1
|
Wang Y, Chen W, Ding S, Wang W, Wang C. Pentraxins in invertebrates and vertebrates: From structure, function and evolution to clinical applications. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105064. [PMID: 37734429 DOI: 10.1016/j.dci.2023.105064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
The immune system is divided into two broad categories, consisting of innate and adaptive immunity. As recognition and effector factors of innate immunity and regulators of adaptive immune responses, lectins are considered to be important defense chemicals against microbial pathogens, cell trafficking, immune regulation, and prevention of autoimmunity. Pentraxins, important members of animal lectins, play a significant role in protecting the body from pathogen infection and regulating inflammatory reactions. They can recognize and bind to a variety of ligands, including carbohydrates, lipids, proteins, nucleic acids and their complexes, and protect the host from pathogen invasion by activating the complement cascade and Fcγ receptor pathways. Based on the primary structure of the subunit, pentraxins are divided into short and long pentraxins. The short pentraxins are comprised of C-reactive protein (CRP) and serum amyloid P (SAP), and the most important member of the long pentraxins is pentraxin 3 (PTX3). The CRP and SAP exist in both vertebrates and invertebrates, while the PTX3 may be present only in vertebrates. The major ligands and functions of CRP, SAP and PTX3 and three activation pathways involved in the complement system are summarized in this review. Their different characteristics in various animals including humans, and their evolutionary trees are analyzed. The clinical applications of CRP, SAP and PTX3 in human are reviewed. Some questions that remain to be understood are also highlighted.
Collapse
Affiliation(s)
- Yuying Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Wei Chen
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China; Yantai Productivity Promotion Center, Yantai, 264003, People's Republic of China
| | - Shuo Ding
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Wenjun Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China
| | - Changliu Wang
- School of Life Sciences, Ludong University, Yantai, 264025, People's Republic of China.
| |
Collapse
|
2
|
Massimino AM, Colella FE, Bottazzi B, Inforzato A. Structural insights into the biological functions of the long pentraxin PTX3. Front Immunol 2023; 14:1274634. [PMID: 37885881 PMCID: PMC10598717 DOI: 10.3389/fimmu.2023.1274634] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Soluble pattern recognition molecules (PRMs) are a heterogenous group of proteins that recognize pathogen- and danger-associated molecular patterns (PAMPs and DAMPs, respectively), and cooperate with cell-borne receptors in the orchestration of innate and adaptive immune responses to pathogenic insults and tissue damage. Amongst soluble PRMs, pentraxins are a family of highly conserved proteins with distinctive structural features. Originally identified in the early 1990s as an early inflammatory gene, PTX3 is the prototype of long pentraxins. Unlike the short pentraxin C reactive protein (CRP), whose expression is mostly confined to the liver, PTX3 is made by several immune and non-immune cells at sites of infection and inflammation, where it intercepts fundamental aspects of infection immunity, inflammation, and tissue remodeling. Of note, PTX3 cross talks to components of the complement system to control cancer-related inflammation and disposal of pathogens. Also, it is an essential component of inflammatory extracellular matrices (ECMs) through crosslinking of hyaluronic acid and turn-over of provisional fibrin networks that assemble at sites of tissue injury. This functional diversity is mediated by unique structural characteristics whose fine details have been unveiled only recently. Here, we revisit the structure/function relationships of this long pentraxin in light of the most recent advances in its structural biology, with a focus on the interplay with complement and the emerging roles as a component of the ECM. Differences to and similarities with the short pentraxins are highlighted and discussed.
Collapse
Affiliation(s)
| | | | - Barbara Bottazzi
- Laboratory of Cellular and Humoral Innate Immunity, IRCCS Humanitas Research Hospital, Rozzano, Italy
| | - Antonio Inforzato
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
- Laboratory of Cellular and Humoral Innate Immunity, IRCCS Humanitas Research Hospital, Rozzano, Italy
| |
Collapse
|
3
|
Capra AP, Crupi L, Pantò G, Repici A, Calapai F, Squeri R, Ardizzone A, Esposito E. Serum Pentraxin 3 as Promising Biomarker for the Long-Lasting Inflammatory Response of COVID-19. Int J Mol Sci 2023; 24:14195. [PMID: 37762499 PMCID: PMC10531731 DOI: 10.3390/ijms241814195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Currently, biological markers for COVID-19 disease severity still constitute the main goal of enhancing an efficient treatment to reduce critical consequences such as an abnormal systemic inflammatory response. In this regard, the latest research has shown that Pentraxin 3 (PTX3), a highly conserved innate immunity protein, may serve as a valuable biochemical marker. Based on this evidence, we conducted a case-control study to compare the PTX3 serum levels and several immune-inflammatory mediators of 80 healthcare workers who were subdivided into subjects who were previously infected with SARS-CoV-2 (n = 40) and individuals who were never infected (n = 40). Using a commercially available Enzyme-Linked Immunosorbent Assay (ELISA), PTX3 and various immune-inflammatory protein levels were assessed in serum samples, while also considering possible variables (e.g., gender-related differences). We have shown elevated levels of PTX3 and other inflammatory proteins in previously infected COVID-19-positive subjects (p < 0.001). Moreover, the obtained data also indicate a degree of severity influenced by gender, as shown by the subgroup analysis, in which PTX3 expression was more pronounced in previously COVID-19-positive males (p < 0.001) than in females (p < 0.05) compared to the respective controls. In addition, our data further validate, through a direct comparison of previously COVID-19-positive subjects, greater pro-inflammatory levels in males than in females. Overall, our results may support the validity of PTX3 as a systemic biomarker in prolonged systemic inflammatory responses in the context of COVID-19. Thus, PTX3 modulation could constitute an effective therapeutic strategy for improving the recovery from COVID-19 and its systemic long-term consequences.
Collapse
Affiliation(s)
- Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.P.C.); (L.C.); (A.R.); (F.C.); (E.E.)
| | - Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.P.C.); (L.C.); (A.R.); (F.C.); (E.E.)
| | - Giuseppe Pantò
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.S.)
| | - Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.P.C.); (L.C.); (A.R.); (F.C.); (E.E.)
| | - Fabrizio Calapai
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.P.C.); (L.C.); (A.R.); (F.C.); (E.E.)
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy
| | - Raffaele Squeri
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy; (G.P.); (R.S.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.P.C.); (L.C.); (A.R.); (F.C.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy; (A.P.C.); (L.C.); (A.R.); (F.C.); (E.E.)
| |
Collapse
|
4
|
Feitosa TA, de Souza Sá MV, Pereira VC, de Andrade Cavalcante MK, Pereira VRA, da Costa Armstrong A, do Carmo RF. Association of polymorphisms in long pentraxin 3 and its plasma levels with COVID-19 severity. Clin Exp Med 2023; 23:1225-1233. [PMID: 36315310 PMCID: PMC9619017 DOI: 10.1007/s10238-022-00926-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022]
Abstract
COVID-19 is an infectious respiratory disease caused by SARS-CoV-2. Pentraxin 3 (PTX3) is involved in the activation and regulation of the complement system, demonstrating an important role in the pathogenesis of COVID-19. The aim was to evaluate the association of single nucleotide polymorphisms in PTX3 and its plasma levels with the severity of COVID-19. This is a retrospective cohort study, carried out between August 2020 and July 2021, including patients with confirmed COVID-19 hospitalized in 2 hospitals in the Northeast Region of Brazil. Polymorphisms in PTX3 (rs1840680 and rs2305619) were determined by real-time PCR. PTX3 plasma levels were measured by ELISA. Serum levels of interleukin (IL)-6, IL-8, and IL-10 were determined by flow cytometry. A multivariate logistic regression model was used to identify parameters independently associated with COVID-19 severity. P values < 0.05 were considered significant. The study included 496 patients, classified as moderate (n = 267) and severe (n = 229) cases. The PTX3 AA genotype (rs1840680) was independently associated with protection against severe COVID-19 (P = 0.037; odds ratio = 0.555). PTX3 plasma levels were significantly associated with COVID-19 severity and mortality (P < 0.05). PTX3 levels were significantly correlated with IL-6, IL-8, IL-10, C-reactive protein, total leukocytes, neutrophil-to-lymphocyte ratio, urea, creatinine, ferritin, length of hospital stay, and higher respiratory rate (P < 0.05). Our results revealed a protective effect of the PTX3 AA genotype (rs1840680) on the development of severe forms of COVID-19. Additionally, PTX3 plasma levels were associated with the severity of COVID-19. The results of this study provide evidence of an important role of PTX3 in the immunopathology of COVID-19.
Collapse
Affiliation(s)
- Thiala Alves Feitosa
- Postgraduate Program in Biosciences, Universidade Federal Do Vale Do São Francisco, Av. José de Sá Maniçoba, S/N, Centro, Petrolina, Pernambuco, Brazil
| | - Mirela Vanessa de Souza Sá
- College of Pharmaceutical Sciences, Universidade Federal Do Vale Do São Francisco, Petrolina, Pernambuco, Brazil
| | | | - Marton Kaique de Andrade Cavalcante
- Department of Immunology, Fundação Oswaldo Cruz, Recife, Brazil
- Postgraduate Program in Therapeutic Innovation, Center of Biosciences, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | | - Rodrigo Feliciano do Carmo
- Postgraduate Program in Biosciences, Universidade Federal Do Vale Do São Francisco, Av. José de Sá Maniçoba, S/N, Centro, Petrolina, Pernambuco, Brazil.
- College of Pharmaceutical Sciences, Universidade Federal Do Vale Do São Francisco, Petrolina, Pernambuco, Brazil.
| |
Collapse
|
5
|
Manzarinejad M, Vahidi Z, Boostani R, Khadem-Rezaiyan M, Rafatpanah H, Zemorshidi F. Pentraxin 3, a serum biomarker in human T-cell lymphotropic virus type-1-associated myelopathy patients and asymptomatic carriers. Med Microbiol Immunol 2023:10.1007/s00430-023-00770-z. [PMID: 37278849 DOI: 10.1007/s00430-023-00770-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/27/2023] [Indexed: 06/07/2023]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) can induce a neuroinflammatory condition that leads to myelopathy. Pentraxin 3 (PTX3) is an acute-phase protein that its plasma concentration increases during inflammation. We aimed to determine whether PTX3 serum level is elevated in HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients and HTLV-1 asymptomatic carriers (ACs) and evaluate its association with proviral load and clinical features. The serum level of PTX3 was measured using an enzyme-linked immunosorbent assay in 30 HAM patients, 30 HTLV-1 ACs, and 30 healthy controls. Also, the HTLV-1 proviral load was determined via real-time PCR technique. The findings showed that PTX3 serum level was significantly higher in HAM patients than in both asymptomatic carriers and healthy controls (p values < 0.0001). No correlation between PTX3 and the proviral load was observed in HAM patients and asymptomatic carriers (r = - 0.238, p = 0.205 and r = - 0.078, p = 0.681, respectively). The findings showed that there was no significant correlation between PTX3 and motor disability grading (MDG) (r = - 0.155, p = 0.41) nor urinary disturbance score (UDS) (r = - 0.238, p = 0.20). Higher levels of PTX3 are associated with HTLV-1-associated myelopathy compared to asymptomatic carriers. This finding may support the idea that PTX3 has the potential as a diagnostic biomarker.
