1
|
Arciprete F, Verachi P, Martelli F, Valeri M, Balliu M, Guglielmelli P, Vannucchi AM, Migliaccio AR, Zingariello M. Inhibition of CXCR1/2 reduces the emperipolesis between neutrophils and megakaryocytes in the Gata1 low model of myelofibrosis. Exp Hematol 2023; 121:30-37. [PMID: 36863479 DOI: 10.1016/j.exphem.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Emperipolesis between neutrophils and megakaryocytes was first identified by transmission electron microscopy. Although rare under steady-state conditions, its frequency greatly increases in myelofibrosis, the most severe of myeloproliferative neoplasms, in which it is believed to contribute to increasing the transforming growth factor (TGF)-β microenvironmental bioavailability responsible for fibrosis. To date, the challenge of performing studies by transmission electron microscopy has hampered the study of factors that drive the pathological emperipolesis observed in myelofibrosis. We established a user-friendly confocal microscopy method that detects emperipolesis by staining with CD42b, specifically expressed on megakaryocytes, coupled with antibodies that recognize the neutrophils (Ly6b or neutrophil elastase antibody). With such an approach, we first confirmed that the bone marrow from patients with myelofibrosis and from Gata1low mice, a model of myelofibrosis, contains great numbers of neutrophils and megakaryocytes in emperipolesis. Both in patients and Gata1low mice, the emperipolesed megakaryocytes were surrounded by high numbers of neutrophils, suggesting that neutrophil chemotaxis precedes the actual emperipolesis event. Because neutrophil chemotaxis is driven by CXCL1, the murine equivalent of human interleukin 8 that is expressed at high levels by malignant megakaryocytes, we tested the hypothesis that neutrophil/megakaryocyte emperipolesis could be reduced by reparixin, an inhibitor of CXCR1/CXCR2. Indeed, the treatment greatly reduced both neutrophil chemotaxis and their emperipolesis with the megakaryocytes in treated mice. Because treatment with reparixin was previously reported to reduce both TGF-β content and marrow fibrosis, these results identify neutrophil/megakaryocyte emperipolesis as the cellular interaction that links interleukin 8 to TGF-β abnormalities in the pathobiology of marrow fibrosis.
Collapse
Affiliation(s)
- Francesca Arciprete
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Martelli
- National Center for Preclinical and Clinical Research and Evaluation of Pharmaceutical Drugs, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Valeri
- Center for Animal Experimentation and Well-Being, Istituto Superiore di Sanità, Rome, Italy
| | - Manjola Balliu
- Center Research and Innovation of Myeloproliferative Neoplasm, University Hospital Careggi, University of Florence, Florence, Italy
| | - Paola Guglielmelli
- Center Research and Innovation of Myeloproliferative Neoplasm, University Hospital Careggi, University of Florence, Florence, Italy
| | - Alessandro Maria Vannucchi
- Center Research and Innovation of Myeloproliferative Neoplasm, University Hospital Careggi, University of Florence, Florence, Italy
| | - Anna Rita Migliaccio
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy; Altius Institute for Biomedical Sciences, Seattle, WA
| | - Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy.
| |
Collapse
|
2
|
Mazzarini M, Arciprete F, Picconi O, Valeri M, Verachi P, Martelli F, Migliaccio AR, Falchi M, Zingariello M. Single cell analysis of the localization of the hematopoietic stem cells within the bone marrow architecture identifies niche-specific proliferation dynamics. Front Med (Lausanne) 2023; 10:1166758. [PMID: 37188088 PMCID: PMC10175646 DOI: 10.3389/fmed.2023.1166758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction Hematopoietic stem cells (HSC) reside in the bone marrow (BM) in specialized niches which provide support for their self-replication and differentiation into the blood cells. Recently, numerous studies using sophisticated molecular and microscopic technology have provided snap-shots information on the identity of the BM niches in mice. In adults, HSC are localized around arterioles and sinusoids/venules whereas in juvenile mice they are in close to the osteoblasts. However, although it is well recognized that in mice the nature of the hematopoietic niche change with age or after exposure to inflammatory insults, much work remains to be done to identify changes occurring under these conditions. The dynamic changes occurring in niche/HSC interactions as HSC enter into cycle are also poorly defined. Methods We exploit mice harboring the hCD34tTA/Tet-O-H2BGFP transgene to establish the feasibility to assess interactions of the HSC with their niche as they cycle. In this model, H2BGFP expression is driven by the TET trans-activator under the control of the human CD34 promoter which in mice is active only in the HSC. Since Doxycycline inhibits TET, HSC exposed to this drug no longer express H2BGFP and loose half of their label every division allowing establishing the dynamics of their first 1-3 divisions. To this aim, we first validated user-friendly confocal microscopy methods to determine HSC divisions by hemi-decrement changes in levels of GFP expression. We then tracked the interaction occurring in old mice between the HSC and their niche during the first HSC divisions. Results We determined that in old mice, most of the HSC are located around vessels, both arterioles which sustain quiescence and self-replication, and venules/sinusoids, which sustain differentiation. After just 1 week of exposure to Doxycycline, great numbers of the HSC around the venules lost most of their GFP label, indicating that they had cycled. By contrast, the few HSC surrounding the arterioles retained maximal levels of GFP expression, indicating that they are either dormant or cycle at very low rates. Conclusion These results reveal that in old mice, HSC cycle very dynamically and are biased toward interactions with the niche that instructs them to differentiate.
Collapse
Affiliation(s)
- Maria Mazzarini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
| | - Francesca Arciprete
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Orietta Picconi
- National Center for HIV/AIDS Research, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Valeri
- Center for Animal Experimentation and Well-Being, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Martelli
- National Center for Preclinical and Clinical Research and Evaluation of Pharmaceutical Drugs, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Rita Migliaccio
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
- *Correspondence: Anna Rita Migliaccio ;
| | - Mario Falchi
- National Center for HIV/AIDS Research, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Zingariello
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
| |
Collapse
|
3
|
Verachi P, Gobbo F, Martelli F, Falchi M, di Virgilio A, Sarli G, Wilke C, Bruederle A, Prahallad A, Arciprete F, Zingariello M, Migliaccio AR. Preclinical studies on the use of a P-selectin-blocking monoclonal antibody to halt progression of myelofibrosis in the Gata1 low mouse model. Exp Hematol 2023; 117:43-61. [PMID: 36191885 PMCID: PMC10450205 DOI: 10.1016/j.exphem.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 01/10/2023]
Abstract
The bone marrow (BM) and spleen from patients with myelofibrosis (MF), as well as those from the Gata1low mouse model of the disease contain increased number of abnormal megakaryocytes. These cells express high levels of the adhesion receptor P-selectin on their surface, which triggers a pathologic neutrophil emperipolesis, leading to increased bioavailability of transforming growth factor-β (TGF-β) in the microenvironment and disease progression. With age, Gata1low mice develop a phenotype similar to that of patients with MF, which is the most severe of the Philadelphia-negative myeloproliferative neoplasms. We previously demonstrated that Gata1low mice lacking the P-selectin gene do not develop MF. In the current study, we tested the hypothesis that pharmacologic inhibition of P-selectin may normalize the phenotype of Gata1low mice that have already developed MF. To test this hypothesis, we have investigated the phenotype expressed by aged Gata1low mice treated with the antimouse monoclonal antibody RB40.34, alone and also in combination with ruxolitinib. The results indicated that RB40.34 in combination with ruxolitinib normalizes the phenotype of Gata1low mice with limited toxicity by reducing fibrosis and the content of TGF-β and CXCL1 (two drivers of fibrosis in this model) in the BM and spleen and by restoring hematopoiesis in the BM and the architecture of the spleen. In conclusion, we provide preclinical evidence that treatment with an antibody against P-selectin in combination with ruxolitinib may be more effective than ruxolitinib alone to treat MF in patients.
