1
|
Mei J, Jiang XY, Tian HX, Rong DC, Song JN, Wang L, Chen YS, Wong RCB, Guo CX, Wang LS, Wang LY, Wang PY, Yin JY. Anoikis in cell fate, physiopathology, and therapeutic interventions. MedComm (Beijing) 2024; 5:e718. [PMID: 39286778 PMCID: PMC11401975 DOI: 10.1002/mco2.718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
The extracellular matrix (ECM) governs a wide spectrum of cellular fate processes, with a particular emphasis on anoikis, an integrin-dependent form of cell death. Currently, anoikis is defined as an intrinsic apoptosis. In contrast to traditional apoptosis and necroptosis, integrin correlates ECM signaling with intracellular signaling cascades, describing the full process of anoikis. However, anoikis is frequently overlooked in physiological and pathological processes as well as traditional in vitro research models. In this review, we summarized the role of anoikis in physiological and pathological processes, spanning embryonic development, organ development, tissue repair, inflammatory responses, cardiovascular diseases, tumor metastasis, and so on. Similarly, in the realm of stem cell research focused on the functional evolution of cells, anoikis offers a potential solution to various challenges, including in vitro cell culture models, stem cell therapy, cell transplantation, and engineering applications, which are largely based on the regulation of cell fate by anoikis. More importantly, the regulatory mechanisms of anoikis based on molecular processes and ECM signaling will provide new strategies for therapeutic interventions (drug therapy and cell-based therapy) in disease. In summary, this review provides a systematic elaboration of anoikis, thus shedding light on its future research.
Collapse
Affiliation(s)
- Jie Mei
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Xue-Yao Jiang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Hui-Xiang Tian
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Ding-Chao Rong
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
| | - Jia-Nan Song
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- School of Life Sciences Westlake University Hangzhou Zhejiang China
| | - Luozixian Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Yuan-Shen Chen
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Raymond C B Wong
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital Melbourne Victoria Australia
- Ophthalmology Department of Surgery The University of Melbourne Melbourne Victoria Australia
| | - Cheng-Xian Guo
- Center of Clinical Pharmacology the Third Xiangya Hospital Central South University Changsha Hunan China
| | - Lian-Sheng Wang
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| | - Lei-Yun Wang
- Department of Pharmacy Traditional Chinese and Western Medicine Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Wuhan Hubei Province China
| | - Peng-Yuan Wang
- Oujiang Laboratory Key Laboratory of Alzheimer's Disease of Zhejiang Province Institute of Aging Wenzhou Medical University Wenzhou Zhejiang China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology Xiangya Hospital, Central South University Changsha Hunan China
- Institute of Clinical Pharmacology Hunan Key Laboratory of Pharmacogenetics Central South University Changsha Hunan China
- Engineering Research Center of Applied Technology of Pharmacogenomics Ministry of Education Changsha Hunan China
- National Clinical Research Center for Geriatric Disorders Xiangya Hospital, Central South University Changsha Hunan China
| |
Collapse
|
2
|
Wang L, Kulthinee S, Slate-Romano J, Zhao T, Shanmugam H, Dubielecka PM, Zhang LX, Qin G, Zhuang S, Chin YE, Zhao TC. Inhibition of integrin alpha v/beta 5 mitigates the protective effect induced by irisin in hemorrhage. Exp Mol Pathol 2023; 134:104869. [PMID: 37690529 PMCID: PMC10939993 DOI: 10.1016/j.yexmp.2023.104869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION Irisin plays an important role in regulating tissue stress, cardiac function, and inflammation. Integrin αvβ5 was recently identified as a receptor for irisin to elicit its physiologic function. It remains unknown whether integrin αvβ5 is required for irisin's function in modulating the physiologic response to hemorrhage. The objective of this study is to examine if integrin αvβ5 contributes to the effects of irisin during the hemorrhagic response. METHODS Hemorrhage was induced in mice by achieving a mean arterial blood pressure of 35-45 mmHg for one hour, followed by two hours of resuscitation. Irisin (0.5 μg/kg) was administrated to assess its pharmacologic effects in hemorrhage. Cilengitide, a cyclic Arg-Gly-Asp peptide (cRGDyK) which is an inhibitor of integrin αvβ5, or control RGDS (1 mg/kg) was administered with irisin. In another cohort of mice, the irisin-induced protective effect was examined after knocking down integrin β5 with nanoparticle delivery of integrin β5 sgRNA using CRSIPR/Cas-9 gene editing. Cardiac function and hemodynamics were measured using echocardiography and femoral artery catheterization, respectively. Systemic cytokine releases were measured using Enzyme-linked immunosorbent assay (ELISA). Histological analyses were used to determine tissue damage in myocardium, skeletal muscles, and lung tissues. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was carried out to assess apoptosis in tissues. RESULTS Hemorrhage induced reduction of integrin αvβ5 in skeletal muscles and repressed recovery of cardiac performance and hemodynamics. Irisin treatment led to significantly improved cardiac function, which was abrogated by treatment with Cilengitide or knockdown of integrin β5. Furthermore, irisin resulted in a marked suppression of tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1), muscle edema, and inflammatory cells infiltration in myocardium and skeletal muscles, which was attenuated by Cilengitide or knockdown of integrin β5. Irisin-induced reduction of apoptosis in the myocardium, skeletal muscles, and lung, which were attenuated by either the inhibition of integrin αvβ5, or knockdown of integrin β5. CONCLUSION Integrin αvβ5 plays an important role for irisin in modulating the protective effect during hemorrhage.
Collapse
Affiliation(s)
- Lijiang Wang
- Department of Plastic Surgery, Rhode Island Hospital, Brown University, USA
| | - Supaporn Kulthinee
- Department of Plastic Surgery, Rhode Island Hospital, Brown University, USA
| | - John Slate-Romano
- Department of Plastic Surgery, Rhode Island Hospital, Brown University, USA
| | | | - Hamsa Shanmugam
- Department of Plastic Surgery, Rhode Island Hospital, Brown University, USA
| | - Patrycja M Dubielecka
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Ling X Zhang
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Gangjian Qin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shougang Zhuang
- Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Ting C Zhao
- Department of Plastic Surgery, Rhode Island Hospital, Brown University, USA; Department of Surgery, Rhode Island Hospital, Brown University, Providence, RI, USA.
| |
Collapse
|
3
|
Matos AI, Peres C, Carreira B, Moura LIF, Acúrcio RC, Vogel T, Wegener E, Ribeiro F, Afonso MB, Santos FMF, Martínez‐Barriocanal Á, Arango D, Viana AS, Góis PMP, Silva LC, Rodrigues CMP, Graca L, Jordan R, Satchi‐Fainaro R, Florindo HF. Polyoxazoline-Based Nanovaccine Synergizes with Tumor-Associated Macrophage Targeting and Anti-PD-1 Immunotherapy against Solid Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300299. [PMID: 37434063 PMCID: PMC10477894 DOI: 10.1002/advs.202300299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/22/2023] [Indexed: 07/13/2023]
Abstract
Immune checkpoint blockade reaches remarkable clinical responses. However, even in the most favorable cases, half of these patients do not benefit from these therapies in the long term. It is hypothesized that the activation of host immunity by co-delivering peptide antigens, adjuvants, and regulators of the transforming growth factor (TGF)-β expression using a polyoxazoline (POx)-poly(lactic-co-glycolic) acid (PLGA) nanovaccine, while modulating the tumor-associated macrophages (TAM) function within the tumor microenvironment (TME) and blocking the anti-programmed cell death protein 1 (PD-1) can constitute an alternative approach for cancer immunotherapy. POx-Mannose (Man) nanovaccines generate antigen-specific T-cell responses that control tumor growth to a higher extent than poly(ethylene glycol) (PEG)-Man nanovaccines. This anti-tumor effect induced by the POx-Man nanovaccines is mediated by a CD8+ -T cell-dependent mechanism, in contrast to the PEG-Man nanovaccines. POx-Man nanovaccine combines with pexidartinib, a modulator of the TAM function, restricts the MC38 tumor growth, and synergizes with PD-1 blockade, controlling MC38 and CT26 tumor growth and survival. This data is further validated in the highly aggressive and poorly immunogenic B16F10 melanoma mouse model. Therefore, the synergistic anti-tumor effect induced by the combination of nanovaccines with the inhibition of both TAM- and PD-1-inducing immunosuppression, holds great potential for improving immunotherapy outcomes in solid cancer patients.
