contribute to delineate intracellular signaling molecules are key in controlling leukocyte navigation. This becomes evident by the fact that mislocalization of membrane proteins is known to deleteriously affect cellular functions that may cause diseases. In this review we summarize recent advances made in the understanding of how membrane cholesterol levels modulate chemokine receptor signaling and hence leukocyte trafficking. Moreover, we provide an overview on the role of membrane scaffold proteins, particularly tetraspanins, flotillins/reggies, and caveolins in controlling leukocyte migration both in vitro and in vivo.
Collapse
Affiliation(s)
- Guerric P B Samson
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland.,Faculty of Biology, University of Konstanz, Konstanz, Germany.,Theodor Kocher Institute, University of Bern, Bern, Switzerland
| |
Collapse
|
17
|
Zhang D, Li D, Shen L, Hu D, Tang B, Guo W, Wang Z, Zhang Z, Wei G, He D. Exosomes derived from Piwil2‑induced cancer stem cells transform fibroblasts into cancer‑associated fibroblasts. Oncol Rep 2020; 43:1125-1132. [PMID: 32323829 PMCID: PMC7057936 DOI: 10.3892/or.2020.7496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, several studies have demonstrated that cancer cell‑derived exosomes can facilitate tumor development and metastasis formation. However, the detailed function of exosomes released by cancer stem cells (CSCs) requires further investigation. The aim of the present study was to investigate the role of CSC‑derived exosomes in tumor development. For this purpose, Piwil2‑induced cancer stem cells (Piwil2‑iCSCs) were used as exosome‑generating cells, while fibroblasts (FBs) served as recipient cells. Exosomes were isolated by the ultracentrifugation of Piwil2‑iCSC‑conditioned medium and identified by transmission electron microscopy, nanoparticle tracking analysis and western blot analysis. To evaluate the effects of the exosomes on cell proliferation, migration and invasion, cell counting assay (CCK‑8), a wound healing assay and a Transwell assay were performed. Protein expression [matrix metalloproteinase (MMP)2, MMP9, α‑smooth muscle actin (α‑SMA) and vimentin and fibroblast‑activating protein (FAP)] was examined in FBs by western blot analysis. It was found that the Piwil2‑iCSC‑derived exosomes (Piwil2‑iCSC‑Exo) were oval or spherical, membrane‑coated vesicles with a uniform size (30‑100 nm in diameter). They are characterized by the surface expression of CD9, CD63, Hsp70 and Piwil2 proteins. Additional results from functional analyses revealed that Piwil2‑iCSC‑Exo enhanced the proliferative, migratory and invasive abilities of FBs, accompanied by the upregulated expression of MMP2 and MMP9. In addition, the increased expression of α‑SMA (P<0.05), vimentin (P<0.01 vs. control group, P<0.05 vs. PBS group) and FAP (P<0.001 vs. control group, P<0.01 vs. PBS group) following exposure to Piwil2‑iCSC‑Exo suggested that the exosomes induced FB transformation into cancer‑associated fibroblasts (CAFs). On the whole, the findings of this study demonstrate that Piwil2‑iCSC‑Exo induce the cancer‑associated phenotype in fibroblasts in vitro, suggesting that CSCs can promote tumor development through the modulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Dan Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Dian Li
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Dong Hu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Bo Tang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Wenhao Guo
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Zhang Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Zhaoxia Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
18
|
Wansook S, Mahasongkram K, Chruekamlow N, Pata S, Kasinrerk W, Khunkaewla P. Anti-human CD63 monoclonal antibody COS3A upregulates monocyte-induced IL-10 excretion leading to diminution of CD3-mediated T cell response. Mol Immunol 2019; 114:591-599. [PMID: 31536880 DOI: 10.1016/j.molimm.2019.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/26/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022]
Abstract
Human CD63 has been reported to play a role either as an inhibitor or as a co-stimulator of T- cell responses, although the mechanism of this is unclear. In this study, an anti-human CD63 monoclonal antibody (mAb) COS3A was used to monitor the role of CD63 in T-cell activation. MAb COS3A could inhibit CD3-mediated T-cell proliferation and CD25 expression in peripheral blood mononuclear cells (PBMCs), used as a study model, but the suppressive effect was not observed when purified T-cells were used instead of PBMCs. The inhibitory phenomenon was associated with downregulation of IL-2 and IFN-γ by T-cells, but upregulation of IL-10 by monocytes. Neutralizing IL-10 with anti-IL-10 mAb improved the T-cell response, indicating the role of IL-10 in T-cell suppression. In this study, monocytes were demonstrated to play a role in impeding T-cell activation by the anti-CD63 mAb COS3A. This is the first evidence that anti-CD63 mAb induces IL-10 secretion by monocytes, which later play a role in T-cell hypo-responsiveness.
Collapse
Affiliation(s)
- Siriwan Wansook
- Biochemistry-Electrochemistry Research Unit, School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kodchakorn Mahasongkram
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nuttaphol Chruekamlow
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Supansa Pata
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Watchara Kasinrerk
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand; Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Panida Khunkaewla
- Biochemistry-Electrochemistry Research Unit, School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
19
|
The macrophage tetraspan MS4A4A enhances dectin-1-dependent NK cell-mediated resistance to metastasis. Nat Immunol 2019; 20:1012-1022. [PMID: 31263276 DOI: 10.1038/s41590-019-0417-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/02/2019] [Indexed: 12/14/2022]
Abstract
The plasma membrane tetraspan molecule MS4A4A is selectively expressed by macrophage-lineage cells, but its function is unknown. Here we report that MS4A4A was restricted to murine and human mononuclear phagocytes and was induced during monocyte-to-macrophage differentiation in the presence of interleukin 4 or dexamethasone. Human MS4A4A was co-expressed with M2/M2-like molecules in subsets of normal tissue-resident macrophages, infiltrating macrophages from inflamed synovium and tumor-associated macrophages. MS4A4A interacted and colocalized with the β-glucan receptor dectin-1 in lipid rafts. In response to dectin-1 ligands, Ms4a4a-deficient macrophages showed defective signaling and defective production of effector molecules. In experimental models of tumor progression and metastasis, Ms4a4a deficiency in macrophages had no impact on primary tumor growth, but was essential for dectin-1-mediated activation of macrophages and natural killer (NK) cell-mediated metastasis control. Thus, MS4A4A is a tetraspan molecule selectively expressed in macrophages during differentiation and polarization, essential for dectin-1-dependent activation of NK cell-mediated resistance to metastasis.