Collapse
Affiliation(s)
- Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Francesca Gobbo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy; Department of Veterinary Medical Sciences, University of Bologna, Italy
| | - Fabrizio Martelli
- National Center for Preclinical and Clinical Research and Evaluation of Pharmaceutical Drugs, Istituto Superiore di Sanità, Rome, Italy
| | - Mario Falchi
- National Center for HIV/AIDS Research, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio di Virgilio
- Center for Animal Experimentation and Well-being, Istituto Superiore di Santà, Rome, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Italy
| | | | | | | | - Francesca Arciprete
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy
| | - Anna Rita Migliaccio
- Unit of Microscopic and Ultrastructural Anatomy, University Campus Bio-Medico, Rome, Italy; Altius Institute for Biomedical Sciences, Seattle, WA, USA.
| |
Collapse
|
4
|
Verachi P, Gobbo F, Martelli F, Martinelli A, Sarli G, Dunbar A, Levine RL, Hoffman R, Massucci MT, Brandolini L, Giorgio C, Allegretti M, Migliaccio AR. The CXCR1/CXCR2 Inhibitor Reparixin Alters the Development of Myelofibrosis in the Gata1 low Mice. Front Oncol 2022; 12:853484. [PMID: 35392239 PMCID: PMC8982152 DOI: 10.3389/fonc.2022.853484] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
A major role for human (h)CXCL8 (interleukin-8) in the pathobiology of myelofibrosis (MF) has been suggested by observations indicating that MF megakaryocytes express increased levels of hCXCL8 and that plasma levels of this cytokine in MF patients are predictive of poor patient outcomes. Here, we demonstrate that, in addition to high levels of TGF-β, the megakaryocytes from the bone marrow of the Gata1 low mouse model of myelofibrosis express high levels of murine (m)CXCL1, the murine equivalent of hCXCL8, and its receptors CXCR1 and CXCR2. Treatment with the CXCR1/R2 inhibitor, Reparixin in aged-matched Gata1 low mice demonstrated reductions in bone marrow and splenic fibrosis. Of note, the levels of fibrosis detected using two independent methods (Gomori and reticulin staining) were inversely correlated with plasma levels of Reparixin. Immunostaining of marrow sections indicated that the bone marrow from the Reparixin-treated group expressed lower levels of TGF-β1 than those expressed by the bone marrow from vehicle-treated mice while the levels of mCXCL1, and expression of CXCR1 and CXCR2, were similar to that of vehicle-treated mice. Moreover, immunofluorescence analyses performed on bone marrow sections from Gata1 low mice indicated that treatment with Reparixin induced expression of GATA1 while reducing expression of collagen III in megakaryocytes. These data suggest that in Gata1low mice, Reparixin reduces fibrosis by reducing TGF-β1 and collagen III expression while increasing GATA1 in megakaryocytes. Our results provide a preclinical rationale for further evaluation of this drug alone and in combination with current JAK inhibitor therapy for the treatment of patients with myelofibrosis.
Collapse
Affiliation(s)
- Paola Verachi
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University, Bologna, Italy
| | - Francesca Gobbo
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University, Bologna, Italy
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Martinelli
- Center for Animal Experimentation and Well-Being, Istituto Superiore di Santà, Rome, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Andrew Dunbar
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ross L. Levine
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Leukemia Service, Department of Medicine and Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ronald Hoffman
- Division of Hematology/Oncology, Tisch Cancer Institute and Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | | | | | | | - Anna Rita Migliaccio
- Center for Integrated Biomedical Research, Campus Bio-medico, Rome, Italy
- Altius Institute for Biomedical Sciences, Seattle, WA, United States
| |
Collapse
|
5
|
Zingariello M, Verachi P, Gobbo F, Martelli F, Falchi M, Mazzarini M, Valeri M, Sarli G, Marinaccio C, Melo-Cardenas J, Crispino JD, Migliaccio AR. Resident Self-Tissue of Proinflammatory Cytokines Rather than Their Systemic Levels Correlates with Development of Myelofibrosis in Gata1low Mice. Biomolecules 2022; 12:biom12020234. [PMID: 35204735 PMCID: PMC8961549 DOI: 10.3390/biom12020234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 02/05/2023] Open
Abstract
Serum levels of inflammatory cytokines are currently investigated as prognosis markers in myelofibrosis, the most severe Philadelphia-negative myeloproliferative neoplasm. We tested this hypothesis in the Gata1low model of myelofibrosis. Gata1low mice, and age-matched wild-type littermates, were analyzed before and after disease onset. We assessed cytokine serum levels by Luminex-bead-assay and ELISA, frequency and cytokine content of stromal cells by flow cytometry, and immunohistochemistry and bone marrow (BM) localization of GFP-tagged hematopoietic stem cells (HSC) by confocal microscopy. Differences in serum levels of 32 inflammatory-cytokines between prefibrotic and fibrotic Gata1low mice and their wild-type littermates were modest. However, BM from fibrotic Gata1low mice contained higher levels of lipocalin-2, CXCL1, and TGF-β1 than wild-type BM. Although frequencies of endothelial cells, mesenchymal cells, osteoblasts, and megakaryocytes were higher than normal in Gata1low BM, the cells which expressed these cytokines the most were malignant megakaryocytes. This increased bioavailability of proinflammatory cytokines was associated with altered HSC localization: Gata1low HSC were localized in the femur diaphysis in areas surrounded by microvessels, neo-bones, and megakaryocytes, while wild-type HSC were localized in the femur epiphysis around adipocytes. In conclusion, bioavailability of inflammatory cytokines in BM, rather than blood levels, possibly by reshaping the HSC niche, correlates with myelofibrosis in Gata1low mice.