Collapse
Affiliation(s)
- Ana I. Matos
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Lisbon Academic Medical CenterUniversidade de LisboaLisbon1649‐028Portugal
| | - Carina Peres
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Lisbon Academic Medical CenterUniversidade de LisboaLisbon1649‐028Portugal
| | - Barbara Carreira
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Liane I. F. Moura
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Rita C. Acúrcio
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Theresa Vogel
- Department of Chemistry, Faculty of Chemistry and Food Chemistry, School of ScienceTechnische Universität Dresden01062DresdenGermany
| | - Erik Wegener
- Department of Chemistry, Faculty of Chemistry and Food Chemistry, School of ScienceTechnische Universität Dresden01062DresdenGermany
| | - Filipa Ribeiro
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Lisbon Academic Medical CenterUniversidade de LisboaLisbon1649‐028Portugal
| | - Marta B. Afonso
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Fábio M. F. Santos
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Águeda Martínez‐Barriocanal
- Group of Biomedical Research in Digestive Tract TumorsCIBBIM‐NanomedicineVall d'Hebron Research Institute (VHIR)Universitat Autònoma de Barcelona (UAB)Barcelona08035Spain
- Group of Molecular OncologyLleida Biomedical Research Institute (IRBLleida)Lleida25198Spain
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract TumorsCIBBIM‐NanomedicineVall d'Hebron Research Institute (VHIR)Universitat Autònoma de Barcelona (UAB)Barcelona08035Spain
- Group of Molecular OncologyLleida Biomedical Research Institute (IRBLleida)Lleida25198Spain
| | - Ana S. Viana
- Centro de Química EstruturalDepartamento de Química e BioquímicaInstitute of Molecular SciencesFaculty of SciencesUniversidade de LisboaLisbon1749‐016Portugal
| | - Pedro M. P. Góis
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Liana C. Silva
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Cecília M. P. Rodrigues
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Luis Graca
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo Antunes, Lisbon Academic Medical CenterUniversidade de LisboaLisbon1649‐028Portugal
| | - Rainer Jordan
- Department of Chemistry, Faculty of Chemistry and Food Chemistry, School of ScienceTechnische Universität Dresden01062DresdenGermany
| | - Ronit Satchi‐Fainaro
- Department of Physiology and PharmacologyFaculty of MedicineSagol School of NeuroscienceTel Aviv UniversityTel Aviv69978Israel
| | - Helena F. Florindo
- Grouf of BioNanoSciences ‐ Drug Delivery and Immunoengineering, Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health TechnologiesFaculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| |
Collapse
|
4
|
Isthmin-A Multifaceted Protein Family. Cells 2022; 12:cells12010017. [PMID: 36611811 PMCID: PMC9818725 DOI: 10.3390/cells12010017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Isthmin (ISM) is a secreted protein family with two members, namely ISM1 and ISM2, both containing a TSR1 domain followed by an AMOP domain. Its broad expression pattern suggests diverse functions in developmental and physiological processes. Over the past few years, multiple studies have focused on the functional analysis of the ISM protein family in several events, including angiogenesis, metabolism, organ homeostasis, immunity, craniofacial development, and cancer. Even though ISM was identified two decades ago, we are still short of understanding the roles of the ISM protein family in embryonic development and other pathological processes. To address the role of ISM, functional studies have begun but unresolved issues remain. To elucidate the regulatory mechanism of ISM, it is crucial to determine its interactions with other ligands and receptors that lead to the activation of downstream signalling pathways. This review provides a perspective on the gene organization and evolution of the ISM family, their links with developmental and physiological functions, and key questions for the future.
Collapse
|
5
|
Blanchard N, Link PA, Farkas D, Harmon B, Hudson J, Bogamuwa S, Piper B, Authelet K, Cool CD, Heise RL, Freishtat R, Farkas L. Dichotomous role of integrin-β5 in lung endothelial cells. Pulm Circ 2022; 12:e12156. [PMID: 36438452 PMCID: PMC9684688 DOI: 10.1002/pul2.12156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive, devastating disease, and its main histological manifestation is an occlusive pulmonary arteriopathy. One important functional component of PAH is aberrant endothelial cell (EC) function including apoptosis-resistance, unchecked proliferation, and impaired migration. The mechanisms leading to and maintaining physiologic and aberrant EC function are not fully understood. Here, we tested the hypothesis that in PAH, ECs have increased expression of the transmembrane protein integrin-β5, which contributes to migration and survival under physiologic and pathological conditions, but also to endothelial-to-mesenchymal transition (EnMT). We found that elevated integrin-β5 expression in pulmonary artery lesions and lung tissue from PAH patients and rats with PH induced by chronic hypoxia and injection of CD117+ rat lung EC clones. These EC clones exhibited elevated expression of integrin-β5 and its heterodimerization partner integrin-αν and showed accelerated barrier formation. Inhibition of integrin-ανβ5 in vitro partially blocked transforming growth factor (TGF)-β1-induced EnMT gene expression in rat lung control ECs and less in rat lung EC clones and human lung microvascular ECs. Inhibition of integrin-ανβ5 promoted endothelial dysfunction as shown by reduced migration in a scratch assay and increased apoptosis in synergism with TGF-β1. In vivo, blocking of integrin-ανβ5 exaggerated PH induced by chronic hypoxia and CD117+ EC clones in rats. In summary, we found a role for integrin-ανβ5 in lung endothelial survival and migration, but also a partial contribution to TGF-β1-induced EnMT gene expression. Our results suggest that integrin-ανβ5 is required for physiologic function of ECs and lung vascular homeostasis.
Collapse
Affiliation(s)
- Neil Blanchard
- Department of Orthopedic SurgeryUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Patrick A. Link
- Departments of Physiology and Biomedical EngineeringMayo ClinicRochesterMichiganUSA
- Department of Biomedical Engineering, School of EngineeringVirginia Commonwealth UniversityCharlottesvilleVirginiaUSA
| | - Daniela Farkas
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Brennan Harmon
- Department of Pediatrics, Division of Emergency MedicineChildren's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Jaylen Hudson
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Srimathi Bogamuwa
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Bryce Piper
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
| | - Kayla Authelet
- Department of Pediatrics, Division of Emergency MedicineChildren's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Carlyne D. Cool
- Department of PathologyUniversity of Colorado at DenverDenverColoradoUSA
| | - Rebecca L. Heise
- Department of Biomedical Engineering, School of EngineeringVirginia Commonwealth UniversityCharlottesvilleVirginiaUSA
| | - Robert Freishtat
- Department of Pediatrics, Division of Emergency MedicineChildren's National Health SystemWashingtonDistrict of ColumbiaUSA
| | - Laszlo Farkas
- Division of Pulmonary Disease, College of Medicine, Department of Internal Medicine, Critical Care & Sleep Medicine, Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusOhioUSA
- Department of Physiology and BiophysicsVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
6
|
Nakagawa T, Ohta K, Naruse T, Sakuma M, Fukada S, Yamakado N, Akagi M, Sasaki K, Niwata C, Ono S, Aikawa T. Inhibition of angiogenesis and tumor progression of MK-0429, an integrin αvβ 3 antagonist, on oral squamous cell carcinoma. J Cancer Res Clin Oncol 2022; 148:3281-3292. [PMID: 35713706 PMCID: PMC9587112 DOI: 10.1007/s00432-022-04100-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/28/2022] [Indexed: 11/26/2022]
Abstract
Purpose Integrin αvβ3 is an essential molecule for tumor angiogenesis. This study aimed to investigate the anti-tumor effect of MK-0429, an integrin αvβ3 antagonist, on oral squamous cell carcinoma (OSCC) through its inhibitory effect on angiogenesis. Methods In this study, we investigated the effect of MK-0429 on cellular function and angiogenesis in vitro with the use of an immortalized human umbilical vein endothelial cell, HUEhT-1, which is immortalized by the electroporatic transfection of hTERT. The effect of MK-0429 on the integrin αvβ3 signaling pathway was examined by FAK, MEK1/2 and ERK 1/2 phosphorylation. The anti-angiogenic effect of MK-0429 was evaluated by in vitro tube formation assay. The anti-tumor effect on OSCC was assessed by administrating MK-0429 to mouse oral cancer xenografts. Results MK-0429 inhibited cell proliferation, migration, and adhesion of HUEhT-1 in a dose-dependent manner. FAK, MEK and ERK phosphorylation were significantly blocked by MK-0429 treatment. Tube formation was suppressed by MK-0429 in dose-dependent manner. Tumor progression was significantly suppressed by MK-0429 administration in mouse oral cancer xenografts. Histological study revealed that MK-0429 decreased tumor vascularization. Conclusion These results indicated integrin αvβ3 as a therapeutic target for OSCC and suggested that MK-0429 might be clinically applicable as an anti-tumor agent with potent anti-angiogenic activity. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-022-04100-3.
Collapse
Affiliation(s)
- Takayuki Nakagawa
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-Ward, Hiroshima, 734-8553, Japan.
| | - Kouji Ohta
- Department of Public Oral Health, Program of Oral Health Sciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-Ward, Hiroshima, 734-8553, Japan
| | - Takako Naruse
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-Ward, Hiroshima, 734-8553, Japan
| | - Miyuki Sakuma
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-Ward, Hiroshima, 734-8553, Japan
| | - Syohei Fukada
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-Ward, Hiroshima, 734-8553, Japan
| | - Nao Yamakado
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-Ward, Hiroshima, 734-8553, Japan
| | - Misaki Akagi
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-Ward, Hiroshima, 734-8553, Japan
| | - Kazuki Sasaki
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-Ward, Hiroshima, 734-8553, Japan
| | - Chieko Niwata
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-Ward, Hiroshima, 734-8553, Japan
| | - Shigehiro Ono
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-Ward, Hiroshima, 734-8553, Japan
| | - Tomonao Aikawa
- Department of Oral and Maxillofacial Surgery, Program of Dentistry, Graduate School of Biomedical and Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-Ward, Hiroshima, 734-8553, Japan
| |
Collapse
|
7
|
Wang L, Gong X, Qi G, Li Y, Zhang K, Gao YH, Wang D, Cao H, Yang Z. Self-assembling and cellular distribution of a series of transformable peptides. J Mater Chem B 2022; 10:3886-3894. [DOI: 10.1039/d1tb02814f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transformable peptides (TPs) are biomedical materials with unique structures and diverse functionalities that have drawn great interest in material science and nanomedicine. Here, we design a series of TPs with...
