1
|
A Novel Hepcidin Mutation. Transfus Clin Biol 2023:S1246-7820(23)00037-X. [PMID: 36925058 DOI: 10.1016/j.tracli.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND The bioactive peptide hormone hepcidin-25 regulates iron levels by inhibiting iron transport to plasma via ferroportin. Hepcidin-25 is synthesized in the liver where the 84 amino acids pro-hepcidin is cleaved into the bioactive hepcidin-25. A patient admitted to the hospital presented with infertility and fatigue. METHODS Genomic DNA was purified from whole blood using the Maxwell 16 system (Promega). MLPA analysis was performed to detect large genomic rearrangements using the SALSA MLPA kit # P347, Hemochromatosis (MRC Holland, Holland). Plasma hepcidin measurements were performed using liquid chromatography/tandem mass spectrometry (LC-MS/MS). RESULTS A novel HAMP mutation (homozygous one base deletion in c.215delG, p.Cys72Serfs*?) was detected. The deletion in nucleotide 215 causes a frameshift altering the predicted protein sequence from cysteine13 in mature peptide. Whether this leads to nonsense mediated decay of the mRNA or synthesis of an aberrant peptide in unknown, but bioactive hepcidin-25 was undetectable in plasma. The patient had massive iron overload with ferritin up to 8360 µg/L. He was anaemic with a Hb at 7.0 mmol/L (11.3 g/dL) and suffered from hypogonadotropic hypogonadism with a total testosterone of 1.2 nmol/l . Continued treatment with venesection and gonadotropins led to reduced fatigue, reduction in iron overload, a normalized Hb and improvement of semen quality. CONCLUSION A novel hepcidin mutation was detected in a patient with massive iron overload, fatigue and hypogonadotropic hypogonadism.
Collapse
|
2
|
Ryczek N, Łyś A, Makałowska I. The Functional Meaning of 5'UTR in Protein-Coding Genes. Int J Mol Sci 2023; 24:2976. [PMID: 36769304 PMCID: PMC9917990 DOI: 10.3390/ijms24032976] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
As it is well known, messenger RNA has many regulatory regions along its sequence length. One of them is the 5' untranslated region (5'UTR), which itself contains many regulatory elements such as upstream ORFs (uORFs), internal ribosome entry sites (IRESs), microRNA binding sites, and structural components involved in the regulation of mRNA stability, pre-mRNA splicing, and translation initiation. Activation of the alternative, more upstream transcription start site leads to an extension of 5'UTR. One of the consequences of 5'UTRs extension may be head-to-head gene overlap. This review describes elements in 5'UTR of protein-coding transcripts and the functional significance of protein-coding genes 5' overlap with implications for transcription, translation, and disease.
Collapse
Affiliation(s)
| | | | - Izabela Makałowska
- Institute of Human Biology and Evolution, Adam Mickiewicz University in Poznań, Uniwersytetu Ponańskiego 6, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Soukarieh O, Meguerditchian C, Proust C, Aïssi D, Eyries M, Goyenvalle A, Trégouët DA. Common and Rare 5′UTR Variants Altering Upstream Open Reading Frames in Cardiovascular Genomics. Front Cardiovasc Med 2022; 9:841032. [PMID: 35387445 PMCID: PMC8977850 DOI: 10.3389/fcvm.2022.841032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/21/2022] [Indexed: 01/16/2023] Open
Abstract
High-throughput sequencing (HTS) technologies are revolutionizing the research and molecular diagnosis landscape by allowing the exploration of millions of nucleotide sequences at an unprecedented scale. These technologies are of particular interest in the identification of genetic variations contributing to the risk of rare (Mendelian) and common (multifactorial) human diseases. So far, they have led to numerous successes in identifying rare disease-causing mutations in coding regions, but few in non-coding regions that include introns, untranslated (UTR), and intergenic regions. One class of neglected non-coding variations is that of 5′UTR variants that alter upstream open reading frames (upORFs) of the coding sequence (CDS) of a natural protein coding transcript. Following a brief summary of the molecular bases of the origin and functions of upORFs, we will first review known 5′UTR variations altering upORFs and causing rare cardiovascular disorders (CVDs). We will then investigate whether upORF-affecting single nucleotide polymorphisms could be good candidates for explaining association signals detected in the context of genome-wide association studies for common complex CVDs.
Collapse
Affiliation(s)
- Omar Soukarieh
- INSERM, Bordeaux Population Health, U1219, Molecular Epidemiology of Vascular and Brain Disorders, University of Bordeaux, Bordeaux, France
- *Correspondence: Omar Soukarieh,
| | - Caroline Meguerditchian
- INSERM, Bordeaux Population Health, U1219, Molecular Epidemiology of Vascular and Brain Disorders, University of Bordeaux, Bordeaux, France
| | - Carole Proust
- INSERM, Bordeaux Population Health, U1219, Molecular Epidemiology of Vascular and Brain Disorders, University of Bordeaux, Bordeaux, France
| | - Dylan Aïssi
- INSERM, Bordeaux Population Health, U1219, Molecular Epidemiology of Vascular and Brain Disorders, University of Bordeaux, Bordeaux, France
| | - Mélanie Eyries
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | | | - David-Alexandre Trégouët
- INSERM, Bordeaux Population Health, U1219, Molecular Epidemiology of Vascular and Brain Disorders, University of Bordeaux, Bordeaux, France
| |
Collapse
|
4
|
Kowdley DS, Kowdley KV. Appropriate Clinical Genetic Testing of Hemochromatosis Type 2-4, Including Ferroportin Disease. Appl Clin Genet 2021; 14:353-361. [PMID: 34413666 PMCID: PMC8369226 DOI: 10.2147/tacg.s269622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/18/2021] [Indexed: 11/23/2022] Open
Abstract
Hereditary hemochromatosis (HH) is an inherited iron overload disorder due to a deficiency of hepcidin, or a failure of hepcidin to degrade ferroportin. The most common form of HH, Type 1 HH, is most commonly due to a homozygous C282Y mutation in HFE and is relatively well understood in significance and action; however, other rare forms of HH (Types 2–4) exist and are more difficult to identify and diagnose in clinical practice. In this review, we describe the clinical characteristics of HH Type 2–4 and the mutation patterns that have been described in these conditions. We also review the different methods for genetic testing available in clinical practice and a pragmatic approach to the patient with suspected non-HFE HH.