Collapse
Affiliation(s)
| | - Paola Verachi
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, 40126 Bologna, Italy; (P.V.); (F.G.); (M.M.)
| | - Francesca Gobbo
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, 40126 Bologna, Italy; (P.V.); (F.G.); (M.M.)
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Mario Falchi
- National Center HIV/AIDS Research, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Maria Mazzarini
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, 40126 Bologna, Italy; (P.V.); (F.G.); (M.M.)
| | - Mauro Valeri
- Center for Animal Experimentation and Well-Being, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy;
| | | | - Johanna Melo-Cardenas
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.M.-C.); (J.D.C.)
| | - John D. Crispino
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.M.-C.); (J.D.C.)
| | - Anna Rita Migliaccio
- Altius Institute for Biomedical Sciences, Seattle, WA 98121, USA
- Center for Integrated Biomedical Research, Campus Bio-Medico, 00128 Rome, Italy
- Correspondence:
| |
Collapse
|
6
|
Martelli F, Verachi P, Zingariello M, Mazzarini M, Vannucchi AM, Lonetti A, Bacci B, Sarli G, Migliaccio AR. hGATA1 Under the Control of a μLCR/β-Globin Promoter Rescues the Erythroid but Not the Megakaryocytic Phenotype Induced by the Gata1 low Mutation in Mice. Front Genet 2021; 12:720552. [PMID: 34707640 PMCID: PMC8542976 DOI: 10.3389/fgene.2021.720552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/24/2021] [Indexed: 11/13/2022] Open
Abstract
The phenotype of mice carrying the Gata1low mutation that decreases expression of Gata1 in erythroid cells and megakaryocytes, includes anemia, thrombocytopenia, hematopoietic failure in bone marrow and development of extramedullary hematopoiesis in spleen. With age, these mice develop myelofibrosis, a disease sustained by alterations in stem/progenitor cells and megakaryocytes. This study analyzed the capacity of hGATA1 driven by a μLCR/β-globin promoter to rescue the phenotype induced by the Gata1low mutation in mice. Double hGATA1/Gata1low/0 mice were viable at birth with hematocrits greater than those of their Gata1low/0 littermates but platelet counts remained lower than normal. hGATA1 mRNA was expressed by progenitor and erythroid cells from double mutant mice but not by megakaryocytes analyzed in parallel. The erythroid cells from hGATA1/Gata1low/0 mice expressed greater levels of GATA1 protein and of α- and β-globin mRNA than cells from Gata1low/0 littermates and a reduced number of them was in apoptosis. By contrast, hGATA1/Gata1low/0 megakaryocytes expressed barely detectable levels of GATA1 and their expression of acetylcholinesterase, Von Willebrand factor and platelet factor 4 as well as their morphology remained altered. In comparison with Gata1+/0 littermates, Gata1low/0 mice contained significantly lower total and progenitor cell numbers in bone marrow while the number of these cells in spleen was greater than normal. The presence of hGATA1 greatly increased the total cell number in the bone marrow of Gata1low/0 mice and, although did not affect the total cell number of the spleen which remained greater than normal, it reduced the frequency of progenitor cells in this organ. The ability of hGATA1 to rescue the hematopoietic functions of the bone marrow of the double mutants was confirmed by the observation that these mice survive well splenectomy and did not develop myelofibrosis with age. These results indicate that hGATA1 under the control of µLCR/β-globin promoter is expressed in adult progenitors and erythroid cells but not in megakaryocytes rescuing the erythroid but not the megakaryocyte defect induced by the Gata1low/0 mutation.
Collapse
Affiliation(s)
- Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Verachi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Maria Mazzarini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro M Vannucchi
- Department of Clinical and Experimental Medicine, Center of Research and Innovation of Myeloproliferative neoplasms (CRIMM), AOU Careggi, University of Florence, Florence, Italy
| | - Annalisa Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Barbara Bacci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Anna Rita Migliaccio
- Myeloproliferative Neoplasm Research Consortium, New York, NY, United States.,Department of Medicine and Surgery, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
7
|
Benlabiod C, Dagher T, Marty C, Villeval JL. Lessons from mouse models of MPN. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 366:125-185. [PMID: 35153003 DOI: 10.1016/bs.ircmb.2021.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the past decades, a variety of MPN mouse models have been developed to express in HSC the main mutations identified in patients: JAK2V617F, CALRdel52 or ins5 and MPLW515L. These models mimic quite faithfully human PV or ET with their natural evolutions into MF and their hemostasis complications, demonstrating the driver function of these mutations in MPN. Here, we review these models and show how they have improved our general understanding of MPN regarding (1) the mechanisms of fibrosis, thrombosis/hemorrhages and disease initiation, (2) the roles of additional mutations and signaling pathways in disease progression and (3) the preclinical development of novel therapies. We also address controversial results between these models and remind how these models may differ from human MPN onset and also how basically mice are not humans, encouraging caution when one draw lessons from mice to humans. Furthermore, the contribution of germline genetic predisposition, HSC and niche aging, metabolic, oxidative, replicative or genotoxic stress, inflammation, immune escape and additional mutations need to be considered in further investigations to encompass the full complexity of human MPN in mice.
Collapse
Affiliation(s)
- Camelia Benlabiod
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France
| | - Tracy Dagher
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France
| | - Caroline Marty
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France.
| | - Jean-Luc Villeval
- INSERM, UMR 1287, Gustave Roussy, Villejuif, France; Université Paris-Saclay, UMR 1287, Gustave Roussy, Villejuif, France; Gustave Roussy, UMR 1287, Villejuif, France.
| |
Collapse
|
8
|
Eran Z, Zingariello M, Bochicchio MT, Bardelli C, Migliaccio AR. Novel strategies for the treatment of myelofibrosis driven by recent advances in understanding the role of the microenvironment in its etiology. F1000Res 2019; 8:F1000 Faculty Rev-1662. [PMID: 31583083 PMCID: PMC6758840 DOI: 10.12688/f1000research.18581.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
Myelofibrosis is the advanced stage of the Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs), characterized by systemic inflammation, hematopoietic failure in the bone marrow, and development of extramedullary hematopoiesis, mainly in the spleen. The only potentially curative therapy for this disease is hematopoietic stem cell transplantation, an option that may be offered only to those patients with a compatible donor and with an age and functional status that may face its toxicity. By contrast, with the Philadelphia-positive MPNs that can be dramatically modified by inhibitors of the novel BCR-ABL fusion-protein generated by its genetic lesion, the identification of the molecular lesions that lead to the development of myelofibrosis has not yet translated into a treatment that can modify the natural history of the disease. Therefore, the cure of myelofibrosis remains an unmet clinical need. However, the excitement raised by the discovery of the genetic lesions has inspired additional studies aimed at elucidating the mechanisms driving these neoplasms towards their final stage. These studies have generated the feeling that the cure of myelofibrosis will require targeting both the malignant stem cell clone and its supportive microenvironment. We will summarize here some of the biochemical alterations recently identified in MPNs and the novel therapeutic approaches currently under investigation inspired by these discoveries.
