1
|
Hsu FM, Pickering H, Rubbi L, Thompson M, Reed EF, Pellegrini M, Schaenman JM. DNA methylation predicts infection risk in kidney transplant recipients. Life Sci Alliance 2025; 8:e202403124. [PMID: 40324822 PMCID: PMC12053434 DOI: 10.26508/lsa.202403124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025] Open
Abstract
Kidney transplantation (KTx) is the method of choice for treating kidney failure. Identifying biomarkers predictive of transplant (Tx) outcomes is critical to optimize KTx; however, the immunosuppressive therapies required after KTx must also be considered. We applied targeted bisulfite sequencing (TBS-seq) to PBMCs isolated from 90 patients, with samples collected pre- and post-Tx (day 90), to measure DNA methylation changes. Our findings indicate that the PBMC DNA methylome is significantly affected by induction immunosuppression with anti-thymocyte globulin (ATG). We discovered that the risk of infection can be predicted using DNA methylation profiles, but not gene expression profiles. Specifically, 515 CpG loci associated with 275 genes were significantly impacted by ATG induction, even after accounting for age, sex, and cell-type composition. Notably, ATG-associated hyper-methylation down-regulates genes critical for immune response. In conclusion, this clinical omics study reveals that the immunosuppressant ATG profoundly impacts the DNA methylome of KTx recipients and identifies biomarkers that could be used in pre-Tx screening of patients vulnerable to infection, thereby informing immunosuppression strategies post-Tx.
Collapse
Affiliation(s)
- Fei-Man Hsu
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences - The Collaboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry Pickering
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Thompson
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA
- Institute for Quantitative and Computational Biosciences - The Collaboratory, University of California Los Angeles, Los Angeles, CA, USA
| | - Joanna M Schaenman
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
2
|
Li X, Sun W, Xu X, Jiang Q, Shi Y, Zhang H, Yu W, Shi B, Wan S, Liu J, Song W, Zhang J, Yuan Z, Li J. Hepatitis B virus surface antigen drives T cell immunity through non-canonical antigen presentation in mice. Nat Commun 2025; 16:4591. [PMID: 40382385 PMCID: PMC12085615 DOI: 10.1038/s41467-025-59985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 05/07/2025] [Indexed: 05/20/2025] Open
Abstract
Hepatitis B virus (HBV) exclusively infects hepatocytes and produces large amounts of subviral particles containing its surface antigen (HBsAg). T cell immunity is crucial for controlling and clearing HBV infection. However, the intercellular processes underlying HBsAg presentation to T cells are incompletely understood. Here, using preclinical mouse models, we show that, following HBsAg expression, the intrahepatic Batf3+XCR1+CCR7- conventional dendritic cell subset cDC1 presents HBsAg by MHC-I cross-dressing, driving CD8+ T cell response. Meanwhile, upon HBsAg access to lymphoid tissues, B cells acquire HBsAg directly in the follicles of lymphoid tissues and initiate CD4+ T cell responses sequentially in the follicular and interfollicular regions, guided by chemoattractant receptors CCR5 and EBI2, respectively. Finally, we identify ALCAM, LFA-1, and CD80 as key co-stimulatory signals essential for optimal T cell responses. Thus, these findings reveal the roadmap of non-canonical antigen presentation that drives T cell immunity against HBsAg, advancing novel therapeutic strategies for chronic HBV infection.
Collapse
Affiliation(s)
- Xiaofang Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenxuan Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolan Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qirong Jiang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuheng Shi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huixi Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weien Yu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Bisheng Shi
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Simin Wan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiangxia Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wuhui Song
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Mangiola S, Brown R, Zhan C, Berthelet J, Guleria S, Liyanage C, Ostrouska S, Wilcox J, Merdas M, Fuge-Larsen P, Bell C, Schröder J, Mielke LA, Mariadason JM, Tsao SCH, Chen Y, Yadav VK, Vodala S, Anderson RL, Merino D, Behren A, Yeo B, Papenfuss AT, Pal B. Circulating immune cells exhibit distinct traits linked to metastatic burden in breast cancer. Breast Cancer Res 2025; 27:73. [PMID: 40340807 PMCID: PMC12063295 DOI: 10.1186/s13058-025-01982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 02/14/2025] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND Circulating immune cells play a crucial role in the anti-tumour immune response, yet the systemic immune system in metastatic breast cancers is not fully characterised. Investigating the cellular and molecular changes in peripheral blood mononuclear cells (PBMCs) from breast cancer patients could elucidate the role of circulating immune cells in metastasis and aid in identifying biomarkers for disease burden and progression. METHODS In this study, we characterised the systemic immune landscape associated with varying levels of metastatic burden by analysing the single-cell transcriptomes of PBMCs from breast cancer patients and healthy controls. Our research focused on identifying changes in immune cell composition, transcriptional programs, and immune-cell communication networks linked to metastatic burden. Additionally, we compared these PBMC features onto a single-cell atlas of primary breast tumours to study corresponding traits in tumour-infiltrating immune cells. RESULTS In metastatic breast cancer, PBMCs exhibit a significant downregulation of the adaptive immune system and a decreased number and activity of unconventional T cells, such as γδ T cells. Additionally, metastatic burden is associated with impaired cell communication pathways involved in immunomodulatory functions. We also identified a gene signature derived from myeloid cells shared between tumour immune infiltrates and circulating immune cells in breast cancer patients. CONCLUSIONS Our study provides a comprehensive single-cell molecular profile of the peripheral immune system in breast cancer, offering a valuable resource for understanding metastatic disease in terms of tumour burden. By identifying immune traits linked to metastasis, we have unveiled potential new biomarkers of metastatic disease.
Collapse
Affiliation(s)
- S Mangiola
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
- South Australian immunoGENomics Cancer Institute, Adelaide, SA, 5005, Australia.
| | - R Brown
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - C Zhan
- South Australian immunoGENomics Cancer Institute, Adelaide, SA, 5005, Australia
| | - J Berthelet
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - S Guleria
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - C Liyanage
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - S Ostrouska
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - J Wilcox
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - M Merdas
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - P Fuge-Larsen
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - C Bell
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- Austin Health, Heidelberg, VIC, 3084, Australia
| | - J Schröder
- Peter Doherty Institute for Infection and Immunity, Parkville, VIC, 3052, Australia
- The University of Melbourne, Parkville, VIC, 3052, Australia
| | - L A Mielke
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - J M Mariadason
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - S Chang-Hao Tsao
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- Austin Health, Heidelberg, VIC, 3084, Australia
| | - Y Chen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - V K Yadav
- Rutgers New Jersey Medical School, Newark, NJ, USA
| | - S Vodala
- Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, USA
| | - R L Anderson
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - D Merino
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - A Behren
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - B Yeo
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- Austin Health, Heidelberg, VIC, 3084, Australia
| | - A T Papenfuss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - B Pal
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, 3086, Australia.
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia.
| |
Collapse
|
4
|
Zayas GA, Santos Rojas C, Rodriguez EE, Hernandez AS, Beard AM, Rafiq F, Sarlo Davila KM, Mateescu RG. Genetic architecture of thermotolerance traits in beef cattle: a novel integration of SNP and breed-of-origin effects. Front Genet 2025; 16:1576966. [PMID: 40370695 PMCID: PMC12075150 DOI: 10.3389/fgene.2025.1576966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025] Open
Abstract
Background Rising temperatures increasingly expose beef cattle to heat stress, reducing productivity and welfare, especially in tropical climates. Crossbreeding Bos t. taurus and Bos t. indicus has emerged as a critical strategy to balance the production efficiency of taurine breeds with the superior thermotolerance of indicine breeds. Understanding the genetic architecture of thermotolerance traits is essential for improving heat resilience in beef cattle populations. Methods Phenotypes for short hair length (SHL, undercoat) and long hair length (LHL, topcoat), sweat gland area (SGA), and thermal stress slope (TSS), a measure of body temperature fluctuations under heat stress, were collected from 3,962 crossbred Angus-Brahman heifers. Heifers were genotyped, and breed-of-origin (BOA) for each marker was determined using LAMP-LD. Genome-wide association studies were conducted using SNP-only, BOA-only, and integrated SNP + BOA models to identify quantitative trait loci (QTLs) associated with thermotolerance traits. Genes in QTL regions were used for functional enrichment analysis using Gene Ontology (GO) and KEGG pathways. Results Significant QTLs for SHL and LHL were identified on BTA20, overlapping the PRLR gene. A QTL on BTA19 for SHL and LHL was driven solely by BOA effects, with Brahman BOA associated with shorter hair lengths. For SGA, six suggestive QTLs were detected, predominantly linked to Angus-derived alleles associated with reduced sweat gland area. For TSS, a significant QTL on BTA1 exhibited a strong BOA effect, with Angus BOA associated with higher TSS values, indicative of reduced thermoregulatory efficiency. Integrated SNP + BOA models provided greater resolution and revealed novel QTLs compared to single-effect models. Functional enrichment using GO and KEGG identified MAPK and estrogen signaling pathways in both LHL and TSS, indicating potential overlap in the biological processes influencing hair length and thermoregulation. Conclusion This study demonstrates the value of integrating BOA with SNP-based models to uncover the genetic architecture of thermotolerance traits in beef cattle. By better capturing breed-specific contributions, these findings enhance our understanding of thermoregulation and provide actionable insights for improving heat resilience in cattle.
Collapse
Affiliation(s)
- Gabriel A. Zayas
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Camila Santos Rojas
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Eduardo E. Rodriguez
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Aakilah S. Hernandez
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States
| | - Ashley M. Beard
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Fahad Rafiq
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Kaitlyn M. Sarlo Davila
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, United States
| | - Raluca G. Mateescu
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
5
|
Chen Y, Mei Y, Zou C, Tan F, Hu H, Yang M, Deng Y, Li Q, Zhu G, Yi P, Yang M. Aberrant Lower CD6 Expression on Peripheral B Cells Associated With Liver/Kidney Injury and Autoantibody Production of Systemic Lupus Erythematosus Patients. Scand J Immunol 2025; 101:e70018. [PMID: 40134233 DOI: 10.1111/sji.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease characterised by aberrant activation and differentiation of autoreactive T and B cells, as well as the overproduction of autoantibodies. CD6, a cell-surface glycoprotein, regulates lymphocyte activation, differentiation and survival, and is implicated in the pathogenesis of various autoimmune disorders. In SLE, the CD6/activated leukocyte cell adhesion molecule (ALCAM) pathway promotes renal T-cell immune responses. However, the distribution, expression, and function of CD6 in lupus B cells remain poorly understood. In this work, we employed flow cytometry and multi-colour immunohistochemical staining to analyse the expression and distribution of CD6 on peripheral B cells. Correlation analysis was performed to assess the associations of CD6 and clinical indicators of disease severity. We found that SLE patients exhibited significantly reduced CD6 expression on peripheral CD19+ B, CD19+CD27- B, CD19+CD27+ B, naïve B, CD19+CD27-IgD- double-negative B (DNB) and CD19+CD27+IgD+ B cells. Moreover, CD6 expression was negatively correlated with serum levels of alanine transaminase (ALT), lactate dehydrogenase (LDH) and the degree of white blood cell (WBC) depletion. Notably, SLE patients positive for antinuclear antibody (ANA) or anti-SSA antibody displayed lower CD6 expression on circulating B cells. Additionally, CD6 expression in B cells was predominantly localised in the extrafollicular (EF) region of human tonsils, suggesting a potential regulatory role of CD6 in EF B-cell responses. In conclusion, dysregulated CD6 expression on peripheral B cells might be related to liver/kidney injury and ANA/anti-SSA antibody production in SLE patients.
Collapse
MESH Headings
- Humans
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Female
- Male
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Autoantibodies/immunology
- Adult
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Middle Aged
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Liver/immunology
- Liver/pathology
- Kidney/immunology
- Kidney/pathology
Collapse
Affiliation(s)
- Yongjian Chen
- Department of Dermatology, Hunan Provincial People's Hospital, Changsha, Hunan, China
| | - Yang Mei
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Chun Zou
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Fen Tan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haoran Hu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Miao Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Yaxiong Deng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianwen Li
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Gangcai Zhu
- Department of Otolaryngology Head and Neck Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| |
Collapse
|
6
|
Gurrea-Rubio M, Fox DA, Castresana JS. CD6 in Human Disease. Cells 2025; 14:272. [PMID: 39996744 PMCID: PMC11853562 DOI: 10.3390/cells14040272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
CD6 is a cell surface protein expressed by T cells, a subset of NK cells, a small population of B cells, and thymocytes. CD6 has multiple and complex functions due to its distinct functional epitopes that mediate interactions with several ligands including CD166 (ALCAM) and CD318 (CDCP1). An additional molecule, CD44, is being investigated as a potential new ligand of CD6. CD6 plays critical roles in lymphocyte activation, proliferation, and adhesion to antigen-presenting, epithelial, and cancer cells. CD6 is a risk gene for multiple autoimmune diseases, possibly related to its numerous roles in regulating CD4+T-cell responses. Additionally, CD6 is a potential target for cancer immunotherapy. Here, we dissect the role of CD6 in the pathogenesis of more than 15 diseases and discuss recent data supporting the use of CD6-targeted therapy in humans.
Collapse
Affiliation(s)
- Mikel Gurrea-Rubio
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - David A. Fox
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Javier S. Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, 31008 Pamplona, Spain
| |
Collapse
|
7
|
Qian F, Du X, He Y. Causal association of inflammation with ischemic stroke and its subtypes: a bidirectional Mendelian randomization study. J Stroke Cerebrovasc Dis 2025; 34:108190. [PMID: 39675594 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Emerging evidence underscores a bidirectional relationship between ischemic stroke (IS) and inflammation, yet the causality of this association remains uncertain. We conducted a two-sample bidirectional Mendelian randomization (MR) study aimed at investigating the causal links between inflammation and IS. METHODS Single nucleotide polymorphism from genome-wide association studies of 112 inflammatory cytokines and IS were chosen as instrumental variables. We evaluated the causal effects of inflammatory factors on IS outcomes and examined the mediating effects of risk factors for IS. Additionally, reverse MR analysis was conducted to determine whether the occurrence of IS influenced levels of inflammatory cytokines. Causal associations were assessed using inverse variance weighting, complemented by sensitivity analyses incorporating weighted median and MR-Egger methods. RESULTS We found associations between genetically predicted plasma levels of 25 inflammatory factors and IS along with its subtypes. MR supports smoking, body mass index, atrial fibrillation, coronary artery disease, heart failure, systolic blood pressure, diastolic blood pressure and type 2 diabetes as risk factors for IS. Notably, coronary artery disease and heart failure seemed to mediate the RANTES, HGF, IL-5 associations with IS. In addition, reverse MR analysis suggested a causal relationship between IS and its subtypes and 19 inflammatory factors. CONCLUSION In summary, inflammation was suggestively causally associated with the risk of IS, and inflammatory cytokines had downstream effect on IS. Future studies should explore whether inflammatory factors found to have significant associations with IS risk could be manipulated to reduce IS risk, and the neuroinflammatory mechanisms after IS.