Collapse
|
20
|
Tam JM, Reedy JL, Lukason DP, Kuna SG, Acharya M, Khan NS, Negoro PE, Xu S, Ward RA, Feldman MB, Dutko RA, Jeffery JB, Sokolovska A, Wivagg CN, Lassen KG, Le Naour F, Matzaraki V, Garner EC, Xavier RJ, Kumar V, van de Veerdonk FL, Netea MG, Miranti CK, Mansour MK, Vyas JM. Tetraspanin CD82 Organizes Dectin-1 into Signaling Domains to Mediate Cellular Responses to Candida albicans. THE JOURNAL OF IMMUNOLOGY 2019; 202:3256-3266. [PMID: 31010852 DOI: 10.4049/jimmunol.1801384] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/26/2019] [Indexed: 11/19/2022]
Abstract
Tetraspanins are a family of proteins possessing four transmembrane domains that help in lateral organization of plasma membrane proteins. These proteins interact with each other as well as other receptors and signaling proteins, resulting in functional complexes called "tetraspanin microdomains." Tetraspanins, including CD82, play an essential role in the pathogenesis of fungal infections. Dectin-1, a receptor for the fungal cell wall carbohydrate β-1,3-glucan, is vital to host defense against fungal infections. The current study identifies a novel association between tetraspanin CD82 and Dectin-1 on the plasma membrane of Candida albicans-containing phagosomes independent of phagocytic ability. Deletion of CD82 in mice resulted in diminished fungicidal activity, increased C. albicans viability within macrophages, and decreased cytokine production (TNF-α, IL-1β) at both mRNA and protein level in macrophages. Additionally, CD82 organized Dectin-1 clustering in the phagocytic cup. Deletion of CD82 modulates Dectin-1 signaling, resulting in a reduction of Src and Syk phosphorylation and reactive oxygen species production. CD82 knockout mice were more susceptible to C. albicans as compared with wild-type mice. Furthermore, patient C. albicans-induced cytokine production was influenced by two human CD82 single nucleotide polymorphisms, whereas an additional CD82 single nucleotide polymorphism increased the risk for candidemia independent of cytokine production. Together, these data demonstrate that CD82 organizes the proper assembly of Dectin-1 signaling machinery in response to C. albicans.
Collapse
Affiliation(s)
- Jenny M Tam
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Jennifer L Reedy
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Daniel P Lukason
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Sunnie G Kuna
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Mridu Acharya
- Immunology Program, Benaroya Research Institute, Seattle, WA 98101.,Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98101
| | - Nida S Khan
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114.,Biomedical Engineering and Biotechnology, University of Massachusetts Medical School, Worcester, MA 01655.,Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Paige E Negoro
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Shuying Xu
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Rebecca A Ward
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Michael B Feldman
- Department of Medicine, Harvard Medical School, Boston, MA 02115.,Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Richard A Dutko
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Jane B Jeffery
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114
| | - Anna Sokolovska
- Department of Developmental Immunology, Massachusetts General Hospital, Boston, MA 02114
| | - Carl N Wivagg
- Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Kara G Lassen
- Broad Institute of Harvard and MIT, Cambridge, MA 02142.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114
| | | | - Vasiliki Matzaraki
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Ethan C Garner
- Center for Systems Biology, Harvard University, Boston, MA 02115
| | - Ramnik J Xavier
- Department of Medicine, Harvard Medical School, Boston, MA 02115.,Broad Institute of Harvard and MIT, Cambridge, MA 02142.,Gastrointestinal Unit/Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA 02114; and
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Frank L van de Veerdonk
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, 6500 HB Nijmegen, the Netherlands
| | - Cindy K Miranti
- Department of Cellular and Molecular Medicine, University of Arizona Health Sciences, Tucson, AZ 85724
| | - Michael K Mansour
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114.,Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Jatin M Vyas
- Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114; .,Department of Medicine, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
21
|
de Winde CM, Matthews AL, van Deventer S, van der Schaaf A, Tomlinson ND, Jansen E, Eble JA, Nieswandt B, McGettrick HM, Figdor CG, Tomlinson MG, Acton SE, van Spriel AB. C-type lectin-like receptor 2 (CLEC-2)-dependent dendritic cell migration is controlled by tetraspanin CD37. J Cell Sci 2018; 131:jcs214551. [PMID: 30185523 DOI: 10.1242/jcs.214551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 08/23/2018] [Indexed: 12/15/2022] Open
Abstract
Cell migration is central to evoking a potent immune response. Dendritic cell (DC) migration to lymph nodes is dependent on the interaction of C-type lectin-like receptor 2 (CLEC-2; encoded by the gene Clec1b), expressed by DCs, with podoplanin, expressed by lymph node stromal cells, although the underlying molecular mechanisms remain elusive. Here, we show that CLEC-2-dependent DC migration is controlled by tetraspanin CD37, a membrane-organizing protein. We identified a specific interaction between CLEC-2 and CD37, and myeloid cells lacking CD37 (Cd37-/-) expressed reduced surface CLEC-2. CLEC-2-expressing Cd37-/- DCs showed impaired adhesion, migration velocity and displacement on lymph node stromal cells. Moreover, Cd37-/- DCs failed to form actin protrusions in a 3D collagen matrix upon podoplanin-induced CLEC-2 stimulation, phenocopying CLEC-2-deficient DCs. Microcontact printing experiments revealed that CD37 is required for CLEC-2 recruitment in the membrane to its ligand podoplanin. Finally, Cd37-/- DCs failed to inhibit actomyosin contractility in lymph node stromal cells, thus phenocopying CLEC-2-deficient DCs. This study demonstrates that tetraspanin CD37 controls CLEC-2 membrane organization and provides new molecular insights into the mechanisms underlying CLEC-2-dependent DC migration.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Charlotte M de Winde
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
- MRC Laboratory of Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | | - Sjoerd van Deventer
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| | - Alie van der Schaaf
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| | - Neil D Tomlinson
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Erik Jansen
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| | - Johannes A Eble
- Institute for Physiological Chemistry and Pathobiochemistry, D-48149 Münster, Germany
| | - Bernhard Nieswandt
- University Clinic of Würzburg and Rudolf Virchow Center for Experimental Biomedicine, 97070 Würzburg, Germany
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Carl G Figdor
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| | - Michael G Tomlinson
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Sophie E Acton
- MRC Laboratory of Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Annemiek B van Spriel
- Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Tumor Immunology, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
22
|
Wei Y, Shen X, Li L, Cao G, Cai X, Wang Y, Shen H. TM4SF1 inhibits apoptosis and promotes proliferation, migration and invasion in human gastric cancer cells. Oncol Lett 2018; 16:6081-6088. [PMID: 30344751 DOI: 10.3892/ol.2018.9411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is associated with poor patient prognosis, and so it crucial to investigate the molecular mechanisms underlying the progression of GC. The aim of the present study was to investigate the role of transmembrane-4 L6 family member 1 (TM4SF1) in the progression of GC. TM4SF1 small interfering RNA (siRNA) and TM4SF1-expressing plasmids were employed to regulate TM4SF1 expression. In vitro experiments were performed to determine the effect of TM4SF1 on the expression of apoptosis-associated molecules and determine the role of TM4SF1 in apoptosis, proliferation, migration and invasion using human GC cell lines MGC803 and MKN45. The data of the present study demonstrated that TM4SF1 may regulate the expression of apoptosis-associated molecules at the mRNA and protein levels. TM4SF1 silencing reduced B-cell lymphoma 2 (Bcl2) expression, whilst caspase-3 and Bcl2-associated X expression increased, and upregulating TM4SF1 reversed these changes in GC cells. Furthermore, TM4SF1 knockdown promoted apoptosis while inhibiting the proliferation, migration and invasion of GC cells. Rescue experiments demonstrated that TM4SF1 upregulation reversed the changes induced by transfection with TM4SF1 siRNA. In summary, TM4SF1 is an anti-apoptosis protein associated with the progression of GC. Additional in vivo experiments and clinical trials are required to confirm the possible use of TM4SF1 in tumor therapy.
