1
|
Boiko JR, Hill GR. Chronic Graft-versus-host Disease: Immune Insights, Therapeutic Advances, and Parallels for Solid Organ Transplantation. Transplantation 2024:00007890-990000000-00959. [PMID: 39682018 DOI: 10.1097/tp.0000000000005298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Chronic graft-versus-host disease remains a frequent and morbid outcome of allogeneic hematopoietic cell transplantation, in which the donor-derived immune system attacks healthy recipient tissue. Preceding tissue damage mediated by chemoradiotherapy and alloreactive T cells compromise central and peripheral tolerance mechanisms, leading to aberrant donor T cell and germinal center B cell differentiation, culminating in pathogenic macrophage infiltration and differentiation in a target tissue, with ensuant fibrosis. This process results in a heterogeneous clinical syndrome with significant morbidity and mortality, frequently requiring prolonged therapy. In this review, we discuss the processes that interrupt immune tolerance, the subsequent clinical manifestations, and new Food and Drug Administration-approved therapeutic approaches that have been born from a greater understanding of disease pathogenesis in preclinical systems, linking to parallel processes following solid organ transplantation.
Collapse
Affiliation(s)
- Julie R Boiko
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| | - Geoffrey R Hill
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
2
|
Najaf Khosravi H, Razi S, Rezaei N. The role of interleukin-2 in graft-versus-host disease pathogenesis, prevention and therapy. Cytokine 2024; 183:156723. [PMID: 39173281 DOI: 10.1016/j.cyto.2024.156723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
Graft-versus-host disease (GVHD) is a significant complication following allogeneic hematopoietic cell transplantation (allo-HCT), posing substantial risks to patient survival. In the late follow-up phase of transplanted patients, GVHD is also a major cause of morbidity and disability, mostly due to low response to first-line steroids and the lack of effective standard therapies in the second line. This review provides a description of GVHD pathogenesis, with a focus on the central role of Interleukin-2 (IL-2). IL-2 is one of the critical mediators in the complex pathogenesis of GVHD, contributing to the intricate balance between regulatory T cells (Tregs) and effector T cells (Teffs). Due to this pivotal role, several studies investigate the potential of IL-2 as a therapeutic option for GVHD management. We discuss the outcomes of low-dose IL-2 therapies and their impact on Treg proliferation and steroid dependency reduction. Additionally, the effects of combining IL-2 with other treatments, such as extracorporeal photopheresis (ECP) and Treg-enriched lymphocyte infusions, are highlighted. Novel approaches, including modified IL-2 complexes and IL-2 receptor blockade, are explored for their potential in selectively enhancing Treg function and limiting Teff activation. The evolving understanding of IL-2's pivotal role in immune regulation presents promising prospects for applying treatment and prevention strategies for GVHD.
Collapse
Affiliation(s)
- Hila Najaf Khosravi
- Royan Institute for Stem Cell Biology and Technology, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sepideh Razi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
3
|
Braidotti S, Granzotto M, Curci D, Faganel Kotnik B, Maximova N. Advancing Allogeneic Hematopoietic Stem Cell Transplantation Outcomes through Immunotherapy: A Comprehensive Review of Optimizing Non-CAR Donor T-Lymphocyte Infusion Strategies. Biomedicines 2024; 12:1853. [PMID: 39200317 PMCID: PMC11351482 DOI: 10.3390/biomedicines12081853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/07/2024] [Accepted: 08/11/2024] [Indexed: 09/02/2024] Open
Abstract
Optimized use of prophylactic or therapeutic donor lymphocyte infusions (DLI) is aimed at improving clinical outcomes in patients with malignant and non-malignant hematological diseases who have undergone allogeneic hematopoietic stem cell transplantation (allo-HSCT). Memory T-lymphocytes (CD45RA-/CD45RO+) play a crucial role in immune reconstitution post-HSCT. The infusion of memory T cells is proven to be safe and effective in improving outcomes due to the enhanced reconstitution of immunity and increased protection against viremia, without exacerbating graft-versus-host disease (GVHD) risks. Studies indicate their persistence and efficacy in combating viral pathogens, suggesting a viable therapeutic avenue for patients. Conversely, using virus-specific T cells for viremia control presents challenges, such as regulatory hurdles, cost, and production time compared to CD45RA-memory T lymphocytes. Additionally, the modulation of regulatory T cells (Tregs) for therapeutic use has become an important area of investigation in GVHD, playing a pivotal role in immune tolerance modulation, potentially mitigating GVHD and reducing pharmacological immunosuppression requirements. Finally, donor T cell-mediated graft-versus-leukemia immune responses hold promise in curbing relapse rates post-HSCT, providing a multifaceted approach to therapeutic intervention in high-risk disease scenarios. This comprehensive review underscores the multifaceted roles of T lymphocytes in HSCT outcomes and identifies avenues for further research and clinical application.
Collapse
Affiliation(s)
- Stefania Braidotti
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Marilena Granzotto
- Azienda Sanitaria Universitaria Giuliano Isontina (ASU GI), 34125 Trieste, Italy;
| | - Debora Curci
- Advanced Translational Diagnostic Laboratory, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Barbara Faganel Kotnik
- Department of Hematology and Oncology, University Children’s Hospital, 1000 Ljubljana, Slovenia;
| | - Natalia Maximova
- Department of Pediatrics, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| |
Collapse
|
4
|
Kielsen K, Møller DL, Pedersen AE, Nielsen CH, Ifversen M, Ryder LP, Müller K. Cytomegalovirus infection is associated with thymic dysfunction and chronic graft-versus-host disease after pediatric hematopoietic stem cell transplantation. Clin Immunol 2024; 265:110302. [PMID: 38942161 DOI: 10.1016/j.clim.2024.110302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Pediatric hematopoietic stem cell transplantation (HSCT) is challenged by chronic graft-versus-host disease (cGvHD) significantly affecting survival and long-term morbidity, but underlying mechanisms including the impact of post-HSCT CMV infection are sparsely studied. We first investigated the impact of CMV infection for development of cGvHD in 322 children undergoing standard myeloablative HSCT between 2000 and 2018. Clinically significant CMV infection (n = 61) was an independent risk factor for chronic GvHD in a multivariable Cox regression analysis (HR = 2.17, 95% CI = 1.18-3.97, P = 0.013). We next explored the underlying mechanisms in a subcohort of 39 children. CMV infection was followed by reduced concentration of recent thymic emigrants (17.5 vs. 51.9 × 106/L, P = 0.048) and naïve CD4+ and CD8+ T cells at 6 months post-HSCT (all P < 0.05). Furthermore, CD25highFOXP3+ Tregs tended to be lower in patients with CMV infection (2.9 vs. 9.6 × 106/L, P = 0.055), including Tregs expressing the naivety markers CD45RA and Helios. CD8+ T-cell numbers rose after CMV infection and was dominated by exhausted PD1-expressing cells (66% vs. 39%, P = 0.023). These findings indicate that post-HSCT CMV infection is a main risk factor for development of chronic GvHD after pediatric HSCT and suggest that this effect is caused by reduced thymic function with a persistently impaired production of naïve and regulatory T cells in combination with increased peripheral T-cell exhaustion.
Collapse
Affiliation(s)
- Katrine Kielsen
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Departmen of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.
| | - Dina Leth Møller
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Claus Henrik Nielsen
- Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Department of Odontology, University of Copenhagen, Copenhagen, Denmark
| | - Marianne Ifversen
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lars Peter Ryder
- Departmen of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Klaus Müller
- Hematopoietic Stem Cell Transplantation and Primary Immune Deficiency, Department of Pediatric and Adolescent Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute for Inflammation Research, Department of Rheumatology and Spine Disease, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Kuroiwa K, Sato M, Narita H, Okamura R, Uesugi Y, Sasaki Y, Shimada S, Watanuki M, Fujiwara S, Kawaguchi Y, Arai N, Yanagisawa K, Iezumi K, Hattori N. Influence of FOXP3 single-nucleotide polymorphism after allogeneic hematopoietic stem cell transplantation. Int J Hematol 2024; 119:583-591. [PMID: 38418747 DOI: 10.1007/s12185-024-03726-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
The impact of FOXP3 single-nucleotide polymorphisms (SNP) on clinical outcomes after allogeneic hematopoietic stem cell transplantation (allo-HSCT) remains poorly understood. We investigated the relationship between a FOXP3 SNP (rs3761548) and clinical outcomes in 91 patients with hematological malignancies after allo-HSCT. Multivariate analysis showed that risk of severe chronic graft-versus-host disease (cGVHD) was significantly higher in patients with the FOXP3-3279C/A or FOXP3-3279A/A genotype than those with the FOXP3-3279C/C genotype [hazard ratio (HR), 2.69; 95% confidence interval (CI) 1.14-6.31; p = 0.023]. Therefore, FOXP3 at SNP rs3761548 can be a useful marker for predicting the occurrence of severe cGVHD.
Collapse
Affiliation(s)
- Kai Kuroiwa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Misuzu Sato
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Hinako Narita
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Reiko Okamura
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yuka Uesugi
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yohei Sasaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Shotaro Shimada
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Megumi Watanuki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Shun Fujiwara
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Yukiko Kawaguchi
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Nana Arai
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Kouji Yanagisawa
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan
| | - Keiichi Iezumi
- Department of Pathology and Laboratory Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Norimichi Hattori
- Division of Hematology, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo, 142-8666, Japan.
| |
Collapse
|
6
|
Pacini CP, Soares MVD, Lacerda JF. The impact of regulatory T cells on the graft-versus-leukemia effect. Front Immunol 2024; 15:1339318. [PMID: 38711496 PMCID: PMC11070504 DOI: 10.3389/fimmu.2024.1339318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is the only curative therapy for many hematologic malignancies, whereby the Graft-versus-Leukemia (GVL) effect plays a pivotal role in controlling relapse. However, the success of GVL is hindered by Graft-versus-Host Disease (GVHD), where donor T cells attack healthy tissues in the recipient. The ability of natural regulatory T cells (Treg) to suppress immune responses has been exploited as a therapeutical option against GVHD. Still, it is crucial to evaluate if the ability of Treg to suppress GVHD does not compromise the benefits of GVL. Initial studies in animal models suggest that Treg can attenuate GVHD while preserving GVL, but results vary according to tumor type. Human trials using Treg as GVHD prophylaxis or treatment show promising results, emphasizing the importance of infusion timing and Treg/Tcon ratios. In this review, we discuss strategies that can be used aiming to enhance GVL post-Treg infusion and the proposed mechanisms for the maintenance of the GVL effect upon the adoptive Treg transfer. In order to optimize the therapeutic outcomes of Treg administration in allo-HSCT, future efforts should focus on refining Treg sources for infusion and evaluating their specificity for antigens mediating GVHD while preserving GVL responses.
Collapse
Affiliation(s)
- Carolina P. Pacini
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria V. D. Soares
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João F. Lacerda
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, ULS Santa Maria, Lisbon, Portugal
| |
Collapse
|
7
|
Maurer K, Antin JH. The graft versus leukemia effect: donor lymphocyte infusions and cellular therapy. Front Immunol 2024; 15:1328858. [PMID: 38558819 PMCID: PMC10978651 DOI: 10.3389/fimmu.2024.1328858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a potentially curative therapy for many hematologic malignancies as well as non-malignant conditions. Part of the curative basis underlying HSCT for hematologic malignancies relies upon induction of the graft versus leukemia (GVL) effect in which donor immune cells recognize and eliminate residual malignant cells within the recipient, thereby maintaining remission. GVL is a clinically evident phenomenon; however, specific cell types responsible for inducing this effect and molecular mechanisms involved remain largely undefined. One of the best examples of GVL is observed after donor lymphocyte infusions (DLI), an established therapy for relapsed disease or incipient/anticipated relapse. DLI involves infusion of peripheral blood lymphocytes from the original HSCT donor into the recipient. Sustained remission can be observed in 20-80% of patients treated with DLI depending upon the underlying disease and the intrinsic burden of targeted cells. In this review, we will discuss current knowledge about mechanisms of GVL after DLI, experimental strategies for augmenting GVL by manipulation of DLI (e.g. neoantigen vaccination, specific cell type selection/depletion) and research outlook for improving DLI and cellular immunotherapies for hematologic malignancies through better molecular definition of the GVL effect.
Collapse
Affiliation(s)
| | - Joseph H. Antin
- Division of Hematologic Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
8
|
Salhotra A, Falk L, Park G, Sandhu K, Ali H, Modi B, Hui S, Nakamura R. A review of low dose interleukin-2 therapy in management of chronic graft-versus-host-disease. Expert Rev Clin Immunol 2024; 20:169-184. [PMID: 37921226 DOI: 10.1080/1744666x.2023.2279188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Patients with chronic graft versus host disease (cGVHD) have low circulating regulatory T cells (Tregs). Interleukin-2(IL-2) is a growth factor for Tregs, and clinical trials have explored its use in cGVHD patients. AREAS COVERED Here we will discuss the biology of IL-2, its rationale for use and results of clinical trials in cGVHD. We also describe its mechanisms of action and alteration in gene expression in T-cell subsets after treatment with low dose IL-2 and photopheresis. EXPERT OPINION Clinical trials using Low dose IL-2 have been done at single centers in small patient series. The majority of the clinical responses seen with IL-2 in cGVHD are classified as partial responses and efficacy as a single agent is limited. Compared to currently approved oral therapies, it has to be administered subcutaneously and requires specialized processing for compounding and storage limiting its widespread use. Its use is associated with constitutional symptoms and local injection site reactions. Local reactions can be easily managed by supportive care practices like rotation of injection sites and premeditations, constitutional symptoms resolve with, dose reduction (25-50%) allowing for continued therapy. Additional studies are needed to define optimal combination strategies with approved agents. Longer acting formulations of IL-2 that require less frequent dosing may also improve patient compliance.
