1
|
Nekrasova I, Shirshev S. Estriol in formation of mononuclear cells tolerogenic features. J Reprod Immunol 2024; 166:104390. [PMID: 39547106 DOI: 10.1016/j.jri.2024.104390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/17/2024]
Abstract
Estriol (E3) is one of hormones whose synthesis is mainly associated with pregnancy. The hormone can also regulate immune cells functions. E3 influence on monocyte indoleamine-2,3-dioxygenase (IDO1) activity and Treg and NK cells' markers expression was investigated. LPS and IFN-γ stimulated IDO1 activity was augmented by Е3 independently of the hormone doses. Both Е3 concentrations increased CD4+Foxp3+ lymphocytes percentage. This hormonal effect was mediated by protein kinase A. CD16 expression upon NK cells was reduced as a result of Е3 influence. The data indicated that Е3 is one of the factors which maintained immune tolerance during pregnancy and protected fetus preservation.
Collapse
Affiliation(s)
- Irina Nekrasova
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm 614081, Russia.
| | - Sergei Shirshev
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Perm 614081, Russia
| |
Collapse
|
2
|
Rezende RM, Coimbra RS, Kohlhoff M, Favarato LSC, Martino HSD, Leite LB, Soares LL, Encarnação S, Forte P, de Barros Monteiro AM, Peluzio MDCG, José Natali A. Effects of Tryptophan and Physical Exercise on the Modulation of Mechanical Hypersensitivity in a Fibromyalgia-like Model in Female Rats. Cells 2024; 13:1647. [PMID: 39404410 PMCID: PMC11475953 DOI: 10.3390/cells13191647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Though the mechanisms are not fully understood, tryptophan (Trp) and physical exercise seem to regulate mechanical hypersensitivity in fibromyalgia. Here, we tested the impact of Trp supplementation and continuous low-intensity aerobic exercise on the modulation of mechanical hypersensitivity in a fibromyalgia-like model induced by acid saline in female rats. Twelve-month-old female Wistar rats were randomly divided into groups: [control (n = 6); acid saline (n = 6); acid saline + exercise (n = 6); acid saline + Trp (n = 6); and acid saline + exercise + Trp (n = 6)]. Hypersensitivity was caused using two intramuscular jabs of acid saline (20 μL; pH 4.0; right gastrocnemius), 3 days apart. The tryptophan-supplemented diet contained 7.6 g/hg of Trp. The three-week exercise consisted of progressive (30-45 min) treadmill running at 50 to 60% intensity, five times (Monday to Friday) per week. We found that acid saline induced contralateral mechanical hypersensitivity without changing the levels of Trp, serotonin (5-HT), and kynurenine (KYN) in the brain. Hypersensitivity was reduced by exercise (~150%), Trp (~67%), and its combination (~160%). The Trp supplementation increased the levels of Trp and KYN in the brain, and the activity of indoleamine 2,3-dioxygenase (IDO), and decreased the ratio 5-HT:KYN. Exercise did not impact the assessed metabolites. Combining the treatments reduced neither hypersensitivity nor the levels of serotonin and Trp in the brain. In conclusion, mechanical hypersensitivity induced by acid saline in a fibromyalgia-like model in female rats is modulated by Trp supplementation, which increases IDO activity and leads to improved Trp metabolism via the KYN pathway. In contrast, physical exercise does not affect mechanical hypersensitivity through brain Trp metabolism via either the KYN or serotonin pathways. Because this is a short study, generalizing its findings warrants caution.
Collapse
Affiliation(s)
- Rafael Marins Rezende
- Department of Physiotherapy, Universidade Federal de Juiz de Fora, Governador Valadares 35020-360, MG, Brazil;
| | - Roney Santos Coimbra
- Instituto Rene Rachou–Fiocurz Minas, Belo Horizonte 30190-009, MG, Brazil; (R.S.C.); (M.K.)
| | - Markus Kohlhoff
- Instituto Rene Rachou–Fiocurz Minas, Belo Horizonte 30190-009, MG, Brazil; (R.S.C.); (M.K.)
| | | | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (H.S.D.M.); (M.d.C.G.P.)
| | - Luciano Bernardes Leite
- Exercise Biology Laboratory, Department of Physical Education, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (L.B.L.); (L.L.S.)
- Department of Sports Sciences, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.F.); (A.M.d.B.M.)
| | - Leoncio Lopes Soares
- Exercise Biology Laboratory, Department of Physical Education, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (L.B.L.); (L.L.S.)
| | - Samuel Encarnação
- Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Department of Physical Education, Sport and Human Movement, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Research Centre for Active Living and Wellbeing (Livewell), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Pedro Forte
- Department of Sports Sciences, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.F.); (A.M.d.B.M.)
- Research Centre for Active Living and Wellbeing (Livewell), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
- CI-ISCE, Instituto Superior de Ciências Educativas do Douro (ISCE Douro), 4560-547 Penafiel, Portugal
- Research Centre in Sports Sciences, Health Sciences and Human Development, 5001-801 Vila Real, Portugal
| | - António Miguel de Barros Monteiro
- Department of Sports Sciences, Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; (P.F.); (A.M.d.B.M.)
- Research Centre for Active Living and Wellbeing (Livewell), Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal
| | - Maria do Carmo Gouveia Peluzio
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (H.S.D.M.); (M.d.C.G.P.)
| | - Antônio José Natali
- Exercise Biology Laboratory, Department of Physical Education, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (L.B.L.); (L.L.S.)
| |
Collapse
|
3
|
Mamand DR, Bazaz S, Mohammad DK, Saher O, Wiklander OPB, Sadeghi B, Hassan M, El-Andaloussi S, Abedi-Valugerdi M. Tumor cell derived osteopontin and prostaglandin E2 synergistically promote the expansion of myeloid derived suppressor cells during the tumor immune escape phase. Int Immunopharmacol 2024; 129:111584. [PMID: 38364741 DOI: 10.1016/j.intimp.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The immune escape stage in cancer immunoediting is a pivotal feature, transitioning immune-controlled tumor dormancy to progression, and augmenting invasion and metastasis. Tumors employ diverse mechanisms for immune escape, with generating immunosuppressive cells from skewed hematopoiesis being a crucial mechanism. This led us to suggest that tumor cells with immune escape properties produce factors that induce dysregulations in hematopoiesis. In support of this suggestion, this study found that mice bearing advanced-stage tumors exhibited dysregulated hematopoiesis characterized by the development of splenomegaly, anemia, extramedullary hematopoiesis, production of immunosuppressive mediators, and expanded medullary myelopoiesis. Further ex vivo studies exhibited that conditioned medium derived from EL4lu2 cells could mediate the expansion of myeloid derived suppressor cells (MDSCs) in bone marrow cell cultures. The protein array profiling results revealed the presence of elevated levels of osteopontin (OPN), prostaglandin E2 (PGE2) and interleukin 17 (IL-17) in the culture medium derived from EL4luc2 cells. Accordingly, substantial levels of these factors were also detected in the sera of mice bearing EL4luc2 tumors. Among these factors, only PGE2 alone could increase the number of MDSCs in the BM cell cultures. This effect of PGE2 was significantly potentiated by the presence of OPN but not IL-17. Finally, in vitro treatment of EL4luc2 cells with pioglitazone, a modulator of OPN and cyclooxygenase 2 (COX-2) resulted in a significant reduction in cell proliferation in EL4luc2 cells. Our findings highlight the significant role played by tumor cell-derived OPN and PGE2 in fostering the expansion of medullary MDSCs and in promoting tumor cell proliferation. Furthermore, these intertwined cancer processes could be key targets for pioglitazone intervention.
Collapse
Affiliation(s)
- Doste R Mamand
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Safa Bazaz
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Dara K Mohammad
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, SE-141 83 Stockholm, Sweden; College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Kurdistan Region, Erbil 44002, Iraq
| | - Osama Saher
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Oscar P B Wiklander
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Moustapha Hassan
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Experimental Cancer Medicine, Karolinska Institutet and Karolinska University Hospital, Huddinge, Sweden
| | - Samir El-Andaloussi
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Manuchehr Abedi-Valugerdi
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden.
| |
Collapse
|
4
|
Cuenca-Escalona J, Flórez-Grau G, van den Dries K, Cambi A, de Vries IJM. PGE2-EP4 signaling steers cDC2 maturation toward the induction of suppressive T-cell responses. Eur J Immunol 2024; 54:e2350770. [PMID: 38088451 DOI: 10.1002/eji.202350770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
Dendritic cells (DCs) shape adaptive immunity in response to environmental cues such as cytokines or lipid mediators, including prostaglandin E2 (PGE2). In cancer, tumors are known to establish an enriched PGE2 microenvironment. Tumor-derived PGE2 primes regulatory features across immune cells, including DCs, facilitating tumor progression. PGE2 shapes DC function by providing signaling via its two so-called E-prostanoid receptors (EPs) EP2 and EP4. Although studies with monocyte-derived DCs have shown the importance of PGE2 signaling, the role of PGE2-EP2/EP4 on conventional DCs type 2 (cDC2s), is still poorly defined. In this study, we investigated the function of EP2 and EP4 using specific EP antagonists on human cDC2s. Our results show that EP2 and EP4 exhibit different functions in cDC2s, with EP4 modulating the upregulation of activation markers (CD80, CD86, CD83, MHC class II) and the production of IL-10 and IL-23. Furthermore, PGE2-EP4 boosts CCR type 7-based migration as well as a higher T-cell expansion capacity, characterized by the enrichment of suppressive rather than pro-inflammatory T-cell populations. Our findings are relevant to further understanding the role of EP receptors in cDC2s, underscoring the benefit of targeting the PGE2-EP2/4 axis for therapeutic purposes in diseases such as cancer.
Collapse
Affiliation(s)
- Jorge Cuenca-Escalona
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - Georgina Flórez-Grau
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - Koen van den Dries
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| | - I Jolanda M de Vries
- Department of Medical BioSciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, Nijmegen, 6525GA, the Netherlands
| |
Collapse
|
5
|
Li C, Hou Y, He M, Lv L, Zhang Y, Sun S, Zhao Y, Liu X, Ma P, Wang X, Zhou Q, Zhan L. Laponite Lights Calcium Flickers by Reprogramming Lysosomes to Steer DC Migration for An Effective Antiviral CD8 + T-Cell Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303006. [PMID: 37638719 PMCID: PMC10602536 DOI: 10.1002/advs.202303006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/13/2023] [Indexed: 08/29/2023]
Abstract
Immunotherapy using dendritic cell (DC)-based vaccination is an established approach for treating cancer and infectious diseases; however, its efficacy is limited. Therefore, targeting the restricted migratory capacity of the DCs may enhance their therapeutic efficacy. In this study, the effect of laponite (Lap) on DCs, which can be internalized into lysosomes and induce cytoskeletal reorganization via the lysosomal reprogramming-calcium flicker axis, is evaluated, and it is found that Lap dramatically improves the in vivo homing ability of these DCs to lymphoid tissues. In addition, Lap improves antigen cross-presentation by DCs and increases DC-T-cell synapse formation, resulting in enhanced antigen-specific CD8+ T-cell activation. Furthermore, a Lap-modified cocktail (Lap@cytokine cocktail [C-C]) is constructed based on the gold standard, C-C, as an adjuvant for DC vaccines. Lap@C-C-adjuvanted DCs initiated a robust cytotoxic T-cell immune response against hepatitis B infection, resulting in > 99.6% clearance of viral DNA and successful hepatitis B surface antigen seroconversion. These findings highlight the potential value of Lap as a DC vaccine adjuvant that can regulate DC homing, and provide a basis for the development of effective DC vaccines.