Collapse
Affiliation(s)
| | - Zohreh Vahidi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Boostani
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khadem-Rezaiyan
- Department of Community Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Houshang Rafatpanah
- Rheumatic Disease Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fariba Zemorshidi
- Department of Neurology, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
6
|
Bai Q, Fan R, Zhong N, Liu J, Pan X, Yao H, Ma J. Host PTX3 Protein and Bacterial Capsule Coordinately Regulate the Inflammatory Response during Streptococcus suis Infection. Vet Sci 2023; 10:vetsci10030239. [PMID: 36977278 PMCID: PMC10059727 DOI: 10.3390/vetsci10030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Streptococcus suis serotype 2 (SS2) is a noteworthy zoonotic pathogen that has been responsible for large economic losses in pig production and a great threat to human health. Pentraxin 3 (PTX3) is an essential regulator of the innate immune response to bacterial pathogens; however, its role during SS2 infection is not fully understood. In this study, we found that the SS2 strain HA9801 induced a significant inflammatory response in the mouse air pouch model; this response was amplified by the treatment of exogenous PTX3 simultaneously in terms of the results of inflammatory cell recruitment and proinflammatory cytokine IL-6 production. In addition, PTX3 facilitated the phagocytosis of macrophage Ana-1 against SS2 strain HA9801. The supplementation of exogenous PTX3 significantly reduced the bacterial loads in a dose-dependent manner in lungs, livers and bloods of SS2-infected mice compared to the samples with HA9801 infection alone; this finding indicated that PTX3 may facilitate the bacterial clearance through enhancing the host inflammatory response during SS2 infection. Both PTX3 and SS2 capsular polysaccharide (CPS2) were required for the robust inflammatory response, implying that the host PTX3 protein and SS2 surface CPS2 modulate the host innate immune response in concert. All of these results suggested that PTX3 is a potential novel biological agent for the SS2 infection; however, the recommended dose of PTX3 must be evaluated strictly to avoid inducing an excessive inflammatory response that can cause serious tissue injury and animal death.
Collapse
Affiliation(s)
- Qiankun Bai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Ruhui Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Ningyuan Zhong
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Jianan Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Xinming Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing 210095, China
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing 210095, China
| |
Collapse
|
7
|
Stravalaci M, Pagani I, Paraboschi EM, Pedotti M, Doni A, Scavello F, Mapelli SN, Sironi M, Perucchini C, Varani L, Matkovic M, Cavalli A, Cesana D, Gallina P, Pedemonte N, Capurro V, Clementi N, Mancini N, Invernizzi P, Bayarri-Olmos R, Garred P, Rappuoli R, Duga S, Bottazzi B, Uguccioni M, Asselta R, Vicenzi E, Mantovani A, Garlanda C. Recognition and inhibition of SARS-CoV-2 by humoral innate immunity pattern recognition molecules. Nat Immunol 2022; 23:275-286. [PMID: 35102342 DOI: 10.1038/s41590-021-01114-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022]
|
8
|
Severity Biomarkers in Puumala Hantavirus Infection. Viruses 2021; 14:v14010045. [PMID: 35062248 PMCID: PMC8778356 DOI: 10.3390/v14010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/16/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Annually, over 10,000 cases of hemorrhagic fever with renal syndrome (HFRS) are diagnosed in Europe. Puumala hantavirus (PUUV) causes most of the European HFRS cases. PUUV causes usually a relatively mild disease, which is rarely fatal. However, the severity of the infection varies greatly, and factors affecting the severity are mostly unrevealed. Host genes are known to have an effect. The typical clinical features in PUUV infection include acute kidney injury, thrombocytopenia, and increased vascular permeability. The primary target of hantavirus is the endothelium of the vessels of different organs. Although PUUV does not cause direct cytopathology of the endothelial cells, remarkable changes in both the barrier function of the endothelium and the function of the infected endothelial cells occur. Host immune or inflammatory mechanisms are probably important in the development of the capillary leakage. Several immunoinflammatory biomarkers have been studied in the context of assessing the severity of HFRS caused by PUUV. Most of them are not used in clinical practice, but the increasing knowledge about the biomarkers has elucidated the pathogenesis of PUUV infection.
Collapse
|
9
|
Targeting interferon-γ in hyperinflammation: opportunities and challenges. Nat Rev Rheumatol 2021; 17:678-691. [PMID: 34611329 DOI: 10.1038/s41584-021-00694-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2021] [Indexed: 02/08/2023]
Abstract
Interferon-γ (IFNγ) is a pleiotropic cytokine with multiple effects on the inflammatory response and on innate and adaptive immunity. Overproduction of IFNγ underlies several, potentially fatal, hyperinflammatory or immune-mediated diseases. Several data from animal models and/or from translational research in patients point to a role of IFNγ in hyperinflammatory diseases, such as primary haemophagocytic lymphohistiocytosis, various forms of secondary haemophagocytic lymphohistiocytosis, including macrophage activation syndrome, and cytokine release syndrome, all of which are often managed by rheumatologists or in consultation with rheumatologists. Given the effects of IFNγ on B cells and T follicular helper cells, a role for IFNγ in systemic lupus erythematosus pathogenesis is emerging. To improve our understanding of the role of IFNγ in human disease, IFNγ-related biomarkers that are relevant for the management of hyperinflammatory diseases are progressively being identified and studied, especially because circulating levels of IFNγ do not always reflect its overproduction in tissue. These biomarkers include STAT1 (specifically the phosphorylated form), neopterin and the chemokine CXCL9. IFNγ-neutralizing agents have shown efficacy in the treatment of primary haemophagocytic lymphohistiocytosis in clinical trials and initial promising results have been obtained in various forms of secondary haemophagocytic lymphohistiocytosis, including macrophage activation syndrome. In clinical practice, there is a growing body of evidence supporting the usefulness of circulating CXCL9 levels as a biomarker reflecting IFNγ production.
Collapse
|
10
|
Chen W, Zhuang YS, Yang CX, Fang ZC, Liu BY, Zheng X, Liao YY. The Protective Role of the Long Pentraxin PTX3 in Spontaneously Hypertensive Rats with Heart Failure. Cardiovasc Toxicol 2021; 21:808-819. [PMID: 34173191 DOI: 10.1007/s12012-021-09671-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/17/2021] [Indexed: 10/21/2022]
Abstract
Pentraxin 3 (PTX3) is synthesized locally and released into the circulation, reflecting local inflammation in the cardiovascular system. Therefore, we conducted a study to explore the effect of PTX3 in spontaneously hypertensive heart failure (SHHF) rats. Sprague Dawley (SD) and SHHF rats were treated with recombinant PTX3 protein, and the blood pressure (BP) and echocardiographic parameters were collected. Radioimmunoassay, enzyme immunoassay and enzyme-linked immunosorbent assay (ELISA) were applied to detect plasma levels of atrial/B-type natriuretic peptide (ANP/BNP) and PTX3. The pathological changes in the myocardial tissues were observed by hematoxylin and eosin (HE) and Masson stainings. The mRNA and protein expressions were detected by quantitative real-time reverse-transcription polymerase chain reaction (qPCR) and western blotting. Cardiomyocyte apoptosis was evaluated by TUNEL staining and DNA fragmentation test. Increased plasma concentrations of PTX3 were found in SHHF rats compared with SD rats, which was further enhanced by recombinant PTX3 protein. After injection with recombinant PTX3 protein, the heart function was improved in SHHF rats with the decreased systolic and diastolic BP, and the reduced plasma levels of ANP and BNP. Moreover, PTX3 improved the myocardial damage and interstitial fibrosis in SHHF rats with reduced cardiomyocyte apoptosis and decreased mRNA expressions of pro-inflammatory factors in myocardial tissues. PTX3 could decrease the BP and plasma levels of ANP and BNP in SHHF rats, as well as improve the inflammation, cardiomyocyte apoptosis, and pathological changes of myocardial tissues, suggesting it may be a useful intervention in the treatment of SHHF.
Collapse
Affiliation(s)
- Wei Chen
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Ya-Se Zhuang
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Chun-Xia Yang
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Zhi-Cheng Fang
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Bo-Yi Liu
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Xiang Zheng
- Department of Critical Care Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China
| | - Ying-Ying Liao
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
| |
Collapse
|
11
|
Koussih L, Atoui S, Tliba O, Gounni AS. New Insights on the Role of pentraxin-3 in Allergic Asthma. FRONTIERS IN ALLERGY 2021; 2:678023. [PMID: 35387000 PMCID: PMC8974764 DOI: 10.3389/falgy.2021.678023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Pentraxins are soluble pattern recognition receptors that play a major role in regulating innate immune responses. Through their interaction with complement components, Fcγ receptors, and different microbial moieties, Pentraxins cause an amplification of the inflammatory response. Pentraxin-3 is of particular interest since it was identified as a biomarker for several immune-pathological diseases. In allergic asthma, pentraxin-3 is produced by immune and structural cells and is up-regulated by pro-asthmatic cytokines such as TNFα and IL-1β. Strikingly, some recent experimental evidence demonstrated a protective role of pentraxin-3 in chronic airway inflammatory diseases such as allergic asthma. Indeed, reduced pentraxin-3 levels have been associated with neutrophilic inflammation, Th17 immune response, insensitivity to standard therapeutics and a severe form of the disease. In this review, we will summarize the current knowledge of the role of pentraxin-3 in innate immune response and discuss the protective role of pentraxin-3 in allergic asthma.