Collapse
Affiliation(s)
- Devan S Kowdley
- Liver Institute Northwest and Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| | - Kris V Kowdley
- Liver Institute Northwest and Elson S. Floyd College of Medicine, Washington State University, Seattle, WA, USA
| |
Collapse
|
5
|
Kang W, Barad A, Clark AG, Wang Y, Lin X, Gu Z, O'Brien KO. Ethnic Differences in Iron Status. Adv Nutr 2021; 12:1838-1853. [PMID: 34009254 PMCID: PMC8483971 DOI: 10.1093/advances/nmab035] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 02/07/2023] Open
Abstract
Iron is unique among all minerals in that humans have no regulatable excretory pathway to eliminate excess iron after it is absorbed. Iron deficiency anemia occurs when absorbed iron is not sufficient to meet body iron demands, whereas iron overload and subsequent deposition of iron in key organs occur when absorbed iron exceeds body iron demands. Over time, iron accumulation in the body can increase risk of chronic diseases, including cirrhosis, diabetes, and heart failure. To date, only ∼30% of the interindividual variability in iron absorption can be captured by iron status biomarkers or iron regulatory hormones. Much of the regulation of iron absorption may be under genetic control, but these pathways have yet to be fully elucidated. Genome-wide and candidate gene association studies have identified several genetic variants that are associated with variations in iron status, but the majority of these data were generated in European populations. The purpose of this review is to summarize genetic variants that have been associated with alterations in iron status and to highlight the influence of ethnicity on the risk of iron deficiency or overload. Using extant data in the literature, linear mixed-effects models were constructed to explore ethnic differences in iron status biomarkers. This approach found that East Asians had significantly higher concentrations of iron status indicators (serum ferritin, transferrin saturation, and hemoglobin) than Europeans, African Americans, or South Asians. African Americans exhibited significantly lower hemoglobin concentrations compared with other ethnic groups. Further studies of the genetic basis for ethnic differences in iron metabolism and on how it affects disease susceptibility among different ethnic groups are needed to inform population-specific recommendations and personalized nutrition interventions for iron-related disorders.
Collapse
Affiliation(s)
- Wanhui Kang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Alexa Barad
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA,Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Yiqin Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Xu Lin
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zhenglong Gu
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | | |
Collapse
|
6
|
Yang Q, Liu W, Zhang S, Liu S. The cardinal roles of ferroportin and its partners in controlling cellular iron in and out. Life Sci 2020; 258:118135. [DOI: 10.1016/j.lfs.2020.118135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
|
7
|
Whiffin N, Karczewski KJ, Zhang X, Chothani S, Smith MJ, Evans DG, Roberts AM, Quaife NM, Schafer S, Rackham O, Alföldi J, O'Donnell-Luria AH, Francioli LC, Cook SA, Barton PJR, MacArthur DG, Ware JS. Characterising the loss-of-function impact of 5' untranslated region variants in 15,708 individuals. Nat Commun 2020; 11:2523. [PMID: 32461616 PMCID: PMC7253449 DOI: 10.1038/s41467-019-10717-9] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/23/2019] [Indexed: 01/17/2023] Open
Abstract
Upstream open reading frames (uORFs) are tissue-specific cis-regulators of protein translation. Isolated reports have shown that variants that create or disrupt uORFs can cause disease. Here, in a systematic genome-wide study using 15,708 whole genome sequences, we show that variants that create new upstream start codons, and variants disrupting stop sites of existing uORFs, are under strong negative selection. This selection signal is significantly stronger for variants arising upstream of genes intolerant to loss-of-function variants. Furthermore, variants creating uORFs that overlap the coding sequence show signals of selection equivalent to coding missense variants. Finally, we identify specific genes where modification of uORFs likely represents an important disease mechanism, and report a novel uORF frameshift variant upstream of NF2 in neurofibromatosis. Our results highlight uORF-perturbing variants as an under-recognised functional class that contribute to penetrant human disease, and demonstrate the power of large-scale population sequencing data in studying non-coding variant classes.
Collapse
Affiliation(s)
- Nicola Whiffin
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK.
- NIHR Royal Brompton Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, Sydney Street, London, SW3 6NP, UK.
- Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
| | - Konrad J Karczewski
- Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Xiaolei Zhang
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
- NIHR Royal Brompton Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, Sydney Street, London, SW3 6NP, UK
| | - Sonia Chothani
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Miriam J Smith
- NW Genomic Laboratory Hub, Centre for Genomic Medicine, Division of Evolution and Genomic Science, St Mary's Hospital, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - D Gareth Evans
- NW Genomic Laboratory Hub, Centre for Genomic Medicine, Division of Evolution and Genomic Science, St Mary's Hospital, University of Manchester, Oxford Road, Manchester, M13 9WL, UK
| | - Angharad M Roberts
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
- NIHR Royal Brompton Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, Sydney Street, London, SW3 6NP, UK
| | - Nicholas M Quaife
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
- NIHR Royal Brompton Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, Sydney Street, London, SW3 6NP, UK
| | - Sebastian Schafer
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Owen Rackham
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
| | - Jessica Alföldi
- Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Anne H O'Donnell-Luria
- Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Laurent C Francioli
- Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
| | - Stuart A Cook
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
- Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Paul J R Barton
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
- NIHR Royal Brompton Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, Sydney Street, London, SW3 6NP, UK
| | - Daniel G MacArthur
- Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Australia
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
- NIHR Royal Brompton Cardiovascular Research Centre, Royal Brompton and Harefield National Health Service Foundation Trust, Sydney Street, London, SW3 6NP, UK
- Medical and Population Genetics, Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| |
Collapse
|
8
|
Ruiz-Llorente L, McDonald J, Wooderchak-Donahue W, Briggs E, Chesnutt M, Bayrak-Toydemir P, Bernabeu C. Characterization of a family mutation in the 5' untranslated region of the endoglin gene causative of hereditary hemorrhagic telangiectasia. J Hum Genet 2019; 64:333-339. [PMID: 30728427 PMCID: PMC8075931 DOI: 10.1038/s10038-019-0564-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/20/2018] [Accepted: 12/14/2018] [Indexed: 12/31/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is a vascular disease characterized by nose and gastrointestinal bleeding, telangiectases in skin and mucosa, and arteriovenous malformations in major internal organs. Most patients carry a mutation in the coding region of the endoglin (ENG) or activin A receptor type II-1 (ACVRL1) gene. Nonetheless, in around 15% of patients, sequencing analysis and duplication/deletion tests fail to pinpoint mutations in the coding regions of these genes. In these cases, it has been shown that sequencing of the 5’-untranslated region (5’UTR) of ENG may be useful to identify novel mutations in the ENG non-coding region. Here we report the genetic characterization and functional analysis of the heterozygous mutation c.-142A>T in the 5’UTR region of ENG found in a family with several members affected by HHT. This variant gives rise to a new initiation codon of the protein that involves the change in its open reading frame. Transfection studies in monkey cells using endoglin expression vectors demonstrated that c-142A>T mutation results in a clear reduction in the levels of the endoglin protein. These results support the inclusion of the 5’UTR of ENG in the standard genetic testing for HHT to increase its sensitivity.