Collapse
Affiliation(s)
- Yunhai Wei
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Xiaoying Shen
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Liqin Li
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Guoliang Cao
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Xuhua Cai
- Department of Digestion, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Yan Wang
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| | - Hua Shen
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Huzhou, Zhejiang 313000, P.R. China
| |
Collapse
|
23
|
Tonigold M, Simon J, Estupiñán D, Kokkinopoulou M, Reinholz J, Kintzel U, Kaltbeitzel A, Renz P, Domogalla MP, Steinbrink K, Lieberwirth I, Crespy D, Landfester K, Mailänder V. Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. NATURE NANOTECHNOLOGY 2018; 13:862-869. [PMID: 29915272 DOI: 10.1038/s41565-018-0171-6] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/21/2018] [Indexed: 05/17/2023]
Abstract
To promote drug delivery to exact sites and cell types, the surface of nanocarriers is functionalized with targeting antibodies or ligands, typically coupled by covalent chemistry. Once the nanocarrier is exposed to biological fluid such as plasma, however, its surface is inevitably covered with various biomolecules forming the protein corona, which masks the targeting ability of the nanoparticle. Here, we show that we can use a pre-adsorption process to attach targeting antibodies to the surface of the nanocarrier. Pre-adsorbed antibodies remain functional and are not completely exchanged or covered by the biomolecular corona, whereas coupled antibodies are more affected by this shielding. We conclude that pre-adsorption is potentially a versatile, efficient and rapid method of attaching targeting moieties to the surface of nanocarriers.
Collapse
Affiliation(s)
- Manuel Tonigold
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Johanna Simon
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | | | - Jonas Reinholz
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Ulrike Kintzel
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Patricia Renz
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Matthias P Domogalla
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kerstin Steinbrink
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Daniel Crespy
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Volker Mailänder
- Dermatology Clinic, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.
- Max Planck Institute for Polymer Research, Mainz, Germany.
| |
Collapse
|
24
|
Yeung L, Hickey MJ, Wright MD. The Many and Varied Roles of Tetraspanins in Immune Cell Recruitment and Migration. Front Immunol 2018; 9:1644. [PMID: 30072994 PMCID: PMC6060431 DOI: 10.3389/fimmu.2018.01644] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 07/04/2018] [Indexed: 01/13/2023] Open
Abstract
Immune cell recruitment and migration is central to the normal functioning of the immune system in health and disease. Numerous adhesion molecules on immune cells and the parenchymal cells they interact with are well recognized for their roles in facilitating the movements of immune cells throughout the body. A growing body of evidence now indicates that tetraspanins, proteins known for their capacity to organize partner molecules within the cell membrane, also have significant impacts on the ability of immune cells to migrate around the body. In this review, we examine the tetraspanins expressed by immune cells and endothelial cells that influence leukocyte recruitment and motility and describe their impacts on the function of adhesion molecules and other partner molecules that modulate the movements of leukocytes. In particular, we examine the functional roles of CD9, CD37, CD63, CD81, CD82, and CD151. This reveals the diversity of the functions of the tetraspanin family in this setting, both in the nature of adhesive and migratory interactions that they regulate, and the positive or inhibitory effects mediated by the individual tetraspanin proteins.
Collapse
Affiliation(s)
- Louisa Yeung
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia.,Department of Immunology, Monash University, Prahran, VIC, Australia
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Department of Medicine, Monash Medical Centre, Monash University, Clayton, VIC, Australia
| | - Mark D Wright
- Department of Immunology, Monash University, Prahran, VIC, Australia
| |
Collapse
|
25
|
Saiz ML, Rocha-Perugini V, Sánchez-Madrid F. Tetraspanins as Organizers of Antigen-Presenting Cell Function. Front Immunol 2018; 9:1074. [PMID: 29875769 PMCID: PMC5974036 DOI: 10.3389/fimmu.2018.01074] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/30/2018] [Indexed: 12/19/2022] Open
Abstract
Professional antigen-presenting cells (APCs) include dendritic cells, monocytes, and B cells. APCs internalize and process antigens, producing immunogenic peptides that enable antigen presentation to T lymphocytes, which provide the signals that trigger T-cell activation, proliferation, and differentiation, and lead to adaptive immune responses. After detection of microbial antigens through pattern recognition receptors (PRRs), APCs migrate to secondary lymphoid organs where antigen presentation to T lymphocytes takes place. Tetraspanins are membrane proteins that organize specialized membrane platforms, called tetraspanin-enriched microdomains, which integrate membrane receptors, like PRR and major histocompatibility complex class II (MHC-II), adhesion proteins, and signaling molecules. Importantly, through the modulation of the function of their associated membrane partners, tetraspanins regulate different steps of the immune response. Several tetraspanins can positively or negatively regulate the activation threshold of immune receptors. They also play a role during migration of APCs by controlling the surface levels and spatial arrangement of adhesion molecules and their subsequent intracellular signaling. Finally, tetraspanins participate in antigen processing and are important for priming of naïve T cells through the control of T-cell co-stimulation and MHC-II-dependent antigen presentation. In this review, we discuss the role of tetraspanins in APC biology and their involvement in effective immune responses.
Collapse
Affiliation(s)
- Maria Laura Saiz
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Vera Rocha-Perugini
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital de la Princesa, Instituto de Investigación Sanitaria La Princesa, Madrid, Spain.,Vascular Pathophysiology Research Area, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.,CIBER Cardiovascular, Madrid, Spain
| |
Collapse
|
26
|
Soleto I, Fischer U, Tafalla C, Granja AG. Identification of a Potential Common Ancestor for Mammalian Cross-Presenting Dendritic Cells in Teleost Respiratory Surfaces. Front Immunol 2018; 9:59. [PMID: 29422901 PMCID: PMC5788898 DOI: 10.3389/fimmu.2018.00059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/09/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are highly specialized antigen-presenting cells that bridge innate and adaptive immune responses in vertebrates, being key modulators in the initiation of specific responses. Although teleost fish present the main elements of a fully developed adaptive immune system, not many studies have focused on identifying specific DC subsets in teleost species. Previous work from our group identified in rainbow trout (Oncorhynchus mykiss) skin a DC subpopulation co-expressing CD8α and major histocompatibility complex II β on the cell surface. Interestingly, these CD8+ DCs expressed common unique markers of mammalian cross-presenting DCs, a DC subset with an important role in antigen presentation and activation of CD8+ T cytotoxic lymphocytes. In this study, we have identified a similar DC subset in rainbow trout gills that also transcribes molecules uniquely expressed on diverse mammalian cross-presenting DC populations such as CD8, CD103, CD141, Batf3, IFN regulatory protein 8, and toll-like receptor 3. Hence, we have undertaken a broad phenotypic and functional characterization of this new DC subset that includes the confirmation of novel capacities for DCs in teleost, such an IgM-binding capacity and responsiveness to CD40 ligand. Furthermore, our results show that in gills, this DC subset shows some different phenotypic and functional characteristics when compared with their homologs in the skin, suggesting an adaptation of the cells to different mucosal tissues or different maturation status depending on their location. Our findings contribute to increase our knowledge on fish cross-presenting DCs, an important cell population to take into account for the future design of mucosal vaccination strategies.