Collapse
Affiliation(s)
- Latifa Koussih
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department des Sciences Experimentales, Universite de Saint-Boniface, Winnipeg, MB, Canada
| | - Samira Atoui
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Abdelilah S. Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Abdelilah S. Gounni
| |
Collapse
|
12
|
Gupta G, Mou Z, Jia P, Sharma R, Zayats R, Viana SM, Shan L, Barral A, Boaventura VS, Murooka TT, Soussi-Gounni A, de Oliveira CI, Uzonna JE. The Long Pentraxin 3 (PTX3) Suppresses Immunity to Cutaneous Leishmaniasis by Regulating CD4 + T Helper Cell Response. Cell Rep 2020; 33:108513. [PMID: 33326783 DOI: 10.1016/j.celrep.2020.108513] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/30/2020] [Accepted: 11/19/2020] [Indexed: 02/01/2023] Open
Abstract
The long pentraxin 3 (PTX3) plays a critical role in inflammation, tissue repair, and wound healing. Here, we show that PTX3 regulates disease pathogenesis in cutaneous leishmaniasis (CL). PTX3 expression increases in skin lesions in patients and mice during CL, with higher expression correlating with severe disease. PTX3-deficient (PTX3-/-) mice are highly resistant to L. major and L. braziliensis infections. This enhanced resistance is associated with increases in Th17 and IL-17A responses. The neutralization of IL-17A abolishes this enhanced resistance, while rPTX3 treatment results in decrease in Th17 and IL-17A responses and increases susceptibility. PTX3-/- CD4+ T cells display increased differentiation to Th17 and expression of Th17-specific transcription factors. The addition of rPTX3 suppresses the expression of Th17 transcription factors, Th17 differentiation, and IL-17A production by CD4+ T cells from PTX3-/- mice. Collectively, our results show that PTX3 contributes to the pathogenesis of CL by negatively regulating Th17 and IL-17A responses.
Collapse
Affiliation(s)
- Gaurav Gupta
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; NIIT University, Rajasthan, India
| | - Zhirong Mou
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Ping Jia
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Rohit Sharma
- Instituto Gonçalo Muniz (IGM), FIOCRUZ, Salvador, Brazil
| | - Romaniya Zayats
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Lianyu Shan
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Aldina Barral
- Instituto Gonçalo Muniz (IGM), FIOCRUZ, Salvador, Brazil
| | | | - Thomas T Murooka
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Abdel Soussi-Gounni
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Jude E Uzonna
- Department of Immunology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
13
|
Parente R, Doni A, Bottazzi B, Garlanda C, Inforzato A. The complement system in Aspergillus fumigatus infections and its crosstalk with pentraxins. FEBS Lett 2020; 594:2480-2501. [PMID: 31994174 DOI: 10.1002/1873-3468.13744] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/19/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022]
Abstract
Aspergillosis is a life-threatening infection mostly affecting immunocompromised individuals and primarily caused by the saprophytic fungus Aspergillus fumigatus. At the host-pathogen interface, both cellular and humoral components of the innate immune system are increasingly acknowledged as essential players in the recognition and disposal of this opportunistic mold. Fundamental hereof is the contribution of the complement system, which deploys all three activation pathways in the battle against A. fumigatus, and functionally cooperates with other soluble pattern recognition molecules, including pentraxins. In particular, preclinical and clinical observations point to the long pentraxin PTX3 as a nonredundant and complement-dependent effector with protective functions against A. fumigatus. Based on past and current literature, here we discuss how the complement participates in the immune response to this fungal pathogen, and illustrate its crosstalk with the pentraxins, with a focus on PTX3. Emphasis is placed on the molecular mechanisms underlying such processes, the genetic evidence from human epidemiology, and the translational potential of the currently available knowledge.
Collapse
Affiliation(s)
- Raffaella Parente
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute - IRCCS, Milan, Italy
| | - Andrea Doni
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute - IRCCS, Milan, Italy
| | - Barbara Bottazzi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute - IRCCS, Milan, Italy
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute - IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Antonio Inforzato
- Department of Immunology and Inflammation, Humanitas Clinical and Research Institute - IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| |
Collapse
|
14
|
Abouelasrar Salama S, Lavie M, De Buck M, Van Damme J, Struyf S. Cytokines and serum amyloid A in the pathogenesis of hepatitis C virus infection. Cytokine Growth Factor Rev 2019; 50:29-42. [PMID: 31718982 DOI: 10.1016/j.cytogfr.2019.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 02/07/2023]
Abstract
Expression of the acute phase protein serum amyloid A (SAA) is dependent on the release of the pro-inflammatory cytokines IL-1, IL-6 and TNF-α during infection and inflammation. Hepatitis C virus (HCV) upregulates SAA-inducing cytokines. In line with this, a segment of chronically infected individuals display increased circulating levels of SAA. SAA has even been proposed to be a potential biomarker to evaluate treatment efficiency and the course of disease. SAA possesses antiviral activity against HCV via direct interaction with the viral particle, but might also divert infectivity through its function as an apolipoprotein. On the other hand, SAA shares inflammatory and angiogenic activity with chemotactic cytokines by activating the G protein-coupled receptor, formyl peptide receptor 2. These latter properties might promote chronic inflammation and hepatic injury. Indeed, up to 80 % of infected individuals develop chronic disease because they cannot completely clear the infection, due to diversion of the immune response. In this review, we summarize the interconnection between SAA and cytokines in the context of HCV infection and highlight the dual role SAA could play in this disease. Nevertheless, more research is needed to establish whether the balance between those opposing activities can be tilted in favor of the host defense.
Collapse
Affiliation(s)
- Sara Abouelasrar Salama
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, 3000, Belgium
| | - Muriel Lavie
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019, UMR 8204, Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Mieke De Buck
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, 3000, Belgium
| | - Jo Van Damme
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, 3000, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, 3000, Belgium.
| |
Collapse
|
15
|
Acute phase protein response to viral infection and vaccination. Arch Biochem Biophys 2019; 671:196-202. [PMID: 31323216 PMCID: PMC7094616 DOI: 10.1016/j.abb.2019.07.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/29/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
Organisms respond in multiple ways to microbial infections. Pathogen invasion tipically triggers an inflammatory response where acute phase proteins (APP) have a key role. Pentraxins (PTX) are a family of highly conserved APP that play a part in the host defense against infection. The larger proteins of the family are simply named pentraxins, while c-reactive proteins (CRP) and serum amyloid proteins (SAA, SAP) are known as short pentraxins. Although high APP levels have been broadly associated with bacterial infections, there is a growing body of evidence revealing increased PTX, CRP and SAP expression upon viral infection. Furthermore, CRP, PTX and SAP have shown their potential as diagnostic markers and predictors of disease outcome. Likewise, the measurement of APP levels can be valuable to determine the efficacy of antiviral therapies and vaccines. From the practical point of view, the ability of APP to reduce viral infectivity has been observed in several virus-host models. This has prompted investigation efforts to assess the role of acute phase response proteins as immunoregulatory molecules and their potential as therapeutic reagents. This work aims to present an overview of the APP response to viral infections reviewing the current knowledge in the field.
Collapse
|
16
|
Porte R, Davoudian S, Asgari F, Parente R, Mantovani A, Garlanda C, Bottazzi B. The Long Pentraxin PTX3 as a Humoral Innate Immunity Functional Player and Biomarker of Infections and Sepsis. Front Immunol 2019; 10:794. [PMID: 31031772 PMCID: PMC6473065 DOI: 10.3389/fimmu.2019.00794] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
The first line of defense in innate immunity is provided by cellular and humoral mediators. Pentraxins are a superfamily of phylogenetically conserved humoral mediators of innate immunity. PTX3, the first long pentraxin identified, is a soluble pattern recognition molecule rapidly produced by several cell types in response to primary pro-inflammatory signals and microbial recognition. PTX3 acts as an important mediator of innate immunity against pathogens of fungal, bacterial and viral origin, and as a regulator of inflammation, by modulating complement activation and cell extravasation, and facilitating pathogen recognition by myeloid cells. In sepsis, PTX3 plasma levels are associated with severity of the condition, patient survival, and response to therapy. In combination with other established biomarkers, PTX3 could improve stratification of sepsis patients and thus, complement the system of classification and monitoring of this disease.
Collapse
Affiliation(s)
- Rémi Porte
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Sadaf Davoudian
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Fatemeh Asgari
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Raffaella Parente
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| | - Alberto Mantovani
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Cecilia Garlanda
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center-IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Barbara Bottazzi
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center-IRCCS, Milan, Italy
| |
Collapse
|
17
|
Campos CF, Leite L, Pereira P, Vaz CP, Branca R, Campilho F, Freitas F, Ligeiro D, Marques A, Torrado E, Silvestre R, Lacerda JF, Campos A, Cunha C, Carvalho A. PTX3 Polymorphisms Influence Cytomegalovirus Reactivation After Stem-Cell Transplantation. Front Immunol 2019; 10:88. [PMID: 30766534 PMCID: PMC6365436 DOI: 10.3389/fimmu.2019.00088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/14/2019] [Indexed: 01/31/2023] Open
Abstract
Background: Reactivation of latent human cytomegalovirus (CMV) in patients undergoing allogeneic stem-cell transplantation (HSCT) predisposes to several clinical complications and is therefore a major cause of morbidity and mortality. Although pentraxin-3 (PTX3) has been previously described to bind both human and murine CMV and mediate several host antiviral mechanisms, whether genetic variation in the PTX3 locus influences the risk of CMV infection is currently unknown. Methods: To dissect the contribution of genetic variation within PTX3 to the development of CMV infection, we analyzed described loss-of-function variants at the PTX3 locus in 394 recipients of HSCT and their corresponding donors and assessed the associated risk of CMV reactivation. Results: We report that the donor, but not recipient, h2/h2 haplotype in PTX3 increased the risk of CMV reactivation after 24 months following transplantation, with a significant effect on survival. Among recipients with h2/h2 donors, CMV seropositive patients as well as those receiving grafts from unrelated donors, regardless of the CMV serostatus, were more prone to develop viral reactivation after transplantation. Most importantly, the h2/h2 haplotype was demonstrated to display an influence toward risk of CMV reactivation comparable to that conferred by the unrelated status of the donor alone. Conclusions: Our findings demonstrate the important contribution of genetic variation in donor PTX3 to the risk of CMV reactivation in patients undergoing HSCT, highlighting a promising prognostic value of donor PTX3 to predict risk of CMV reactivation in this clinical setting.