Collapse
Affiliation(s)
- Lidia Ruiz-Llorente
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain
| | - Jamie McDonald
- ARUP Institute for Clinical and Experimental Pathology, and Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Whitney Wooderchak-Donahue
- ARUP Institute for Clinical and Experimental Pathology, and Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Eric Briggs
- ARUP Institute for Clinical and Experimental Pathology, and Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Mark Chesnutt
- Departments of Medicine and Interventional Radiology, Oregon Health & Science University and Veterans Affairs Portland Health Care System, Portland, OR, USA
| | - Pinar Bayrak-Toydemir
- ARUP Institute for Clinical and Experimental Pathology, and Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Carmelo Bernabeu
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040, Madrid, Spain. .,ARUP Institute for Clinical and Experimental Pathology, and Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Phenotypic analysis of hemochromatosis subtypes reveals variations in severity of iron overload and clinical disease. Blood 2018; 132:101-110. [PMID: 29743178 DOI: 10.1182/blood-2018-02-830562] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
The clinical progression of HFE-related hereditary hemochromatosis (HH) and its phenotypic variability has been well studied. Less is known about the natural history of non-HFE HH caused by mutations in the HJV, HAMP, or TFR2 genes. The purpose of this study was to compare the phenotypic and clinical presentations of hepcidin-deficient forms of HH. A literature review of all published cases of genetically confirmed HJV, HAMP, and TFR2 HH was performed. Phenotypic and clinical data from a total of 156 patients with non-HFE HH was extracted from 53 publications and compared with data from 984 patients with HFE-p.C282Y homozygous HH from the QIMR Berghofer Hemochromatosis Database. Analyses confirmed that non-HFE forms of HH have an earlier age of onset and a more severe clinical course than HFE HH. HJV and HAMP HH are phenotypically and clinically very similar and have the most severe presentation, with cardiomyopathy and hypogonadism being particularly prevalent findings. TFR2 HH is more intermediate in its age of onset and severity. All clinical outcomes analyzed were more prevalent in the juvenile forms of HH, with the exception of arthritis and arthropathy, which were more commonly seen in HFE HH. This is the first comprehensive analysis comparing the different phenotypic and clinical aspects of the genetic forms of HH, and the results will be valuable for the differential diagnosis and management of these conditions. Importantly, our analyses indicate that factors other than iron overload may be contributing to joint pathology in patients with HFE HH.
Collapse
|
10
|
Wang C, Fang Z, Zhu Z, Liu J, Chen H. Reciprocal regulation between hepcidin and erythropoiesis and its therapeutic application in erythroid disorders. Exp Hematol 2017; 52:24-31. [DOI: 10.1016/j.exphem.2017.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 12/16/2022]
|
11
|
Al-Ali R, González-Sarmiento R. Proximity of AUG sequences to initiation codon in genomic 5' UTR regulates mammalian protein expression. Gene 2016; 594:268-271. [PMID: 27613142 DOI: 10.1016/j.gene.2016.08.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 08/24/2016] [Accepted: 08/31/2016] [Indexed: 01/28/2023]
Abstract
Protein expression can be controlled via AUG sequences located upstream to the initiation codon in the 5' end untranslated region (5' UTR). Our study was focused on the effect of distance between the initiation codon and the first upstream AUG. An inhibitory effect on protein expression was established when AUG exists in 5' UTR, and this effect is increased when multiple AUG sequences occur there. The study was performed with ATG16L2, a non-lethal gene with no introns or upstream AUG sequence to avoid any interference. New mutations were generated at different locations within the promoter region of ATG16L2 gene and added to a plasmid construct containing a luciferase gene reporter gene. The results show a clear relationship between the distance of the novel AUGs from initiation codon and protein expression. The inhibitory effect was even stronger when multiple AUG sequences were present in 5' UTR.
Collapse
Affiliation(s)
- Ruslan Al-Ali
- Unidad de Medicina Molecular-IBSAL, Departamento de Medicina, Universidad de Salamanca-Hospital Universitario de Salamanca-CSIC, Salamanca, Spain
| | - Rogelio González-Sarmiento
- Unidad de Medicina Molecular-IBSAL, Departamento de Medicina, Universidad de Salamanca-Hospital Universitario de Salamanca-CSIC, Salamanca, Spain; Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Salamanca, Spain.
| |
Collapse
|
12
|
Next-generation sequencing of hereditary hemochromatosis-related genes: Novel likely pathogenic variants found in the Portuguese population. Blood Cells Mol Dis 2016; 61:10-5. [PMID: 27667161 DOI: 10.1016/j.bcmd.2016.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023]
Abstract
Hereditary hemochromatosis (HH) is an autosomal recessive disorder characterized by excessive iron absorption resulting in pathologically increased body iron stores. It is typically associated with common HFE gene mutation (p.Cys282Tyr and p.His63Asp). However, in Southern European populations up to one third of HH patients do not carry the risk genotypes. This study aimed to explore the use of next-generation sequencing (NGS) technology to analyse a panel of iron metabolism-related genes (HFE, TFR2, HJV, HAMP, SLC40A1, and FTL) in 87 non-classic HH Portuguese patients. A total of 1241 genetic alterations were detected corresponding to 53 different variants, 13 of which were not described in the available public databases. Among them, five were predicted to be potentially pathogenic: three novel mutations in TFR2 [two missense (p.Leu750Pro and p.Ala777Val) and one intronic splicing mutation (c.967-1G>C)], one missense mutation in HFE (p.Tyr230Cys), and one mutation in the 5'-UTR of HAMP gene (c.-25G>A). The results reported here illustrate the usefulness of NGS for targeted iron metabolism-related gene panels, as a likely cost-effective approach for molecular genetics diagnosis of non-classic HH patients. Simultaneously, it has contributed to the knowledge of the pathophysiology of those rare iron metabolism-related disorders.
Collapse
|
13
|
Fonseca PFS, Cançado RD, Uellendahl Lopes MM, Correia E, Lescano MA, Santos PCJL. HAMP Gene Mutation Associated with Juvenile Hemochromatosis in Brazilian Patients. Acta Haematol 2016; 135:228-31. [PMID: 27007796 DOI: 10.1159/000444119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/17/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Paula Fernanda Silva Fonseca
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of Sx00E3;o Paulo Medical School, Sx00E3;o Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
14
|
HFE genotyping in patients with elevated serum iron indices and liver diseases. BIOMED RESEARCH INTERNATIONAL 2015; 2015:164671. [PMID: 25654085 PMCID: PMC4310263 DOI: 10.1155/2015/164671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 12/31/2022]
Abstract
Iron abnormalities in chronic liver disease may be the result of genetic diseases or secondary factors. The present study aimed to identify subjects with HFE-HH in order to describe the frequency of clinical manifestations, identify risk factors for iron elevation, and compare the iron profile of HFE-HH to other genotypes in liver disease patients. A total of 108 individuals with hepatic disease, transferrin saturation (TS) > 45%, and serum ferritin (SF) > 350 ng/mL were tested for HFE mutations. Two groups were characterized: C282Y/C282Y or C282Y/H63D genotypes (n = 16) were the HFE hereditary hemochromatosis (HFE-HH) group; and C282Y and H63D single heterozygotes, the H63D/H63D genotype, and wild-type were considered group 2 (n = 92). Nonalcoholic liver disease, alcoholism, and chronic hepatitis C were detected more frequently in group 2, whereas arthropathy, hepatocarcinoma, diabetes, and osteoporosis rates were significantly higher in the HFE-HH group. TS > 82%, SF > 2685 ng/mL, and serum iron > 178 μg/dL were the cutoffs for diagnosis of HFE-HH in patients with liver disease. Thus, in non-Caucasian populations with chronic liver disease, HFE-HH diagnosis is more predictable in those with iron levels higher than those proposed in current guidelines for the general population.