Collapse
Affiliation(s)
- Irene Soleto
- Centro de Investigación en Sanidad Animal (CISA), INIA, Valdeolmos, Spain
| | - Uwe Fischer
- Bundesforschungsinstitut für Tiergesundheit, Friedrich-Loeffler-Institut (FLI), Insel Riems, Germany
| | - Carolina Tafalla
- Centro de Investigación en Sanidad Animal (CISA), INIA, Valdeolmos, Spain
| | - Aitor G Granja
- Centro de Investigación en Sanidad Animal (CISA), INIA, Valdeolmos, Spain
| |
Collapse
|
27
|
Priyathilaka TT, Bathige SDNK, Herath HMLPB, Lee S, Lee J. Molecular identification of disk abalone (Haliotis discus discus) tetraspanin 33 and CD63: Insights into potent players in the disk abalone host defense system. FISH & SHELLFISH IMMUNOLOGY 2017; 69:173-184. [PMID: 28823981 DOI: 10.1016/j.fsi.2017.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/08/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Tetraspanins are a superfamily of transmembrane proteins involved in a diverse range of physiological processes including differentiation, adhesion, signal transduction, cell motility, and immune responses. In the present study, two tetraspanins, CD63 and tetraspanin 33 (TSPAN33) from disk abalone (AbCD63 and AbTSPAN33), were identified and characterized at the molecular level. The coding sequences for AbCD63 and AbTSPAN33 encoded polypeptides of 234 and 290 amino acids (aa) with predicted molecular mass of 25.3 and 32.5 kDa, respectively. The deduced AbCD63 and AbTSPAN33 protein sequences were also predicted to have a typical tetraspanin domain architecture, including four transmembrane domains (TM), short N- and C- terminal regions, a short intracellular loop, as well as a large and small extracellular loop. A characteristic CCG motif and cysteine residues, which are highly conserved across CD63 and TSPAN33 proteins of different species, were present in the large extracellular loop of both abalone tetraspanins. Phylogenetic analysis revealed that the AbCD63 and AbTSPAN33 clustered in the invertebrate subclade of tetraspanins, thus exhibiting a close relationship with tetraspanins of other mollusks. The AbCD63 and AbTSPAN33 mRNA transcripts were detected at early embryonic development stages of disk abalone with significantly higher amounts at the trochophore stage, suggesting the involvement of these proteins in embryonic development. Both AbCD63 and AbTSPAN33 were ubiquitously expressed in all the tissues of unchallenged abalones analyzed, with the highest expression levels found in hemocytes. Moreover, significant induction of AbCD63 and AbTSPAN33 mRNA expression was observed in immunologically important tissues, such as hemocytes and gills, upon stimulation with live bacteria (Vibrio parahaemolyticus and Listeria monocytogenes), virus (viral hemorrhagic septicemia virus), and two potent immune stimulators [polyinosinic:polycytidylic acid (poly I:C) and lipopolysaccharide (LPS)]. Collectively, these findings suggest that AbCD63 and AbTSPAN33 are involved in innate immune responses in disk abalone during pathogenic stress.
Collapse
Affiliation(s)
- Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - S D N K Bathige
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - H M L P B Herath
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Department of Chemistry, University of Colombo, Colombo 03, Sri Lanka
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
28
|
Zuidscherwoude M, Worah K, van der Schaaf A, Buschow SI, van Spriel AB. Differential expression of tetraspanin superfamily members in dendritic cell subsets. PLoS One 2017; 12:e0184317. [PMID: 28880937 PMCID: PMC5589240 DOI: 10.1371/journal.pone.0184317] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 08/22/2017] [Indexed: 11/18/2022] Open
Abstract
Dendritic cells (DCs), which are essential for initiating immune responses, are comprised of different subsets. Tetraspanins organize dendritic cell membranes by facilitating protein-protein interactions within the so called tetraspanin web. In this study we analyzed expression of the complete tetraspanin superfamily in primary murine (CD4+, CD8+, pDC) and human DC subsets (CD1c+, CD141+, pDC) at the transcriptome and proteome level. Different RNA and protein expression profiles for the tetraspanin genes across human and murine DC subsets were identified. Although RNA expression levels of CD37 and CD82 were not significantly different between human DC subsets, CD9 RNA was highly expressed in pDCs, while CD9 protein expression was lower. This indicates that relative RNA and protein expression levels are not always in agreement. Both murine CD8α+ DCs and its regarded human counterpart, CD141+ DCs, displayed relatively high protein levels of CD81. CD53 protein was highly expressed on human pDCs in contrast to the relatively low protein expression of most other tetraspanins. This study demonstrates that tetraspanins are differentially expressed by human and murine DC subsets which provides a valuable resource that will aid the understanding of tetraspanin function in DC biology.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kuntal Worah
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Centre for Molecular and Biomolecular Informatics (CMBI), Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alie van der Schaaf
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sonja I. Buschow
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, the Netherlands
| | - Annemiek B. van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
29
|
CD63 Promotes Hemocyte-Mediated Phagocytosis in the Clam, Paphia undulata. J Immunol Res 2016; 2016:7893490. [PMID: 27868074 PMCID: PMC5102739 DOI: 10.1155/2016/7893490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/04/2016] [Indexed: 01/18/2023] Open
Abstract
As one of the surface membrane proteins of tetraspanin family, CD63 plays a crucial role in cellular trafficking and endocytosis, which also is associated with activation of a wide variety of immune cells. Here, the homolog of CD63 was characterized from one marine mollusk, Paphia undulata, which is designated as Pu-CD63. The complete cDNA of Pu-CD63 is 1,738 bp in length with an open reading frame (ORF) of 849 bp, encoding a 282 amino acid protein with four putative hydrophobic transmembrane helixes. Bioinformatic analysis revealed that Pu-CD63 contains one putative YXXØ consensus motif of “110-YVII-113” and one N-glycosylation site “155-NGT-157” within the large extracellular loop (LEL) region, supporting its conserved function in plasma membrane and endosomal/lysosomal trafficking. Moreover, temporal expression profile analysis demonstrates a drastic induction in the expression of CD63 in hemocytes after pathogenic challenge with either V. parahaemolyticus or V. alginolyticus. By performing dsRNA-mediate RNAi knockdowns of CD63, a dramatic reduction in hemocytes phagocytic activity to pathogenic Vibrio is recorded by flow cytometry, revealing the definite role of Pu-CD63 in promoting hemocyte-mediated phagocytosis. Therefore, our work has greatly enhanced our understanding about primitive character of innate immunity in marine mollusk.
