1
|
Uhlemann H, Epp K, Klesse C, Link-Rachner CS, Surendranath V, Günther UP, Schetelig J, Heidenreich F. Shape of the art: TCR-repertoire after allogeneic hematopoietic cell transplantation. Best Pract Res Clin Haematol 2024; 37:101558. [PMID: 39098804 DOI: 10.1016/j.beha.2024.101558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 05/03/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024]
Abstract
The human adaptive immune repertoire is characterized by specificity and diversity to provide immunity against past and future tasks. Such tasks are mainly infections but also malignant transformations of cells. With its multiple lines of defense, the human immune system contains both, rapid reaction forces and the potential to capture, disassemble and analyze strange structures in order to teach the adaptive immune system and mount a specific immune response. Prevention and mitigation of autoimmunity is of equal importance. In the context of allogeneic hematopoietic cell transplantation (HCT) specific challenges exist with the transfer of cells from the adapted donor immune system to the immunosuppressed recipient. Those challenges are immunogenetic disparity between donor and host, reconstitution of immunity early after HCT by expansion of mature immune effector cells, and impaired thymic function, if the recipient is an adult (as it is the case in most HCTs). The possibility to characterize the adaptive immune repertoire by massively parallel sequencing of T-cell receptor gene rearrangements allows for a much more detailed characterization of the T-cell repertoire. In addition, high-dimensional characterization of immune effector cells based on their immunophenotype and single cell RNA sequencing allow for much deeper insights in adaptive immune responses. We here review, existing - still incomplete - information on immune reconstitution after allogeneic HCT. Building on the technological advances much deeper insights into immune recovery after HCT and adaptive immune responses and can be expected in the coming years.
Collapse
Affiliation(s)
- Heike Uhlemann
- University Hospital Carl Gustav Carus, Dresden, Germany; DKMS Group gGmbH, Clinical Trials Unit, Dresden, Germany.
| | - Katharina Epp
- University Hospital Carl Gustav Carus, Dresden, Germany
| | | | | | | | | | - Johannes Schetelig
- University Hospital Carl Gustav Carus, Dresden, Germany; DKMS Group gGmbH, Clinical Trials Unit, Dresden, Germany
| | - Falk Heidenreich
- University Hospital Carl Gustav Carus, Dresden, Germany; DKMS Group gGmbH, Clinical Trials Unit, Dresden, Germany
| |
Collapse
|
2
|
van Hees EP, Morton LT, Remst DFG, Wouters AK, Van den Eynde A, Falkenburg JHF, Heemskerk MH. Self-sufficient primary natural killer cells engineered to express T cell receptors and interleukin-15 exhibit improved effector function and persistence. Front Immunol 2024; 15:1368290. [PMID: 38690288 PMCID: PMC11058644 DOI: 10.3389/fimmu.2024.1368290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Background NK cells can be genetically engineered to express a transgenic T-cell receptor (TCR). This approach offers an alternative strategy to target heterogenous tumors, as NK:TCR cells can eradicate both tumor cells with high expression of HLA class I and antigen of interest or HLA class I negative tumors. Expansion and survival of NK cells relies on the presence of IL-15. Therefore, autonomous production of IL-15 by NK:TCR cells might improve functional persistence of NK cells. Here we present an optimized NK:TCR product harnessed with a construct encoding for soluble IL-15 (NK:TCR/IL-15), to support their proliferation, persistence and cytotoxic capabilities. Methods Expression of tumor-specific TCRs in peripheral blood derived NK-cells was achieved following retroviral transduction. NK:TCR/IL-15 cells were compared with NK:TCR cells for autonomous cytokine production, proliferation and survival. NK:BOB1-TCR/IL-15 cells, expressing a HLA-B*07:02-restricted TCR against BOB1, a B-cell lineage specific transcription factor highly expressed in all B-cell malignancies, were compared with control NK:BOB1-TCR and NK:CMV-TCR/IL-15 cells for effector function against TCR antigen positive malignant B-cell lines in vitro and in vivo. Results Viral incorporation of the interleukin-15 gene into engineered NK:TCR cells was feasible and high expression of the TCR was maintained, resulting in pure NK:TCR/IL-15 cell products generated from peripheral blood of multiple donors. Self-sufficient secretion of IL-15 by NK:TCR cells enables engineered NK cells to proliferate in vitro without addition of extra cytokines. NK:TCR/IL-15 demonstrated a marked enhancement of TCR-mediated cytotoxicity as well as enhanced NK-mediated cytotoxicity resulting in improved persistence and performance of NK:BOB1-TCR/IL-15 cells in an orthotopic multiple myeloma mouse model. However, in contrast to prolonged anti-tumor reactivity by NK:BOB1-TCR/IL-15, we observed in one of the experiments an accumulation of NK:BOB1-TCR/IL-15 cells in several organs of treated mice, leading to unexpected death 30 days post-NK infusion. Conclusion This study showed that NK:TCR/IL-15 cells secrete low levels of IL-15 and can proliferate in an environment lacking cytokines. Repeated in vitro and in vivo experiments confirmed the effectiveness and target specificity of our product, in which addition of IL-15 supports TCR- and NK-mediated cytotoxicity.
Collapse
Affiliation(s)
- Els P. van Hees
- Department of Hematology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| | - Laura T. Morton
- Department of Hematology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| | - Dennis F. G. Remst
- Department of Hematology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| | - Anne K. Wouters
- Department of Hematology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| | - Astrid Van den Eynde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Antwerp, Belgium
| | | | - Mirjam H.M. Heemskerk
- Department of Hematology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| |
Collapse
|
3
|
Chang CR, Vykunta VS, Goodman DB, Muldoon JJ, Nyberg WA, Liu C, Allain V, Rothrock A, Wang CH, Marson A, Shy BR, Eyquem J. Ultra-high efficiency T cell reprogramming at multiple loci with SEED-Selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.576175. [PMID: 38370809 PMCID: PMC10871224 DOI: 10.1101/2024.02.06.576175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Multiplexed reprogramming of T cell specificity and function can generate powerful next-generation cellular therapies. However, current manufacturing methods produce heterogenous mixtures of partially engineered cells. Here, we develop a one-step process to enrich for unlabeled cells with knock-ins at multiple target loci using a family of repair templates named Synthetic Exon/Expression Disruptors (SEEDs). SEED engineering associates transgene integration with the disruption of a paired endogenous surface protein, allowing non-modified and partially edited cells to be immunomagnetically depleted (SEED-Selection). We design SEEDs to fully reprogram three critical loci encoding T cell specificity, co-receptor expression, and MHC expression, with up to 98% purity after selection for individual modifications and up to 90% purity for six simultaneous edits (three knock-ins and three knockouts). These methods are simple, compatible with existing clinical manufacturing workflows, and can be readily adapted to other loci to facilitate production of complex gene-edited cell therapies.
Collapse
Affiliation(s)
- Christopher R Chang
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Vivasvan S Vykunta
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel B Goodman
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Joseph J Muldoon
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - William A Nyberg
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chang Liu
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Vincent Allain
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Université Paris Cité, INSERM UMR976, Hôpital Saint-Louis, Paris, France
| | - Allison Rothrock
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Charlotte H Wang
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Brian R Shy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Justin Eyquem
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
4
|
Klebanoff CA, Chandran SS, Baker BM, Quezada SA, Ribas A. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. Nat Rev Drug Discov 2023; 22:996-1017. [PMID: 37891435 PMCID: PMC10947610 DOI: 10.1038/s41573-023-00809-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 10/29/2023]
Abstract
The T cell receptor (TCR) complex is a naturally occurring antigen sensor that detects, amplifies and coordinates cellular immune responses to epitopes derived from cell surface and intracellular proteins. Thus, TCRs enable the targeting of proteins selectively expressed by cancer cells, including neoantigens, cancer germline antigens and viral oncoproteins. As such, TCRs have provided the basis for an emerging class of oncology therapeutics. Herein, we review the current cancer treatment landscape using TCRs and TCR-like molecules. This includes adoptive cell transfer of T cells expressing endogenous or engineered TCRs, TCR bispecific engagers and antibodies specific for human leukocyte antigen (HLA)-bound peptides (TCR mimics). We discuss the unique complexities associated with the clinical development of these therapeutics, such as HLA restriction, TCR retrieval, potency assessment and the potential for cross-reactivity. In addition, we highlight emerging clinical data that establish the antitumour potential of TCR-based therapies, including tumour-infiltrating lymphocytes, for the treatment of diverse human malignancies. Finally, we explore the future of TCR therapeutics, including emerging genome editing methods to safely enhance potency and strategies to streamline patient identification.
Collapse
Affiliation(s)
- Christopher A Klebanoff
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA.
| | - Smita S Chandran
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, ID, USA
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, ID, USA
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Achilles Therapeutics, London, UK
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
5
|
Okada S, Muraoka D, Yasui K, Tawara I, Kawamura A, Okamoto S, Mineno J, Seo N, Shiku H, Eguchi S, Ikeda H. T cell receptor gene-modified allogeneic T cells with siRNA for endogenous T cell receptor induce efficient tumor regression without graft-versus-host disease. Cancer Sci 2023; 114:4172-4183. [PMID: 37675556 PMCID: PMC10637063 DOI: 10.1111/cas.15954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Adoptive immunotherapy using genetically engineered patient-derived lymphocytes to express tumor-reactive receptors is a promising treatment for malignancy. However, utilization of autologous T cells in this therapy limits the quality of gene-engineered T cells, thereby inhibiting the timely infusion of the cells into patients. In this study, we evaluated the anti-tumor efficacy and the potential to induce graft-versus-host disease (GVHD) in T cell receptor (TCR) gene-engineered allogeneic T cells that downregulate the endogenous TCR and HLA class I molecules with the aim of developing an "off-the-shelf" cell product with expanded application of genetically engineered T cells. We transduced human lymphocytes with a high-affinity TCR specific to the cancer/testis antigen NY-ESO-1 using a novel retrovirus vector with siRNAs specific to the endogenous TCR (siTCR vector). These T cells showed reduced expression of endogenous TCR and minimized reactivity to allogeneic cells in vitro. In non-obese diabetic/SCID/γcnull mice, TCR gene-transduced T cells induced tumor regression without development of GVHD. A lentivirus-based CRISPR/Cas9 system targeting β-2 microglobulin in TCR gene-modified T cells silenced the HLA class I expression and prevented allogeneic CD8+ T cell stimulation without disrupting their anti-tumor capacity. This report is the first demonstration that siTCR technology is effective in preventing GVHD. Adoptive cell therapy with allogeneic T cells engineered with siTCR vector may be useful in developing an "off-the-shelf" therapy for patients with malignancy.
Collapse
Affiliation(s)
- Satomi Okada
- Department of OncologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
- Department of SurgeryNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Daisuke Muraoka
- Department of OncologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
- Division of Translational OncoimmunologyAichi Cancer Center Research InstituteNagoyaJapan
| | - Kiyoshi Yasui
- Department of OncologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Isao Tawara
- Department of Hematology and OncologyMie University Graduate School of MedicineMieJapan
| | | | | | | | - Naohiro Seo
- Department of Personalized Cancer ImmunotherapyMie University Graduate School of MedicineMieJapan
- Department of Bioengineering, School of EngineeringThe University of TokyoTokyoJapan
| | - Hiroshi Shiku
- Department of Personalized Cancer ImmunotherapyMie University Graduate School of MedicineMieJapan
| | - Susumu Eguchi
- Department of SurgeryNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| | - Hiroaki Ikeda
- Department of OncologyNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
- Leading Medical Research Core UnitNagasaki University Graduate School of Biomedical SciencesNagasakiJapan
| |
Collapse
|
6
|
Hunt MS, Yang SJ, Mortensen E, Boukhris A, Buckner J, Cook PJ, Rawlings DJ. Dual-locus, dual-HDR editing permits efficient generation of antigen-specific regulatory T cells with robust suppressive activity. Mol Ther 2023; 31:2872-2886. [PMID: 37481700 PMCID: PMC10556186 DOI: 10.1016/j.ymthe.2023.07.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023] Open
Abstract
Adoptive regulatory T (Treg) cell therapy is predicted to modulate immune tolerance in autoimmune diseases, including type 1 diabetes (T1D). However, the requirement for antigen (ag) specificity to optimally orchestrate tissue-specific, Treg cell-mediated tolerance limits effective clinical application. To address this challenge, we present a single-step, combinatorial gene editing strategy utilizing dual-locus, dual-homology-directed repair (HDR) to generate and specifically expand ag-specific engineered Treg (EngTreg) cells derived from donor CD4+ T cells. Concurrent delivery of CRISPR nucleases and recombinant (r)AAV homology donor templates targeting FOXP3 and TRAC was used to achieve three parallel goals: enforced, stable expression of FOXP3; replacement of the endogenous T cell receptor (TCR) with an islet-specific TCR; and selective enrichment of dual-edited cells. Each HDR donor template contained an alternative component of a heterodimeric chemically inducible signaling complex (CISC), designed to activate interleukin-2 (IL-2) signaling in response to rapamycin, promoting expansion of only dual-edited EngTreg cells. Using this approach, we generated purified, islet-specific EngTreg cells that mediated robust direct and bystander suppression of effector T (Teff) cells recognizing the same or a different islet antigen peptide, respectively. This platform is broadly adaptable for use with alternative TCRs or other targeting moieties for application in tissue-specific autoimmune or inflammatory diseases.