Collapse
Affiliation(s)
- FangFang Qian
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, PR China.
| | - XiaoHui Du
- Department of Rehabilitation Medicine, Community Health Service Center, Lvxiang Town, Jinshan District, Shanghai, PR China.
| | - YouHua He
- Department of Comprehensive Medical Treatment Ward, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
8
|
Cardani-Boulton A, Lin F, Bergmann CC. CD6 regulates CD4 T follicular helper cell differentiation and humoral immunity during murine coronavirus infection. J Virol 2025; 99:e0186424. [PMID: 39679790 PMCID: PMC11784103 DOI: 10.1128/jvi.01864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024] Open
Abstract
During activation, the T cell transmembrane receptor CD6 becomes incorporated into the T cell immunological synapse where it can exert both co-stimulatory and co-inhibitory functions. Given the ability of CD6 to carry out opposing functions, this study sought to determine how CD6 regulates early T cell activation in response to viral infection. Infection of CD6-deficient mice with a neurotropic murine coronavirus resulted in greater activation and expansion of CD4 T cells in the draining lymph nodes. Further analysis demonstrated that there was also preferential differentiation of CD4 T cells into T follicular helper cells, resulting in accelerated germinal center responses and emergence of high-affinity virus-specific antibodies. Given that CD6 conversely supports CD4 T cell activation in many autoimmune models, we probed potential mechanisms of CD6-mediated suppression of CD4 T cell activation during viral infection. Analysis of CD6 binding proteins revealed that infection-induced upregulation of Ubash3a, a negative regulator of T cell receptor (TCR) signaling, was hindered in CD6-deficient lymph nodes. Consistent with greater T cell activation and reduced UBASH3a activity, the T cell receptor signal strength was intensified in CD6-deficient CD4 T cells. These results reveal a novel immunoregulatory role for CD6 in limiting CD4 T cell activation and deterring CD4 T follicular helper cell differentiation, thereby attenuating antiviral humoral immunity. IMPORTANCE CD6 monoclonal blocking antibodies are being therapeutically administered to inhibit T cell activation in autoimmune disorders. However, the multifaceted nature of CD6 allows for multiple and even opposing functions under different circumstances of T cell activation. We therefore sought to characterize how CD6 regulates T cell activation in the context of viral infections using an in vivo murine coronavirus model. In contrast to its role in autoimmunity, but consistent with its function in the presence of superantigens, we found that CD6 deficiency enhances CD4 T cell activation and CD4 T cell help to germinal center-dependent antiviral humoral responses. Finally, we provide evidence that CD6 regulates transcription of its intracellular binding partner UBASH3a, which suppresses T cell receptor (TCR) signaling and consequently T cell activation. These findings highlight the context-dependent flexibility of CD6 in regulating in vivo adaptive immune responses, which may be targeted to enhance antiviral immunity.
Collapse
MESH Headings
- Animals
- Mice
- Immunity, Humoral/immunology
- Cell Differentiation/immunology
- T Follicular Helper Cells/immunology
- Lymphocyte Activation/immunology
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Mice, Inbred C57BL
- Germinal Center/immunology
- Mice, Knockout
- CD4-Positive T-Lymphocytes/immunology
- Antigens, CD/immunology
- Antigens, CD/genetics
- T-Lymphocytes, Helper-Inducer/immunology
- Signal Transduction
- Murine hepatitis virus/immunology
- Antibodies, Viral/immunology
Collapse
Affiliation(s)
- Amber Cardani-Boulton
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Feng Lin
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cornelia C. Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Peters JM, Irvine EB, Makatsa MS, Rosenberg JM, Wadsworth MH, Hughes TK, Sutton MS, Nyquist SK, Bromley JD, Mondal R, Roederer M, Seder RA, Darrah PA, Alter G, Seshadri C, Flynn JL, Shalek AK, Fortune SM, Bryson BD. High-dose intravenous BCG vaccination induces enhanced immune signaling in the airways. SCIENCE ADVANCES 2025; 11:eadq8229. [PMID: 39742484 PMCID: PMC11694782 DOI: 10.1126/sciadv.adq8229] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025]
Abstract
Intradermal Bacillus Calmette-Guérin (BCG) is the most widely administered vaccine, but it does not sufficiently protect adults against pulmonary tuberculosis. Recent studies in nonhuman primates show that intravenous BCG administration offers superior protection against Mycobacterium tuberculosis (Mtb). We used single-cell analysis of bronchoalveolar lavage cells from rhesus macaques vaccinated via different routes and doses of BCG to identify alterations in the immune ecosystem in the airway following vaccination. Our findings reveal that high-dose intravenous BCG induces an influx of polyfunctional T cells and macrophages in the airways, with alveolar macrophages from high-dose intravenous BCG displaying a basal activation state in the absence of purified protein derivative stimulation, defined in part by interferon signaling. Enhanced intercellular immune signaling and stronger T helper 1-T helper 17 transcriptional responses were observed following purified protein derivative stimulation. These results suggest that high-dose intravenous BCG vaccination creates a specialized immune environment that primes airway cells for effective Mtb clearance.
Collapse
Affiliation(s)
- Joshua M. Peters
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward B. Irvine
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Mohau S. Makatsa
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jacob M. Rosenberg
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Division of Infectious Diseases, MGH, Boston, MA, USA
| | - Marc H. Wadsworth
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Travis K. Hughes
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | | | - Sarah K. Nyquist
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Joshua D. Bromley
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Rajib Mondal
- Research Laboratory of Electronics, Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, USA
| | | | | | | | - Galit Alter
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - JoAnne L. Flynn
- Department of Microbiology and Molecular Genetics and Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alex K. Shalek
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Sarah M. Fortune
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bryan D. Bryson
- Department of Biological Engineering, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA, USA
| |
Collapse
|
10
|
Wang X, Li D, Zhu B, Hua Z. Single-cell transcriptome analysis identifies a novel tumor-associated macrophage subtype predicting better prognosis in pancreatic ductal adenocarcinoma. Front Cell Dev Biol 2024; 12:1466767. [PMID: 39507421 PMCID: PMC11537994 DOI: 10.3389/fcell.2024.1466767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Background Characterized by an immune-suppressive tumor microenvironment (TME), pancreatic ductal adenocarcinoma (PDAC) is well-known for its poor prognosis. Tumor associated macrophages (TAMs) play a critical role in PDAC TME. An in-depth understanding of TAMs is helpful to develop new strategies for immunotherapy. Methods A large number of single-cell RNA sequencing data and bulk RNA sequencing data of PDAC were collected for systematic bioinformatics analysis. Characterize subtypes of TAMs at single-cell resolution and its effect on prognosis. Differential gene analysis and cell-cell communication were used to describe the effect on prognosis and validated by the TCGA dataset. Results We used two prognosis-favorable genes, SLC12A5 and ENPP2, to identify a benign M2-like TAMs (bM2-like TAMs), which shared similarities with C1QC + TAMs, CXCL9+ TAMs and CD169+ TAMs, by analyzing scRNA-seq data and bulk RNA data of PDAC. The bM2-like TAMs were revealed to promote T cell activation and proliferation through ALCAM/CD6 interaction. Meanwhile, the bM2-like TAMs were responsible for stroma modeling by altering αSMA+/αSMA-cell ratio. On the contrast, the rest of the M2-like TAMs were defined as malignant M2-like TAMs (mM2-like TAMs), partly overlapping with SPP1+ TAMs. mM2-like TAMs were revealed to promote tumor progression by secretion of MIF and SPP1. Conclusion Our study used two prognosis-favorable genes to divide M2-like TAMs of PDAC into anti-tumor bM2-like TAMs and pro-tumor mM2-like TAMs. The bM2-like TAMs activate T cells through ALCAM/CD6 and generate prognosis-favorable αSMA+ myofibroblasts through secreting TGFβ, which brings insight into heterogeneity of TAMs, prognosis prediction and immunotherapy of PDAC.
Collapse
Affiliation(s)
- Xiaonan Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Dongyi Li
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Bo Zhu
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
| | - Zichun Hua
- School of Biopharmacy, China Pharmaceutical University, Nanjing, China
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
- Faculty of Pharmaceutical Sciences, Xinxiang Medical University, Xinxiang, China
- Changzhou High-Tech Research Institute, Nanjing University, Changzhou, China
| |
Collapse
|
11
|
Matsumoto R, Ogata K, Takahashi D, Kinashi Y, Yamada T, Morita R, Tanaka K, Hattori K, Endo M, Fujimura Y, Sasaki N, Ohno H, Ishihama Y, Kimura S, Hase K. AP-1B regulates interactions of epithelial cells and intraepithelial lymphocytes in the intestine. Cell Mol Life Sci 2024; 81:425. [PMID: 39369131 PMCID: PMC11455912 DOI: 10.1007/s00018-024-05455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 10/07/2024]
Abstract
Intraepithelial lymphocytes (IELs) reside in the epithelial layer and protect against foreign pathogens, maintaining the epithelial barrier function in the intestine. Interactions between IEL and epithelial cells are required for IELs to function effectively; however, the underlying molecular machinery remains to be elucidated. In this study, we found that intestinal epithelium-specific deficiency of the clathrin adaptor protein (AP)-1B, which regulates basolateral protein sorting, led to a massive reduction in IELs. Quantitative proteomics demonstrated that dozens of proteins, including known IEL-interacting proteins (E-cadherin, butyrophilin-like 2, and plexin B2), were decreased in the basolateral membrane of AP-1B-deficient epithelial cells. Among these proteins, CD166 interacted with CD6 on the surface of induced IEL. CD166 knockdown, using shRNA in intestinal organoid cultures, significantly inhibited IEL recruitment to the epithelial layer. These findings highlight the essential role of AP-1B-mediated basolateral sorting in IEL maintenance and survival within the epithelial layer. This study reveals a novel function of AP-1B in the intestinal immune system.
Collapse
Affiliation(s)
- Ryohtaroh Matsumoto
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kosuke Ogata
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Daisuke Takahashi
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yusuke Kinashi
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Takahiro Yamada
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Ryo Morita
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Keisuke Tanaka
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Kouya Hattori
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Mayumi Endo
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yumiko Fujimura
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan
| | - Nobuo Sasaki
- Laboratory of Mucosal Ecosystem Design, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, Japan
| | - Yasushi Ishihama
- Department of Molecular Systems BioAnalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Shunsuke Kimura
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan.
- PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| | - Koji Hase
- Division of Biochemistry, Graduate School of Pharmaceutical Science and Faculty of Pharmacy, Keio University, 1-5-30 Shiba Koen, Minato-ku, Tokyo, 105-8512, Japan.
- The Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Kanayagawa, Fukushima, 960-1296, Japan.
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo (IMSUT), Tokyo, Japan.
| |
Collapse
|
12
|
Chudnovskiy A, Castro TBR, Nakandakari-Higa S, Cui A, Lin CH, Sade-Feldman M, Phillips BK, Pae J, Mesin L, Bortolatto J, Schweitzer LD, Pasqual G, Lu LF, Hacohen N, Victora GD. Proximity-dependent labeling identifies dendritic cells that drive the tumor-specific CD4 + T cell response. Sci Immunol 2024; 9:eadq8843. [PMID: 39365874 DOI: 10.1126/sciimmunol.adq8843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/26/2024] [Indexed: 10/06/2024]
Abstract
Dendritic cells (DCs) are uniquely capable of transporting tumor antigens to tumor-draining lymph nodes (tdLNs) and interact with effector T cells in the tumor microenvironment (TME) itself, mediating both natural antitumor immunity and the response to checkpoint blockade immunotherapy. Using LIPSTIC (Labeling Immune Partnerships by SorTagging Intercellular Contacts)-based single-cell transcriptomics, we identified individual DCs capable of presenting antigen to CD4+ T cells in both the tdLN and TME. Our findings revealed that DCs with similar hyperactivated transcriptional phenotypes interact with helper T cells both in tumors and in the tdLN and that checkpoint blockade drugs enhance these interactions. These findings show that a relatively small fraction of DCs is responsible for most of the antigen presentation in the tdLN and TME to both CD4+ and CD8+ tumor-specific T cells and that classical checkpoint blockade enhances CD40-driven DC activation at both sites.
Collapse
Affiliation(s)
- Aleksey Chudnovskiy
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Tiago B R Castro
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | | | - Ang Cui
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard School of Dental Medicine, Harvard University, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Chia-Hao Lin
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | - Brooke K Phillips
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Juhee Pae
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Luka Mesin
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | - Juliana Bortolatto
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| | | | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Oncology and Immunology Section, Department of Surgery Oncology and Gastroenterology, University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Gabriel D Victora
- Laboratory of Lymphocyte Dynamics, Rockefeller University, New York, NY, USA
| |
Collapse
|
13
|
Zhou W, Hu W, Tang L, Ma X, Liao J, Yu Z, Qi M, Chen B, Li J. Meta-analysis of the Selected Genetic Variants in Immune-Related Genes and Multiple Sclerosis Risk. Mol Neurobiol 2024; 61:8175-8187. [PMID: 38478144 DOI: 10.1007/s12035-024-04095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 09/21/2024]
Abstract
Previous studies have suggested that certain variants in immune-related genes may participate in the pathogenesis of multiple sclerosis (MS), including rs17824933 in the CD6 gene, rs1883832 in the CD40 gene, rs2300747 in the CD58 gene, rs763361 in the CD226 gene, rs16944 in the IL-1β gene, rs2243250 in the IL-4 gene, and rs12722489 and rs2104286 in the IL-2Rα gene. However, the results remained inconclusive and conflicting. In view of this, a comprehensive meta-analysis including all eligible studies was conducted to investigate the association between these 8 selected genetic variants and MS risk. Up to June 2023, 64 related studies were finally included in this meta-analysis. The odds ratios (ORs) and corresponding 95% confidence intervals (CIs) calculated by the random-effects model were used to evaluate the strength of association. Publication bias test, sensitivity analyses, and trial sequential analysis (TSA) were conducted to examine the reliability of statistical results. Our results indicated that rs17824933 in the CD6 gene, rs1883832 in the CD40 gene, rs2300747 in the CD58 gene, rs763361 in the CD226 gene, and rs12722489 and rs2104286 in the IL-2Rα gene may serve as the susceptible factors for MS pathogenesis, while rs16944 in the IL-1β gene and rs2243250 in the IL-4 gene may not be associated with MS risk. However, the present findings need to be confirmed and reinforced in future studies.