Collapse
|
30
|
Kralova J, Fabisik M, Pokorna J, Skopcova T, Malissen B, Brdicka T. The Transmembrane Adaptor Protein SCIMP Facilitates Sustained Dectin-1 Signaling in Dendritic Cells. J Biol Chem 2016; 291:16530-40. [PMID: 27288407 DOI: 10.1074/jbc.m116.717157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Indexed: 11/06/2022] Open
Abstract
Transmembrane adaptor proteins are molecules specialized in recruiting cytoplasmic proteins to the proximity of the cell membrane as part of the signal transduction process. A member of this family, SLP65/SLP76, Csk-interacting membrane protein (SCIMP), recruits a complex of SLP65/SLP76 and Grb2 adaptor proteins, known to be involved in the activation of PLCγ1/2, Ras, and other pathways. SCIMP expression is restricted to antigen-presenting cells. In a previous cell line-based study, it was shown that, in B cells, SCIMP contributes to the reverse signaling in the immunological synapse, downstream of MHCII glycoproteins. There it mainly facilitates the activation of ERK MAP kinases. However, its importance for MHCII glycoprotein-dependent ERK signaling in primary B cells has not been analyzed. Moreover, its role in macrophages and dendritic cells has remained largely unknown. Here we present the results of our analysis of SCIMP-deficient mice. In these mice, we did not observe any defects in B cell signaling and B cell-dependent responses. On the other hand, we found that, in dendritic cells and macrophages, SCIMP expression is up-regulated after exposure to GM-CSF or the Dectin-1 agonist zymosan. Moreover, we found that SCIMP is strongly phosphorylated after Dectin-1 stimulation and that it participates in signal transduction downstream of this important pattern recognition receptor. Our analysis of SCIMP-deficient dendritic cells revealed that SCIMP specifically contributes to sustaining long-term MAP kinase signaling and cytokine production downstream of Dectin-1 because of an increased expression and sustained phosphorylation lasting at least 24 h after signal initiation.
Collapse
Affiliation(s)
| | | | - Jana Pokorna
- Molecular Immunology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 14220 Prague, Czech Republic and
| | | | - Bernard Malissen
- the Centre d'Immunophénomique, PHENOMIN-CIPHE, Aix Marseille Université UM2, INSERM US012, CNRS UMS3367, 13288 Marseille, France
| | | |
Collapse
|
31
|
Rocha-Perugini V, Sánchez-Madrid F, Martínez Del Hoyo G. Function and Dynamics of Tetraspanins during Antigen Recognition and Immunological Synapse Formation. Front Immunol 2016; 6:653. [PMID: 26793193 PMCID: PMC4707441 DOI: 10.3389/fimmu.2015.00653] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022] Open
Abstract
Tetraspanin-enriched microdomains (TEMs) are specialized membrane platforms driven by protein–protein interactions that integrate membrane receptors and adhesion molecules. Tetraspanins participate in antigen recognition and presentation by antigen-presenting cells (APCs) through the organization of pattern-recognition receptors (PRRs) and their downstream-induced signaling, as well as the regulation of MHC-II–peptide trafficking. T lymphocyte activation is triggered upon specific recognition of antigens present on the APC surface during immunological synapse (IS) formation. This dynamic process is characterized by a defined spatial organization involving the compartmentalization of receptors and adhesion molecules in specialized membrane domains that are connected to the underlying cytoskeleton and signaling molecules. Tetraspanins contribute to the spatial organization and maturation of the IS by controlling receptor clustering and local accumulation of adhesion receptors and integrins, their downstream signaling, and linkage to the actin cytoskeleton. This review offers a perspective on the important role of TEMs in the regulation of antigen recognition and presentation and in the dynamics of IS architectural organization.
Collapse
Affiliation(s)
- Vera Rocha-Perugini
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Instituto de Investigación Sanitaria La Princesa, Hospital de la Princesa, Madrid, Spain; Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Gloria Martínez Del Hoyo
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) , Madrid , Spain
| |
Collapse
|
32
|
Wee JL, Schulze KE, Jones EL, Yeung L, Cheng Q, Pereira CF, Costin A, Ramm G, van Spriel AB, Hickey MJ, Wright MD. Tetraspanin CD37 Regulates β2 Integrin-Mediated Adhesion and Migration in Neutrophils. THE JOURNAL OF IMMUNOLOGY 2015; 195:5770-9. [PMID: 26566675 DOI: 10.4049/jimmunol.1402414] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 10/14/2015] [Indexed: 01/13/2023]
Abstract
Deciphering the molecular basis of leukocyte recruitment is critical to the understanding of inflammation. In this study, we investigated the contribution of the tetraspanin CD37 to this key process. CD37-deficient mice showed impaired neutrophil recruitment in a peritonitis model. Intravital microscopic analysis indicated that the absence of CD37 impaired the capacity of leukocytes to follow a CXCL1 chemotactic gradient accurately in the interstitium. Moreover, analysis of CXCL1-induced leukocyte-endothelial cell interactions in postcapillary venules revealed that CXCL1-induced neutrophil adhesion and transmigration were reduced in the absence of CD37, consistent with a reduced capacity to undergo β2 integrin-dependent adhesion. This result was supported by in vitro flow chamber experiments that demonstrated an impairment in adhesion of CD37-deficient neutrophils to the β2 integrin ligand, ICAM-1, despite the normal display of high-affinity β2 integrins. Superresolution microscopic assessment of localization of CD37 and CD18 in ICAM-1-adherent neutrophils demonstrated that these molecules do not significantly cocluster in the cell membrane, arguing against the possibility that CD37 regulates β2 integrin function via a direct molecular interaction. Moreover, CD37 ablation did not affect β2 integrin clustering. In contrast, the absence of CD37 in neutrophils impaired actin polymerization, cell spreading and polarization, dysregulated Rac-1 activation, and accelerated β2 integrin internalization. Together, these data indicate that CD37 promotes neutrophil adhesion and recruitment via the promotion of cytoskeletal function downstream of integrin-mediated adhesion.
Collapse
Affiliation(s)
- Janet L Wee
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia; Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Keith E Schulze
- Monash Micro Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Eleanor L Jones
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia
| | - Louisa Yeung
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia; Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Qiang Cheng
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Candida F Pereira
- Burnet Institute, Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia; and
| | - Adam Costin
- Monash Micro Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Georg Ramm
- Monash Micro Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Annemiek B van Spriel
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
| | - Michael J Hickey
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria 3168, Australia
| | - Mark D Wright
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia;
| |
Collapse
|
33
|
Bryant CE, Orr S, Ferguson B, Symmons MF, Boyle JP, Monie TP. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Pharmacol Rev 2015; 67:462-504. [PMID: 25829385 DOI: 10.1124/pr.114.009928] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future.