Collapse
Affiliation(s)
- Cláudia F Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Luís Leite
- Serviço de Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Paulo Pereira
- Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, Lisbon, Portugal
| | - Carlos Pinho Vaz
- Serviço de Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Rosa Branca
- Serviço de Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Fernando Campilho
- Serviço de Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Fátima Freitas
- Instituto Português do Sangue e Transplantação, IP, Porto, Portugal
| | - Dário Ligeiro
- Instituto Português do Sangue e Transplantação, IP, Lisbon, Portugal
| | - António Marques
- Serviço de Imuno-Hemoterapia, Hospital de Braga, Braga, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João F Lacerda
- Faculdade de Medicina de Lisboa, Instituto de Medicina Molecular, Lisbon, Portugal.,Serviço de Hematologia e Transplantação de Medula, Hospital de Santa Maria, Lisbon, Portugal
| | - António Campos
- Serviço de Transplantação de Medula Óssea, Instituto Português de Oncologia do Porto, Porto, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
18
|
Role of a fluid-phase PRR in fighting an intracellular pathogen: PTX3 in Shigella infection. PLoS Pathog 2018; 14:e1007469. [PMID: 30532257 PMCID: PMC6317801 DOI: 10.1371/journal.ppat.1007469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/03/2019] [Accepted: 11/15/2018] [Indexed: 12/31/2022] Open
Abstract
Shigella spp. are pathogenic bacteria that cause bacillary dysentery in humans by invading the colonic and rectal mucosa where they induce dramatic inflammation. Here, we have analyzed the role of the soluble PRR Pentraxin 3 (PTX3), a key component of the humoral arm of innate immunity. Mice that had been intranasally infected with S. flexneri were rescued from death by treatment with recombinant PTX3. In vitro PTX3 exerts the antibacterial activity against Shigella, impairing epithelial cell invasion and contributing to the bactericidal activity of serum. PTX3 is produced upon LPS-TLR4 stimulation in accordance with the lipid A structure of Shigella. In the plasma of infected patients, the level of PTX3 amount only correlates strongly with symptom severity. These results signal PTX3 as a novel player in Shigella pathogenesis and its potential role in fighting shigellosis. Finally, we suggest that the plasma level of PTX3 in shigellosis patients could act as a biomarker for infection severity. Soluble pattern recognition molecules, PRMs, are components of the humoral arm of innate immunity. The long pentraxin 3, PTX3, is a prototypic soluble PRM that is produced in response to primary inflammatory signals. Shigella spp. are human entero-pathogens which invade colonic and rectal mucosa where they cause deleterious inflammation. We show that PTX3 acts as an ante-antibody and contributes to the clearance of extracellular Shigella. As a countermeasure, Shigella uses invasiveness and low-inflammatory LPS to control PTX3 release in infected cells. This study highlights that the extracellular phase of the invasion process can be considered the “Achille heels” of Shigella pathogenesis.
Collapse
|
19
|
Polymorphisms in Receptors Involved in Opsonic and Nonopsonic Phagocytosis, and Correlation with Risk of Infection in Oncohematology Patients. Infect Immun 2018; 86:IAI.00709-18. [PMID: 30275011 DOI: 10.1128/iai.00709-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/26/2018] [Indexed: 01/27/2023] Open
Abstract
High-risk hematological malignancies are a privileged setting for infection by opportunistic microbes, with invasive mycosis being one of the most serious complications. Recently, genetic background has emerged as an unanticipated risk factor. For this reason, polymorphisms for genes encoding archetypal receptors involved in the opsonic and nonopsonic clearance of microbes, pentraxin-3 (PTX3) and Dectin-1, respectively, were studied and correlated with the risk of infection. Fungal, bacterial, and viral infections were registered for a group of 198 patients with high-risk hematological malignancies. Polymorphisms for the pentraxin-3 gene (PTX3) showed a significant association with the risk of fungal infection by Candida spp. and, especially, by Aspergillus spp. This link remained even for patients undergoing antifungal prophylaxis, thus demonstrating the clinical relevance of PTX3 in the defense against fungi. CLEC7A polymorphisms did not show any definite correlation with the risk of invasive mycosis, nor did they influence the expression of Dectin-1 isoforms generated by alternative splicing. The PTX3 mRNA expression level was significantly lower in samples from healthy volunteers who showed these polymorphisms, although no differences were observed in the extents of induction elicited by bacterial lipopolysaccharide and heat-killed Candida albicans, thus suggesting that the expression of PTX3 at the start of infection may influence the clinical outcome. PTX3 mRNA expression can be a good biomarker to establish proper antifungal prophylaxis in immunodepressed patients.
Collapse
|
20
|
Garlanda C, Bottazzi B, Magrini E, Inforzato A, Mantovani A. PTX3, a Humoral Pattern Recognition Molecule, in Innate Immunity, Tissue Repair, and Cancer. Physiol Rev 2018; 98:623-639. [PMID: 29412047 DOI: 10.1152/physrev.00016.2017] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Innate immunity includes a cellular and a humoral arm. PTX3 is a fluid-phase pattern recognition molecule conserved in evolution which acts as a key component of humoral innate immunity in infections of fungal, bacterial, and viral origin. PTX3 binds conserved microbial structures and self-components under conditions of inflammation and activates effector functions (complement, phagocytosis). Moreover, it has a complex regulatory role in inflammation, such as ischemia/reperfusion injury and cancer-related inflammation, as well as in extracellular matrix organization and remodeling, with profound implications in physiology and pathology. Finally, PTX3 acts as an extrinsic oncosuppressor gene by taming tumor-promoting inflammation in murine and selected human tumors. Thus evidence suggests that PTX3 is a key homeostatic component at the crossroad of innate immunity, inflammation, tissue repair, and cancer. Dissecting the complexity of PTX3 pathophysiology and human genetics paves the way to diagnostic and therapeutic exploitation.
Collapse
Affiliation(s)
- Cecilia Garlanda
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Barbara Bottazzi
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Elena Magrini
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Antonio Inforzato
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Milan , Italy ; Humanitas University, Rozzano, Milan , Italy ; Department of Medical Biotechnologies and Translational Medicine, University of Milan , Milan , Italy ; and The William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
21
|
Qin S, Chen X, Gao M, Zhou J, Li X. Prenatal Exposure to Lipopolysaccharide Induces PTX3 Expression and Results in Obesity in Mouse Offspring. Inflammation 2018; 40:1847-1861. [PMID: 28770376 PMCID: PMC5656716 DOI: 10.1007/s10753-017-0626-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study tested the hypothesis whether inflammation will directly lead to obesity. This study was designed to investigate the relationship between inflammation and obesity by intraperitoneally injecting pregnant mice with lipopolysaccharide (LPS) (75 μg kg-1). The results showed that inflammation during pregnancy could lead to a significant increase in the levels of the inflammatory factor PTX3. The offspring of the LPS-treated mice displayed abnormal levels of fat development, blood lipids, and glucose metabolism, and fat differentiation markers were significantly increased. Our study also confirmed that PTX3 can increase the susceptibility to obesity by regulating the expression of adipogenic markers; this regulatory role of PTX3 is most likely caused by MAPK pathway hyperactivation. Our study is the first to find strong evidence of inflammation as a cause of obesity. We determined that PTX3 was an important moderator of obesity, and we elucidated its mechanism, thus providing new targets and theories for obesity therapy. Moreover, our study provides new ideas and directions for the early intervention of anti-inflammation in pregnancy.
Collapse
Affiliation(s)
- Shugang Qin
- Institute of Materia Medical, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Xin Chen
- Institute of Materia Medical, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Meng Gao
- Institute of Materia Medical, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China
| | - Jianzhi Zhou
- Institute of Materia Medical, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| | - Xiaohui Li
- Institute of Materia Medical, College of Pharmacy, Third Military Medical University, Chongqing, 400038, China.
| |
Collapse
|
22
|
Erreni M, Manfredi AA, Garlanda C, Mantovani A, Rovere-Querini P. The long pentraxin PTX3: A prototypical sensor of tissue injury and a regulator of homeostasis. Immunol Rev 2018; 280:112-125. [PMID: 29027216 DOI: 10.1111/imr.12570] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tissue damage frequently occurs. The immune system senses it and enforces homeostatic responses that lead to regeneration and repair. The synthesis of acute phase molecules is emerging as a crucial event in this program. The prototypic long pentraxin PTX3 orchestrates the recruitment of leukocytes, stabilizes the provisional matrix in order to facilitate leukocyte and stem progenitor cells trafficking, promotes swift and safe clearance of dying cells and of autoantigens, limiting autoimmunity and protecting the vasculature. These non-redundant actions of PTX3 are necessary for the resolution of inflammation. Recent studies have highlighted the mechanisms by which PTX3 adapts the functions of innate immune cells, orchestrates tissue repair and contributes to select the appropriate acquired immune response in various tissues. Conversely, PTX3 continues to be produced in diseases where the inflammatory response does not resolve. It is therefore a valuable biomarker for more precise and personalized stratification of patients, often independently predicting clinical evolution and outcome. There is strong promise for novel therapies based on understanding the mechanisms with which PTX3 plays its homeostatic role, especially in regulating leukocyte migration and the resolution of inflammatory processes.
Collapse
Affiliation(s)
- Marco Erreni
- IRCCS Humanitas Clinical and Research Center, Milan, Italy.,Humanitas University, Milan, Italy
| | - Angelo A Manfredi
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Clinical and Research Center, Milan, Italy.,Humanitas University, Milan, Italy
| | - Alberto Mantovani
- IRCCS Humanitas Clinical and Research Center, Milan, Italy.,Humanitas University, Milan, Italy
| | - Patrizia Rovere-Querini
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
23
|
The Anti-bacterial and Anti-adherent Effects of Pentraxin-3 on Porcine Kidney Epithelial PK15 Cells Against Staphylococcus aureus Infection. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9710-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Kuneš P, Lonský V, Manďák J, Brtko M, Koláčková M, Andrýs C, Kudlová M, Krejsek J. Essential PTX3 Biology (not only) for Cardiologists and Cardiac Surgeons. ACTA MEDICA (HRADEC KRÁLOVÉ) 2018. [DOI: 10.14712/18059694.2017.56] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Inflammation has been recognized to form an integral part of the atherosclerotic process. Much consideration has been given lately to the role played in atherogenesis by C-reactive protein (CRP). Although not accepted unequivocally, CRP appears to be not only a marker, but also an active mediator of the atherosclerotic process. Pentraxin 3 (PTX3) is a newly identified acute phase reactant which shares some structural and some functional properties with CRP. On the other hand, pentraxin 3 displays unique biological properties of its own, including a possible role in the pathogenesis of cardiovascular diseases and in processes accompanying the natural evolution of surgical wounds. This review article discusses recent information concerning basic pentraxin 3 biology in inflammation and in innate immunity reactions as viewed by a cardiologist in the context of acute coronary events and by a surgeon in patients struck with multiple wounds who are at the same time menaced by bacterial infections.