Collapse
MESH Headings
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Gene Editing/methods
- Humans
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Forkhead Transcription Factors/metabolism
- Forkhead Transcription Factors/genetics
- CRISPR-Cas Systems
- Diabetes Mellitus, Type 1/therapy
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/genetics
- Recombinational DNA Repair
- Genetic Vectors/genetics
- Interleukin-2/genetics
- Interleukin-2/metabolism
- Animals
- Immune Tolerance
Collapse
Affiliation(s)
- Martina S Hunt
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Soo Jung Yang
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle WA 98101, USA
| | - Emma Mortensen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle WA 98101, USA
| | - Ahmad Boukhris
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA
| | - Jane Buckner
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, 1201 Ninth Avenue, Seattle WA 98101, USA
| | - Peter J Cook
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA.
| | - David J Rawlings
- Center for Immunity and Immunotherapies and Program for Cell and Gene Therapy, Seattle Children's Research Institute, 1900 Ninth Avenue, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Department of Immunology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Reimann H, Moosmann C, Schober K, Lang V, Verhagen J, Zeun J, Mackensen A, Kremer AN, Völkl S, Aigner M. Identification and characterization of T-cell receptors with therapeutic potential showing conserved specificity against all SARS-CoV 2 strains. Immunobiology 2023; 228:152720. [PMID: 37541134 DOI: 10.1016/j.imbio.2023.152720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/06/2023]
Abstract
INTRODUCTION Treatment of severe COVID-19 disease can be challenging in immunocompromized patients due to newly emerging virus variants of concern (VOC) escaping the humoral response. Thus, T cells recognizing to date unmutated epitopes are not only relevant for patients' immune responses against VOC, but might also serve as a therapeutic option for patients with severe COVID-19 disease in the future, e.g. following allogenic stem cell transplantation. METHODS To this purpose, the activation, cytokine profile and specificity of T-cell clones against unmutated and omicron Spike (S)-protein was analyzed, HLA restriction was determined and most promising T-cell receptor (TCR) was introduced into allogeneic T cells via CRISPR/Cas9-mediated orthotopic TCR replacement. Finally, T-cell responses of engineered T cells was determined and durability of the TCR replacement measured. PERSPECTIVE SARS-CoV-2 specific engineered T cells recognizing a genomically stable region of the S-protein of all SARS-CoV 2 variants were successfully generated. Such transgenic T cells exhibit favorable effector functions and provide a treatment option of immunocompromised COVID-19 patients.
Collapse
Affiliation(s)
- Hannah Reimann
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany.
| | - Carolin Moosmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kilian Schober
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Vanessa Lang
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Johan Verhagen
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Department of Internal Medicine 3, Rheumatology and Immunology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Medizinische Klinik mit Schwerpunkt Rheumatologie und Klinische Immunologie, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Julia Zeun
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Andreas Mackensen
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Anita N Kremer
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Simon Völkl
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| | - Michael Aigner
- Department of Internal Medicine 5, Hematology and Oncology, University Hospital Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany; Bavarian Cancer Research Center (BZKF), 91054 Erlangen, Germany
| |
Collapse
|
8
|
Muhowski EM, Rogers LM. Dual TCR-Expressing T Cells in Cancer: How Single-Cell Technologies Enable New Investigation. Immunohorizons 2023; 7:299-306. [PMID: 37129560 PMCID: PMC10354877 DOI: 10.4049/immunohorizons.2200062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
TCR diversity measures are often used to understand the immune response in cancer. Traditional measures of diversity rely on bulk RNA sequencing (RNAseq) of the β-chain variable regions. However, the full αβ TCR repertoire is a combination of both the α- and β-chains, which are encoded by separate genes. In contrast with bulk RNAseq, single-cell RNAseq (scRNAseq) allows paired chain analyses, yielding a more accurate measure of the repertoire. Interestingly, ∼30% of mature peripheral T cells express multiple TCR alleles (e.g., two α-chains) and may exhibit dual Ag specificity. scRNAseq has become increasingly common, and data from both human and animal studies are publicly available. However, routine workflows discard secondary TCR alleles and focus on a single TCR clone per cell. This perspectives piece emphasizes why this may not be good practice and highlights unanswered questions in the field of T cell dual specificity.
Collapse
|
9
|
van Amerongen RA, Morton LT, Chaudhari UG, Remst DF, Hagedoorn RS, van den Berg CW, Freund C, Falkenburg JF, Heemskerk MH. Human iPSC-derived preclinical models to identify toxicity of tumor-specific T cells with clinical potential. Mol Ther Methods Clin Dev 2023; 28:249-261. [PMID: 36816758 PMCID: PMC9931760 DOI: 10.1016/j.omtm.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The balance between safety and efficacy of T cell therapies remains challenging and T cell mediated toxicities have occurred. The stringent selection of tumor-specific targets and careful selection of tumor-specific T cells using T cell toxicity screenings are essential. In vitro screening options against vital organs or specialized cell subsets would be preferably included in preclinical pipelines, but options remain limited. Here, we set up preclinical models with human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes, epicardial cells, and kidney organoids to investigate toxicity risks of tumor-specific T cells more thoroughly. CD8+T cells reactive against PRAME, HA-1H, CD20, or WT1, currently used or planned to be used in phase I/II clinical studies, were included. Using these hiPSC-derived preclinical models, we demonstrated that WT1-specific T cells caused on-target toxicity that correlated with target gene expression. Multiple measures of T cell reactivity demonstrated this toxicity on the level of T cells and hiPSC-derived target cells. In addition, phenotypic analysis illustrated interaction and crosstalk between infiltrated T cells and kidney organoids. In summary, we demonstrated the benefit of hiPSC-derived models in determining toxicity risks of tumor-specific T cells. Furthermore, our data emphasizes the additional value of other measures of T cell reactivity on top of the commonly used cytokine levels.
Collapse
Affiliation(s)
- Rosa A. van Amerongen
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Laura T. Morton
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Umesh G. Chaudhari
- LUMC hiPSC Hotel, Department of Anatomy and Embryology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Dennis F.G. Remst
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Renate S. Hagedoorn
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Cathelijne W. van den Berg
- Department of Internal Medicine-Nephrology and Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | - Christian Freund
- LUMC hiPSC Hotel, Department of Anatomy and Embryology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands
| | | | - Mirjam H.M. Heemskerk
- Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands,Corresponding author: Mirjam H.M. Heemskerk, Department of Hematology, Leiden University Medical Center, 2333ZA Leiden, the Netherlands.
| |
Collapse
|
10
|
Wu B, Zhang Q, Hong P, Liu L, Peng H, Xia C, Wang T, Wang Y, Weng Q, Liu X, Geng Y, Wang J, Wu H. Antigen-specific TCR-T cells from Rag2 gene-deleted pluripotent stem cells impede solid tumour growth in a mouse model. Cell Prolif 2023; 56:e13389. [PMID: 36592612 PMCID: PMC10068938 DOI: 10.1111/cpr.13389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023] Open
Abstract
The technology of adoptive transfer of T-cell receptor (TCR) engineered T cells is wildly investigated as it has the potential to treat solid cancers. However, the therapeutic application of TCR-T cells is hampered by the poor quality derived mainly from patients' peripheral blood, as well as heterogeneous TCRs caused by the mismatch between transgenic and endogenous TCRs. To improve the homogeneity, antigen-specificity and reduce possible autoreactivity, here we developed a technique to generate antigen-specific T cells from Rag2 gene-deleted pluripotent stem cells (PSCs) and further measured their anti-tumour efficacy. PSCs were first targeted with OT1 TCR into the Rag2 locus to prevent TCR rearrangement during T-cell development. The engineered PSCs were then differentiated through a two-step strategy, in vitro generation of haematopoietic progenitor cells, and in vivo development and maturation of TCR-T cells. Finally, the response to tumour cells was assessed in vitro and in vivo. The regenerated OT1-iT displayed monoclonal antigen-specific TCR expression, and phonotypic normalities in the spleen and lymph node tissues. Importantly, the OT1-iT cells eliminated tumour cells while releasing specific cytokines in vitro. Furthermore, adoptive transfer of OT1-iT cells suppresses solid tumour growth in tumour-bearing animals. Our study presents a novel and straightforward strategy for producing antigen-specific TCR-T cells in vivo from PSCs, allowing for allogeneic transplantation and therapy of solid tumours.
Collapse
Affiliation(s)
- Bingyan Wu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qi Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pingshan Hong
- Liwan People's Hospital of Guangzhou, Guangzhou, China
| | - Lijuan Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Huan Peng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chengxiang Xia
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Tongjie Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yao Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qitong Weng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaofei Liu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yang Geng
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jinyong Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hongling Wu
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Degirmencay A, Thomas S, Mohammed F, Willcox BE, Stauss HJ. Modifications outside CDR1, 2 and 3 of the TCR variable β domain increase TCR expression and antigen-specific function. Front Immunol 2023; 14:1148890. [PMID: 37122739 PMCID: PMC10134071 DOI: 10.3389/fimmu.2023.1148890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
T cell receptor (TCR) gene modified T cells are a promising form of adoptive cellular therapy against human malignancies and viral infections. Since the first human clinical trial was carried out in 2006, several strategies have been developed to improve the efficacy and safety of TCR engineered T cells by enhancing the surface expression of the introduced therapeutic TCRs whilst reducing the mis-pairing with endogenous TCR chains. In this study, we explored how modifications of framework residues in the TCR variable domains affect TCR expression and function. We used bioinformatic and protein structural analyses to identify candidate amino acid residues in the framework of the variable β domain predicted to drive high TCR surface expression. Changes of these residues in poorly expressed TCRs resulted in improved surface expression and boosted target cell specific killing by engineered T cells expressing the modified TCRs. Overall, these results indicate that small changes in the framework of the TCR variable domains can result in improved expression and functionality, while at the same time reducing the risk of toxicity associated with TCR mis-pairing.
Collapse
Affiliation(s)
- Abdullah Degirmencay
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Sharyn Thomas
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Benjamin E. Willcox
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Hans J. Stauss
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
- *Correspondence: Hans J. Stauss,
| |
Collapse
|
12
|
Hiltensperger M, Krackhardt AM. Current and future concepts for the generation and application of genetically engineered CAR-T and TCR-T cells. Front Immunol 2023; 14:1121030. [PMID: 36949949 PMCID: PMC10025359 DOI: 10.3389/fimmu.2023.1121030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Adoptive cell therapy (ACT) has seen a steep rise of new therapeutic approaches in its immune-oncology pipeline over the last years. This is in great part due to the recent approvals of chimeric antigen receptor (CAR)-T cell therapies and their remarkable efficacy in certain soluble tumors. A big focus of ACT lies on T cells and how to genetically modify them to target and kill tumor cells. Genetically modified T cells that are currently utilized are either equipped with an engineered CAR or a T cell receptor (TCR) for this purpose. Both strategies have their advantages and limitations. While CAR-T cell therapies are already used in the clinic, these therapies face challenges when it comes to the treatment of solid tumors. New designs of next-generation CAR-T cells might be able to overcome these hurdles. Moreover, CARs are restricted to surface antigens. Genetically engineered TCR-T cells targeting intracellular antigens might provide necessary qualities for the treatment of solid tumors. In this review, we will summarize the major advancements of the CAR-T and TCR-T cell technology. Moreover, we will cover ongoing clinical trials, discuss current challenges, and provide an assessment of future directions within the field.