Collapse
|
15
|
Silva B, Pita L, Gomes S, Gonçalves J, Faustino P. The hepcidin gene promoter nc.-1010C > T; -582A > G haplotype modulates serum ferritin in individuals carrying the common H63D mutation in HFE gene. Ann Hematol 2015; 93:2063-6. [PMID: 25015054 DOI: 10.1007/s00277-014-2160-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 07/02/2014] [Indexed: 12/29/2022]
Abstract
Hereditary hemochromatosis is an autosomal recessive disorder characterized by severe iron overload. It is usually associated with homozygosity for the HFE gene mutation c.845G > A; p.C282Y. However, in some cases, another HFE mutation (c.187C > G; p.H63D) seems to be associated with the disease. Its penetrance is very low, suggesting the possibility of other iron genetic modulators being involved. In this work, we have screened for HAMP promoter polymorphisms in 409 individuals presenting normal or increased serum ferritin levels together with normal or H63D-mutated HFE genotypes. Our results show that the hepcidin gene promoter TG haplotype, originated by linkage of the nc.-1010C > T and nc.-582A > G polymorphisms, is more frequent in the HFE_H63D individuals presenting serum ferritin levels higher than 300 μg/L than in those presenting the HFE_H63D mutation but with normal serum ferritin levels or in the normal control group.Moreover, it was observed that the TG haplotype was associated to increased serum ferritin levels in the overall pool of HFE_H63D individuals. Thus, our data suggest that screening for these polymorphisms could be of interest in order to explain the phenotype. However, this genetic condition seems to have no clinical significance.
Collapse
|
16
|
Prabhakara S, Anbazhagan K. Molecular analysis of PRRT2 gene in a case of paroxysmal kinesigenic dyskinesia patient. Ann Indian Acad Neurol 2014; 17:459-62. [PMID: 25506174 PMCID: PMC4251026 DOI: 10.4103/0972-2327.144039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 02/03/2014] [Accepted: 02/26/2014] [Indexed: 12/03/2022] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is an abnormal involuntary movement that is episodic or intermittent, with sudden onset, and the attacks are induced by sudden movement. Mutations in proline-rich transmembrane protein 2 (PRRT2) gene have been implicated in the cause of this disorder. This study presents a case of PKD on the basis of clinical findings supported and evidences obtained through a mutational analysis. Sequencing of all the exons of PRRT2 gene revealed a frameshift mutation (p.R217Pfs*8) in exon 2 and a novel transition mutation (c.244C > T) in 5′-untranslated region (UTR). Though mutations in PRRT2 gene are well-established in PKD, this study for the first time presents a novel transition mutation in the exon 2 region.
Collapse
Affiliation(s)
- S Prabhakara
- Department of Research and Development, Genomics and Central Research Laboratory, Sri Devaraj Urs Academy of Higher Education and Research, Tamaka, Kolar, India ; Central Research Lab, Raja Rajeswari Medical College and Hospital, Bangalore, Karnataka, India
| | - Kolandaswamy Anbazhagan
- INSERM U844, Institute for Neurosciences of Montpellier, Hospital St. Eloi, 34295 Montpellier, France
| |
Collapse
|
17
|
Brissot P, Bardou-Jacquet E, Troadec MB, Mosser A, Island ML, Detivaud L, Loréal O, Jouanolle AM. Molecular diagnosis of genetic iron-overload disorders. Expert Rev Mol Diagn 2014; 10:755-63. [DOI: 10.1586/erm.10.55] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Hattori A, Tomosugi N, Tatsumi Y, Suzuki A, Hayashi K, Katano Y, Inagaki Y, Ishikawa T, Hayashi H, Goto H, Wakusawa S. Identification of a novel mutation in the HAMP gene that causes non-detectable hepcidin molecules in a Japanese male patient with juvenile hemochromatosis. Blood Cells Mol Dis 2012; 48:179-82. [DOI: 10.1016/j.bcmd.2012.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
|
19
|
Damjanovich K, Langa C, Blanco FJ, McDonald J, Botella LM, Bernabeu C, Wooderchak-Donahue W, Stevenson DA, Bayrak-Toydemir P. 5'UTR mutations of ENG cause hereditary hemorrhagic telangiectasia. Orphanet J Rare Dis 2011; 6:85. [PMID: 22192717 PMCID: PMC3277489 DOI: 10.1186/1750-1172-6-85] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 12/22/2011] [Indexed: 11/11/2022] Open
Abstract
Background Hereditary hemorrhagic telangiectasia (HHT) is a vascular disorder characterized by epistaxis, arteriovenous malformations, and telangiectases. The majority of the patients have a mutation in the coding region of the activin A receptor type II-like 1 (ACVRL1) or Endoglin (ENG) gene. However, in approximately 15% of cases, sequencing analysis and deletion/duplication testing fail to identify mutations in the coding regions of these genes. Knowing its vital role in transcription and translation control, we were prompted to investigate the 5'untranslated region (UTR) of ENG. Methods and Results We sequenced the 5'UTR of ENG for 154 HHT patients without mutations in ENG or ACVRL1 coding regions. We found a mutation (c.-127C > T), which is predicted to affect translation initiation and alter the reading frame of endoglin. This mutation was found in a family with linkage to the ENG, as well as in three other patients, one of which had an affected sibling with the same mutation. In vitro expression studies showed that a construct with the c.-127C > T mutation alters the translation and decreases the level of the endoglin protein. In addition, a c.-9G > A mutation was found in three patients, one of whom was homozygous for this mutation. Expression studies showed decreased protein levels suggesting that the c.-9G > A is a hypomorphic mutation. Conclusions Our results emphasize the need for the inclusion of the 5'UTR region of ENG in clinical testing for HHT.
Collapse
Affiliation(s)
- Kristy Damjanovich
- ARUP Institute for Clinical and Experimental Pathology, Salt Lake City, UT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Guggenbuhl P, Brissot P, Loréal O. Haemochromatosis: The bone and the joint. Best Pract Res Clin Rheumatol 2011; 25:649-64. [DOI: 10.1016/j.berh.2011.10.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Regulatory variation in hepcidin expression as a heritable quantitative trait. Biochem Biophys Res Commun 2009; 384:22-7. [DOI: 10.1016/j.bbrc.2009.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2009] [Accepted: 04/09/2009] [Indexed: 01/24/2023]
|
22
|
Lee PL, Beutler E. Regulation of hepcidin and iron-overload disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:489-515. [PMID: 19400694 DOI: 10.1146/annurev.pathol.4.110807.092205] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hepcidin, a 25-amino-acid antimicrobial peptide, is the central regulator of iron homeostasis. Hepcidin transcription is upregulated by inflammatory cytokines, iron, and bone morphogenetic proteins and is downregulated by iron deficiency, ineffective erythropoiesis, and hypoxia. The iron transporter ferroportin is the cognate receptor of hepcidin and is destroyed as a result of interaction with the peptide. Except for inherited defects of ferroportin and hepcidin itself, all forms of iron-storage disease appear to arise from hepcidin dysregulation. Studies using multiple approaches have begun to delineate the molecular mechanisms that regulate hepcidin expression, particularly at the transcriptional level. Knowledge of the regulation of hepcidin by inflammation, iron, erythropoiesis, and hypoxia will lead to an understanding of the pathogenesis of primary hemochromatosis, secondary iron overload, and anemia of inflammatory disease.