Collapse
Affiliation(s)
- Chenyan Li
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
- BGI college, Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yangyang Hou
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Minwei He
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Liping Lv
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Yulong Zhang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Sujing Sun
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Yan Zhao
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Xingzhao Liu
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Ping Ma
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Xiaohui Wang
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Qianqian Zhou
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
| | - Linsheng Zhan
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P. R. China
- BGI college, Henan Institute of Medical and Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
6
|
Girithar HN, Staats Pires A, Ahn SB, Guillemin GJ, Gluch L, Heng B. Involvement of the kynurenine pathway in breast cancer: updates on clinical research and trials. Br J Cancer 2023; 129:185-203. [PMID: 37041200 PMCID: PMC10338682 DOI: 10.1038/s41416-023-02245-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 04/13/2023] Open
Abstract
Breast cancer (BrCa) is the leading cause of cancer incidence and mortality in women worldwide. While BrCa treatment has been shown to be highly successful if detected at an early stage, there are few effective strategies to treat metastatic tumours. Hence, metastasis remains the main cause in most of BrCa deaths, highlighting the need for new approaches in this group of patients. Immunotherapy has been gaining attention as a new treatment for BrCa metastasis and the kynurenine pathway (KP) has been suggested as one of the potential targets. The KP is the major biochemical pathway in tryptophan (TRP) metabolism, catabolising TRP to nicotinamide adenine dinucleotide (NAD+). The KP has been reported to be elevated under inflammatory conditions such as cancers and that its activity suppresses immune surveillance. Dysregulation of the KP has previously been reported implicated in BrCa. This review aims to discuss and provide an update on the current mechanisms involved in KP-mediated immune suppression and cancer growth. Furthermore, we also provide a summary on 58 studies about the involvement of the KP and BrCa and five clinical trials targeting KP enzymes and their outcome.
Collapse
Affiliation(s)
- Hemaasri-Neya Girithar
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ananda Staats Pires
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Seong Beom Ahn
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Gilles J Guillemin
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Laurence Gluch
- The Strathfield Breast Centre, Strathfield, NSW, Australia
| | - Benjamin Heng
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
7
|
de Ruiter Swain J, Michalopoulou E, Noch EK, Lukey MJ, Van Aelst L. Metabolic partitioning in the brain and its hijacking by glioblastoma. Genes Dev 2023; 37:681-702. [PMID: 37648371 PMCID: PMC10546978 DOI: 10.1101/gad.350693.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The different cell types in the brain have highly specialized roles with unique metabolic requirements. Normal brain function requires the coordinated partitioning of metabolic pathways between these cells, such as in the neuron-astrocyte glutamate-glutamine cycle. An emerging theme in glioblastoma (GBM) biology is that malignant cells integrate into or "hijack" brain metabolism, co-opting neurons and glia for the supply of nutrients and recycling of waste products. Moreover, GBM cells communicate via signaling metabolites in the tumor microenvironment to promote tumor growth and induce immune suppression. Recent findings in this field point toward new therapeutic strategies to target the metabolic exchange processes that fuel tumorigenesis and suppress the anticancer immune response in GBM. Here, we provide an overview of the intercellular division of metabolic labor that occurs in both the normal brain and the GBM tumor microenvironment and then discuss the implications of these interactions for GBM therapy.
Collapse
Affiliation(s)
- Jed de Ruiter Swain
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, New York 11724, USA
| | | | - Evan K Noch
- Department of Neurology, Division of Neuro-oncology, Weill Cornell Medicine, New York, New York 10021, USA
| | - Michael J Lukey
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| | - Linda Van Aelst
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA;
| |
Collapse
|
8
|
Azimnasab-Sorkhabi P, Soltani-Asl M, Yoshinaga TT, Zaidan Dagli ML, Massoco CDO, Kfoury Junior JR. Indoleamine-2,3 dioxygenase: a fate-changer of the tumor microenvironment. Mol Biol Rep 2023:10.1007/s11033-023-08469-3. [PMID: 37217614 DOI: 10.1007/s11033-023-08469-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Indoleamine-2,3 dioxygenase is a rate-limiting enzyme in the tryptophan catabolism in kynurenine pathways that has an immunosuppressive effect and supports cancer cells to evade the immune system in different cancer types. Diverse cytokines and pathways upregulate the production of indoleamine-2,3 dioxygenase enzymes in the tumor microenvironment and cause more production and activity of this enzyme. Ultimately, this situation results in anti-tumor immune suppression which is in favor of tumor growth. Several inhibitors such as 1-methyl-tryptophan have been introduced for indoleamine-2,3 dioxygenase enzyme and some of them are widely utilized in pre-clinical and clinical trials. Importantly at the molecular level, indoleamine-2,3 dioxygenase is positioned in a series of intricate signaling and molecular networks. Here, the main objective is to provide a focused view of indoleamine-2,3 dioxygenase enhancer pathways and propose further studies to cover the gap in available information on the function of indoleamine-2,3 dioxygenase enzyme in the tumor microenvironment.
Collapse
Affiliation(s)
- Parviz Azimnasab-Sorkhabi
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Maryam Soltani-Asl
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Túlio Teruo Yoshinaga
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Lucia Zaidan Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Cristina de Oliveira Massoco
- Department of Pathology, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Jose Roberto Kfoury Junior
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
9
|
Doron G, Pearson JJ, Guldberg RE, Temenoff JS. Development and characterization of Factor Xa-responsive materials for applications in cell culture and biologics delivery. J Biomed Mater Res A 2023; 111:634-643. [PMID: 36794576 DOI: 10.1002/jbm.a.37513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Stimuli-responsive biomaterials may be used to better control the release of bioactive molecules or cells for applications involving drug delivery and controlled cell release. In this study, we developed a Factor Xa (FXa)-responsive biomaterial capable of controlled release of pharmaceutical agents and cells from in vitro culture. FXa-cleavable substrates were formed as hydrogels that degraded in response to FXa enzyme over several hours. Hydrogels were shown to release both heparin and a model protein in response to FXa. Additionally, RGD-functionalized FXa-degradable hydrogels were used to culture mesenchymal stromal cells (MSCs), enabling FXa-mediated cell dissociation from hydrogels in a manner that preserved multicellular structures. Harvesting MSCs using FXa-mediated dissociation did not influence their differentiation capacity or indoleamine 2,3-dioxygenase (IDO) activity (a measure of immunomodulatory capacity). In all, this FXa-degradable hydrogel is a novel responsive biomaterial system that may be used for on-demand drug delivery, as well as for improving processes for in vitro culture of therapeutic cells.
Collapse
Affiliation(s)
- Gilad Doron
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Joseph J Pearson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| | - Robert E Guldberg
- Knight Campus for Accelerating Scientific Impact, 6231 University of Oregon, Eugene, Oregon, USA
| | - Johnna S Temenoff
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Min Q, Yang L, Tian H, Tang L, Xiao Z, Shen J. Immunomodulatory Mechanism and Potential Application of Dental Pulp-Derived Stem Cells in Immune-Mediated Diseases. Int J Mol Sci 2023; 24:ijms24098068. [PMID: 37175774 PMCID: PMC10178746 DOI: 10.3390/ijms24098068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) derived from dental pulp tissue, which have high self-renewal ability and multi-lineage differentiation potential. With the discovery of the immunoregulatory ability of stem cells, DPSCs have attracted much attention because they have similar or even better immunomodulatory effects than MSCs from other sources. DPSCs and their exosomes can exert an immunomodulatory ability by acting on target immune cells to regulate cytokines. DPSCs can also migrate to the lesion site to differentiate into target cells to repair the injured tissue, and play an important role in tissue regeneration. The aim of this review is to summarize the molecular mechanism and target cells of the immunomodulatory effects of DPSCs, and the latest advances in preclinical research in the treatment of various immune-mediated diseases, providing new reflections for their clinical application. DPSCs may be a promising source of stem cells for the treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Qi Min
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Hua Tian
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Lu Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| |
Collapse
|
11
|
The Role of COX-2 and PGE2 in the Regulation of Immunomodulation and Other Functions of Mesenchymal Stromal Cells. Biomedicines 2023; 11:biomedicines11020445. [PMID: 36830980 PMCID: PMC9952951 DOI: 10.3390/biomedicines11020445] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
The ability of MSCs to modulate the inflammatory environment is well recognized, but understanding the molecular mechanisms responsible for these properties is still far from complete. Prostaglandin E2 (PGE2), a product of the cyclooxygenase 2 (COX-2) pathway, is indicated as one of the key mediators in the immunomodulatory effect of MSCs. Due to the pleiotropic effect of this molecule, determining its role in particular intercellular interactions and aspects of cell functioning is very difficult. In this article, the authors attempt to summarize the previous observations regarding the role of PGE2 and COX-2 in the immunomodulatory properties and other vital functions of MSCs. So far, the most consistent results relate to the inhibitory effect of MSC-derived PGE2 on the early maturation of dendritic cells, suppressive effect on the proliferation of activated lymphocytes, and stimulatory effect on the differentiation of macrophages into M2 phenotype. Additionally, COX-2/PGE2 plays an important role in maintaining the basic life functions of MSCs, such as the ability to proliferate, migrate and differentiate, and it also positively affects the formation of niches that are conducive to both hematopoiesis and carcinogenesis.
Collapse
|
12
|
Dry Powder Comprised of Isoniazid-Loaded Nanoparticles of Hyaluronic Acid in Conjugation with Mannose-Anchored Chitosan for Macrophage-Targeted Pulmonary Administration in Tuberculosis. Pharmaceutics 2022; 14:pharmaceutics14081543. [PMID: 35893799 PMCID: PMC9330414 DOI: 10.3390/pharmaceutics14081543] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Marketed dosage forms fail to deliver anti-tubercular drugs directly to the lungs in pulmonary Tuberculosis (TB). Therefore, nanomediated isoniazid (INH)-loaded dry powder for inhalation (Nano-DPI) was developed for macrophage-targeted delivery in TB. Mannosylated chitosan (MC) and hyaluronic acid (HA) with an affinity for the surface mannose and CD44 receptors of macrophages were used in conjugation to prepare hybrid nanosuspension by ionic gelation method using cross-linker, sodium tri-polyphosphate (TPP) followed by freeze-drying to obtain a dry powder composed of nanoparticles (INH-MC/HA NPs). Nanoformulations were evaluated for aerodynamic characteristics, cytotoxicity, hemocompatibility, macrophage phenotype analysis, and immune regulation. Cellular uptake imaging was also conducted to evaluate the uptake of NPs. The nanopowders did not pose any significant toxicity to the cells, along with good compatibility with red blood cells (RBCs). The pro-inflammatory costimulatory markers were upregulated, demonstrating the activation of T-cell response. Moreover, the NPs did not show any tolerogenic effect on the macrophages. Furthermore, confocal imaging exhibited the translocation of NPs in the cells. Altogether, the findings present that nano-DPI was found to be a promising vehicle for targeting macrophages.