Collapse
Affiliation(s)
- Amandeep Salhotra
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, USA
| | - Leah Falk
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, USA
| | - Gabriel Park
- Department of Pharmacy, City of Hope National Medical Center, Duarte, CA, USA
| | - Karamjeet Sandhu
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, USA
| | - Haris Ali
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, USA
| | - Badri Modi
- Department of Surgery, Division of Dermatology, City of Hope National Medical Center, Duarte, CA, USA
| | - Susanta Hui
- Department of Radiation Oncology, City of Hope Medical Center, Duarte, CA, USA
| | - Ryotaro Nakamura
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, USA
| |
Collapse
|
9
|
Avni B, Neiman D, Shaked E, Gal-Rosenberg O, Grisariu S, Kuzli M, Avni I, Fracchia A, Stepensky P, Zuckerman T, Lev-Sagie A, Fox-Fisher I, Piyanzin S, Moss J, Salpeter SJ, Glaser B, Shemer R, Dor Y. Chronic graft-versus-host disease detected by tissue-specific cell-free DNA methylation biomarkers. J Clin Invest 2024; 134:e163541. [PMID: 37971879 PMCID: PMC10786696 DOI: 10.1172/jci163541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Accurate detection of graft-versus-host disease (GVHD) is a major challenge in the management of patients undergoing hematopoietic stem cell transplantation (HCT). Here, we demonstrated the use of circulating cell-free DNA (cfDNA) for detection of tissue turnover and chronic GVHD (cGVHD) in specific organs. METHODS We established a cocktail of tissue-specific DNA methylation markers and used it to determine the concentration of cfDNA molecules derived from the liver, skin, lungs, colon, and specific immune cells in 101 patients undergoing HCT. RESULTS Patients with active cGVHD showed elevated concentrations of cfDNA, as well as tissue-specific methylation markers that agreed with clinical scores. Strikingly, transplanted patients with no clinical symptoms had abnormally high levels of tissue-specific markers, suggesting hidden tissue turnover even in the absence of evident clinical pathology. An integrative model taking into account total cfDNA concentration, monocyte/macrophage cfDNA levels and alanine transaminase was able to correctly identify GVHD with a specificity of 86% and precision of 89% (AUC of 0.8). CONCLUSION cfDNA markers can be used for the detection of cGVHD, opening a window into underlying tissue dynamics in patients that receive allogeneic stem cell transplants. FUNDING This work was supported by grants from the Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine, The Israel Science Foundation, the Waldholtz/Pakula family, the Robert M. and Marilyn Sternberg Family Charitable Foundation and the Helmsley Charitable Trust (to YD).
Collapse
Affiliation(s)
- Batia Avni
- Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah University Medical Center and Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Daniel Neiman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Elior Shaked
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ofer Gal-Rosenberg
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Sigal Grisariu
- Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah University Medical Center and Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Mona Kuzli
- Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah University Medical Center and Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Ilai Avni
- Faculty of Data and Decision Sciences, Institute of Technology — Technion, Haifa, Israel
| | - Andrea Fracchia
- Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah University Medical Center and Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Polina Stepensky
- Bone Marrow Transplantation and Cancer Immunotherapy Department, Hadassah University Medical Center and Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Tsila Zuckerman
- Hematology Institute and Bone Marrow Transplantation, Rambam Health Care Campus, Haifa, Israel
| | - Ahinoam Lev-Sagie
- Department of Obstetrics and Gynecology, Hadassah University Medical Center and Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Ilana Fox-Fisher
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Sheina Piyanzin
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Joshua Moss
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Seth J. Salpeter
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah University Medical Center and Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, the Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
10
|
Baumrin E, Loren AW, Falk SJ, Mays JW, Cowen EW. Chronic graft-versus-host disease. Part I: Epidemiology, pathogenesis, and clinical manifestations. J Am Acad Dermatol 2024; 90:1-16. [PMID: 36572065 PMCID: PMC10287844 DOI: 10.1016/j.jaad.2022.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Chronic graft-versus-host disease is a major complication of allogeneic hematopoietic cell transplantation and a leading cause of long-term morbidity, nonrelapse mortality, and impaired health-related quality of life. The skin is commonly affected and presents heterogeneously, making the role of dermatologists critical in both diagnosis and treatment. In addition, new clinical classification and grading schemes inform treatment algorithms, which now include 3 U.S. Food and Drug Administration-approved therapies, and evolving transplant techniques are changing disease epidemiology. Part I reviews the epidemiology, pathogenesis, clinical manifestations, and diagnosis of chronic graft-versus-host disease. Part II discusses disease grading and therapeutic management.
Collapse
Affiliation(s)
- Emily Baumrin
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Alison W Loren
- Blood and Marrow Transplant, Cell Therapy and Transplant Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Hematology/Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sandy J Falk
- Adult Survivorship Program, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jacqueline W Mays
- Oral Immunobiology Unit, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
11
|
Hong J, Fraebel J, Yang Y, Tkacyk E, Kitko C, Kim TK. Understanding and treatment of cutaneous graft-versus-host-disease. Bone Marrow Transplant 2023; 58:1298-1313. [PMID: 37730800 PMCID: PMC11759061 DOI: 10.1038/s41409-023-02109-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/22/2023]
Abstract
The skin is the outermost mechanical barrier where dynamic immune reactions take place and is the most commonly affected site in both acute and chronic graft-versus-host disease (GVHD). If not properly treated, pain and pruritis resulting from cutaneous GVHD can increase the risk of secondary infection due to erosions, ulcerations, and damage of underlying tissues. Furthermore, resulting disfiguration can cause distress and significantly impact patients' quality of life. Thus, a deeper understanding of skin-specific findings of GVHD is needed. This review will highlight some promising results of recent pre-clinical studies on the pathophysiology of skin GVHD and summarize the diagnostic and staging/grading procedures according to the clinical manifestations of skin GVHD. In addition, we will summarize outcomes of various GVHD treatments, including skin-specific response rates.
Collapse
Affiliation(s)
- Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Johnathan Fraebel
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yenny Yang
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric Tkacyk
- Veterans Affairs Tennessee Valley Health Care, Nashville, TN, USA
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carrie Kitko
- Monroe Carell Jr Children's Hospital, Vanderbilt Division of Pediatric Hematology-Oncology, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Health Care, Nashville, TN, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
12
|
Buxbaum NP, Socié G, Hill GR, MacDonald KPA, Tkachev V, Teshima T, Lee SJ, Ritz J, Sarantopoulos S, Luznik L, Zeng D, Paczesny S, Martin PJ, Pavletic SZ, Schultz KR, Blazar BR. Chronic GvHD NIH Consensus Project Biology Task Force: evolving path to personalized treatment of chronic GvHD. Blood Adv 2023; 7:4886-4902. [PMID: 36322878 PMCID: PMC10463203 DOI: 10.1182/bloodadvances.2022007611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023] Open
Abstract
Chronic graft-versus-host disease (cGvHD) remains a prominent barrier to allogeneic hematopoietic stem cell transplantion as the leading cause of nonrelapse mortality and significant morbidity. Tremendous progress has been achieved in both the understanding of pathophysiology and the development of new therapies for cGvHD. Although our field has historically approached treatment from an empiric position, research performed at the bedside and bench has elucidated some of the complex pathophysiology of cGvHD. From the clinical perspective, there is significant variability of disease manifestations between individual patients, pointing to diverse biological underpinnings. Capitalizing on progress made to date, the field is now focused on establishing personalized approaches to treatment. The intent of this article is to concisely review recent knowledge gained and formulate a path toward patient-specific cGvHD therapy.
Collapse
Affiliation(s)
- Nataliya P. Buxbaum
- Department of Pediatrics, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Gerard Socié
- Hematology-Transplantation, Assistance Publique-Hopitaux de Paris & University of Paris – INSERM UMR 676, Hospital Saint Louis, Paris, France
| | - Geoffrey R. Hill
- Division of Medical Oncology, The University of Washington, Seattle, WA
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Kelli P. A. MacDonald
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Victor Tkachev
- Division of Hematology/Oncology, Boston Children's Hospital, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Stephanie J. Lee
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Jerome Ritz
- Dana-Farber Cancer Institute, Harvard Medical School, Brigham and Women’s Hospital, Boston, MA
| | - Stefanie Sarantopoulos
- Department of Medicine, Division of Hematologic Malignancies and Cellular Therapy, Duke University Medical Center, Duke Cancer Institute, Durham, NC
| | - Leo Luznik
- Division of Hematologic Malignancies, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, Hematologic Maligancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Cancer Immunology Program, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC
| | - Paul J. Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Steven Z. Pavletic
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kirk R. Schultz
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneappolis, MN
| |
Collapse
|
13
|
Varady ES, Ayala LA, Nguyen PU, Scarfone VM, Karimzadeh A, Zhou C, Chen X, Greilach SA, Walsh CM, Inlay MA. Graft conditioning with fluticasone propionate reduces graft-versus-host disease upon allogeneic hematopoietic cell transplantation in mice. EMBO Mol Med 2023; 15:e17748. [PMID: 37538042 PMCID: PMC10493574 DOI: 10.15252/emmm.202317748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
Hematopoietic cell transplantation (HCT) treats many blood conditions but remains underused due to complications such as graft-versus-host disease (GvHD). In GvHD, donor immune cells attack the patient, requiring powerful immunosuppressive drugs like glucocorticoids (GCs) to prevent death. In this study, we tested the hypothesis that donor cell conditioning with the glucocorticoid fluticasone propionate (FLU) prior to transplantation could increase hematopoietic stem cell (HSC) engraftment and reduce GvHD. Murine HSCs treated with FLU had increased HSC engraftment and reduced severity and incidence of GvHD after transplantation into allogeneic hosts. While most T cells died upon FLU treatment, donor T cells repopulated in the hosts and appeared less inflammatory and alloreactive. Regulatory T cells (Tregs) are immunomodulatory and survived FLU treatment, resulting in an increased ratio of Tregs to conventional T cells. Our results implicate an important role for Tregs in maintaining allogeneic tolerance in FLU-treated grafts and suggest a therapeutic strategy of pre-treating donor cells (and not the patients directly) with GCs to simultaneously enhance engraftment and reduce GvHD upon allogeneic HCT.
Collapse
Affiliation(s)
- Erika S Varady
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCAUSA
- Department of Molecular Biology and BiochemistryUniversity of California IrvineIrvineCAUSA
| | - L Angel Ayala
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCAUSA
- Department of Molecular Biology and BiochemistryUniversity of California IrvineIrvineCAUSA
| | - Pauline U Nguyen
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCAUSA
- Department of Molecular Biology and BiochemistryUniversity of California IrvineIrvineCAUSA
| | - Vanessa M Scarfone
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCAUSA
| | - Alborz Karimzadeh
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCAUSA
- Department of Molecular Biology and BiochemistryUniversity of California IrvineIrvineCAUSA
- Present address:
Joslin Diabetes CenterHarvard Medical SchoolBostonMAUSA
| | - Cuiwen Zhou
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCAUSA
- Department of Molecular Biology and BiochemistryUniversity of California IrvineIrvineCAUSA
| | - Xiyu Chen
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCAUSA
- Department of Molecular Biology and BiochemistryUniversity of California IrvineIrvineCAUSA
| | - Scott A Greilach
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCAUSA
- Department of Molecular Biology and BiochemistryUniversity of California IrvineIrvineCAUSA
| | - Craig M Walsh
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCAUSA
- Department of Molecular Biology and BiochemistryUniversity of California IrvineIrvineCAUSA
| | - Matthew A Inlay
- Sue and Bill Gross Stem Cell Research CenterUniversity of California IrvineIrvineCAUSA
- Department of Molecular Biology and BiochemistryUniversity of California IrvineIrvineCAUSA
| |
Collapse
|
14
|
Algeri M, Velardi E, Spada M, Galaverna F, Carta R, Vinti L, Palumbo G, Gaspari S, Pietrobattista A, Boccieri E, Becilli M, Francalanci P, Bertaina V, Merli P, Locatelli F. Achievement of operational tolerance in a pediatric liver transplant recipient following successful hematopoietic stem cell transplantation from a different donor. Am J Transplant 2023; 23:1446-1450. [PMID: 37061187 DOI: 10.1016/j.ajt.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/03/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT)-based approaches are increasingly investigated strategies to induce tolerance in recipients of solid allografts. However, in the majority of cases, these approaches rely on the infusion of hematopoietic stem cells recovered from the same solid organ donor. In this report, we describe the case of a boy who received liver transplantation from a deceased donor, who had successfully underwent allogeneic HSCT from an unrelated donor for hepatitis-associated aplastic anemia. In this patient, it was possible to permanently withdraw post-HSCT immune suppression without causing any sign of liver graft dysfunction. To the best of our knowledge, this is the first case of operational tolerance documented in a patient who received combined liver transplantation and HSCT from different donors.