Collapse
Affiliation(s)
- Pauline L Lee
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
23
|
Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci U S A 2009; 106:7507-12. [PMID: 19372376 DOI: 10.1073/pnas.0810916106] [Citation(s) in RCA: 632] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Upstream ORFs (uORFs) are mRNA elements defined by a start codon in the 5' UTR that is out-of-frame with the main coding sequence. Although uORFs are present in approximately half of human and mouse transcripts, no study has investigated their global impact on protein expression. Here, we report that uORFs correlate with significantly reduced protein expression of the downstream ORF, based on analysis of 11,649 matched mRNA and protein measurements from 4 published mammalian studies. Using reporter constructs to test 25 selected uORFs, we estimate that uORFs typically reduce protein expression by 30-80%, with a modest impact on mRNA levels. We additionally identify polymorphisms that alter uORF presence in 509 human genes. Finally, we report that 5 uORF-altering mutations, detected within genes previously linked to human diseases, dramatically silence expression of the downstream protein. Together, our results suggest that uORFs influence the protein expression of thousands of mammalian genes and that variation in these elements can influence human phenotype and disease.
Collapse
|
24
|
Island ML, Jouanolle AM, Mosser A, Deugnier Y, David V, Brissot P, Loréal O. A new mutation in the hepcidin promoter impairs its BMP response and contributes to a severe phenotype in HFE related hemochromatosis. Haematologica 2009; 94:720-4. [PMID: 19286879 DOI: 10.3324/haematol.2008.001784] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Low levels of hepcidin are responsible for the development of iron overload in p.Cys282Tyr HFE related hemochromatosis. Every genetic factor lowering the hepcidin gene expression could contribute to a more severe phenotype in HFE hemochromatosis. Based on this hypothesis, we identified a heterozygous nc.-153 C>T mutation in the hepcidin gene promoter sequence in a patient homozygous for the p.Cys282Tyr HFE mutation who presented massive iron overload, resisting to well conducted iron depletive treatment. Our results demonstrate that the nc.-153 C>T mutation, located within a BMP-RE (Bone Morphogenetic Protein-Responsive Element): i) decreases the transcriptional activity of the hepcidin promoter, ii) alters its IL-6 (Interleukin-6) total responsiveness, and iii) prevents the binding of the SMAD protein complex (1/5/8 and 4) to the BPM-RE. In conclusion, our results suggest that a mutation in the BMP-RE of hepcidin promoter may impact on human iron metabolism.
Collapse
Affiliation(s)
- Marie-Laure Island
- INSERM U522, University of Rennes 1, Hôpital Pontchaillou, Rennes cedex, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Piperno A, Mariani R, Trombini P, Girelli D. Hepcidin modulation in human diseases: From research to clinic. World J Gastroenterol 2009; 15:538-51. [PMID: 19195055 PMCID: PMC2653344 DOI: 10.3748/wjg.15.538] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
By modulating hepcidin production, an organism controls intestinal iron absorption, iron uptake and mobilization from stores to meet body iron need. In recent years there has been important advancement in our knowledge of hepcidin regulation that also has implications for understanding the physiopathology of some human disorders. Since the discovery of hepcidin and the demonstration of its pivotal role in iron homeostasis, there has been a substantial interest in developing a reliable assay of the hormone in biological fluids. Measurement of hepcidin in biological fluids can improve our understanding of iron diseases and be a useful tool for diagnosis and clinical management of these disorders. We reviewed the literature and our own research on hepcidin to give an updated status of the situation in this rapidly evolving field.
Collapse
|
26
|
Mendes AI, Ferro A, Martins R, Picanço I, Gomes S, Cerqueira R, Correia M, Nunes AR, Esteves J, Fleming R, Faustino P. Non-classical hereditary hemochromatosis in Portugal: novel mutations identified in iron metabolism-related genes. Ann Hematol 2008; 88:229-34. [PMID: 18762941 DOI: 10.1007/s00277-008-0572-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 07/21/2008] [Indexed: 12/01/2022]
Abstract
The most frequent genotype associated with Hereditary hemochromatosis is the homozygosity for C282Y, a common HFE mutation. However, other mutations in HFE, transferrin receptor 2 (TFR2), hemojuvelin (HJV) and hepcidin (HAMP) genes, have also been reported in association with this pathology. A mutational analysis of these genes was carried out in 215 Portuguese iron-overloaded individuals previously characterized as non-C282Y or non-H63D homozygous and non-compound heterozygous. The aim was to determine the influence of these genes in the development of iron overload phenotypes in our population. Regarding HFE, some known mutations were found, as S65C and E277K. In addition, three novel missense mutations (L46W, D129N and Y230F) and one nonsense mutation (Y138X) were identified. In TFR2, besides the I238M polymorphism and the rare IVS5 -9T-->A mutation, a novel missense mutation was detected (F280L). Concerning HAMP, the deleterious mutation 5'UTR -25G-->A was found once, associated with Juvenile Hemochromatosis. In HJV, the A310G polymorphism, the novel E275E silent alteration and the novel putative splicing mutation (IVS2 +395C-->G) were identified. In conclusion, only a few number of mutations which can be linked to iron overload was found, revealing their modest contribution for the development of this phenotype in our population, and suggesting that their screening in routine diagnosis is not cost-effective.
Collapse
Affiliation(s)
- Ana Isabel Mendes
- Human Genetics Centre, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Segat L, Pontillo A, Milanese M, Tossi A, Crovella S. Evolution of the hepcidin gene in primates. BMC Genomics 2008; 9:120. [PMID: 18321376 PMCID: PMC2294130 DOI: 10.1186/1471-2164-9-120] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 03/05/2008] [Indexed: 12/21/2022] Open
Abstract
Background Hepcidin/LEAP-1 is an iron regulatory hormone originally identified as an antimicrobial peptide. As part of a systematic analysis of the evolution of host defense peptides in primates, we have sequenced the orthologous gene from 14 species of non-human primates. Results The sequence of the mature peptide is highly conserved amongst all the analyzed species, being identical to the human one in great apes and gibbons, with a single residue conservative variation in Old-World monkeys and with few substitutions in New-World monkeys. Conclusion Our analysis indicates that hepcidin's role as a regulatory hormone, which involves interaction with a conserved receptor (ferroportin), may result in conservation over most of its sequence, with the exception of the stretch between residues 15 and 18, which in New-World monkeys (as well as in other mammals) shows a significant variation, possibly indicating that this structural region is involved in other functions.
Collapse
Affiliation(s)
- Ludovica Segat
- Genetic Unit, IRCCS Burlo Garofolo and Department of Reproductive and Developmental Sciences, University of Trieste, Trieste, Italy.
| | | | | | | | | |
Collapse
|
28
|
Nelson JE, Kowdley KV. Non-HFE hemochromatosis: genetics, pathogenesis, and clinical management. Curr Gastroenterol Rep 2008; 7:71-80. [PMID: 15701302 DOI: 10.1007/s11894-005-0069-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advances in our understanding of iron metabolism and the epidemiology of iron overload disorders have shown that hereditary forms of hemochromatosis can result from mutations in several iron metabolism genes other than HFE, including Hamp, HJV, TFR2, and SCL40A. These "non-HFE" forms of hemochromatosis are much rarer than HFE-related hemochromatosis but exhibit a similar phenotype, and with the exception of ferroportin disease, a similar pattern of inheritance and parenchymal iron accumulation. Therefore, these diseases can be thought of as variant forms of a primary hepatic iron overload syndrome; thus, a unified approach can be used for evaluation and diagnosis. Management generally consists of periodic phlebotomies until iron is depleted.