Collapse
|
8
|
Towards Biohybrid Lung Development-Fibronectin-Coating Bestows Hemocompatibility of Gas Exchange Hollow Fiber Membranes by Improving Flow-Resistant Endothelialization. MEMBRANES 2021; 12:membranes12010035. [PMID: 35054561 PMCID: PMC8779364 DOI: 10.3390/membranes12010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 01/26/2023]
Abstract
To provide an alternative treatment option for patients with end-stage lung disease, we aim for biohybrid lung development (BHL) based on hollow fiber membrane (HFM) technology used in extracorporeal membrane oxygenators. For long-term BHL application, complete hemocompatibility of all blood-contacting surfaces is indispensable and can be achieved by their endothelialization. Indeed, albumin/heparin (AH) coated HFM enables initial endothelialization, but as inexplicable cell loss under flow conditions was seen, we assessed an alternative HFM coating using fibronectin (FN). Therefore, endothelial cell (EC) adherence and viability on both coated HFM were analyzed by fluorescence-based staining. Functional leukocyte and thrombocyte adhesion assays were performed to evaluate hemocompatibility, also in comparison to blood plasma coated HFM as a clinically relevant control. To assess monolayer resistance and EC behavior under clinically relevant flow conditions, a mock circulation setup was established, which also facilitates imitation of lung-disease specific blood gas settings. Besides quantification of flow-associated cell loss, endothelial responses towards external stimuli, like flow exposure or TNFα stimulation, were analyzed by qRT-PCR, focusing on inflammation, thrombus formation and extracellular matrix production. Under static conditions, both coated HFM enabled the generation of a viable, confluent, non-inflammatory and anti-thrombogenic monolayer. However, by means of homogenous FN coating, cell retention and physiologic gene regulation towards an improved hemocompatible-and extracellular matrix producing phenotype, was significantly superior compared to the inhomogeneous AH coating. In summary, our adaptable in-house FN coating secures the endothelial requirements for long-term BHL application and may promote monolayer establishment on all other blood contacting surfaces of the BHL (e.g., cannulae).
Collapse
|
9
|
Weber P, Baltus D, Jatho A, Drews O, Zelarayan LC, Wieland T, Lutz S. RhoGEF17-An Essential Regulator of Endothelial Cell Death and Growth. Cells 2021; 10:cells10040741. [PMID: 33801779 PMCID: PMC8067313 DOI: 10.3390/cells10040741] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 12/18/2022] Open
Abstract
The Rho guanine nucleotide exchange factor RhoGEF17 was described to reside in adherens junctions (AJ) in endothelial cells (EC) and to play a critical role in the regulation of cell adhesion and barrier function. The purpose of this study was to analyze signal cascades and processes occurring subsequent to AJ disruption induced by RhoGEF17 knockdown. Primary human and immortalized rat EC were used to demonstrate that an adenoviral-mediated knockdown of RhoGEF17 resulted in cell rounding and an impairment in spheroid formation due to an enhanced proteasomal degradation of AJ components. In contrast, β-catenin degradation was impaired, which resulted in an induction of the β-catenin-target genes cyclin D1 and survivin. RhoGEF17 depletion additionally inhibited cell adhesion and sheet migration. The RhoGEF17 knockdown prevented the cells with impeded cell–cell and cell–matrix contacts from apoptosis, which was in line with a reduction in pro-caspase 3 expression and an increase in Akt phosphorylation. Nevertheless, the cells were not able to proliferate as a cell cycle block occurred. In summary, we demonstrate that a loss of RhoGEF17 disturbs cell–cell and cell–substrate interaction in EC. Moreover, it prevents the EC from cell death and blocks cell proliferation. Non-canonical β-catenin signaling and Akt activation could be identified as a potential mechanism.
Collapse
Affiliation(s)
- Pamina Weber
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany; (P.W.); (D.B.)
| | - Doris Baltus
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany; (P.W.); (D.B.)
| | - Aline Jatho
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (A.J.); (L.C.Z.)
- DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany
| | - Oliver Drews
- Institute for Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany;
| | - Laura C. Zelarayan
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (A.J.); (L.C.Z.)
- DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany
| | - Thomas Wieland
- Experimental Pharmacology Mannheim (EPM), European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany; (P.W.); (D.B.)
- DZHK (German Center for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Correspondence: (T.W.); (S.L.)
| | - Susanne Lutz
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Robert-Koch-Strasse 40, 37075 Göttingen, Germany; (A.J.); (L.C.Z.)
- DZHK (German Center for Cardiovascular Research) Partner Site Göttingen, Göttingen, Germany
- Correspondence: (T.W.); (S.L.)
| |
Collapse
|
10
|
Liu D, Liu J, Li C, Li W, Wang W, Liu J. Ultrasound-Aided Targeting Nanoparticles Loaded with miR-181b for Anti-Inflammatory Treatment of TNF-α-Stimulated Endothelial Cells. ACS OMEGA 2020; 5:17102-17110. [PMID: 32715195 PMCID: PMC7376683 DOI: 10.1021/acsomega.0c00823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Gene therapy is an emerging therapeutic strategy used in clinics. Ultrasound-mediated gene transfection possesses great potential as a secure and available approach for gene delivery. However, transfection efficiency and targeting ability remain challenging. In this study, we developed a kind of ultrasound-aided and targeting nanoparticles for microRNA delivery. These nanoparticles carrying nucleic acids were prepared with cationic poly-(amino acid) encapsulated with perfluoropentane. The formulated nanoparticles were stabilized with negatively charged PGA-PEG-RGD peptide coating. Ultrasound imaging and specific gene transfection using this nanocarrier could be implemented simultaneously. Upon treatment with ultrasound irradiation, phase transition was induced in the nanoparticles and they generated acoustic cavitation, resulting in enhanced gene transfection against the endothelial cells. With the overexpression of miR-181b loaded by the nanoparticles, the TNF-α-stimulated endothelial cells were effectively rescued from the inflammatory state through the protection of cell viability and suppression of cell adhesion.
Collapse
Affiliation(s)
- Donghong Liu
- Department
of Medical Ultrasonics, The First Affiliated
Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jia Liu
- Department
of Medical Ultrasonics, The First Affiliated
Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chao Li
- School
of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Wei Li
- Department
of Medical Ultrasonics, The First Affiliated
Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Wei Wang
- Department
of Medical Ultrasonics, The First Affiliated
Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jie Liu
- School
of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| |
Collapse
|
11
|
Gad AA, Balenga N. The Emerging Role of Adhesion GPCRs in Cancer. ACS Pharmacol Transl Sci 2020; 3:29-42. [PMID: 32259086 DOI: 10.1021/acsptsci.9b00093] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Indexed: 02/08/2023]
Abstract
Aberrant expression, function, and mutation of G protein-coupled receptors (GPCRs) and their signaling partners, G proteins, have been well documented in many forms of cancer. These cell surface receptors and their endogenous ligands are implicated in all aspects of cancer including proliferation, angiogenesis, invasion, and metastasis. Adhesion GPCRs (aGPCRs) form the second largest family of GPCRs, most of which are orphan receptors with unknown physiological functions. This is mainly due to our limited insight into their structure, natural ligands, signaling pathways, and tissue expression profiles. Nevertheless, recent studies show that aGPCRs play important roles in cell adhesion to the extracellular matrix and cell-cell communication, processes that are dysregulated in cancer. Emerging evidence suggests that aGPCRs are implicated in migration, proliferation, and survival of tumor cells. We here review the role of aGPCRs in the five most common types of cancer (lung, breast, colorectal, prostate, and gastric) and emphasize the importance of further translational studies in this field.
Collapse
Affiliation(s)
- Abanoub A Gad
- Graduate Program in Life Sciences, University of Maryland, Baltimore, Maryland 20201, United States.,Division of General & Oncologic Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 20201, United States
| | - Nariman Balenga
- Division of General & Oncologic Surgery, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland 20201, United States.,Molecular and Structural Biology program at University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland 20201, United States
| |
Collapse
|
12
|
Dukinfield M, Maniati E, Reynolds LE, Aubdool A, Baliga RS, D'Amico G, Maiques O, Wang J, Bedi KC, Margulies KB, Sanz‐Moreno V, Hobbs A, Hodivala‐Dilke K. Repurposing an anti-cancer agent for the treatment of hypertrophic heart disease. J Pathol 2019; 249:523-535. [PMID: 31424556 PMCID: PMC6900130 DOI: 10.1002/path.5340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023]
Abstract
Coronary microvascular dysfunction combined with maladaptive cardiomyocyte morphology and energetics is a major contributor to heart failure advancement. Thus, dually enhancing cardiac angiogenesis and targeting cardiomyocyte function to slow, or reverse, the development of heart failure is a logical step towards improved therapy. We present evidence for the potential to repurpose a former anti-cancer Arg-Gly-Asp (RGD)-mimetic pentapeptide, cilengitide, here used at low doses. Cilengitide targets αvβ3 integrin and this protein is upregulated in human dilated and ischaemic cardiomyopathies. Treatment of mice after abdominal aortic constriction (AAC) surgery with low-dose cilengitide (ldCil) enhances coronary angiogenesis and directly affects cardiomyocyte hypertrophy with an associated reduction in disease severity. At a molecular level, ldCil treatment has a direct effect on cardiac endothelial cell transcriptomic profiles, with a significant enhancement of pro-angiogenic signalling pathways, corroborating the enhanced angiogenic phenotype after ldCil treatment. Moreover, ldCil treatment of Angiotensin II-stimulated AngII-stimulated cardiomyocytes significantly restores transcriptomic profiles similar to those found in normal human heart. The significance of this finding is enhanced by transcriptional similarities between AngII-treated cardiomyocytes and failing human hearts. Taken together, our data provide evidence supporting a possible new strategy for improved heart failure treatment using low-dose RGD-mimetics with relevance to human disease. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Matthew Dukinfield
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Eleni Maniati
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Louise E Reynolds
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Aisah Aubdool
- William Harvey Research Institute, Queen Mary University of London, Charterhouse SquareLondonUK
| | - Reshma S Baliga
- William Harvey Research Institute, Queen Mary University of London, Charterhouse SquareLondonUK
| | - Gabriela D'Amico
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Oscar Maiques
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Jun Wang
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Kenneth C Bedi
- Perelman School of MedicineUniversity of Pennsylvania, Translational Research CenterPhiladelphiaPAUSA
| | - Kenneth B Margulies
- Perelman School of MedicineUniversity of Pennsylvania, Translational Research CenterPhiladelphiaPAUSA
| | - Victoria Sanz‐Moreno
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| | - Adrian Hobbs
- William Harvey Research Institute, Queen Mary University of London, Charterhouse SquareLondonUK
| | - Kairbaan Hodivala‐Dilke
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse SquareLondonUK
| |
Collapse
|
13
|
Peterman E, Gibieža P, Schafer J, Skeberdis VA, Kaupinis A, Valius M, Heiligenstein X, Hurbain I, Raposo G, Prekeris R. The post-abscission midbody is an intracellular signaling organelle that regulates cell proliferation. Nat Commun 2019; 10:3181. [PMID: 31320617 PMCID: PMC6639393 DOI: 10.1038/s41467-019-10871-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/01/2019] [Indexed: 01/05/2023] Open
Abstract
Once thought to be a remnant of cell division, the midbody (MB) has recently been shown to have roles beyond its primary function of orchestrating abscission. Despite the emerging roles of post-abscission MBs, how MBs accumulate in the cytoplasm and signal to regulate cellular functions remains unknown. Here, we show that extracellular post-abscission MBs can be internalized by interphase cells, where they reside in the cytoplasm as a membrane-bound signaling structure that we have named the MBsome. We demonstrate that MBsomes stimulate cell proliferation and that MBsome formation is a phagocytosis-like process that depends on a phosphatidylserine/integrin complex, driven by actin-rich membrane protrusions. Finally, we show that MBsomes rely on dynamic actin coats to slow lysosomal degradation and propagate their signaling function. In summary, MBsomes may sometimes serve as intracellular organelles that signal via integrin and EGFR-dependent pathways to promote cell proliferation and anchorage-independent growth and survival.