Collapse
|
25
|
Dander E, De Lorenzo P, Bottazzi B, Quarello P, Vinci P, Balduzzi A, Masciocchi F, Bonanomi S, Cappuzzello C, Prunotto G, Pavan F, Pasqualini F, Sironi M, Cuccovillo I, Leone R, Salvatori G, Parma M, Terruzzi E, Pagni F, Locatelli F, Mantovani A, Fagioli F, Biondi A, Garlanda C, Valsecchi MG, Rovelli A, D'Amico G. Pentraxin 3 plasma levels at graft-versus-host disease onset predict disease severity and response to therapy in children given haematopoietic stem cell transplantation. Oncotarget 2018; 7:82123-82138. [PMID: 27893415 PMCID: PMC5347680 DOI: 10.18632/oncotarget.13488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/15/2016] [Indexed: 12/05/2022] Open
Abstract
Acute Graft-versus-Host Disease (GvHD) remains a major complication of allogeneic haematopoietic stem cell transplantation, with a significant proportion of patients failing to respond to first-line systemic corticosteroids. Reliable biomarkers predicting disease severity and response to treatment are warranted to improve its management. Thus, we sought to determine whether pentraxin 3 (PTX3), an acute-phase protein produced locally at the site of inflammation, could represent a novel acute GvHD biomarker. Using a murine model of the disease, we found increased PTX3 plasma levels after irradiation and at GvHD onset. Similarly, plasma PTX3 was enhanced in 115 pediatric patients on day of transplantation, likely due to conditioning, and at GvHD onset in patients experiencing clinical symptoms of the disease. PTX3 was also found increased in skin and colon biopsies from patients with active disease. Furthermore, PTX3 plasma levels at GvHD onset were predictive of disease outcome since they resulted significantly higher in both severe and therapy-unresponsive patients. Multiple injections of rhPTX3 in the murine model of GvHD did not influence the disease course. Taken together, our results indicate that PTX3 constitutes a biomarker of GvHD severity and therapy response useful to tailor treatment intensity according to early risk-stratification of GvHD patients.
Collapse
Affiliation(s)
- Erica Dander
- "M. Tettamanti" Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy
| | - Paola De Lorenzo
- Center of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Barbara Bottazzi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, Rozzano, Italy
| | - Paola Quarello
- Pediatric Onco-Haematology, City of Science and Health of Turin, Regina Margherita Children's Hospital, Torino, Italy
| | - Paola Vinci
- "M. Tettamanti" Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy
| | - Adriana Balduzzi
- Clinica Pediatrica Ospedale S. Gerardo, Fondazione MBBM, University of Milano-Bicocca, Monza, Italy
| | - Francesca Masciocchi
- Clinica Pediatrica Ospedale S. Gerardo, Fondazione MBBM, University of Milano-Bicocca, Monza, Italy
| | - Sonia Bonanomi
- Clinica Pediatrica Ospedale S. Gerardo, Fondazione MBBM, University of Milano-Bicocca, Monza, Italy
| | - Claudia Cappuzzello
- "M. Tettamanti" Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy
| | - Giulia Prunotto
- Clinica Pediatrica Ospedale S. Gerardo, Fondazione MBBM, University of Milano-Bicocca, Monza, Italy
| | - Fabio Pavan
- Clinica Pediatrica Ospedale S. Gerardo, Fondazione MBBM, University of Milano-Bicocca, Monza, Italy
| | - Fabio Pasqualini
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, Rozzano, Italy
| | - Marina Sironi
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, Rozzano, Italy
| | - Ivan Cuccovillo
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, Rozzano, Italy
| | - Roberto Leone
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, Rozzano, Italy
| | - Giovanni Salvatori
- Sigma-tau S.p.A., Department of R&D, Biotechnology, San Gerardo Hospital, Monza, Italy
| | - Matteo Parma
- Haematology Division and BMT Unit, San Gerardo Hospital, Monza, Italy
| | | | - Fabio Pagni
- Department of Surgery and Interdisciplinary Medicine, University Milano-Bicocca, Section of Pathology, San Gerardo Hospital, Monza, Italy
| | - Franco Locatelli
- Department of Pediatric Haematology-Oncology, IRCCS, Bambino Gesù Children Hospital, Roma-Department of Pediatric Science, University of Pavia, Pavia, Italy
| | - Alberto Mantovani
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano, Italy
| | - Franca Fagioli
- Pediatric Onco-Haematology, City of Science and Health of Turin, Regina Margherita Children's Hospital, Torino, Italy
| | - Andrea Biondi
- "M. Tettamanti" Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy.,Clinica Pediatrica Ospedale S. Gerardo, Fondazione MBBM, University of Milano-Bicocca, Monza, Italy
| | - Cecilia Garlanda
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) - Humanitas Clinical and Research Center, Rozzano, Italy
| | - Maria Grazia Valsecchi
- Center of Biostatistics for Clinical Epidemiology, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Attilio Rovelli
- Clinica Pediatrica Ospedale S. Gerardo, Fondazione MBBM, University of Milano-Bicocca, Monza, Italy
| | - Giovanna D'Amico
- "M. Tettamanti" Research Center, Pediatric Department, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
26
|
Hyaluronan interactions with innate immunity in lung biology. Matrix Biol 2018; 78-79:84-99. [PMID: 29410190 DOI: 10.1016/j.matbio.2018.01.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 01/30/2018] [Indexed: 12/28/2022]
Abstract
Lung disease is a leading cause of morbidity and mortality worldwide. Innate immune responses in the lung play a central role in the pathogenesis of lung disease and the maintenance of lung health, and thus it is crucial to understand factors that regulate them. Hyaluronan is ubiquitous in the lung, and its expression is increased following lung injury and in disease states. Furthermore, hyaladherins like inter-α-inhibitor, tumor necrosis factor-stimulated gene 6, pentraxin 3 and versican are also induced and help form a dynamic hyaluronan matrix in injured lung. This review synthesizes present knowledge about the interactions of hyaluronan and its associated hyaladherins with the lung immune system, and the implications of these interactions for lung biology and disease.
Collapse
|
27
|
Pentraxin 3 deficiency enhances features of chronic rejection in a mouse orthotopic lung transplantation model. Oncotarget 2018; 9:8489-8501. [PMID: 29492210 PMCID: PMC5823599 DOI: 10.18632/oncotarget.23902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/12/2017] [Indexed: 12/24/2022] Open
Abstract
Chronic lung allograft dysfunction (CLAD) is a serious complication after lung transplantation and thought to represent chronic rejection. Increased expression of Pentraxin 3 (PTX3), an acute phase protein, was associated with worse outcome in lung transplant patients. To determine the role of recipient PTX3 in development of chronic rejection, we used a minor alloantigen-mismatched murine orthotopic single lung transplant model. Male C57BL/10 mice were used as donors. Male PTX3 knockout (KO) mice and their wild type (WT) littermates on 129/SvEv/C57BL6/J background were used as recipients. In KO recipients, 7/13 grafted lungs were consolidated without volume recovery on CT scan, while only 2/9 WT mice showed similar graft consolidation. For grafts where lung volume could be reliably analyzed by CT scan, the lung volume recovery was significantly reduced in KO mice compared to WT. Interstitial inflammation, parenchymal fibrosis and bronchiolitis obliterans scores were significantly higher in KO mice. Presence of myofibroblasts and lymphoid aggregation was significantly enhanced in the grafts of PTX3 KO recipients. Recipient PTX3 deficiency enhanced chronic rejection-like lesions by promoting a fibrotic process in the airways and lung parenchyma. The underlying mechanisms and potential protective role of exogenous PTX3 as a therapy should be further explored.
Collapse
|
28
|
Long pentraxin 3: A novel multifaceted player in cancer. Biochim Biophys Acta Rev Cancer 2017; 1869:53-63. [PMID: 29175552 DOI: 10.1016/j.bbcan.2017.11.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 01/12/2023]
Abstract
Since its discovery in 1992, long pentraxin 3 (PTX3) has been characterized as soluble patter recognition receptor, a key player of the innate immunity arm with non-redundant functions in pathogen recognition and inflammatory responses. As a component of the extra-cellular matrix milieu, PTX3 has been implicated also in wound healing/tissue remodeling, cardiovascular diseases, fertility, and infectious diseases. Consequently, PTX3 levels in biological fluids have been proposed as a fluid-phase biomarker in different pathological conditions. In the last decade, experimental evidences have shown that PTX3 may exert a significant impact also on different aspects of cancer biology, including tumor onset, angiogenesis, metastatic dissemination and immune-modulation. However, it remains unclear whether PTX3 acts as a good cop or bad cop in cancer. In this review, we will summarize and discuss the scientific literature data focusing on the role of PTX3 in experimental and human tumors, including its putative translational implications.
Collapse
|
29
|
Casula M, Montecucco F, Bonaventura A, Liberale L, Vecchié A, Dallegri F, Carbone F. Update on the role of Pentraxin 3 in atherosclerosis and cardiovascular diseases. Vascul Pharmacol 2017; 99:1-12. [PMID: 29051088 DOI: 10.1016/j.vph.2017.10.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 10/11/2017] [Accepted: 10/15/2017] [Indexed: 12/12/2022]
Abstract
Pentraxin 3 (PTX3) is an acute-phase protein that was recently demonstrated to play pleiotropic activities in cardiovascular (CV) diseases. Tumor necrosis factor and interleukins up-regulates PTX3 transcription in different cell types (i.e. endothelial cells, phagocytes, smooth muscle cells, fibroblasts and glial cells) involved in atherogenesis. By interacting with numerous ligands, PTX3 acts as a modulatory molecule of complement system, inflammatory response, angiogenesis, and vascular/tissue remodeling. Experimental data point to a beneficial role of PTX3 in atherosclerotic plaque development and vulnerability. Animal studies indicated a protective role of PTX3 signaling in ischemic/reperfusion injury and failing heart. Clinical studies have so far provided contrasting results, highlighting a debated role of PTX3 as an active mediator of endothelial dysfunction, atherosclerotic plaque vulnerability and worse outcome after ischemic events. Therefore, substantial evidence suggests a dual role of PTX3 as modulator or amplifiers of the innate immune response. The final result of PTX3 activation might be determined by a fine tuning of time, space and environmental signals. The aim of this review is to provide an overview of biological properties of PTX3 in CV diseases and to discuss the ability of PTX3 to act as a crossroad between pro- and anti-inflammatory pathways.
Collapse
Affiliation(s)
- Matteo Casula
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Ospedale Policlinico San Martino, 10 Largo Benzi, 16132 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, CH-8952 Schlieren, Switzerland
| | - Alessandra Vecchié
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Ospedale Policlinico San Martino, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy.
| |
Collapse
|
30
|
Daigo K, Inforzato A, Barajon I, Garlanda C, Bottazzi B, Meri S, Mantovani A. Pentraxins in the activation and regulation of innate immunity. Immunol Rev 2017; 274:202-217. [PMID: 27782337 DOI: 10.1111/imr.12476] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Humoral fluid phase pattern recognition molecules (PRMs) are a key component of the activation and regulation of innate immunity. Humoral PRMs are diverse. We focused on the long pentraxin PTX3 as a paradigmatic example of fluid phase PRMs. PTX3 acts as a functional ancestor of antibodies and plays a non-redundant role in resistance against selected microbes in mouse and man and in the regulation of inflammation. This molecule interacts with complement components, thus modulating complement activation. In particular, PTX3 regulates complement-driven macrophage-mediated tumor progression, acting as an extrinsic oncosuppressor in preclinical models and selected human tumors. Evidence collected over the years suggests that PTX3 is a biomarker and potential therapeutic agent in humans, and pave the way to translation of this molecule into the clinic.