Collapse
Affiliation(s)
- James E Nelson
- Department of Medicine, Division of Gastroenterology, University of Washington Medical Center, 1959 NE Pacific Street, Box 356424, Seattle, WA 98195, USA
| | | |
Collapse
|
29
|
Aldred MA, Machado RD, James V, Morrell NW, Trembath RC. Characterization of theBMPR25′-Untranslated Region and a Novel Mutation in Pulmonary Hypertension. Am J Respir Crit Care Med 2007; 176:819-24. [PMID: 17641158 DOI: 10.1164/rccm.200701-164oc] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Familial pulmonary arterial hypertension results from heterozygous inactivating mutations of the BMPR2 gene. Traditional mutation analysis identifies pathogenic mutations in some 70% of linked families. We hypothesized that the apparent shortfall is due to mutations located in the promoter region of the gene, resulting in abnormal gene regulation. OBJECTIVES To identify mutations in untranslated sequence regulating BMPR2 transcription. METHODS DNA upstream of the coding region was analyzed by direct sequencing in 16 families. Reverse transcription-polymerase chain reaction analysis and rapid amplification of cDNA ends of normal human lung RNA were used to investigate transcription of this region. Transcript levels were assessed by allele-specific expression analysis and inhibition of nonsense-mediated decay in lymphoblastoid cell lines. MEASUREMENTS AND MAIN RESULTS The wild-type transcriptional start site of BMPR2 was defined, 1,148 bp upstream of the ATG. Within this region, we identified a double-substitution mutation, predicted to form a cryptic translational start site, in one family. The mutant transcript contains a premature stop codon predicted to trigger nonsense-mediated decay. Expression analysis in the patient's cell line indeed showed reduced expression of the mutant transcript that could be restored to normal by inhibiting nonsense-mediated decay. CONCLUSIONS Activation of a cryptic translation initiation site is a novel mutational mechanism in this disorder. These results demonstrate that the 5'-untranslated region of BMPR2 is considerably longer than previously thought, emphasizing the need to fully characterize the BMPR2 promoter and the importance of analyzing noncoding regions in patients with pulmonary arterial hypertension who are negative for mutations within the coding region and intron-exon junctions.
Collapse
Affiliation(s)
- Micheala A Aldred
- Division of Medical Genetics, Department of Genetics, University of Leicester, Leicester, United Kingdom
| | | | | | | | | |
Collapse
|
30
|
Abstract
Non-HFE hereditary haemochromatosis (HH) refers to a genetically heterogeneous group of iron overload disorders that are unlinked to mutations in the HFE gene. The four main types of non-HFE HH are caused by mutations in the hemojuvelin, hepcidin, transferrin receptor 2 and ferroportin genes. Juvenile haemochromatosis is an autosomal recessive disorder and can be caused by mutations in either hemojuvelin or hepcidin. An adult onset form of HH similar to HFE-HH is caused by homozygosity for mutations in transferrin receptor 2. The autosomal dominant iron overload disorder ferroportin disease is caused by mutations in the iron exporter ferroportin. The clinical characteristics and molecular basis of the various types of non-HFE haemochromatosis are reviewed. The study of these disorders and the molecules involved has been invaluable in improving our understanding of the mechanisms involved in the regulation of iron metabolism.
Collapse
Affiliation(s)
- Daniel-F Wallace
- Membrane Transport Laboratory, The Queensland Institute of Medical Research, 300 Herston Road, Herston, Brisbane, QLD 4006 Australia
| | | |
Collapse
|
31
|
Aguilar-Martinez P. Surcharges en fer héréditaires non liées au gène HFE. Presse Med 2007; 36:1279-91. [PMID: 17540536 DOI: 10.1016/j.lpm.2007.01.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/22/2007] [Accepted: 01/24/2007] [Indexed: 10/22/2022] Open
Abstract
Hereditary iron overload is mainly due to mutations of the HFE gene, implicated in most cases of hereditary hemochromatosis. Non-HFE-related hereditary iron overload is rare. It includes hereditary hemochromatosis related to mutations of other genes, ferroportin disease (also known as hemochromatosis type 4), and entities associated with specific clinical manifestations. Four genes have been implicated in hereditary hemochromatosis: HFE and TFR2 (which codes for the second transferrin receptor), both involved in adult forms of hereditary hemochromatosis, and HAMP and HJV, which code for hepcidin and hemojuvelin, respectively, and are responsible for juvenile hemochromatosis. All types of hereditary hemochromatosis share common clinical and biological characteristics, including an autosomal recessive inheritance pattern, elevation of transferrin saturation as the initial manifestation, hepatic parenchymal iron overload, and sensitivity to therapeutic phlebotomy. They are due to hyperabsorption of dietary iron and are linked to a deficit of hepcidin, the principal iron regulator in the body. Ferroportin disease is a special dominantly inherited clinical form of iron overload due to mutations of the SLC40A1 gene. Its expression differs significantly from that of hereditary hemochromatosis, and its mechanism is related to impairment of iron release from reticuloendothelial cells. Other causes of non-HFE-related hereditary iron overload are usually associated with recognizable clinical manifestations, such as anemia or neurological disorders.
Collapse
|
32
|
Abstract
A number of genetic disorders can result in the accumulation of excess iron in the body. These causes of hereditary hemochromatosis include defects in genes encoding HFE, transferrin receptor 2, ferroportin, hepcidin, and hemojuvelin. Hepcidin, with its cognate receptor, ferroportin, has emerged as a central regulator of iron homeostasis; all of the known causes of hemochromatosis appear to prevent this system from functioning normally. The most common form of primary hemochromatosis is that caused by C282Y mutation of the HFE gene. This mutation is most prevalent among Northern Europeans. Although the frequency of the homozygous genotype is approximately 5 per 1000, the disease itself is quite rare because the clinical penetrance of the genotype is very low.
Collapse
Affiliation(s)
- Ernest Beutler
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
33
|
Barton JC, Lee PL. Disparate phenotypic expression of ALAS2 R452H (nt 1407 G → A) in two brothers, one with severe sideroblastic anemia and iron overload, hepatic cirrhosis, and hepatocellular carcinoma. Blood Cells Mol Dis 2006; 36:342-6. [PMID: 16540354 DOI: 10.1016/j.bcmd.2006.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 01/23/2006] [Accepted: 01/23/2006] [Indexed: 01/21/2023]
Abstract
We report the case of a man with severe X-linked sideroblastic anemia, severe iron overload, and hepatic cirrhosis who died of hepatocellular carcinoma. Evaluation of family members using DNA sequencing revealed that he was hemizygous for the novel ALAS2 mutation R452H (exon 9; nt 1407 G --> A). The proband's brother, an ALAS2 R452H hemizygote, had mild anemia and mild iron overload. Four female relatives were ALAS2 R452H heterozygotes, but they had mild or no anemia and no iron overload. Sequencing of TFR2, HFE, FPN1 (SLC40A1), HAMP, HJV, and the erythrocyte pyruvate kinase genes of family members was also performed. We thus detected the novel TFR2 missense mutation I449V (exon 10; nt 1345 A --> G) in the proband's wife and daughter, neither of whom had anemia or iron overload. Possible explanations for the disparate red blood cell and iron phenotypes of the proband and his family members are discussed.