Collapse
Affiliation(s)
- Mattia Algeri
- Department of Pediatric Hematology and Oncology,Cell and Gene Therapy,Bambino Gesù Children's Hospital,IRCCS,Rome,Italy
| | - Enrico Velardi
- Department of Pediatric Hematology and Oncology,Cell and Gene Therapy,Bambino Gesù Children's Hospital,IRCCS,Rome,Italy
| | - Marco Spada
- Hepatobiliopancreatic Surgery, Liver and Kidney Transplantation Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Federica Galaverna
- Department of Pediatric Hematology and Oncology,Cell and Gene Therapy,Bambino Gesù Children's Hospital,IRCCS,Rome,Italy
| | - Roberto Carta
- Department of Pediatric Hematology and Oncology,Cell and Gene Therapy,Bambino Gesù Children's Hospital,IRCCS,Rome,Italy
| | - Luciana Vinti
- Department of Pediatric Hematology and Oncology,Cell and Gene Therapy,Bambino Gesù Children's Hospital,IRCCS,Rome,Italy
| | - Giuseppe Palumbo
- Department of Pediatric Hematology and Oncology,Cell and Gene Therapy,Bambino Gesù Children's Hospital,IRCCS,Rome,Italy; University Department of Pediatrics, Bambino Gesù Children's Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Stefania Gaspari
- Department of Pediatric Hematology and Oncology,Cell and Gene Therapy,Bambino Gesù Children's Hospital,IRCCS,Rome,Italy
| | | | - Emilia Boccieri
- Department of Pediatric Hematology and Oncology,Cell and Gene Therapy,Bambino Gesù Children's Hospital,IRCCS,Rome,Italy
| | - Marco Becilli
- Department of Pediatric Hematology and Oncology,Cell and Gene Therapy,Bambino Gesù Children's Hospital,IRCCS,Rome,Italy
| | - Paola Francalanci
- Hepatology and Liver Transplant Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentina Bertaina
- Department of Pediatric Hematology and Oncology,Cell and Gene Therapy,Bambino Gesù Children's Hospital,IRCCS,Rome,Italy
| | - Pietro Merli
- Department of Pediatric Hematology and Oncology,Cell and Gene Therapy,Bambino Gesù Children's Hospital,IRCCS,Rome,Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology,Cell and Gene Therapy,Bambino Gesù Children's Hospital,IRCCS,Rome,Italy; Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy.
| |
Collapse
|
15
|
Wobma H, Kapadia M, Kim HT, Alvarez-Calderon F, Baumeister SHC, Duncan C, Forrest S, Gorfinkel L, Huang J, Lehmann LE, Li H, Schwartz M, Koreth J, Ritz J, Kean LS, Whangbo JS. Real-world experience with low-dose IL-2 for children and young adults with refractory chronic graft-versus-host disease. Blood Adv 2023; 7:4647-4657. [PMID: 37603347 PMCID: PMC10448423 DOI: 10.1182/bloodadvances.2023009729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
The majority of patients with chronic graft-versus-host disease (cGVHD) are steroid refractory (SR), creating a need for safe and effective therapies. Subcutaneous low-dose interleukin-2 (LD IL-2), which preferentially expands CD4+ regulatory T cells (Tregs), has been evaluated in 5 clinical trials at our center with partial responses (PR) in ∼50% of adults and 82% of children by week 8. We now report additional real-world experience with LD IL-2 in 15 children and young adults. We conducted a retrospective chart review of patients with SR-cGVHD at our center who received LD IL-2 from August 2016 to July 2022 not on a research trial. The median age at start of LD IL-2 was 10.4 years (range, 1.2-23.2 years) at a median of 234 days from cGVHD diagnosis (range, 11-542 days). Patients had a median of 2.5 (range, 1-3) active organs at LD IL-2 start and received a median of 3 (range, 1-5) prior therapies. The median duration of LD IL-2 therapy was 462 days (range, 8-1489 days). Most patients received 1 × 106 IU/m2 per day. There were no serious adverse effects. The overall response rate in 13 patients who received >4 weeks of therapy was 85% (complete response, n = 5; PR, n = 6) with responses in diverse organs. Most patients significantly weaned corticosteroids. Tregs preferentially expanded with a median peak fold increase of 2.8 in the ratio of Tregs to CD4+ conventional T cells (range, 2.0-19.8) by 8 weeks on therapy. LD IL-2 is a well-tolerated, steroid-sparing agent with a high response rate in children and young adults with SR-cGVHD.
Collapse
Affiliation(s)
- Holly Wobma
- Division of Immunology, Boston Children’s Hospital, Boston, MA
| | - Malika Kapadia
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Haesook T. Kim
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Francesca Alvarez-Calderon
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Susanne H. C. Baumeister
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Christine Duncan
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Suzanne Forrest
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Lev Gorfinkel
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jennifer Huang
- Division of Immunology, Boston Children’s Hospital, Boston, MA
| | - Leslie E. Lehmann
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Hojun Li
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Marc Schwartz
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - John Koreth
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA
| | - Leslie S. Kean
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Jennifer S. Whangbo
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| |
Collapse
|
16
|
Maurer K, Soiffer RJ. The delicate balance of graft versus leukemia and graft versus host disease after allogeneic hematopoietic stem cell transplantation. Expert Rev Hematol 2023; 16:943-962. [PMID: 37906445 PMCID: PMC11195539 DOI: 10.1080/17474086.2023.2273847] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
INTRODUCTION The curative basis of allogeneic hematopoietic stem cell transplantation (HSCT) relies in part upon the graft versus leukemia (GvL) effect, whereby donor immune cells recognize and eliminate recipient malignant cells. However, alloreactivity of donor cells against recipient tissues may also be deleterious. Chronic graft versus host disease (cGvHD) is an immunologic phenomenon wherein alloreactive donor T cells aberrantly react against host tissues, leading to damaging inflammatory symptoms. AREAS COVERED Here, we discuss biological insights into GvL and cGvHD and strategies to balance the prevention of GvHD with maintenance of GvL in modern HSCT. EXPERT OPINION/COMMENTARY Relapse remains the leading cause of mortality after HSCT with rates as high as 40% for some diseases. GvHD is a major cause of morbidity after HSCT, occurring in up to half of patients and responsible for 15-20% of deaths after HSCT. Intriguingly, the development of chronic GvHD may be linked to lower relapse rates after HSCT, suggesting that GvL and GvHD may be complementary sides of the immunologic foundation of HSCT. The ability to fine tune the balance of GvL and GvHD will lead to improvements in survival, relapse rates, and quality of life for patients undergoing HSCT.
Collapse
Affiliation(s)
- Katie Maurer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert J Soiffer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
17
|
Gail LM, Schell KJ, Łacina P, Strobl J, Bolton SJ, Steinbakk Ulriksen E, Bogunia-Kubik K, Greinix H, Crossland RE, Inngjerdingen M, Stary G. Complex interactions of cellular players in chronic Graft-versus-Host Disease. Front Immunol 2023; 14:1199422. [PMID: 37435079 PMCID: PMC10332803 DOI: 10.3389/fimmu.2023.1199422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/07/2023] [Indexed: 07/13/2023] Open
Abstract
Chronic Graft-versus-Host Disease is a life-threatening inflammatory condition that affects many patients after allogeneic hematopoietic stem cell transplantation. Although we have made substantial progress in understanding disease pathogenesis and the role of specific immune cell subsets, treatment options are still limited. To date, we lack a global understanding of the interplay between the different cellular players involved, in the affected tissues and at different stages of disease development and progression. In this review we summarize our current knowledge on pathogenic and protective mechanisms elicited by the major involved immune subsets, being T cells, B cells, NK cells and antigen presenting cells, as well as the microbiome, with a special focus on intercellular communication of these cell types via extracellular vesicles as up-and-coming fields in chronic Graft-versus-Host Disease research. Lastly, we discuss the importance of understanding systemic and local aberrant cell communication during disease for defining better biomarkers and therapeutic targets, eventually enabling the design of personalized treatment schemes.
Collapse
Affiliation(s)
- Laura Marie Gail
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Kimberly Julia Schell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Piotr Łacina
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Johanna Strobl
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Steven J. Bolton
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Katarzyna Bogunia-Kubik
- Laboratory of Clinical Immunogenetics and Pharmacogenetics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Hildegard Greinix
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Rachel Emily Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
18
|
Sumii Y, Kondo T, Ikegawa S, Fukumi T, Iwamoto M, Nishimura MF, Sugiura H, Sando Y, Nakamura M, Meguri Y, Matsushita T, Tanimine N, Kimura M, Asada N, Ennishi D, Maeda Y, Matsuoka KI. Hematopoietic stem cell-derived Tregs are essential for maintaining favorable B cell lymphopoiesis following posttransplant cyclophosphamide. JCI Insight 2023; 8:162180. [PMID: 37092551 DOI: 10.1172/jci.insight.162180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 03/08/2023] [Indexed: 04/25/2023] Open
Abstract
Posttransplant cyclophosphamide (PTCy) is associated with a low incidence of chronic graft-versus-host disease (cGVHD) following hematopoietic stem cell (HSC) transplantation. Previous studies have shown the important roles of B cell immunity in cGVHD development. Here, we investigated the long-term reconstitution of B lymphopoiesis after PTCy using murine models. We first demonstrated that the immune homeostatic abnormality leading to cGVHD is characterized by an initial increase in effector T cells in the bone marrow and subsequent B and Treg cytopenia. PTCy, but not cyclosporine A or rapamycin, inhibits the initial alloreactive T cell response, which restores intra-bone marrow B lymphogenesis with a concomitant vigorous increase in Tregs. This leads to profound changes in posttransplant B cell homeostasis, including decreased B cell activating factors, increased transitional and regulatory B cells, and decreased germinal center B cells. To identify the cells responsible for PTCy-induced B cell tolerance, we selectively depleted Treg populations that were graft or HSC derived using DEREG mice. Deletion of either Treg population without PTCy resulted in critical B cytopenia. PTCy rescued B lymphopoiesis from graft-derived Treg deletion. In contrast, the negative effect of HSC-derived Treg deletion could not be overcome by PTCy, indicating that HSC-derived Tregs are essential for maintaining favorable B lymphopoiesis following PTCy. These findings define the mechanisms by which PTCy restores homeostasis of the B cell lineage and reestablishes immune tolerance.
Collapse
Affiliation(s)
- Yuichi Sumii
- Department of Hematology, Oncology and Respiratory Medicine and
| | - Takumi Kondo
- Department of Hematology, Oncology and Respiratory Medicine and
| | | | - Takuya Fukumi
- Department of Hematology, Oncology and Respiratory Medicine and
| | - Miki Iwamoto
- Department of Hematology, Oncology and Respiratory Medicine and
| | - Midori Filiz Nishimura
- Department of Pathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | - Yasuhisa Sando
- Department of Hematology, Oncology and Respiratory Medicine and
| | - Makoto Nakamura
- Department of Hematology, Oncology and Respiratory Medicine and
| | - Yusuke Meguri
- Department of Hematology, Oncology and Respiratory Medicine and
| | - Takashi Matsushita
- Department of Dermatology, Faculty of Medicine, College of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Naoki Tanimine
- Department of Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Maiko Kimura
- Department of Hematology, Oncology and Respiratory Medicine and
| | - Noboru Asada
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Daisuke Ennishi
- Department of Hematology, Oncology and Respiratory Medicine and
| | - Yoshinobu Maeda
- Department of Hematology, Oncology and Respiratory Medicine and
| | | |
Collapse
|
19
|
Nishiyama N, Ruoff P, Jimenez JC, Miwakeichi F, Nishiyama Y, Yata T. Modeling the interaction between donor-derived regulatory T cells and effector T cells early after allogeneic hematopoietic stem cell transplantation. Biosystems 2023; 227-228:104889. [PMID: 37019377 DOI: 10.1016/j.biosystems.2023.104889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/12/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023]
Abstract
While allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potential curative therapy against hematological malignancies, modulation of donor T cell alloreactivity is required to enhance the graft-versus-leukemia (GVL) effect and control graft-versus-host-disease (GVHD) after allo-HSCT. Donor-derived regulatory CD4+CD25+Foxp3+ T cells (Tregs) play a central role in establishing of immune tolerance after allo-HSCT. They could be a key target to be modulated for increasing the GVL effect and control of GVHD. We constructed an ordinary differential equation model incorporating bidirectional interactions between Tregs and effector CD4+ T cells (Teffs) as a mechanism for control of Treg cell concentration. The goal is to elucidate how the interaction between Tregs and Teffs is modulated in order to get insights into fine tuning of alloreactivity after allo-HSCT. The model was calibrated with respect to published Treg and Teff recovery data after allo-HSCT. The calibrated model exhibits perfect or near-perfect adaptation to stepwise perturbations between Treg and Teff interactions, as seen in Treg cell populations when patients with relapsed malignancy were treated with anti-CTLA-4 (cytotoxic T lymphocyte-associated antigen 4). In addition, the model predicts observed shifts of Tregs and Teffs concentrations after co-stimulatory receptor IL-2R or TNFR2 blockade with allo-HSCT. The present results suggest simultaneous blockades of co-stimulatory and co-inhibitory receptors as a potential treatment for enhancing the GVL effect after allo-HSCT without developing GVHD.