Collapse
|
13
|
Jiang J, Zhang C, Wang L, Wang X, He H, Wu S, Zhao X. Insights into the combined effects of environmental concentration of difenoconazole and tebuconazole on zebrafish early life stage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154687. [PMID: 35314214 DOI: 10.1016/j.scitotenv.2022.154687] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Limited literature had focused on the combined effect of triazole fungicides on aquatic organisms at environmental concentrations. In this research, difenoconazole (DIF) and tebuconazole (TEB) mixture exhibited additive effect on the acute toxicity to zebrafish embryos. The transcriptomics and metabolomics demonstrated DIF and TEB mixtures at aquatic life benchmark and environmental concentration simultaneously influenced the lipid metabolism, arachidonic acid metabolism, steroid hormone biosynthesis and tryptophan metabolism, but showed diverse response patterns mediating the combined effects on zebrafish embryos after 120 h exposure. The DIF and TEB mixture at aquatic life benchmark caused combined effect on yolk sac resorption and metabolites, was less than the additive effect of individual DIF and TEB. It was found environmental concentration of DIF and TEB caused much lower levels of IFN and IL6, induced higher levels of PGE2, l-kynurenine and formylanthranilate in zebrafish larvae, and their binary mixture caused synergistic effect on the accumulation of metabolites in metabolic pathways, which might cause more negative effect and risk on growth in zebrafish later life stages. Results further demonstrated that adding arachidonic acid (AA) increased the transcripts of Pla2, Ptgs1, Cyp19a and Cxcl8b, allayed the accumulation of PLA2 and 17β-E2, and induced more PGF2α, IFN and IL6 levels in zebrafish larvae, indicated AA metabolism might play important regulatory roles on hormone synthesis and immune response caused by DIF and TEB mixtures. Current results indicated the risk assessment of mixtures based on single concentration may not precisely estimate the environmental risk and health effect, it is crucially important to consider the multi-concentration combinations, and more attention should be paid to the environmental concentration.
Collapse
Affiliation(s)
- Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Luyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Hongmei He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Shenggan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
14
|
Suwittayarak R, Klincumhom N, Ngaokrajang U, Namangkalakul W, Ferreira JN, Pavasant P, Osathanon T. Shear Stress Enhances the Paracrine-Mediated Immunoregulatory Function of Human Periodontal Ligament Stem Cells via the ERK Signalling Pathway. Int J Mol Sci 2022; 23:ijms23137119. [PMID: 35806124 PMCID: PMC9266779 DOI: 10.3390/ijms23137119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/23/2022] [Indexed: 11/25/2022] Open
Abstract
Relevant immunomodulatory effects have been proposed following allogeneic cell-based therapy with human periodontal ligament stem cells (hPDLSCs). This study aimed to examine the influence of shear stress on the immunosuppressive capacity of hPDLSCs. Cells were subjected to shear stress at different magnitudes (0.5, 5 and 10 dyn/cm2). The expression of immunosuppressive markers was evaluated in shear stress-induced hPDLSCs using qRT-PCR, western blot, enzyme activity and enzyme-linked immunosorbent assays. The effects of a shear stress-derived condition medium (SS-CM) on T cell proliferation were examined using a resazurin assay. Treg differentiation was investigated using qRT-PCR and flow cytometry analysis. Our results revealed that shear stress increased mRNA expression of IDO and COX2 but not TGF-β1 and IFN-γ. IDO activity, kynurenine and active TGF-β1 increased in SS-CM when compared to the non-shear stress-derived conditioned medium (CTL-CM). The amount of kynurenine in SS-CM was reduced in the presence of cycloheximide and ERK inhibitor. Subsequently, T cell proliferation decreased in SS-CM compared to CTL-CM. Treg differentiation was promoted in SS-CM, indicated by FOXP3, IL-10 expression and CD4+CD25hiCD127lo/− subpopulation. In conclusion, shear stress promotes kynurenine production through ERK signalling in hPDLSC, leading to the inhibition of T cell proliferation and the promotion of Treg cell differentiation.
Collapse
Affiliation(s)
- Ravipha Suwittayarak
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (U.N.); (P.P.)
| | - Nuttha Klincumhom
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (U.N.); (P.P.)
- Correspondence:
| | - Utapin Ngaokrajang
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (U.N.); (P.P.)
| | - Worachat Namangkalakul
- Dental Stem Cell Biology Research Unit, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (W.N.); (T.O.)
| | - João N. Ferreira
- Avatar Biotechnologies for Oral Health and Healthy Longevity Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Prasit Pavasant
- Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (R.S.); (U.N.); (P.P.)
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; (W.N.); (T.O.)
| |
Collapse
|
15
|
The Role of Indoleamine 2, 3-Dioxygenase 1 in Regulating Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14112756. [PMID: 35681736 PMCID: PMC9179436 DOI: 10.3390/cancers14112756] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/19/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Indoleamine 2, 3-dioxygenase 1 (IDO1) is a rate-limiting enzyme that metabolizes an essential amino acid tryptophan (Trp) into kynurenine (Kyn), and it promotes the occurrence of immunosuppressive effects by regulating the consumption of Trp and the accumulation of Kyn in the tumor microenvironment (TME). Recent studies have shown that the main cellular components of TME interact with each other through this pathway to promote the formation of tumor immunosuppressive microenvironment. Here, we review the role of the immunosuppression mechanisms mediated by the IDO1 pathway in tumor growth. We discuss obstacles encountered in using IDO1 as a new tumor immunotherapy target, as well as the current clinical research progress.
Collapse
|
16
|
Gorbunova O, Shirshev S. The effect of kisspeptin on the functional activity of peripheral blood monocytes and neutrophils in the context of physiological pregnancy. J Reprod Immunol 2022; 151:103621. [DOI: 10.1016/j.jri.2022.103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/14/2022] [Accepted: 04/03/2022] [Indexed: 11/26/2022]
|
17
|
Krupa A, Krupa MM, Pawlak K. Indoleamine 2,3 Dioxygenase 1-The Potential Link between the Innate Immunity and the Ischemia-Reperfusion-Induced Acute Kidney Injury? Int J Mol Sci 2022; 23:6176. [PMID: 35682852 PMCID: PMC9181334 DOI: 10.3390/ijms23116176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022] Open
Abstract
Ischemia-reperfusion injury (IRI) is of the most common causes of acute kidney injury (AKI); nevertheless, the mechanisms responsible for both early kidney injury and the reparative phase are not fully recognised. The inflammatory response following ischemia is characterised by the crosstalk between cells belonging to the innate immune system-dendritic cells (DCs), macrophages, neutrophils, natural killer (NK) cells, and renal tubular epithelial cells (RTECs). A tough inflammatory response can damage the renal tissue; it may also have a protective effect leading to the repair after IRI. Indoleamine 2,3 dioxygenase 1 (IDO1), the principal enzyme of the kynurenine pathway (KP), has a broad spectrum of immunological activity from stimulation to immunosuppressive activity in inflamed areas. IDO1 expression occurs in cells of the innate immunity and RTECs during IRI, resulting in local tryptophan (TRP) depletion and generation of kynurenines, and both of these mechanisms contribute to the immunosuppressive effect. Nonetheless, it is unknown if the above mechanism can play a harmful or preventive role in IRI-induced AKI. Despite the scarcity of literature in this field, the current review attempts to present a possible role of IDO1 activation in the regulation of the innate immune system in IRI-induced AKI.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Mikolaj M. Krupa
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| |
Collapse
|
18
|
Bando H, Fukuda Y, Watanabe N, Olawale JT, Kato K. Depletion of Intracellular Glutamine Pools Triggers Toxoplasma gondii Stage Conversion in Human Glutamatergic Neurons. Front Cell Infect Microbiol 2022; 11:788303. [PMID: 35096641 PMCID: PMC8793678 DOI: 10.3389/fcimb.2021.788303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii chronically infects the brain as latent cysts containing bradyzoites and causes various effects in the host. Recently, the molecular mechanisms of cyst formation in the mouse brain have been elucidated, but those in the human brain remain largely unknown. Here, we show that abnormal glutamine metabolism caused by both interferon-γ (IFN-γ) stimulation and T. gondii infection induce cyst formation in human neuroblastoma cells regardless of the anti-T. gondii host factor nitric oxide (NO) level or Indoleamine 2,3-dioxygenase-1 (IDO1) expression. IFN-γ stimulation promoted intracellular glutamine degradation in human neuronal cells. Additionally, T. gondii infection inhibited the mRNA expression of the host glutamine transporters SLC38A1 and SLC38A2. These dual effects led to glutamine starvation and triggered T. gondii stage conversion in human neuronal cells. Furthermore, these mechanisms are conserved in human iPSC-derived glutamatergic neurons. Taken together, our data suggest that glutamine starvation in host cells is an important trigger of T. gondii stage conversion in human neurons.
Collapse
Affiliation(s)
- Hironori Bando
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
| | - Yasuhiro Fukuda
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
| | - Nina Watanabe
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
| | - Jeje Temitope Olawale
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
- Department of Biochemistry, Faculty of Science, Federal University Oye-Ekiti, Oye-Ekiti, Ekiti State, Nigeria
- Department of Biochemistry, School of Science, Federal University of Technology, Akure, Nigeria
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Osaki, Japan
- *Correspondence: Kentaro Kato,
| |
Collapse
|
19
|
Yegdaneh A, Mesripour A, Gholamzadeh E. Extraction and fractionation of the seaweed Sargassum plagyophylum and evauation of fractions on depression induced by interferon alpha in mice. Adv Biomed Res 2022; 11:59. [PMID: 36124020 PMCID: PMC9482374 DOI: 10.4103/abr.abr_186_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/03/2021] [Accepted: 10/25/2021] [Indexed: 11/04/2022] Open
Abstract
Background: Marine organisms such as seaweeds, produce potent chemicals with characteristic biological features. Sargassum species have great potential to be used for neuronal protection as part of nutraceuticals. The aim was to investigate the effects of hexane and methanol extracts of Sargassum plagyophylum from the Persian Gulf on depression induced by interferon-α (IFNa) in mice. Materials and Methods: S. plagyophylum was extracted by maceration with methanol-ethyl acetate solvent (1:1). The extract was evaporated and partitioned by hexane and methanol solvents. Male mice were used, depression was induced by SC injecting IFNα (16 × 10 5IU/kg) for 6 days. Animals were subject to the forced swimming test (FST) after the locomotor test, on day 7. The extracts were administered IP either one single dose (acute) before the test, or simultaneously with IFNα (sub-acute). Results: The locomotor activity was not different from control values. IFNa increased the immobility time during FST (140 ± 14 s vs. control group 95 ± 9 s, P < 0.05). Hexane extract acute (40 mg/kg) injection was not effective while its sub-acute (20 mg/kg) injection reduced immobility time (46 ± 8 s, P < 0.001 vs. IFNa alone). Methanol extract acute (20 mg/kg) and sub-acute (20 mg/kg) administration significantly reduced immobility during the FST (78 ± 20 s, and 72 ± 8 s respectively, P < 0.05 vs. IFNa alone). Conclusion: S. plagyophylum has antidepressant effects, the hexane extract could prevent depression while the methanol extract not only prevented but also treated depression induced by IFNa in mice. Since this species is abundant in the Persian Gulf further clinical studies on its psychological effects are warranted.
Collapse
|
20
|
Schneider RS, Vela AC, Williams EK, Martin KE, Lam WA, García AJ. High-Throughput On-Chip Human Mesenchymal Stromal Cell Potency Prediction. Adv Healthc Mater 2022; 11:e2101995. [PMID: 34725948 PMCID: PMC8770576 DOI: 10.1002/adhm.202101995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/25/2021] [Indexed: 01/03/2023]
Abstract
Human mesenchymal stromal cells (hMSCs) are a promising source for regenerative cell therapy. However, hMSC clinical use has been stymied by product variability across hMSC donors and manufacturing practices resulting in inconsistent clinical outcomes. The inability to predict hMSC clinical efficacy, or potency, is a major limitation for market penetration. Standard metrics of hMSC potency employ hMSCs and third-party immune cell co-cultures, however, these assays face translational challenges due to third-party donor variability and lack of scalability. While surrogate markers of hMSC potency have been suggested, none have yet had translational success. To address this, a high-throughput, scalable, low-cost, on-chip microfluidic potency assay is presented with improved functional predictive power and recapitulation of in vivo secretory responses compared to traditional approaches. Comparison of hMSC secretory responses to functional hMSC-medicated immune cell suppression demonstrates shortcomings of current surrogate potency markers and identifies on-chip microfluidic potency markers with improved functional predictive power compared to traditional planar methods. Furthermore, hMSC secretory performance achieved in the on-chip microfluidic system has improved similarity compared to an in vivo model. The results underscore the shortcomings of current culture practices and present a novel system with improved functional predictive power and hMSC physiological responses.