Collapse
Affiliation(s)
- Eric Peterman
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Paulius Gibieža
- Institute of Cardiology, Lithuanian University of Health Sciences, Kaunas, 44307, Lithuania
| | - Johnathon Schafer
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | | | - Algirdas Kaupinis
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Mindaugas Valius
- Proteomics Center, Institute of Biochemistry, Vilnius University Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Xavier Heiligenstein
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris, 75005, France
| | - Ilse Hurbain
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris, 75005, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, 75005, France
| | - Graca Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments, Paris, 75005, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, 75005, France
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
14
|
Soto-Ribeiro M, Kastberger B, Bachmann M, Azizi L, Fouad K, Jacquier MC, Boettiger D, Bouvard D, Bastmeyer M, Hytönen VP, Wehrle-Haller B. β1D integrin splice variant stabilizes integrin dynamics and reduces integrin signaling by limiting paxillin recruitment. J Cell Sci 2019; 132:jcs.224493. [PMID: 30890648 DOI: 10.1242/jcs.224493] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/08/2019] [Indexed: 12/30/2022] Open
Abstract
Heterodimeric integrin receptors control cell adhesion, migration and extracellular matrix assembly. While the α integrin subunit determines extracellular ligand specificity, the β integrin chain binds to an acidic residue of the ligand, and cytoplasmic adapter protein families such as talins, kindlins and paxillin, to form mechanosensing cell matrix adhesions. Alternative splicing of the β1 integrin cytoplasmic tail creates ubiquitously expressed β1A, and the heart and skeletal muscle-specific β1D form. To study the physiological difference between these forms, we developed fluorescent β1 integrins and analyzed their dynamics, localization, and cytoplasmic adapter recruitment and effects on cell proliferation. On fibronectin, GFP-tagged β1A integrin showed dynamic exchange in peripheral focal adhesions, and long, central fibrillar adhesions. In contrast, GFP-β1D integrins exchanged slowly, forming immobile and short central adhesions. While adhesion recruitment of GFP-β1A integrin was sensitive to C-terminal tail mutagenesis, GFP-β1D integrin was recruited independently of the distal NPXY motif. In addition, a P786A mutation in the proximal, talin-binding NPXY783 motif switched β1D to a highly dynamic integrin. In contrast, the inverse A786P mutation in β1A integrin interfered with paxillin recruitment and proliferation. Thus, differential β1 integrin splicing controls integrin-dependent adhesion signaling, to adapt to the specific physiological needs of differentiated muscle cells.
Collapse
Affiliation(s)
- Martinho Soto-Ribeiro
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Birgit Kastberger
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland.,Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland.,Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Kenza Fouad
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Marie-Claude Jacquier
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - David Boettiger
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| | - Daniel Bouvard
- Université Grenoble Alpes, Institute for Advanced Bioscience, INSERM U823, F-38042 Grenoble, France
| | - Martin Bastmeyer
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön katu 34, FI-33520 Tampere, Finland.,Fimlab Laboratories, Biokatu 4, FI-33520 Tampere, Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire, Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
15
|
Jiang T, Zhao J, Yu S, Mao Z, Gao C, Zhu Y, Mao C, Zheng L. Untangling the response of bone tumor cells and bone forming cells to matrix stiffness and adhesion ligand density by means of hydrogels. Biomaterials 2019; 188:130-143. [PMID: 30343256 PMCID: PMC6279509 DOI: 10.1016/j.biomaterials.2018.10.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 12/22/2022]
Abstract
How cancer cells and their anchorage-dependent normal counterparts respond to the adhesion ligand density and stiffness of the same extracellular matrix (ECM) is still not very clear. Here we investigated the effects of ECM adhesion ligand density and stiffness on bone tumor cells (osteosarcoma cells) and bone forming cells (osteoblasts) by using poly (ethylene glycol) diacrylate (PEGDA) and methacrylated gelatin (GelMA) hydrogels. By independently changing the PEGDA and GelMA content in the hydrogels, we achieved crosslinked hydrogel matrix with independently tunable stiffness (1.6, 6 and 25 kPa for 5%, 10%, 15% PEDGA, respectively) and adhesion ligand density (low, medium and high for 0.05%, 0.2%, 0.5% GelMA respectively). By using a series of biochemical and cell biological characterizations as well as in vivo studies, we confirmed that osteosarcoma and osteoblastic cells responded differently to the stiffness and adhesion ligand density within 3D ECM. When cultured within the 3D PEGDA/GelMA hydrogel matrix, osteosarcoma cells are highly dependent on the matrix stiffness via regulating the integrin-mediated focal adhesion (FA) pathway, whereas osteoblasts are highly sensitive to the matrix adhesion ligand density through regulating the integrin-mediated adherens junction (AJ) pathway. However, when seeded on the 2D surface of the hydrogels, osteosarcoma cells behaved differently and became sensitive to the matrix adhesion ligand density because they were "forced" to attach to the substrate, similar to anchorage-dependent osteoblasts. This study might provide new insights into rational design of scaffolds for generating in vitro tumor models to test anticancer therapeutics and for regenerating tissue to repair defects.
Collapse
Affiliation(s)
- Tongmeng Jiang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China; Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China; Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Shan Yu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38# Zheda Road, Hangzhou, 310027, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38# Zheda Road, Hangzhou, 310027, China.
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, 38# Zheda Road, Hangzhou, 310027, China
| | - Ye Zhu
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Sience and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300, USA
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Sciences Research Center, Institute for Biomedical Engineering, Sience and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019-5300, USA; School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration & Guangxi Collaborative Innovation Center for Biomedicine, Life Sciences Institute, Guangxi Medical University, Nanning, 530021, China.
| |
Collapse
|
16
|
Tang M, Ji X, Xu H, Zhang L, Jiang A, Song B, Su Y, He Y. Photostable and Biocompatible Fluorescent Silicon Nanoparticles-Based Theranostic Probes for Simultaneous Imaging and Treatment of Ocular Neovascularization. Anal Chem 2018; 90:8188-8195. [PMID: 29874038 DOI: 10.1021/acs.analchem.8b01580] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ocular neovascularization can result in devastating diseases that lead to marked vision impairment and eventual visual loss. In clinical implementation, neovascular eye diseases are first diagnosed by fluorescein angiography and then treated by multiple intravitreal injections, which nevertheless involves vision-threatening complications, as well as lack of real-time monitoring disease progression and timely assessment of therapeutic outcomes. To address this critical issue, we herein present a kind of theranostic agents made of peptide-functionalized silicon nanoparticles (SiNPs), suitable for simultaneous ocular neovascularization imaging and therapy. Typically, in addition to negligible toxicity and high specific binding ability to human retinal microvascular endothelial cells tube formation, the cyclo-(Arg-Gly-Asp-d-Tyr-Cys) ( c-(RGDyC))-conjugated SiNPs (SiNPs-RGD) features efficacious antiangiogenic ability in wound healing migration, transwell migration, transwell invasion, and tube formation assays. Taking advantage of these unique merits, we further employ the SiNPs-RGD for labeling angiogenic blood vessels and neovascularization suppression, demonstrating obvious inhibition of new blood vessels formation in mouse corneas. These results suggest the SiNPs-RGD as a novel class of high-quality theranostic probes is suitable for simultaneous diagnosis and treatment in ocular neovascular diseases.