Collapse
|
20
|
Liu Y, Hoang TK, Park ES, Freeborn J, Okeugo B, Tran DQ, Rhoads JM. Probiotic-educated Tregs are more potent than naïve Tregs for immune tolerance in stressed new-born mice. Benef Microbes 2023; 14:73-84. [PMID: 36815493 PMCID: PMC10124588 DOI: 10.3920/bm2022.0095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
When new-born mice are subjected to acute maternal separation stress, cow-milk based formula feeding, and brief recurrent hypoxia with cold stress, they develop gut inflammation similar to the phenotype of neonatal necrotizing enterocolitis, characterised by an increase in gut mucosal effector T (Teffs) and reduced Foxp3+ regulatory T (Tregs) cells. The imbalance can be prevented by probiotic Limosilactobacillus reuteri DSM 17938 (LR 17938). We hypothesised that LR 17938 could potentiate a tolerogenic function of Tregs. To analyse whether LR 17938 can educate Tregs to improve their tolerogenic potency during neonatal stress, we isolated T cells (Tregs and Teffs) from 'donor' mice fed with either LR 17938 (107 cfu) or control media. The cells were adoptively transferred (AT) by intraperitoneal injection (5 × 105 cells/mouse) to new-born (d5) recipient mice. Mice were then separated from their dams, fed formula by gavage, and exposed to hypoxia and cold stress (NeoStress) for 4 days. We analysed the percentage of Tregs in CD4+T helper cells in the intestine (INT) and mesenteric lymph nodes (MLN) of recipient mice. We found that: (1) the percentage of Tregs in the INT and MLN following NeoStress were significantly reduced compared to dam-fed unstressed mice; (2) AT of either naïve Tregs or LR-educated Tregs to mice with Neostress increased the percentage of Tregs in the INT and MLN compared to the percentage in NeoStress mice without Treg treatment; however, LR-educated Tregs increased the Tregs significantly more than naïve Tregs; and (3) AT of LR-educated Tregs reduced pro-inflammatory CD44+Foxp3-NonTregs and inflammatory CX3CR1+ dendritic cells in the intestinal mucosa of NeoStress mice. In conclusion, adoptive transfer of Tregs promotes the generation of and/or migration of endogenous Tregs in the intestinal mucosa of recipient mice. Importantly, probiotic-educated Tregs are more potent than naïve Tregs to enhance immune tolerance following neonatal stress.
Collapse
Affiliation(s)
- Y Liu
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.137, Houston, TX 77030, USA
| | - T K Hoang
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.137, Houston, TX 77030, USA
| | - E S Park
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.137, Houston, TX 77030, USA
| | - J Freeborn
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.137, Houston, TX 77030, USA
| | - B Okeugo
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.137, Houston, TX 77030, USA
| | - D Q Tran
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.137, Houston, TX 77030, USA
| | - J M Rhoads
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.137, Houston, TX 77030, USA
| |
Collapse
|
21
|
Bojanic I, Worel N, Pacini CP, Stary G, Piekarska A, Flinn AM, Schell KJ, Gennery AR, Knobler R, Lacerda JF, Greinix HT, Pulanic D, Crossland RE. Extracorporeal photopheresis as an immunomodulatory treatment modality for chronic GvHD and the importance of emerging biomarkers. Front Immunol 2023; 14:1086006. [PMID: 36875063 PMCID: PMC9981637 DOI: 10.3389/fimmu.2023.1086006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/01/2023] [Indexed: 02/19/2023] Open
Abstract
Haematopoietic stem cell transplantation (HSCT) is the treatment of choice for malignant haematological diseases. Despite continuous improvements in pre- and post-transplantation procedures, the applicability of allo-HSCT is limited by life-threatening complications such as graft-versus-host disease (GvHD), engraftment failure, and opportunistic infections. Extracorporeal photopheresis (ECP) is used to treat steroid resistant GvHD with significant success. However, the molecular mechanisms driving its immunomodulatory action, whilst preserving immune function, require further understanding. As ECP is safe to administer with few significant adverse effects, it has the potential for earlier use in the post-HSCT treatment of GvHD. Thus, further understanding the immunomodulatory mechanisms of ECP action may justify more timely use in clinical practice, as well as identify biomarkers for using ECP as first line or pre-emptive GvHD therapy. This review aims to discuss technical aspects and response to ECP, review ECP as an immunomodulatory treatment modality for chronic GvHD including the effect on regulatory T cells and circulating vs. tissue-resident immune cells and consider the importance of emerging biomarkers for ECP response.
Collapse
Affiliation(s)
- Ines Bojanic
- Department of Transfusion Medicine and Transplantation Biology, University Hospital Center Zagreb, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nina Worel
- Department of Transfusion Medicine and Cell Therapy, Medical University of Vienna, Vienna, Austria
| | - Carolina P Pacini
- Hematology and Transplantation Immunology, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Agnieszka Piekarska
- Department of Hematology and Transplantology, Medical University of Gdansk, Gdansk, Poland
| | - Aisling M Flinn
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Kimberly J Schell
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.,Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Robert Knobler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - João F Lacerda
- Hematology and Transplantation Immunology, Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | | | - Drazen Pulanic
- School of Medicine, University of Zagreb, Zagreb, Croatia.,Division of Hematology, Department of Internal Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | - Rachel E Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
22
|
Watkins B, Williams KM. Controversies and expectations for the prevention of GVHD: A biological and clinical perspective. Front Immunol 2022; 13:1057694. [PMID: 36505500 PMCID: PMC9726707 DOI: 10.3389/fimmu.2022.1057694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/03/2022] [Indexed: 11/24/2022] Open
Abstract
Severe acute and chronic graft versus host disease (GVHD) remains a major cause of morbidity and mortality after allogeneic hematopoietic cell transplantation. Historically, cord blood and matched sibling transplantation has been associated with the lowest rates of GVHD. Newer methods have modified the lymphocyte components to minimize alloimmunity, including: anti-thymocyte globulin, post-transplant cyclophosphamide, alpha/beta T cell depletion, and abatacept. These agents have shown promise in reducing severe GVHD, however, can be associated with increased risks of relapse, graft failure, infections, and delayed immune reconstitution. Nonetheless, these GVHD prophylaxis strategies have permitted expansion of donor sources, especially critical for those of non-Caucasian decent who previously lacked transplant options. This review will focus on the biologic mechanisms driving GVHD, the method by which each agent impacts these activated pathways, and the clinical consequences of these modern prophylaxis approaches. In addition, emerging novel targeted strategies will be described. These GVHD prophylaxis approaches have revolutionized our ability to increase access to transplant and have provided important insights into the biology of GVHD and immune reconstitution.
Collapse
Affiliation(s)
- Benjamin Watkins
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Emory University, Atlanta, GA, United States
| | | |
Collapse
|
23
|
Doglio M, Crossland RE, Alho AC, Penack O, Dickinson AM, Stary G, Lacerda JF, Eissner G, Inngjerdingen M. Cell-based therapy in prophylaxis and treatment of chronic graft-versus-host disease. Front Immunol 2022; 13:1045168. [PMID: 36466922 PMCID: PMC9714556 DOI: 10.3389/fimmu.2022.1045168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 08/31/2023] Open
Abstract
Hematopoietic allogeneic stem cell transplantation (allo-SCT) is a curative option for patients with hematological malignancies. However, due to disparities in major and minor histocompatibility antigens between donor and recipient, severe inflammatory complications can occur, among which chronic graft-versus-host disease (cGVHD) can be life-threatening. A classical therapeutic approach to the prevention and treatment of cGVHD has been broad immunosuppression, but more recently adjuvant immunotherapies have been tested. This review summarizes and discusses immunomodulatory approaches with T cells, including chimeric antigen receptor (CAR) and regulatory T cells, with natural killer (NK) cells and innate lymphoid cells (ILCs), and finally with mesenchymal stromal cells (MSC) and extracellular vesicles thereof. Clinical studies and pre-clinical research results are presented likewise.
Collapse
Affiliation(s)
- Matteo Doglio
- Experimental Haematology Unit, Division of Immunology Transplantation and Infectious Diseases, Vita-Salute San Raffaele University, Milan, Italy
| | - Rachel E. Crossland
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ana C. Alho
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Olaf Penack
- Department of Hematology, Oncology, and Cancer Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anne M. Dickinson
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- Alcyomics Ltd, Newcastle upon Tyne, United Kingdom
| | - Georg Stary
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - João F. Lacerda
- JLacerda Lab, Hematology and Transplantation Immunology, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Centro Hospitalar Universitário de Lisboa Norte, Lisbon, Portugal
| | - Günther Eissner
- Systems Biology Ireland, School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Marit Inngjerdingen
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
24
|
Donato V, Kim HT, Stowe P, Reynolds CG, Ritz J, Koreth J, Whangbo JS. Durability of clinical and immunologic responses to extended low-dose interleukin-2 therapy in patients with refractory chronic graft-versus-host disease. Front Immunol 2022; 13:954966. [PMID: 36189229 PMCID: PMC9515381 DOI: 10.3389/fimmu.2022.954966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) remains a frequent cause of non-relapse morbidity and mortality after allogeneic hematopoietic stem cell transplantation. In our single center trials of low-dose interleukin-2 (LD IL-2), the immunomodulatory properties of regulatory T cells (Tregs) have been harnessed to treat steroid-refractory cGVHD (SR-cGVHD) safely and effectively in adults and children. In these trials, 50-60% of patients showed clinical improvement of their cGVHD manifestations with partial responses at the primary response endpoint of 8-12 weeks. Many patients continued extended duration LD IL-2 therapy and achieved deeper clinical responses, including some complete responses. However, the durability of the clinical and immunologic improvement following IL-2 discontinuation has not been reported previously. We examined 20 adult and 2 pediatric patients who received extended duration LD IL-2 for a median of 103 weeks (range, 21-258) and had stable improvement or resolution of their cGVHD symptoms before discontinuing LD IL-2 therapy. The median follow-up after stopping IL-2 was 203 weeks (range 92-599). During this time, 16 patients (73%) were able to wean off all systemic immunosuppression without disease flare or progression. Among 13 patients with available immune cell data, the median fold change in absolute Treg count was 0.58 between 1 to 10 weeks after stopping IL-2 whereas CD4+ conventional T-cell (Tcon) and CD8+ T-cell numbers remained stable. Despite a decline in Treg numbers after IL-2 discontinuation, Treg numbers remained above the pre-treatment baseline. In addition, many patients had sustained clinical improvement after stopping IL-2, suggesting that extended IL-2 therapy can lead to immune tolerance.
Collapse
Affiliation(s)
- Veronica Donato
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
- Master of Medical Sciences in Clinical Investigation Program, Harvard Medical School, Boston, MA, United States
| | - Haesook T. Kim
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard School of Public Health, Boston, MA, United States
| | - Peter Stowe
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Carol G. Reynolds
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Jerome Ritz
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - John Koreth
- Division of Hematologic Malignancies, Dana-Farber Cancer Institute, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Jennifer S. Whangbo
- Harvard Medical School, Boston, MA, United States
- Division of Hematology-Oncology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
- *Correspondence: Jennifer S. Whangbo,
| |
Collapse
|
25
|
Insights into mechanisms of graft-versus-host disease through humanised mouse models. Biosci Rep 2022; 42:231673. [PMID: 35993192 PMCID: PMC9446388 DOI: 10.1042/bsr20211986] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/15/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a major complication that occurs following allogeneic haematopoietic stem cell transplantation (HSCT) for the treatment of haematological cancers and other blood-related disorders. GVHD is an inflammatory disorder, where the transplanted donor immune cells can mediate an immune response against the recipient and attack host tissues. Despite over 60 years of research, broad-range immune suppression is still used to prevent or treat GVHD, leading to an increased risk of cancer relapse and infection. Therefore, further insights into the disease mechanisms and development of predictive and prognostic biomarkers are key to improving outcomes and reducing GVHD development following allogeneic HSCT. An important preclinical tool to examine the pathophysiology of GVHD and to understand the key mechanisms that lead to GVHD development are preclinical humanised mouse models. Such models of GVHD are now well-established and can provide valuable insights into disease development. This review will focus on models where human peripheral blood mononuclear cells are injected into immune-deficient non-obese diabetic (NOD)-scid-interleukin-2(IL-2)Rγ mutant (NOD-scid-IL2Rγnull) mice. Humanised mouse models of GVHD can mimic the clinical setting for GVHD development, with disease progression and tissues impacted like that observed in humans. This review will highlight key findings from preclinical humanised mouse models regarding the role of donor human immune cells, the function of cytokines and cell signalling molecules and their impact on specific target tissues and GVHD development. Further, specific therapeutic strategies tested in these preclinical models reveal key molecular pathways important in reducing the burden of GVHD following allogeneic HSCT.