Collapse
Affiliation(s)
- Rebecca S Schneider
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alexandra C Vela
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- College of Sciences, Georgia Institute of Technology, Atlanta, GA, 30313, USA
| | - Evelyn Kendall Williams
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center & Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Karen E Martin
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30313, USA
| | - Wilbur A Lam
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center & Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Andrés J García
- Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30313, USA
| |
Collapse
|
21
|
Recent advances in clinical trials targeting the kynurenine pathway. Pharmacol Ther 2021; 236:108055. [PMID: 34929198 DOI: 10.1016/j.pharmthera.2021.108055] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
The kynurenine pathway (KP) is the major catabolic pathway for the essential amino acid tryptophan leading to the production of nicotinamide adenine dinucleotide. In inflammatory conditions, the activation of the KP leads to the production of several bioactive metabolites including kynurenine, 3-hydroxykynurenine, 3-hydroxyanthranilic acid, kynurenic acid and quinolinic acid. These metabolites can have redox and immune suppressive activity, be neurotoxic or neuroprotective. While the activity of the pathway is tightly regulated under normal physiological condition, it can be upregulated by immunological activation and inflammation. The dysregulation of the KP has been implicated in wide range of neurological diseases and psychiatric disorders. In this review, we discuss the mechanisms involved in KP-mediated neurotoxicity and immune suppression, and its role in diseases of our expertise including cancer, chronic pain and multiple sclerosis. We also provide updates on the clinical trials evaluating the efficacy of KP inhibitors and/or analogues in each respective disease.
Collapse
|
22
|
Vu BT, Le HT, Nguyen KN, Van Pham P. Hypoxia, Serum Starvation, and TNF-α Can Modify the Immunomodulation Potency of Human Adipose-Derived Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021:3-18. [PMID: 34739720 DOI: 10.1007/5584_2021_672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Adipose-derived stem cells (ADSCs) are mesenchymal stem cells (MSCs) that are found in adipose tissues, which are easily obtained from liposuction procedures using an enzyme mixture. The adhering cells are then selectively cultivated. ADSCs have great potential in regenerative medicine because they are plentiful, easily accessible, and less invasive. They also have an impressive proliferation ability and can be differentiated into mesenchymal lineages and trans-differentiating into many other cell types. In particular, they have extraordinary abilities in immunomodulation. This study aimed to investigate the effects of culture conditions (hypoxia, starvation, and TNF-α treatment) on the immunomodulation of human ADSCs. METHODS Human ADSCs were expanded in vitro in the standard condition before they were cultured in different stress conditions. ADSCs from passages fifth were confirmed as MSCs by some standard assays suggested by the International Society for Cell and Gene Therapy. These MSCs were used to culture in four different stress conditions: hypoxia, serum starvation, and TNF-α treatment in 48 h. After treatments, MSCs were used to evaluate their immunomodulation capacity using MSCs mixed lymphocyte reaction assay, and the concentrations of IDO, PGE2, IL-6, and IL-10 were secreted in the culture medium. RESULTS In different stress conditions, ADSCs exhibited different responses related to their immunomodulation. In serum starvation, ADSCs exerted a strong secretion of IDO and PGE2, whereas they showed strong IL-6 secretion in the TNF-α-supplemented medium. When exposed to lymphocytes, ADSCs caused an increase in the ratio of regulatory T cells (Tregs), and co-culture lymphocytes with ADSCs induced in hypoxic malnutrition conditions increased the IL-10 level the most. In addition, when exposed to dendritic cells (DCs), ADSCs inhibited the mature marker expressions of the DCs. CONCLUSION The current research showed that ADSCs change their immunomodulation properties to survive in in vitro culture environments. Treatment of ADSCs in the starvation medium for 48 h can increase the immunomodulation of ADSCs.
Collapse
Affiliation(s)
- Binh Thanh Vu
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hanh Thi Le
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Stem Cell Institute, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Khanh Nha Nguyen
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Stem Cell Institute, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Stem Cell Institute, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
23
|
Biologically active lipids in the regulation of lymphangiogenesis in disease states. Pharmacol Ther 2021; 232:108011. [PMID: 34614423 DOI: 10.1016/j.pharmthera.2021.108011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023]
Abstract
Lymphatic vessels have crucial roles in the regulation of interstitial fluids, immune surveillance, and the absorption of dietary fat in the intestine. Lymphatic function is also closely related to the pathogenesis of various disease states such as inflammation, lymphedema, endometriosis, liver dysfunction, and tumor metastasis. Lymphangiogenesis, the formation of new lymphatic vessels from pre-existing lymphatic vessels, is a critical determinant in the above conditions. Although the effect of growth factors on lymphangiogenesis is well-characterized, and biologically active lipids are known to affect smooth muscle contractility and vasoaction, there is accumulating evidence that biologically active lipids are also important inducers of growth factors and cytokines that regulate lymphangiogenesis. This review discusses recent advances in our understanding of biologically active lipids, including arachidonic acid metabolites, sphingosine 1-phosphate, and lysophosphatidic acid, as regulators of lymphangiogenesis, and the emerging importance of the lymphangiogenesis as a therapeutic target.
Collapse
|
24
|
Krupa A, Kowalska I. The Kynurenine Pathway-New Linkage between Innate and Adaptive Immunity in Autoimmune Endocrinopathies. Int J Mol Sci 2021; 22:9879. [PMID: 34576041 PMCID: PMC8469440 DOI: 10.3390/ijms22189879] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/18/2022] Open
Abstract
The kynurenine pathway (KP) is highly regulated in the immune system, where it promotes immunosuppression in response to infection or inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the main enzyme of KP, has a broad spectrum of activity on immune cells regulation, controlling the balance between stimulation and suppression of the immune system at sites of local inflammation, relevant to a wide range of autoimmune and inflammatory diseases. Various autoimmune diseases, among them endocrinopathies, have been identified to date, but despite significant progress in their diagnosis and treatment, they are still associated with significant complications, morbidity, and mortality. The precise cellular and molecular mechanisms leading to the onset and development of autoimmune disease remain poorly clarified so far. In breaking of tolerance, the cells of the innate immunity provide a decisive microenvironment that regulates immune cells' differentiation, leading to activation of adaptive immunity. The current review provided a comprehensive presentation of the known role of IDO1 and KP activation in the regulation of the innate and adaptive arms of the immune system. Significant attention has been paid to the immunoregulatory role of IDO1 in the most prevalent, organ-specific autoimmune endocrinopathies-type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis.
Collapse
Affiliation(s)
- Anna Krupa
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland
| |
Collapse
|
25
|
Dhandapani H, Jayakumar H, Seetharaman A, Singh SS, Ganeshrajah S, Jagadish N, Suri A, Thangarajan R, Ramanathan P. Dendritic cells matured with recombinant human sperm associated antigen 9 (rhSPAG9) induce CD4 +, CD8 + T cells and activate NK cells: a potential candidate molecule for immunotherapy in cervical cancer. Cancer Cell Int 2021; 21:473. [PMID: 34493268 PMCID: PMC8424976 DOI: 10.1186/s12935-021-01951-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background Dendritic cell (DC)-based immunotherapy is capable of activating the immune system and in particular tumor-specific cytotoxic T lymphocytes (CTLs) to eradicate the tumor. However, major limitations are the availability of autologous tumor cells as antigenic source and the selection of antigen that may have potential to activate both CD4+ and CD8+ T cells in immune-specific manner. Recently, we reported the expression of sperm associated antigen 9 (SPAG9) that is associated with various types of malignancies including cervical cancer. We examined the recombinant human SPAG9 (rhSPAG9) as an antigenic source for generating efficient DCs to stimulate CD4+ and CD8+ T cell responses for future DCs-based vaccine trials in cervical cancer patients. Methods Human monocytes derived DCs were pulsed with different concentrations (250 ng/ml to 1000 ng/ml) of recombinant human SPAG9 (rhSPAG9) and evaluated for their phenotypic and functional ability. The efficacy of DCs primed with 750 ng/ml of rhSPAG9 (SPDCs) was compared with DCs primed with autologous tumor lysates (TLDCs), to induce CD4+, CD8+ T cells and activating NK cells. In addition, we investigated the effect of the chemotherapeutic drug cisplatin on phenotypic and functional potential of SPDCs. Results Phenotypic and functional characterization of DCs pulsed with 750 ng/ml rhSPAG9 was found to be optimal and effective for priming DCs. SPDCs were also capable of stimulating allogeneic T cells similar to TLDCs. SPDCs showed a statistically insignificant increase in the expression of maturation marker CD83 and migration towards CCL19 and CCL21 compared with TLDCs (CD83; P = 0.4; migration; P = 0.2). In contrast, although TLDCs showed better proliferation and secretion of Th1 cytokines (IL12p40, IL12p70 and IFNγ) compared to SPDCs, this difference was not statistically significant (IL12p40, P = 0.06). Further we also observed that clinical dose of cisplatin (200 µM) treated SPDCs were able to stimulate the proliferation of cytotoxic T lymphocytes without increasing the FOXP3+ Tregs in autologous co-cultures. Conclusions In summary, in order to overcome the limitation of the availability of autologous tumor cells as antigenic sources, our present strategy provides an insight to consider rhSPAG9 as a strong immunogen for DC-based immunotherapy for cervical cancer trials and warrants further studies. This is the first report to suggest that rhSPAG9 is an effective antigen for pulsing DCs that are capable of eliciting a potent Th1 response which, in turn, may help in decreasing the tumor burden when used along with a cisplatin based combinatorial regimen for therapeutic intervention. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-01951-7.
Collapse
Affiliation(s)
- Hemavathi Dhandapani
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Hascitha Jayakumar
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Abirami Seetharaman
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Shirley Sunder Singh
- Department of Pathology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Selvaluxmy Ganeshrajah
- Department of Radiation Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Nirmala Jagadish
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Anil Suri
- Cancer Microarray, Genes and Proteins Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rajkumar Thangarajan
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India
| | - Priya Ramanathan
- Department of Molecular Oncology, Cancer Institute (WIA), Dr. Krishnamurthi Campus, 38, SardarPatel Road, Chennai, 600036, India.
| |
Collapse
|
26
|
YIV-906 potentiated anti-PD1 action against hepatocellular carcinoma by enhancing adaptive and innate immunity in the tumor microenvironment. Sci Rep 2021; 11:13482. [PMID: 34188068 PMCID: PMC8242098 DOI: 10.1038/s41598-021-91623-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/24/2021] [Indexed: 11/08/2022] Open
Abstract
YIV-906 (PHY906) is a standardized botanical cancer drug candidate developed with a systems biology approach—inspired by a traditional Chinese herbal formulation, historically used to treat gastrointestinal symptoms including diarrhea, nausea and vomiting. In combination with chemotherapy and/or radiation therapy, preclinical and clinical results suggest that YIV-906 has the potential to prolong survival and improve quality of life for cancer patients. Here, we demonstrated that YIV-906 plus anti-PD1 could eradicate all Hepa 1–6 tumors in all tumor bearing mice. YIV-906 was found to have multiple mechanisms of action to enhance adaptive and innate immunity. In combination, YIV-906 reduced PD1 or counteracted PD-L1 induction caused by anti-PD1 which led to higher T-cell activation gene expression of the tumor. In addition, YIV-906 could reduce immune tolerance by modulating IDO activity and reducing monocytic MDSC of the tumor. The combination of anti-PD1 and YIV-906 generated acute inflammation in the tumor microenvironment with more M1-like macrophages. YIV-906 could potentiate the action of interferon gamma (IFNg) to increase M1-like macrophage polarization while inhibiting IL4 action to decrease M2 macrophage polarization. Flavonoids from YIV-906 were responsible for modulating IDO activity and potentiating IFNg action in M1-like macrophage polarization. In conclusion, YIV-906 could act as an immunomodulator and enhance the innate and adaptive immune response and potentiate anti-tumor activity for immunotherapies to treat cancer.