Collapse
Affiliation(s)
- Weiguang Zhou
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Weiqiong Hu
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Lingyu Tang
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaorui Ma
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Jiaxi Liao
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Zhiyan Yu
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China
| | - Meifang Qi
- Department of Pharmaceutical Engineering, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Bifeng Chen
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
- Institute of WUT-AMU, Wuhan University of Technology, Wuhan, 430070, China.
| | - Jing Li
- Department of Biological Science and Technology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
14
|
Xun Z, Zhou H, Shen M, Liu Y, Sun C, Du Y, Jiang Z, Yang L, Zhang Q, Lin C, Hu Q, Ye Y, Han L. Identification of Hypoxia-ALCAM high Macrophage- Exhausted T Cell Axis in Tumor Microenvironment Remodeling for Immunotherapy Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309885. [PMID: 38956900 PMCID: PMC11434037 DOI: 10.1002/advs.202309885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/02/2024] [Indexed: 07/04/2024]
Abstract
Although hypoxia is known to be associated with immune resistance, the adaptability to hypoxia by different cell populations in the tumor microenvironment and the underlying mechanisms remain elusive. This knowledge gap has hindered the development of therapeutic strategies to overcome tumor immune resistance induced by hypoxia. Here, bulk, single-cell, and spatial transcriptomics are integrated to characterize hypoxia associated with immune escape during carcinogenesis and reveal a hypoxia-based intercellular communication hub consisting of malignant cells, ALCAMhigh macrophages, and exhausted CD8+ T cells around the tumor boundary. A hypoxic microenvironment promotes binding of HIF-1α complex is demonstrated to the ALCAM promoter therefore increasing its expression in macrophages, and the ALCAMhigh macrophages co-localize with exhausted CD8+ T cells in the tumor spatial microenvironment and promote T cell exhaustion. Preclinically, HIF-1ɑ inhibition reduces ALCAM expression in macrophages and exhausted CD8+ T cells and potentiates T cell antitumor function to enhance immunotherapy efficacy. This study reveals the systematic landscape of hypoxia at single-cell resolution and spatial architecture and highlights the effect of hypoxia on immunotherapy resistance through the ALCAMhigh macrophage-exhausted T cell axis, providing a novel immunotherapeutic strategy to overcome hypoxia-induced resistance in cancers.
Collapse
Affiliation(s)
- Zhenzhen Xun
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai Institute of ImmunologyState Key Laboratory of Systems Medicine for CancerDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Huanran Zhou
- Department of EndocrinologyThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiAnhui230001China
| | - Mingyi Shen
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai Institute of ImmunologyState Key Laboratory of Systems Medicine for CancerDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yao Liu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| | - Chengcao Sun
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Yanhua Du
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhou Jiang
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Liuqing Yang
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Qing Zhang
- Simmons Comprehensive Cancer CenterDepartment of PathologyUniversity of Texas Southwestern Medical CenterDallasTX75390USA
| | - Chunru Lin
- Department of Molecular and Cellular OncologyThe University of Texas MD Anderson Cancer CenterHoustonTX77030USA
| | - Qingsong Hu
- Department of Hepatobiliary SurgeryCentre for Leading Medicine and Advanced Technologies of IHMThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230001China
| | - Youqiong Ye
- Center for Immune‐Related Diseases at Shanghai Institute of ImmunologyDepartment of GastroenterologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
- Shanghai Institute of ImmunologyState Key Laboratory of Systems Medicine for CancerDepartment of Immunology and MicrobiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Leng Han
- Brown Center for ImmunotherapySchool of MedicineIndiana UniversityIndianapolisIN46202USA
- Department of Biostatistics and Health Data ScienceSchool of MedicineIndiana UniversityIndianapolisIN46202USA
- Department of Biochemistry and Molecular BiologyMcGovern Medical School at The University of Texas Health Science Center at HoustonHoustonTX77030USA
| |
Collapse
|
15
|
Cardani-Boulton A, Lin F, Bergmann CC. CD6 Regulates CD4 T Follicular Helper Cell Differentiation and Humoral Immunity During Murine Coronavirus Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605237. [PMID: 39091786 PMCID: PMC11291160 DOI: 10.1101/2024.07.26.605237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
During activation the T cell transmembrane receptor CD6 becomes incorporated into the T cell immunological synapse where it can exert both co-stimulatory and co-inhibitory functions. Given the ability of CD6 to carry out opposing functions, this study sought to determine how CD6 regulates early T cell activation in response to viral infection. Infection of CD6 deficient mice with a neurotropic murine coronavirus resulted in greater activation and expansion of CD4 T cells in the draining lymph nodes. Further analysis demonstrated that there was also preferential differentiation of CD4 T cells into T follicular helper cells, resulting in accelerated germinal center responses and emergence of high affinity virus specific antibodies. Given that CD6 conversely supports CD4 T cell activation in many autoimmune models, we probed potential mechanisms of CD6 mediated suppression of CD4 T cell activation during viral infection. Analysis of CD6 binding proteins revealed that infection induced upregulation of Ubash3a, a negative regulator of T cell receptor signaling, was hindered in CD6 deficient lymph nodes. Consistent with greater T cell activation and reduced UBASH3a activity, the T cell receptor signal strength was intensified in CD6 deficient CD4 T cells. These results reveal a novel immunoregulatory role for CD6 in limiting CD4 T cell activation and deterring CD4 T follicular helper cell differentiation, thereby attenuating antiviral humoral immunity.
Collapse
Affiliation(s)
- Amber Cardani-Boulton
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Western Reserve University, Cleveland Clinic, Lerner College of Medicine, Cleveland, OH
| | - Feng Lin
- Case Western Reserve University, Cleveland Clinic, Lerner College of Medicine, Cleveland, OH
- Department of Immunity and Inflammation, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| | - Cornelia C Bergmann
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Case Western Reserve University, Cleveland Clinic, Lerner College of Medicine, Cleveland, OH
| |
Collapse
|
16
|
Ma C, Hao Y, Shi B, Wu Z, Jin D, Yu X, Jin B. Unveiling mitochondrial and ribosomal gene deregulation and tumor microenvironment dynamics in acute myeloid leukemia. Cancer Gene Ther 2024; 31:1034-1048. [PMID: 38806621 DOI: 10.1038/s41417-024-00788-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Acute myeloid leukemia (AML) is a malignant clonal hematopoietic disease with a poor prognosis. Understanding the interaction between leukemic cells and the tumor microenvironment (TME) can help predict the prognosis of leukemia and guide its treatment. Re-analyzing the scRNA-seq data from the CSC and G20 cohorts, using a Python-based pipeline including machine-learning-based scVI-tools, recapitulated the distinct hierarchical structure within the samples of AML patients. Weighted correlation network analysis (WGCNA) was conducted to construct a weighted gene co-expression network and to identify gene modules primarily focusing on hematopoietic stem cells (HSCs), multipotent progenitors (MPPs), and natural killer (NK) cells. The analysis revealed significant deregulation in gene modules associated with aerobic respiration and ribosomal/cytoplasmic translation. Cell-cell communications were elucidated by the CellChat package, revealing an imbalance of activating and inhibitory immune signaling pathways. Interception of genes upregulated in leukemic HSCs & MPPs as well as in NKG2A-high NK cells was used to construct prognostic models. Normal Cox and artificial neural network models based on 10 genes were developed. The study reveals the deregulation of mitochondrial and ribosomal genes in AML patients and suggests the co-occurrence of stimulatory and inhibitory factors in the AML TME.
Collapse
Affiliation(s)
- Chao Ma
- Institute of Cancer Stem Cell, Dalian Medical University, West Section Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Yuchao Hao
- Department of Hematology, The Second Hospital of Dalian Medical University, West Section Lvshun South Road, Dalian, 116027, Liaoning, China
| | - Bo Shi
- Institute of Cancer Stem Cell, Dalian Medical University, West Section Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Zheng Wu
- Institute of Cancer Stem Cell, Dalian Medical University, West Section Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Di Jin
- Institute of Cancer Stem Cell, Dalian Medical University, West Section Lvshun South Road, Dalian, 116044, Liaoning, China
| | - Xiao Yu
- NHC Key Laboratory of Pneumoconiosis, The First Hospital of Shanxi Medical University, South Jiefang Road, Taiyuan, 030001, Shanxi, China.
| | - Bilian Jin
- Institute of Cancer Stem Cell, Dalian Medical University, West Section Lvshun South Road, Dalian, 116044, Liaoning, China.
| |
Collapse
|
17
|
Williams CG, Moreira ML, Asatsuma T, Lee HJ, Li S, Barrera I, Murray E, Soon MSF, Engel JA, Khoury DS, Le S, Wanrooy BJ, Schienstock D, Alexandre YO, Skinner OP, Joseph R, Beattie L, Mueller SN, Chen F, Haque A. Plasmodium infection induces phenotypic, clonal, and spatial diversity among differentiating CD4 + T cells. Cell Rep 2024; 43:114317. [PMID: 38848213 DOI: 10.1016/j.celrep.2024.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/21/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Naive CD4+ T cells must differentiate in order to orchestrate immunity to Plasmodium, yet understanding of their emerging phenotypes, clonality, spatial distributions, and cellular interactions remains incomplete. Here, we observe that splenic polyclonal CD4+ T cells differentiate toward T helper 1 (Th1) and T follicular helper (Tfh)-like states and exhibit rarer phenotypes not elicited among T cell receptor (TCR) transgenic counterparts. TCR clones present at higher frequencies exhibit Th1 skewing, suggesting that variation in major histocompatibility complex class II (MHC-II) interaction influences proliferation and Th1 differentiation. To characterize CD4+ T cell interactions, we map splenic microarchitecture, cellular locations, and molecular interactions using spatial transcriptomics at near single-cell resolution. Tfh-like cells co-locate with stromal cells in B cell follicles, while Th1 cells in red pulp co-locate with activated monocytes expressing multiple chemokines and MHC-II. Spatial mapping of individual transcriptomes suggests that proximity to chemokine-expressing monocytes correlates with stronger effector phenotypes in Th1 cells. Finally, CRISPR-Cas9 gene disruption reveals a role for CCR5 in promoting clonal expansion and Th1 differentiation. A database of cellular locations and interactions is presented: https://haquelab.mdhs.unimelb.edu.au/spatial_gui/.
Collapse
Affiliation(s)
- Cameron G Williams
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Marcela L Moreira
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Takahiro Asatsuma
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Hyun Jae Lee
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Irving Barrera
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Megan S F Soon
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Jessica A Engel
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Shirley Le
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Brooke J Wanrooy
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Dominick Schienstock
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Yannick O Alexandre
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Oliver P Skinner
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Rainon Joseph
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia.
| |
Collapse
|
18
|
Morosi LG, Piperno GM, López L, Amadio R, Joshi S, Rustighi A, Del Sal G, Benvenuti F. ALCAM-mediated cDC1 CD8 T cells interactions are suppressed in advanced lung tumors. Oncoimmunology 2024; 13:2367843. [PMID: 38887373 PMCID: PMC11181928 DOI: 10.1080/2162402x.2024.2367843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Conventional type 1 dendritic cells (cDC1) are critical regulators of anti-tumoral T-cell responses. The structure and abundance of intercellular contacts between cDC1 and CD8 T cells in cancer tissues is important to determine the outcome of the T-cell response. However, the molecular determinants controlling the stability of cDC1-CD8 interactions during cancer progression remain poorly investigated. Here, we generated a genetic model of non-small cell lung cancer crossed to a fluorescent cDC1 reporter (KP-XCR1venus) to allow the detection of cDC1-CD8T cell clusters in tumor tissues across tumor stages. We found that cDC1-CD8 clusters are abundant and productive at the early stages of tumor development but progressively diminish in advanced tumors. Transcriptional profiling and flow cytometry identified the adhesion molecule ALCAM/CD166 (Activated Leukocyte Cell Adhesion Molecule, ligand of CD6) as highly expressed by lung cDC1 and significantly downregulated in advanced tumors. Analysis of human datasets indicated that ALCAM is downregulated in non-small cell lung cancer and its expression correlates to better prognosis. Mechanistically, triggering ALCAM on lung cDC1 induces cytoskeletal remodeling and contact formation whereas its blockade prevents T-cell activation. Together, our results indicate that ALCAM is important to stabilize cDC1-CD8 interactions at early tumor stages, while its loss in advanced tumors contributes to immune evasion.
Collapse
Affiliation(s)
- Luciano G. Morosi
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giulia M. Piperno
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Lucía López
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Roberto Amadio
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Sonal Joshi
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Alessandra Rustighi
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Cancer Cell Signaling, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Cancer Cell Signaling, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| |
Collapse
|
19
|
De Sanctis F, Dusi S, Caligola S, Anselmi C, Petrova V, Rossi B, Angelini G, Erdeljan M, Wöll S, Schlitter AM, Metzler T, Steiger K, Borok Z, Bailey P, Bauer A, Halin C, Boschi F, Giugno R, Canè S, Lawlor R, Corbo V, Scarpa A, Constantin G, Ugel S, Vascotto F, Sahin U, Türeci Ö, Bronte V. Expression of the membrane tetraspanin claudin 18 on cancer cells promotes T lymphocyte infiltration and antitumor immunity in pancreatic cancer. Immunity 2024; 57:1378-1393.e14. [PMID: 38749447 DOI: 10.1016/j.immuni.2024.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/14/2024]
Abstract
Tumors weakly infiltrated by T lymphocytes poorly respond to immunotherapy. We aimed to unveil malignancy-associated programs regulating T cell entrance, arrest, and activation in the tumor environment. Differential expression of cell adhesion and tissue architecture programs, particularly the presence of the membrane tetraspanin claudin (CLDN)18 as a signature gene, demarcated immune-infiltrated from immune-depleted mouse pancreatic tumors. In human pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer, CLDN18 expression positively correlated with more differentiated histology and favorable prognosis. CLDN18 on the cell surface promoted accrual of cytotoxic T lymphocytes (CTLs), facilitating direct CTL contacts with tumor cells by driving the mobilization of the adhesion protein ALCAM to the lipid rafts of the tumor cell membrane through actin. This process favored the formation of robust immunological synapses (ISs) between CTLs and CLDN18-positive cancer cells, resulting in increased T cell activation. Our data reveal an immune role for CLDN18 in orchestrating T cell infiltration and shaping the tumor immune contexture.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Carcinoma, Non-Small-Cell Lung/immunology
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/metabolism
- Cell Line, Tumor
- Claudins/metabolism
- Claudins/genetics
- Gene Expression Regulation, Neoplastic/immunology
- Immunological Synapses/metabolism
- Immunological Synapses/immunology
- Lung Neoplasms/immunology
- Lung Neoplasms/pathology
- Lymphocyte Activation/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Membrane Microdomains/metabolism
- Membrane Microdomains/immunology
- Mice, Inbred C57BL
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- T-Lymphocytes, Cytotoxic/immunology
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Francesco De Sanctis
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy.