Collapse
|
26
|
Salhotra A, Talley M, Wu X, Tsai W, Mokhtari S, Qin H, Al-Malki MM, Aldoss I, Modi B, Koller P, Kopp E, Smith E, Pawlowska A, Nakamura R. Clinical and immunologic responses to extracorporeal photopheresis and low-dose IL-2 in patients with steroid refractory chronic graft-versus host disease. Bone Marrow Transplant 2022; 57:1045-1047. [PMID: 35440803 DOI: 10.1038/s41409-022-01671-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/19/2022] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Amandeep Salhotra
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, CA, USA.
| | - Min Talley
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, CA, USA
| | - Weimin Tsai
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, CA, USA
| | - Sally Mokhtari
- Department of Clinical Translational Project Development, City of Hope National Medical Center, Duarte, CA, USA
| | - Hanjun Qin
- Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, CA, USA
| | - Monzr M Al-Malki
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, CA, USA
| | - Ibrahim Aldoss
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, CA, USA
| | - Badri Modi
- Department of Surgery, Division of Dermatology, City of Hope National Medical Center, Duarte, CA, USA
| | - Paul Koller
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, CA, USA
| | - Erin Kopp
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, CA, USA
| | - Eileen Smith
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, CA, USA
| | - Anna Pawlowska
- Department of Pediatrics, Pediatric HCT Program, City of Hope National Medical Center, Duarte, CA, USA
| | - Ryotaro Nakamura
- Department of Hematology and HCT, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
27
|
Salit RB. The role of JAK inhibitors in hematopoietic cell transplantation. Bone Marrow Transplant 2022; 57:857-865. [PMID: 35388118 DOI: 10.1038/s41409-022-01649-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/07/2022] [Accepted: 03/16/2022] [Indexed: 01/03/2023]
Abstract
The Janus Kinase (JAK)/Signal Transducers and Activators of Transcription (STAT) pathway is essential for both the regulation of hematopoiesis and the control of inflammation. Disruption of this pathway can lead to inflammatory and malignant disease processes. JAK inhibitors, designed to control the downstream effects of pro-inflammatory and pro-angiogenic cytokines, have been successfully used in pre-clinical models and clinical studies of patients with autoimmune diseases, hematologic malignancies, and the hematopoietic cell transplantation (HCT) complication graft versus host disease (GVHD). In the last decade, JAK inhibitors Ruxolitinib, Fedratinib, and most recently Pacritinib have been United States Federal Drug Administration (FDA) approved for the treatment of myelofibrosis (MF). Ruxolitinib was also recently approved for the treatment of steroid refractory acute as well as chronic GVHD; JAK inhibitors are currently under evaluation in the pre-HCT setting in MF and for the prevention of GVHD. This review will focus on the role of JAK inhibitors in the treatment of hematologic malignancies, the potential function of pre-HCT JAK inhibitors in patients with MF, and the role of JAK inhibitors in the prevention and treatment of acute and chronic GVHD.
Collapse
Affiliation(s)
- Rachel B Salit
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Medicine, University of Washington Medical Center, Seattle, WA, USA.
| |
Collapse
|
28
|
Organ-specific response after low-dose interleukin-2 therapy for steroid refractory chronic Graft-versus-Host Disease. Blood Adv 2022; 6:4392-4402. [PMID: 35617682 DOI: 10.1182/bloodadvances.2022007773] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/18/2022] [Indexed: 11/20/2022] Open
Abstract
Despite new therapeutic options, treatment of steroid-refractory chronic graft-versus-host disease (SR-cGVHD) remains challenging as organ involvement and clinical manifestations are highly variable. In previous trials of low-dose interleukin-2 (LD IL-2), we established the safety and efficacy of LD IL-2 for treatment of SR-cGVHD. In the present report, we combined 5 phase I or II clinical trials conducted at our center to investigate organ-specific response rate, co-involvement of organs, predictors of organ-specific response and its possible association with immune response. For 105 adult patients included in this report, the overall response rate after 8 or 12 weeks LD IL-2 was 48.6% and 53.3% including late responses in patients who continued treatment for extended periods. Skin was the most frequent organ involved (84%) and the organ-specific response rate was highest in liver (66.7%) followed by GI (62.5%), skin (36.4%), joint/muscle/fascia (34.2%) and lung (19.2%). In multivariable analysis, shorter time from diagnosis of cGVHD to IL-2 initiation, shorter time from transplant to IL-2 initiation, and fewer prior therapies were associated with overall response as well as skin response. For immunologic correlates, CD4Treg:CD4Tcon ratio at one week was significantly higher in patients with overall and skin response; skin response was significantly associated with lower number of total CD3 T cells, CD4Tcon and CD8 T cells and higher number of B cells. For lung responders, terminal effector memory cell counts were lower within all T cell populations compared to non-responders. Organ-specific mechanisms of injury should be investigated and organ-specific targeted therapies need to be developed.
Collapse
|
29
|
Wu Y, Mealer C, Schutt S, Wilson CL, Bastian D, Sofi MH, Zhang M, Luo Z, Choi HJ, Yang K, Tian L, Nguyen H, Helke K, Schnapp LM, Wang H, Yu XZ. MicroRNA-31 regulates T-cell metabolism via HIF1α and promotes chronic GVHD pathogenesis in mice. Blood Adv 2022; 6:3036-3052. [PMID: 35073581 PMCID: PMC9131913 DOI: 10.1182/bloodadvances.2021005103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) remains a major obstacle impeding successful allogeneic hematopoietic cell transplantation (HCT). MicroRNAs (miRs) play key roles in immune regulation during acute GVHD development. Preclinical studies to identify miRs that affect cGVHD pathogenesis are required to develop these as potential lifesaving interventions. Using oligonucleotide array, we identified miR-31, which was significantly elevated in allogeneic T cells after HCT in mice. Using genetic and pharmacologic approaches, we demonstrated a key role for miR-31 in mediating donor T-cell pathogenicity in cGVHD. Recipients of miR-31-deficient T cells displayed improved cutaneous and pulmonary cGVHD. Deficiency of miR-31 reduced T-cell expansion and T helper 17 (Th17) cell differentiation but increased generation and function of regulatory T cells (Tregs). MiR-31 facilitated neuropilin-1 downregulation, Foxp3 loss, and interferon-γ production in alloantigen-induced Tregs. Mechanistically, miR-31 was required for hypoxia-inducible factor 1α (HIF1α) upregulation in allogeneic T cells. Therefore, miR-31-deficient CD4 T cells displayed impaired activation, survival, Th17 cell differentiation, and glycolytic metabolism under hypoxia. Upregulation of factor-inhibiting HIF1, a direct target of miR-31, in miR-31-deficient T cells was essential for attenuating T-cell pathogenicity. However, miR-31-deficient CD8 T cells maintained intact glucose metabolism, cytolytic activity, and graft-versus-leukemia response. Importantly, systemic administration of a specific inhibitor of miR-31 effectively reduced donor T-cell expansion, improved Treg generation, and attenuated cGVHD. Taken together, miR-31 is a key driver for T-cell pathogenicity in cGVHD but not for antileukemia activity. MiR-31 is essential in driving cGVHD pathogenesis and represents a novel potential therapeutic target for controlling cGVHD.
Collapse
Affiliation(s)
- Yongxia Wu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Corey Mealer
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - Steven Schutt
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | | | - David Bastian
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - M. Hanief Sofi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - Mengmeng Zhang
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - Zhenwu Luo
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - Hee-Jin Choi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Kaipo Yang
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Linlu Tian
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Hung Nguyen
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
| | - Kris Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, SC
| | | | - Honglin Wang
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC; and
- Cancer Center, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
30
|
Bolivar-Wagers S, Larson JH, Jin S, Blazar BR. Cytolytic CD4 + and CD8 + Regulatory T-Cells and Implications for Developing Immunotherapies to Combat Graft-Versus-Host Disease. Front Immunol 2022; 13:864748. [PMID: 35493508 PMCID: PMC9040077 DOI: 10.3389/fimmu.2022.864748] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 02/03/2023] Open
Abstract
Regulatory T-cells (Treg) are critical for the maintenance of immune homeostasis and tolerance induction. While the immunosuppressive mechanisms of Treg have been extensively investigated for decades, the mechanisms responsible for Treg cytotoxicity and their therapeutic potential in regulating immune responses have been incompletely explored and exploited. Conventional cytotoxic T effector cells (Teffs) are known to be important for adaptive immune responses, particularly in the settings of viral infections and cancer. CD4+ and CD8+ Treg subsets may also share similar cytotoxic properties with conventional Teffs. Cytotoxic effector Treg (cyTreg) are a heterogeneous population in the periphery that retain the capacity to suppress T-cell proliferation and activation, induce cellular apoptosis, and migrate to tissues to ensure immune homeostasis. The latter can occur through several cytolytic mechanisms, including the Granzyme/Perforin and Fas/FasL signaling pathways. This review focuses on the current knowledge and recent advances in our understanding of cyTreg and their potential application in the treatment of human disease, particularly Graft-versus-Host Disease (GVHD).
Collapse
Affiliation(s)
| | | | | | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
31
|
Agbogan VA, Gastineau P, Tejerina E, Karray S, Zavala F. CpG-Activated Regulatory B-Cell Progenitors Alleviate Murine Graft-Versus-Host-Disease. Front Immunol 2022; 13:790564. [PMID: 35479094 PMCID: PMC9035844 DOI: 10.3389/fimmu.2022.790564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Development of Graft Versus Host Disease (GVHD) represents a major impediment in allogeneic hematopoietic stem cell transplantation (HSCT). The observation that the presence of bone marrow and circulating hematogones correlated with reduced GVHD risks prompted us to evaluate whether B-cell progenitors, which provide protection in various autoimmune disease models following activation with the TLR-9 agonist CpG (CpG-proBs), could likewise reduce this allogeneic disorder. In a murine model of GVHD that recapitulates an initial phase of acute GVHD followed by a phase of chronic sclerodermatous GVHD, we found that CpG-proBs, adoptively transferred during the initial phase of disease, reduced the diarrhea score and mostly prevented cutaneous fibrosis. Progenitors migrated to the draining lymph nodes and to the skin where they mainly differentiated into follicular B cells. CpG activation and IFN-γ expression were required for the protective effect, which resulted in reduced CD4+ T-cell-derived production of critical cytokines such as TGF-β, IL-13 and IL-21. Adoptive transfer of CpG-proBs increased the T follicular regulatory to T follicular helper (Tfr/Tfh) ratio. Moreover, CpG-proBs privileged the accumulation of IL-10-positive CD8+ T cells, B cells and dendritic cells in the skin. However, CpG-proBs did not improve survival. Altogether, our findings support the notion that adoptively transferred CpG-proBs exert immunomodulating effect that alleviates symptoms of GVHD but require additional anti-inflammatory strategy to improve survival.
Collapse
Affiliation(s)
- Viviane A. Agbogan
- Université Paris Cité, INSERM U1151, CNRS UMR8152, Institut Necker Enfants Malades (INEM), Paris, France
| | - Pauline Gastineau
- Université Paris Cité, INSERM U1151, CNRS UMR8152, Institut Necker Enfants Malades (INEM), Paris, France
| | - Emmanuel Tejerina
- Université Paris Cité, INSERM U1151, CNRS UMR8152, Institut Necker Enfants Malades (INEM), Paris, France
| | - Saoussen Karray
- Université Paris Cité, INSERM U976, Institut de Recherche Saint-Louis (IRSL), Hôpital Saint-Louis, Paris, France
| | - Flora Zavala
- Université Paris Cité, INSERM U1151, CNRS UMR8152, Institut Necker Enfants Malades (INEM), Paris, France
- *Correspondence: Flora Zavala, ; orcid.org/0000-0002-2338-6802
| |
Collapse
|
32
|
Thangavelu G, Zaiken MC, Mohamed FA, Flynn R, Du J, Rhee SY, Riddle MJ, Aguilar EG, Panoskaltsis-Mortari A, Sanders ME, Blazar BR. Targeting the Retinoid X Receptor Pathway Prevents and Ameliorates Murine Chronic Graft-Versus-Host Disease. Front Immunol 2022; 13:765319. [PMID: 35359939 PMCID: PMC8963714 DOI: 10.3389/fimmu.2022.765319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/26/2022] [Indexed: 02/03/2023] Open
Abstract
Most allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients receive peripheral blood stem cell grafts resulting in a 30%-70% incidence of chronic graft-versus-host disease (cGVHD), a major cause of mortality and morbidity in long-term survivors. While systemic steroids remain the standard of care for first-line therapy, patients may require long-term administration, and those with steroid-resistant or refractory cGVHD have a worse prognosis. Although durable and deep responses with second-line therapies can be achieved in some patients, there remains an urgent need for new therapies. In this study, we evaluated the efficacy of IRX4204, a novel agonist that activates RXRs and is in clinical trials for cancer treatment to prevent and treat cGVHD in two complementary murine models. In a major histocompatibility complex mismatched, non-sclerodermatous multiorgan system model with bronchiolitis obliterans, IRX4204 prevented and reversed cGVHD including associated pulmonary dysfunction with restoration of germinal center T-follicular helper: T-follicular regulatory cell balance. In a minor histocompatibility antigen disparate sclerodermatous model, IRX4204 treatment significantly prevented and ameliorated skin cGVHD by reducing Th1 and Th17 differentiation due to anti-inflammatory properties. Together, these results indicate that IRX4204 is a promising therapeutic option to treat cGVHD with bronchiolitis obliterans or sclerodermatous manifestations.