Collapse
Affiliation(s)
- Clare E Bryant
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Selinda Orr
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Brian Ferguson
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Martyn F Symmons
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Joseph P Boyle
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Tom P Monie
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| |
Collapse
|
34
|
Improved split-ubiquitin screening technique to identify surface membrane protein-protein interactions. Biotechniques 2015; 59:63-73. [PMID: 26260084 DOI: 10.2144/000114315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 06/26/2015] [Indexed: 11/23/2022] Open
Abstract
Yeast-based methods are still the workhorse for the detection of protein-protein interactions (PPIs) in vivo. Yeast two-hybrid (Y2H) systems, however, are limited to screening for a specific group of molecules that interact in a particular cell compartment. For this reason, the split-ubiquitin system (SUS) was developed to allow screening of cDNA libraries of full-length membrane proteins for protein-protein interactions in Saccharomyces cerevisiae. Here we demonstrate that a modification of the widely used membrane SUS involving the transmembrane (TM) domain of the yeast receptor Wsc1 increases the stringency of screening and improves the selectivity for proteins localized in the plasma membrane (PM).
Collapse
|
35
|
Abstract
Tetraspanins are a superfamily of small transmembrane proteins that are expressed in almost all eukaryotic cells. Through interacting with one another and with other membrane and intracellular proteins, tetraspanins regulate a wide range of proteins such as integrins, cell surface receptors, and signaling molecules, and thereby engage in diverse cellular processes ranging from cell adhesion and migration to proliferation and differentiation. In particular, tetraspanins modulate the function of proteins involved in all determining factors of cell migration including cell-cell adhesion, cell-ECM adhesion, cytoskeletal protrusion/contraction, and proteolytic ECM remodeling. We herein provide a brief overview of collective in vitro and in vivo studies of tetraspanins to illustrate their regulatory functions in the migration and trafficking of cancer cells, vascular endothelial cells, skin cells (keratinocytes and fibroblasts), and leukocytes. We also discuss the involvement of tetraspanins in various pathologic and remedial processes that rely on cell migration and their potential value as targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Jiaping Zhang
- a Institute of Burn Research ; State Key Laboratory of Trauma; Burns and Combined Injury; Southwest Hospital; The Third Military Medical University ; Chongqing , China
| | - Yuesheng Huang
- a Institute of Burn Research ; State Key Laboratory of Trauma; Burns and Combined Injury; Southwest Hospital; The Third Military Medical University ; Chongqing , China
| |
Collapse
|
36
|
Exosomes released from breast cancer carcinomas stimulate cell movement. PLoS One 2015; 10:e0117495. [PMID: 25798887 PMCID: PMC4370373 DOI: 10.1371/journal.pone.0117495] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 12/24/2014] [Indexed: 12/18/2022] Open
Abstract
For metastasis to occur cells must communicate with to their local environment to initiate growth and invasion. Exosomes have emerged as an important mediator of cell-to-cell signalling through the transfer of molecules such as mRNAs, microRNAs, and proteins between cells. Exosomes have been proposed to act as regulators of cancer progression. Here, we study the effect of exosomes on cell migration, an important step in metastasis. We performed cell migration assays, endocytosis assays, and exosome proteomic profiling on exosomes released from three breast cancer cell lines that model progressive stages of metastasis. Results from these experiments suggest: (1) exosomes promote cell migration and (2) the signal is stronger from exosomes isolated from cells with higher metastatic potentials; (3) exosomes are endocytosed at the same rate regardless of the cell type; (4) exosomes released from cells show differential enrichment of proteins with unique protein signatures of both identity and abundance. We conclude that breast cancer cells of increasing metastatic potential secrete exosomes with distinct protein signatures that proportionally increase cell movement and suggest that released exosomes could play an active role in metastasis.
Collapse
|
37
|
Xing M, Ni JB, Wan R, Tang MC, Hu YL, Yu G, Yin GJ, Chen CY, Fan YT, Xiao WQ, Zhao Y, Wang XP, Hu GY. Tetraspanin CD9 is involved in pancreatic damage during caerulein-induced acute pancreatitis in mice. J Dig Dis 2015; 16:43-51. [PMID: 25323957 DOI: 10.1111/1751-2980.12204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Pancreatic acinar cell necrosis and subsequent inflammatory response aggravate acute pancreatitis (AP). Tetraspanin CD9 has been reported to mediate inflammatory signaling by regulating molecular organization at the cell surface. This study aimed to investigate the role of CD9 in caerulein-induced AP (CIP) in mice. METHODS The expression of CD9 was detected in CIP in mice in vivo and cholecystokinin (CCK)/recombinant mouse tumor necrosis factor (rmTNF)-α induced pancreatic acinar cell death in vitro by quantitative real-time polymerase chain reaction, Western blot and immunofluorescence. The roles of CD9 in pancreatic acinar cell death and inflammatory response were further studied through the deletion of CD9 expression using small interfering RNA (siRNA). RESULTS CD9 was markedly upregulated in pancreatic tissues in mice during the early onset of CIP and was located mainly at the pancreatic acinar cell surface, which was associated with pancreatic damage. Additionally, incubation with CCK or rmTNF-α directly increased the expression of CD9 in isolated mice pancreatic acinar cells in vitro. The deletion of CD9 expression partially reversed both pancreatic acinar cell death induced by CCK and mRNA levels of proinflammatory cytokines produced by damaged acinar cells. CONCLUSION These results indicate that increased CD9 expression may be involved in pancreatic injury, possibly via the promotion of cytokine expressions in CIP in mice.
Collapse
Affiliation(s)
- Miao Xing
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Seubert B, Cui H, Simonavicius N, Honert K, Schäfer S, Reuning U, Heikenwalder M, Mari B, Krüger A. Tetraspanin CD63 acts as a pro-metastatic factor via β-catenin stabilization. Int J Cancer 2014; 136:2304-15. [PMID: 25354204 DOI: 10.1002/ijc.29296] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/16/2014] [Indexed: 01/03/2023]
Abstract
The tetraspanin CD63 is implicated in pro-metastatic signaling pathways but, so far, it is unclear, how CD63 levels affect the tumor cell phenotype. Here, we investigated the effect of CD63 modulation in different metastatic tumor cell lines. In vitro, knock down of CD63 induced a more epithelial-like phenotype concomitant with increased E-cadherin expression, downregulation of its repressors Slug and Zeb1, and decreased N-cadherin. In addition, β-catenin protein was markedly reduced, negatively affecting expression of the target genes MMP-2 and PAI-1. β-catenin inhibitors mimicked the epithelial phenotype induced by CD63 knock down. Inhibition of β-catenin upstream regulators PI3K/AKT or GSK3β could rescue the mesenchymal phenotype underlining the importance of the β-catenin pathway in CD63-regulated cell plasticity. CD63 knock down-induced phenotypical changes correlated with a decrease of experimental metastasis whereas CD63 overexpression enhanced the tumor cell-intrinsic metastatic potential. Taken together, our data show that CD63 is a crucial player in the regulation of the tumor cell-intrinsic metastatic potential by affecting cell plasticity.