Collapse
Affiliation(s)
- Zimran Eran
- Department of Hematology, Hadassah University Center, Jerusalem, Israel
| | - Maria Zingariello
- Unit of Microscopic and Ultrastructural Anatomy, Department of Medicine, University Campus Bio-Medico, Rome, Italy
| | - Maria Teresa Bochicchio
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (I.R.S.T.), IRCCS, Meldola (FC), Italy
| | - Claudio Bardelli
- Dipartimento di Scienze Biomediche e NeuroMotorie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Anna Rita Migliaccio
- Dipartimento di Scienze Biomediche e NeuroMotorie, Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| |
Collapse
|
9
|
Ling T, Crispino JD, Zingariello M, Martelli F, Migliaccio AR. GATA1 insufficiencies in primary myelofibrosis and other hematopoietic disorders: consequences for therapy. Expert Rev Hematol 2018; 11:169-184. [PMID: 29400094 PMCID: PMC6108178 DOI: 10.1080/17474086.2018.1436965] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION GATA1, the founding member of a family of transcription factors, plays important roles in the development of hematopoietic cells of several lineages. Although loss of GATA1 has been known to impair hematopoiesis in animal models for nearly 25 years, the link between GATA1 defects and human blood diseases has only recently been realized. Areas covered: Here the current understanding of the functions of GATA1 in normal hematopoiesis and how it is altered in disease is reviewed. GATA1 is indispensable mainly for erythroid and megakaryocyte differentiation. In erythroid cells, GATA1 regulates early stages of differentiation, and its deficiency results in apoptosis. In megakaryocytes, GATA1 controls terminal maturation and its deficiency induces proliferation. GATA1 alterations are often found in diseases involving these two lineages, such as congenital erythroid and/or megakaryocyte deficiencies, including Diamond Blackfan Anemia (DBA), and acquired neoplasms, such as acute megakaryocytic leukemia (AMKL) and the myeloproliferative neoplasms (MPNs). Expert commentary: Since the first discovery of GATA1 mutations in AMKL, the number of diseases that are associated with impaired GATA1 function has increased to include DBA and MPNs. With respect to the latter, we are only just now appreciating the link between enhanced JAK/STAT signaling, GATA1 deficiency and disease pathogenesis.
Collapse
Affiliation(s)
- Te Ling
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - John D. Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | | | - Fabrizio Martelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Roma, Italy
| | - Anna Rita Migliaccio
- Department of Biomedical and Neuromotorial Sciences, Alma Mater University, Bologna, Italy
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| |
Collapse
|
10
|
|
11
|
The thrombopoietin/MPL axis is activated in the Gata1 low mouse model of myelofibrosis and is associated with a defective RPS14 signature. Blood Cancer J 2017. [PMID: 28622305 PMCID: PMC5520398 DOI: 10.1038/bcj.2017.51] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Myelofibrosis (MF) is characterized by hyperactivation of thrombopoietin (TPO) signaling, which induces a RPS14 deficiency that de-regulates GATA1 in megakaryocytes by hampering its mRNA translation. As mice carrying the hypomorphic Gata1low mutation, which reduces the levels of Gata1 mRNA in megakaryocytes, develop MF, we investigated whether the TPO axis is hyperactive in this model. Gata1low mice contained two times more Tpo mRNA in liver and TPO in plasma than wild-type littermates. Furthermore, Gata1low LSKs expressed levels of Mpl mRNA (five times greater than normal) and protein (two times lower than normal) similar to those expressed by LSKs from TPO-treated wild-type mice. Gata1low marrow and spleen contained more JAK2/STAT5 than wild-type tissues, an indication that these organs were reach of TPO-responsive cells. Moreover, treatment of Gata1low mice with the JAK inhibitor ruxolitinib reduced their splenomegaly. Also in Gata1low mice activation of the TPO/MPL axis was associated with a RSP14 deficiency and a discordant microarray ribosome signature (reduced RPS24, RPS26 and SBDS expression). Finally, electron microscopy revealed that Gata1low megakaryocytes contained poorly developed endoplasmic reticulum with rare polysomes. In summary, Gata1low mice are a bona fide model of MF, which recapitulates the hyperactivation of the TPO/MPL/JAK2 axis observed in megakaryocytes from myelofibrotic patients.
Collapse
|
12
|
Lucero HA, Patterson S, Matsuura S, Ravid K. Quantitative histological image analyses of reticulin fibers in a myelofibrotic mouse. J Biol Methods 2016; 3. [PMID: 28008415 PMCID: PMC5172452 DOI: 10.14440/jbm.2016.152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bone marrow (BM) reticulin fibrosis (RF), revealed by silver staining of tissue sections, is associated with myeloproliferative neoplasms, while tools for quantitative assessment of reticulin deposition throughout a femur BM are still in need. Here, we present such a method, allowing via analysis of hundreds of composite images to identify a patchy nature of RF throughout the BM during disease progression in a mouse model of myelofibrosis. To this end, initial conversion of silver stained BM color images into binary images identified two limitations: variable color, owing to polychromatic staining of reticulin fibers, and variable background in different sections of the same batch, limiting application of the color deconvolution method, and use of constant threshold, respectively. By blind coding image identities, to allow for threshold input (still within a narrow range), and using shape filtering to further eliminate background we were able to quantitate RF in myelofibrotic Gata-1low (experimental) and wild type (control) mice as a function of animal age. Color images spanning the whole femur BM were batch-analyzed using ImageJ software, aided by our two newly added macros. The results show heterogeneous RF density in different areas of the marrow of Gata-1low mice, with degrees of heterogeneity reduced upon aging. This method can be applied uniformly across laboratories in studies assessing RF remodeling induced by aging or other conditions in animal models.