| | - Silvia Dusi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Cristina Anselmi
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Varvara Petrova
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Barbara Rossi
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Gabriele Angelini
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Michael Erdeljan
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Stefan Wöll
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany
| | - Anna Melissa Schlitter
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany; Institute of Pathology, School of Medicine, TUM, Munich, Germany
| | - Thomas Metzler
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Comparative Experimental Pathology (CEP), Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Zea Borok
- Department of Medicine, University of California, San Diego, San Diego, CA, USA
| | - Peter Bailey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Glasgow, Scotland
| | - Aline Bauer
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Federico Boschi
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | - Stefania Canè
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Rita Lawlor
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy; ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Vincenzo Corbo
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy; ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy
| | - Aldo Scarpa
- ARC-Net Centre for Applied Research on Cancer, University and Hospital Trust of Verona, Verona, Italy; Department of Diagnostics and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy; The Center for Biomedical Computing (CBMC), University of Verona, Verona, Italy
| | - Stefano Ugel
- Section of Immunology, Department of Medicine, University of Verona, Verona, Italy
| | - Fulvia Vascotto
- TRON-Translational Oncology at the University Medical Centre of the Johannes Gutenberg University, Mainz, Germany
| | - Ugur Sahin
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany; University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Özlem Türeci
- Biopharmaceutical New Technologies (BioNTech) Corporation, Mainz, Germany; University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | |
Collapse
|
20
|
Zhang J, Westcott PMK. Claudin 18 turns up the heat in cancer. Immunity 2024; 57:1187-1189. [PMID: 38865963 DOI: 10.1016/j.immuni.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
A major barrier to antitumor immunity in solid tumors is T cell exclusion. In this issue of Immunity, De Sanctis et al.1 elucidate how CLDN18 on pancreatic and lung cancer cells enhances infiltration, immunological synapse formation, and activation of cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Jialin Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | |
Collapse
|
21
|
Do JS, Arribas-Layton D, Juan J, Garcia I, Saraswathy S, Qi M, Montero E, Reijonen H. The CD318/CD6 axis limits type 1 diabetes islet autoantigen-specific human T cell activation. J Autoimmun 2024; 146:103228. [PMID: 38642507 DOI: 10.1016/j.jaut.2024.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/12/2024] [Accepted: 04/09/2024] [Indexed: 04/22/2024]
Abstract
CD6 is a glycoprotein expressed on CD4 and CD8 T cells involved in immunoregulation. CD318 has been identified as a CD6 ligand. The role of CD318 in T cell immunity is restricted as it has only been investigated in a few mice autoimmune models but not in human diseases. CD318 expression was thought to be limited to mesenchymal-epithelial cells and, therefore, contribute to CD6-mediated T cell activation in the CD318-expressing tissue rather than through interaction with antigen-presenting cells. Here, we report CD318 expression in a subpopulation of CD318+ myeloid dendritic (mDC), whereas the other peripheral blood populations were CD318 negative. However, CD318 can be induced by activation: a subset of monocytes treated with LPS and IFNγ and in vitro monocyte derived DCs were CD318+. We also showed that recombinant CD318 inhibited T cell function. Strikingly, CD318+ DCs suppressed the proliferation of autoreactive T cells specific for GAD65, a well-known targeted self-antigen in Type 1 Diabetes (T1D). Our study provides new insight into the role of the CD318/CD6 axis in the immunopathogenesis of inflammation, suggesting a novel immunoregulatory role of CD318 in T cell-mediated autoimmune diseases and identifying a potential novel immune checkpoint inhibitor as a target for intervention in T1D which is an unmet therapeutic need.
Collapse
MESH Headings
- Humans
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Antigens, Differentiation, T-Lymphocyte/immunology
- Autoantigens/immunology
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Glutamate Decarboxylase
- Islets of Langerhans/immunology
- Islets of Langerhans/metabolism
- Lymphocyte Activation/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
Collapse
Affiliation(s)
- Jeong-Su Do
- Department of Immunology and Theranostics, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA.
| | - David Arribas-Layton
- Department of Immunology and Theranostics, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Jemily Juan
- Department of Molecular and Cellular Endocrinology, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Isaac Garcia
- Department of Molecular and Cellular Endocrinology, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Sindhu Saraswathy
- Department of Molecular and Cellular Endocrinology, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Meirigeng Qi
- Department of Translational Research and Cellular Therapeutics, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Enrique Montero
- Department of Molecular and Cellular Endocrinology, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA
| | - Helena Reijonen
- Department of Immunology and Theranostics, Duarte, USA; Arthur Riggs Diabetes & Metabolism Research Institute, City of Hope, Duarte, California, USA.
| |
Collapse
|
22
|
Santos RF, de Sousa Linhares A, Steinberger P, Davis SJ, Oliveira L, Carmo AM. The CD6 interactome orchestrates ligand-independent T cell inhibitory signaling. Cell Commun Signal 2024; 22:286. [PMID: 38790044 PMCID: PMC11127300 DOI: 10.1186/s12964-024-01658-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND T-cell membrane scaffold proteins are pivotal in T cell function, acting as versatile signaling hubs. While CD6 forms a large intracellular signalosome, it is distinguished from typical scaffolds like LAT or PAG by possessing a substantial ectodomain that binds CD166, a well-characterized ligand expressed on most antigen-presenting cells (APC), through the third domain (d3) of the extracellular region. Although the intact form of CD6 is the most abundant in T cells, an isoform lacking d3 (CD6∆d3) is transiently expressed on activated T cells. Still, the precise character of the signaling transduced by CD6, whether costimulatory or inhibitory, and the influence of its ectodomain on these activities are unclear. METHODS We expressed CD6 variants with extracellular deletions or cytosolic mutations in Jurkat cells containing eGFP reporters for NF-κB and NF-AT transcription factor activation. Cell activation was assessed by eGFP flow cytometry following Jurkat cell engagement with superantigen-presenting Raji cells. Using imaging flow cytometry, we evaluated the impact of the CD6-CD166 pair on cell adhesiveness during the antigen-dependent and -independent priming of T cells. We also examined the role of extracellular or cytosolic sequences on CD6 translocation to the immunological synapse, using immunofluorescence-based imaging. RESULTS Our investigation dissecting the functions of the extracellular and cytosolic regions of CD6 revealed that CD6 was trafficked to the immunological synapse and exerted tonic inhibition wholly dependent on its cytosolic tail. Surprisingly, however, translocation to the synapse occurred independently of the extracellular d3 and of engagement to CD166. On the other hand, CD6 binding to CD166 significantly increased T cell:APC adhesion. However, this activity was most evident in the absence of APC priming with superantigen, and thus, in the absence of TCR engagement. CONCLUSIONS Our study identifies CD6 as a novel 'on/off' scaffold-receptor capable of modulating responsiveness in two ways. Firstly, and independently of ligand binding, it establishes signaling thresholds through tonic inhibition, functioning as a membrane-bound scaffold. Secondly, CD6 has the capacity for alternative splicing-dependent variable ligand engagement, modulating its checkpoint-like activity.
Collapse
Affiliation(s)
- Rita F Santos
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- ESS - IPP School of Health, Polytechnic of Porto, Porto, Portugal
| | - Annika de Sousa Linhares
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Simon J Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
- Medical Research Council, Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Liliana Oliveira
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Porto, Portugal
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Alexandre M Carmo
- IBMC - Instituto de Biologia Molecular e Celular, Porto, Porto, Portugal.
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
23
|
Wang Z, Xie C, Li Y, Cai J, Jian J, Xia L, Lu Y. A CD6 homolog of Nile tilapia (Oreochromis niloticus) conserved binding bacteria involved in the regulation of Streptococcus agalactiae induced inflammation. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109360. [PMID: 38184181 DOI: 10.1016/j.fsi.2024.109360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/28/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
As a lymphocyte-specific surface receptor belonging to the cysteine-rich superfamily of scavenger receptors, CD6 acts as a pattern recognition receptor for microbial components and is involved in the regulation of inflammatory responses. However, the characteristics and functions of CD6 molecules in lower vertebrates represented by teleost fish are unknown. In this study, a CD6 homolog (designated OnCD6) was characterized from Nile tilapia (Oreochromis niloticus), and establishing its role as a PRRs that participates in immune recognition. OnCD6 contains an open reading frame of 1872 bp that encodes a peptide of 623 amino acids, and contains two conserved SR domain. Multiple sequence alignment revealed that OnCD6 shares a relatively high level of identity with those of other species. Transcriptional expression analysis revealed that OnCD6 was constitutively expressed in immunes tissues such as head kidney and thymus. The expression level of OnCD6 in mainly immune tissues were found significantly upregulated after the injection of Streptococcus agalactiae (S. agalactiae). Moreover, OnCD6 protein was located in the head kidney and brain, mainly over the plasma membrane of lymphocytes in these immune tissues. In vitro experiments showed that CD6 extracellular protein bound to and aggregated several Gram-positive and -negative bacterial strains through the recognition of bacterial surface conserved components LPS and LTA etc. In vivo experiments demonstrated that overexpression OnCD6 before S. agalactiae challenge significantly improved tilapia survival, and this was concomitant with reduced bacterial load and pro-inflammatory cytokines (IL-1β and TNF-α). Taken together, our results illustrated the function of CD6 molecular pattern recognition receptors (PRRs) is conserved and plays an important role in antibacterial infection.
Collapse
Affiliation(s)
- Zhiwen Wang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Caixia Xie
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuan Li
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jia Cai
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Liqun Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fisheries, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
24
|
Aragón-Serrano L, Carrillo-Serradell L, Planells-Romeo V, Isamat M, Velasco-de Andrés M, Lozano F. CD6 and Its Interacting Partners: Newcomers to the Block of Cancer Immunotherapies. Int J Mol Sci 2023; 24:17510. [PMID: 38139340 PMCID: PMC10743954 DOI: 10.3390/ijms242417510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer management still requires more potent and safer treatments, of which immunomodulatory receptors on the lymphocyte surface have started to show promise in new cancer immunotherapies (e.g., CTLA-4 and PD-1). CD6 is a signal-transducing transmembrane receptor, mainly expressed by all T cells and some B and NK cell subsets, whose endogenous ligands (CD166/ALCAM, CD318/CDCP-1, Galectins 1 and 3) are overexpressed by malignant cells of different lineages. This places CD6 as a potential target for novel therapies against haematological and non-haematological malignancies. Recent experimental evidence for the role of CD6 in cancer immunotherapies is summarised in this review, dealing with diverse and innovative strategies from the classical use of monoclonal antibodies to soluble recombinant decoys or the adoptive transfer of immune cells engineered with chimeric antigen receptors.
Collapse
Affiliation(s)
- Lucía Aragón-Serrano
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; (L.A.-S.); (L.C.-S.); (V.P.-R.); (M.V.-d.A.)
| | - Laura Carrillo-Serradell
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; (L.A.-S.); (L.C.-S.); (V.P.-R.); (M.V.-d.A.)
| | - Violeta Planells-Romeo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; (L.A.-S.); (L.C.-S.); (V.P.-R.); (M.V.-d.A.)
| | - Marcos Isamat
- Sepsia Therapeutics S.L., 08908 L’Hospitalet de Llobregat, Spain;
| | - María Velasco-de Andrés
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; (L.A.-S.); (L.C.-S.); (V.P.-R.); (M.V.-d.A.)
| | - Francisco Lozano
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Rosselló 149-153, 08036 Barcelona, Spain; (L.A.-S.); (L.C.-S.); (V.P.-R.); (M.V.-d.A.)
- Servei d’Immunologia, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
| |
Collapse
|
25
|
Louloudes-Lázaro A, Rojas JM, García-García I, Rodríguez-Martín D, Morel E, Martín V, Sevilla N. Comprehensive immune profiling reveals that Orbivirus infection activates immune checkpoints during acute T cell immunosuppression. Front Immunol 2023; 14:1255803. [PMID: 37920474 PMCID: PMC10619675 DOI: 10.3389/fimmu.2023.1255803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Bluetongue virus (BTV) is an arbovirus transmitted by the bite of infected Culicoides midges that affects domestic and wild ruminants producing great economic losses. The infection induces an IFN response, followed by an adaptive immune response that is essential in disease clearance. BTV can nonetheless impair IFN and humoral responses. The main goal of this study was to gain a more detailed understanding of BTV pathogenesis and its effects on immune cell populations. To this end, we combined flow cytometry and transcriptomic analyses of several immune cells at different times post-infection (pi). Four sheep were infected with BTV serotype 8 and blood samples collected at days 0, 3, 7 and 15pi to perform transcriptomic analysis of B-cell marker+, CD4+, CD8+, and CD14+ sorted peripheral mononuclear cells. The maximum number of differentially expressed genes occurred at day 7pi, which coincided with the peak of infection. KEGG pathway enrichment analysis indicated that genes belonging to virus sensing and immune response initiation pathways were enriched at day 3 and 7 pi in all 4 cell population analyzed. Transcriptomic analysis also showed that at day 7pi T cell exhaustion pathway was enriched in CD4+ cells, while CD8+ cells downregulated immune response initiation pathways. T cell functional studies demonstrated that BTV produced an acute inhibition of CD4+ and CD8+ T cell activation at the peak of replication. This coincided with PD-L1 upregulation on the surface of CD4+ and CD8+ T cells as well as monocytes. Taken together, these data indicate that BTV could exploit the PD1/PD-L1 immune checkpoint to impair T cell responses. These findings identify several mechanisms in the interaction between host and BTV, which could help develop better tools to combat the disease.