Collapse
Affiliation(s)
- Michael Hiltensperger
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- IIIrd Medical Department, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- *Correspondence: Michael Hiltensperger, ; Angela M. Krackhardt,
| | - Angela M. Krackhardt
- German Cancer Consortium (DKTK), partner site Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
- IIIrd Medical Department, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Bavarian Cancer Research Center (BZKF), Erlangen, Germany
- *Correspondence: Michael Hiltensperger, ; Angela M. Krackhardt,
| |
Collapse
|
13
|
Ishihara M, Kitano S, Kageyama S, Miyahara Y, Yamamoto N, Kato H, Mishima H, Hattori H, Funakoshi T, Kojima T, Sasada T, Sato E, Okamoto S, Tomura D, Nukaya I, Chono H, Mineno J, Kairi MF, Diem Hoang Nguyen P, Simoni Y, Nardin A, Newell E, Fehlings M, Ikeda H, Watanabe T, Shiku H. NY-ESO-1-specific redirected T cells with endogenous TCR knockdown mediate tumor response and cytokine release syndrome. J Immunother Cancer 2022; 10:e003811. [PMID: 35768164 PMCID: PMC9244667 DOI: 10.1136/jitc-2021-003811] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Because of the shortage of ideal cell surface antigens, the development of T-cell receptor (TCR)-engineered T cells (TCR-T) that target intracellular antigens such as NY-ESO-1 is a promising approach for treating patients with solid tumors. However, endogenous TCRs in vector-transduced T cells have been suggested to impair cell-surface expression of transduced TCR while generating mispaired TCRs that can become self-reactive. METHODS We conducted a first-in-human phase I clinical trial with the TCR-transduced T-cell product (TBI-1301) in patients with NY-ESO-1-expressing solid tumors. In manufacturing TCR-T cells, we used a novel affinity-enhanced NY-ESO-1-specific TCR that was transduced by a retroviral vector that enables siRNA (small interfering RNA)-mediated silencing of endogenous TCR. The patients were divided into two cohorts. Cohort 1 was given a dose of 5×108 cells (whole cells including TCR-T cells) preconditioned with 1500 mg/m2 cyclophosphamide. Cohort 2 was given 5× 109 cells preconditioned with 1500 mg/m2 cyclophosphamide. RESULTS In vitro study showed that both the CD8+ and CD4+ T fractions of TCR-T cells exhibited cytotoxic effects against NY-ESO-1-expressing tumor cells. Three patients and six patients were allocated to cohort 1 and cohort 2, respectively. Three of the six patients who received 5×109 cells showed tumor response, while three patients developed early-onset cytokine release syndrome (CRS). One of the patients developed a grade 3 lung injury associated with the infiltration of the TCR-T cells. No siRNA-related adverse events other than CRS were observed. Cytokines including interleukin 6 I and monocyte chemotactic protein-1/chemokine (C-C motif) ligand (CCL2)increased in the sera of patients with CRS. In vitro analysis showed these cytokines were not secreted from the T cells infused. A significant fraction of the manufactured T cells in patients with CRS was found to express either CD244, CD39, or both at high levels. CONCLUSIONS The trial showed that endogenous TCR-silenced and affinity-enhanced NY-ESO-1 TCR-T cells were safely administered except for grade 3 lung injury. The TCR-T cell infusion exhibited significant tumor response and early-onset CRS in patients with tumors that express NY-ESO-1 at high levels. The differentiation properties of the manufactured T cells may be prognostic for TCR-T-related CRS. TRIAL REGISTRATION NUMBER NCT02366546.
Collapse
Affiliation(s)
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Advanced Medical Development Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, Japan
- Department of Experimental Therapeutics, National Cancer Institue Hospital, Tokyo, Japan
| | - Shinichi Kageyama
- Departments of Immuno-Gene Therapy and Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshihiro Miyahara
- Departments of Immuno-Gene Therapy and Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Noboru Yamamoto
- Department of Experimental Therapeutics, National Cancer Institue Hospital, Tokyo, Japan
| | - Hidefumi Kato
- Department of Transfusion Medicine, Aichi Medical University, Nagakute, Japan
| | | | - Hiroyoshi Hattori
- Laboratory of Advanced Therapy, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Kojima
- Department of Gastroenterology and Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan
| | - Tetsuro Sasada
- Division of Cancer Immunotherapy, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Eiichi Sato
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | - Hiroaki Ikeda
- Department of Oncology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takashi Watanabe
- Departments of Immuno-Gene Therapy and Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hiroshi Shiku
- Departments of Immuno-Gene Therapy and Personalized Cancer Immunotherapy, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
14
|
Wei F, Cheng XX, Xue JZ, Xue SA. Emerging Strategies in TCR-Engineered T Cells. Front Immunol 2022; 13:850358. [PMID: 35432319 PMCID: PMC9006933 DOI: 10.3389/fimmu.2022.850358] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer has made tremendous progress in recent years, as demonstrated by the remarkable clinical responses obtained from adoptive cell transfer (ACT) of patient-derived tumor infiltrating lymphocytes, chimeric antigen receptor (CAR)-modified T cells (CAR-T) and T cell receptor (TCR)-engineered T cells (TCR-T). TCR-T uses specific TCRS optimized for tumor engagement and can recognize epitopes derived from both cell-surface and intracellular targets, including tumor-associated antigens, cancer germline antigens, viral oncoproteins, and tumor-specific neoantigens (neoAgs) that are largely sequestered in the cytoplasm and nucleus of tumor cells. Moreover, as TCRS are naturally developed for sensitive antigen detection, they are able to recognize epitopes at far lower concentrations than required for CAR-T activation. Therefore, TCR-T holds great promise for the treatment of human cancers. In this focused review, we summarize basic, translational, and clinical insights into the challenges and opportunities of TCR-T. We review emerging strategies used in current ACT, point out limitations, and propose possible solutions. We highlight the importance of targeting tumor-specific neoAgs and outline a strategy of combining neoAg vaccines, checkpoint blockade therapy, and adoptive transfer of neoAg-specific TCR-T to produce a truly tumor-specific therapy, which is able to penetrate into solid tumors and resist the immunosuppressive tumor microenvironment. We believe such a combination approach should lead to a significant improvement in cancer immunotherapies, especially for solid tumors, and may provide a general strategy for the eradication of multiple cancers.
Collapse
Affiliation(s)
- Fang Wei
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - Xiao-Xia Cheng
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - John Zhao Xue
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| | - Shao-An Xue
- Genetic Engineering Laboratory, School of Biological & Environmental Engineering, Xi'An University, Xi'An, China
| |
Collapse
|
15
|
Robinson RA, McMurran C, McCully ML, Cole DK. Engineering soluble T-cell receptors for therapy. FEBS J 2021; 288:6159-6173. [PMID: 33624424 PMCID: PMC8596704 DOI: 10.1111/febs.15780] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022]
Abstract
Immunotherapy approaches that target peptide-human leukocyte antigen (pHLA) complexes are becoming highly attractive because of their potential to access virtually all foreign and cellular proteins. For this reason, there has been considerable interest in the development of the natural ligand for pHLA, the T-cell receptor (TCR), as a soluble drug to target disease-associated pHLA presented at the cell surface. However, native TCR stability is suboptimal for soluble drug development, and natural TCRs generally have weak affinities for pHLAs, limiting their potential to reach efficacious receptor occupancy levels as soluble drugs. To overcome these limitations and make full use of the TCR as a soluble drug platform, several protein engineering solutions have been applied to TCRs to enhance both their stability and affinity, with a focus on retaining target specificity and selectivity. Here, we review these advances and look to the future for the next generation of soluble TCR-based therapies that can target monomorphic HLA-like proteins presenting both peptide and nonpeptide antigens.
Collapse
|
16
|
Ghaffari S, Khalili N, Rezaei N. CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:269. [PMID: 34446084 PMCID: PMC8390258 DOI: 10.1186/s13046-021-02076-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022]
Abstract
Cancer immunotherapy has gained attention as the supreme therapeutic modality for the treatment of various malignancies. Adoptive T-cell therapy (ACT) is one of the most distinctive modalities of this therapeutic approach, which seeks to harness the potential of combating cancer cells by using autologous or allogenic tumor-specific T-cells. However, a plethora of circumstances must be optimized to produce functional, durable, and efficient T-cells. Recently, the potential of ACT has been further realized by the introduction of novel gene-editing platforms such as the CRISPR/Cas9 system; this technique has been utilized to create T-cells furnished with recombinant T-cell receptor (TCR) or chimeric antigen receptor (CAR) that have precise tumor antigen recognition, minimal side effects and treatment-related toxicities, robust proliferation and cytotoxicity, and nominal exhaustion. Here, we aim to review and categorize the recent breakthroughs of genetically modified TCR/CAR T-cells through CRISPR/Cas9 technology and address the pearls and pitfalls of each method. In addition, we investigate the latest ongoing clinical trials that are applying CRISPR-associated TCR/CAR T-cells for the treatment of cancers.
Collapse
Affiliation(s)
- Sasan Ghaffari
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Khalili
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
17
|
Consonni M, Garavaglia C, Grilli A, de Lalla C, Mancino A, Mori L, De Libero G, Montagna D, Casucci M, Serafini M, Bonini C, Häussinger D, Ciceri F, Bernardi M, Mastaglio S, Bicciato S, Dellabona P, Casorati G. Human T cells engineered with a leukemia lipid-specific TCR enables donor-unrestricted recognition of CD1c-expressing leukemia. Nat Commun 2021; 12:4844. [PMID: 34381053 PMCID: PMC8358059 DOI: 10.1038/s41467-021-25223-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Acute leukemia relapsing after chemotherapy plus allogeneic hematopoietic stem cell transplantation can be treated with donor-derived T cells, but this is hampered by the need for donor/recipient MHC-matching and often results in graft-versus-host disease, prompting the search for new donor-unrestricted strategies targeting malignant cells. Leukemia blasts express CD1c antigen-presenting molecules, which are identical in all individuals and expressed only by mature leukocytes, and are recognized by T cell clones specific for the CD1c-restricted leukemia-associated methyl-lysophosphatidic acid (mLPA) lipid antigen. Here, we show that human T cells engineered to express an mLPA-specific TCR, target diverse CD1c-expressing leukemia blasts in vitro and significantly delay the progression of three models of leukemia xenograft in NSG mice, an effect that is boosted by mLPA-cellular immunization. These results highlight a strategy to redirect T cells against leukemia via transfer of a lipid-specific TCR that could be used across MHC barriers with reduced risk of graft-versus-host disease. Leukaemia therapy may benefit from the use of antigens that are less restricted to individual donors. Here the authors engineered T cells with a TCR specific for a CD1c restricted lipid leukaemia antigen and show that they can protect against disease progression in mouse leukaemia xenograft models.
Collapse
Affiliation(s)
- Michela Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Claudio Garavaglia
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Andrea Grilli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudia de Lalla
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Alessandra Mancino
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital, Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital, Basel, Switzerland
| | - Daniela Montagna
- Foundation IRCCS Policlinico San Matteo; Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, Pavia, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Serafini
- M. Tettamanti Research Center, University of Milano-Bicocca, Monza, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniel Häussinger
- NMR-Laboratory, Department of Chemistry, University of Basel, Basel, Switzerland
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Bernardi
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Mastaglio
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy.