Collapse
|
27
|
Pan B, Zhang H, Hong Y, Ma M, Wan X, Cao C. Indoleamine-2,3-Dioxygenase Activates Wnt/β-Catenin Inducing Kidney Fibrosis after Acute Kidney Injury. Gerontology 2021; 67:611-619. [PMID: 34130288 DOI: 10.1159/000515041] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/04/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION As disorder of tryptophan metabolism is common in CKD, the rate-limiting enzyme of tryptophan, indoleamine-2,3-dioxygenase (IDO), has been reported to be involved in CKD, while the accurate mechanism remains unknown. This study was designed to explore correlations between IDO and kidney fibrosis after ischemia-reperfusion injury (IRI). METHODS Wild-type (WT) mice and IDO knockout (IDO-/-) mice were divided into the sham group and acute kidney injury (AKI) group. Mice in the sham group underwent dorsal incision and exposure of renal pedicle without clamping renal artery, while mice in the AKI group received unique renal artery IRI, and the contralateral kidney was removed at day 13 after IRI. Blood and IRI kidneys were collected at day 14. Kidney function was analyzed by measuring serum Cr and BUN. Morphology was analyzed by tissue periodic acid-Schiff (PAS) staining and Masson staining. Further, fibrosis markers and Wnt/β-catenin pathway proteins were determined by Western blot. Prostaglandin E2 (PGE2) was administrated for 2 weeks after the IRI mice model was established to observe whether it ameliorates kidney fibrosis after IRI. RESULTS WT AKI mice revealed elevated expression of IDO compared with WT sham mice. Kidney function of IDO-/- AKI mice showed better than that of WT AKI mice. PAS staining exhibited less loss of tubular epithelial cells and atrophy tubules in IDO-/- AKI mice. Furthermore, kidney fibrosis areas and the expressions of fibrosis markers, including α-SMA, fibronectin, and vimentin, were increased in WT AKI mice. In addition, GSK-3β and β-catenin were significantly declined in IDO-/- AKI mice. On top of that, PGE2 administration revealed inhibited IDO expression and that reducing GSK-3β and β-catenin resulting in lower expressions of α-SMA, fibronectin, and vimentin in WT AKI mice. CONCLUSIONS IRI could increase IDO expression to activate Wnt/β-catenin pathway resulting kidney fibrosis. PGE2 could ameliorate kidney fibrosis via inhibiting IDO expression.
Collapse
Affiliation(s)
- Binbin Pan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hao Zhang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yali Hong
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Mengqing Ma
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Song HY, Sik Kim W, Moo Han J, Yong Park W, Lim ST, Byun EB. HMOC, a chrysin derivative, induces tolerogenic properties in lipopolysaccharide-stimulated dendritic cells. Int Immunopharmacol 2021; 95:107523. [PMID: 33706053 DOI: 10.1016/j.intimp.2021.107523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 11/20/2022]
Abstract
Although we previously identified a new hydroxymethoxyl chrysin derivative (HMOC) using ionizing radiation, the anti-inflammatory mechanism of HMOC in dendritic cells remains unclear. In this study, we investigate the effects of HMOC on phenotypic and functional changes in activated bone marrow-derived dendritic cells (BMDCs). In lipopolysaccharide (LPS)-stimulated BMDCs, HMOC treatment inhibited pro-inflammatory cytokines (TNF-α, IL-12p70, and IL-1β), surface molecules (CD80, CD86, MHC-I, and MHC-II), and antigen-presentation to MHC-I and II without a decrease in IL-10. Furthermore, HMOC increased indoleamine 2,3-dioxygenase-1 (IDO1) activity via activation of JNK and p38 signaling in the presence of LPS. Interestingly, LPS-stimulated DCs treated with HMOC inhibited the proliferation and activation of CD4+ and CD8+ T cells, as well as differentiation of CD4+ T cells into Th1-, Th2- and Th17 cells. In addition, LPS-stimulated DCs treated with HMOC induced an increase in CD4+CD25+Foxp3+ regulatory T cells (Tregs). Collectively, our results suggest that HMOC confers tolerogenic properties in BMDCs, which are responsible for inducing Th cell differentiation to Tregs. Our findings provide a better understanding of the anti-inflammatory mechanism of HMOC in DCs and may contribute to development of a valuable therapeutic candidate for atopic dermatitis.
Collapse
Affiliation(s)
- Ha-Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup 56212, Republic of Korea
| | - Jeong Moo Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea; Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Woo Yong Park
- Department of Pharmacology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung-Taik Lim
- Department of Biotechnology, College of Life Science and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea.
| |
Collapse
|
29
|
Sittig SP, van Beek JJP, Flórez-Grau G, Weiden J, Buschow SI, van der Net MC, van Slooten R, Verbeek MM, Geurtz PBH, Textor J, Figdor CG, de Vries IJM, Schreibelt G. Human type 1 and type 2 conventional dendritic cells express indoleamine 2,3-dioxygenase 1 with functional effects on T cell priming. Eur J Immunol 2021; 51:1494-1504. [PMID: 33675038 PMCID: PMC8251546 DOI: 10.1002/eji.202048580] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 12/29/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022]
Abstract
Dendritic cells (DCs) are key regulators of the immune system that shape T cell responses. Regulation of T cell induction by DCs may occur via the intracellular enzyme indoleamine 2,3‐dioxygenase 1 (IDO), which catalyzes conversion of the essential amino acid tryptophan into kynurenine. Here, we examined the role of IDO in human peripheral blood plasmacytoid DCs (pDCs), and type 1 and type 2 conventional DCs (cDC1s and cDC2s). Our data demonstrate that under homeostatic conditions, IDO is selectively expressed by cDC1s. IFN‐γ or TLR ligation further increases IDO expression in cDC1s and induces modest expression of the enzyme in cDC2s, but not pDCs. IDO expressed by conventional DCs is functionally active as measured by kynurenine production. Furthermore, IDO activity in TLR‐stimulated cDC1s and cDC2s inhibits T cell proliferation in settings were DC‐T cell cell‐cell contact does not play a role. Selective inhibition of IDO1 with epacadostat, an inhibitor currently tested in clinical trials, rescued T cell proliferation without affecting DC maturation status or their ability to cross‐present soluble antigen. Our findings provide new insights into the functional specialization of human blood DC subsets and suggest a possible synergistic enhancement of therapeutic efficacy by combining DC‐based cancer vaccines with IDO inhibition.
Collapse
Affiliation(s)
- Simone P Sittig
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jasper J P van Beek
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Georgina Flórez-Grau
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jorieke Weiden
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sonja I Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, Rotterdam, The Netherlands
| | - Mirjam C van der Net
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rianne van Slooten
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marcel M Verbeek
- Department of Neurology and Laboratory Medicine, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - P Ben H Geurtz
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johannes Textor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerty Schreibelt
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Robla S, Prasanna M, Varela-Calviño R, Grandjean C, Csaba N. A chitosan-based nanosystem as pneumococcal vaccine delivery platform. Drug Deliv Transl Res 2021; 11:581-597. [PMID: 33655441 DOI: 10.1007/s13346-021-00928-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2021] [Indexed: 01/01/2023]
Abstract
Chitosan-based nanosystems have been described as interesting tools for antigen delivery and for enhancing the immunogenicity of nasally administered vaccines. As a possible vaccine delivery method, the chemical conjugation of chitosan nanocapsules with the Streptococcus pneumoniae cell membrane protein PsaA (pneumococcal surface adhesin A) is suggested here. The antigen PsaA, common to all pneumococcus serotypes, is expected to improve its uptake by immune cells and to activate specific T cells, generating an adaptive immune response against pneumococcus. With this aim, chitosan nanocapsules with thiol-maleimide conjugation between the polymer (chitosan) and the antigen (PsaA) were designed to enable the surface presentation of PsaA for immune cell recognition. Spherical-shaped particles, with a size of 266 ± 32 nm, positive charge of +30 ± 1 mV, and good stability profiles in simulated nasal fluids (up to 24 h) were achieved. PsaA association rates were three times higher compared with nanocapsules without covalent polymer-protein conjugation. Cytotoxicity studies in cell culture media showed non-toxic effect under 150 µg/mL concentration of nanocapsules, and subsequent studies on the maturation of immature dendritic cells in the presence of antigen-conjugated nanocapsules displayed peripheral blood mononuclear cell activation and lymphocyte differentiation after their presentation by dendritic cells. Secretion of TNFα following exposure to nanocapsules and the ability of nanocapsules to activate CD4 and CD8 T lymphocytes had also been studied. Antigen loaded nanocarrier uptake and presentation by professional presenting cells.
Collapse
Affiliation(s)
- Sandra Robla
- Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, A Coruña, Spain
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, A Coruña, Spain
| | - Maruthi Prasanna
- Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, A Coruña, Spain
- Unit Function & Protein Engineering UMR CNRS 6286, University of Nantes, Nantes Cedex, France
| | - Rubén Varela-Calviño
- Department of Biochemistry and Molecular Biology, University of Santiago de Compostela, A Coruña, Spain
| | - Cyrille Grandjean
- Unit Function & Protein Engineering UMR CNRS 6286, University of Nantes, Nantes Cedex, France
| | - Noemi Csaba
- Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, A Coruña, Spain.
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela, A Coruña, Spain.
| |
Collapse
|
31
|
Ali M, Yang F, Plachokova AS, Jansen JA, Walboomers XF. Application of specialized pro-resolving mediators in periodontitis and peri-implantitis: a review. Eur J Oral Sci 2021; 129:e12759. [PMID: 33565133 PMCID: PMC7986752 DOI: 10.1111/eos.12759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Scaling and root planning is a key element in the mechanical therapy used for the eradication of biofilm, which is the major etiological factor for periodontitis and peri‐implantitis. However, periodontitis is also a host mediated disease, therefore, removal of the biofilm without adjunctive therapy may not achieve the desired clinical outcome due to persistent activation of the innate and adaptive immune cells. Most recently, even the resident cells of the periodontium, including periodontal ligament fibroblasts, have been shown to produce several inflammatory factors in response to bacterial challenge. With increased understanding of the pathophysiology of periodontitis, more research is focusing on opposing excessive inflammation with specialized pro‐resolving mediators (SPMs). This review article covers the major limitations of current standards of care for periodontitis and peri‐implantitis, and it highlights recent advances and prospects of SPMs in the context of tissue reconstruction and regeneration. Here, we focus primarily on the role of SPMs in restoring tissue homeostasis after periodontal infection.