Collapse
Affiliation(s)
- Hector A Lucero
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Shenia Patterson
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Shinobu Matsuura
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Katya Ravid
- Departments of Medicine and Biochemistry, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
13
|
Spangrude GJ, Lewandowski D, Martelli F, Marra M, Zingariello M, Sancillo L, Rana RA, Migliaccio AR. P-Selectin Sustains Extramedullary Hematopoiesis in the Gata1 low Model of Myelofibrosis. Stem Cells 2015; 34:67-82. [PMID: 26439305 DOI: 10.1002/stem.2229] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/07/2015] [Accepted: 08/28/2015] [Indexed: 01/03/2023]
Abstract
Splenomegaly is a major manifestation of primary myelofibrosis (PMF) contributing to clinical symptoms and hematologic abnormalities. The spleen from PMF patients contains increased numbers of hematopoietic stem cells (HSC) and megakaryocytes (MK). These MK express high levels of P-selectin (P-sel) that, by triggering neutrophil emperipolesis, may cause TGF-β release and disease progression. This hypothesis was tested by deleting the P-sel gene in the myelofibrosis mouse model carrying the hypomorphic Gata1(low) mutation that induces megakaryocyte abnormalities that recapitulate those observed in PMF. P-sel(null) Gata1(low) mice survived splenectomy and lived 3 months longer than P-sel(WT) Gata1(low) littermates and expressed limited fibrosis and osteosclerosis in the marrow or splenomegaly. Furthermore, deletion of P-sel disrupted megakaryocyte/neutrophil interactions in spleen, reduced TGF-β content, and corrected the HSC distribution that in Gata1(low) mice, as in PMF patients, is abnormally expanded in spleen. Conversely, pharmacological inhibition of TGF-β reduced P-sel expression in MK and corrected HSC distribution. Spleens, but not marrow, of Gata1(low) mice contained numerous cKIT(pos) activated fibrocytes, probably of dendritic cell origin, whose membrane protrusions interacted with MK establishing niches hosting immature cKIT(pos) hematopoietic cells. These activated fibrocytes were not detected in spleens from P-sel(null) Gata1(low) or TGF-β-inhibited Gata1(low) littermates and were observed in spleen, but not in marrow, from PMF patients. Therefore, in Gata1(low) mice, and possibly in PMF, abnormal P-sel expression in MK may mediate the pathological cell interactions that increase TGF-β content in MK and favor establishment of a microenvironment that supports myelofibrosis-related HSC in spleen.
Collapse
Affiliation(s)
- Gerald J Spangrude
- Department of Medicine, Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, Utah, USA
| | | | - Fabrizio Martelli
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità
| | - Manuela Marra
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità
| | | | - Laura Sancillo
- Istituto Genetica Medica, Centro Nazionale Ricerche, and Medicine and Aging Sciences, Section of Human Momorphology, University G. D'Annunzio, Chieti, Italy
| | - Rosa Alba Rana
- Istituto Genetica Medica, Centro Nazionale Ricerche, and Medicine and Aging Sciences, Section of Human Momorphology, University G. D'Annunzio, Chieti, Italy
| | - Anna Rita Migliaccio
- Department of Biomedical Sciences, Alma Mater University, Bologna, Italy.,Tisch Cancer Institute, Mount Sinai School of Medicine, New York, New York, USA
| |
Collapse
|
14
|
Chiu SC, Liu HH, Chen CL, Chen PR, Liu MC, Lin SZ, Chang KT. Extramedullary hematopoiesis (EMH) in laboratory animals: offering an insight into stem cell research. Cell Transplant 2015; 24:349-66. [PMID: 25646951 DOI: 10.3727/096368915x686850] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extramedullary hematopoiesis (EMH) is a pathological process secondary to underlying bone marrow (BM) insufficiency in adults. It is characterized by the emergence of multipotent hematopoietic progenitors scattered around the affected tissue, most likely in the spleen, liver, and lymph node, etc. EMH in patients frequently receives less medical attention and is neglected unless a compressive or obstructive hematopoietic mass appears to endanger the patient's life. However, on a biological basis, EMH reflects the alteration of relationships among hematopoietic stem and progenitor cells (HSPCs) and their original and new microenvironments. The ability of hematopoietic stem cells (HSCs) to mobilize from the bone marrow and to accommodate and function in extramedullary tissues is rather complicated and far from our current understanding. Fortunately, many reports from the studies of drugs and genetics using animals have incidentally found EMH to be involved. Thereby, the molecular basis of EMH could further be elucidated from those animals after cross-comparison. A deeper understanding of the extramedullary hematopoietic niche could help expand stem cells in vitro and establish a better treatment in patients for stem cell transplantation.
Collapse
Affiliation(s)
- Shao-Chih Chiu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
15
|
Conditional inactivation of the mouse von Hippel–Lindau tumor suppressor gene results in wide-spread hyperplastic, inflammatory and fibrotic lesions in the kidney. Oncogene 2014; 34:2631-9. [DOI: 10.1038/onc.2014.197] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/30/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022]
|
16
|
Bartalucci N, Bogani C, Vannucchi AM. Preclinical models for drug selection in myeloproliferative neoplasms. Curr Hematol Malig Rep 2014; 8:317-24. [PMID: 24146202 DOI: 10.1007/s11899-013-0182-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The discovery that an abnormally activated JAK-STAT signaling pathway is central to the pathogenesis of myeloproliferative neoplasms has promoted the clinical development of small-molecule JAK2 inhibitors. These agents have shown remarkable efficacy in disease control, but do not induce molecular remission; on the other hand, interferon holds the promise to target the putative hematopoietic progenitor cell initiating the disease. The presence of additional molecular abnormalities indicates a high molecular complexity of myeloproliferative neoplasms, and the need for simultaneously targeting different targets. Several drugs are currently under study as single agents and in combination. This review briefly describes the several in vitro and in vivo models of myeloproliferative neoplasms that are being used as preclinical models for drug development.
Collapse
Affiliation(s)
- Niccolò Bartalucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | | |
Collapse
|
17
|
Varricchio L, Mancini A, Migliaccio AR. Pathological interactions between hematopoietic stem cells and their niche revealed by mouse models of primary myelofibrosis. Expert Rev Hematol 2014; 2:315-334. [PMID: 20352017 DOI: 10.1586/ehm.09.17] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Primary myelofibrosis (PMF) belongs to the Philadelphia-negative myeloproliferative neoplasms and is a hematological disorder caused by abnormal function of the hematopoietic stem cells. The disease manifests itself with a plethora of alterations, including anemia, splenomegaly and extramedullary hematopoiesis. Its hallmarks are progressive marrow fibrosis and atypical megakaryocytic hyperplasia, two distinctive features used to clinically monitor disease progression. In an attempt to investigate the role of abnormal megakaryocytopoiesis in the pathogenesis of PMF, several transgenic mouse models have been generated. These models are based either on mutations that interfere with the extrinsic (thrombopoietin and its receptor, MPL) and intrinsic (the GATA1 transcription factor) control of normal megakaryocytopoiesis, or on known genetic lesions associated with the human disease. Here we provide an up-to-date review on the insights into the pathobiology of human PMF achieved by studying these animal models, with particular emphasis on results obtained with Gata1(low) mice.