Collapse
Affiliation(s)
- Govindarajan Thangavelu
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Michael C. Zaiken
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Fathima A. Mohamed
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Ryan Flynn
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Jing Du
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Stephanie Y. Rhee
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Megan J. Riddle
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Ethan G. Aguilar
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | - Angela Panoskaltsis-Mortari
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| | | | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
33
|
Sobkowiak-Sobierajska A, Lindemans C, Sykora T, Wachowiak J, Dalle JH, Bonig H, Gennery A, Lawitschka A. Management of Chronic Graft-vs.-Host Disease in Children and Adolescents With ALL: Present Status and Model for a Personalised Management Plan. Front Pediatr 2022; 10:808103. [PMID: 35252060 PMCID: PMC8894895 DOI: 10.3389/fped.2022.808103] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022] Open
Abstract
Herein we review current practice regarding the management of chronic graft-vs.-host disease (cGvHD) in paediatric patients after allogeneic haematopoietic stem cell transplantation (HSCT) for acute lymphoblastic leukaemia (ALL). Topics covered include: (i) the epidemiology of cGvHD; (ii) an overview of advances in our understanding cGvHD pathogenesis; (iii) current knowledge regarding risk factors for cGvHD and prevention strategies complemented by biomarkers; (iii) the paediatric aspects of the 2014 National Institutes for Health-defined diagnosis and grading of cGvHD; and (iv) current options for cGvHD treatment. We cover topical therapy and newly approved tyrosine kinase inhibitors, emphasising the use of immunomodulatory approaches in the context of the delicate counterbalance between immunosuppression and immune reconstitution as well as risks of relapse and infectious complications. We examine real-world approaches of response assessment and tapering schedules of treatment. Furthermore, we report on the optimal timepoints for therapeutic interventions and changes in relation to immune reconstitution and risk of relapse/infection. Additionally, we review the different options for anti-infectious prophylaxis. Finally, we put forth a theory of a holistic view of paediatric cGvHD and its associated manifestations and propose a checklist for individualised risk evaluation with aggregated considerations including site-specific cGvHD evaluation with attention to each individual's GvHD history, previous medical history, comorbidities, and personal tolerance and psychosocial circumstances. To complement this checklist, we present a treatment algorithm using representative patients to inform the personalised management plans for patients with cGvHD after HSCT for ALL who are at high risk of relapse.
Collapse
Affiliation(s)
| | - Caroline Lindemans
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Pediatric Blood and Bone Marrow Transplantation, Princess Máxima Center, Utrecht, Netherlands
| | - Tomas Sykora
- Department of Pediatric Hematology and Oncology - Haematopoietic Stem Cell Transplantation Unit, National Institute of Children's Diseases and Medical Faculty, Comenius University, Bratislava, Slovakia
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jean-Hugues Dalle
- Hematology and Immunology Department, Robert-Debré Hospital, Assistance Publique-Hôpitaux de Paris and University of Paris, Paris, France
| | - Halvard Bonig
- Goethe University Medical Center, Institute of Transfusion Medicine and Immunohematology, and German Red Cross Blood Center Frankfurt, Frankfurt, Germany
| | - Andrew Gennery
- Medical School, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Anita Lawitschka
- Stem Cell Transplantation Unit, St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria.,St. Anna Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
34
|
Landwehr-Kenzel S, Zobel A, Schmitt-Knosalla I, Forke A, Hoffmann H, Schmueck-Henneresse M, Klopfleisch R, Volk HD, Reinke P. Cyclosporine A but Not Corticosteroids Support Efficacy of Ex Vivo Expanded, Adoptively Transferred Human Tregs in GvHD. Front Immunol 2021; 12:716629. [PMID: 34707604 PMCID: PMC8543016 DOI: 10.3389/fimmu.2021.716629] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Reshaping the immune balance by adoptive transfer of regulatory T-cells (Tregs) has emerged as a promising strategy to combat undesired immune reactions, including in Graft-versus-Host Disease (GvHD), which is the most lethal non-relapse complication of allogeneic hematopoietic stem cell transplantation. Currently however, little is known about the potentially inhibitory in vivo effects of conventional immunosuppressive drugs, which are routinely used to treat GvHD, on adoptively transferred Tregs. Here we demonstrate drug-specific effects of the conventional immunosuppressive drugs Cyclosporine A, Mycophenolate mofetil and methylprednisolone on adoptively transferred Tregs in a humanized NOD/SCID/IL2Rgamma-/- GvHD mouse model. The clinical course of GvHD and postmortem organ histology, including cellular organ infiltration, showed that co-administration of Cyclosporine A and Tregs is highly beneficial as it enhanced Treg accumulation at inflammatory sites like lung and liver. Similarly, co-administration of Mycophenolate mofetil and Tregs improved clinical signs of GvHD. In contrast, co-administration of methylprednisolone and Tregs resulted in reduced Treg recruitment to inflammatory sites and the fast deterioration of some animals. Consequently, when clinical trials investigating safety and efficacy of adjunctive Treg therapy in GvHD are designed, we suggest co-administering Cyclosporine A, whereas high doses of glucocorticosteroids should be avoided.
Collapse
Affiliation(s)
- Sybille Landwehr-Kenzel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Zobel
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Isabela Schmitt-Knosalla
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Forke
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Henrike Hoffmann
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Michael Schmueck-Henneresse
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Medicine, Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Hans-Dieter Volk
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Institute of Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Petra Reinke
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, BIH-Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Nephrology and Internal Intensive Care Medicine, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
35
|
Holtzman NG, Pavletic SZ. The clinical landscape of chronic graft-versus-host disease management in 2021. Br J Haematol 2021; 196:830-848. [PMID: 34599519 DOI: 10.1111/bjh.17835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 12/16/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is an important systemic complication of allogeneic haematopoietic stem cell transplantation with heterogeneous, multi-organ involvement that can lead to increased morbidity and mortality. Despite significant advances in understanding the complex pathophysiology driving the disease, curative treatment options remain suboptimal. The past decade, however, has seen much growth in collaborative research efforts and standardization of criteria for clinical trials that have led to discovery of several new second-line therapies in cGVHD. The key to successful cGVHD control and management includes a comprehensive and sustained multidisciplinary effort with emphasis on ancillary and supportive care for these patients. The focus of this review is to summarize the new developments in systemic, organ-specific, and topical treatments in the management of cGVHD that emerged since the 2014 NIH consensus conference.
Collapse
Affiliation(s)
- Noa G Holtzman
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Steven Z Pavletic
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
36
|
Nicholls J, Cao B, Le Texier L, Xiong LY, Hunter CR, Llanes G, Aguliar EG, Schroder WA, Phipps S, Lynch JP, Cao H, Heazlewood SY, Williams B, Clouston AD, Nefzger CM, Polo JM, Nilsson SK, Blazar BR, MacDonald KPA. Bone Marrow Regulatory T Cells Are a Unique Population, Supported by Niche-Specific Cytokines and Plasmacytoid Dendritic Cells, and Required for Chronic Graft-Versus-Host Disease Control. Front Cell Dev Biol 2021; 9:737880. [PMID: 34631716 PMCID: PMC8493124 DOI: 10.3389/fcell.2021.737880] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Regulatory T cell (Treg) reconstitution is essential for reestablishing tolerance and maintaining homeostasis following stem-cell transplantation. We previously reported that bone marrow (BM) is highly enriched in autophagy-dependent Treg and autophagy disruption leads to a significant Treg loss, particularly BM-Treg. To correct the known Treg deficiency observed in chronic graft-versus-host disease (cGVHD) patients, low dose IL-2 infusion has been administered, substantially increasing peripheral Treg (pTreg) numbers. However, as clinical responses were only seen in ∼50% of patients, we postulated that pTreg augmentation was more robust than for BM-Treg. We show that BM-Treg and pTreg have distinct characteristics, indicated by differential transcriptome expression for chemokine receptors, transcription factors, cell cycle control of replication and genes linked to Treg function. Further, BM-Treg were more quiescent, expressed lower FoxP3, were highly enriched for co-inhibitory markers and more profoundly depleted than splenic Treg in cGVHD mice. In vivo our data are consistent with the BM and not splenic microenvironment is, at least in part, driving this BM-Treg signature, as adoptively transferred splenic Treg that entered the BM niche acquired a BM-Treg phenotype. Analyses identified upregulated expression of IL-9R, IL-33R, and IL-7R in BM-Treg. Administration of the T cell produced cytokine IL-2 was required by splenic Treg expansion but had no impact on BM-Treg, whereas the converse was true for IL-9 administration. Plasmacytoid dendritic cells (pDCs) within the BM also may contribute to BM-Treg maintenance. Using pDC-specific BDCA2-DTR mice in which diptheria toxin administration results in global pDC depletion, we demonstrate that pDC depletion hampers BM, but not splenic, Treg homeostasis. Together, these data provide evidence that BM-Treg and splenic Treg are phenotypically and functionally distinct and influenced by niche-specific mediators that selectively support their respective Treg populations. The unique properties of BM-Treg should be considered for new therapies to reconstitute Treg and reestablish tolerance following SCT.
Collapse
Affiliation(s)
- Jemma Nicholls
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Benjamin Cao
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Laetitia Le Texier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Laura Yan Xiong
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christopher R. Hunter
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Genesis Llanes
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ethan G. Aguliar
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Wayne A. Schroder
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Simon Phipps
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jason P. Lynch
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Huimin Cao
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Shen Y. Heazlewood
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Brenda Williams
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | | | - Christian M. Nefzger
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jose M. Polo
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Susan K. Nilsson
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Kelli P. A. MacDonald
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
37
|
Song Q, Kong X, Martin PJ, Zeng D. Murine Models Provide New Insights Into Pathogenesis of Chronic Graft- Versus-Host Disease in Humans. Front Immunol 2021; 12:700857. [PMID: 34539630 PMCID: PMC8446193 DOI: 10.3389/fimmu.2021.700857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a curative therapy for hematologic malignancies, but its success is complicated by graft-versus-host disease (GVHD). GVHD can be divided into acute and chronic types. Acute GVHD represents an acute alloimmune inflammatory response initiated by donor T cells that recognize recipient alloantigens. Chronic GVHD has a more complex pathophysiology involving donor-derived T cells that recognize recipient-specific antigens, donor-specific antigens, and antigens shared by the recipient and donor. Antibodies produced by donor B cells contribute to the pathogenesis of chronic GVHD but not acute GVHD. Acute GVHD can often be effectively controlled by treatment with corticosteroids or other immunosuppressant for a period of weeks, but successful control of chronic GVHD requires much longer treatment. Therefore, chronic GVHD remains the major cause of long-term morbidity and mortality after allo-HCT. Murine models of allo-HCT have made great contributions to our understanding pathogenesis of acute and chronic GVHD. In this review, we summarize new mechanistic findings from murine models of chronic GVHD, and we discuss the relevance of these insights to chronic GVHD pathogenesis in humans and their potential impact on clinical prevention and treatment.
Collapse
Affiliation(s)
- Qingxiao Song
- Riggs Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States.,Fujian Medical University Center of Translational Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaohui Kong
- Riggs Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Paul J Martin
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Department of Medicine, University of Washington, Seattle, WA, United States
| | - Defu Zeng
- Riggs Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
38
|
Ikegawa S, Matsuoka KI. Harnessing Treg Homeostasis to Optimize Posttransplant Immunity: Current Concepts and Future Perspectives. Front Immunol 2021; 12:713358. [PMID: 34526990 PMCID: PMC8435715 DOI: 10.3389/fimmu.2021.713358] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
CD4+CD25+Foxp3+ regulatory T cells (Tregs) are functionally distinct subsets of mature T cells with broad suppressive activity and have been shown to play an important role in the establishment of immune tolerance after allogeneic hematopoietic stem cell transplantation (HSCT). Tregs exhibit an activated phenotype from the stage of emigration from the thymus and maintain continuous proliferation in the periphery. The distinctive feature in homeostasis enables Tregs to respond sensitively to small environmental changes and exert necessary and sufficient immune suppression; however, on the other hand, it also predisposes Tregs to be susceptible to apoptosis in the inflammatory condition post-transplant. Our studies have attempted to define the intrinsic and extrinsic factors affecting Treg homeostasis from the acute to chronic phases after allogeneic HSCT. We have found that altered cytokine environment in the prolonged post-HSCT lymphopenia or peri-transplant use of immune checkpoint inhibitors could hamper Treg reconstitution, leading to refractory graft-versus-host disease. Using murine models and clinical trials, we have also demonstrated that proper intervention with low-dose interleukin-2 or post-transplant cyclophosphamide could restore Treg homeostasis and further amplify the suppressive function after HSCT. The purpose of this review is to reconsider the distinctive characteristics of post-transplant Treg homeostasis and discuss how to harness Treg homeostasis to optimize posttransplant immunity for developing a safe and efficient therapeutic strategy.