Collapse
Affiliation(s)
- James C Barton
- Southern Iron Disorders Center, Birmingham, AL 35209, USA.
| | | |
Collapse
|
34
|
Abstract
Summary Hepcidin is an important and recently discovered regulator of iron homeostasis. There is strong evidence in support of an important role for hepcidin dysregulation in the pathogenesis of iron overload disorders, and possibly in the aetiology of the anaemia of chronic disease. Further research is needed into the physiology of hepcidin to elucidate the relative contributions of the liver and kidney to its production and metabolism. The study of the differential roles of prohepcidin and its metabolites as well as the significance of their serum and urine levels will enhance our understanding of their role in iron metabolism.
Collapse
Affiliation(s)
- A Hugman
- Institute of Haematology, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
35
|
Daraio F, Ryan E, Gleeson F, Roetto A, Crowe J, Camaschella C. Juvenile hemochromatosis due to G320V/Q116X compound heterozygosity of hemojuvelin in an Irish patient. Blood Cells Mol Dis 2006; 35:174-6. [PMID: 15967692 DOI: 10.1016/j.bcmd.2005.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Accepted: 02/03/2005] [Indexed: 11/30/2022]
Abstract
Hemojuvelin (HJV) is a recently discovered gene responsible for 1q-linked juvenile hemochromatosis. The majority of mutations characterized in this gene are rare and private, except G320V, identified in patients from different countries. Here, we report the clinical features and the molecular study of a young Irish patient presenting with severe cardiac disease related to iron overload. We sequenced the coding region and the exon-intron boundaries of genes associated with juvenile hemochromatosis, HAMP and HJV encoding hepcidin and hemojuvelin respectively. Two heterozygous HJV mutations were identified: the G320V mutation and the new Q116X mutation that cause a premature stop codon in the protein. This finding increases the number of mutations identified in HJV gene and underlines that the G320V is a recurrent mutation, even in Northern Europe.
Collapse
Affiliation(s)
- F Daraio
- Dipartimento di Scienze Cliniche e Biologiche, Università di Torino, Azienda Ospedaliera San Luigi, Orbassano, Torino, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
The molecular basis of haemochromatosis has proved more complex than expected. After the 1996 identification of the main causative gene HFE and confirmation that most patients were homozygous for the founder C282Y mutation, it became clear that some families were linked to rarer conditions, first named 'non-HFE haemochromatosis'. The genetics of these less common forms was intensively studied between 2000 and 2004, leading to the recognition of haemojuvelin (HJV), hepcidin (HAMP), transferrin receptor 2 (TFR2) and ferroportin-related haemochromatosis, and opening the way for novel hypotheses such as those related to digenic modes of inheritance or the involvement of modifier genes. Molecular studies of rare haemochromatosis disorders have contributed to our understanding of iron homeostasis. In turn, recent findings from studies of knockout mice and functional studies have confirmed that HAMP plays a central role in mobilization of iron, shown that HFE, TFR2 and HJV modulate HAMP production according to the body's iron status, and demonstrated that HAMP negatively regulates cellular iron efflux by affecting the ferroportin cell surface availability. These data shed new light on the pathophysiology of all types of haemochromatosis, and offer novel opportunities to comment on phenotypic differences and distinguish mutations.
Collapse
|
37
|
Porto G, Roetto A, Daraio F, Pinto JP, Almeida S, Bacelar C, Nemeth E, Ganz T, Camaschella C. A Portuguese patient homozygous for the -25G>A mutation of the HAMP promoter shows evidence of steady-state transcription but fails to up-regulate hepcidin levels by iron. Blood 2005; 106:2922-3. [PMID: 16204153 DOI: 10.1182/blood-2005-04-1630] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
38
|
Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 2005; 361:13-37. [PMID: 16213112 DOI: 10.1016/j.gene.2005.06.037] [Citation(s) in RCA: 540] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/31/2005] [Accepted: 06/27/2005] [Indexed: 01/19/2023]
Abstract
The mechanism of initiation of translation differs between prokaryotes and eukaryotes, and the strategies used for regulation differ accordingly. Translation in prokaryotes is usually regulated by blocking access to the initiation site. This is accomplished via base-paired structures (within the mRNA itself, or between the mRNA and a small trans-acting RNA) or via mRNA-binding proteins. Classic examples of each mechanism are described. The polycistronic structure of mRNAs is an important aspect of translational control in prokaryotes, but polycistronic mRNAs are not usable (and usually not produced) in eukaryotes. Four structural elements in eukaryotic mRNAs are important for regulating translation: (i) the m7G cap; (ii) sequences flanking the AUG start codon; (iii) the position of the AUG codon relative to the 5' end of the mRNA; and (iv) secondary structure within the mRNA leader sequence. The scanning model provides a framework for understanding these effects. The scanning mechanism also explains how small open reading frames near the 5' end of the mRNA can down-regulate translation. This constraint is sometimes abrogated by changing the structure of the mRNA, sometimes with clinical consequences. Examples are described. Some mistaken ideas about regulation of translation that have found their way into textbooks are pointed out and corrected.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
39
|
Zoller H, McFarlane I, Theurl I, Stadlmann S, Nemeth E, Oxley D, Ganz T, Halsall DJ, Cox TM, Vogel W. Primary iron overload with inappropriate hepcidin expression in V162del ferroportin disease. Hepatology 2005; 42:466-72. [PMID: 15986403 DOI: 10.1002/hep.20775] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ferroportin disease (hemochromatosis type 4) is a recently recognized disorder of human iron metabolism, characterized by iron deposition in macrophages, including Kupffer cells. Mutations in the gene encoding ferroportin 1, a cellular iron exporter, are responsible for this iron storage disease, inherited as an autosomal dominant trait. We present clinical, histopathological, and radiological findings in a family with the most common ferroportin mutation, V162del. In the index case, the disorder is characterized by abundant deposition of hemosiderin in all tissues investigated (mesenteric lymph node, liver, gastric and duodenal mucosa, and also in squamous cell carcinoma of the lung). The radiological findings indicated the presence of excess iron in bone marrow and spleen. Despite a significant burden of iron, no features of chronic liver disease were found in affected members of the family, including individuals aged up to 80 years. Hyperferritinemia greater than 1,000 microg/L was a penetrant biochemical finding before the second decade in life and was associated with significantly increased serum concentrations of pro-hepcidin that correlated positively with urinary hepcidin concentrations. In conclusion, the systemic iron burden in ferroportin disease is not a sufficient cause for chronic liver disease. In patients with most, but not all, ferroportin mutations, retention of iron in macrophages of the liver and other organs may protect against damage to parenchymal cells. Finally, macrophage iron storage in ferroportin disease is associated with elevated serum pro-hepcidin levels.