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy.
| |
Collapse
|
18
|
Kedzierska K, Koutsakos M. The ABC of Major Histocompatibility Complexes and T Cell Receptors in Health and Disease. Viral Immunol 2021; 33:160-178. [PMID: 32286182 PMCID: PMC7185345 DOI: 10.1089/vim.2019.0184] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A seminal discovery of major histocompatibility complex (MHC) restriction in T cell recognition by Peter Doherty and Rolf Zinkernagel has led to 45 years of exciting research on the mechanisms governing peptide MHC (pMHC) recognition by T cell receptors (TCRs) and their importance in health and disease. T cells provide a significant level of protection against viral, bacterial, and parasitic infections, as well as tumors, hence, the generation of protective T cell responses is a primary goal for cell-mediated vaccines and immunotherapies. Understanding the mechanisms underlying generation of optimal high-avidity effector T cell responses, memory development, maintenance, and recall is of major importance for the rational design of preventative and therapeutic vaccines/immunotherapies. In this review, we summarize the lessons learned over the last four decades and outline our current understanding of the basis and consequences of pMHC/TCR interactions on T cell development and function, and TCR diversity and composition, driving better clinical outcomes and prevention of viral escape. We also discuss the current models of T cell memory formation and determinants of immunodominant T cell responses in animal models and humans. As TCR composition and diversity can affect both the protective capacity of T cells and protection against viral escape, defining the spectrum of TCR selection has implications for improving the functional efficacy of effector T cell responsiveness and memory formation.
Collapse
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Marios Koutsakos
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
19
|
Reithofer M, Rosskopf S, Leitner J, Battin C, Bohle B, Steinberger P, Jahn-Schmid B. 4-1BB costimulation promotes bystander activation of human CD8 T cells. Eur J Immunol 2020; 51:721-733. [PMID: 33180337 PMCID: PMC7986150 DOI: 10.1002/eji.202048762] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/18/2020] [Accepted: 11/11/2020] [Indexed: 01/06/2023]
Abstract
Costimulatory signals potently promote T‐cell proliferation and effector function. Agonistic antibodies targeting costimulatory receptors of the TNFR family, such as 4‐1BB and CD27, have entered clinical trials in cancer patients. Currently there is limited information how costimulatory signals regulate antigen‐specific but also bystander activation of human CD8 T cells. Engineered antigen presenting cells (eAPC) efficiently presenting several common viral epitopes on HLA‐A2 in combination with MHC class I tetramer staining were used to investigate the impact of costimulatory signals on human CD8 T‐cell responses. CD28 costimulation potently augmented the percentage and number of antigen‐reactive CD8 T cells, whereas eAPC expressing 4‐1BB‐ligand induced bystander proliferation of CD8 T cells and massive expansion of NK cells. Moreover, the 4‐1BB agonist urelumab similarly induced bystander proliferation of CD8 T cells and NK cells in a dose‐dependent manner. However, the promotion of bystander CD8 T‐cell responses is not a general attribute of costimulatory TNF receptor superfamily (TNFRSF) members, since CD27 signals enhanced antigen‐specific CD8 T cells responses without promoting significant bystander activation. Thus, the differential effects of costimulatory signals on the activation of human bystander CD8 T cells should be taken into account when costimulatory pathways are harnessed for cancer immunotherapy.
Collapse
Affiliation(s)
- Manuel Reithofer
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sandra Rosskopf
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Claire Battin
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Barbara Bohle
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Beatrice Jahn-Schmid
- Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Azangou-Khyavy M, Ghasemi M, Khanali J, Boroomand-Saboor M, Jamalkhah M, Soleimani M, Kiani J. CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer. Front Immunol 2020; 11:2062. [PMID: 33117331 PMCID: PMC7553049 DOI: 10.3389/fimmu.2020.02062] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/29/2020] [Indexed: 12/26/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats system has demonstrated considerable advantages over other nuclease-based genome editing tools due to its high accuracy, efficiency, and strong specificity. Given that cancer is caused by an excessive accumulation of mutations that lead to the activation of oncogenes and inactivation of tumor suppressor genes, the CRISPR/Cas9 system is a therapy of choice for tumor genome editing and treatment. In defining its superior use, we have reviewed the novel applications of the CRISPR genome editing tool in discovering, sorting, and prioritizing targets for subsequent interventions, and passing different hurdles of cancer treatment such as epigenetic alterations and drug resistance. Moreover, we have reviewed the breakthroughs precipitated by the CRISPR system in the field of cancer immunotherapy, such as identification of immune system-tumor interplay, production of universal Chimeric Antigen Receptor T cells, inhibition of immune checkpoint inhibitors, and Oncolytic Virotherapy. The existing challenges and limitations, as well as the prospects of CRISPR based systems, are also discussed.
Collapse
Affiliation(s)
| | - Mobina Ghasemi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Khanali
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Monire Jamalkhah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
van Balen P, Jedema I, van Loenen MM, de Boer R, van Egmond HM, Hagedoorn RS, Hoogstaten C, Veld SAJ, Hageman L, van Liempt PAG, Zwaginga JJ, Meij P, Veelken H, Falkenburg JHF, Heemskerk MHM. HA-1H T-Cell Receptor Gene Transfer to Redirect Virus-Specific T Cells for Treatment of Hematological Malignancies After Allogeneic Stem Cell Transplantation: A Phase 1 Clinical Study. Front Immunol 2020; 11:1804. [PMID: 32973756 PMCID: PMC7468382 DOI: 10.3389/fimmu.2020.01804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
Graft-vs.-leukemia (GVL) reactivity after HLA-matched allogeneic stem cell transplantation (alloSCT) is mainly mediated by donor T cells recognizing minor histocompatibility antigens (MiHA). If MiHA are targeted that are exclusively expressed on hematopoietic cells of recipient origin, selective GVL reactivity without severe graft-vs.-host-disease (GVHD) may occur. In this phase I study we explored HA-1H TCR gene transfer into T cells harvested from the HA-1H negative stem-cell donor to treat HA-1H positive HLA-A*02:01 positive patients with high-risk leukemia after alloSCT. HA-1H is a hematopoiesis-restricted MiHA presented in HLA-A*02:01. Since we previously demonstrated that donor-derived virus-specific T-cell infusions did not result in GVHD, we used donor-derived EBV and/or CMV-specific T-cells to be redirected by HA-1H TCR. EBV and/or CMV-specific T-cells were purified, retrovirally transduced with HA-1H TCR, and expanded. Validation experiments illustrated dual recognition of viral antigens and HA-1H by HA-1H TCR-engineered virus-specific T-cells. Release criteria included products containing more than 60% antigen-specific T-cells. Patients with high risk leukemia following T-cell depleted alloSCT in complete or partial remission were eligible. HA-1H TCR T-cells were infused 8 and 14 weeks after alloSCT without additional pre-conditioning chemotherapy. For 4/9 included patients no appropriate products could be made. Their donors were all CMV-negative, thereby restricting the production process to EBV-specific T-cells. For 5 patients a total of 10 products could be made meeting the release criteria containing 3–280 × 106 virus and/or HA-1H TCR T-cells. No infusion-related toxicity, delayed toxicity or GVHD occurred. One patient with relapsed AML at time of infusions died due to rapidly progressing disease. Four patients were in remission at time of infusion. Two patients died of infections during follow-up, not likely related to the infusion. Two patients are alive and well without GVHD. In 2 patients persistence of HA-1H TCR T-cells could be illustrated correlating with viral reactivation, but no overt in-vivo expansion of infused T-cells was observed. In conclusion, HA-1H TCR-redirected virus-specific T-cells could be made and safely infused in 5 patients with high-risk AML, but overall feasibility and efficacy was too low to warrant further clinical development using this strategy. New strategies will be explored using patient-derived donor T-cells isolated after transplantation transduced with HA-1H-specific TCR to be infused following immune conditioning.
Collapse
Affiliation(s)
- Peter van Balen
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Renate de Boer
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - H M van Egmond
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Conny Hoogstaten
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Sabrina A J Veld
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Lois Hageman
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - P A G van Liempt
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - Jaap-Jan Zwaginga
- Center for Clinical Transfusion Research, Sanquin Research, Leiden, Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Pauline Meij
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, Netherlands
| | - H Veelken
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | - J H F Falkenburg
- Department of Hematology, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
22
|
Manfredi F, Cianciotti BC, Potenza A, Tassi E, Noviello M, Biondi A, Ciceri F, Bonini C, Ruggiero E. TCR Redirected T Cells for Cancer Treatment: Achievements, Hurdles, and Goals. Front Immunol 2020; 11:1689. [PMID: 33013822 PMCID: PMC7494743 DOI: 10.3389/fimmu.2020.01689] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022] Open
Abstract
Adoptive T cell therapy (ACT) is a rapidly evolving therapeutic approach designed to harness T cell specificity and function to fight diseases. Based on the evidence that T lymphocytes can mediate a potent anti-tumor response, initially ACT solely relied on the isolation, in vitro expansion, and infusion of tumor-infiltrating or circulating tumor-specific T cells. Although effective in a subset of cases, in the first ACT clinical trials several patients experienced disease progression, in some cases after temporary disease control. This evidence prompted researchers to improve ACT products by taking advantage of the continuously evolving gene engineering field and by improving manufacturing protocols, to enable the generation of effective and long-term persisting tumor-specific T cell products. Despite recent advances, several challenges, including prioritization of antigen targets, identification, and optimization of tumor-specific T cell receptors, in the development of tools enabling T cells to counteract the immunosuppressive tumor microenvironment, still need to be faced. This review aims at summarizing the major achievements, hurdles and possible solutions designed to improve the ACT efficacy and safety profile in the context of liquid and solid tumors.
Collapse
Affiliation(s)
- Francesco Manfredi
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Beatrice Claudia Cianciotti
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Fondazione Centro San Raffaele, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
- School of Medicine and Surgery, University of Milano – Bicocca, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maddalena Noviello
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Biondi
- Clinica Pediatrica Università degli Studi di Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
23
|
Huisman W, Gille I, van der Maarel LE, Hageman L, Morton LT, de Jong RCM, Heemskerk MHM, Amsen D, Falkenburg JHF, Jedema I. Identification of Functional HLA-A*01 :01-Restricted EBV-LMP2-Specific T-cell Receptors. J Infect Dis 2020; 226:833-842. [PMID: 32808978 PMCID: PMC9470112 DOI: 10.1093/infdis/jiaa512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Adoptive transfer of genetically engineered T cells expressing antigen-specific T-cell receptors (TCRs), is an appealing therapeutic approach for Epstein-Barr virus (EBV)-associated malignancies of latency type II/III that express EBV-antigens (LMP1/2). Patients who are HLA-A*01:01pos could benefit from such products, since no T cells recognizing any EBV-derived peptide in this common HLA allele have been found thus far. METHODS HLA-A*01:01-restricted EBV-(LMP2)-specific T-cells were isolated using peptide-MHC-tetramers. Functionality was assessed by production of IFNγ and cytotoxicity when stimulated with EBV-LMP2-expressing cell-lines. Functionality of primary T cells transduced with HLA-A*01:01-restricted EBV-LMP2-specific TCRs was optimized by knocking out the endogenous TCR of primary T cells (ΔTCR) using CRISPR-Cas9 technology. RESULTS EBV-LMP2-specific T cells were successfully isolated and their TCRs were characterized. TCR gene-transfer in primary T cells resulted in specific peptide-MHC-tetramer binding and reactivity against EBV-LMP2-expressing cell-lines. The mean-fluorescence intensity of peptide-MHC-tetramer binding was increased 1.5-2 fold when the endogenous TCR of CD8pos T cells was knocked out. CD8pos/ΔTCR T cells modified to express EBV-LMP2-specific TCRs showed IFNγ secretion and cytotoxicity towards EBV-LMP2-expressing malignant cell-lines. DISCUSSION We isolated the first functional HLA-A*01:01-restricted EBV-LMP2-specific T-cell populations and TCRs, which can potentially be used in future TCR gene-therapy to treat EBV-associated latency type II/III malignancies.