Collapse
Affiliation(s)
- Andrés Louloudes-Lázaro
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - José M. Rojas
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Isabel García-García
- Departamento de Genética, Fisiología y Microbiología, Unidad de Genética, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Daniel Rodríguez-Martín
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Esther Morel
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Verónica Martín
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| | - Noemí Sevilla
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC), Madrid, Spain
| |
Collapse
|
26
|
Kenney HM, Rangel-Moreno J, Peng Y, Chen KL, Bruno J, Embong A, Pritchett E, Fox JI, Becerril-Villanueva E, Gamboa-Domínguez A, Quataert S, Muthukrishnan G, Wood RW, Korman BD, Anolik JH, Xing L, Ritchlin CT, Schwarz EM, Wu CL. Multi-omics analysis identifies IgG2b class-switching with ALCAM-CD6 co-stimulation in joint-draining lymph nodes during advanced inflammatory-erosive arthritis. Front Immunol 2023; 14:1237498. [PMID: 37691918 PMCID: PMC10485835 DOI: 10.3389/fimmu.2023.1237498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction Defective lymphatic drainage and translocation of B-cells in inflamed (Bin) joint-draining lymph node sinuses are pathogenic phenomena in patients with severe rheumatoid arthritis (RA). However, the molecular mechanisms underlying this lymphatic dysfunction remain poorly understood. Herein, we utilized multi-omic spatial and single-cell transcriptomics to evaluate altered cellular composition (including lymphatic endothelial cells, macrophages, B-cells, and T-cells) in the joint-draining lymph node sinuses and their associated phenotypic changes and cell-cell interactions during RA development using the tumor necrosis factor transgenic (TNF-Tg) mouse model. Methods Popliteal lymph nodes (PLNs) from wild-type (n=10) and TNF-Tg male mice with "Early" (5 to 6-months of age; n=6) and "Advanced" (>8-months of age; n=12) arthritis were harvested and processed for spatial transcriptomics. Single-cell RNA sequencing (scRNAseq) was performed in PLNs from the TNF-Tg cohorts (n=6 PLNs pooled/cohort). PLN histopathology and ELISPOT along with ankle histology and micro-CT were evaluated. Histopathology of human lymph nodes and synovia was performed for clinical correlation. Results Advanced PLN sinuses exhibited an increased Ighg2b/Ighm expression ratio (Early 0.5 ± 0.1 vs Advanced 1.4 ± 0.5 counts/counts; p<0.001) that significantly correlated with reduced talus bone volumes in the afferent ankle (R2 = 0.54, p<0.001). Integration of single-cell and spatial transcriptomics revealed the increased IgG2b+ plasma cells localized in MARCO+ peri-follicular medullary sinuses. A concomitant decreased Fth1 expression (Early 2.5 ± 0.74 vs Advanced 1.0 ± 0.50 counts, p<0.001) within Advanced PLN sinuses was associated with accumulation of iron-laden Prussian blue positive macrophages in lymph nodes and synovium of Advanced TNF-Tg mice, and further validated in RA clinical samples. T-cells were increased 8-fold in Advanced PLNs, and bioinformatic pathway assessment identified the interaction between ALCAM+ macrophages and CD6+ T-cells as a plausible co-stimulatory mechanism to promote IgG2b class-switching. Discussion Collectively, these data support a model of flare in chronic TNF-induced arthritis in which loss of lymphatic flow through affected joint-draining lymph nodes facilitates the interaction between effluxing macrophages and T-cells via ALCAM-CD6 co-stimulation, initiating IgG2b class-switching and plasma cell differentiation of the expanded Bin population. Future work is warranted to investigate immunoglobulin clonality and potential autoimmune consequences, as well as the efficacy of anti-CD6 therapy to prevent these pathogenic events.
Collapse
Affiliation(s)
- H. Mark Kenney
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Yue Peng
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Kiana L. Chen
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Jennifer Bruno
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Abdul Embong
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Elizabeth Pritchett
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, United States
| | - Jeffrey I. Fox
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Enrique Becerril-Villanueva
- Psychoimmunology Laboratory, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz”, Mexico City, Mexico
| | - Armando Gamboa-Domínguez
- Department of Pathology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Sally Quataert
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
| | - Ronald W. Wood
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, United States
- Department of Urology, University of Rochester Medical Center, Rochester, NY, United States
| | - Benjamin D. Korman
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Jennifer H. Anolik
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Christopher T. Ritchlin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medicine, Division of Allergy, Immunology, Rheumatology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Urology, University of Rochester Medical Center, Rochester, NY, United States
| | - Chia-Lung Wu
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
27
|
Hipp AV, Bengsch B, Globig AM. Friend or Foe - Tc17 cell generation and current evidence for their importance in human disease. DISCOVERY IMMUNOLOGY 2023; 2:kyad010. [PMID: 38567057 PMCID: PMC10917240 DOI: 10.1093/discim/kyad010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 07/19/2023] [Indexed: 04/04/2024]
Abstract
The term Tc17 cells refers to interleukin 17 (IL-17)-producing CD8+ T cells. While IL-17 is an important mediator of mucosal defense, it is also centrally involved in driving the inflammatory response in immune-mediated diseases, such as psoriasis, multiple sclerosis, and inflammatory bowel disease. In this review, we aim to gather the current knowledge on the phenotypic and transcriptional profile, the in vitro and in vivo generation of Tc17 cells, and the evidence pointing towards a relevant role of Tc17 cells in human diseases such as infectious diseases, cancer, and immune-mediated diseases.
Collapse
Affiliation(s)
- Anna Veronika Hipp
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Bertram Bengsch
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Anna-Maria Globig
- Clinic for Internal Medicine II, Gastroenterology, Hepatology, Endocrinology, and Infectious Diseases, University Medical Center Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
28
|
Peters JM, Irvine EB, Rosenberg JM, Wadsworth MH, Hughes TK, Sutton M, Nyquist SK, Bromley JD, Mondal R, Roederer M, Seder RA, Darrah PA, Alter G, Flynn JL, Shalek AK, Fortune SM, Bryson BD. Protective intravenous BCG vaccination induces enhanced immune signaling in the airways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.16.549208. [PMID: 37502895 PMCID: PMC10370046 DOI: 10.1101/2023.07.16.549208] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Intradermal (ID) Bacillus Calmette-Guérin (BCG) is the most widely administered vaccine in the world. However, ID-BCG fails to achieve the level of protection needed in adults to alter the course of the tuberculosis epidemic. Recent studies in non-human primates have demonstrated high levels of protection against Mycobacterium tuberculosis ( Mtb ) following intravenous (IV) administration of BCG. However, the protective immune features that emerge following IV BCG vaccination remain incompletely defined. Here we used single-cell RNA-sequencing (scRNAseq) to transcriptionally profile 157,114 unstimulated and purified protein derivative (PPD)-stimulated bronchoalveolar lavage (BAL) cells from 29 rhesus macaques immunized with BCG across routes of administration and doses to uncover cell composition-, gene expression-, and biological network-level signatures associated with IV BCG-mediated protection. Our analyses revealed that high-dose IV BCG drove an influx of polyfunctional T cells and macrophages into the airways. These macrophages exhibited a basal activation phenotype even in the absence of PPD-stimulation, defined in part by IFN and TNF-α signaling up to 6 months following BCG immunization. Furthermore, intercellular immune signaling pathways between key myeloid and T cell subsets were enhanced following PPD-stimulation in high-dose IV BCG-vaccinated macaques. High-dose IV BCG also engendered quantitatively and qualitatively stronger transcriptional responses to PPD-stimulation, with a robust Th1-Th17 transcriptional phenotype in T cells, and augmented transcriptional signatures of reactive oxygen species production, hypoxia, and IFN-γ response within alveolar macrophages. Collectively, this work supports that IV BCG immunization creates a unique cellular ecosystem in the airways, which primes and enables local myeloid cells to effectively clear Mtb upon challenge.
Collapse
|
29
|
Bauer A, Klassa S, Herbst A, Maccioni C, Abhamon W, Segueni N, Kaluzhny Y, Hunter MC, Halin C. Optimization and Characterization of Novel ALCAM-Targeting Antibody Fragments for Transepithelial Delivery. Pharmaceutics 2023; 15:1841. [PMID: 37514028 PMCID: PMC10385607 DOI: 10.3390/pharmaceutics15071841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) is a cell adhesion molecule that supports T cell activation, leukocyte migration, and (lymph)angiogenesis and has been shown to contribute to the pathology of various immune-mediated disorders, including asthma and corneal graft rejection. In contrast to monoclonal antibodies (mAbs) targeting ALCAM's T cell expressed binding partner CD6, no ALCAM-targeting mAbs have thus far entered clinical development. This is likely linked with the broad expression of ALCAM on many different cell types, which increases the risk of eliciting unwanted treatment-induced side effects upon systemic mAb application. Targeting ALCAM in surface-exposed tissues, such as the lungs or the cornea, by a topical application could circumvent this issue. Here, we report the development of various stability- and affinity-improved anti-ALCAM mAb fragments with cross-species reactivity towards mouse, rat, monkey, and human ALCAM. Fragments generated in either mono- or bivalent formats potently blocked ALCAM-CD6 interactions in a competition ELISA, but only bivalent fragments efficiently inhibited ALCAM-ALCAM interactions in a leukocyte transmigration assay. The different fragments displayed a clear size-dependence in their ability to penetrate the human corneal epithelium. Furthermore, intranasal delivery of anti-ALCAM fragments reduced leukocyte infiltration in a mouse model of asthma, confirming ALCAM as a target for topical application in the lungs.
Collapse
Affiliation(s)
- Aline Bauer
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - Sven Klassa
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - Anja Herbst
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - Cristina Maccioni
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - William Abhamon
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - Noria Segueni
- Artimmune SAS, 13 Avenue Buffon, 45100 Orleans, France
| | - Yulia Kaluzhny
- MatTek Corporation, 200 Homer Avenue, Ashland, MA 01721, USA
| | - Morgan Campbell Hunter
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| |
Collapse
|
30
|
Pitts HA, Cheng CK, Cheung JS, Sun MKH, Yung YL, Chan HY, Wong RSM, Yip SF, Lau KN, Wong WS, Raghupathy R, Chan NPH, Ng MHL. SPINK2 Protein Expression Is an Independent Adverse Prognostic Marker in AML and Is Potentially Implicated in the Regulation of Ferroptosis and Immune Response. Int J Mol Sci 2023; 24:ijms24119696. [PMID: 37298647 DOI: 10.3390/ijms24119696] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
There is an urgent need for the identification as well as clinicopathological and functional characterization of potent prognostic biomarkers and therapeutic targets in acute myeloid leukemia (AML). Using immunohistochemistry and next-generation sequencing, we investigated the protein expression as well as clinicopathological and prognostic associations of serine protease inhibitor Kazal type 2 (SPINK2) in AML and examined its potential biological functions. High SPINK2 protein expression was an independent adverse biomarker for survival and an indicator of elevated therapy resistance and relapse risk. SPINK2 expression was associated with AML with an NPM1 mutation and an intermediate risk by cytogenetics and European LeukemiaNet (ELN) 2022 criteria. Furthermore, SPINK2 expression could refine the ELN2022prognostic stratification. Functionally, an RNA sequencing analysis uncovered a potential link of SPINK2 with ferroptosis and immune response. SPINK2 regulated the expression of certain P53 targets and ferroptosis-related genes, including SLC7A11 and STEAP3, and affected cystine uptake, intracellular iron levels and sensitivity to erastin, a specific ferroptosis inducer. Furthermore, SPINK2 inhibition consistently increased the expression of ALCAM, an immune response enhancer and promoter of T-cell activity. Additionally, we identified a potential small-molecule inhibitor of SPINK2, which requires further characterization. In summary, high SPINK2 protein expression was a potent adverse prognostic marker in AML and might represent a druggable target.
Collapse
Affiliation(s)
- Herbert Augustus Pitts
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical & Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chi-Keung Cheng
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical & Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joyce Sin Cheung
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical & Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Murphy Ka-Hei Sun
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical & Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yuk-Lin Yung
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical & Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Hoi-Yun Chan
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical & Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Raymond S M Wong
- Sir Y.K. Pao Centre for Cancer, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Sze-Fai Yip
- Department of Clinical Pathology, Tuen Mun Hospital, Hong Kong SAR, China
| | - Ka-Ngai Lau
- Department of Clinical Pathology, Tuen Mun Hospital, Hong Kong SAR, China
| | - Wai Shan Wong
- Pathology Department, Queen Elizabeth Hospital, Hong Kong SAR, China
| | - Radha Raghupathy
- Department of Clinical Oncology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Natalie P H Chan
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical & Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Margaret H L Ng
- Blood Cancer Cytogenetics and Genomics Laboratory, Department of Anatomical & Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
31
|
Duong HG, Choi EJ, Hsu P, Chiang NR, Patel SA, Olvera JG, Liu YC, Lin YH, Yao P, Wong WH, Indralingam CS, Tsai MS, Boland BS, Wang W, Chang JT. Identification of CD8 + T-Cell-Immune Cell Communications in Ileal Crohn's Disease. Clin Transl Gastroenterol 2023; 14:e00576. [PMID: 36854061 PMCID: PMC10208704 DOI: 10.14309/ctg.0000000000000576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
INTRODUCTION Crohn's disease (CD) is a major subtype of inflammatory bowel disease (IBD), a spectrum of chronic intestinal disorders caused by dysregulated immune responses to gut microbiota. Although transcriptional and functional changes in a number of immune cell types have been implicated in the pathogenesis of IBD, the cellular interactions and signals that drive these changes have been less well-studied. METHODS We performed Cellular Indexing of Transcriptomes and Epitopes by sequencing on peripheral blood, colon, and ileal immune cells derived from healthy subjects and patients with CD. We applied a previously published computational approach, NicheNet, to predict immune cell types interacting with CD8 + T-cell subsets, revealing putative ligand-receptor pairs and key transcriptional changes downstream of these cell-cell communications. RESULTS As a number of recent studies have revealed a potential role for CD8 + T-cell subsets in the pathogenesis of IBD, we focused our analyses on identifying the interactions of CD8 + T-cell subsets with other immune cells in the intestinal tissue microenvironment. We identified ligands and signaling pathways that have implicated in IBD, such as interleukin-1β, supporting the validity of the approach, along with unexpected ligands, such as granzyme B, which may play previously unappreciated roles in IBD. DISCUSSION Overall, these findings suggest that future efforts focused on elucidating cell-cell communications among immune and nonimmune cell types may further our understanding of IBD pathogenesis.