Collapse
Affiliation(s)
- Heinz Zoller
- Clinical Division of Gastroenterology and Hepatology, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Camaschella C. Understanding iron homeostasis through genetic analysis of hemochromatosis and related disorders. Blood 2005; 106:3710-7. [PMID: 16030190 DOI: 10.1182/blood-2005-05-1857] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genetic analysis of hemochromatosis has led to the discovery of a number of genes whose mutations disrupt iron homeostasis and lead to iron overload. The introduction of molecular tests into clinical practice has provided a tool for early diagnosis of these conditions. It has become clear that hemochromatosis includes a spectrum of disorders that range from simple biochemical abnormalities to chronic asymptomatic tissue damage in midlife to serious life-threatening diseases in young subjects. Molecular studies have identified the systemic loop that controls iron homeostasis and is centered on the hepcidin-ferroportin interaction. The complexity of this regulatory pathway accounts for the genetic heterogeneity of hemochromatosis and related disorders and raises the possibility that genes encoding components of the pathway may be modifiers of the main genotype. Molecular diagnosis has improved the classification of the genetic conditions leading to iron overload and identified novel entities, characterized by both iron loading and variable degrees of anemia. Despite the progress in the diagnosis, classification, and mechanisms of iron overload disorders, the treatment of affected patients continues to rely on regular phlebotomy. Understanding the molecular circuitry of iron control may lead to the identification of potential therapeutic targets for novel treatment strategies to be used in association with or as an alternative to phlebotomy.
Collapse
Affiliation(s)
- Clara Camaschella
- Università Vita-Salute and Istituto di Ricovero e Cura a Carratere Scientifico Ospedale San Raffaele, Via Olgettina, 60, 20132 Milano, Italy.
| |
Collapse
|
41
|
Abstract
PURPOSE OF REVIEW The anemia of inflammation has been associated for nearly two decades with elevated cytokine levels, but the primary mediator of this condition was unknown. Recently hepcidin antimicrobial peptide has emerged as the hormone that links the type II acute phase response to iron handling and erythropoiesis. RECENT FINDINGS Hepcidin antimicrobial peptide likely modulates iron transport from macrophages and enterocytes to red blood cell precursors as a consequence of its interaction with SLC40A1/ferroportin, the only known transporter that facilitates iron egress. Insights into the regulation of hepcidin antimicrobial peptide expression by known iron metabolic proteins such as HFE, hemojuvelin, and transferrin receptor 2 are expanding the understanding of the genetic circuitry that controls iron absorption and utilization. SUMMARY Increasingly, experiments suggest the hepatocyte is not just the iron storage depot but is the 'command central' for the maintenance of iron homeostasis. It receives multiple signals related to iron balance and responds via transcriptional control of hepcidin antimicrobial peptide.
Collapse
|
42
|
Brissot P, Le Lan C, Troadec MB, Lorho R, Ropert M, Lescoat G, Loréal O. Hémochromatose HFE : approche pathogénique et diagnostique. Transfus Clin Biol 2005; 12:77-82. [PMID: 15925529 DOI: 10.1016/j.tracli.2005.04.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Indexed: 01/04/2023]
Abstract
HFE hemochromatosis is the most frequent genetic iron overload disease. It is linked to the C282Y mutation of the HFE protein, protein encoded by the HFE gene, which is located on chromosome 6. The mechanisms accounting for iron excess are not only digestive hyperabsorption of iron but also excessive recycling of macrophagic iron coming from erythrophagocytosis and secreted into the blood. Both mechanisms are linked to an HFE-related hepatic failure in producing hepcidin, a key hormone of body iron regulation. The marked phenotypic variability of C282Y homozygosity expression is likely related to both genetic and environmental factors. The HFE gene discovery has rendered non invasive the positive diagnostic of HFE hemochromatosis, which is now based first on an increased level of plasma transferrin saturation leading to the request of the HFE mutation. Then, hepatic MRI is a reliable method to quantify iron overload. The HFE gene discovery has also paved the road of an enlarged field of differential diagnoses corresponding to novel entities of non-HFE related genetic iron overload syndromes.
Collapse
Affiliation(s)
- P Brissot
- Service des maladies du foie, CHU de Pontchaillou, Rennes, France.
| | | | | | | | | | | | | |
Collapse
|
43
|
Celec P. Hemojuvelin: a supposed role in iron metabolism one year after its discovery. J Mol Med (Berl) 2005; 83:521-5. [PMID: 15875150 DOI: 10.1007/s00109-005-0668-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2005] [Accepted: 03/29/2005] [Indexed: 02/07/2023]
Abstract
The discovery of hemojuvelin and its association with juvenile hemochromatosis are important not only for the diagnostics of this rare severe disease but also for the understanding of the complex mechanism of iron metabolism regulation. Currently, the physiological role of hemojuvelin is obscure. Recent experimental and clinical studies indicate that hemojuvelin will probably be a regulator of hepcidin, similar to HFE and transferrin receptor 2. However, in contrast to transferrin receptor 2, which is relevant in the hepcidin response to changes in transferrin saturation, HFE and especially hemojuvelin seem to be involved in the inflammation-induced hepcidin expression. Hepcidin, generally accepted as a hormone targeting enterocytes and macrophages, decreases iron absorption from the intestinal lumen and iron release from phagocytes. This mechanism explains the central role of hepcidin and, indirectly, its regulator, hemojuvelin, in the pathogenesis of hemochromatosis but also in anemia of chronic disease. Further basic and clinical research is needed to uncover the details of hemojuvelin pathophysiology required for potential pharmacological interventions.
Collapse
Affiliation(s)
- Peter Celec
- BiomeD Research and Publishing Group, Bratislava, Slovakia.
| |
Collapse
|
44
|
Lou DQ, Lesbordes JC, Nicolas G, Viatte L, Bennoun M, Van Rooijen N, Kahn A, Renia L, Vaulont S. Iron- and inflammation-induced hepcidin gene expression in mice is not mediated by Kupffer cells in vivo. Hepatology 2005; 41:1056-64. [PMID: 15793843 DOI: 10.1002/hep.20663] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepcidin, a recently discovered iron regulatory peptide, is believed to inhibit the release of iron from absorptive enterocytes and macrophages. Liver hepcidin synthesis is induced in vivo by iron stores and inflammation. The molecular basis of the regulation of hepcidin gene expression by these effectors in hepatocytes is currently unknown, although there is strong evidence that indirect mechanisms are involved. The aims of this study were to gain insight into these mechanisms and to determine to what extent other liver cell types are responsible for transducing the signal by which hepcidin expression is regulated in mouse hepatocytes. For this, we depleted Kupffer cells by injection of liposome-encapsulated clodronate and then studied iron- and inflammation-induced hepcidin gene expression. In addition, we directly evaluated the role of the inflammatory cytokine interleukin 6 (IL-6) by using IL-6-deficient mice. Our results show that iron is able to induce hepcidin gene expression independently of Kupffer cells in the liver and circulating IL-6. In contrast, we show that hepcidin gene induction by inflammation is also independent of Kupffer cells, but involves, at least partly, IL-6. In conclusion, these results show that two independent regulatory pathways control hepcidin gene expression and suggest that hepatocytes play a key role in the regulation of hepcidin gene expression by sensing iron and inflammatory signals.
Collapse
Affiliation(s)
- Dan-Qing Lou
- Département de Génétique, Développement et Pathologie Moléculaire, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, et Université René Descartes, Faculté de Médecine Cochin-Port Royal, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Brissot P, Jouanolle AM, Le Lan C, Loreal O, Deugnier Y, David V. Surcharges héréditaires en fer non liées à HFE. ACTA ACUST UNITED AC 2005; 29:565-8. [PMID: 15980752 DOI: 10.1016/s0399-8320(05)82130-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|