Collapse
Affiliation(s)
- Kenji Daigo
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Antonio Inforzato
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano (Milan), Italy.,Department of Medical Biotechnologies and Translational Medicine, University of Milan, Italy
| | | | - Cecilia Garlanda
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Barbara Bottazzi
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Seppo Meri
- Immunobiology Research Program, Research Programs Unit, Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki , Helsinki , Finland
| | - Alberto Mantovani
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center, Rozzano (Milan), Italy.,Humanitas University, Rozzano, Italy
| |
Collapse
|
31
|
The Potential Role of Aerobic Exercise-Induced Pentraxin 3 on Obesity-Related Inflammation and Metabolic Dysregulation. Mediators Inflamm 2017; 2017:1092738. [PMID: 28400677 PMCID: PMC5376480 DOI: 10.1155/2017/1092738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 02/08/2017] [Accepted: 03/06/2017] [Indexed: 01/01/2023] Open
Abstract
Obesity is defined as the excess accumulation of intra-abdominal body fat, resulting in a state of chronic, low-grade proinflammation that can directly contribute to the development of insulin resistance. Pentraxin 3 (PTX3) is an acute-phase protein that is expressed by a variety of tissue and cell sources and provides an anti-inflammatory property to downregulate the production of proinflammatory cytokines, in particular interleukin-1 beta and tumor necrosis factor alpha. Although PTX3 may therapeutically aid in altering the proinflammatory milieu in obese individuals, and despite elevated expression of PTX3 mRNA observed in adipose tissue, the circulating level of PTX3 is reduced with obesity. Interestingly, aerobic activity has been demonstrated to elevate PTX3 levels. Therefore, the purpose of this review is to discuss the therapeutic potential of PTX3 to positively regulate obesity-related inflammation and discuss the proposition for utilizing aerobic exercise as a nonpharmacological anti-inflammatory treatment strategy to enhance circulating PTX3 concentrations in obese individuals.
Collapse
|
32
|
Zelante T, Wong AYW, Mencarelli A, Foo S, Zolezzi F, Lee B, Poidinger M, Ricciardi-Castagnoli P, Fric J. Impaired calcineurin signaling in myeloid cells results in downregulation of pentraxin-3 and increased susceptibility to aspergillosis. Mucosal Immunol 2017; 10:470-480. [PMID: 27301880 DOI: 10.1038/mi.2016.52] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 05/08/2016] [Indexed: 02/04/2023]
Abstract
Treatment of post-transplant patients with immunosuppressive drugs targeting the calcineurin-nuclear factor of activated T cells (NFAT) pathway, including cyclosporine A or tacrolimus, is commonly associated with a higher incidence of opportunistic infections, such as Aspergillus fumigatus, which can lead to severe life-threatening conditions. A component of the A. fumigatus cell wall, β-glucan, is recognized by dendritic cells (DCs) via the Dectin-1 receptor, triggering downstream signaling that leads to calcineurin-NFAT binding, NFAT translocation, and transcription of NFAT-regulated genes. Here, we address the question of whether calcineurin signaling in CD11c-expressing cells, such as DCs, has a specific role in the innate control of A. fumigatus. Impairment of calcineurin in CD11c-expressing cells (CD11ccrecnb1loxP) significantly increased susceptibility to systemic A. fumigatus infection and to intranasal infection in irradiated mice undergoing bone marrow transplant. Global expression profiling of bone marrow-derived DCs identified calcineurin-regulated processes in the immune response to infection, including expression of pentraxin-3, an important antifungal defense protein. These results suggest that calcineurin inhibition directly impairs important immunoprotective functions of myeloid cells, as shown by the higher susceptibility of CD11ccrecnbloxP mice in models of systemic and invasive pulmonary aspergillosis, including after allogeneic bone marrow transplantation. These findings are relevant to the clinical management of transplant patients with severe Aspergillus infections.
Collapse
Affiliation(s)
- T Zelante
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - A Y W Wong
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,National University of Singapore Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| | - A Mencarelli
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Emerging Infectious Diseases Programme, Duke-NUS, Singapore
| | - S Foo
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - F Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - B Lee
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - M Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| | - P Ricciardi-Castagnoli
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - J Fric
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore.,Center for Translational Medicine, International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
33
|
Abstract
The innate immune system represents the first line of defense against pathogens and comprises both a cellular and a humoral arm. Fluid-phase pattern recognition molecules (PRMs), which include collectins, ficolins, and pentraxins, are key components of the humoral arm of innate immunity and are expressed by a variety of cells, including myeloid, epithelial, and endothelial cells, mainly in response to infectious and inflammatory conditions. Soluble PRMs share basic multifunctional properties including activation and regulation of the complement cascade, opsonization of pathogens and apoptotic cells, regulation of leukocyte extravasation, and fine-tuning of inflammation. Therefore, soluble PRMs are part of the immune response and retain antibody-like effector functions. Here, we will review the expression and general function of soluble PRMs, focusing our attention on the long pentraxin PTX3.
Collapse
|
34
|
H9N2 avian influenza virus enhances the immune responses of BMDCs by down-regulating miR29c. Vaccine 2017; 35:729-737. [PMID: 28063705 DOI: 10.1016/j.vaccine.2016.12.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/24/2022]
Abstract
Avian influenza virus (AIV) of the subtypes H9 and N2 is well recognised and caused outbreaks-due to its high genetic variability and high rate of recombination with other influenza virus subtypes. The pathogenicity of H9N2 AIV depends on the host immune response. Dendritic cells (DCs) are major antigen presenting cells that can significantly inhibit H9N2 AIV replication. MicroRNAs (miRNAs) influence the ability of DCs to present antigens, as well as the ability of AIVs to infect host cells and replicate. Here, we studied the molecular mechanism underlying the miRNA-mediated regulation of immune function of mouse DCs. We first screened for and verified the induction of miRNAs in DCs after H9N2 AIVstimulation. We also constructed miR29c, miR339 and miR222 over-expression vector and showed that only the induction of miR29c lead to a hugely increased expression of surface marker MHCII and CD40. Whilst the inhibition of miR29c, miR339 and miR222 in mouse DCs would repressed the expression of DCs surface markers. Moreover, we found that miR29c stimulation not only up-regulate MHCII and CD40, but also enhance the ability of DCs to activate lymphocytes and secrete cytokines IL-6 or TNF-a. Furthermore, we found that Tarbp1 and Rfx7 were targeted and repressed by miR29c. Finally, we revealed that the inhibition of miR29c marvelously accelerated virus replication. Together, our data shed new light on the roles and mechanisms of miR29c in regulating DC function and suggest new strategies for combating AIVs.
Collapse
|
35
|
Role of PTX3 in corneal epithelial innate immunity against Aspergillus fumigatus infection. Exp Eye Res 2016; 167:152-162. [PMID: 27889356 DOI: 10.1016/j.exer.2016.11.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/20/2016] [Accepted: 11/22/2016] [Indexed: 11/22/2022]
Abstract
Pentraxin3 (PTX3), a member of long pentraxin family, plays a non-redundant role in human humoral innate immunity. However, whether PTX3 is expressed by corneal epithelial cells and its role during corneal fungi infection has not yet been investigated. To identify the presence of PTX3 in cornea, the possible mechanisms involved in its expression, and also the effects on corneal anti-fungi innate immune response, clinic human corneal tissues and cultured human corneal epithelial cells (HCECs) were resorted. PTX3 mRNA and protein were detected in corneal samples and cultured HCECs, which was significantly up-regulated after exposing to Aspergillus fumigatus (A. fumigatus). Pretreated with specific inhibitors, only Syk contributed to the regulation of PTX3 expression in Dectin-1/Syk signal axis. Furthermore, among the MAPK members (p38 MAPK, ERK1/2 and JNK), only ERK1/2 and JNK were responsible for A. fumigatus induced PTX3 production. Blocking of endogenous PTX3 by siRNA down-regulated the production of IL-1β at both mRNA and protein levels. Meanwhile, blocking of PTX3 also inhibited the phosphorylation of ERK1/2 and JNK, but not p38 MAPK. These findings demonstrate that PTX3 is expressed in human corneal epithelial cells and Syk, ERK1/2, JNK signaling pathways play an important role in the regulation of PTX3 induction. PTX3 plays a proinflammatory role in corneal epithelial anti-fungi immune response by affecting the production of IL-1β and activation of some proinflammatory signaling pathways (ERK1/2 and JNK).
Collapse
|
36
|
Doni A, Garlanda C, Mantovani A. Innate immunity, hemostasis and matrix remodeling: PTX3 as a link. Semin Immunol 2016; 28:570-577. [PMID: 27881292 DOI: 10.1016/j.smim.2016.10.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/07/2016] [Accepted: 10/12/2016] [Indexed: 12/20/2022]
Abstract
Innate immunity is evolutionarily connected with hemostasis. PTX3 is an essential fluid-phase pattern recognition molecule of the innate immune system that acts as a functional ancestor of antibodies. PTX3 by interacting with defense collagens and fibrinogens amplifies effector functions of the innate immune system. At wound sites, PTX3 regulates the injury-induced thrombotic response and promotes wound healing by favoring timely fibrinolysis. Therefore, PTX3 interacts with ancestral domains conserved in innate immunity, hemostasis and extracellular matrix and exerts functions related to both antimicrobial resistance and tissue repair. These findings strengthen the connection between innate immune system and hemostasis, and suggest that recognition of microbes and extracellular matrix are evolutionarily conserved and integrated functions of the innate immune system.
Collapse
Affiliation(s)
- Andrea Doni
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy.
| | - Cecilia Garlanda
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy; Humanitas University, via Manzoni 113, 20089 Rozzano, Italy
| | - Alberto Mantovani
- Istituto Clinico Humanitas IRCCS, via Manzoni 113, 20089 Rozzano, Italy; Humanitas University, via Manzoni 113, 20089 Rozzano, Italy
| |
Collapse
|
37
|
Slusher AL, Mischo AB, Acevedo EO. Pentraxin 3 is an anti-inflammatory protein associated with lipid-induced interleukin 10 in vitro. Cytokine 2016; 86:36-40. [PMID: 27450429 DOI: 10.1016/j.cyto.2016.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 11/17/2022]
Abstract
UNLABELLED Pentraxin 3 (PTX3) is an acute phase protein expressed in response to pro-inflammatory stimuli during atherosclerosis. However, recent findings suggest that PTX3 is a counter-regulatory protein which enhances the anti-inflammatory response. OBJECTIVE Therefore, the capacity of PTX3 to alter the inflammatory milieu following in vitro stimulation of PBMCs with the pro-inflammatory lipid, palmitate, was examined. METHODS PBMCs from 17 healthy male donors were isolated and cultured under four separate conditions; 200μmol/L palmitate, a physiologically relevant concentration of PTX3, in combination (pal+PTX3), and an unstimulated time-course control. RESULTS Palmitate-induced production of the counter-regulatory protein PTX3 was positively associated with the production of the anti-inflammatory cytokine interleukin 10 (IL-10) following in vitro stimulation of human PBMCs. Furthermore, stimulation of PBMCs in vitro with 500pg/mL PTX3 elicited a significantly greater increase in IL-10 production compared to the palmitate stimulated conditions. However, PTX3 stimulation did not result in the production of the pro-inflammatory cytokines IL-1β, IL-6, and tumor necrosis factor alpha, and when combined with palmitate, did not alter the pro-inflammatory milieu from PBMCs in this study. CONCLUSION These findings provide evidence supporting the role of PTX3 as a mediator of the anti-inflammatory response in physiologically relevant conditions, and suggests that PTX3 counter regulates the development of atherosclerosis by enhancing the production of IL-10.