Collapse
Affiliation(s)
- Lilian Varricchio
- Department of Medicine, Division of Hematology/Oncology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1079, New York, NY 10029, USA Tel.: +1 212 241 6974
| | | | | |
Collapse
|
18
|
Characterization of the TGF-β1 signaling abnormalities in the Gata1low mouse model of myelofibrosis. Blood 2013; 121:3345-63. [PMID: 23462118 DOI: 10.1182/blood-2012-06-439661] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Primary myelofibrosis (PMF) is characterized by fibrosis, ineffective hematopoiesis in marrow, and hematopoiesis in extramedullary sites and is associated with abnormal megakaryocyte (MK) development and increased transforming growth factor (TGF)-β1 release. To clarify the role of TGF-β1 in the pathogenesis of this disease, the TGF-β1 signaling pathway of marrow and spleen of the Gata1(low) mouse model of myelofibrosis (MF) was profiled and the consequences of inhibition of TGF-β1 signaling on disease manifestations determined. The expression of 20 genes in marrow and 36 genes in spleen of Gata1(low) mice was altered. David-pathway analyses identified alterations of TGF-β1, Hedgehog, and p53 signaling in marrow and spleen and of mammalian target of rapamycin (mTOR) in spleen only and predicted that these alterations would induce consequences consistent with the Gata1(low) phenotype (increased apoptosis and G1 arrest both in marrow and spleen and increased osteoblast differentiation and reduced ubiquitin-mediated proteolysis in marrow only). Inhibition of TGF-β1 signaling normalized the expression of p53-related genes, restoring hematopoiesis and MK development and reducing fibrosis, neovascularization, and osteogenesis in marrow. It also normalized p53/mTOR/Hedgehog-related genes in spleen, reducing extramedullary hematopoiesis. These data identify altered expression signatures of TGF-β1 signaling that may be responsible for MF in Gata1(low) mice and may represent additional targets for therapeutic intervention in PMF.
Collapse
|
19
|
Verrucci M, Pancrazzi A, Aracil M, Martelli F, Guglielmelli P, Zingariello M, Ghinassi B, D'Amore E, Jimeno J, Vannucchi AM, Migliaccio AR. CXCR4-independent rescue of the myeloproliferative defect of the Gata1low myelofibrosis mouse model by Aplidin. J Cell Physiol 2010; 225:490-9. [PMID: 20458749 DOI: 10.1002/jcp.22228] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The discovery of JAK2 mutations in Philadelphia-negative myeloproliferative neoplasms has prompted investigators to evaluate mutation-targeted treatments to restore hematopoietic cell functions in these diseases. However, the results of the first clinical trials with JAK2 inhibitors are not as promising as expected, prompting a search for additional drugable targets to treat these disorders. In this paper, we used the hypomorphic Gata1(low) mouse model of primary myelofibrosis (PMF), the most severe of these neoplasms, to test the hypothesis that defective marrow hemopoiesis and development of extramedullary hematopoiesis in myelofibrosis is due to insufficient p27(Kip1) activity and is treatable by Aplidin, a cyclic depsipeptide that activates p27(Kip1) in several cancer cells. Aplidin restored expression of Gata1 and p27(Kip1) in Gata1(low) hematopoietic cells, proliferation of marrow progenitor cells in vitro and maturation of megakaryocytes in vivo (reducing TGF-beta/VEGF levels released in the microenvironment by immature Gata1(low) megakaryocytes). Microvessel density, fibrosis, bone growth, and marrow cellularity were normal in Aplidin-treated mice and extramedullary hematopoiesis did not develop in liver although CXCR4 expression in Gata1(low) progenitor cells remained low. These results indicate that Aplidin effectively alters the natural history of myelofibrosis in Gata1(low) mice and suggest this drug as candidate for clinical evaluation in PMF.
Collapse
Affiliation(s)
- Maria Verrucci
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Ghinassi B, Martelli F, Verrucci M, D'Amore E, Migliaccio G, Vannucchi AM, Hoffman R, Migliaccio AR. Evidence for organ-specific stem cell microenvironments. J Cell Physiol 2010; 223:460-70. [PMID: 20112287 DOI: 10.1002/jcp.22055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The X-linked Gata1(low) mutation in mice induces strain-restricted myeloproliferative disorders characterized by extramedullary hematopoiesis in spleen (CD1 and DBA/2) and liver (CD1 only). To assess the role of the microenvironment in establishing this myeloproliferative trait, progenitor cell compartments of spleen and marrow from wild-type and Gata1(low) mice were compared. Phenotype and clonal assay of non-fractionated cells indicated that Gata1(low) mice contain progenitor cell numbers 4-fold lower and 10-fold higher than normal in marrow and spleen, respectively. However, progenitor cells prospectively isolated from spleen, but not from marrow, of Gata1(low) mice expressed colony-forming function in vitro. Therefore, calculation of cloning activity of purified cells demonstrated that the total number of Gata1(low) progenitor cells was 10- to 100-fold lower than normal in marrow and >1,000 times higher than normal in spleen. This observation indicates that Gata1(low) hematopoiesis is favored by the spleen and is in agreement with our previous report that removal of this organ induces wild-type hematopoiesis in heterozygous Gata1(low/+) females (Migliaccio et al., 2009, Blood 114:2107). To clarify if rescue of wild-type hematopoiesis by splenectomy prevented extramedullary hematopoiesis in liver, marrow cytokine expression profile and liver histopathology of splenectomized Gata1(low/+) females were investigated. After splenectomy, the marrow expression levels of TGF-beta, VEGF, osteocalcin, PDGF-alpha, and SDF-1 remained abnormally high while Gata1(low) hematopoiesis was detectable in liver of both CD1 and DBA/2 mutants. Therefore, in the absence of the spleen, Gata1(low) hematopoiesis is supported by the liver suggesting that treatment of myelofibrosis in these animals requires the rescue of both stem cell and microenvironmental functions.
Collapse
Affiliation(s)
- Barbara Ghinassi
- Department of Medicine, Tish Cancer Institute, Mount Sinai School of Medicine, The Myeloproliferative Disease Consortium, New York, New York 10029, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kozma GT, Martelli F, Verrucci M, Gutiérrez L, Migliaccio G, Sanchez M, Alfani E, Philipsen S, Migliaccio AR. Dynamic regulation of Gata1 expression during the maturation of conventional dendritic cells. Exp Hematol 2010; 38:489-503.e1. [PMID: 20303380 DOI: 10.1016/j.exphem.2010.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To identify the regulatory sequences driving Gata1 expression in conventional dendritic cells (cDC). MATERIALS AND METHODS The number and expression levels of Gata1, Gata1-target genes and hypersensitive site (HS) 2 (the eosinophil-specific enhancer)-driven green fluorescent protein (GFP) reporter of cDCs from mice lacking HS1 (the erythroid/megakaryocytic-specific enhancer, Gata1(low) mutation) and wild-type littermates, as well as the response to lipopolysaccharide of ex vivo-generated wild-type and Gata1(low) DCs were investigated. RESULTS cDC maturation was associated with bell-shaped changes in Gata1 expression that peaked in cDCs precursors from blood. The Gata1(low) mutation did not affect Gata1 expression in cDC precursors and these cells expressed the HS2-driven reporter, indicating that Gata1 expression is HS2-driven in these cells. By contrast, the Gata1(low) mutation reduced Gata1 expression in mature cDCs and these cells did not express GFP, indicating that mature cDCs express Gata1 driven by HS1. In blood, the number of cDC precursors expressing CD40/CD80 was reduced in Gata1(low) mice, while CD40(pos)/CD80(pos) cDC precursors from wild-type mice expressed the HS2-GFP reporter, suggesting that Gata1 expression in these cells is both HS1- and HS2-driven. In addition, the antigen and accessory molecules presentation process induced by lipopolysaccharide in ex vivo-generated wild-type DC was associated with increased acetylated histone 4 occupancy of HS1, while ex vivo-generated Gata1(low) cDCs failed to respond to lipopolysaccharide, suggesting that HS1 activation is required for cDC maturation. CONCLUSION These results identify a dynamic pattern of Gata1 regulation that switches from an HS1 to an HS2-dependent phase during the maturation of cDCs associated with the antigen-presentation process in the blood.