Collapse
Affiliation(s)
- Muhanad Ali
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fang Yang
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adelina S Plachokova
- Department of Dentistry, Implantology and Periodontology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Menzner AK, Rottmar T, Voelkl S, Bosch JJ, Mougiakakos D, Mackensen A, Resheq YJ. Hydrogen-Peroxide Synthesis and LDL-Uptake Controls Immunosuppressive Properties in Monocyte-Derived Dendritic Cells. Cancers (Basel) 2021; 13:461. [PMID: 33530408 PMCID: PMC7865547 DOI: 10.3390/cancers13030461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIMS Induction of myeloid-derived suppressor cells (MDSC) is a critical step in immune cell evasion by different cancer types, including liver cancer. In the liver, hepatic stromal cells orchestrate induction of MDSCs, employing a mechanism dependent on hydrogen peroxide (H2O2) depletion. However, the effects on monocyte-derived dendritic cells (moDCs) are unknown. METHODS Monocytes from healthy donors were differentiated to moDCs in the presence of extracellular enzymatic H2O2-depletion (hereinafter CAT-DCs), and studied phenotypically and functionally. To elucidate the underlying molecular mechanisms, we analyzed H2O2- and LDL-metabolism as they are interconnected in monocyte-driven phagocytosis. RESULTS CAT-DCs were of an immature DC phenotype, particularly characterized by impaired expression of the costimulatory molecules CD80/86. Moreover, CAT-DCs were able to suppress T-cells using indoleamine 2,3-dioxygenase (IDO), and induced IL10/IL17-secreting T-cells-a subtype reported to exert immunosuppression in acute myeloid leukemia. CAT-DCs also displayed significantly increased NADPH-oxidase-driven H2O2-production, enhancing low-density lipoprotein (LDL)-uptake. Blocking LDL-uptake restored maturation, and attenuated the immunosuppressive properties of CAT-DCs. DISCUSSION Here, we report a novel axis between H2O2- and LDL-metabolism controlling tolerogenic properties in moDCs. Given that moDCs are pivotal in tumor-rejection, and lipid-accumulation is associated with tumor-immune-escape, LDL-metabolism appears to play an important role in tumor-immunology.
Collapse
Affiliation(s)
- Ann-Katrin Menzner
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| | - Tanja Rottmar
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| | - Simon Voelkl
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| | - Jacobus J. Bosch
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
- Clinical Research Center Hannover, MH Hannover, Feodor-Lynen-Straße 15, 30625 Hannover, Germany
| | - Dimitrios Mougiakakos
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| | - Yazid J. Resheq
- Department of Internal Medicine 5, Hematology/Oncology, Friedrich Alexander University Erlangen Nuremberg, Ulmenweg 18, 91054 Erlangen, Germany; (A.-K.M.); (T.R.); (S.V.); (J.J.B.); (D.M.); (A.M.)
| |
Collapse
|
33
|
Liu XH, Zhai XY. Role of tryptophan metabolism in cancers and therapeutic implications. Biochimie 2021; 182:131-139. [PMID: 33460767 DOI: 10.1016/j.biochi.2021.01.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/15/2022]
Abstract
Tryptophan (Trp) metabolism is associated with diverse biological processes, including nerve conduction, inflammation, and the immune response. The majority of free Trp is broken down through the kynurenine (Kyn) pathway (KP), in which indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) catalyze the rate-limiting step. Clinical studies have demonstrated that Trp metabolism promotes tumor progression due to modulation of the immunosuppressive microenvironment through multiple mechanisms. In this process, IDO-expressing dendritic cells (DCs) exhibit tolerogenic potential and orchestrate T cell immune responses. Various signaling molecules control IDO expression, initiating the immunoregulatory pathway of Trp catabolism. Based on these characteristics, KP enzymes and catabolites are emerging as significant prognostic indicators and potential therapeutic targets of cancer. The physiological and oncologic roles of Trp metabolism are briefly summarized here, along with great challenges for treatment strategies.
Collapse
Affiliation(s)
- Xiao-Han Liu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110122, China
| | - Xiao-Yue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, Liaoning, 110122, China.
| |
Collapse
|
34
|
Amberger DC, Schmetzer HM. Dendritic Cells of Leukemic Origin: Specialized Antigen-Presenting Cells as Potential Treatment Tools for Patients with Myeloid Leukemia. Transfus Med Hemother 2021; 47:432-443. [PMID: 33442338 DOI: 10.1159/000512452] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022] Open
Abstract
The prognosis of elderly patients with acute myeloid leukemia (AML) and high-grade myelodysplastic syndrome (MDS) is limited due to the lack of therapy options and high relapse rates. Dendritic cell (DC)-based immunotherapy seems to be a promising treatment tool. DC are potent antigen-presenting cells and play a pivotal role on the interface of the innate and the adaptive immune system. Myeloid leukemia blasts can be converted to DC of leukemic origin (DCleu), expressing costimulatory molecules along with the whole leukemic antigen repertoire of individual patients. These generated DCleu are potent stimulators of various immune reactive cells and increase antileukemic immunity ex vivo. Here we review the generating process of DC/DCleu from leukemic peripheral blood mononuclear cells as well as directly from leukemic whole blood with "minimized" Kits to simulate physiological conditions ex vivo. The purpose of adoptive cell transfer of DC/DCleu as a vaccination strategy is discussed. A new potential therapy option with Kits for patients with myeloid leukemia, which would render an adoptive DC/DCleu transfer unnecessary, is presented. In summary, DC/DCleu-based therapies seem to be promising treatment tools for patients with AML or MDS but ongoing research including trials in animals and humans have to be performed.
Collapse
Affiliation(s)
| | - Helga Maria Schmetzer
- Department of Medicine III, University Hospital, Hematopoetic Cell Transplantation, Munich, Germany
| |
Collapse
|
35
|
Simon MS, Burger B, Weidinger E, Arteaga-Henríquez G, Zill P, Musil R, Drexhage HA, Müller N. Efficacy of Sertraline Plus Placebo or Add-On Celecoxib in Major Depressive Disorder: Macrophage Migration Inhibitory Factor as a Promising Biomarker for Remission After Sertraline-Results From a Randomized Controlled Clinical Trial. Front Psychiatry 2021; 12:615261. [PMID: 34646168 PMCID: PMC8504576 DOI: 10.3389/fpsyt.2021.615261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction: Previous research delivers strong indications that inflammatory activation leads to treatment resistance in a subgroup of patients with Major Depressive Disorder (MDD). Thus, tailored interventions are needed. The present study aimed to find potential biomarkers that may enable patients to be stratified according to immune activation. Methods: A phase IIa randomized placebo-controlled trial was performed to assess levels of inflammatory compounds in responders/remitters and non-responders/non-remitters to sertraline plus celecoxib (n = 20) and sertraline plus placebo (n = 23). Levels of macrophage migration inhibitory factor, neopterin, and tumor necrosis factor alpha were determined by enzyme-linked immunosorbent assay; response and remission were measured by reduction of the Montgomery Åsberg Depression Rating Scale score. Results: Both treatment groups showed a significant decline in depression symptoms, but no difference was found between groups. A clear pattern emerged only for macrophage migration inhibitory factor: placebo remitters showed significantly lower baseline levels than non-remitters (a similar trend was seen in responders and non-responders) while celecoxib responders showed a trend for higher baseline levels than non-responders. Conclusion: Small subsample sizes are a notable limitation, wherefore results are preliminary. However, the present study provides novel insights by suggesting macrophage migration inhibitory factor as a promising biomarker for treatment choice. The trial was registered in EU Clinical Trials Register (EU-CTR): https://www.clinicaltrialsregister.eu/ctr-search/trial/2009-011990-34/DE, EudraCT-No.: 2009-011990-34.
Collapse
Affiliation(s)
- Maria S Simon
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | | | - Elif Weidinger
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Gara Arteaga-Henríquez
- Department of Psychiatry, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.,Biomedical Network Research Centre on Mental Health (CIBERSAM), Madrid, Spain
| | - Peter Zill
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Richard Musil
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Hemmo A Drexhage
- Department of Immunology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Norbert Müller
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
36
|
Castellano F, Molinier-Frenkel V. Control of T-Cell Activation and Signaling by Amino-Acid Catabolizing Enzymes. Front Cell Dev Biol 2020; 8:613416. [PMID: 33392202 PMCID: PMC7773816 DOI: 10.3389/fcell.2020.613416] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Amino acids are essential for protein synthesis, epigenetic modification through the methylation of histones, and the maintenance of a controlled balance of oxidoreduction via the production of glutathione and are precursors of certain neurotransmitters. T lymphocytes are particularly sensitive to fluctuations in amino acid levels. During evolution, the production of amino-acid catabolizing enzymes by mainly antigen-presenting cells has become a physiological mechanism to control T-cell activation and polarization. The action of these enzymes interferes with TCR and co-stimulation signaling, allowing tuning of the T-cell response. These capacities can be altered in certain pathological conditions, with relevant consequences for the development of disease.
Collapse
Affiliation(s)
- Flavia Castellano
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,AP-HP, Hopital Henri Mondor, Departement Immunologie-Hématologie, Creteil, France
| | - Valérie Molinier-Frenkel
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.,AP-HP, Hopital Henri Mondor, Departement Immunologie-Hématologie, Creteil, France
| |
Collapse
|
37
|
Nekrasova I, Shirshev S. Estriol in regulation of cell-mediated immune reactions in multiple sclerosis. J Neuroimmunol 2020; 349:577421. [PMID: 33032016 DOI: 10.1016/j.jneuroim.2020.577421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022]
Abstract
The effect of pregnancy hormone estriol (E3) on innate and adaptive immunity cells functions in patients with multiple sclerosis (MS) in comparison with healthy donors (HD) was studied. E3 inhibited phagocytic activity of neutrophils and enhanced monocytes IDO activity. Treg percentage increased and number of Th17 and iNKT cells decreased under E3 influence. At the same time, E3 stimulated production of IL-10 and inhibited secretion of IL-17. The hormonal effects were realized on the cells of both HD and MS patients. Thus, the MS amelioration during pregnancy may be related to E3 influence.
Collapse
Affiliation(s)
- Irina Nekrasova
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, 614081 Perm, Russia.
| | - Sergei Shirshev
- Perm Federal Research Center, Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences, Goleva str., 13, 614081 Perm, Russia
| |
Collapse
|
38
|
Hayashi K, Nikolos F, Lee YC, Jain A, Tsouko E, Gao H, Kasabyan A, Leung HE, Osipov A, Jung SY, Kurtova AV, Chan KS. Tipping the immunostimulatory and inhibitory DAMP balance to harness immunogenic cell death. Nat Commun 2020; 11:6299. [PMID: 33288764 PMCID: PMC7721802 DOI: 10.1038/s41467-020-19970-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Induction of tumor cell death is the therapeutic goal for most anticancer drugs. Yet, a mode of drug-induced cell death, known as immunogenic cell death (ICD), can propagate antitumoral immunity to augment therapeutic efficacy. Currently, the molecular hallmark of ICD features the release of damage-associated molecular patterns (DAMPs) by dying cancer cells. Here, we show that gemcitabine, a standard chemotherapy for various solid tumors, triggers hallmark immunostimualtory DAMP release (e.g., calreticulin, HSP70, and HMGB1); however, is unable to induce ICD. Mechanistic studies reveal gemcitabine concurrently triggers prostaglandin E2 release as an inhibitory DAMP to counterpoise the adjuvanticity of immunostimulatory DAMPs. Pharmacological blockade of prostaglandin E2 biosythesis favors CD103+ dendritic cell activation that primes a Tc1-polarized CD8+ T cell response to bolster tumor rejection. Herein, we postulate that an intricate balance between immunostimulatory and inhibitory DAMPs could determine the outcome of drug-induced ICD and pose COX-2/prostaglandin E2 blockade as a strategy to harness ICD.