Collapse
Affiliation(s)
- Aaron L Slusher
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA.
| | - Amanda B Mischo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| | - Edmund O Acevedo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
38
|
Sun H, Tian J, Xian W, Xie T, Yang X. Pentraxin-3 Attenuates Renal Damage in Diabetic Nephropathy by Promoting M2 Macrophage Differentiation. Inflammation 2016; 38:1739-47. [PMID: 25761429 DOI: 10.1007/s10753-015-0151-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
As one of the most important long-term complications of diabetes, diabetic nephropathy (DN) is the major cause of end-stage renal disease and high mortality in diabetic patients. The long pentraxin 3 (Ptx3) is a member of a superfamily of conserved proteins characterized by a cyclic multimeric structure and a conserved C-terminal domain. Several clinical investigations have demonstrated that elevated plasma Ptx3 levels are associated with cardiovascular and chronic kidney diseases (CKD). However, the therapeutic effect of Ptx3 on DN has never been investigated. In our current study, we showed a crucial role for Ptx3 in attenuating renal damage in DN. In our mouse hyperglycemia-induced nephropathy model, Ptx3 treatment showed significantly increased expression of nephrin, acetylated nephrin, and Wilm's tumor-1 protein (WT-1) when compared with control. The number of CD4(+) T cells, CD8(+) T cells, Ly6G(+) neutrophils, and CD11b(+) macrophages were all significantly lower in the Ptx3-treated group than that in the control group in DN. The IL-4 and IL-13 levels in the Ptx3-treated group were markedly higher than that in the control group in DN. Correspondingly, the Ptx3-treated group showed increased numbers of Arg1- or CD206-expressing macrophages compared with the control group. Furthermore, inhibition of Ptx3-treated macrophages abrogated the alleviated renal damage induced by Ptx3 treatment. In conclusion, Ptx3 attenuates renal damage in DN by promoting M2 macrophage differentiation.
Collapse
Affiliation(s)
- Huaibin Sun
- Department of Hemodialysis, Qilu Hospital, Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
39
|
Magrini E, Mantovani A, Garlanda C. The Dual Complexity of PTX3 in Health and Disease: A Balancing Act? Trends Mol Med 2016; 22:497-510. [PMID: 27179743 PMCID: PMC5414840 DOI: 10.1016/j.molmed.2016.04.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 12/17/2022]
Abstract
The humoral arm of innate immunity is complex and includes various molecules that serve as markers of inflammation with complementary characteristics, such as the short pentraxins C-reactive protein (CRP) and serum amyloid P (SAP) and the long pentraxin PTX3. There is a growing amount of evidence – including mouse and human genetics – that suggests that PTX3 is essential in conferring host resistance against selected pathogens and, moreover, that it plays a dual antagonistic role in the regulation of inflammation. Dissection of such a yin-and-yang role of pentraxins in immunity and inflammation is timely and significant as it may pave the way for better clinical exploitation against various diseases. The long pentraxin PTX3 is an essential component of humoral innate immunity and plays a role in the regulation of inflammation. PTX3 has complex effects on the vasculature, including an interaction with the angiogenic growth factor FGF2 and the regulation of vessel wall tone. By modulating complement-driven inflammation, PTX3 acts as an oncosuppressor gene in mice and selected human tumors. By interacting with provisional matrix components, PTX3 contributes to the orchestration of wound healing and tissue repair/remodeling. PTX3 and the related pentraxins C-reactive protein (CRP) and serum amyloid P (SAP) can exert dual roles in inflammation and antimicrobial resistance, by either exerting a protective function or amplifying tissue damage. Dissection of the yin–yang role of pentraxins in immunopathology may pave the way towards better exploitation of these molecules as envisaged disease markers and candidate therapeutic agents.
Collapse
Affiliation(s)
- Elena Magrini
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy; Humanitas University, Rozzano, Milan 20089, Italy.
| | - Cecilia Garlanda
- Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| |
Collapse
|
40
|
Kim HS, Won S, Lee EK, Chun YH, Yoon JS, Kim HH, Kim JT. Pentraxin 3 as a clinical marker in children with lower respiratory tract infection. Pediatr Pulmonol 2016; 51:42-8. [PMID: 25832310 PMCID: PMC7168119 DOI: 10.1002/ppul.23199] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 02/06/2015] [Accepted: 02/27/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Pentraxin 3 (PTX-3) is an acute-phase protein that increases in the plasma during inflammation. OBJECTIVE We aimed to evaluate the usefulness of PTX-3 as a clinical marker in children with lower respiratory tract infection (LRTI) and examine the correlation of PTX-3 with other biomarkers such as C-reactive protein (CRP) and procalcitonin (PCT). METHODS We enrolled 117 consecutive patients admitted to Seoul St. Mary's Hospital with LRTI using the WHO criteria. We recorded data on fever duration and peak temperature before admission, duration of fever after admission, respiratory rate, heart rate, oxygen saturation upon admission, duration of oxygen supplementation, and duration of hospital stay. Upon admission, white blood cell (WBC) count, erythrocyte sedimentation rate, CRP level were measured. Multiplex respiratory virus polymerase chain reaction was performed using nasal swabs. PTX-3, PCT, and various cytokines were measured after the study had been completed. RESULTS We found that there was no significant difference in the level of PTX-3 according to the type of viral infection. PTX-3 levels showed a significant correlation with PCT levels, but not with levels of CRP. The level of PTX-3 showed a significant correlation with peak temperature and duration of fever before admission as well as interleukin (IL)-6 levels. PCT levels showed a significant correlation with IL-6 and granulocyte-colony stimulating factor levels, peak temperature, and duration of fever before admission, and duration of hospital stay. CRP levels showed a significant correlation with duration of fever before admission, total WBC count, and neutrophil count. PCT levels significantly predicted a hospital stay of 7 days or more. PTX-3, PCT, and CRP levels showed no correlation with any other clinical features. CONCLUSION PTX-3 reflected disease severity but failed to predict length of hospital stay. Further studies evaluating the use of PTX-3 as a biomarker in mild LRTI would be useful.
Collapse
Affiliation(s)
- Hwan Soo Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sulmui Won
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eu Kyoung Lee
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon Hong Chun
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jong-Seo Yoon
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Hee Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin Tack Kim
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
41
|
Paeschke A, Possehl A, Klingel K, Voss M, Voss K, Kespohl M, Sauter M, Overkleeft HS, Althof N, Garlanda C, Voigt A. The immunoproteasome controls the availability of the cardioprotective pattern recognition molecule Pentraxin3. Eur J Immunol 2015; 46:619-33. [PMID: 26578407 DOI: 10.1002/eji.201545892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/19/2015] [Accepted: 11/10/2015] [Indexed: 12/20/2022]
Abstract
Cardiomyocyte death as a result of viral infection is an excellent model for dissecting the inflammatory stress response that occurs in heart tissue. We reported earlier that a specific proteasome isoform, the immunoproteasome, prevents exacerbation of coxsackievirus B3 (CVB3)-induced myocardial destruction and preserves cell vitality in heart tissue inflammation. Following the aim to decipher molecular targets of immunoproteasome-dependent proteolysis, we investigated the function and regulation of the soluble PRR Pentraxin3 (PTX3). We show that the ablation of PTX3 in mice aggravated CVB3-triggered inflammatory injury of heart tissue, without having any significant effect on viral titers. Thus, there might be a role of PTX3 in preventing damage-associated molecular pattern-induced cell death. We found that the catalytic activity of the immunoproteasome subunit LMP7 regulates the timely availability of factors controlling PTX3 production. We report on immunoproteasome-dependent alteration of ERK1/2 and p38MAPKs, which were both found to be involved in PTX3 expression control. Our finding of a cardioprotective function of immunoproteasome-dependent PTX3 expression revealed a crucial mechanism of the stress-induced damage response in myocardial inflammation. In addition to antigen presentation and cytokine production, proteolysis by the immunoproteasome can also regulate the innate immune response during viral infection.
Collapse
Affiliation(s)
- Anna Paeschke
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Possehl
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Karin Klingel
- Institut für Molekulare Pathologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Martin Voss
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Side Berlin, Berlin, Germany
| | - Karolin Voss
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Meike Kespohl
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Side Berlin, Berlin, Germany
| | - Martina Sauter
- Institut für Molekulare Pathologie, Universitätsklinikum Tübingen, Tübingen, Germany
| | | | - Nadine Althof
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Side Berlin, Berlin, Germany
| | | | - Antje Voigt
- Institut für Biochemie, Charité Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Side Berlin, Berlin, Germany
| |
Collapse
|
42
|
Xu J, Mu Y, Zhang Y, Dong W, Zhu Y, Ma J, Song W, Pan Z, Lu C, Yao H. Antibacterial effect of porcine PTX3 against Streptococcus suis type 2 infection. Microb Pathog 2015; 89:128-39. [DOI: 10.1016/j.micpath.2015.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 09/07/2015] [Accepted: 09/24/2015] [Indexed: 11/28/2022]
|
43
|
Foo SS, Reading PC, Jaillon S, Mantovani A, Mahalingam S. Pentraxins and Collectins: Friend or Foe during Pathogen Invasion? Trends Microbiol 2015; 23:799-811. [PMID: 26482345 PMCID: PMC7127210 DOI: 10.1016/j.tim.2015.09.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 09/07/2015] [Accepted: 09/22/2015] [Indexed: 12/24/2022]
Abstract
Innate immunity serves as the frontline defence against invading pathogens. Despite decades of research, new insights are constantly challenging our understanding of host-elicited immunity during microbial infections. Recently, two families of humoral innate immune proteins, pentraxins and collectins, have become a major focus of research in the field of innate immunity. Pentraxins and collectins are key players in activating the humoral arm of innate immunity, taking centre stage in immunoregulation and disease modulation. However, increasing evidence suggests that pentraxins and collectins can also mediate pathogenic effects during some infections. Herein, we discuss the protective and pathogenic effects of pentraxins and collectins, as well as their therapeutic significance.