Collapse
Affiliation(s)
- Han G. Duong
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Eunice J. Choi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA;
| | - Paul Hsu
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Natalie R. Chiang
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Shefali A. Patel
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Jocelyn G. Olvera
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Yi Chia Liu
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Yun Hsuan Lin
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Priscilla Yao
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - William H. Wong
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | | | - Matthew S. Tsai
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
- Department of Medicine, Jennifer Moreno Department of Veteran Affairs Medical Center, San Diego, California, USA
| | - Brigid S. Boland
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
| | - Wei Wang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA;
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California, USA.
| | - John T. Chang
- Department of Medicine, University of California San Diego, La Jolla, California, USA;
- Department of Medicine, Jennifer Moreno Department of Veteran Affairs Medical Center, San Diego, California, USA
| |
Collapse
|
32
|
Cho WJ, Mittal SK, Chauhan SK. Mesenchymal Stromal Cells Suppress T-Cell-Mediated Delayed-Type Hypersensitivity via ALCAM-CD6 Interaction. Stem Cells Transl Med 2023; 12:221-233. [PMID: 36972356 PMCID: PMC10108723 DOI: 10.1093/stcltm/szad012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/06/2023] [Indexed: 03/29/2023] Open
Abstract
Mounting evidence suggests mesenchymal stromal cells (MSCs) suppress CD4+ T-cell activation, but whether MSCs directly regulate activation and expansion of allogeneic T cells has not been fully deciphered. Here, we identified that both human and murine MSCs constitutively express ALCAM, a cognate ligand for CD6 receptors on T cells, and investigated its immunomodulatory function using in vivo and in vitro experiments. Our controlled coculture assays demonstrated that ALCAM-CD6 pathway is critical for MSCs to exert its suppressive function on early CD4+CD25- T-cell activation. Moreover, neutralizing ALCAM or CD6 results in the abrogation of MSC-mediated suppression of T-cell expansion. Using a murine model of delayed-type hypersensitivity response to alloantigen, we show that ALCAM-silenced MSCs lose the capacity to suppress the generation of alloreactive IFNγ-secreting T cells. Consequently, MSCs, following ALCAM knockdown, failed to prevent allosensitization and alloreactive T-cell-mediated tissue damage.
Collapse
Affiliation(s)
- WonKyung J Cho
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sharad K Mittal
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Mass Eye and Ear, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Li R, Ren T, Zeng J, Xu H. ALCAM Deficiency Alleviates LPS-Induced Acute Lung Injury by Inhibiting Inflammatory Response. Inflammation 2023; 46:688-699. [PMID: 36418761 DOI: 10.1007/s10753-022-01765-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
We investigated the effects and underlying mechanisms of activated leukocyte adhesion molecule (ALCAM) on acute lung injury (ALI) by using lipopolysaccharide (LPS)-induced ALI animal model and LPS-induced inflammation in vitro. In LPS-stimulated mice, ALCAM deficiency relieved lung injury, which manifested as reduced pathological changes in the lung tissue, reduced pulmonary edema, and reduced vascular permeability. Furthermore, we demonstrated that ALCAM deficiency reduced the infiltration of inflammatory cells, including neutrophil, eosinophil, and macrophages; the release of inflammatory cytokines, including IL-1β, IL-6, TNF-α, and COX2; and reduced the protein level of TLR4/NF-κB pathway (TLR4, MyD88, p-IkBɑ, and p-NF-κB p65). We also demonstrated that ALCAM deficiency reduced the expression of oxidative stress-related proteins (Nrf-2, HO-1, and NQO-1) and endoplasmic reticulum stress-related proteins (CHOP, GRP78, ATF-6, and p-eIF2ɑ). In addition, in LPS-induced inflammation in vitro, ALCAM overexpression promoted inflammatory response, oxidative stress, and ER stress. We established that ALCAM deficiency can suppress the ALI process by reducing inflammatory response, oxidative stress, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ruirui Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University School of Medicine, No. 107, Shibei 2Nd Road, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Tao Ren
- Three Departments of Cardiology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Jianqiong Zeng
- Cardiovascular Surgery CCU, Foshan First People's Hospital, Foshan, 528000, Guangdong, People's Republic of China
| | - Hang Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University School of Medicine, No. 107, Shibei 2Nd Road, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China.
| |
Collapse
|
34
|
Nunez Lopez YO, Iliuk A, Casu A, Parikh A, Smith JS, Corbin K, Lupu D, Pratley RE. Extracellular vesicle proteomics and phosphoproteomics identify pathways for increased risk in patients hospitalized with COVID-19 and type 2 diabetes mellitus. Diabetes Res Clin Pract 2023; 197:110565. [PMID: 36736734 PMCID: PMC9890887 DOI: 10.1016/j.diabres.2023.110565] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/22/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Recent studies suggest that extracellular vesicles (EVs) play a role in the pathogenesis of SARS-CoV-2 infection and the severity of COVID-19. However, their role in the interaction between COVID-19 and type 2 diabetes (T2D) has not been addressed. Here, we characterized the circulating EV proteomic and phosphoproteomic landscape in patients with and without T2D hospitalized with COVID-19 or non-COVID-19 acute respiratory illness (RSP). We detected differentially expressed protein and phosphoprotein signatures that effectively characterized the study groups. The trio of immunomodulatory and coagulation proteins C1QA, C1QB, and C1QC appeared to be a central cluster in both the COVID-19 and T2D functional networks. PKCβ appeared to be retained in cells by being diverted from EV pathways and contribute to the COVID-19 and T2D interaction via a PKC/BTK/TEC axis. EV-shuttled CASP3 and ROCK1 appeared to be coregulated and likely contribute to disease interactions in patients with COVID-19 and T2D. Predicted activation of AMPK, MAPK, and SYK appeared to also play important roles driving disease interaction. These results suggest that activated cellular kinases (i.e., PKC, AMPK, MAPK, and SYK) and multiple EV-shuttled kinases (i.e., PKCβ, BTK, TEC, MAP2K2, and ROCK1) may play key roles in severe COVID-19, particularly in patients with comorbid diabetes.
Collapse
Affiliation(s)
- Yury O Nunez Lopez
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, United States
| | - Anton Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, United States; Tymora Analytical Operations, West Lafayette, IN 47906, United States.
| | - Anna Casu
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, United States
| | - Amay Parikh
- Division of Critical Care, AdventHealth Medical Group, AdventHealth Orlando, Orlando, FL 32804, United States
| | - Joshua S Smith
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, United States
| | - Karen Corbin
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, United States
| | - Daniel Lupu
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, United States
| | - Richard E Pratley
- Translational Research Institute, AdventHealth Orlando, Orlando, FL 32804, United States.
| |
Collapse
|
35
|
Henriques SN, Oliveira L, Santos RF, Carmo AM. CD6-mediated inhibition of T cell activation via modulation of Ras. Cell Commun Signal 2022; 20:184. [PMID: 36414966 PMCID: PMC9682754 DOI: 10.1186/s12964-022-00998-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND CD6 is one of many cell surface receptors known to regulate signal transduction upon T cell activation. However, whether CD6 mediates costimulatory or inhibitory signals is controversial. When T cells engage with antigen presenting cells (APCs), CD6 interacts with its ligand CD166 at the cell-cell interface while the cytosolic tail assembles a complex signalosome composed of adaptors and effector enzymes, that may either trigger activating signaling cascades, or instead modulate the intensity of signaling. Except for a few cytosolic adaptors that connect different components of the CD6 signalosome, very little is known about the mechanistic effects of the cytosolic effectors that bind CD6. METHODS Jurkat model T cells were transfected to express wild-type (WT) CD6, or a cytoplasmic truncation, signaling-disabled mutant, CD6Δcyt. The two resulting cell lines were directly activated by superantigen (sAg)-loaded Raji cells, used as APCs, to assess the net signaling function of CD6. The Jurkat cell lines were further adapted to express a FRET-based unimolecular HRas biosensor that reported the activity of this crucial GTPase at the immunological synapse. RESULTS We show that deletion of the cytosolic tail of CD6 enhances T-cell responses, indicating that CD6 restrains T-cell activation. One component of the CD6-associated inhibitory apparatus was found to be the GTPase activating protein of Ras (RasGAP), that we show to associate with CD6 in a phosphorylation-dependent manner. The FRET HRas biosensor that we developed was demonstrated to be functional and reporting the activation of the T cell lines. This allowed to determine that the presence of the cytosolic tail of CD6 results in the down-regulation of HRas activity at the immunological synapse, implicating this fundamental GTPase as one of the targets inhibited by CD6. CONCLUSIONS This study provides the first description of a mechanistic sequence of events underlying the CD6-mediated inhibition of T-cell activation, involving the modulation of the MAPK pathway at several steps, starting with the coupling of RasGAP to the CD6 signalosome, the repression of the activity of Ras, and culminating in the reduction of ERK1/2 phosphorylation and of the expression of the T-cell activation markers CD69 and IL-2R α chain. Video abstract.
Collapse
Affiliation(s)
- Sónia N. Henriques
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal ,grid.5808.50000 0001 1503 7226Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Liliana Oliveira
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Rita F. Santos
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| | - Alexandre M. Carmo
- grid.5808.50000 0001 1503 7226i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ,grid.5808.50000 0001 1503 7226IBMC - Instituto de Biologia Molecular e Celular, Porto, Portugal
| |
Collapse
|
36
|
Jung SH, Park SS, Lim JY, Sohn SY, Kim NY, Kim D, Lee SH, Chung YJ, Min CK. Single-cell analysis of multiple myelomas refines the molecular features of bortezomib treatment responsiveness. Exp Mol Med 2022; 54:1967-1978. [PMID: 36380017 PMCID: PMC9723182 DOI: 10.1038/s12276-022-00884-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Both the tumor and tumor microenvironment (TME) are crucial for pathogenesis and chemotherapy resistance in multiple myeloma (MM). Bortezomib, commonly used for MM treatment, works on both MM and TME cells, but innate and acquired resistance easily develop. By single-cell RNA sequencing (scRNA-seq), we investigated bone marrow aspirates of 18 treatment-naïve MM patients who later received bortezomib-based treatments. Twelve plasma and TME cell types and their subsets were identified. Suboptimal responders (SORs) to bortezomib exhibited higher copy number alteration burdens than optimal responders (ORs). Forty-four differentially expressed genes for SORs based on scRNA-seq data were further analyzed in an independent cohort of 90 treatment-naïve MMs, where 24 genes were validated. A combined model of three clinical variables (older age, low absolute lymphocyte count, and no autologous stem cell transplantation) and 24 genes was associated with bortezomib responsiveness and poor prognosis. In T cells, cytotoxic memory, proliferating, and dysfunctional subsets were significantly enriched in SORs. Moreover, we identified three monocyte subsets associated with bortezomib responsiveness and an MM-specific NK cell trajectory that ended with an MM-specific subset. scRNA-seq predicted the interaction of the GAS6-MERTK, ALCAM-CD6, and BAG6-NCR gene networks. Of note, tumor cells from ORs and SORs were the most prominent sources of ALCAM on effector T cells and BAG6 on NK cells, respectively. Our results indicate that the complicated compositional and molecular changes of both tumor and immune cells in the bone marrow (BM) milieu are important in the development and acquisition of resistance to bortezomib-based treatment of MM.
Collapse
Affiliation(s)
- Seung-Hyun Jung
- grid.411947.e0000 0004 0470 4224Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, South Korea ,grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sung-Soo Park
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, Seoul, South Korea ,grid.411947.e0000 0004 0470 4224Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Ji-Young Lim
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, Seoul, South Korea
| | - Seon Yong Sohn
- grid.411947.e0000 0004 0470 4224Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Na Yung Kim
- grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Dokyeong Kim
- grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea ,grid.411947.e0000 0004 0470 4224Precision Medicine Research Center/IRCGP, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sug Hyung Lee
- grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea ,grid.411947.e0000 0004 0470 4224Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea ,grid.411947.e0000 0004 0470 4224Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yeun-Jun Chung
- grid.411947.e0000 0004 0470 4224Department of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea ,grid.411947.e0000 0004 0470 4224Precision Medicine Research Center/IRCGP, College of Medicine, The Catholic University of Korea, Seoul, South Korea ,grid.411947.e0000 0004 0470 4224Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Chang-Ki Min
- Department of Hematology, Seoul St. Mary’s Hematology Hospital, Seoul, South Korea ,grid.411947.e0000 0004 0470 4224Leukemia Research Institute, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
37
|
Chen L, Peters JE, Prins B, Persyn E, Traylor M, Surendran P, Karthikeyan S, Yonova-Doing E, Di Angelantonio E, Roberts DJ, Watkins NA, Ouwehand WH, Danesh J, Lewis CM, Bronson PG, Markus HS, Burgess S, Butterworth AS, Howson JMM. Systematic Mendelian randomization using the human plasma proteome to discover potential therapeutic targets for stroke. Nat Commun 2022; 13:6143. [PMID: 36253349 PMCID: PMC9576777 DOI: 10.1038/s41467-022-33675-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 09/28/2022] [Indexed: 02/02/2023] Open
Abstract
Stroke is the second leading cause of death with substantial unmet therapeutic needs. To identify potential stroke therapeutic targets, we estimate the causal effects of 308 plasma proteins on stroke outcomes in a two-sample Mendelian randomization framework and assess mediation effects by stroke risk factors. We find associations between genetically predicted plasma levels of six proteins and stroke (P ≤ 1.62 × 10-4). The genetic associations with stroke colocalize (Posterior Probability >0.7) with the genetic associations of four proteins (TFPI, TMPRSS5, CD6, CD40). Mendelian randomization supports atrial fibrillation, body mass index, smoking, blood pressure, white matter hyperintensities and type 2 diabetes as stroke risk factors (P ≤ 0.0071). Body mass index, white matter hyperintensity and atrial fibrillation appear to mediate the TFPI, IL6RA, TMPRSS5 associations with stroke. Furthermore, thirty-six proteins are associated with one or more of these risk factors using Mendelian randomization. Our results highlight causal pathways and potential therapeutic targets for stroke.
Collapse
Affiliation(s)
- Lingyan Chen
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - James E Peters
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Bram Prins
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Elodie Persyn
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Medical and Molecular Genetics, King's College London, London, UK
- Cambridge Baker Systems Genomics Initiative, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Matthew Traylor
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, CB1 8RN, Cambridge, UK
| | - Savita Karthikeyan
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Ekaterina Yonova-Doing
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Health Data Science Research Centre, Human Technopole, Milan, Italy
| | - David J Roberts
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant-Oxford Centre, Level 2, John Radcliffe Hospital, Oxford, UK
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nicholas A Watkins
- NHS Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge, UK
| | - Willem H Ouwehand
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge Biomedical Campus, Long Road, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Hinxton, UK
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Cathryn M Lewis
- Department of Medical and Molecular Genetics, King's College London, London, UK
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | | | - Hugh S Markus
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Stephen Burgess
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- Medical Research Council Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Joanna M M Howson
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK.
| |
Collapse
|
38
|
Yu C, Li P, Dang X, Zhang X, Mao Y, Chen X. Lupus nephritis: new progress in diagnosis and treatment. J Autoimmun 2022; 132:102871. [PMID: 35999111 DOI: 10.1016/j.jaut.2022.102871] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023]
Abstract
Systemic lupus erythematosus (SLE) is a chronic multifactorial autoimmune disease that affects many organs, including the kidney. Lupus nephritis (LN) is a common manifestation characterized by heterogeneous clinical and histopathological findings, and often associates with poor prognosis. The diagnosis and treatment of LN is challenging, depending largely on renal biopsy, and there is no reliable non-invasive LN biomarker. Up to now, the complete remission rate of LN is only 20%∼30% after receiving six months of standard treatment, which is far from satisfactory. Moreover, adverse reactions to immunosuppressants, especially glucocorticoids, further compromise the prognosis of LN. Biological reagents targetting autoimmune responses and inflammatory pathways, bring hope to the treatment of intractable lupus. The European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) and KDIGO (Kidney Disease: Improving Global Outcomes) have been working on and launched the recommendations for the management of LN. In this review, we update our knowledge in the pathogenesis, diagnosis, and management of LN and prospect for the future potential targets in the management of LN.