Collapse
Affiliation(s)
- Wesley Huisman
- Department of Hematology, Leiden University Medical Center, The Netherlands.,Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory for Blood Cell Research, Amsterdam, the Netherlands
| | - Ilse Gille
- Department of Hematology, Leiden University Medical Center, The Netherlands
| | | | - Lois Hageman
- Department of Hematology, Leiden University Medical Center, The Netherlands
| | - Laura T Morton
- Department of Hematology, Leiden University Medical Center, The Netherlands
| | - Rob C M de Jong
- Department of Hematology, Leiden University Medical Center, The Netherlands
| | | | - Derk Amsen
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory for Blood Cell Research, Amsterdam, the Netherlands
| | | | - Inge Jedema
- Department of Hematology, Leiden University Medical Center, The Netherlands
| |
Collapse
|
24
|
Network Pharmacology Approach to Investigate the Preventive Mechanism of Hunan Expert Group Recommended Chinese Medicine Prevention No. 2 Prescription Against COVID-19. DIGITAL CHINESE MEDICINE 2020. [PMCID: PMC7366109 DOI: 10.1016/j.dcmed.2020.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Objective To explore the possible preventive mechanism of Hunan expert group recommended Chinese medicine prescription of No. 2 (Pre-No. 2) against coronavirus disease 2019 (COVID-19) by network pharmacology method. Methods The target proteins of effective components and active compounds in Pre-No. 2 were screened by searching the Tradi-tional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). A component-target-disease interac-tion network of Pre-No. 2 was constructed by Cytoscape 3.7.2, gene ontology (GO) analysis, and Kyoto encyclopedia of genes and genomes (KEGG) analysis of target protein pathway by DAVID. Results A total of 163 compounds and 278 target protein targets in Pre-No. 2 were collected from the TCMSP database. Kaempferol, wogonin, 7-methoxy-2-methyl isoflavone, formononetin, isorhamnetin, and licochalcone A were the most frequent targets in the regulatory network. GO enrichment analysis showed that Pre-No. 2 regulated response to virus, viral processes, humoral immune responses, defense responses to virus and viral entry into host cells. KEGG enrichment analysis showed that the formula regulated the NF-κB signaling pathway, B cell receptor signaling pathway, viral carcinogenesis, T cell signaling pathway and FcγR-mediated phagocytosis signaling pathway. Conclusions Pre-No. 2 may play a preventive role against COVID-19 through regulation of the Toll-like signaling, T cell signaling, B cell signaling and other signaling pathways. It may re-gulate the immune system to protect against anti-influenza virus.
Collapse
|
25
|
Schober K, Müller TR, Busch DH. Orthotopic T-Cell Receptor Replacement-An "Enabler" for TCR-Based Therapies. Cells 2020; 9:E1367. [PMID: 32492858 PMCID: PMC7348731 DOI: 10.3390/cells9061367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Natural adaptive immunity co-evolved with pathogens over millions of years, and adoptive transfer of non-engineered T cells to fight infections or cancer so far exhibits an exceptionally safe and functional therapeutic profile in clinical trials. However, the personalized nature of therapies using virus-specific T cells, donor lymphocyte infusion, or tumor-infiltrating lymphocytes makes implementation in routine clinical care difficult. In principle, genetic engineering can be used to make T-cell therapies more broadly applicable, but so far it significantly alters the physiology of cells. We recently demonstrated that orthotopic T-cell receptor (TCR) replacement (OTR) by clustered regularly interspaced short palindromic repeats (CRISPR)/ CRISPR-associated protein 9 (Cas9) can be used to generate engineered T cells with preservation of near-physiological function. In this review, we present the current status of OTR technology development and discuss its potential for TCR-based therapies. By providing the means to combine the therapeutic efficacy and safety profile of physiological T cells with the versatility of cell engineering, OTR can serve as an "enabler" for TCR-based therapies.
Collapse
Affiliation(s)
- Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany;
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Thomas R. Müller
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany;
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany;
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
| |
Collapse
|
26
|
Zong S, Mi T, Flores LG, Alpert A, Olivares S, Patel K, Maiti S, Mcnamara G, Cooper LJN, Torikai H. Very rapid cloning, expression and identifying specificity of T-cell receptors for T-cell engineering. PLoS One 2020; 15:e0228112. [PMID: 32040512 PMCID: PMC7010234 DOI: 10.1371/journal.pone.0228112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/07/2020] [Indexed: 11/29/2022] Open
Abstract
Neoantigens can be predicted and in some cases identified using the data obtained from the whole exome sequencing and transcriptome sequencing of tumor cells. These sequencing data can be coupled with single-cell RNA sequencing for the direct interrogation of the transcriptome, surfaceome, and pairing of αβ T-cell receptors (TCRαβ) from hundreds of single T cells. Using these 2 large datasets, we established a platform for identifying antigens recognized by TCRαβs obtained from single T cells. Our approach is based on the rapid expression of cloned TCRαβ genes as Sleeping Beauty transposons and the determination of the introduced TCRαβs’ antigen specificity and avidity using a reporter cell line. The platform enables the very rapid identification of tumor-reactive TCRs for the bioengineering of T cells with redirected specificity.
Collapse
Affiliation(s)
- Shan Zong
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Tiejuan Mi
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Leo G. Flores
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Amir Alpert
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Simon Olivares
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Krina Patel
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Sourindra Maiti
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - George Mcnamara
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Laurence J. N. Cooper
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Ziopharm Oncology, Inc., Boston, Massachusetts, United States of America
| | - Hiroki Torikai
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
27
|
Chandran SS, Klebanoff CA. T cell receptor-based cancer immunotherapy: Emerging efficacy and pathways of resistance. Immunol Rev 2020; 290:127-147. [PMID: 31355495 PMCID: PMC7027847 DOI: 10.1111/imr.12772] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Adoptive cell transfer (ACT) using chimeric antigen receptor (CAR)-modified T cells can induce durable remissions in patients with refractory B-lymphoid cancers. By contrast, results applying CAR-modified T cells to solid malignancies have been comparatively modest. Alternative strategies to redirect T cell specificity and cytolytic function are therefore necessary if ACT is to serve a greater role in human cancer treatments. T cell receptors (TCRs) are antigen recognition structures physiologically expressed by all T cells that have complementary, and in some cases superior, properties to CARs. Unlike CARs, TCRs confer recognition to epitopes derived from proteins residing within any subcellular compartment, including the membrane, cytoplasm and nucleus. This enables TCRs to detect a broad universe of targets, such as neoantigens, cancer germline antigens, and viral oncoproteins. Moreover, because TCRs have evolved to efficiently detect and amplify antigenic signals, these receptors respond to epitope densities many fold smaller than required for CAR-signaling. Herein, we summarize recent clinical data demonstrating that TCR-based immunotherapies can mediate regression of solid malignancies, including immune-checkpoint inhibitor refractory cancers. These trials simultaneously highlight emerging mechanisms of TCR resistance. We conclude by discussing how TCR-based immunotherapies can achieve broader dissemination through innovations in cell manufacturing and non-viral genome integration techniques.
Collapse
Affiliation(s)
- Smita S Chandran
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Parker Institute for Cancer Immunotherapy, New York, NY
| | - Christopher A Klebanoff
- Center for Cell Engineering and Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY.,Parker Institute for Cancer Immunotherapy, New York, NY.,Weill Cornell Medical College, New York, NY
| |
Collapse
|
28
|
Simultaneous Deletion of Endogenous TCRαβ for TCR Gene Therapy Creates an Improved and Safe Cellular Therapeutic. Mol Ther 2019; 28:64-74. [PMID: 31636040 DOI: 10.1016/j.ymthe.2019.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022] Open
Abstract
Generation of an optimal T cell therapeutic expressing high frequencies of transgenic T cell receptor (tgTCR) is essential for improving TCR gene therapy. Upon TCR gene transfer, presence of endogenous TCRαβ reduces expression of tgTCR due to TCR mixed-dimer formation and competition for binding CD3. Knockout (KO) of endogenous TCRαβ was recently achieved using CRISPR/Cas9 editing of the TRAC or TRBC loci, resulting in increased expression and function of tgTCR. Here, we adopt this approach into current protocols for generating T cell populations expressing tgTCR to validate this strategy in the context of four clinically relevant TCRs. First, simultaneous editing of TRAC and TRBC loci was reproducible and resulted in high double KO efficiencies in bulk CD8 T cells. Next, tgTCR expression was significantly higher in double TRAC/BC KO conditions for all TCRs tested, including those that contained structural modifications to encourage preferential pairing. Finally, increased expression of tgTCR in edited T cell populations allowed for increased recognition of antigen expressing tumor targets and prolonged control of tumor outgrowth in a preclinical model of multiple myeloma. In conclusion, CRISPR/Cas9-mediated KO of both endogenous TCRαβ chains can be incorporated in current T cell production protocols and is preferential to ensure an improved and safe clinical therapeutic.
Collapse
|
29
|
Thomas S, Mohammed F, Reijmers RM, Woolston A, Stauss T, Kennedy A, Stirling D, Holler A, Green L, Jones D, Matthews KK, Price DA, Chain BM, Heemskerk MHM, Morris EC, Willcox BE, Stauss HJ. Framework engineering to produce dominant T cell receptors with enhanced antigen-specific function. Nat Commun 2019; 10:4451. [PMID: 31575864 PMCID: PMC6773850 DOI: 10.1038/s41467-019-12441-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 08/26/2019] [Indexed: 12/28/2022] Open
Abstract
TCR-gene-transfer is an efficient strategy to produce therapeutic T cells of defined antigen specificity. However, there are substantial variations in the cell surface expression levels of human TCRs, which can impair the function of engineered T cells. Here we demonstrate that substitutions of 3 amino acid residues in the framework of the TCR variable domains consistently increase the expression of human TCRs on the surface of engineered T cells.The modified TCRs mediate enhanced T cell proliferation, cytokine production and cytotoxicity, while reducing the peptide concentration required for triggering effector function up to 3000-fold. Adoptive transfer experiments in mice show that modified TCRs control tumor growth more efficiently than wild-type TCRs. Our data indicate that simple variable domain modifications at a distance from the antigen-binding loops lead to increased TCR expression and improved effector function. This finding provides a generic platform to optimize the efficacy of TCR gene therapy in humans.
Collapse
MESH Headings
- Animals
- Antigens/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cell Engineering
- Cell Line, Tumor
- Cell Proliferation
- Cytokines/metabolism
- Gene Expression
- Genes, T-Cell Receptor/genetics
- Genes, T-Cell Receptor/immunology
- Genetic Therapy
- Humans
- Lectins, C-Type/metabolism
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Models, Molecular
- Protein Domains
- Protein Engineering
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Sharyn Thomas
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Rogier M Reijmers
- Department of Hematology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Annemarie Woolston
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - Theresa Stauss
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - Alan Kennedy
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - David Stirling
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - Angelika Holler
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - Louisa Green
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - David Jones
- Department of Computer Science, University College London, London, WC1E 6BT, UK
| | - Katherine K Matthews
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF10 3AT, UK
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF10 3AT, UK
| | - Benjamin M Chain
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - Emma C Morris
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK
| | - Benjamin E Willcox
- Cancer Immunology and Immunotherapy Centre, Institute for Immunology and Immunotherapy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Hans J Stauss
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, Royal Free Hospital, London, NW3 2PF, UK.
| |
Collapse
|
30
|
Depreter B, Weening KE, Vandepoele K, Essand M, De Moerloose B, Themeli M, Cloos J, Hanekamp D, Moors I, D'hont I, Denys B, Uyttebroeck A, Van Damme A, Dedeken L, Snauwaert S, Goetgeluk G, De Munter S, Kerre T, Vandekerckhove B, Lammens T, Philippé J. TARP is an immunotherapeutic target in acute myeloid leukemia expressed in the leukemic stem cell compartment. Haematologica 2019; 105:1306-1316. [PMID: 31371409 PMCID: PMC7193481 DOI: 10.3324/haematol.2019.222612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022] Open
Abstract
Immunotherapeutic strategies targeting the rare leukemic stem cell compartment might provide salvage to the high relapse rates currently observed in acute myeloid leukemia (AML). We applied gene expression profiling for comparison of leukemic blasts and leukemic stem cells with their normal counterparts. Here, we show that the T-cell receptor γ chain alternate reading frame protein (TARP) is over-expressed in de novo pediatric (n=13) and adult (n=17) AML sorted leukemic stem cells and blasts compared to hematopoietic stem cells and normal myeloblasts (15 healthy controls). Moreover, TARP expression was significantly associated with a fms-like tyrosine kinase receptor-3 internal tandem duplication in pediatric AML. TARP overexpression was confirmed in AML cell lines (n=9), and was found to be absent in B-cell acute lymphocytic leukemia (n=5) and chronic myeloid leukemia (n=1). Sequencing revealed that both a classical TARP transcript, as described in breast and prostate adenocarcinoma, and an AML-specific alternative TARP transcript, were present. Protein expression levels mostly matched transcript levels. TARP was shown to reside in the cytoplasmic compartment and showed sporadic endoplasmic reticulum co-localization. TARP-T-cell receptor engineered cytotoxic T-cells in vitro killed AML cell lines and patient leukemic cells co-expressing TARP and HLA-A*0201. In conclusion, TARP qualifies as a relevant target for immunotherapeutic T-cell therapy in AML.