Collapse
Affiliation(s)
- Suan-Sin Foo
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia
| | - Patrick C Reading
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| | - Sébastien Jaillon
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, 20089, Rozzano, Milano, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, 20089, Rozzano, Milano, Italy; Humanitas University, 20089, Rozzano, Milano, Italy
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia.
| |
Collapse
|
44
|
Cunha C, Monteiro AA, Oliveira-Coelho A, Kühne J, Rodrigues F, Sasaki SD, Schio SM, Camargo JJ, Mantovani A, Carvalho A, Pasqualotto AC. PTX3-Based Genetic Testing for Risk of Aspergillosis After Lung Transplant. Clin Infect Dis 2015; 61:1893-4. [PMID: 26261201 DOI: 10.1093/cid/civ679] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandre A Monteiro
- Universidade Federal de Ciências da Saúde de Porto Alegre Santa Casa de Misericórdia de Porto Alegre
| | - Ana Oliveira-Coelho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Juliana Kühne
- Universidade Federal de Ciências da Saúde de Porto Alegre Santa Casa de Misericórdia de Porto Alegre
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sergio D Sasaki
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Paulo, Brazil
| | | | | | - Alberto Mantovani
- Department of Inflammation and Immunology, Humanitas Clinical and Research Center Humanitas University, Rozzano, Italy
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alessandro C Pasqualotto
- Universidade Federal de Ciências da Saúde de Porto Alegre Santa Casa de Misericórdia de Porto Alegre
| |
Collapse
|
45
|
Kang M, Min K, Jang J, Kim SC, Kang MS, Jang SJ, Lee JY, Kim SH, Kim MK, An SA, Kim M. Involvement of Immune Responses in the Efficacy of Cord Blood Cell Therapy for Cerebral Palsy. Stem Cells Dev 2015; 24:2259-68. [PMID: 25977995 DOI: 10.1089/scd.2015.0074] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This study evaluated the efficacy of umbilical cord blood (UCB) cell for patients with cerebral palsy (CP) in a randomized, placebo-controlled, double-blind trial and also assessed factors and mechanisms related to the efficacy. Thirty-six children (ages 6 months to 20 years old) with CP were enrolled and treated with UCB or a placebo. Muscle strength and gross motor function were evaluated at baseline and 1, 3, and 6 months after treatment. Along with function measurements, each subject underwent (18)F-fluorodeoxyglucose positron emission tomography at baseline and 2 weeks after treatment. Cytokine and receptor levels were quantitated in serial blood samples. The UCB group showed greater improvements in muscle strength than the controls at 1 (0.94 vs. -0.35, respectively) and 3 months (2.71 vs. 0.65) after treatment (Ps<0.05). The UCB group also showed greater improvements in gross motor performance than the control group at 6 months (8.54 vs. 2.60) after treatment (P<0.01). Additionally, positron emission tomography scans revealed decreased periventricular inflammation in patients administered UCB, compared with those treated with a placebo. Correlating with enhanced gross motor function, elevations in plasma pentraxin 3 and interleukin-8 levels were observed for up to 12 days after treatment in the UCB group. Meanwhile, increases in blood cells expressing Toll-like receptor 4 were noted at 1 day after treatment in the UCB group, and they were correlated with increased muscle strength at 3 months post-treatment. In this trial, treatment with UCB alone improved motor outcomes and induced systemic immune reactions and anti-inflammatory changes in the brain. Generally, motor outcomes were positively correlated with the number of UCB cells administered: a higher number of cells resulted in better outcomes. Nevertheless, future trials are needed to confirm the long-term efficacy of UCB therapy, as the follow-up duration of the present trial was short.
Collapse
Affiliation(s)
- Mino Kang
- 1 Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University , Seongnam, Republic of Korea
| | - Kyunghoon Min
- 2 Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University , Seongnam, Republic of Korea
| | - Joonyoung Jang
- 2 Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University , Seongnam, Republic of Korea
| | - Seung Chan Kim
- 1 Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University , Seongnam, Republic of Korea
| | - Myung Seo Kang
- 3 Department of Laboratory Medicine, CHA Bundang Medical Center, CHA University and CHA Medical Center Cord Blood Bank , Seongnam, Republic of Korea
| | - Su Jin Jang
- 4 Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University , Seongnam, Republic of Korea
| | - Ji Young Lee
- 4 Department of Nuclear Medicine, CHA Bundang Medical Center, CHA University , Seongnam, Republic of Korea
| | - Sang Heum Kim
- 5 Department of Radiology, CHA Bundang Medical Center, CHA University , Seongnam, Republic of Korea
| | - Moon Kyu Kim
- 6 Division of Hematology-Oncology, Department of Pediatrics, CHA Bundang Medical Center, CHA University , Seongnam, Republic of Korea
| | - SeongSoo A An
- 1 Department of Bionanotechnology, Gachon Medical Research Institute, Gachon University , Seongnam, Republic of Korea
| | - MinYoung Kim
- 2 Department of Rehabilitation Medicine, CHA Bundang Medical Center, CHA University , Seongnam, Republic of Korea
| |
Collapse
|
46
|
Foo SS, Chen W, Taylor A, Sheng KC, Yu X, Teng TS, Reading PC, Blanchard H, Garlanda C, Mantovani A, Ng LFP, Herrero LJ, Mahalingam S. Role of pentraxin 3 in shaping arthritogenic alphaviral disease: from enhanced viral replication to immunomodulation. PLoS Pathog 2015; 11:e1004649. [PMID: 25695775 PMCID: PMC4335073 DOI: 10.1371/journal.ppat.1004649] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 01/01/2015] [Indexed: 11/21/2022] Open
Abstract
The rising prevalence of arthritogenic alphavirus infections, including chikungunya virus (CHIKV) and Ross River virus (RRV), and the lack of antiviral treatments highlight the potential threat of a global alphavirus pandemic. The immune responses underlying alphavirus virulence remain enigmatic. We found that pentraxin 3 (PTX3) was highly expressed in CHIKV and RRV patients during acute disease. Overt expression of PTX3 in CHIKV patients was associated with increased viral load and disease severity. PTX3-deficient (PTX3(-/-)) mice acutely infected with RRV exhibited delayed disease progression and rapid recovery through diminished inflammatory responses and viral replication. Furthermore, binding of the N-terminal domain of PTX3 to RRV facilitated viral entry and replication. Thus, our study demonstrates the pivotal role of PTX3 in shaping alphavirus-triggered immunity and disease and provides new insights into alphavirus pathogenesis.
Collapse
Affiliation(s)
- Suan-Sin Foo
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Weiqiang Chen
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Adam Taylor
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Kuo-Ching Sheng
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Xing Yu
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Terk-Shin Teng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
| | - Patrick C. Reading
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | - Cecilia Garlanda
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, Rozzano, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center, Department of Inflammation and Immunology, Rozzano, Italy
- Department of Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Lisa F. P. Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Biopolis, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Lara J. Herrero
- Institute for Glycomics, Griffith University, Gold Coast, Australia
| | | |
Collapse
|
47
|
Abstract
During infection significant alterations in lipid metabolism and lipoprotein composition occur. Triglyceride and VLDL cholesterol levels increase, while reduced HDL cholesterol (HDL-C) and LDL cholesterol (LDL-C) levels are observed. More importantly, endotoxemia modulates HDL composition and size: phospholipids are reduced as well as apolipoprotein (apo) A-I, while serum amyloid A (SAA) and secretory phospholipase A2 (sPLA2) dramatically increase, and, although the total HDL particle number does not change, a significant decrease in the number of small- and medium-size particles is observed. Low HDL-C levels inversely correlate with the severity of septic disease and associate with an exaggerated systemic inflammatory response. HDL, as well as other plasma lipoproteins, can bind and neutralize Gram-negative bacterial lipopolysaccharide (LPS) and Gram-positive bacterial lipoteichoic acid (LTA), thus favoring the clearance of these products. HDLs are emerging also as a relevant player during parasitic infections, and a specific component of HDL, namely, apoL-1, confers innate immunity against trypanosome by favoring lysosomal swelling which kills the parasite. During virus infections, proteins associated with the modulation of cholesterol bioavailability in the lipid rafts such as ABCA1 and SR-BI have been shown to favor virus entry into the cells. Pharmacological studies support the benefit of recombinant HDL or apoA-I mimetics during bacterial infection, while apoL-1-nanobody complexes were tested for trypanosome infection. Finally, SR-BI antagonism represents a novel and forefront approach interfering with hepatitis C virus entry which is currently tested in clinical studies. From the coming years, we have to expect new and compelling observations further linking HDL to innate immunity and infections.
Collapse
|
48
|
Jaillon S, Bonavita E, Gentile S, Rubino M, Laface I, Garlanda C, Mantovani A. The long pentraxin PTX3 as a key component of humoral innate immunity and a candidate diagnostic for inflammatory diseases. Int Arch Allergy Immunol 2014; 165:165-78. [PMID: 25531094 DOI: 10.1159/000368778] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The innate immune system is composed of a cellular arm and a humoral arm. Components of the humoral arm include members of the complement cascade and soluble pattern recognition molecules (PRMs). These PRMs recognize pathogen-associated molecular patterns and are functional ancestors of antibodies, playing a role in complement activation, opsonization and agglutination. Pentraxins consist of a set of multimeric soluble proteins and represent the prototypic components of humoral innate immunity. The prototypic long pentraxin PTX3 is highly conserved in evolution and produced by somatic and innate immune cells after proinflammatory stimuli. PTX3 interacts with a set of self, nonself and modified self ligands and exerts essential roles in innate immunity, inflammation control and matrix deposition. In addition, translational studies suggest that PTX3 may be a useful biomarker of human pathologies complementary to C-reactive protein. In this study, we will review the general functions of pentraxins in innate immunity and inflammation, focusing our attention on the prototypic long pentraxin PTX3.
Collapse
|
49
|
Bozza S, Campo S, Arseni B, Inforzato A, Ragnar L, Bottazzi B, Mantovani A, Moretti S, Oikonomous V, De Santis R, Carvalho A, Salvatori G, Romani L. PTX3 Binds MD-2 and Promotes TRIF-Dependent Immune Protection in Aspergillosis. THE JOURNAL OF IMMUNOLOGY 2014; 193:2340-8. [DOI: 10.4049/jimmunol.1400814] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Xiao Y, Yang N, Zhang Q, Wang Y, Yang S, Liu Z. Pentraxin 3 Inhibits Acute Renal Injury-Induced Interstitial Fibrosis Through Suppression of IL-6/Stat3 Pathway. Inflammation 2014; 37:1895-901. [DOI: 10.1007/s10753-014-9921-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|