Collapse
Affiliation(s)
- Bastian Seubert
- Institute for Experimental Oncology and Therapy Research and Institute of Molecular Immunology, Klinikum rechts der Isar der Technische Universität München, München, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zuidscherwoude M, de Winde CM, Cambi A, van Spriel AB. Microdomains in the membrane landscape shape antigen-presenting cell function. J Leukoc Biol 2013; 95:251-63. [PMID: 24168856 DOI: 10.1189/jlb.0813440] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The plasma membrane of immune cells is a highly organized cell structure that is key to the initiation and regulation of innate and adaptive immune responses. It is well-established that immunoreceptors embedded in the plasma membrane have a nonrandom spatial distribution that is important for coupling to components of intracellular signaling cascades. In the last two decades, specialized membrane microdomains, including lipid rafts and TEMs, have been identified. These domains are preformed structures ("physical entities") that compartmentalize proteins, lipids, and signaling molecules into multimolecular assemblies. In APCs, different microdomains containing immunoreceptors (MHC proteins, PRRs, integrins, among others) have been reported that are imperative for efficient pathogen recognition, the formation of the immunological synapse, and subsequent T cell activation. In addition, recent work has demonstrated that tetraspanin microdomains and lipid rafts are involved in BCR signaling and B cell activation. Research into the molecular mechanisms underlying membrane domain formation is fundamental to a comprehensive understanding of membrane-proximal signaling and APC function. This review will also discuss the advances in the microscopy field for the visualization of the plasma membrane, as well as the recent progress in targeting microdomains as novel, therapeutic approach for infectious and malignant diseases.
Collapse
Affiliation(s)
- Malou Zuidscherwoude
- 1.Nijmegen Centre for Molecular Life Sciences/278 TIL, Radboud University Medical Centre, Geert Grooteplein 28, 6525GA, Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
40
|
Plato A, Willment JA, Brown GD. C-type lectin-like receptors of the dectin-1 cluster: ligands and signaling pathways. Int Rev Immunol 2013; 32:134-56. [PMID: 23570314 PMCID: PMC3634610 DOI: 10.3109/08830185.2013.777065] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Innate immunity is constructed around genetically encoded receptors that survey the intracellular and extracellular environments for signs of invading microorganisms. These receptors recognise the invader and through complex intracellular networks of molecular signaling, they destroy the threat whilst instructing effective adaptive immune responses. Many of these receptors, like the Toll-like receptors in particular, are well-known for their ability to mediate downstream responses upon recognition of exogenous or endogenous ligands; however, the emerging family known as the C-type lectin-like receptors contains many members that have a huge impact on immune and homeostatic regulation. Of particular interest here are the C-type lectin-like receptors that make up the Dectin-1 cluster and their intracellular signaling motifs that mediate their functions. In this review, we aim to draw together current knowledge of ligands, motifs and signaling pathways, present downstream of Dectin-1 cluster receptors, and discuss how these dictate their role within biological systems.
Collapse
Affiliation(s)
- Anthony Plato
- Aberdeen Fungal Group, Section of Immunology and Infection, University of Aberdeen, Aberdeen, UK
| | | | | |
Collapse
|
41
|
The association of CD81 polymorphisms with alloimmunization in sickle cell disease. Clin Dev Immunol 2013; 2013:937846. [PMID: 23762099 PMCID: PMC3674646 DOI: 10.1155/2013/937846] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 01/19/2023]
Abstract
The goal of the present work was to identify the candidate genetic markers predictive of alloimmunization in sickle cell disease (SCD). Red blood cell (RBC) transfusion is indicated for acute treatment, prevention, and abrogation of some complications of SCD. A well-known consequence of multiple RBC transfusions is alloimmunization. Given that a subset of SCD patients develop multiple RBC allo-/autoantibodies, while others do not in a similar multiple transfusional setting, we investigated a possible genetic basis for alloimmunization. Biomarker(s) which predicts (predict) susceptibility to alloimmunization could identify patients at risk before the onset of a transfusion program and thus may have important implications for clinical management. In addition, such markers could shed light on the mechanism(s) underlying alloimmunization. We genotyped 27 single nucleotide polymorphisms (SNPs) in the CD81, CHRNA10, and ARHG genes in two groups of SCD patients. One group (35) of patients developed alloantibodies, and another (40) had no alloantibodies despite having received multiple transfusions. Two SNPs in the CD81 gene, that encodes molecule involved in the signal modulation of B lymphocytes, show a strong association with alloimmunization. If confirmed in prospective studies with larger cohorts, the two SNPs identified in this retrospective study could serve as predictive biomarkers for alloimmunization.
Collapse
|
42
|
Tugues S, Honjo S, König C, Padhan N, Kroon J, Gualandi L, Li X, Barkefors I, Thijssen VL, Griffioen AW, Claesson-Welsh L. Tetraspanin CD63 promotes vascular endothelial growth factor receptor 2-β1 integrin complex formation, thereby regulating activation and downstream signaling in endothelial cells in vitro and in vivo. J Biol Chem 2013; 288:19060-71. [PMID: 23632027 DOI: 10.1074/jbc.m113.468199] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD63 is a member of the transmembrane-4 glycoprotein superfamily (tetraspanins) implicated in the regulation of membrane protein trafficking, leukocyte recruitment, and adhesion processes. We have investigated the involvement of CD63 in endothelial cell (EC) signaling downstream of β1 integrin and VEGF. We report that silencing of CD63 in primary ECs arrested capillary sprouting and tube formation in vitro because of impaired adhesion and migration of ECs. Mechanistically, CD63 associated with both β1 integrin and the main VEGF receptor on ECs, VEGFR2. Our data suggest that CD63 serves to bridge between β1 integrin and VEGFR2 because CD63 silencing disrupted VEGFR2-β1 integrin complex formation identified using proximity ligation assays. Signaling downstream of β1 integrin and VEGFR2 was attenuated in CD63-silenced cells, although their cell surface expression levels remained unaffected. CD63 was furthermore required for efficient internalization of VEGFR2 in response to VEGF. Importantly, systemic delivery of VEGF failed to potently induce VEGFR2 phosphorylation and downstream signaling in CD63-deficient mouse lungs. Taken together, our findings demonstrate a previously unrecognized role for CD63 in coordinated integrin and receptor tyrosine kinase signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Sònia Tugues
- Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, 75185 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Wu F, Su P, Chen L, Li M, Liu X, Li Q. Cloning of arctic lamprey Lethenteron camtschaticum cd9 with roles in the immune response. JOURNAL OF FISH BIOLOGY 2012; 81:1147-1157. [PMID: 22957860 DOI: 10.1111/j.1095-8649.2012.03299.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, the cd9 gene, a member of the tetraspanin superfamily and involved in various cellular processes, was cloned from Lethenteron camtschaticum. Both real-time PCR and immunohistochemical assays showed broad distribution of cd9 in various L. camtschaticum tissues. In addition, expression levels of Cd9 mRNA were up-regulated in the liver and heart after stimulation by lipopolysaccharide. Flow cytometric analyses demonstrated that cd9 was detected on the leukocytes and that the expression level was higher on granulocytes than on lymphocytes, which implied that cd9 was mainly involved in innate immunity.