Collapse
Affiliation(s)
- Gergely T Kozma
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
DeMambro VE, Kawai M, Clemens TL, Fulzele K, Maynard JA, Marín de Evsikova C, Johnson KR, Canalis E, Beamer WG, Rosen CJ, Donahue LR. A novel spontaneous mutation of Irs1 in mice results in hyperinsulinemia, reduced growth, low bone mass and impaired adipogenesis. J Endocrinol 2010; 204:241-53. [PMID: 20032200 PMCID: PMC3033737 DOI: 10.1677/joe-09-0328] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A spontaneous mouse mutant, designated 'small' (sml), was recognized by reduced body size suggesting a defect in the IGF1/GH axis. The mutation was mapped to the chromosome 1 region containing Irs1, a viable candidate gene whose sequence revealed a single nucleotide deletion resulting in a premature stop codon. Despite normal mRNA levels in mutant and control littermate livers, western blot analysis revealed no detectable protein in mutant liver lysates. When compared with the control littermates, Irs1(sml)/Irs1(sml) (Irs1(sml/sml)) mice were small, lean, hearing impaired; had 20% less serum IGF1; were hyperinsulinemic; and were mildly insulin resistant. Irs1(sml/sml) mice had low bone mineral density, reduced trabecular and cortical thicknesses, and low bone formation rates, while osteoblast and osteoclast numbers were increased in the females but not different in the males compared with the Irs1(+/+) controls. In vitro, Irs1(sml/sml) bone marrow stromal cell cultures showed decreased alkaline phosphatase-positive colony forming units (pre-osteoblasts; CFU-AP+) and normal numbers of tartrate-resistant acid phosphatase-positive osteoclasts. Irs1(sml/sml) stromal cells treated with IGF1 exhibited a 50% decrease in AKT phosphorylation, indicative of defective downstream signaling. Similarities between engineered knockouts and the spontaneous mutation of Irs1(sml) were identified as well as significant differences with respect to heterozygosity and gender. In sum, we have identified a spontaneous mutation in the Irs1 gene associated with a major skeletal phenotype. Changes in the heterozygous Irs1(+)(/sml) mice raise the possibility that similar mutations in humans are associated with short stature or osteoporosis.
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW Red blood cells (RBCs) transfusion plays a critical role in numerous therapies. Disruption of blood collection by political unrest, natural disasters and emerging infections and implementation of restrictions on the use of erythropoiesis-stimulating agents in cancer may impact blood availability in the near future. These considerations highlight the importance of developing alternative blood products. RECENT FINDINGS Knowledge about the processes that control RBC production has been applied to the establishment of culture conditions allowing ex-vivo generation of RBCs in numbers close to those (2.5 x 10 cells/ml) present in a transfusion, from cord blood, donated blood units or embryonic stem cells. In addition, experimental studies demonstrate that such cells protect mice from lethal bleeding. Therefore, erythroid cells generated ex vivo may be suitable for transfusion provided they can be produced safely in adequate numbers. However, much remains to be done to translate a theoretical production of approximately 2.5 x 10 RBCs in the laboratory into a 'clinical grade production process'. SUMMARY This review summarizes the state-of-the-art in establishing ex-vivo culture conditions for erythroid cells and discusses the most compelling issues to be addressed to translate this progress into a clinical grade transfusion product.
Collapse
|
24
|
Gata1 expression driven by the alternative HS2 enhancer in the spleen rescues the hematopoietic failure induced by the hypomorphic Gata1low mutation. Blood 2009; 114:2107-20. [PMID: 19571316 DOI: 10.1182/blood-2009-03-211680] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rigorously defined reconstitution assays developed in recent years have allowed recognition of the delicate relationship that exists between hematopoietic stem cells and their niches. This balance ensures that hematopoiesis occurs in the marrow under steady-state conditions. However, during development, recovery from hematopoietic stress and in myeloproliferative disorders, hematopoiesis occurs in extramedullary sites whose microenvironments are still poorly defined. The hypomorphic Gata1(low) mutation deletes the regulatory sequences of the gene necessary for its expression in hematopoietic cells generated in the marrow. By analyzing the mechanism that rescues hematopoiesis in mice carrying this mutation, we provide evidence that extramedullary microenvironments sustain maturation of stem cells that would be otherwise incapable of maturing in the marrow.
Collapse
|
25
|
Abe K, Shimizu R, Pan X, Hamada H, Yoshikawa H, Yamamoto M. Stem cells of GATA1-related leukemia undergo pernicious changes after 5-fluorouracil treatment. Exp Hematol 2009; 37:435-445.e1. [PMID: 19302918 DOI: 10.1016/j.exphem.2008.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 11/25/2008] [Accepted: 12/18/2008] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Transcription factor GATA1 plays a critical role in erythropoiesis through the integrated regulation of cell proliferation, differentiation, and apoptosis. In Gata1.05 gene knockdown mice, Gata1 expression deteriorates to 5% of wild-type allelic expression, a level insufficient for supporting normal erythropoiesis and one that leads to accumulation of erythroid progenitors that are readily transformed into erythroblastic leukemia. Serial engraftment of leukemic cells into primary or subsequent nude mice reconstituted complete leukemic phenotype in recipient. To delineate characteristics of leukemic stem cells (LSCs), we analyzed LSCs of Gata1.05 leukemia, which have a potential to reestablish leukemia in mice. MATERIALS AND METHODS Leukemic cells isolated from the first recipient mice of Gata1.05 leukemia cells were divided into two fractions using Hoechst dye. Fractionated cells were transplanted into second recipient, or analyzed gene expression profiles and cell-cycle status. Consequences of 5-fluorouracil (5-FU) treatment on leukemic cells in vivo were studied. RESULTS LSCs were enriched in the Hoechst dye-excluded side population (SP), and leukemic cells in the SP population (LSP cells) were morphologically and immunophenotypically indistinguishable from other leukemic cells. However, expression of hematopoietic stem cell (HSC)-related genes was upregulated in the LSP cells. In cell-cycle analyses, LSP cells were quiescent like HSCs, but reentry into the cell cycle was stimulated by 5-FU treatment. Nonetheless, 5-FU treatment established a point of newly adjusted equilibrium in the LSP cells and the cells never recovered to their previous quiescent state. CONCLUSION Based on this observation, distinct self-renewal regulatory mechanisms in LSCs may be considered as one of the causes of worsening of the features of leukemia after injury and relapse.