Collapse
Affiliation(s)
- Barbara Depreter
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Karin E Weening
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Karl Vandepoele
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Magnus Essand
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Barbara De Moerloose
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.,Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Maria Themeli
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Jacqueline Cloos
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Diana Hanekamp
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Ine Moors
- Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Inge D'hont
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Barbara Denys
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Anne Uyttebroeck
- Department of Pediatrics, University Hospital Gasthuisberg, Louvain, Belgium
| | - An Van Damme
- Department of Pediatric Hematology Oncology, University Hospital Saint-Luc, Brussels, Belgium
| | - Laurence Dedeken
- Department of Pediatric Hematology Oncology, Queen Fabiola Children's University Hospital, Brussels, Belgium
| | - Sylvia Snauwaert
- Department of Hematology, AZ Sint-Jan Hospital Bruges, Bruges, Belgium
| | - Glenn Goetgeluk
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Stijn De Munter
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tessa Kerre
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.,Department of Hematology, Ghent University Hospital, Ghent, Belgium
| | - Bart Vandekerckhove
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Tim Lammens
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium .,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Jan Philippé
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.,Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.,Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
31
|
Audehm S, Glaser M, Pecoraro M, Bräunlein E, Mall S, Klar R, Effenberger M, Albers J, Bianchi HDO, Peper J, Yusufi N, Busch DH, Stevanović S, Mann M, Antes I, Krackhardt AM. Key Features Relevant to Select Antigens and TCR From the MHC-Mismatched Repertoire to Treat Cancer. Front Immunol 2019; 10:1485. [PMID: 31316521 PMCID: PMC6611213 DOI: 10.3389/fimmu.2019.01485] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/13/2019] [Indexed: 11/13/2022] Open
Abstract
Adoptive transfer of T cells transgenic for tumor-reactive T-cell receptors (TCR) is an attractive immunotherapeutic approach. However, clinical translation is so far limited due to challenges in the identification of suitable target antigens as well as TCRs that are concurrent safe and efficient. Definition of key characteristics relevant for effective and specific tumor rejection is essential to improve current TCR-based adoptive T-cell immunotherapies. We here characterized in-depth two TCRs derived from the human leukocyte antigen (HLA)-mismatched allogeneic repertoire targeting two different myeloperoxidase (MPO)-derived peptides presented by the same HLA-restriction element side by side comprising state of the art biochemical and cellular in vitro, in vivo, and in silico experiments. In vitro experiments reveal comparable functional avidities, off-rates, and cytotoxic activities for both TCRs. However, we observed differences especially with respect to cytokine secretion and cross-reactivity as well as in vivo activity. Biochemical and in silico analyses demonstrate different binding qualities of MPO-peptides to the HLA-complex determining TCR qualities. We conclude from our biochemical and in silico analyses of peptide-HLA-binding that rigid and high-affinity binding of peptides is one of the most important factors for isolation of TCRs with high specificity and tumor rejection capacity from the MHC-mismatched repertoire. Based on our results, we developed a workflow for selection of such TCRs with high potency and safety profile suitable for clinical translation.
Collapse
Affiliation(s)
- Stefan Audehm
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Manuel Glaser
- Center for Integrated Protein Science at the Department for Biosciences, Technische Universität München, Freising, Germany
| | - Matteo Pecoraro
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Eva Bräunlein
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Sabine Mall
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Richard Klar
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Manuel Effenberger
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Julian Albers
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Henrique de Oliveira Bianchi
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Janet Peper
- Eberhard Karls University Tübingen, Interfaculty Institute for Cell Biology, Tübingen, Germany
| | - Nahid Yusufi
- Nuklearmedizin, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Dirk H Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Stefan Stevanović
- Eberhard Karls University Tübingen, Interfaculty Institute for Cell Biology, Tübingen, Germany.,Partner Site Tübingen, German Cancer Consortium (DKTK), Tübingen, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Iris Antes
- Center for Integrated Protein Science at the Department for Biosciences, Technische Universität München, Freising, Germany
| | - Angela M Krackhardt
- Klinik und Poliklinik für Innere Medizin III, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Partner Site Munich, German Cancer Consortium (DKTK), Munich, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
32
|
Uddin I, Woolston A, Peacock T, Joshi K, Ismail M, Ronel T, Husovsky C, Chain B. Quantitative analysis of the T cell receptor repertoire. Methods Enzymol 2019; 629:465-492. [PMID: 31727254 DOI: 10.1016/bs.mie.2019.05.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The T cell receptor repertoire provides a window into the cellular adaptive immune response. In the context of cancer, determining the repertoire within a tumor can give important insights into the evolution of the T cell anti-cancer response, and has the potential to identify specific personalized biomarkers for tracking host responses during cancer therapy, including immunotherapy. We describe a protocol for amplifying, sequencing and analyzing T cell receptors which is economical, robust, sensitive and versatile. The key experimental step is the ligation of a single stranded oligonucleotide to the 3' end of the T cell receptor cDNA, which allows easy amplification of all possible rearrangements using only a single set of primers per locus, while simultaneously introducing a unique molecular identifier to label each starting cDNA molecule. After sequencing, this molecular identifier can be used to correct both sequence errors and the effects of differential PCR amplification efficiency, thus producing a more accurate measure of the true T cell receptor frequency within the sample. We describe a detailed protocol describing this method to create libraries of T cell receptors from in vitro T cell cultures, blood or tissue samples. We combine this with a computational pipeline, which incorporates sample multiplexing, T cell receptor annotation and error correction to provide accurate counts of individual T cell receptor sequences within samples. The integrated experimental and computational pipeline should be of value to researchers interested in documenting and understanding the T cell immune response to cancer, and in manipulating it for therapeutic purposes.
Collapse
Affiliation(s)
- Imran Uddin
- Division of Infection and Immunity, UCL, London, United Kingdom; Cancer Research UK Lung Cancer Centre of Excellence, UCL Cancer Institute, UCL, London, United Kingdom
| | | | - Thomas Peacock
- Division of Infection and Immunity, UCL, London, United Kingdom; CoMPLEX, Department of Computer Science, University College London, London, United Kingdom
| | - Kroopa Joshi
- Cancer Immunology Unit, University College London (UCL) Cancer Institute, London, United Kingdom
| | - Mazlina Ismail
- Division of Infection and Immunity, UCL, London, United Kingdom
| | - Tahel Ronel
- Division of Infection and Immunity, UCL, London, United Kingdom
| | - Connor Husovsky
- Division of Infection and Immunity, UCL, London, United Kingdom
| | - Benny Chain
- Division of Infection and Immunity, UCL, London, United Kingdom; Department of Computer Science, UCL, London, United Kingdom.
| |
Collapse
|
33
|
Schober K, Müller TR, Gökmen F, Grassmann S, Effenberger M, Poltorak M, Stemberger C, Schumann K, Roth TL, Marson A, Busch DH. Orthotopic replacement of T-cell receptor α- and β-chains with preservation of near-physiological T-cell function. Nat Biomed Eng 2019; 3:974-984. [DOI: 10.1038/s41551-019-0409-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
|
34
|
Parlar A, Sayitoglu EC, Ozkazanc D, Georgoudaki AM, Pamukcu C, Aras M, Josey BJ, Chrobok M, Branecki S, Zahedimaram P, Ikromzoda L, Alici E, Erman B, Duru AD, Sutlu T. Engineering antigen-specific NK cell lines against the melanoma-associated antigen tyrosinase via TCR gene transfer. Eur J Immunol 2019; 49:1278-1290. [PMID: 31054264 DOI: 10.1002/eji.201948140] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/26/2019] [Accepted: 05/02/2019] [Indexed: 11/11/2022]
Abstract
Introduction of Chimeric Antigen Receptors to NK cells has so far been the main practical method for targeting NK cells to specific surface antigens. In contrast, T cell receptor (TCR) gene delivery can supply large populations of cytotoxic T-lymphocytes (CTL) targeted against intracellular antigens. However, a major barrier in the development of safe CTL-TCR therapies exists, wherein the mispairing of endogenous and genetically transferred TCR subunits leads to formation of TCRs with off-target specificity. To overcome this and enable specific intracellular antigen targeting, we have tested the use of NK cells for TCR gene transfer to human cells. Our results show that ectopic expression of TCR α/β chains, along with CD3 subunits, enables the functional expression of an antigen-specific TCR complex on NK cell lines NK-92 and YTS, demonstrated by using a TCR against the HLA-A2-restricted tyrosinase-derived melanoma epitope, Tyr368-377 . Most importantly, the introduction of a TCR complex to NK cell lines enables MHC-restricted, antigen-specific killing of tumor cells both in vitro and in vivo. Targeting of NK cells via TCR gene delivery stands out as a novel tool in the field of adoptive immunotherapy which can also overcome the major hurdle of "mispairing" in TCR gene therapy.
Collapse
Affiliation(s)
- Ayhan Parlar
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Ece Canan Sayitoglu
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, USA.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Didem Ozkazanc
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Anna-Maria Georgoudaki
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, USA.,Center for Hematology and Regenerative Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Cevriye Pamukcu
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Mertkaya Aras
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Benjamin J Josey
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, USA.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Michael Chrobok
- Center for Hematology and Regenerative Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Suzanne Branecki
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, USA.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Pegah Zahedimaram
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Lolai Ikromzoda
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey.,Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Evren Alici
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, USA.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Center for Hematology and Regenerative Medicine, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Batu Erman
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Adil D Duru
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, FL, USA.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA.,Science for Life Laboratory, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Tolga Sutlu
- Nanotechnology Research and Application Center, Sabanci University, Istanbul, Turkey
| |
Collapse
|
35
|
Clauss J, Obenaus M, Miskey C, Ivics Z, Izsvák Z, Uckert W, Bunse M. Efficient Non-Viral T-Cell Engineering by Sleeping Beauty Minicircles Diminishing DNA Toxicity and miRNAs Silencing the Endogenous T-Cell Receptors. Hum Gene Ther 2019; 29:569-584. [PMID: 29562762 DOI: 10.1089/hum.2017.136] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Transposon-based vectors have entered clinical trials as an alternative to viral vectors for genetic engineering of T cells. However, transposon vectors require DNA transfection into T cells, which were found to cause adverse effects. T-cell viability was decreased in a dose-dependent manner, and DNA-transfected T cells showed a delayed response upon T-cell receptor (TCR) stimulation with regard to blast formation, proliferation, and surface expression of CD25 and CD28. Gene expression analysis demonstrated a DNA-dependent induction of a type I interferon response and interferon-β upregulation. By combining Sleeping Beauty transposon minicircle vectors with SB100X transposase-encoding RNA, it was possible to reduce the amount of total DNA required, and stable expression of therapeutic TCRs was achieved in >50% of human T cells without enrichment. The TCR-engineered T cells mediated effective tumor cell killing and cytokine secretion upon antigen-specific stimulation. Additionally, the Sleeping Beauty transposon system was further improved by miRNAs silencing the endogenous TCR chains. These miRNAs increased the surface expression of the transgenic TCR, diminished mispairing with endogenous TCR chains, and enhanced antigen-specific T-cell functionality. This approach facilitates the rapid non-viral generation of highly functional, engineered T cells for immunotherapy.