Collapse
Affiliation(s)
- K Hayashi
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - F Nikolos
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Y C Lee
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei City, Taiwan
| | - A Jain
- Alkek Center for Molecular Discovery, Proteomics Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - E Tsouko
- Department of Orthopedic Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - H Gao
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - A Kasabyan
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - H E Leung
- Alkek Center for Molecular Discovery, Proteomics Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - A Osipov
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - S Y Jung
- Alkek Center for Molecular Discovery, Proteomics Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - A V Kurtova
- Graduate Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - K S Chan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| |
Collapse
|
39
|
Dagnino APA, Chagastelles PC, Medeiros RP, Estrázulas M, Kist LW, Bogo MR, Weber JBB, Campos MM, Silva JB. Neural Regenerative Potential of Stem Cells Derived from the Tooth Apical Papilla. Stem Cells Dev 2020; 29:1479-1496. [PMID: 32988295 DOI: 10.1089/scd.2020.0121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The regenerative effects of stem cells derived from dental tissues have been previously investigated. This study assessed the potential of human tooth stem cells from apical papilla (SCAP) on nerve regeneration. The SCAP collected from nine individuals were characterized and polarized by exposure to interferon-γ (IFN-γ). IFN-γ increased kynurenine and interleukin-6 (IL-6) production by SCAP, without affecting the cell viability. IFN-γ-primed SCAP exhibited a decrease of brain-derived neurotrophic factor (BDNF) mRNA levels, followed by an upregulation of glial cell-derived neurotrophic factor mRNA. Ex vivo, the co-culture of SCAP with neurons isolated from the rat dorsal root ganglion induced neurite outgrowth, accompanied by increased BDNF secretion, irrespective of IFN-γ priming. In vivo, the local application of SCAP reduced the mechanical and thermal hypersensitivity in Wistar rats that had been submitted to sciatic chronic constriction injury. The SCAP also reduced the pain scores, according to the evaluation of the Grimace scale, partially restoring the myelin damage and BDNF immunopositivity secondary to nerve lesion. Altogether, our results provide novel evidence about the regenerative effects of human SCAP, indicating their potential to handle nerve injury-related complications.
Collapse
Affiliation(s)
- Ana Paula Aquistapase Dagnino
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Pedro Cesar Chagastelles
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Renata Priscila Medeiros
- Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Marina Estrázulas
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luiza Wilges Kist
- Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Maurício Reis Bogo
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Laboratório de Biologia Genômica e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - João Batista Blessmann Weber
- Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Maria Martha Campos
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Centro de Pesquisa em Toxicologia e Farmacologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Odontologia, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jefferson Braga Silva
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
40
|
Kurniawan H, Soriano-Baguet L, Brenner D. Regulatory T cell metabolism at the intersection between autoimmune diseases and cancer. Eur J Immunol 2020; 50:1626-1642. [PMID: 33067808 PMCID: PMC7756807 DOI: 10.1002/eji.201948470] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Regulatory T cells (Tregs) are critical for peripheral immune tolerance and homeostasis, and altered Treg behavior is involved in many pathologies, including autoimmunity and cancer. The expression of the transcription factor FoxP3 in Tregs is fundamental to maintaining their stability and immunosuppressive function. Recent studies have highlighted the crucial role that metabolic reprogramming plays in controlling Treg plasticity, stability, and function. In this review, we summarize how the availability and use of various nutrients and metabolites influence Treg metabolic pathways and activity. We also discuss how Treg-intrinsic metabolic programs define and shape their differentiation, FoxP3 expression, and suppressive capacity. Lastly, we explore how manipulating the regulation of Treg metabolism might be exploited in different disease settings to achieve novel immunotherapies.
Collapse
Affiliation(s)
- Henry Kurniawan
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Leticia Soriano-Baguet
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Dirk Brenner
- Experimental and Molecular Immunology, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
- Immunology and Genetics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
- Odense Research Center for Anaphylaxis, Department of Dermatology and Allergy Center, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
41
|
Meireson A, Devos M, Brochez L. IDO Expression in Cancer: Different Compartment, Different Functionality? Front Immunol 2020; 11:531491. [PMID: 33072086 PMCID: PMC7541907 DOI: 10.3389/fimmu.2020.531491] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Indoleamine 2,3-dioxygenase 1 (IDO1) is a cytosolic haem-containing enzyme involved in the degradation of tryptophan to kynurenine. Although initially thought to be solely implicated in the modulation of innate immune responses during infection, subsequent discoveries demonstrated IDO1 as a mechanism of acquired immune tolerance. In cancer, IDO1 expression/activity has been observed in tumor cells as well as in the tumor-surrounding stroma, which is composed of endothelial cells, immune cells, fibroblasts, and mesenchymal cells. IDO1 expression/activity has also been reported in the peripheral blood. This manuscript reviews available data on IDO1 expression, mechanisms of its induction, and its function in cancer for each of these compartments. In-depth study of the biological function of IDO1 according to the expressing (tumor) cell can help to understand if and when IDO1 inhibition can play a role in cancer therapy.
Collapse
Affiliation(s)
- Annabel Meireson
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| | - Michael Devos
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | - Lieve Brochez
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
42
|
Tryptophan and kynurenine stimulate human decidualization via activating Aryl hydrocarbon receptor: Short title: Kynurenine action on human decidualization. Reprod Toxicol 2020; 96:282-292. [PMID: 32781018 DOI: 10.1016/j.reprotox.2020.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/27/2020] [Indexed: 12/30/2022]
Abstract
Decidualization is essential for successful pregnancy in rodents and primates. Although L-Tryptophan and its metabolites are essential for mammalian pregnancy, the underlying mechanism is poorly defined. We explored effects of tryptophan and kynurenine on human in vitro decidualization in human endometrial stromal cell line and primary endometrial stromal cells. Tryptophan significantly stimulates the expression of prolactin and insulin growth factor binding protein 1, reliable markers for human decidualization. When stromal cells are treated with tryptophan, tryptophan hydroxylase-1 remains unchanged, but indoleamine 2,3-dioxygenase 1 is significantly increased, suggesting tryptophan is mainly metabolized through kynurenine pathway. Kynurenine significantly stimulates insulin growth factor binding protein 1 expression. Aryl hydrocarbon receptor and its target genes (P450 1A1 and P450 1B1) are significantly increased by tryptophan and kynurenine. The induction of tryptophan and kynurenine on insulin growth factor binding protein 1 is abrogated by CH223191, an aryl hydrocarbon receptor inhibitor. Cytochrome P450 1A1 and P450 1B1 catalyze the oxidative metabolism of estradiol to catechol estrogens (2-hydroxy estradiol and 4-hydroxy estradiol), respectively. Insulin growth factor binding protein 1 is up-regulated by 2-hydroxy estradiol and 4-hydroxy estradiol. Interferon-γ significantly induces the expression of indoleamine 2,3-dioxygenase 1, aryl hydrocarbon receptor and insulin growth factor binding protein 1. All the data are also verified in primary human stromal cells. Our data indicate that Interferon-γ-induced kynurenine pathway promotes human decidualization via aryl hydrocarbon receptor signaling.
Collapse
|
43
|
Jonescheit H, Oberg HH, Gonnermann D, Hermes M, Sulaj V, Peters C, Kabelitz D, Wesch D. Influence of Indoleamine-2,3-Dioxygenase and Its Metabolite Kynurenine on γδ T Cell Cytotoxicity against Ductal Pancreatic Adenocarcinoma Cells. Cells 2020; 9:E1140. [PMID: 32384638 PMCID: PMC7290398 DOI: 10.3390/cells9051140] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a malignant gastrointestinal disease. The enzyme indoleamine-2,3-dioxgenase (IDO) is often overexpressed in PDAC and its downstream metabolite kynurenine has been reported to inhibit T cell activation and proliferation. Since γδ T cells are of high interest for T cell-based immunotherapy against PDAC, we studied the impact of IDO and kynurenine on γδ T cell cytotoxicity against PDAC cells. METHODS IDO expression was determined in PDAC cells by flow cytometry and Western blot analysis. PDAC cells were cocultured with γδ T cells in medium or were stimulated with phosphorylated antigens or bispecific antibody in the presence or absence of IDO inhibitors. Additionally, γδ T cells were treated with recombinant kynurenine. Read-out assays included degranulation, cytotoxicity and cytokine measurement as well as cell cycle analysis. RESULTS Since IDO overexpression was variable in PDAC, IDO inhibitors improved γδ T cell cytotoxicity only against some but not all PDAC cells. γδ T cell degranulation and cytotoxicity were significantly decreased after their treatment with recombinant kynurenine. CONCLUSIONS Bispecific antibody drastically enhanced γδ T cell cytotoxicity against all PDAC cells, which can be further enhanced by IDO inhibitors against several PDAC cells, suggesting a striking heterogeneity in PDAC escape mechanisms towards γδ T cell-mediated anti-tumor response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daniela Wesch
- Institute of Immunology, University Hospital Schleswig-Holstein Campus Kiel, D-24105 Kiel, Germany; (H.J.); (H.-H.O.); (D.G.); (M.H.); (V.S.); (C.P.); (D.K.)
| |
Collapse
|
44
|
Identifying the Therapeutic Significance of Mesenchymal Stem Cells. Cells 2020; 9:cells9051145. [PMID: 32384763 PMCID: PMC7291143 DOI: 10.3390/cells9051145] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022] Open
Abstract
The pleiotropic behavior of mesenchymal stem cells (MSCs) has gained global attention due to their immense potential for immunosuppression and their therapeutic role in immune disorders. MSCs migrate towards inflamed microenvironments, produce anti-inflammatory cytokines and conceal themselves from the innate immune system. These signatures are the reason for the uprising in the sciences of cellular therapy in the last decades. Irrespective of their therapeutic role in immune disorders, some factors limit beneficial effects such as inconsistency of cell characteristics, erratic protocols, deviating dosages, and diverse transfusion patterns. Conclusive protocols for cell culture, differentiation, expansion, and cryopreservation of MSCs are of the utmost importance for a better understanding of MSCs in therapeutic applications. In this review, we address the immunomodulatory properties and immunosuppressive actions of MSCs. Also, we sum up the results of the enhancement, utilization, and therapeutic responses of MSCs in treating inflammatory diseases, metabolic disorders and diabetes.
Collapse
|
45
|
Hashemi V, Farhadi S, Ghasemi Chaleshtari M, Seashore-Ludlow B, Masjedi A, Hojjat-Farsangi M, Namdar A, Ajjoolabady A, Mohammadi H, Ghalamfarsa G, Jadidi-Niaragh F. Nanomedicine for improvement of dendritic cell-based cancer immunotherapy. Int Immunopharmacol 2020; 83:106446. [PMID: 32244048 DOI: 10.1016/j.intimp.2020.106446] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Abstract
Dendritic cell (DC)-based cancer immunotherapy has shown impressive outcomes, including the development of the first FDA-approved anti-cancer vaccine. However, the clinical application of DC-based cancer immunotherapy is associated with various challenges. Promising novel tools for the administration of cancer vaccines has emerged from recent developments in nanoscale biomaterials. One current strategy to enhance targeted drug delivery, while minimizing drug-related toxicities, is the use of nanoparticles (NPs). These can be utilized for antigen delivery into DCs, which have been shown to provide potent T cell-stimulating effects. Therefore, NP delivery represents one promising approach for creating an effective and stable immune response without toxic side effects. The current review surveys cancer immunotherapy with particular attention toward NP-based delivery methods that target DCs.