Collapse
Affiliation(s)
- Miaomiao Tang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Xiaoyuan Ji
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Hua Xu
- Department of Ophthalmology , Children's Hospital of Soochow University, Soochow University , Suzhou , Jiangsu 215123 , China
| | - Lu Zhang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Airui Jiang
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Bin Song
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yuanyuan Su
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yao He
- Laboratory of Nanoscale Biochemical Analysis, Institute of Functional Nano & Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC) , Soochow University , Suzhou , Jiangsu 215123 , China
| |
Collapse
|
17
|
Ng CW, Tam IYS, Sam SW, Yu Y, Lau HYA. Immobilized Osteopontin Enhances Adhesion but Suppresses Cytokine Release of Anti-IgE Activated Human Mast Cells. Front Immunol 2018; 9:1109. [PMID: 29872439 PMCID: PMC5972195 DOI: 10.3389/fimmu.2018.01109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/02/2018] [Indexed: 01/27/2023] Open
Abstract
Osteopontin (OPN) is an Arg-Gly-Asp (RGD)-containing extracellular matrix protein which is upregulated in inflamed tissues and has been reported to modulate mast cell activities in mice. Due to the known heterogeneity among mast cells of different species and the important roles of mast cells in allergic reactions, we investigated the effects of human OPN (hOPN) on human mast cell activities. Mature primary human cultured mast cells (HCMC) were derived from peripheral blood CD34+ progenitors and the modulation of their activation by soluble and plate-bound immobilized hOPN were examined by studying their release of inflammatory mediators (histamine, IL-5, IL-8, TNF-α, and VEGF) and matrix adhesion following stimulation by anti-IgE. Immobilized hOPN enhanced the adhesion, but suppressed the release of IL-5, IL-8, and TNF-α of anti-IgE-activated HCMC while soluble hOPN failed to demonstrate any significant effects. By employing cyclic RGD peptide and neutralizing antibodies against different classes of integrin and CD44, we demonstrated that the interaction of immobilized hOPN and HCMC was mediated by the RGD domain of hOPN and integrin but not CD44 on HCMC. Our results suggest that immobilized hOPN anchored to extracellular matrix can regulate adaptive immunity in humans by retaining mast cells at the site of inflammation and suppressing anti-IgE-induced cytokine release from HCMC.
Collapse
Affiliation(s)
- Chun Wai Ng
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Issan Yee San Tam
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Sze Wing Sam
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yangyang Yu
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,Department of Physiology, Shenzhen University Health Science Center, Shenzhen, China
| | - Hang Yung Alaster Lau
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
18
|
Lansdon LA, Darbro BW, Petrin AL, Hulstrand AM, Standley JM, Brouillette RB, Long A, Mansilla MA, Cornell RA, Murray JC, Houston DW, Manak JR. Identification of Isthmin 1 as a Novel Clefting and Craniofacial Patterning Gene in Humans. Genetics 2018; 208:283-296. [PMID: 29162626 PMCID: PMC5753863 DOI: 10.1534/genetics.117.300535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/20/2017] [Indexed: 12/26/2022] Open
Abstract
Orofacial clefts are one of the most common birth defects, affecting 1-2 per 1000 births, and have a complex etiology. High-resolution array-based comparative genomic hybridization has increased the ability to detect copy number variants (CNVs) that can be causative for complex diseases such as cleft lip and/or palate. Utilizing this technique on 97 nonsyndromic cleft lip and palate cases and 43 cases with cleft palate only, we identified a heterozygous deletion of Isthmin 1 in one affected case, as well as a deletion in a second case that removes putative 3' regulatory information. Isthmin 1 is a strong candidate for clefting, as it is expressed in orofacial structures derived from the first branchial arch and is also in the same "synexpression group" as fibroblast growth factor 8 and sprouty RTK signaling antagonist 1a and 2, all of which have been associated with clefting. CNVs affecting Isthmin 1 are exceedingly rare in control populations, and Isthmin 1 scores as a likely haploinsufficiency locus. Confirming its role in craniofacial development, knockdown or clustered randomly interspaced short palindromic repeats/Cas9-generated mutation of isthmin 1 in Xenopus laevis resulted in mild to severe craniofacial dysmorphologies, with several individuals presenting with median clefts. Moreover, knockdown of isthmin 1 produced decreased expression of LIM homeobox 8, itself a gene associated with clefting, in regions of the face that pattern the maxilla. Our study demonstrates a successful pipeline from CNV identification of a candidate gene to functional validation in a vertebrate model system, and reveals Isthmin 1 as both a new human clefting locus as well as a key craniofacial patterning gene.
Collapse
Affiliation(s)
- Lisa A Lansdon
- Department of Pediatrics
- Department of Biology
- Interdisciplinary Graduate Program in Genetics
| | - Benjamin W Darbro
- Department of Pediatrics
- Interdisciplinary Graduate Program in Genetics
| | - Aline L Petrin
- Department of Pediatrics
- College of Dentistry, University of Iowa, Iowa 52242 and
| | | | | | | | | | | | - Robert A Cornell
- Interdisciplinary Graduate Program in Genetics
- Department of Anatomy and Cell Biology, and
| | - Jeffrey C Murray
- Department of Pediatrics
- Department of Biology
- Department of Anatomy and Cell Biology, and
- Interdisciplinary Graduate Program in Genetics
- College of Dentistry, University of Iowa, Iowa 52242 and
| | | | - J Robert Manak
- Department of Pediatrics,
- Department of Biology
- Interdisciplinary Graduate Program in Genetics
| |
Collapse
|
19
|
Removal of ligand-bound liposomes from cell surfaces by microbubbles exposed to ultrasound. J Biol Phys 2017; 43:493-510. [PMID: 29124623 DOI: 10.1007/s10867-017-9465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 08/16/2017] [Indexed: 10/18/2022] Open
Abstract
Gas-filled microbubbles attached to cell surfaces can interact with focused ultrasound to create microstreaming of nearby fluid. We directly observed the ultrasound/microbubble interaction and documented that under certain conditions fluorescent particles that were attached to the surface of live cells could be removed. Fluorescently labeled liposomes that were larger than 500 nm in diameter were attached to the surface of endothelial cells using cRGD targeting to αvβ3 integrin. Microbubbles were attached to the surface of the cells through electrostatic interactions. Images taken before and after the ultrasound exposure were compared to document the effects on the liposomes. When exposed to ultrasound with peak negative pressure of 0.8 MPa, single microbubbles and groups of isolated microbubbles were observed to remove targeted liposomes from the cell surface. Liposomes were removed from a region on the cell surface that averaged 33.1 μm in diameter. The maximum distance between a single microbubble and a detached liposome was 34.5 μm. Single microbubbles were shown to be able to remove liposomes from over half the surface of a cell. The distance over which liposomes were removed was significantly dependent on the resting diameter of the microbubble. Clusters of adjoining microbubbles were not seen to remove liposomes. These observations demonstrate that the fluid shear forces generated by the ultrasound/microbubble interaction can remove liposomes from the surfaces of cells over distances that are greater than the diameter of the microbubble.
Collapse
|
20
|
Desai BS, Monahan AJ, Carvey PM, Hendey B. Blood–Brain Barrier Pathology in Alzheimer's and Parkinson's Disease: Implications for Drug Therapy. Cell Transplant 2017; 16:285-99. [PMID: 17503739 DOI: 10.3727/000000007783464731] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The blood–brain barrier (BBB) is a tightly regulated barrier in the central nervous system. Though the BBB is thought to be intact during neurodegenerative diseases such as Alzheimer's (AD) and Parkinson's disease (PD), recent evidence argues otherwise. Dysfunction of the BBB may be involved in disease progression, eliciting of peripheral immune response, and, most importantly, altered drug efficacy. In this review, we will give a brief overview of the BBB, its components, and their functions. We will critically evaluate the current literature in AD and PD BBB pathology resulting from insult, neuroinflammation, and neurodegeneration. Specifically, we will discuss alterations in tight junction, transport and endothelial cell surface proteins, and vascular density changes, all of which result in altered permeability. Finally, we will discuss the implications of BBB dysfunction in current and future therapeutics. Developing a better appreciation of BBB dysfunction in AD and PD may not only provide novel strategies in treatment, but will prove an interesting milestone in understanding neurodegenerative disease etiology and progression.