Collapse
Affiliation(s)
- Shuntaro Ikegawa
- Department of Hematology and Oncology, Okayama University, Okayama, Japan.,Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, United States
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University, Okayama, Japan
| |
Collapse
|
39
|
Abstract
Cellular therapies such as allogeneic hematopoietic stem cell transplantation (HSCT) and immune-effector cell therapy (IECT) continue to have a critical role in the treatment of patients with high risk malignancies and hematologic conditions. These therapies are also associated with inflammatory conditions such as graft-versus-host disease (GVHD) and cytokine release syndrome (CRS) which contribute significantly to the morbidity and mortality associated with these therapies. Recent advances in our understanding of the immunological mechanisms that underly GVHD and CRS highlight an important role for Janus kinases (JAK). JAK pathways are important for the signaling of several cytokines and are involved in the activation and proliferation of several immune cell subsets. In this review, we provide an overview of the preclinical and clinical evidence supporting the use of JAK inhibitors for acute and chronic GVHD and CRS.
Collapse
Affiliation(s)
- Amer Assal
- Department of Medicine, Bone Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, NY, United States
| | - Markus Y. Mapara
- Department of Medicine, Bone Marrow Transplantation and Cell Therapy Program, Columbia University Irving Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University, New York, NY, United States
| |
Collapse
|
40
|
Teshima T, Hill GR. The Pathophysiology and Treatment of Graft- Versus-Host Disease: Lessons Learnt From Animal Models. Front Immunol 2021; 12:715424. [PMID: 34489966 PMCID: PMC8417310 DOI: 10.3389/fimmu.2021.715424] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic cell transplantation (HCT) is a curative treatment for hematologic malignancies, bone marrow failure syndromes, and inherited immunodeficiencies and metabolic diseases. Graft-versus-host disease (GVHD) is the major life-threatening complication after allogeneic HCT. New insights into the pathophysiology of GVHD garnered from our understanding of the immunological pathways within animal models have been pivotal in driving new therapeutic paradigms in the clinic. Successful clinical translations include histocompatibility matching, GVHD prophylaxis using cyclosporine and methotrexate, posttransplant cyclophosphamide, and the use of broad kinase inhibitors that inhibit cytokine signaling (e.g. ruxolitinib). New approaches focus on naïve T cell depletion, targeted cytokine modulation and the inhibition of co-stimulation. This review highlights the use of animal transplantation models to guide new therapeutic principles.
Collapse
Affiliation(s)
- Takanori Teshima
- Department of Hematology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Geoffrey R. Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Division of Medical Oncology, The University of Washington, Seattle, WA, United States
| |
Collapse
|
41
|
Serpenti F, Lorentino F, Marktel S, Milani R, Messina C, Greco R, Girlanda S, Clerici D, Giglio F, Liberatore C, Farina F, Mastaglio S, Piemontese S, Guggiari E, Lunghi F, Marcatti M, Carrabba MG, Bernardi M, Bonini C, Assanelli A, Corti C, Peccatori J, Ciceri F, Lupo-Stanghellini MT. Immune Reconstitution-Based Score for Risk Stratification of Chronic Graft-Versus-Host Disease Patients. Front Oncol 2021; 11:705568. [PMID: 34367991 PMCID: PMC8341942 DOI: 10.3389/fonc.2021.705568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction Allogeneic stem cell transplantation survivors are at a relevant risk of developing chronic GvHD (cGvHD), which importantly affects quality of life and increases morbidity and mortality. Early identification of patients at risk of cGvHD-related morbidity could represent a relevant tool to tailor preventive strategies. The aim of this study was to evaluate the prognostic power of immune reconstitution (IR) at cGvHD onset through an IR-based score. Methods We analyzed data from 411 adult patients consecutively transplanted between January 2011 and December 2016 at our Institution: 151 patients developed cGvHD (median follow-up 4 years). A first set of 111 consecutive patients with cGvHD entered the test cohort while an additional consecutive 40 patients represented the validation cohort. A Cox multivariate model for OS (overall survival) in patients with cGvHD of any severity allowed the identification of six variables independently predicting OS and TRM (transplant-related mortality). A formula for a prognostic risk index using the β coefficients derived from the model was designed. Each patient was assigned a score defining three groups of risk (low, intermediate, and high). Results Our multivariate model defined the variables independently predicting OS at cGvHD onset: CD4+ >233 cells/mm3, NK <115 cells/mm3, IgA <0.43g/L, IgM <0.45g/L, Karnofsky PS <80%, platelets <100x103/mm3. Low-risk patients were defined as having a score ≤3.09, intermediate-risk patients >3.09 and ≤6.9, and high-risk patients >6.9. By ROC analysis, we identified a cut-off of 6.310 for both TRM and overall mortality. In the training cohort, the 6-year OS and TRM from cGvHD occurrence were 85% (95% CI, 70-92) and 13% (95% CI, 5-25) for low-risk, 64% (95% CI, 44-89) and 30% (95% CI, 15-47) for intermediate-risk, 26% (95% CI, 10-47), and 42% (95% CI, 19-63) for high-risk patients (OS p<0.0001; TRM p = 0.015). The validation cohort confirmed the model with a 6-year OS and TRM of 83% (95% CI, 48-96) and 8% (95% CI, 1-32) for low-risk, 78% (95% CI, 37-94) and 11% (95% CI, 1-41) for intermediate-risk, 37% (95% CI, 17-58), and 63% (95% CI, 36-81) for high-risk patients (OS p = 0.0075; TRM p = 0.0009). Conclusions IR score at diagnosis of cGvHD predicts GvHD severity and overall survival. IR score may contribute to the risk stratification of patients. If confirmed in a larger and multicenter-based study, IR score could be adopted to identify patients at high risk and modulate cGvHD treatments accordingly in the context of clinical trial.
Collapse
Affiliation(s)
- Fabio Serpenti
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Lorentino
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,PhD Program in Public Health, School of Medicine and Surgery, University of Milano Bicocca, Milan, Italy
| | - Sarah Marktel
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Milani
- Immunohematology and Transfusion Medicine Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Messina
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Raffaella Greco
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Girlanda
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Clerici
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Giglio
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carmine Liberatore
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Farina
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Mastaglio
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simona Piemontese
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elena Guggiari
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Lunghi
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Magda Marcatti
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo G Carrabba
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Bernardi
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- University Vita-Salute, Milan, Italy.,Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Assanelli
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Consuelo Corti
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jacopo Peccatori
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,University Vita-Salute, Milan, Italy
| | | |
Collapse
|
42
|
Amat P, López-Corral L, Goterris R, Pérez A, López O, Heras I, Arbona C, Viguria MC, Hernández-Boluda JC, Martínez-Ruiz F, Martínez A, Solano C. Biomarker profile predicts clinical efficacy of extracorporeal photopheresis in steroid-resistant acute and chronic graft-vs-host disease after allogenic hematopoietic stem cell transplant. J Clin Apher 2021; 36:697-710. [PMID: 34185332 DOI: 10.1002/jca.21918] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 05/10/2021] [Accepted: 06/04/2021] [Indexed: 01/21/2023]
Abstract
We conducted a multicenter interventional study to assess the efficacy of Therakos ECP to treat steroid-resistant graft-vs-host disease (SRes-GVHD) after allogeneic HSCT and to identify biomarkers of GVHD response. A total of 62 patients were treated for acute SRes-GVHD (n = 37) or chronic SRes-GVHD (n = 25). Median time to best response was 35 days (range, 28-85) and 90 days (range, 27-240) in acute and chronic SRes-GVHD, respectively. Overall, 27 patients (72.9%) with SRes-aGVHD responded to treatment (40.5% CR and 32.4% PR). The response rate was significantly higher in grade I-II than in grade III-IV aGVHD (100% vs 50.0%, respectively, P-value = .001). In chronic SRes-GVHD, 22 patients (88%) achieved a clinical response (24.0% CR and 64% PR). Response was higher in moderate than in severe SRes-cGVHD (100% vs 75%, P = .096). In both acute and chronic SRes-GVHD patients, the percentage of peripheral blood CD3+ CD4+ was higher and CD3+ CD8+ lower in responding than nonresponding patients. Acute SRes-GVHD responding patients presented a higher number of Treg cells (CD4+ CD25+ CD127low/- ) at day 0 (P = .028) than nonresponding patients, differences that were maintained over the observation period. Phenotypic analysis of T-cell maturation showed a trend toward reduction in TCD8 naive cells, along with an increased percentage of TCD8 Mem Efect T cells after starting ECP in responding patients. None of the studied serum cytokines displayed statistically significant changes in either acute or chronic SRes-GVHD. ECP is an effective treatment for patients with SRes-GVHD. Biomarkers could help guide decision-making on ECP treatment initiation and duration.
Collapse
Affiliation(s)
- Paula Amat
- Department of Hematology, Hospital Clínico Universitario-INCLIVA, Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - Lucía López-Corral
- Department of Hematology, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Rosa Goterris
- Department of Hematology, Hospital Clínico Universitario-INCLIVA, Valencia, Spain
| | - Ariadna Pérez
- Department of Hematology, Hospital Clínico Universitario-INCLIVA, Valencia, Spain
| | - Olga López
- Department of Hematology, Hospital Universitario de Salamanca, Salamanca, Spain
| | - Inmaculada Heras
- Department of Hematology, Hospital Universitario Morales Messenger, Murcia, Spain
| | - Cristina Arbona
- Department of Hematology, Hospital Clínico Universitario-INCLIVA, Valencia, Spain
| | | | - Juan Carlos Hernández-Boluda
- Department of Hematology, Hospital Clínico Universitario-INCLIVA, Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - Francisco Martínez-Ruiz
- Department of Statistics, Faculty of Mathematics Science, University of Valencia, Valencia, Spain
| | - Andreu Martínez
- Department of Hematology, Hospital Clínico Universitario-INCLIVA, Valencia, Spain
| | - Carlos Solano
- Department of Hematology, Hospital Clínico Universitario-INCLIVA, Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
43
|
DNAM-1 regulates Foxp3 expression in regulatory T cells by interfering with TIGIT under inflammatory conditions. Proc Natl Acad Sci U S A 2021; 118:2021309118. [PMID: 34011606 DOI: 10.1073/pnas.2021309118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Regulatory T (Treg) cells that express forkhead box P3 (Foxp3) are pivotal for immune tolerance. Although inflammatory mediators cause Foxp3 instability and Treg cell dysfunction, their regulatory mechanisms remain incompletely understood. Here, we show that the transfer of Treg cells deficient in the activating immunoreceptor DNAM-1 ameliorated the development of graft-versus-host disease better than did wild-type Treg cells. We found that DNAM-1 competes with T cell immunoreceptor with Ig and ITIM domains (TIGIT) in binding to their common ligand CD155 and therefore regulates TIGIT signaling to down-regulate Treg cell function without DNAM-1-mediated intracellular signaling. DNAM-1 deficiency augments TIGIT signaling; this subsequently inhibits activation of the protein kinase B-mammalian target of rapamycin complex 1 pathway, resulting in the maintenance of Foxp3 expression and Treg cell function under inflammatory conditions. These findings demonstrate that DNAM-1 regulates Treg cell function via TIGIT signaling and thus, it is a potential molecular target for augmenting Treg function in inflammatory diseases.
Collapse
|
44
|
Sugiura H, Matsuoka KI, Fukumi T, Sumii Y, Kondo T, Ikegawa S, Meguri Y, Iwamoto M, Sando Y, Nakamura M, Toji T, Ishii Y, Maeda Y. Donor Treg expansion by liposomal α-galactosylceramide modulates Tfh cells and prevents sclerodermatous chronic graft-versus-host disease. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:721-733. [PMID: 33942544 PMCID: PMC8342231 DOI: 10.1002/iid3.425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 02/14/2021] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
Background and Aim Chronic graft‐versus‐host disease (cGVHD) is a major cause of nonrelapse morbidity and mortality following hematopoietic stem cell transplantation (HSCT). α‐Galactosylceramide (α‐GC) is a synthetic glycolipid that is recognized by the invariant T‐cell receptor of invariant natural killer T (iNKT) cells in a CD1d‐restricted manner. Stimulation of iNKT cells by α‐GC leads to the production of not only immune‐stimulatory cytokines but also immune‐regulatory cytokines followed by regulatory T‐cell (Treg) expansion in vivo. Methods We investigated the effect of iNKT stimulation by liposomal α‐GC just after transplant on the subsequent immune reconstitution and the development of sclerodermatous cGVHD. Results Our study showed that multiple administrations of liposomal α‐GC modulated both host‐ and donor‐derived iNKT cell homeostasis and induced an early expansion of donor Tregs. We also demonstrated that the immune modulation of the acute phase was followed by the decreased levels of CXCL13 in plasma and follicular helper T cells in lymph nodes, which inhibited germinal center formation, resulting in the efficient prevention of sclerodermatous cGVHD. Conclusions These data demonstrated an important coordination of T‐ and B‐cell immunity in the pathogenesis of cGVHD and may provide a novel clinical strategy for the induction of immune tolerance after allogeneic HSCT.