Collapse
Affiliation(s)
- F Wu
- College of Life Science, Liaoning Normal University, Dalian 116029, China
| | | | | | | | | | | |
Collapse
|
44
|
Hontelez S, Sanecka A, Netea MG, van Spriel AB, Adema GJ. Molecular view on PRR cross-talk in antifungal immunity. Cell Microbiol 2012; 14:467-74. [PMID: 22233321 DOI: 10.1111/j.1462-5822.2012.01748.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The identification of a major class of innate immune receptors, termed pattern recognition receptors (PRRs), has boosted research on innate pathogen recognition. The immune response to a specific pathogen is not restricted to the recognition by one type of PRR or activation of a single cell type, but instead comprises complex collaborations between different receptors, cells and signal mediators. Here we will discuss the cross-talk between PRRs involved in fungal recognition, focusing on the molecular interactions occurring at the plasma membrane.
Collapse
Affiliation(s)
- S Hontelez
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Kooijmans SAA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM. Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine 2012; 7:1525-41. [PMID: 22619510 PMCID: PMC3356169 DOI: 10.2147/ijn.s29661] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The identification of extracellular phospholipid vesicles as conveyors of cellular information has created excitement in the field of drug delivery. Biological therapeutics, including short interfering RNA and recombinant proteins, are prone to degradation, have limited ability to cross biological membranes, and may elicit immune responses. Therefore, delivery systems for such drugs are under intensive investigation. Exploiting extracellular vesicles as carriers for biological therapeutics is a promising strategy to overcome these issues and to achieve efficient delivery to the cytosol of target cells. Exosomes are a well studied class of extracellular vesicles known to carry proteins and nucleic acids, making them especially suitable for such strategies. However, the considerable complexity and the related high chance of off-target effects of these carriers are major barriers for translation to the clinic. Given that it is well possible that not all components of exosomes are required for their proper functioning, an alternative strategy would be to mimic these vesicles synthetically. By assembly of liposomes harboring only crucial components of natural exosomes, functional exosome mimetics may be created. The low complexity and use of well characterized components strongly increase the pharmaceutical acceptability of such systems. However, exosomal components that would be required for the assembly of functional exosome mimetics remain to be identified. This review provides insights into the composition and functional properties of exosomes, and focuses on components which could be used to enhance the drug delivery properties of exosome mimetics.
Collapse
Affiliation(s)
- Sander A A Kooijmans
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
46
|
Abstract
Only a handful of the more than 100,000 fungal species on our planet cause disease in humans, yet the number of life-threatening fungal infections in patients has recently skyrocketed as a result of advances in medical care that often suppress immunity intensely. This emerging crisis has created pressing needs to clarify immune defense mechanisms against fungi, with the ultimate goal of therapeutic applications. Herein, we describe recent insights in understanding the mammalian immune defenses deployed against pathogenic fungi. The review focuses on adaptive immune responses to the major medically important fungi and emphasizes how dendritic cells and subsets in various anatomic compartments respond to fungi, recognize their molecular patterns, and signal responses that nurture and shape the differentiation of T cell subsets and B cells. Also emphasized is how the latter deploy effector and regulatory mechanisms that eliminate these nasty invaders while also constraining collateral damage to vital tissue.
Collapse
Affiliation(s)
- Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53792, USA.
| | | | | |
Collapse
|
47
|
Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages. Proc Natl Acad Sci U S A 2011; 108:14270-5. [PMID: 21825168 DOI: 10.1073/pnas.1111415108] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Dectin-1, the major β-glucan receptor in leukocytes, triggers an effective immune response upon fungal recognition. Here we use sortase-mediated transpeptidation, a technique that allows placement of a variety of probes on a polypeptide backbone, to monitor the behavior of labeled functional dectin-1 in live cells with and without fungal challenge. Installation of probes on dectin-1 by sortagging permitted highly specific visualization of functional protein on the cell surface and its subsequent internalization upon ligand presentation. Retrieval of sortagged dectin-1 expressed in macrophages uncovered a unique interaction between dectin-1 and galectin-3 that functions in the proinflammatory response of macrophages to pathogenic fungi. When macrophages expressing dectin-1 are exposed to Candida albicans mutants with increased exposure of β-glucan, the loss of galectin-3 dramatically accentuates the failure to trigger an appropriate TNF-α response.
Collapse
|
48
|
Veenbergen S, van Spriel AB. Tetraspanins in the immune response against cancer. Immunol Lett 2011; 138:129-36. [DOI: 10.1016/j.imlet.2011.03.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 03/18/2011] [Accepted: 03/30/2011] [Indexed: 01/29/2023]
|
49
|
Abstract
The activation of endothelial cells is critical to initiating an inflammatory response. Activation induces the fusion of Weibel-Palade Bodies (WPB) with the plasma membrane, thus transferring P-selectin and VWF to the cell surface, where they act in the recruitment of leukocytes and platelets, respectively. CD63 has long been an established component of WPB, but the functional significance of its presence within an organelle that acts in inflammation and hemostasis was unknown. We find that ablating CD63 expression leads to a loss of P-selectin-dependent function: CD63-deficient HUVECs fail to recruit leukocytes, CD63-deficient mice exhibit a significant reduction in both leukocyte rolling and recruitment and we show a failure of leukocyte extravasation in a peritonitis model. Loss of CD63 has a similar phenotype to loss of P-selectin itself, thus CD63 is an essential cofactor to P-selectin.
Collapse
|
50
|
Abstract
Tetraspanins are a superfamily of integral membrane proteins involved in the organization of microdomains that consist of both cell membrane proteins and cytoplasmic signalling molecules. These microdomains are important in regulating molecular recognition at the cell surface and subsequent signal transduction processes central to the generation of an efficient immune response. Tetraspanins, both immune-cell-specific, such as CD37, and ubiquitously expressed, such as CD81, have been shown to be imp-ortant in both innate and adaptive cellular immunity. This is via their molecular interaction with important immune cell-surface molecules such as antigen-presenting MHC proteins, T-cell co-receptors CD4 and CD8, as well as cytoplasmic molecules such as Lck and PKC (protein kinase C). Moreover, the generation of tetraspanin-deficient mice has enabled the study of these proteins in immunity. A variety of tetraspanins have a role in the regulation of pattern recognition, antigen presentation and T-cell proliferation. Recent studies have also begun to elucidate roles for tetraspanins in macrophages, NK cells (natural killer cells) and granulocytes.
Collapse
|