Collapse
Affiliation(s)
- Julian Clauss
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany
| | - Matthias Obenaus
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany .,2 Charité Universitätsmedizin Berlin , Campus Virchow-Klinikum, Berlin, Germany
| | - Csaba Miskey
- 3 Division of Medical Biotechnology, Paul Ehrlich-Institut , Langen, Germany
| | - Zoltán Ivics
- 3 Division of Medical Biotechnology, Paul Ehrlich-Institut , Langen, Germany
| | - Zsuzsanna Izsvák
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany .,4 Berlin Institute of Health , Berlin, Germany
| | - Wolfgang Uckert
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany .,4 Berlin Institute of Health , Berlin, Germany .,5 Institute of Biology, Humboldt-Universität zu Berlin , Berlin, Germany
| | - Mario Bunse
- 1 Max Delbrück Center for Molecular Medicine in the Helmholtz Association , Berlin, Germany
| |
Collapse
|
36
|
Wang RN, Wen Q, He WT, Yang JH, Zhou CY, Xiong WJ, Ma L. Optimized protocols for γδ T cell expansion and lentiviral transduction. Mol Med Rep 2019; 19:1471-1480. [PMID: 30628681 PMCID: PMC6390064 DOI: 10.3892/mmr.2019.9831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 10/04/2018] [Indexed: 01/23/2023] Open
Abstract
γδ T cells are a subset of unconventional T cells that serve a critical role in infectious diseases and various types of cancer. Cell therapy with genetically‑modified γδ T cells is regarded as a promising tool for tumor treatment. However, since γδ T cells constitute a minority of T cells, their large‑scale expansion is difficult to realize in an efficient and cost‑effective manner. In the present study, based on previous studies, culture protocols for γδ T cells were tested using different combinations of isopentenyl pyrophosphate and interleukin 2 in order to satisfy different experimental purposes. One protocol was demonstrated to be the most suitable for lentiviral transduction. These results greatly reinforce the promising prospects of using γδ T cells in basic research and for clinical applications.
Collapse
Affiliation(s)
- Rui-Ning Wang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Qian Wen
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wen-Ting He
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Jia-Hui Yang
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chao-Ying Zhou
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Wen-Jing Xiong
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
37
|
Eisenberg V, Hoogi S, Shamul A, Barliya T, Cohen CJ. T-cells "à la CAR-T(e)" - Genetically engineering T-cell response against cancer. Adv Drug Deliv Rev 2019; 141:23-40. [PMID: 30653988 DOI: 10.1016/j.addr.2019.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 02/06/2023]
Abstract
The last decade will be remembered as the dawn of the immunotherapy era during which we have witnessed the approval by regulatory agencies of genetically engineered CAR T-cells and of checkpoint inhibitors for cancer treatment. Understandably, T-lymphocytes represent the essential player in these approaches. These cells can mediate impressive tumor regression in terminally-ill cancer patients. Moreover, they are amenable to genetic engineering to improve their function and specificity. In the present review, we will give an overview of the most recent developments in the field of T-cell genetic engineering including TCR-gene transfer and CAR T-cells strategies. We will also elaborate on the development of other types of genetic modifications to enhance their anti-tumor immune response such as the use of co-stimulatory chimeric receptors (CCRs) and unconventional CARs built on non-antibody molecules. Finally, we will discuss recent advances in genome editing and synthetic biology applied to T-cell engineering and comment on the next challenges ahead.
Collapse
|
38
|
Schuldt NJ, Binstadt BA. Dual TCR T Cells: Identity Crisis or Multitaskers? JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:637-644. [PMID: 30670579 PMCID: PMC11112972 DOI: 10.4049/jimmunol.1800904] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/21/2018] [Indexed: 05/25/2024]
Abstract
Dual TCR T cells are a common and natural product of TCR gene rearrangement and thymocyte development. As much as one third of the T cell population may have the capability to express two different TCR specificities on the cell surface. This discovery provoked a reconsideration of the classic model of thymic selection. Many potential roles for dual TCR T cells have since been hypothesized, including posing an autoimmune hazard, dominating alloreactive T cell responses, inducing allergy, and expanding the TCR repertoire to improve protective immunity. Yet, since the initial wave of publications following the discovery of dual TCR T cells, research in the area has slowed. In this study, we aim to provide a brief but comprehensive history of dual TCR T cell research, re-evaluate past observations in the context of current knowledge of the immune system, and identify key issues for future study.
Collapse
Affiliation(s)
- Nathaniel J Schuldt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454; and Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| | - Bryce A Binstadt
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454; and Center for Immunology, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
39
|
Luk SJ, van der Steen DM, Hagedoorn RS, Jordanova ES, Schilham MW, Bovée JV, Cleven AH, Falkenburg JF, Szuhai K, Heemskerk MH. PRAME and HLA Class I expression patterns make synovial sarcoma a suitable target for PRAME specific T-cell receptor gene therapy. Oncoimmunology 2018; 7:e1507600. [PMID: 30524904 PMCID: PMC6279314 DOI: 10.1080/2162402x.2018.1507600] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 01/14/2023] Open
Abstract
Synovial sarcoma expresses multiple cancer testis antigens that could potentially be targeted by T-cell receptor (TCR) gene therapy. In this study we investigated whether PRAME-TCR-gene therapy could be an effective treatment for synovial sarcoma by investigating the potential of PRAME-specific T-cells to recognize sarcoma cells and by evaluating the expression patterns of PRAME and HLA class I (HLA-I) in synovial sarcoma tumor samples. All PRAME expressing sarcoma cell lines, including 2 primary synovial sarcoma cell cultures (passage < 3), were efficiently recognized by PRAME-specific T-cells. mRNA FISH demonstrated that PRAME was expressed in all synovial sarcoma samples, mostly in an homogeneous pattern. Immunohistochemistry demonstrated low HLA-I baseline expression in synovial sarcoma, but its expression was elevated in specific areas of the tumors, especially in biphasic components of biphasic synovial sarcoma. In 5/11 biphasic synovial sarcoma patients and in 1/17 monophasic synovial sarcoma patients, elevated HLA-I on tumor cells was correlated with infiltration of T-cells in these specific areas. In conclusion, low-baseline expression of HLA-I in synovial sarcoma is elevated in biphasic areas and in areas with densely infiltrating T-cells, which, in combination with homogeneous and high PRAME expression, makes synovial sarcoma potentially a suitable candidate for PRAME-specific TCR-gene therapy.
Collapse
Affiliation(s)
- Sietse J Luk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Dirk M van der Steen
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ekaterina S Jordanova
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.,Center for Gynecological Oncology Amsterdam, Department of Obstetrics and Gynecology, VU University Medical Center, Amsterdam, The Netherlands
| | - Marco W Schilham
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Judith Vmg Bovée
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjen Hg Cleven
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mirjam Hm Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
40
|
Luke GA, Ryan MD. "Therapeutic applications of the 'NPGP' family of viral 2As". Rev Med Virol 2018; 28:e2001. [PMID: 30094875 DOI: 10.1002/rmv.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
Oligopeptide "2A" and "2A-like" sequences ("2As"; 18-25aa) are found in a range of RNA virus genomes controlling protein biogenesis through "recoding" of the host-cell translational apparatus. Insertion of multiple 2As within a single open reading frame (ORF) produces multiple proteins; hence, 2As have been used in a very wide range of biotechnological and biomedical applications. During translation, these 2A peptide sequences mediate a eukaryote-specific, self-"cleaving" event, termed "ribosome skipping" with very high efficiency. A particular advantage of using 2As is the ability to simultaneously translate a number of proteins at an equal level in all eukaryotic systems although, naturally, final steady-state levels depend upon other factors-notably protein stability. By contrast, the use of internal ribosome entry site elements for co-expression results in an unbalanced expression due to the relative inefficiency of internal initiation. For example, a 1:1 ratio is of particular importance for the biosynthesis of the heavy-chain and light-chain components of antibodies: highly valuable as therapeutic proteins. Furthermore, each component of these "artificial polyprotein" systems can be independently targeted to different sub-cellular sites. The potential of this system was vividly demonstrated by concatenating multiple gene sequences, linked via 2A sequences, into a single, long, ORF-a polycistronic construct. Here, ORFs comprising the biosynthetic pathways for violacein (five gene sequences) and β-carotene (four gene sequences) were concatenated into a single cistron such that all components were co-expressed in the yeast Pichia pastoris. In this review, we provide useful information on 2As to serve as a guide for future utilities of this co-expression technology in basic research, biotechnology, and clinical applications.
Collapse
Affiliation(s)
- Garry A Luke
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews, UK
| | - Martin D Ryan
- Centre for Biomolecular Sciences, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
41
|
Rosskopf S, Leitner J, Paster W, Morton LT, Hagedoorn RS, Steinberger P, Heemskerk MHM. A Jurkat 76 based triple parameter reporter system to evaluate TCR functions and adoptive T cell strategies. Oncotarget 2018; 9:17608-17619. [PMID: 29707134 PMCID: PMC5915142 DOI: 10.18632/oncotarget.24807] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/26/2018] [Indexed: 12/12/2022] Open
Abstract
Adoptive T cell therapy using TCR transgenic autologous T cells has shown great potential for the treatment of tumor patients. Thorough characterization of genetically reprogrammed T cells is necessary to optimize treatment success. Here, we describe the generation of triple parameter reporter T cells based on the Jurkat 76 T cell line for the evaluation of TCR and chimeric antigen receptor functions as well as adoptive T cell strategies. This Jurkat subline is devoid of endogenous TCR alpha and TCR beta chains, thereby circumventing the problem of TCR miss-pairing and unexpected specificities. The resultant reporter cells allow simultaneous determination of the activity of the transcription factors NF-κB, NFAT and AP-1 that play key roles in T cell activation. Human TCRs directed against tumor and virus antigens were introduced and reporter responses were determined using tumor cell lines endogenously expressing the antigens of interest or via addition of antigenic peptides. Finally, we demonstrate that coexpression of adhesion molecules like CD2 and CD226 as well as CD28 chimeric receptors represents an effective strategy to augment the response of TCR-transgenic reporters to cells presenting cognate antigens.
Collapse
Affiliation(s)
- Sandra Rosskopf
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Judith Leitner
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Paster
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Laura T Morton
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Renate S Hagedoorn
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Mirjam H M Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
42
|
An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells. Oncotarget 2018; 7:21199-221. [PMID: 27028870 PMCID: PMC5008279 DOI: 10.18632/oncotarget.8385] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 03/10/2016] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy of cancer envisions the adoptive transfer of T-cells genetically engineered with tumor-specific heterodimeric α/β T-cell receptors (TCRα/β). However, potential mispairing of introduced TCRα/β-chains with endogenous β/α-ones may evoke unpredictable autoimmune reactivities. A novel single chain (sc)TCR format relies on the fusion of the Vα-Linker-Vβ-fragment to the TCR Cβ-domain and coexpression of the TCR Cα-domain capable of recruiting the natural CD3-complex for full and hence, native T-cell signaling. Here, we tested whether such a gp100(280-288)- or p53(264-272) tumor antigen-specific scTCR is still prone to mispairing with TCRα. In a human Jurkat-76 T-cell line lacking endogenous TCRs, surface expression and function of a scTCR could be reconstituted by any cointroduced TCRα-chain indicating mispairing to take place on a molecular basis. In contrast, transduction into human TCRα/β-positive T-cells revealed that mispairing is largely reduced. Competition experiments in Jurkat-76 confirmed the preference of dcTCR to selfpair and to spare scTCR. This also allowed for the generation of dc/scTCR-modified cytomegalovirus/tumor antigen-bispecific T-cells to augment T-cell activation in CMV-infected tumor patients. Residual mispairing was prevented by strenghtening the Vα-Li-Vβ-fragment through the design of a novel disulfide bond between a Vα- and a linker-resident residue close to Vβ. Multimer-stainings, and cytotoxicity-, IFNγ-secretion-, and CFSE-proliferation-assays, the latter towards dendritic cells endogenously processing RNA-electroporated gp100 antigen proved the absence of hybrid scTCR/TCRα-formation without impairing avidity of scTCR/Cα in T-cells. Moreover, a fragile cytomegalovirus pp65(495-503)-specific scTCR modified this way acquired enhanced cytotoxicity. Thus, optimized scTCR/Cα inhibits residual TCR mispairing to accomplish safe adoptive immunotherapy for bulk endogenous TCRα/β-positive T-cells.