Collapse
Affiliation(s)
- Brinda S Desai
- Department of Pharmacology, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
21
|
Zabala-Uncilla N, Miranda JI, Laso A, Fernández X, Ganboa JI, Palomo C. Linear and Cyclic Depsipeptidomimetics with β-Lactam Cores: A Class of New αvβ3Integrin Receptor Inhibitors. Chembiochem 2017; 18:654-665. [DOI: 10.1002/cbic.201600642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Nerea Zabala-Uncilla
- Departamento de Química Orgánica-I; Facultad de Química; Universidad del País Vasco UPV/EHU; Paseo Manuel Lardizabal-3 20018 San Sebastian Spain
| | - José I. Miranda
- SGIKer NMR Facility; Universidad del País Vasco UPV/EHU; Joxe Mari Korta R&D Center; Avenida Tolosa-72 20018 San Sebastian Spain
| | - Antonio Laso
- Genetadi Biotech A. G.; Edificio 502 Parque Tecnológico de Bizkaia 48160 Derio Spain
| | - Xavier Fernández
- Genetadi Biotech A. G.; Edificio 502 Parque Tecnológico de Bizkaia 48160 Derio Spain
| | - Jose I. Ganboa
- Departamento de Química Orgánica-I; Facultad de Química; Universidad del País Vasco UPV/EHU; Paseo Manuel Lardizabal-3 20018 San Sebastian Spain
| | - Claudio Palomo
- Departamento de Química Orgánica-I; Facultad de Química; Universidad del País Vasco UPV/EHU; Paseo Manuel Lardizabal-3 20018 San Sebastian Spain
| |
Collapse
|
22
|
Ansa-Addo EA, Thaxton J, Hong F, Wu BX, Zhang Y, Fugle CW, Metelli A, Riesenberg B, Williams K, Gewirth DT, Chiosis G, Liu B, Li Z. Clients and Oncogenic Roles of Molecular Chaperone gp96/grp94. Curr Top Med Chem 2017; 16:2765-78. [PMID: 27072698 DOI: 10.2174/1568026616666160413141613] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 09/07/2015] [Accepted: 01/17/2016] [Indexed: 12/18/2022]
Abstract
As an endoplasmic reticulum heat shock protein (HSP) 90 paralogue, glycoprotein (gp) 96 possesses immunological properties by chaperoning antigenic peptides for activation of T cells. Genetic studies in the last decade have unveiled that gp96 is also an essential master chaperone for multiple receptors and secreting proteins including Toll-like receptors (TLRs), integrins, the Wnt coreceptor, Low Density Lipoprotein Receptor-Related Protein 6 (LRP6), the latent TGFβ docking receptor, Glycoprotein A Repetitions Predominant (GARP), Glycoprotein (GP) Ib and insulin-like growth factors (IGF). Clinically, elevated expression of gp96 in a variety of cancers correlates with the advanced stage and poor survival of cancer patients. Recent preclinical studies have also uncovered that gp96 expression is closely linked to cancer progression in multiple myeloma, hepatocellular carcinoma, breast cancer and inflammation-associated colon cancer. Thus, gp96 is an attractive therapeutic target for cancer treatment. The chaperone function of gp96 depends on its ATPase domain, which is structurally distinct from other HSP90 members, and thus favors the design of highly selective gp96-targeted inhibitors against cancer. We herein discuss the strategically important oncogenic clients of gp96 and their underlying biology. The roles of cell-intrinsic gp96 in T cell biology are also discussed, in part because it offers another opportunity of cancer therapy by manipulating levels of gp96 in T cells to enhance host immune defense.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Zihai Li
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29466, USA.
| |
Collapse
|
23
|
Gopal S, Veracini L, Grall D, Butori C, Schaub S, Audebert S, Camoin L, Baudelet E, Radwanska A, Beghelli-de la Forest Divonne S, Violette SM, Weinreb PH, Rekima S, Ilie M, Sudaka A, Hofman P, Van Obberghen-Schilling E. Fibronectin-guided migration of carcinoma collectives. Nat Commun 2017; 8:14105. [PMID: 28102238 PMCID: PMC5253696 DOI: 10.1038/ncomms14105] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 11/29/2016] [Indexed: 12/14/2022] Open
Abstract
Functional interplay between tumour cells and their neoplastic extracellular matrix plays a decisive role in malignant progression of carcinomas. Here we provide a comprehensive data set of the human HNSCC-associated fibroblast matrisome. Although much attention has been paid to the deposit of collagen, we identify oncofetal fibronectin (FN) as a major and obligate component of the matrix assembled by stromal fibroblasts from head and neck squamous cell carcinomas (HNSCC). FN overexpression in tumours from 435 patients corresponds to an independent unfavourable prognostic indicator. We show that migration of carcinoma collectives on fibrillar FN-rich matrices is achieved through αvβ6 and α9β1 engagement, rather than α5β1. Moreover, αvβ6-driven migration occurs independently of latent TGF-β activation and Smad-dependent signalling in tumour epithelial cells. These results provide insights into the adhesion-dependent events at the tumour–stroma interface that govern the collective mode of migration adopted by carcinoma cells to invade surrounding stroma in HNSCC. Tumour microenvironment influences the migration of cancer cells. Here the authors analyse the proteomic constitution of the extracellular matrix and identify a role for fibronectin in regulating the collective migration of squamous cell carcinoma cells.
Collapse
Affiliation(s)
- Sandeep Gopal
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | - Laurence Veracini
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | - Dominique Grall
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | - Catherine Butori
- Université Côte d'Azur, Laboratoire de Pathologie Clinique et Expérimentale, Biobank [BB-0033-00025] CHU Nice-Pasteur, 06001 Nice, France
| | - Sébastien Schaub
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | - Stéphane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Luc Camoin
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Emilie Baudelet
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille Protéomique, Marseille, France
| | - Agata Radwanska
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | | | | | | | - Samah Rekima
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France
| | - Marius Ilie
- Université Côte d'Azur, Laboratoire de Pathologie Clinique et Expérimentale, Biobank [BB-0033-00025] CHU Nice-Pasteur, 06001 Nice, France
| | - Anne Sudaka
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France.,Centre Antoine Lacassagne, 06189 Nice, France
| | - Paul Hofman
- Université Côte d'Azur, Laboratoire de Pathologie Clinique et Expérimentale, Biobank [BB-0033-00025] CHU Nice-Pasteur, 06001 Nice, France
| | - Ellen Van Obberghen-Schilling
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose (iBV), Parc Valrose, 06100 Nice, France.,Centre Antoine Lacassagne, 06189 Nice, France
| |
Collapse
|
24
|
Jiang N, Cui Y, Liu J, Zhu X, Wu H, Yang Z, Ke Z. Multidimensional Roles of Collagen Triple Helix Repeat Containing 1 (CTHRC1) in Malignant Cancers. J Cancer 2016; 7:2213-2220. [PMID: 27994657 PMCID: PMC5166530 DOI: 10.7150/jca.16539] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/04/2016] [Indexed: 12/12/2022] Open
Abstract
Tumor is one of the principal diseases that seriously threaten human health. Insight into sensitive cancer markers may open a new avenue for the early diagnosis and treatment of this disease. CTHRC1 has been identified as a cancer-related gene. It is a secretory glycoprotein that possesses multidimensional roles associated with wound repair, bone remodeling, hepatocytes fibrosis, adipose tissue formation, and so on. Our previous studies and numerous reports from other researchers have revealed that the ascended expression of CTHRC1 tends to go hand in hand with tumorigenesis, proliferation, invasion and metastasis in various human malignancies through a series of molecular mechanisms and signaling pathways. However, the detailed pathogenic mechanisms of CTHRC1 overexpression in human malignant cancers are not yet clear. Here, we shall focus our description on the functions, expression profile in several representative malignant tumors and a number of molecular mechanisms and signaling pathways involved with CTHRC1. This introductory discussion of CTHRC1 will serve as a reference for further research in understanding this intriguing cancer-related protein.
Collapse
Affiliation(s)
- Neng Jiang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| | - YongMei Cui
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| | - JunXiu Liu
- Department of Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| | - XiaoLin Zhu
- Department of Otolaryngology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Province Guangdong, P.R. China
| | - Hui Wu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| | - Zheng Yang
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| | - ZunFu Ke
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Province Guangdong, P.R. China
| |
Collapse
|
25
|
Xu AP, Yang PP, Yang C, Gao YJ, Zhao XX, Luo Q, Li XD, Li LZ, Wang L, Wang H. Bio-inspired metal ions regulate the structure evolution of self-assembled peptide-based nanoparticles. NANOSCALE 2016; 8:14078-83. [PMID: 27387919 DOI: 10.1039/c6nr03580a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We report an assembly and transformation process of a supramolecular module, BP-KLVFF-RGD (BKR) in solution and on specific living cell surfaces for imaging and treatment. The BKR self-assembled into nanoparticles, which further transformed into nanofibers in situ induced by coordination with Ca(2+) ions.
Collapse
Affiliation(s)
- An-Ping Xu
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, South-Central University for Nationalities, 182 Minyuan Road, Hongshan District, Wuhan, Hubei Province, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ben-Mabrouk H, Zouari-Kessentini R, Montassar F, Koubaa ZA, Messaadi E, Guillonneau X, ElAyeb M, Srairi-Abid N, Luis J, Micheau O, Marrakchi N. CC5 and CC8, two homologous disintegrins from Cerastes cerastes venom, inhibit in vitro and ex vivo angiogenesis. Int J Biol Macromol 2016; 86:670-80. [DOI: 10.1016/j.ijbiomac.2016.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/26/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
|
27
|
Cheng W, Feng F, Ma C, Wang H. The effect of antagonizing RGD-binding integrin activity in papillary thyroid cancer cell lines. Onco Targets Ther 2016; 9:1415-23. [PMID: 27042110 PMCID: PMC4795569 DOI: 10.2147/ott.s99166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Patients with papillary thyroid cancer (PTC) generally have good prognosis, but inoperable and radioactive iodine–refractory PTC still poses significant clinical challenges due to lack of effective treatment and higher mortality rates. Given the important role of integrins in multiple steps of tumor development, integrin-targeting therapy could be an effective strategy for PTC therapy. In this study, we investigated the antitumor effect of antagonizing Arg-Gly-Asp (RGD)-binding integrin activity in several PTC cell lines. Two RGD-binding integrin heterodimers αvβ3 and αvβ5 were first determined with fluorescence-activated cell sorting (FACS) and immunofluorescence assay. Cell proliferation and apoptosis were examined by Cell Counting Kit-8 assay and FACS, respectively. Cell migration and invasion were determined by transwell assays. All three PTC cell lines examined (BCPAP, K1, and TPC1) showed a moderate-to-high expression of αvβ3 and αvβ5 (P<0.05). Antagonizing the two heterodimers with the RGD-containing antagonist showed moderate inhibitory effect on cell viability of K1 and BCPAP cells, while the inhibitory effect was more significant in TPC1 cells. Similarly, the apoptotic effect induced by antagonizing αvβ3 and αvβ5 was much stronger in TPC1 cells than in BCPAP and K1 cells. Cell migration and invasion were significantly inhibited by αvβ3 and αvβ5 antagonism in all three PTC cell lines. Our results suggested that the demonstrated expression of RGD-binding integrin on PTC cells provides the possibility of integrin-targeting treatment in PTC. The strong apoptotic effect observed in TPC1 cells indicated that a subgroup of PTC patients may benefit from the cytotoxic effect of RGD-binding integrin antagonism, while the strong inhibitory effect on migration and invasion in all three PTC cells by antagonizing αvβ3 and αvβ5 showed there is an exciting possibility that targeting RGD-binding integrin may serve a potential therapeutic approach for metastatic PTC patients.