Collapse
Affiliation(s)
- Hiroyuki Sugiura
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Ken-Ichi Matsuoka
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takuya Fukumi
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yuichi Sumii
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takumi Kondo
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shuntaro Ikegawa
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yusuke Meguri
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Miki Iwamoto
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasuhisa Sando
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Makoto Nakamura
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tomohiro Toji
- Department of Pathology, Okayama University Hospital, Okayama, Japan
| | - Yasuyuki Ishii
- REGiMMUNE Corporation, Tokyo, Japan.,Department of Immunological Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshinobu Maeda
- Department of Hematology and Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
45
|
Ye Y, Wang M, Huang H. Follicular regulatory T cell biology and its role in immune-mediated diseases. J Leukoc Biol 2021; 110:239-255. [PMID: 33938586 DOI: 10.1002/jlb.1mr0321-601rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Follicular regulatory T (Tfr) cells are recently found to be a special subgroup of regulatory T (Treg) cells. Tfr cells play an important role in regulating the germinal center (GC) response, especially modulating follicular helper T (Tfh) cells and GC-B cells, thereby affecting the production of antibodies. Tfr cells are involved in the generation and development of many immune-related and inflammatory diseases. This article summarizes the advances in several aspects of Tfr cell biology, with special focus on definition and phenotype, development and differentiation, regulatory factors, functions, and interactions with T/B cells and molecules involved in performance and regulation of Tfr function. Finally, we highlight the current understanding of Tfr cells involvement in autoimmunity and alloreactivity, and describe some drugs targeting Tfr cells. These latest studies have answered some basic questions in Tfr cell biology and explored the roles of Tfr cells in immune-mediated diseases.
Collapse
Affiliation(s)
- Yishan Ye
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - Mowang Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China
| |
Collapse
|
46
|
Jacobsen N, Frisch T, Keiding N, Heilmann C, Sengeløv H, Madsen HO, Marquart H, Dickmeiss E, Andersen MK, Christiansen CB, Ryder LP. High preharvest donor Foxp3 mRNA level predicts late relapse of acute lymphoblastic leukaemia after haematopoietic stem cell transplantation. Eur J Haematol 2021; 106:643-653. [PMID: 33527553 PMCID: PMC8248440 DOI: 10.1111/ejh.13591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/26/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The curative effect of allogeneic haematopoietic stem cell transplantation (HSCT) for acute leukaemia is due in part to the donor T cell-mediated graft-versus-leukaemia immune reaction (GvL). Several studies have suggested that donor CD25+CD4+Foxp3+regulator T cells (Tregs) may decrease graft-versus-host disease (GvHD) without abrogating GVL. This notion may need modification in acute lymphoblastic leukaemia (ALL). METHODS Foxp3 mRNA level was measured by qPCR in preharvest donor blood CD4+ T cells. The study comprised 45 patients with ALL in 1st or 2nd CR who received myeloablative HSCT using T-replete bone marrow grafts. RESULTS Relapse occurred in 17 patients median 363 days after HSCT. The relapse risk was estimated by Cox univariate and multivariate proportional hazard regression. The proportionality assumption was met by analysing the preharvest donor Foxp3 mRNA level as a time-dependent covariate. Early relapse was not modified by the Foxp3 mRNA level. However, a higher Foxp3 mRNA level was associated with a significantly increased relapse risk after day 363 after transplantation, compatible with inhibition of GvL. In contrast, a higher preharvest donor CD4+ T-cell concentration was associated with reduced relapse risk. CONCLUSION A higher preharvest donor Foxp3 mRNA level may be predictive of late ALL relapse after HSCT.
Collapse
Affiliation(s)
- Niels Jacobsen
- Department of HaematologyRigshospitalet University HospitalCopenhagenDenmark
| | - Tina Frisch
- Department of Clinical ImmunologyTissue Typing LaboratoryRigshospitalet University HospitalCopenhagenDenmark
| | - Niels Keiding
- Department of BiostatisticsFaculty of Health SciCopenhagen UniversityCopenhagenDenmark
| | - Carsten Heilmann
- Paediatric and Adolescence MedicineRigshospitalet University HospitalCopenhagenDenmark
| | - Henrik Sengeløv
- Department of HaematologyRigshospitalet University HospitalCopenhagenDenmark
| | - Hans O. Madsen
- Department of Clinical ImmunologyTissue Typing LaboratoryRigshospitalet University HospitalCopenhagenDenmark
| | - Hanne Marquart
- Department of Clinical ImmunologyTissue Typing LaboratoryRigshospitalet University HospitalCopenhagenDenmark
| | - Ebbe Dickmeiss
- Department of Clinical ImmunologyTissue Typing LaboratoryRigshospitalet University HospitalCopenhagenDenmark
| | - Mette K. Andersen
- Department of Clinical GeneticsRigshospitalet University HospitalCopenhagenDenmark
| | - Claus B. Christiansen
- Department of Clinical MicrobiologyRigshospitalet University HospitalCopenhagenDenmark
| | - Lars P. Ryder
- Department of Clinical ImmunologyTissue Typing LaboratoryRigshospitalet University HospitalCopenhagenDenmark
| |
Collapse
|
47
|
Graßhoff H, Comdühr S, Monne LR, Müller A, Lamprecht P, Riemekasten G, Humrich JY. Low-Dose IL-2 Therapy in Autoimmune and Rheumatic Diseases. Front Immunol 2021; 12:648408. [PMID: 33868284 PMCID: PMC8047324 DOI: 10.3389/fimmu.2021.648408] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Treg) are crucial for the maintenance of peripheral tolerance and for the control of ongoing inflammation and autoimmunity. The cytokine interleukin-2 (IL-2) is essentially required for the growth and survival of Treg in the peripheral lymphatic tissues and thus plays a vital role in the biology of Treg. Most autoimmune and rheumatic diseases exhibit disturbances in Treg biology either at a numerical or functional level resulting in an imbalance between protective and pathogenic immune cells. In addition, in some autoimmune diseases, a relative deficiency of IL-2 develops during disease pathogenesis leading to a disturbance of Treg homeostasis, which further amplifies the vicious cycle of tolerance breach and chronic inflammation. Low-dose IL-2 therapy aims either to compensate for this IL-2 deficiency to restore a physiological state or to strengthen the Treg population in order to be more effective in counter-regulating inflammation while avoiding global immunosuppression. Here we highlight key findings and summarize recent advances in the clinical translation of low-dose IL-2 therapy for the treatment of autoimmune and rheumatic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jens Y. Humrich
- Department of Rheumatology and Clinical Immunology, University Hospital Schleswig-Holstein Lübeck, Lübeck, Germany
| |
Collapse
|
48
|
Ritacco C, Ehx G, Grégoire C, Daulne C, Willems E, Servais S, Beguin Y, Baron F. High proportion of terminally differentiated regulatory T cells after allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant 2021; 56:1828-1841. [PMID: 33664462 DOI: 10.1038/s41409-021-01221-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/25/2020] [Accepted: 01/08/2021] [Indexed: 11/09/2022]
Abstract
It is now well-established that regulatory T cells (Treg) represent a heterogeneous group of CD4+ T cells. Previous studies have demonstrated that Treg homeostasis was impacted by allogeneic hematopoietic cell transplantation (allo-HCT) and particularly so in patients with chronic graft-versus-host disease (GVHD). Here, we first assessed the ability of various Treg subsets to phosphorylate STAT5 in response to IL-2 or IL-7 stimulation in vitro. We then compared the frequencies of different Treg subtypes in healthy controls as well as in allo-HCT patients with or without chronic GVHD. The highest phosphorylated STAT5 (pSTAT5) signal in response to IL-2 was observed in the CD45RO+CD26-CD39+HLA-DR+ Treg fraction. In contrast, naive Treg were mostly less susceptible to IL-2 stimulation in vitro. Following IL-7 stimulation, most Treg subpopulations upregulated pSTAT5 expression but to a lesser extent than conventional T cells. Compared to healthy controls, allo-HCT patients had lower frequencies of the naive CD45RAbrightCD26+ Treg subpopulation but higher frequencies of the most differentiated memory CD45RO+CD26-CD39+ Treg subpopulations. Further, unbiased analysis revealed that six Treg clusters characterized by high expression of CD25, HLA-DR, and ICOS were significantly more frequent in patients with no or with limited chronic GVHD than in those with moderate/severe chronic GVHD.
Collapse
Affiliation(s)
- Caroline Ritacco
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium
| | - Grégory Ehx
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium
| | - Céline Grégoire
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Coline Daulne
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium
| | - Evelyne Willems
- Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Sophie Servais
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Yves Beguin
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium.,Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium
| | - Frédéric Baron
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I³, University of Liège, Liège, Belgium. .,Division of Hematology, Department of Medicine, CHU of Liège, Liège, Belgium.
| |
Collapse
|
49
|
Williams KM, Inamoto Y, Im A, Hamilton B, Koreth J, Arora M, Pusic I, Mays JW, Carpenter PA, Luznik L, Reddy P, Ritz J, Greinix H, Paczesny S, Blazar BR, Pidala J, Cutler C, Wolff D, Schultz KR, Pavletic SZ, Lee SJ, Martin PJ, Socie G, Sarantopoulos S. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: I. The 2020 Etiology and Prevention Working Group Report. Transplant Cell Ther 2021; 27:452-466. [PMID: 33877965 DOI: 10.1016/j.jtct.2021.02.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Preventing chronic graft-versus-host disease (GVHD) remains challenging because the unique cellular and molecular pathways that incite chronic GVHD are poorly understood. One major point of intervention for potential prevention of chronic GVHD occurs at the time of transplantation when acute donor anti-recipient immune responses first set the events in motion that result in chronic GVHD. After transplantation, additional insults causing tissue injury can incite aberrant immune responses and loss of tolerance, further contributing to chronic GVHD. Points of intervention are actively being identified so that chronic GVHD initiation pathways can be targeted without affecting immune function. The major objective in the field is to continue basic studies and to translate what is learned about etiopathology to develop targeted prevention strategies that decrease the risk of morbid chronic GVHD without increasing the risks of cancer relapse or infection. Development of strategies to predict the risk of developing debilitating or deadly chronic GVHD is a high research priority. This working group recommends further interrogation into the mechanisms underpinning chronic GVHD development, and we highlight considerations for future trial design in prevention trials.
Collapse
Affiliation(s)
- Kirsten M Williams
- Division of Blood and Marrow Transplantation, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia
| | - Yoshihiro Inamoto
- Department of Hematopoietic Stem Cell Transplantation, National Cancer Center Hospital, Tokyo, Japan
| | - Annie Im
- Division of Hematology Oncology, University of Pittsburgh, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Betty Hamilton
- Blood and Marrow Transplant Program, Department of Hematology and Medical Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - John Koreth
- Dana-Farber Cancer Institute, Division of Hematologic Malignancies, Harvard Medical School, Boston, Massachusetts
| | - Mukta Arora
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota
| | - Iskra Pusic
- BMT and Leukemia Section, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Jacqueline W Mays
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland
| | - Paul A Carpenter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Leo Luznik
- Division of Hematologic Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pavan Reddy
- Divsion of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, Michigan
| | - Jerome Ritz
- Dana-Farber Cancer Institute, Division of Hematologic Malignancies, Harvard Medical School, Boston, Massachusetts
| | - Hildegard Greinix
- Clinical Division of Hematology, Medical University of Graz, Graz, Austria
| | - Sophie Paczesny
- Department of Microbiology and Immunology and Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina
| | - Bruce R Blazar
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota
| | - Joseph Pidala
- Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Corey Cutler
- Dana-Farber Cancer Institute, Division of Hematologic Malignancies, Harvard Medical School, Boston, Massachusetts
| | - Daniel Wolff
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - Kirk R Schultz
- Pediatric Oncology, Hematology, and Bone Marrow Transplant, BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Steven Z Pavletic
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Paul J Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington, Seattle, Washington
| | - Gerard Socie
- Hematology Transplantation, Saint Louis Hospital, AP-HP, and University of Paris, INSERM U976, Paris, France.
| | - Stefanie Sarantopoulos
- Division of Hematological Malignancies and Cellular Therapy, Department of Medicine, Duke Cancer Institute, Durham, North Carolina.
| |
Collapse
|
50
|
Paczesny S. Post-haematopoietic cell transplantation outcomes: why ST2 became a 'golden nugget' biomarker. Br J Haematol 2021; 192:951-967. [PMID: 32039480 PMCID: PMC7415515 DOI: 10.1111/bjh.16497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapies have emerged as highly promising approaches to treat cancer patients. Allogeneic haematopoietic cell transplantation (HCT) is the most validated tumour immunotherapy available to date but its clinical efficacy is limited by toxicities, such as graft-versus-host disease (GVHD) and treatment resistance leading to relapse. The problems with new cellular therapies and checkpoint inhibitors are similar. However, development of biomarkers post-HCT, particularly for toxicities, has taken off in the last decade and has expanded greatly. Thanks to the advances in genomics, transcriptomics, proteomics and cytomics technologies, blood biomarkers have been identified and validated in promising diagnostic tests, prognostic tests stratifying for future occurrence of GVHD, and predictive tests for responsiveness to GVHD therapy and non-relapse mortality. These biomarkers may facilitate timely and selective therapeutic intervention. This review outlines a path from biomarker discovery to first clinical correlation, focusing on soluble STimulation-2 (sST2) - the interleukin (IL)-33-decoy receptor - which is the most validated biomarker.
Collapse
Affiliation(s)
- Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|