Collapse
Affiliation(s)
- Chen Yu
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ping Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China
| | - Xin Dang
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xuan Zhang
- Department of Rheumatology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yonghui Mao
- Department of Nephrology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| |
Collapse
|
39
|
Laghouaouta H, Fraile L, Suárez-Mesa R, Ros-Freixedes R, Estany J, Pena RN. A genome-wide screen for resilient responses in growing pigs. Genet Sel Evol 2022; 54:50. [PMID: 35787790 PMCID: PMC9251948 DOI: 10.1186/s12711-022-00739-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Background There is a growing interest to decipher the genetic background of resilience and its possible improvement through selective breeding. The objective of the present study was to provide new insights into the genetic make-up of resilience in growing pigs by identifying genomic regions and candidate genes associated with resilience indicators. Commercial Duroc pigs were challenged with an attenuated Aujeszky vaccine at 12 weeks of age. Two resilience indicators were used: deviation from the expected body weight at 16 weeks of age given the growth curve of non-vaccinated pigs (∆BW) and the increase in acute-phase protein haptoglobin at four days post-vaccination (∆HP). Genome-wide association analyses were carried out on 445 pigs, using genotypes at 41,165 single nucleotide polymorphisms (SNPs) and single-marker and Bayesian multiple-marker regression approaches. Results Genomic regions on pig chromosomes 2, 8, 9, 11 (∆BW) and 8, 9, 13 (∆HP) were found to be associated with the resilience indicators and explained high proportions of their genetic variance. The genomic regions that were associated explained 27 and 5% of the genetic variance of ∆BW and ∆HP, respectively. These genomic regions harbour promising candidate genes that are involved in pathways related to immune response, response to stress, or signal transduction (CD6, PTGDR2, IKZF1, RNASEL and MYD88), and growth (GRB10 and LCORL). Conclusions Our study identified novel genomic regions that are associated with two resilience indicators (∆BW and ∆HP) in pigs. These associated genomic regions harbour potential candidate genes involved in immune response and growth pathways, which emphasise the strong relationship between resilience and immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-022-00739-1.
Collapse
Affiliation(s)
- Houda Laghouaouta
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Lorenzo Fraile
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Rafael Suárez-Mesa
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Roger Ros-Freixedes
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Joan Estany
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Ramona Natacha Pena
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain.
| |
Collapse
|
40
|
High-dimensional profiling reveals Tc17 cell enrichment in active Crohn's disease and identifies a potentially targetable signature. Nat Commun 2022; 13:3688. [PMID: 35760777 PMCID: PMC9237103 DOI: 10.1038/s41467-022-31229-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 05/25/2022] [Indexed: 11/20/2022] Open
Abstract
The immune-pathology in Crohn’s disease is linked to dysregulated CD4+ T cell responses biased towards pathogenic TH17 cells. However, the role of CD8+ T cells able to produce IL-17 (Tc17 cells) remains unclear. Here we characterize the peripheral blood and intestinal tissue of Crohn’s disease patients (n = 61) with flow and mass cytometry and reveal a strong increase of Tc17 cells in active disease, mainly due to induction of conventional T cells. Mass cytometry shows that Tc17 cells express a distinct immune signature (CD6high, CD39, CD69, PD-1, CD27low) which was validated in an independent patient cohort. This signature stratifies patients into groups with distinct flare-free survival associated with differential CD6 expression. Targeting of CD6 in vitro reduces IL-17, IFN-γ and TNF production. These results identify a distinct Tc17 cell population in Crohn’s disease with proinflammatory features linked to disease activity. The Tc17 signature informs clinical outcomes and may guide personalized treatment decisions. The T cell compartment in patients with Crohn's disease is dysregulated. Here the authors use cytometric profiling to reveal an enrichment of distinct Tc17 cells during active Crohn's disease and may suggest CD6 as a potential target for therapeutic studies.
Collapse
|
41
|
Tyckaert F, Zanin N, Morsomme P, Renard HF. Rac1, actin cytoskeleton and microtubules are key players in clathrin-independent endophilin-A3-mediated endocytosis. J Cell Sci 2022; 135:276016. [PMID: 35703091 DOI: 10.1242/jcs.259623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/05/2022] [Indexed: 10/18/2022] Open
Abstract
Endocytic mechanisms actively regulate plasma membrane composition and sustain fundamental cellular functions. Recently, we identified a clathrin-independent endocytic (CIE) modality mediated by the BAR domain protein endophilin-A3 (endoA3), which controls the cell surface homeostasis of the tumor marker CD166/ALCAM. Deciphering the molecular machinery of endoA3-dependent CIE should therefore contribute to a better understanding of its pathophysiological role, which remains so far unknown. Here, we investigate the role in this mechanism of actin, Rho GTPases and microtubules, which are major actors of CIE processes. We show that the actin cytoskeleton is dynamically associated with endoA3- and CD166-positive endocytic carriers and that its perturbation strongly inhibits the uptake process of CD166. We also reveal that the Rho GTPase Rac1, but not Cdc42, is a master regulator of this endocytic route. Finally, we provide evidence that microtubules and kinesin molecular motors are required to potentiate endoA3-dependent endocytosis. Of note, our study also highlights potential compensation phenomena between endoA3-dependent CIE and macropinocytosis. Altogether, our data deepen our understanding of this CIE modality and further differentiate it from other unconventional endocytic mechanisms.
Collapse
Affiliation(s)
- François Tyckaert
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Croix du Sud 4-5, B-1348 Louvain-la-Neuve, Belgium.,UNamur, NARILIS, Unité de recherche en biologie cellulaire animale (URBC), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Natacha Zanin
- UNamur, NARILIS, Unité de recherche en biologie cellulaire animale (URBC), Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Pierre Morsomme
- UCLouvain, Louvain Institute of Biomolecular Science and Technology, Group of Molecular Physiology, Croix du Sud 4-5, B-1348 Louvain-la-Neuve, Belgium
| | - Henri-François Renard
- UNamur, NARILIS, Unité de recherche en biologie cellulaire animale (URBC), Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
42
|
Breaching Brain Barriers: B Cell Migration in Multiple Sclerosis. Biomolecules 2022; 12:biom12060800. [PMID: 35740925 PMCID: PMC9221446 DOI: 10.3390/biom12060800] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) known for the manifestation of demyelinated lesions throughout the CNS, leading to neurodegeneration. To date, not all pathological mechanisms that drive disease progression are known, but the clinical benefits of anti-CD20 therapies have put B cells in the spotlight of MS research. Besides their pathological effects in the periphery in MS, B cells gain access to the CNS where they can contribute to disease pathogenesis. Specifically, B cells accumulate in perivascular infiltrates in the brain parenchyma and the subarachnoid spaces of the meninges, but are virtually absent from the choroid plexus. Hence, the possible migration of B cells over the blood-brain-, blood-meningeal-, and blood-cerebrospinal fluid (CSF) barriers appears to be a crucial step to understanding B cell-mediated pathology. To gain more insight into the molecular mechanisms that regulate B cell trafficking into the brain, we here provide a comprehensive overview of the different CNS barriers in health and in MS and how they translate into different routes for B cell migration. In addition, we review the mechanisms of action of diverse therapies that deplete peripheral B cells and/or block B cell migration into the CNS. Importantly, this review shows that studying the different routes of how B cells enter the inflamed CNS should be the next step to understanding this disease.
Collapse
|
43
|
ALCAM/CD166 Is Involved in the Binding and Uptake of Cancer-Derived Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms23105753. [PMID: 35628559 PMCID: PMC9143639 DOI: 10.3390/ijms23105753] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) and ovarian cancer (OvC) patients frequently develop peritoneal metastasis, a condition associated with a very poor prognosis. In these cancers, tumor-derived extracellular vesicles (EVs) cause immunosuppression, facilitate the direct attachment and invasion of cancer cells through the mesothelium, induce the conversion of peritoneal mesothelial cells (PMCs) into cancer-associated fibroblasts (CAFs) and transfer a more aggressive phenotype amongst cancer cells. Although the promoting role of EVs in CRC and OvC peritoneal metastasis is well established, the specific molecules that mediate the interactions between tumor-derived EVs and immune and non-immune target cells remain elusive. Here, we employed the SKOV-3 (ovarian adenocarcinoma) and Colo-320 (colorectal adenocarcinoma) human cell lines as model systems to study the interactions and uptake of EVs produced by ovarian carcinoma and colorectal carcinoma cells, respectively. We established that the adhesion molecule ALCAM/CD166 is involved in the interaction of cancer-derived EVs with recipient cancer cells (a process termed “EV binding” or “EV docking”) and in their subsequent uptake by these cells. The identification of ALCAM/CD166 as a molecule mediating the docking and uptake of CRC and OvC-derived EVs may be potentially exploited to block the peritoneal metastasis cascade promoted by EVs in CRC and OvC patients.
Collapse
|
44
|
Papadopoulou G, Manoloudi E, Repousi N, Skoura L, Hurst T, Karamitros T. Molecular and Clinical Prognostic Biomarkers of COVID-19 Severity and Persistence. Pathogens 2022; 11:311. [PMID: 35335635 PMCID: PMC8948624 DOI: 10.3390/pathogens11030311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 02/04/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), poses several challenges to clinicians, due to its unpredictable clinical course. The identification of laboratory biomarkers, specific cellular, and molecular mediators of immune response could contribute to the prognosis and management of COVID-19 patients. Of utmost importance is also the detection of differentially expressed genes, which can serve as transcriptomic signatures, providing information valuable to stratify patients into groups, based on the severity of the disease. The role of biomarkers such as IL-6, procalcitonin, neutrophil-lymphocyte ratio, white blood cell counts, etc. has already been highlighted in recently published studies; however, there is a notable amount of new evidence that has not been summarized yet, especially regarding transcriptomic signatures. Hence, in this review, we assess the latest cellular and molecular data and determine the significance of abnormalities in potential biomarkers for COVID-19 severity and persistence. Furthermore, we applied Gene Ontology (GO) enrichment analysis using the genes reported as differentially expressed in the literature in order to investigate which biological pathways are significantly enriched. The analysis revealed a number of processes, such as inflammatory response, and monocyte and neutrophil chemotaxis, which occur as part of the complex immune response to SARS-CoV-2.
Collapse
Affiliation(s)
- Gethsimani Papadopoulou
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 115 21 Athens, Greece; (G.P.); (E.M.); (N.R.)
| | - Eleni Manoloudi
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 115 21 Athens, Greece; (G.P.); (E.M.); (N.R.)
| | - Nikolena Repousi
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 115 21 Athens, Greece; (G.P.); (E.M.); (N.R.)
| | - Lemonia Skoura
- Department of Microbiology, AHEPA University Hospital, Medical School, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Greece;
| | - Tara Hurst
- School of Health Sciences, Birmingham City University, Birmingham B15 3TN, UK;
| | - Timokratis Karamitros
- Bioinformatics and Applied Genomics Unit, Department of Microbiology, Hellenic Pasteur Institute, 115 21 Athens, Greece; (G.P.); (E.M.); (N.R.)
| |
Collapse
|
45
|
Lindblom J, Mohan C, Parodis I. Diagnostic, predictive and prognostic biomarkers in systemic lupus erythematosus: current insights. Curr Opin Rheumatol 2022; 34:139-149. [PMID: 35013077 DOI: 10.1097/bor.0000000000000862] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Biomarkers for diagnosis, monitoring and prognosis still constitute an unmet need for systemic lupus erythematosus (SLE). Focusing on recent findings, this review summarises the current landscape of biomarkers in lupus. RECENT FINDINGS Urine activated leukocyte cell adhesion molecule (ALCAM) exhibited good diagnostic ability in SLE and lupus nephritis (LN) whereas cerebrospinal fluid neutrophil gelatinase-associated lipocalin (NGAL) showed promise in neuropsychiatric SLE. Urine ALCAM, CD163 and vascular cell adhesion molecule 1 (VCAM-1) may be useful in surveillance of LN. Urine monocyte chemoattractant protein 1 was found to predict treatment response in SLE, and urine CD163 and NGAL treatment response in LN. Serum complement component 3 (C3) and urinary VCAM-1 have been reported to portend long-term renal prognosis in LN. SUMMARY NGAL holds promise as a versatile biomarker in SLE whereas urine ALCAM, CD163 and VCAM-1 displayed good performance as biomarkers in LN. The overall lack of concerted corroboration of leading candidates across multiple cohorts and diverse populations leaves the current biomarker landscape in SLE in an urgent need for further survey and systematic validation.
Collapse
Affiliation(s)
- Julius Lindblom
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Chandra Mohan
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Rheumatology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
46
|
Cell Surface Proteins for Enrichment and In Vitro Characterization of Human Pluripotent Stem Cell-Derived Myogenic Progenitors. Stem Cells Int 2022; 2022:2735414. [PMID: 35251185 PMCID: PMC8894063 DOI: 10.1155/2022/2735414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Human myogenic progenitors can be derived from pluripotent stem cells (PSCs) for use in modeling natural and pathological myogenesis, as well as treating muscle diseases. Transgene-free methods of deriving myogenic progenitors from different PSC lines often produce mixed populations that are heterogeneous in myogenic differentiation potential, yet detailed and accurate characterization of human PSC-derived myogenic progenitors remains elusive in the field. The isolation and purification of human PSC-derived myogenic progenitors is thus an important methodological consideration when we investigate the properties and behaviors of these cells in culture. We previously reported a transgene-free, serum-free floating sphere culture method for the derivation of myogenic progenitors from human PSCs. In this study, we first performed comprehensive cell surface protein profiling of the sphere culture cells through the screening of 255 antibodies. Next, we used magnetic activated cell sorting and enriched the cells according to the expression of specific surface markers. The ability of muscle differentiation in the resulting cells was characterized by immunofluorescent labeling and quantification of positively stained cells. Our results revealed that myotube-forming cells resided in the differentiated cultures of CD29+, CD56+, CD271+, and CD15– fractions, while thick and multinucleated myotubes were identified in the differentiated cultures from CD9+ and CD146+ fractions. We found that PAX7 localization to the nucleus correlates with myotube-forming ability in these sorted populations. We also demonstrated that cells in unsorted, CD271+, and CD15– fractions responded differently to cryopreservation and prolonged culture expansion. Lastly, we showed that CD271 expression is essential for terminal differentiation of human PSC-derived myogenic progenitors. Taken together, these cell surface proteins are not only useful markers to identify unique cellular populations in human PSC-derived myogenic progenitors but also functionally important molecules that can provide valuable insight into human myogenesis.