Collapse
Affiliation(s)
- Kanako Abe
- Graduate School of Comprehensive Human Sciences and Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Down syndrome (DS) persons are born with various hematopoietic abnormalities, ranging from relatively benign, such as neutrophilia and macrocytosis, to a more severe transient myeloproliferative disorder (TMD). In most cases, these abnormalities resolve in the first few months to years of life. However, sometimes the TMD represents a premalignant disease that develops into acute megakaryocytic leukemia (AMKL), usually in association with acquired GATA1 mutations. To gain insight into the mechanisms responsible for these abnormalities, we analyzed the hematopoietic development of the Ts1Cje mouse model of DS. Our analyses identified defects in mature blood cells, including macrocytosis and anemia, as well as abnormalities in fetal liver and bone marrow stem and progenitor cell function. Despite these defects, the Ts1Cje mice do not develop disease resembling either TMD or AMKL, and this was not altered by a loss of function allele of Gata1. Thus, loss of Gata1 and partial trisomy of chromosome 21 orthologs, when combined, do not appear to be sufficient to induce TMD or AMKL-like phenotypes in mice.
Collapse
|
27
|
Altered SDF-1/CXCR4 axis in patients with primary myelofibrosis and in the Gata1 low mouse model of the disease. Exp Hematol 2008; 36:158-71. [PMID: 18206727 DOI: 10.1016/j.exphem.2007.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/08/2007] [Accepted: 10/12/2007] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To assess whether alterations in the stromal cell-derived factor-1 (SDF-1)/CXCR4 occur in patients with primary myelofibrosis (PMF) and in Gata1 low mice, an animal model for myelofibrosis, and whether these abnormalities might account for increased stem/progenitor cell trafficking. MATERIALS AND METHODS In the mouse, SDF-1 mRNA levels were assayed in liver, spleen, and marrow. SDF-1 protein levels were quantified in plasma and marrow and CXCR4 mRNA and protein levels were evaluated on stem/progenitor cells and megakaryocytes purified from the marrow. SDF-1 protein levels were also evaluated in plasma and in marrow biopsy specimens obtained from normal donors and PMF patients. RESULTS In Gata1 low mice, the plasma SDF-1 protein was five times higher than normal in younger animals. Furthermore, SDF-1 immunostaining of marrow sections progressively increased with age. Similar abnormalities were observed in PMF patients. In fact, plasma SDF-1 levels in PMF patients were significantly higher (by twofold) than normal (p < 0.01) and SDF-1 immunostaining of marrow biopsy specimens demonstrated increased SDF-1 deposition in specific areas. In two of the patients, SDF-1 deposition was normalized by curative therapy with allogenic stem cell transplantation. Similar to what already has been reported for PMF patients, the marrow from Gata1 low mice contained fewer CXCR4 pos CD117 pos cells and these cells expressed low levels of CXCR4 mRNA and protein. CONCLUSION Similar abnormalities in the SDF-1/CXCR4 axis are observed in PMF patients and in the Gata1 low mice model of myelofibrosis. We suggest that these abnormalities contribute to the increased stem/progenitor cell trafficking observed in this mouse model as well as patients with PMF.
Collapse
|
28
|
Migliaccio AR, Rana RA, Vannucchi AM, Manzoli FA. Role of thrombopoietin in mast cell differentiation. Ann N Y Acad Sci 2007; 1106:152-74. [PMID: 17468237 DOI: 10.1196/annals.1392.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mast cells are important elements of the body response to foreign antigens, being those represented either by small molecules (allergic response) or harbored by foreign microorganisms (response to parasite infection). These cells derive from hematopoietic stem/progenitor cells present in the marrow. However, in contrast with most of the other hematopoietic lineages, mast cells do not differentiate in the marrow but in highly vascularized extramedullary sites, such as the skin or the gut. Mast cell differentiation in the marrow is activated as part of the body response to parasites. We will review here the mast cell differentiation pathway and what is known of its major intrinsic and extrinsic control mechanisms. It will also be described that thrombopoietin, the ligand for the Mpl receptor, in addition to its pivotal rule in the control of thrombocytopoiesis and of hematopoietic stem/progenitor cell proliferation, exerts a regulatory function in mast cell differentiation. Some of the possible implications of this newly described biological activity of thrombopoietin will be discussed.
Collapse
Affiliation(s)
- Anna Rita Migliaccio
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | | | | | | |
Collapse
|
29
|
Ghinassi B, Sanchez M, Martelli F, Amabile G, Vannucchi AM, Migliaccio G, Orkin SH, Migliaccio AR. The hypomorphic Gata1low mutation alters the proliferation/differentiation potential of the common megakaryocytic-erythroid progenitor. Blood 2006; 109:1460-71. [PMID: 17038527 PMCID: PMC1794062 DOI: 10.1182/blood-2006-07-030726] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Recent evidence suggests that mutations in the Gata1 gene may alter the proliferation/differentiation potential of hemopoietic progenitors. By single-cell cloning and sequential replating experiments of prospectively isolated progenitor cells, we demonstrate here that the hypomorphic Gata1low mutation increases the proliferation potential of a unique class of progenitor cells, similar in phenotype to adult common erythroid/megakaryocytic progenitors (MEPs), but with the "unique" capacity to generate erythroblasts, megakaryocytes, and mast cells in vitro. Conversely, progenitor cells phenotypically similar to mast cell progenitors (MCPs) are not detectable in the marrow from these mutants. At the single-cell level, about 11% of Gata1low progenitor cells, including MEPs, generate cells that will continue to proliferate in cultures for up to 4 months. In agreement with these results, trilineage (erythroid, megakaryocytic, and mastocytic) cell lines are consistently isolated from bone marrow and spleen cells of Gata1low mice. These results confirm the crucial role played by Gata1 in hematopoietic commitment and identify, as a new target for the Gata1 action, the restriction point at which common myeloid progenitors become either MEPs or MCPs.
Collapse
Affiliation(s)
- Barbara Ghinassi
- Department of Hematology, Oncology, and Molecular Medicine, Istituto Superiore Sanità, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|