Collapse
Affiliation(s)
- Weiwei Cheng
- Department of Nuclear Medicine, Shanghai Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fang Feng
- Department of Nuclear Medicine, Shanghai Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Chao Ma
- Department of Nuclear Medicine, Shanghai Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hui Wang
- Department of Nuclear Medicine, Shanghai Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
28
|
García JR, Clark AY, García AJ. Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects. J Biomed Mater Res A 2016; 104:889-900. [PMID: 26662727 DOI: 10.1002/jbm.a.35626] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/26/2015] [Accepted: 12/10/2015] [Indexed: 02/03/2023]
Abstract
Vascularization of bone defects is considered a crucial component to the successful regeneration of large bone defects. Although vascular endothelial growth factor (VEGF) has been delivered to critical-size bone defect models to augment blood vessel infiltration into the defect area, its potential to increase bone repair remains ambiguous. In this study, we investigated whether integrin-specific biomaterials modulate the effects of VEGF on bone regeneration. We engineered protease-degradable, VEGF-loaded poly(ethylene glycol) (PEG) hydrogels functionalized with either a triple-helical, α2 β1 integrin-specific peptide GGYGGGP(GPP)5 GFOGER(GPP)5 GPC (GFOGER) or an αv β3 integrin-targeting peptide GRGDSPC (RGD). Covalent incorporation of VEGF into the PEG hydrogel allowed for protease degradation-dependent release of the protein while maintaining VEGF bioactivity. When applied to critical-size segmental defects in the murine radius, GFOGER-functionalized VEGF-free hydrogels exhibited significantly increased vascular volume and density and resulted in a larger number of thicker blood vessels compared to RGD-functionalized VEGF-free hydrogels. VEGF-loaded RGD hydrogels increased vascularization compared to VEGF-free RGD hydrogels, but the levels of vascularization for these VEGF-containing RGD hydrogels were similar to those of VEGF-free GFOGER hydrogels. VEGF transiently increased bone regeneration in RGD hydrogels but had no effect at later time points. In GFOGER hydrogels, VEGF did not show an effect on bone regeneration. However, VEGF-free GFOGER hydrogels resulted in increased bone regeneration compared to VEGF-free RGD hydrogels. These findings demonstrate the importance of integrin-specificity in engineering constructs for vascularization and associated bone regeneration.
Collapse
Affiliation(s)
- José R García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Amy Y Clark
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia.,Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
29
|
Avβ3 integrin: Pathogenetic role in osteotropic tumors. Crit Rev Oncol Hematol 2015; 96:183-93. [PMID: 26126493 DOI: 10.1016/j.critrevonc.2015.05.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 04/30/2015] [Accepted: 05/20/2015] [Indexed: 12/21/2022] Open
Abstract
The interplay of cancer cells and accessory cells within the microenvironment drives signals regulating the proliferation, migration and skeleton colonization. Osteotropism of tumor cells depends on chemokine activation, production of soluble factors and defective gene expression that cooperate within the metastatic niche to the bone resorbing functions of osteoclasts. Adhesion of cancer cells to the extracellular matrix is regulated by integrins as αvβ3 that enhances their invasiveness, pro-tumor angiogenesis and skeleton invasion. Therefore, αvβ3 signaling is implicated in enhancing osteotropism of breast and prostate cancers as well as of multiple myeloma. Targeting of αvβ3 has been adopted to restrain the tumor progression in several cancer models leading to improvement of overall survival as effect of the reduction of both tumor burden and osteotropism by malignant cells. Here, we review both the role of αvβ3 in malignant osteoclastogenesis and its potential targeting to restrain the bone colonization by skeleton invading cancers.
Collapse
|
30
|
Capasso D, de Paola I, Liguoro A, Del Gatto A, Di Gaetano S, Guarnieri D, Saviano M, Zaccaro L. RGDechi-hCit: αvβ3 selective pro-apoptotic peptide as potential carrier for drug delivery into melanoma metastatic cells. PLoS One 2014; 9:e106441. [PMID: 25248000 PMCID: PMC4172472 DOI: 10.1371/journal.pone.0106441] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023] Open
Abstract
αvβ3 integrin is an important tumor marker widely expressed on the surface of cancer cells. Recently, we reported some biological features of RGDechi-hCit, an αvβ3 selective peptide antagonist. In the present work, we mainly investigated the pro-apoptotic activity of the molecule and its ability to penetrate the membrane of WM266 cells, human malignant melanoma cells expressing high levels of αvβ3 integrin. For the first time we demonstrated the pro-apoptotic effect and the ability of RGDechi-hCit to enter into cell overexpressing αvβ3 integrin mainly by clathrin- and caveolin-mediated endocytosis. Furthermore, we deepened and confirmed the selectivity, anti-adhesion, and anti-proliferative features of the peptide. Altogether these experiments give insight into the biological behavior of RGDechi-hCit and have important implications for the employment of the peptide as a new selective carrier to deliver drugs into the cell and as a therapeutic and diagnostic tool for metastatic melanoma. Moreover, since the peptide shows a pro-apoptotic effect, a great perspective could be the development of a new class of selective systems containing RGDechi-hCit and pro-apoptotic molecules or other therapeutic agents to attain a synergic action.
Collapse
Affiliation(s)
- Domenica Capasso
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Ivan de Paola
- Institute of Biostructures and Bioimaging -CNR, Naples, Italy
| | | | | | | | - Daniela Guarnieri
- Center for Advanced Biomaterials for Health Care @ CRIB- Italian Institute of Technology, Naples, Italy
| | | | - Laura Zaccaro
- Institute of Biostructures and Bioimaging -CNR, Naples, Italy
- * E-mail:
| |
Collapse
|
31
|
Tameda M, Sugimoto K, Shiraki K, Yamamoto N, Okamoto R, Usui M, Ito M, Takei Y, Nobori T, Kojima T, Suzuki H, Uchida M, Uchida K. Collagen triple helix repeat containing 1 is overexpressed in hepatocellular carcinoma and promotes cell proliferation and motility. Int J Oncol 2014; 45:541-8. [PMID: 24841500 PMCID: PMC4091966 DOI: 10.3892/ijo.2014.2445] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 03/17/2014] [Indexed: 12/24/2022] Open
Abstract
Although several therapeutic options are available for hepatocellular carcinoma (HCC), the outcome is still very poor. One reason is the complexity of signal transduction in the pathogenesis of HCC. The aim of this study was to identify new HCC-related genes and to investigate the functions of these genes in the pathogenesis and progression of HCC. Whole genomes of 15 surgically resected HCC specimens were examined for copy number alterations with comparative genomic hybridization. Gene expression was compared between HCC and normal liver tissues. The roles of the new genes in the progression of HCC were studied using cultured cell lines. Copy number gain in chromosome 8q was detected in 53% of HCC tissues examined. The gene that coded for collagen triple helix repeat containing 1 (CTHRC1), located at chromosome 8q22.3, was overexpressed in HCC compared with normal or liver cirrhosis tissues and identified as a new HCC-related gene. CTHRC1 deletion with short hairpin RNA significantly reduced proliferation, migration and invasion of HepG2 and Huh7 cells. In addition, mRNA of integrins β-2 and β-3 was downregulated, with deletion of CTHRC1 in these cells. Immunohistochemical staining on resected HCC tissues showing positive staining areas for CTHRC1 was significantly greater in poorly-differentiated HCC compared with well-differentiated HCC. Moreover, some cases showed strong staining for CTHRC1 in invasive areas of HCC. CTHRC1 has the potential to be a new biomarker for the aggressive HCC, and to be a new therapeutic target in treating HCC.
Collapse
Affiliation(s)
- Masahiko Tameda
- First Department of Internal Medicine, Mie University School of Medicine, Tsu 514-8507, Japan
| | - Kazushi Sugimoto
- First Department of Internal Medicine, Mie University School of Medicine, Tsu 514-8507, Japan
| | - Katsuya Shiraki
- First Department of Internal Medicine, Mie University School of Medicine, Tsu 514-8507, Japan
| | - Norihiko Yamamoto
- First Department of Internal Medicine, Mie University School of Medicine, Tsu 514-8507, Japan
| | - Ryuji Okamoto
- First Department of Internal Medicine, Mie University School of Medicine, Tsu 514-8507, Japan
| | - Masanobu Usui
- Department of Hepatobiliary Pancreatic and Transplant Surgery, Mie University School of Medicine, Tsu 514-8507, Japan
| | - Masaaki Ito
- First Department of Internal Medicine, Mie University School of Medicine, Tsu 514-8507, Japan
| | - Yoshiyuki Takei
- Department of Gastroenterology and Hepatology, Mie University School of Medicine, Tsu 514-8507, Japan
| | - Tsutomu Nobori
- Department of Molecular and Laboratory Medicine, Mie University School of Medicine, Tsu 514-8507, Japan
| | - Takahiro Kojima
- Department of Molecular Biological Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | | | | | - Kazuhiko Uchida
- Department of Molecular Biological Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| |
Collapse
|
32
|
Synthesis and activity of tumor-homing peptide iRGD and histone deacetylase inhibitor valproic acid conjugate. Bioorg Med Chem Lett 2014; 24:1928-33. [PMID: 24656564 DOI: 10.1016/j.bmcl.2014.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 12/28/2022]
Abstract
In this Letter, we present a concise strategy to prepare a conjugate of the tumor homing peptide iRGD and histone deacetylase inhibitor valproic acid, VPA-GFLG-iRGD. The conjugate VPA-GFLG-iRGD and a mixture of VPA and GFLG-iRGD have shown similar cytotoxicity against DU-145 prostate cancer cells. However, the treatment of DU-145 cells with conjugate VPA-GFLG-iRGD resulted in a decreased percentage of cells in the G2 phase, whereas the exposure of a mixture of VPA and GFLG-iRGD led to an increased percentage of cells in the G2 phase. We also found that GFLG-iRGD possessed cytotoxicity at the tested concentrations.