Collapse
|
47
|
Chalmers SA, Ayilam Ramachandran R, Garcia SJ, Der E, Herlitz L, Ampudia J, Chu D, Jordan N, Zhang T, Parodis I, Gunnarsson I, Ding H, Shen N, Petri M, Mok CC, Saxena R, Polu KR, Connelly S, Ng CT, Mohan C, Putterman C. The CD6/ALCAM pathway promotes lupus nephritis via T cell-mediated responses. J Clin Invest 2022; 132:e147334. [PMID: 34981775 PMCID: PMC8718154 DOI: 10.1172/jci147334] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022] Open
Abstract
T cells are central to the pathogenesis of lupus nephritis (LN), a common complication of systemic lupus erythematosus (SLE). CD6 and its ligand, activated leukocyte cell adhesion molecule (ALCAM), are involved in T cell activation and trafficking. Previously, we showed that soluble ALCAM is increased in urine (uALCAM) of patients with LN, suggesting that this pathway contributes to disease. To investigate, uALCAM was examined in 1038 patients with SLE and LN from 5 ethnically diverse cohorts; CD6 and ALCAM expression was assessed in LN kidney cells; and disease contribution was tested via antibody blockade of CD6 in murine models of SLE and acute glomerulonephritis. Extended cohort analysis offered resounding validation of uALCAM as a biomarker that distinguishes active renal involvement in SLE, irrespective of ethnicity. ALCAM was expressed by renal structural cells whereas CD6 expression was exclusive to T cells, with elevated numbers of CD6+ and ALCAM+ cells in patients with LN. CD6 blockade in models of spontaneous lupus and immune-complex glomerulonephritis revealed significant decreases in immune cells, inflammatory markers, and disease measures. Our data demonstrate the contribution of the CD6/ALCAM pathway to LN and SLE, supporting its use as a disease biomarker and therapeutic target.
Collapse
Affiliation(s)
- Samantha A. Chalmers
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Sayra J. Garcia
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Evan Der
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Leal Herlitz
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio, USA
| | | | | | - Nicole Jordan
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Ting Zhang
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Ioannis Parodis
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute and Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Iva Gunnarsson
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institute and Department of Gastroenterology, Dermatology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
| | - Huihua Ding
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Shen
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Ramesh Saxena
- Division of Nephrology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | | | | | | | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Chaim Putterman
- Division of Rheumatology, Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
| |
Collapse
|
48
|
Talker SC, Barut GT, Lischer HE, Rufener R, von Münchow L, Bruggmann R, Summerfield A. Monocyte biology conserved across species: Functional insights from cattle. Front Immunol 2022; 13:889175. [PMID: 35967310 PMCID: PMC9373011 DOI: 10.3389/fimmu.2022.889175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/30/2022] [Indexed: 12/24/2022] Open
Abstract
Similar to human monocytes, bovine monocytes can be split into CD14highCD16- classical, CD14highCD16high intermediate and CD14-/dimCD16high nonclassical monocytes (cM, intM, and ncM, respectively). Here, we present an in-depth analysis of their steady-state bulk- and single-cell transcriptomes, highlighting both pronounced functional specializations and transcriptomic relatedness. Bulk gene transcription indicates pro-inflammatory and antibacterial roles of cM, while ncM and intM appear to be specialized in regulatory/anti-inflammatory functions and tissue repair, as well as antiviral responses and T-cell immunomodulation. Notably, intM stood out by high expression of several genes associated with antigen presentation. Anti-inflammatory and antiviral functions of ncM are further supported by dominant oxidative phosphorylation and selective strong responses to TLR7/8 ligands, respectively. Moreover, single-cell RNA-seq revealed previously unappreciated heterogeneity within cM and proposes intM as a transient differentiation intermediate between cM and ncM.
Collapse
Affiliation(s)
- Stephanie C. Talker
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- *Correspondence: Stephanie C. Talker,
| | - G. Tuba Barut
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Heidi E.L. Lischer
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Reto Rufener
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Artur Summerfield
- Institute of Virology and Immunology, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
49
|
Sánchez-Maldonado JM, Cáliz R, López-Nevot MÁ, Cabrera-Serrano AJ, Moñiz-Díez A, Canhão H, Ter Horst R, Quartuccio L, Sorensen SB, Glintborg B, Hetland ML, Filipescu I, Pérez-Pampin E, Conesa-Zamora P, Swierkot J, den Broeder AA, De Vita S, Petersen ERB, Li Y, Ferrer MA, Escudero A, Netea MG, Coenen MJH, Andersen V, Fonseca JE, Jurado M, Bogunia-Kubik K, Collantes E, Sainz J. Validation of GWAS-Identified Variants for Anti-TNF Drug Response in Rheumatoid Arthritis: A Meta-Analysis of Two Large Cohorts. Front Immunol 2021; 12:672255. [PMID: 34777329 PMCID: PMC8579100 DOI: 10.3389/fimmu.2021.672255] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/11/2021] [Indexed: 12/29/2022] Open
Abstract
We aimed to validate the association of 28 GWAS-identified genetic variants for response to TNF inhibitors (TNFi) in a discovery cohort of 1361 rheumatoid arthritis (RA) patients monitored in routine care and ascertained through the REPAIR consortium and DANBIO registry. We genotyped selected markers and evaluated their association with response to TNFi after 6 months of treatment according to the change in disease activity score 28 (ΔDAS28). Next, we confirmed the most interesting results through meta-analysis of our data with those from the DREAM cohort that included 706 RA patients treated with TNFi. The meta-analysis of the discovery cohort and DREAM registry including 2067 RA patients revealed an overall association of the LINC02549rs7767069 SNP with a lower improvement in DAS28 that remained significant after correction for multiple testing (per-allele ORMeta=0.83, PMeta=0.000077; PHet=0.61). In addition, we found that each copy of the LRRC55rs717117G allele was significantly associated with lower improvement in DAS28 in rheumatoid factor (RF)-positive patients (per-allele ORMeta=0.67, P=0.00058; PHet=0.06) whereas an opposite but not significant effect was detected in RF-negative subjects (per-allele ORMeta=1.38, P=0.10; PHet=0.45; PInteraction=0.00028). Interestingly, although the identified associations did not survive multiple testing correction, the meta-analysis also showed overall and RF-specific associations for the MAFBrs6071980 and CNTN5rs1813443 SNPs with decreased changes in DAS28 (per-allele ORMeta_rs6071980 = 0.85, P=0.0059; PHet=0.63 and ORMeta_rs1813443_RF+=0.81, P=0.0059; PHet=0.69 and ORMeta_rs1813443_RF-=1.00, P=0.99; PHet=0.12; PInteraction=0.032). Mechanistically, we found that subjects carrying the LINC02549rs7767069T allele had significantly increased numbers of CD45RO+CD45RA+ T cells (P=0.000025) whereas carriers of the LINC02549rs7767069T/T genotype showed significantly increased levels of soluble scavengers CD5 and CD6 in serum (P=0.00037 and P=0.00041). In addition, carriers of the LRRC55rs717117G allele showed decreased production of IL6 after stimulation of PBMCs with B burgdorferi and E coli bacteria (P=0.00046 and P=0.00044), which suggested a reduced IL6-mediated anti-inflammatory effect of this marker to worsen the response to TNFi. In conclusion, this study confirmed the influence of the LINC02549 and LRRC55 loci to determine the response to TNFi in RA patients and suggested a weak effect of the MAFB and CNTN5 loci that need to be further investigated.
Collapse
Affiliation(s)
- Jose Manuel Sánchez-Maldonado
- Genomic Oncology Area, Centre for Genomics and Oncological Research (GENYO), Parque tecnológico de la Salud (PTS) Granada, Granada, Spain.,Hematology Department, Virgen de las Nieves University Hospital, Granada, Spain.,Instituto de Investigación Biosanitaria (IBs) Granada, Granada, Spain
| | - Rafael Cáliz
- Genomic Oncology Area, Centre for Genomics and Oncological Research (GENYO), Parque tecnológico de la Salud (PTS) Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (IBs) Granada, Granada, Spain.,Department of Rheumatology, Virgen de las Nieves University Hospital, Granada, Spain
| | - Miguel Ángel López-Nevot
- Instituto de Investigación Biosanitaria (IBs) Granada, Granada, Spain.,Immunology Department, Virgen de las Nieves University Hospital, Granada, Spain
| | - Antonio José Cabrera-Serrano
- Genomic Oncology Area, Centre for Genomics and Oncological Research (GENYO), Parque tecnológico de la Salud (PTS) Granada, Granada, Spain.,Hematology Department, Virgen de las Nieves University Hospital, Granada, Spain.,Instituto de Investigación Biosanitaria (IBs) Granada, Granada, Spain
| | - Ana Moñiz-Díez
- Genomic Oncology Area, Centre for Genomics and Oncological Research (GENYO), Parque tecnológico de la Salud (PTS) Granada, Granada, Spain.,Hematology Department, Virgen de las Nieves University Hospital, Granada, Spain.,Instituto de Investigación Biosanitaria (IBs) Granada, Granada, Spain
| | - Helena Canhão
- EpiDoC Unit, CEDOC, NOVA Medical School and National School of Public Health, Universidade Nova de Lisboa, Lisbon, Portugal.,Comprehensive Health Research Center (CHRC), NOVA Medical School, Lisbon, Portugal
| | - Rob Ter Horst
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands
| | - Luca Quartuccio
- Department of Medical Area, Clinic of Rheumatology, University of Udine, Udine, Italy
| | - Signe B Sorensen
- Molecular Diagnostic and Clinical Research Unit, IRS-Center Sonderjylland, University Hospital of Southern Jutland, Aabenraa, Denmark.,Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Bente Glintborg
- The Danish Rheumatologic Biobank and Copenhagen Center for Arthritis Research (DANBIO) Registry, The Danish Rheumatologic Biobank and Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Centre of Head and Orthopaedics, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Merete L Hetland
- The Danish Rheumatologic Biobank and Copenhagen Center for Arthritis Research (DANBIO) Registry, The Danish Rheumatologic Biobank and Copenhagen Center for Arthritis Research (COPECARE), Center for Rheumatology and Spine Diseases, Centre of Head and Orthopaedics, Rigshospitalet, Glostrup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ileana Filipescu
- Rheumatology Department, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Eva Pérez-Pampin
- Rheumatology Unit, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Pablo Conesa-Zamora
- Clinical Analysis Department, Santa Lucía University Hospital, Cartagena, Spain
| | - Jerzy Swierkot
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Alfons A den Broeder
- Radboud Institute for Health Sciences, Department of Rheumatology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Salvatore De Vita
- Department of Medical Area, Clinic of Rheumatology, University of Udine, Udine, Italy
| | - Eva Rabing Brix Petersen
- Department of Biochemistry and Immunology, University Hospital of Southern Jutland, Aabenraa, Denmark
| | - Yang Li
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands.,Centre for Individualised Infection Medicine (CiiM) & Centre for Experimental and Clinical Infection Research (TWINCORE), Helmholtz-Centre for Infection Research (HZI) and The Hannover Medical School (MHH), Hannover, Germany
| | - Miguel A Ferrer
- Instituto de Investigación Biosanitaria (IBs) Granada, Granada, Spain
| | - Alejandro Escudero
- Rheumatology Department, Reina Sofía Hospital/Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba, Córdoba, Spain
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Nijmegen Medical Center, Nijmegen, Netherlands.,Department for Immunology & Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Marieke J H Coenen
- Radboud Institute for Health Sciences, Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Vibeke Andersen
- Department of Medical Area, Clinic of Rheumatology, University of Udine, Udine, Italy.,Molecular Diagnostic and Clinical Research Unit, IRS-Center Sonderjylland, University Hospital of Southern Jutland, Aabenraa, Denmark.,Institute of Regional Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - João E Fonseca
- Rheumatology and Metabolic Bone Diseases Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHLN), Lisbon, Portugal.,Rheumatology Research Unit, Instituto de Medicina Molecular, Faculty of Medicine, University of Lisbon, Lisbon Academic Medical Center, Lisbon, Portugal
| | - Manuel Jurado
- Genomic Oncology Area, Centre for Genomics and Oncological Research (GENYO), Parque tecnológico de la Salud (PTS) Granada, Granada, Spain.,Hematology Department, Virgen de las Nieves University Hospital, Granada, Spain.,Instituto de Investigación Biosanitaria (IBs) Granada, Granada, Spain
| | - Katarzyna Bogunia-Kubik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Eduardo Collantes
- Rheumatology Department, Reina Sofía Hospital/Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba, Córdoba, Spain
| | - Juan Sainz
- Genomic Oncology Area, Centre for Genomics and Oncological Research (GENYO), Parque tecnológico de la Salud (PTS) Granada, Granada, Spain.,Hematology Department, Virgen de las Nieves University Hospital, Granada, Spain.,Instituto de Investigación Biosanitaria (IBs) Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| |
Collapse
|
50
|
Ferragut F, Vachetta VS, Troncoso MF, Rabinovich GA, Elola MT. ALCAM/CD166: A pleiotropic mediator of cell adhesion, stemness and cancer progression. Cytokine Growth Factor Rev 2021; 61:27-37. [PMID: 34272152 DOI: 10.1016/j.cytogfr.2021.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022]
Abstract
Activated Leukocyte Cell Adhesion Molecule (ALCAM/CD166) is a glycoprotein involved in homotypic and heterotypic cell adhesion. ALCAM can be proteolytically cleaved at the cell surface by metalloproteases, which generate shedding of its ectodomain. In various tumors, ALCAM is overexpressed and serves as a valuable prognostic marker of disease progression. Moreover, CD166 has been identified as a putative cancer stem cell marker in particular cancers. Herein, we summarize biochemical aspects of ALCAM, including structure, proteolytic shedding, alternative splicing, and specific ligands, and integrate this information with biological functions of this glycoprotein including cell adhesion, migration and invasion. In addition, we discuss different patterns of ALCAM expression in distinct tumor types and its contribution to tumor progression. Finally, we highlight the role of ALCAM as a cancer stem cell marker and introduce current clinical trials associated with this molecule. Future studies are needed to define the value of shed ALCAM in biofluids or ALCAM isoform expression as prognostic biomarkers in tumor progression.
Collapse
Affiliation(s)
- Fátima Ferragut
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - Vanina S Vachetta
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - María F Troncoso
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Inmunopatología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María T Elola
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof. Alejandro C. Paladini, Buenos Aires, Argentina.
| |
Collapse
|