Collapse
Affiliation(s)
- Vida Hashemi
- Department of Basic Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shohreh Farhadi
- Student Research Committee, Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Brinton Seashore-Ludlow
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Ali Masjedi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; The Persian Gulf Marine Biotechnology Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Afshin Namdar
- Department of Oncology, Cross Cancer Institute, The University of Alberta, Edmonton, Alberta, Canada
| | - Amir Ajjoolabady
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
46
|
Doron G, Klontzas ME, Mantalaris A, Guldberg RE, Temenoff JS. Multiomics characterization of mesenchymal stromal cells cultured in monolayer and as aggregates. Biotechnol Bioeng 2020; 117:1761-1778. [DOI: 10.1002/bit.27317] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Gilad Doron
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlanta Georgia
| | - Michail E. Klontzas
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlanta Georgia
- Emory University School of MedicineWinship Cancer InstituteAtlanta Georgia
| | - Athanasios Mantalaris
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlanta Georgia
| | - Robert E. Guldberg
- Parker H. Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlanta Georgia
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlanta Georgia
- Knight Campus for Accelerating Scientific ImpactUniversity of OregonEugene Oregon
| | - Johnna S. Temenoff
- Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlanta Georgia
- Parker H. Petit Institute for Bioengineering and BioscienceGeorgia Institute of TechnologyAtlanta Georgia
| |
Collapse
|
47
|
Chu CL, Lee YP, Pang CY, Lin HR, Chen CS, You RI. Tyrosine kinase inhibitors modulate dendritic cell activity via confining c-Kit signaling and tryptophan metabolism. Int Immunopharmacol 2020; 82:106357. [PMID: 32151959 DOI: 10.1016/j.intimp.2020.106357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/25/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Dendritic cell (DC)-based vaccine has been established in tumor immunotherapy. Importantly, the efficiency of anti-tumor T-cells in draining lymph nodes is dependent on the status of DCs surrounding in tumors. It has been shown that Indoleamine 2,3-dioxygenase (IDO) plays a key role to induce tolerogenic DCs in tumor microenvironment, and tyrosine kinase inhibitors (TKIs) can suppress the function of IDO in DCs. However, the stimulatory effect of TKI-modified DCs on T cells remains unclear. In this report, we found that one type of TKI-dasatinib can modify DCs to increasing the activation of allogenic T cells. These TKI-modified DCs delayed the onset of B16 melanoma progression in mice. In mechanistic studies, TKIs did not increase the maturation but reduce the expression and phosphorylation levels of IDO and IDO mediated tryptophan metabolism in DCs. In addition, the suppressive effect of TKIs on tryptophan metabolism may be caused by blocking c-Kit pathway in DCs. Furthermore, the increased phosphorylation of general control nonderepressible (GCN2) and decreased expression of aryl hydrocarbon receptor (AhR)/aryl hydrocarbon receptor nuclear translocator (ARNT) were observed in the T cells activated by TKI-modified DCs, suggesting the enhancement of effector function of T cells. These results indicate that TKI could be used to modulate DC immunogenic activity and may potentially be applied in DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Pang Lee
- Department of Health Administration, Tzu Chi University of Science and Technology, Hualien, Taiwan; Division of Oral Pathology, Department of Dentistry, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Cheng-Yoong Pang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Huei-Ru Lin
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chang-Shan Chen
- Institutes of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
48
|
Darvekar S, Juzenas P, Oksvold M, Kleinauskas A, Holien T, Christensen E, Stokke T, Sioud M, Peng Q. Selective Killing of Activated T Cells by 5-Aminolevulinic Acid Mediated Photodynamic Effect: Potential Improvement of Extracorporeal Photopheresis. Cancers (Basel) 2020; 12:cancers12020377. [PMID: 32041351 PMCID: PMC7072277 DOI: 10.3390/cancers12020377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 01/08/2023] Open
Abstract
Extracorporeal photopheresis (ECP), a modality that exposes isolated leukocytes to the photosensitizer 8-methoxypsoralen (8-MOP) and ultraviolet-A (UV-A) light, is used to treat conditions such as cutaneous T-cell lymphoma and graft-versus-host disease. However, the current procedure of ECP has limited selectivity and efficiency; and produces only partial response in the majority of treated patients. Additionally, the treatment is expensive and time-consuming, so the improvement for this modality is needed. In this study, we used the concept of photodynamic therapy (PDT) with 5-aminolevulinic acid (ALA), a precursor of an endogenously synthesized photosensitizer protoporphyrin IX (PpIX) in combination with blue light to explore the possibility of targeting activated human blood T cells ex vivo. With various T-cell activation protocols, a high ALA-induced PpIX production took place in activated CD3+, CD4+CD25+, and CD8+ T cell populations with their subsequent killing after blue light exposure. By contrast, resting T cells were much less damaged by the treatment. The selective and effective killing effect on the activated cells was also seen after co-cultivating activated and resting T cells. Under our clinically relevant experimental conditions, ALA-PDT killed activated T cells more selectively and efficiently than 8-MOP/UV-A. Monocyte-derived dendritic cells (DCs) were not affected by the treatment. Incubation of ALA-PDT damaged T cells with autologous DCs induced a downregulation of the co-stimulatory molecules CD80/CD86 and also upregulation of interleukin 10 (IL-10) and indoleamine 2,3-dioxygenase expression, two immunosuppressive factors that may account for the generation of tolerogenic DCs. Overall, the data support the potential use of ALA-PDT strategy for improving ECP by selective and effective killing of activated T cells and induction of immune tolerance.
Collapse
Affiliation(s)
- Sagar Darvekar
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, N-0379 Oslo, Norway; (S.D.); (P.J.); (M.O.); (A.K.); (T.H.); (E.C.)
| | - Petras Juzenas
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, N-0379 Oslo, Norway; (S.D.); (P.J.); (M.O.); (A.K.); (T.H.); (E.C.)
| | - Morten Oksvold
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, N-0379 Oslo, Norway; (S.D.); (P.J.); (M.O.); (A.K.); (T.H.); (E.C.)
| | - Andrius Kleinauskas
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, N-0379 Oslo, Norway; (S.D.); (P.J.); (M.O.); (A.K.); (T.H.); (E.C.)
| | - Toril Holien
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, N-0379 Oslo, Norway; (S.D.); (P.J.); (M.O.); (A.K.); (T.H.); (E.C.)
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, N-7491 Trondheim, Norway
- Department of Hematology, St. Olavs University Hospital HF, N-7491 Trondheim, Norway
| | - Eidi Christensen
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, N-0379 Oslo, Norway; (S.D.); (P.J.); (M.O.); (A.K.); (T.H.); (E.C.)
- Department of Clinical and Molecular Medicine, NTNU-Norwegian University of Science and Technology, N-7491 Trondheim, Norway
- Department of Dermatology, St. Olavs University Hospital HF, N-7491 Trondheim, Norway
| | - Trond Stokke
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, N-0379 Oslo, Norway;
| | - Mouldy Sioud
- Department of Cancer Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, N-0379 Oslo, Norway
- Correspondence: (M.S.); (Q.P.); Tel.: +47-22781414 (M.S.); +47-22782353 (Q.P.)
| | - Qian Peng
- Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, N-0379 Oslo, Norway; (S.D.); (P.J.); (M.O.); (A.K.); (T.H.); (E.C.)
- Department of Optical Science and Engineering, The School of Information Science and Technology, Fudan University, Shanghai 200433, China
- Correspondence: (M.S.); (Q.P.); Tel.: +47-22781414 (M.S.); +47-22782353 (Q.P.)
| |
Collapse
|
49
|
Improving Dendritic Cell Cancer Vaccine Potency Using RNA Interference. Methods Mol Biol 2020. [PMID: 32006405 DOI: 10.1007/978-1-0716-0290-4_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Dendritic cell cancer vaccines have already become a treatment modality for patients with various cancer types. However, the curative potential of this immunotherapy is limited by the existence of negative feedback mechanisms that control dendritic cells (DCs) and T-cell function. By inhibiting the expression of inhibitory factors using RNA interference technology, a new generation of DC vaccines was developed. Vaccine-stimulated T cells showed antitumor effects both in vitro and in cancer patients. Here, we describe the development and validation of a fully GMP-compliant production process of ex vivo DC cancer vaccines combined with the blockade of immunosuppressive pathways using small interfering RNAs. The protocol can be used for DC-based therapy for all cancer types.
Collapse
|
50
|
Hurdayal R, Nieuwenhuizen NE, Khutlang R, Brombacher F. Inflammatory Dendritic Cells, Regulated by IL-4 Receptor Alpha Signaling, Control Replication, and Dissemination of Leishmania major in Mice. Front Cell Infect Microbiol 2020; 9:479. [PMID: 32039054 PMCID: PMC6992597 DOI: 10.3389/fcimb.2019.00479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/27/2019] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis is a vector-borne disease caused by Leishmania parasites. Macrophages are considered the primary parasite host cell, but dendritic cells (DCs) play a critical role in initiating adaptive immunity and controlling Leishmania infection. Accordingly, our previous study in CD11ccreIL-4Rα−/lox mice, which have impaired IL-4 receptor alpha (IL-4Rα) expression on CD11c+ cells including DCs, confirmed a protective role for IL-4/IL-13-responsive DCs in replication and dissemination of parasites during cutaneous leishmaniasis. However, it was unclear which DC subset/s was executing this function. To investigate this, we infected CD11ccreIL-4Rα−/lox and control mice with L. major GFP+ parasites and identified subsets of infected DCs by flow cytometry. Three days after infection, CD11b+ DCs and CD103+ DCs were the main infected DC subsets in the footpad and draining lymph node, respectively and by 4 weeks post-infection, Ly6C+ and Ly6C− CD11b+ DCs were the main infected DC populations in both the lymph nodes and footpads. Interestingly, Ly6C+CD11b+ inflammatory monocyte-derived DCs but not Ly6C−CD11b+ DCs hosted parasites in the spleen. Importantly, intracellular parasitism was significantly higher in IL-4Rα-deficient DCs. In terms of DC effector function, we found no change in the expression of pattern-recognition receptors (TLR4 and TLR9) nor in expression of the co-stimulatory marker, CD80, but MHCII expression was lower in CD11ccreIL-4Rα−/lox mice at later time-points compared to the controls. Interestingly, in CD11ccreIL-4Rα−/lox mice, which have reduced Th1 responses, CD11b+ DCs had impaired iNOS production, suggesting that DC IL-4Rα expression and NO production is important for controlling parasite numbers and preventing dissemination. Expression of the alternative activation marker arginase was unchanged in CD11b+ DCs in CD11creIL-4Rα−/lox mice compared to littermate controls, but RELM-α was upregulated, suggesting IL-4Rα-independent alternative activation. In summary, L. major parasites may use Ly6C+CD11b+ inflammatory DCs derived from monocytes recruited to infection as “Trojan horses” to migrate to secondary lymphoid organs and peripheral sites, and DC IL-4Rα expression is important for controlling infection.
Collapse
Affiliation(s)
- Ramona Hurdayal
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa.,International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Faculty of Health Sciences, South African Medical Research Council on Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Natalie Eva Nieuwenhuizen
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Faculty of Health Sciences, South African Medical Research Council on Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Rethabile Khutlang
- Identity Authentication Research Group, Defence and Security, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa.,Division of Immunology, Department of Pathology, Faculty of Health Sciences, South African Medical Research Council on Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|