Collapse
|
43
|
Zych AO, Bajor M, Zagozdzon R. Application of Genome Editing Techniques in Immunology. Arch Immunol Ther Exp (Warsz) 2018; 66:289-298. [PMID: 29344676 PMCID: PMC6061149 DOI: 10.1007/s00005-018-0504-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/06/2018] [Indexed: 12/23/2022]
Abstract
The idea of using the effector immune cells to specifically fight cancer has recently evolved into an exciting concept of adoptive cell therapies. Indeed, genetically engineered T cells expressing on their surface recombinant, cancer-targeted receptors have been shown to induce promising response in oncological patients. However, in addition to exogenous expression of such receptors, there is also a need for disruption of certain genes in the immune cells to achieve more potent disease-targeted actions, to produce universal chimeric antigen receptor-based therapies or to study the signaling pathways in detail. In this review, we present novel genetic engineering methods, mainly TALEN and CRISPR/Cas9 systems, that can be used for such purposes. These unique techniques may contribute to creating more successful immune therapies against cancer or prospectively other diseases as well.
Collapse
Affiliation(s)
- Agata O Zych
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Malgorzata Bajor
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Radoslaw Zagozdzon
- Department of Immunology, Transplantology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland. .,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland. .,Department of Clinical Immunology, Medical University of Warsaw, Nowogrodzka 59, 02-006, Warsaw, Poland.
| |
Collapse
|
44
|
Oakes T, Heather JM, Best K, Byng-Maddick R, Husovsky C, Ismail M, Joshi K, Maxwell G, Noursadeghi M, Riddell N, Ruehl T, Turner CT, Uddin I, Chain B. Quantitative Characterization of the T Cell Receptor Repertoire of Naïve and Memory Subsets Using an Integrated Experimental and Computational Pipeline Which Is Robust, Economical, and Versatile. Front Immunol 2017; 8:1267. [PMID: 29075258 PMCID: PMC5643411 DOI: 10.3389/fimmu.2017.01267] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/22/2017] [Indexed: 11/13/2022] Open
Abstract
The T cell receptor (TCR) repertoire can provide a personalized biomarker for infectious and non-infectious diseases. We describe a protocol for amplifying, sequencing, and analyzing TCRs which is robust, sensitive, and versatile. The key experimental step is ligation of a single-stranded oligonucleotide to the 3' end of the TCR cDNA. This allows amplification of all possible rearrangements using a single set of primers per locus. It also introduces a unique molecular identifier to label each starting cDNA molecule. This molecular identifier is used to correct for sequence errors and for effects of differential PCR amplification efficiency, thus producing more accurate measures of the true TCR frequency within the sample. This integrated experimental and computational pipeline is applied to the analysis of human memory and naive subpopulations, and results in consistent measures of diversity and inequality. After error correction, the distribution of TCR sequence abundance in all subpopulations followed a power law over a wide range of values. The power law exponent differed between naïve and memory populations, but was consistent between individuals. The integrated experimental and analysis pipeline we describe is appropriate to studies of T cell responses in a broad range of physiological and pathological contexts.
Collapse
Affiliation(s)
- Theres Oakes
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - James M. Heather
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Katharine Best
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Rachel Byng-Maddick
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Connor Husovsky
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mazlina Ismail
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Kroopa Joshi
- UCL Cancer Institute, University College London, London, United Kingdom
| | - Gavin Maxwell
- Unilever Safety and Environmental Assurance Centre, Unilever, Sharnbrook, United Kingdom
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Natalie Riddell
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Tabea Ruehl
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Carolin T. Turner
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Imran Uddin
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Benny Chain
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
45
|
Xin G, Schauder DM, Zander R, Cui W. Two is better than one: advances in pathogen-boosted immunotherapy and adoptive T-cell therapy. Immunotherapy 2017; 9:837-849. [PMID: 28877635 PMCID: PMC5941714 DOI: 10.2217/imt-2017-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/11/2017] [Indexed: 01/31/2023] Open
Abstract
The recent tremendous successes in clinical trials take cancer immunotherapy into a new era and have attracted major attention from both academia and industry. Among the variety of immunotherapy strategies developed to boost patients' own immune systems to fight against malignant cells, the pathogen-based and adoptive cell transfer therapies have shown the most promise for treating multiple types of cancer. Pathogen-based therapies could either break the immune tolerance to enhance the effectiveness of cancer vaccines or directly infect and kill cancer cells. Adoptive cell transfer can induce a strong durable antitumor response, with recent advances including engineering dual specificity into T cells to recognize multiple antigens and improving the metabolic fitness of transferred cells. In this review, we focus on the recent prospects in these two areas and summarize some ongoing studies that represent potential advancements for anticancer immunotherapy, including testing combinations of these two strategies.
Collapse
Affiliation(s)
- Gang Xin
- Blood Research Institute, Blood Center of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53213, USA
| | - David M Schauder
- Blood Research Institute, Blood Center of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53213, USA
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ryan Zander
- Blood Research Institute, Blood Center of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53213, USA
| | - Weiguo Cui
- Blood Research Institute, Blood Center of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53213, USA
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
46
|
Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire. Nat Genet 2017; 49:659-665. [DOI: 10.1038/ng.3822] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 02/28/2017] [Indexed: 12/16/2022]
|
47
|
Tao C, Shao H, Zhang W, Bo H, Wu F, Shen H, Huang S. γδTCR immunoglobulin constant region domain exchange in human αβTCRs improves TCR pairing without altering TCR gene-modified T cell function. Mol Med Rep 2017; 15:1555-1564. [PMID: 28259946 PMCID: PMC5365024 DOI: 10.3892/mmr.2017.6206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
The adoptive genetic transfer of T cell receptors (TCRs) has been shown to be overall feasible and offer clinical potential as a treatment for different types of cancer. However, this promising clinical approach is limited by the serious potential consequence that exogenous TCR mispairing with endogenous TCR chains may lead to the risk of self-reactivity. In the present study, domain-exchange and three-dimensional modeling strategies were used to create a set of chimeric TCR variants, which were used to exchange the partial or complete constant region of αβTCR with corresponding γδTCR domains. The expression, assembly and function of the chimeric TCR variants were examined in Jurkat T cells and peripheral mononuclear blood cells (PBMCs). Genetically-encoded chimeras were fused with a pair of fluorescent proteins (ECFP/EYFP) to monitor expression and the pairing between chimeric TCRα chains and TCRβ chains. The fluorescence energy transfer based on confocal laser scanning microscopy showed that the introduction of γδTCR constant sequences into the αβTCR did not result in a global reduction of mispairing with endogenous TCR. However, the TCR harboring the immunoglobulin-like domain of the γδTCR constant region (i.e., TCR∆IgC), showed a higher expression and preferential pairing, compared with wild-type (wt)TCR. The function analysis showed that TCR∆IgC exhibited the same levels of interferon-γ production and cytotoxic activity, compared with wtTCR. Furthermore, these modified TCR-transduced T cells retained the classic human leukocyte antigen restriction of the original TCR. The other two chimeric TCRs, had either exchange of the cp+tm+ic domain or exchange of the whole C domain (Fig. 1). Ultimately, exchange of these domains demonstrated defective function in the transduced T cells. Taken together, these findings may provide further understanding of the γδTCR constant domain with implications for the improvement of TCR gene transfer therapy.
Collapse
Affiliation(s)
- Changli Tao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Hongwei Shao
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Wenfeng Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Huaben Bo
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Fenglin Wu
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Han Shen
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| | - Shulin Huang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Biosciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, P.R. China
| |
Collapse
|
48
|
Knipping F, Osborn MJ, Petri K, Tolar J, Glimm H, von Kalle C, Schmidt M, Gabriel R. Genome-wide Specificity of Highly Efficient TALENs and CRISPR/Cas9 for T Cell Receptor Modification. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 4:213-224. [PMID: 28345006 PMCID: PMC5363317 DOI: 10.1016/j.omtm.2017.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/25/2017] [Indexed: 12/11/2022]
Abstract
In T cells with transgenic high-avidity T cell receptors (TCRs), endogenous and transferred TCR chains compete for surface expression and may pair inappropriately, potentially causing autoimmunity. To knock out endogenous TCR expression, we assembled 12 transcription activator-like effector nucleases (TALENs) and five guide RNAs (gRNAs) from the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas9) system. Using TALEN mRNA, TCR knockout was successful in up to 81% of T cells. Additionally, we were able to verify targeted gene addition of a GFP gene by homology-directed repair at the TALEN target site, using a donor suitable for replacement of the reporter transgene with therapeutic TCR chains. Remarkably, analysis of TALEN and CRISPR/Cas9 specificity using integrase-defective lentiviral vector capture revealed only one off-target site for one of the gRNAs and three off-target sites for both of the TALENs, indicating a high level of specificity. Collectively, our work shows highly efficient and specific nucleases for T cell engineering.
Collapse
Affiliation(s)
- Friederike Knipping
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Mark J Osborn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Asan-Minnesota Institute for Innovating Transplantation, Seoul 05505, Republic of Korea
| | - Karl Petri
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA; Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Asan-Minnesota Institute for Innovating Transplantation, Seoul 05505, Republic of Korea
| | - Hanno Glimm
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| | - Richard Gabriel
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center, 69120 Heidelberg, Germany
| |
Collapse
|
49
|
Van Caeneghem Y, De Munter S, Tieppo P, Goetgeluk G, Weening K, Verstichel G, Bonte S, Taghon T, Leclercq G, Kerre T, Debets R, Vermijlen D, Abken H, Vandekerckhove B. Antigen receptor-redirected T cells derived from hematopoietic precursor cells lack expression of the endogenous TCR/CD3 receptor and exhibit specific antitumor capacities. Oncoimmunology 2017; 6:e1283460. [PMID: 28405508 PMCID: PMC5384408 DOI: 10.1080/2162402x.2017.1283460] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 12/25/2022] Open
Abstract
Recent clinical studies indicate that adoptive T-cell therapy and especially chimeric antigen receptor (CAR) T-cell therapy is a very potent and potentially curative treatment for B-lineage hematologic malignancies. Currently, autologous peripheral blood T cells are used for adoptive T-cell therapy. Adoptive T cells derived from healthy allogeneic donors may have several advantages; however, the expected occurrence of graft versus host disease (GvHD) as a consequence of the diverse allogeneic T-cell receptor (TCR) repertoire expressed by these cells compromises this approach. Here, we generated T cells from cord blood hematopoietic progenitor cells (HPCs) that were transduced to express an antigen receptor (AR): either a CAR or a TCR with or without built-in CD28 co-stimulatory domains. These AR-transgenic HPCs were culture-expanded on an OP9-DL1 feeder layer and subsequently differentiated to CD5+CD7+ T-lineage precursors, to CD4+ CD8+ double positive cells and finally to mature AR+ T cells. The AR+ T cells were largely naive CD45RA+CD62L+ T cells. These T cells had mostly germline TCRα and TCRβ loci and therefore lacked surface-expressed CD3/TCRαβ complexes. The CD3- AR-transgenic cells were mono-specific, functional T cells as they displayed specific cytotoxic activity. Cytokine production, including IL-2, was prominent in those cells bearing ARs with built-in CD28 domains. Data sustain the concept that cord blood HPC derived, in vitro generated allogeneic CD3- AR+ T cells can be used to more effectively eliminate malignant cells, while at the same time limiting the occurrence of GvHD.
Collapse
Affiliation(s)
- Yasmine Van Caeneghem
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Stijn De Munter
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Paola Tieppo
- Department of Biopharmacy and Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Brussels, Belgium
| | - Glenn Goetgeluk
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Karin Weening
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Greet Verstichel
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Sarah Bonte
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Tom Taghon
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Georges Leclercq
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Tessa Kerre
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| | - Reno Debets
- Laboratory of Tumor Immunology, Department of Medical Immunology, Erasmus MC Cancer Center , Rotterdam, the Netherlands
| | - David Vermijlen
- Department of Biopharmacy and Institute for Medical Immunology, Université Libre de Bruxelles (ULB) , Brussels, Belgium
| | - Hinrich Abken
- Center for Molecular Medicine Cologne (CMMC) and Department of Internal Medicine, University of Cologne , Cologne, Germany
| | - Bart Vandekerckhove
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University , Ghent, Belgium
| |
Collapse
|
50
|
Realism and pragmatism in developing an effective chimeric antigen receptor T-cell product for solid cancers. Cytotherapy 2016; 18:1382-1392. [DOI: 10.1016/j.jcyt.2016.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/28/2016] [Accepted: 07/15/2016] [Indexed: 01/21/2023]
|