Collapse
|
33
|
Sheldrake HM, Patterson LH. Strategies to inhibit tumor associated integrin receptors: rationale for dual and multi-antagonists. J Med Chem 2014; 57:6301-15. [PMID: 24568695 DOI: 10.1021/jm5000547] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The integrins are a family of 24 heterodimeric transmembrane cell surface receptors. Involvement in cell attachment to the extracellular matrix, motility, and proliferation identifies integrins as therapeutic targets in cancer and associated conditions: thrombosis, angiogenesis, and osteoporosis. The most reported strategy for drug development is synthesis of an agent that is highly selective for a single integrin receptor. However, the ability of cancer cells to change their integrin repertoire in response to drug treatment renders this approach vulnerable to the development of resistance and paradoxical promotion of tumor growth. Here, we review progress toward development of antagonists targeting two or more members of the Arg-Gly-Asp (RGD) binding integrins, notably αvβ3, αvβ5, αvβ6, αvβ8, α5β1, and αIIbβ3, as anticancer therapeutics.
Collapse
Affiliation(s)
- Helen M Sheldrake
- Institute of Cancer Therapeutics, University of Bradford , Bradford, BD7 1DP, U.K
| | | |
Collapse
|
34
|
Integrin inhibitor suppresses bevacizumab-induced glioma invasion. Transl Oncol 2014; 7:292-302.e1. [PMID: 24704537 PMCID: PMC4101347 DOI: 10.1016/j.tranon.2014.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/03/2014] [Accepted: 02/10/2014] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma is known to secrete high levels of vascular endothelial growth factor (VEGF), and clinical studies with bevacizumab, a monoclonal antibody to VEGF, have demonstrated convincing therapeutic benefits in glioblastoma patients. However, its induction of invasive proliferation has also been reported. We examined the effects of treatment with cilengitide, an integrin inhibitor, on bevacizumab-induced invasive changes in glioma. U87ΔEGFR cells were stereotactically injected into the brain of nude mice or rats. Five days after tumor implantation, cilengitide and bevacizumab were administered intraperitoneally three times a week. At 18 days after tumor implantation, the brains were removed and observed histopathologically. Next, the bevacizumab and cilengitide combination group was compared to the bevacizumab monotherapy group using microarray analysis. Bevacizumab treatment led to increased cell invasion in spite of decreased angiogenesis. When the rats were treated with a combination of bevacizumab and cilengitide, the depth of tumor invasion was significantly less than with only bevacizumab. Pathway analysis demonstrated the inhibition of invasion-associated genes such as the integrin-mediated cell adhesion pathway in the combination group. This study showed that the combination of bevacizumab with cilengitide exerted its anti-invasive effect. The elucidation of this mechanism might contribute to the treatment of bevacizumab-refractory glioma.
Collapse
|
35
|
Silginer M, Weller M, Ziegler U, Roth P. Integrin inhibition promotes atypical anoikis in glioma cells. Cell Death Dis 2014; 5:e1012. [PMID: 24457956 PMCID: PMC4040659 DOI: 10.1038/cddis.2013.543] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/29/2013] [Accepted: 12/02/2013] [Indexed: 01/24/2023]
Abstract
Integrins regulate cellular adhesion and transmit signals important for cell survival, proliferation and motility. They are expressed by glioma cells and may contribute to their malignant phenotype. Integrin inhibition may therefore represent a promising therapeutic strategy. GL-261 and SMA-560 glioma cells grown under standard conditions uniformly detached and formed large cell clusters after integrin gene silencing or pharmacological inhibition using EMD-121974, a synthetic Arg-Gly-Asp-motif peptide, or GLPG0187, a nonpeptidic integrin inhibitor. After 120 h, the clusters induced by integrin inhibition decayed and cells died. In contrast, when cells were cultured under stem cell (sphere) conditions, no disaggregation became apparent upon integrin inhibition, and cell death was not observed. As poly-HEMA-mediated detachment had similar effects on cell viability as integrin inhibition, we postulated that cell death may result from detachment alone, which was confirmed using various permissive and nonpermissive substrates. No surrogate markers of apoptosis were detected and electron microscopy confirmed that necrosis represents the dominant morphology of detachment-induced cell death. In addition, integrin inhibition resulted in the induction of autophagy that represents a survival signal. When integrins were inhibited in nonsphere glioma cells, the TGF-β pathway was strongly impaired, whereas no such effect was observed in glioma cells cultured under sphere conditions. Cell death induced by integrin inhibition was rescued by the addition of recombinant transforming growth factor-β (TGF-β) and accelerated by exposure to the TGF-β receptor inhibitor, SD-208. In summary, cell death following integrin inhibition is detachment mediated, represents an atypical form of anoikis involving necrosis as well as autophagy, and is modulated by TGF-β pathway activity.
Collapse
Affiliation(s)
- M Silginer
- Department of Neurology, Laboratory of Molecular Neuro-oncology, University Hospital Zurich, Zurich, Switzerland
| | - M Weller
- Department of Neurology, Laboratory of Molecular Neuro-oncology, University Hospital Zurich, Zurich, Switzerland
| | - U Ziegler
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - P Roth
- Department of Neurology, Laboratory of Molecular Neuro-oncology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Beaufort N, Corvazier E, Mlanaoindrou S, de Bentzmann S, Pidard D. Disruption of the endothelial barrier by proteases from the bacterial pathogen Pseudomonas aeruginosa: implication of matrilysis and receptor cleavage. PLoS One 2013; 8:e75708. [PMID: 24069438 PMCID: PMC3777978 DOI: 10.1371/journal.pone.0075708] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 08/19/2013] [Indexed: 12/19/2022] Open
Abstract
Within the vasculature, uncontrolled pericellular proteolysis can lead to disruption of cell-to-cell and cell-to-matrix interactions and subsequent detachment-induced cell apoptosis, or anoikis, contributing to inflammatory vascular diseases, with the endothelium as the major target. Most studies so far have focused on endogenous proteinases. However, during bloodstream infections, bacterial proteinases may also trigger endothelial anoikis. We thus investigated the potential apoptotic activity of the proteinases secreted by the haematotropic opportunistic pathogen, Pseudomonas aeruginosa, and particularly its predominant metalloproteinase, LasB. For this, we used the secretome of the LasB-expressing pseudomonal strain, PAO1, and compared it with that from the isogenic, LasB-deficient strain (PAO1∆lasB), as well as with purified LasB. Secretomes were tested for apoptotic activity on cultured human endothelial cells derived from the umbilical vein or from the cerebral microvasculature. We found that the PAO1 secretome readily induced endothelial cell anoikis, as did secretomes of LasB-positive clinical pseudomonal isolates, while the PAO1∆lasB secretome had only a limited impact on endothelial adherence and viability. Notably, purified LasB reproduced most of the effects of the LasB-containing secretomes, and these were drastically reduced in the presence of the LasB-selective inhibitor, phosphoramidon. A precocious and extensive LasB-dependent degradation of several proteins associated with the endothelial extracellular matrix, fibronectin and von Willebrand factor, was observed by immunofluorescence and/or immunoblotting analysis of cell cultures. Moreover, the PAO1 secretome, but not that from PAO1∆lasB, specifically induced rapid endoproteolysis of two major interendothelial junction components, VE-cadherin and occludin, as well as of the anti-anoikis, integrin-associated urokinase receptor, uPAR. Taken as a prototype for exogenous haemorrhagic proteinases, pseudomonal LasB thus appears to induce endothelial anoikis not only via matrilysis, as observed for many pro-apoptotic proteinases, but also via cleavage of some essential cell-to-cell and cell-to-matrix adhesion receptors implicated in the maintenance of the endothelial barrier.
Collapse
Affiliation(s)
- Nathalie Beaufort
- Inserm, U698, Paris, France
- Université Denis Diderot, UMR-S698, Paris, France
| | - Elisabeth Corvazier
- Inserm, U698, Paris, France
- Université Denis Diderot, UMR-S698, Paris, France
| | - Saouda Mlanaoindrou
- Inserm, U698, Paris, France
- Université Denis Diderot, UMR-S698, Paris, France
| | - Sophie de Bentzmann
- CNRS, UMR 7255-LISM, Marseille, France
- Aix-Marseille University, Marseille, France
| | - Dominique Pidard
- Inserm, U698, Paris, France
- Université Denis Diderot, UMR-S698, Paris, France
- * E-mail:
| |
Collapse
|
37
|
Serres E, Debarbieux F, Stanchi F, Maggiorella L, Grall D, Turchi L, Burel-Vandenbos F, Figarella-Branger D, Virolle T, Rougon G, Van Obberghen-Schilling E. Fibronectin expression in glioblastomas promotes cell cohesion, collective invasion of basement membrane in vitro and orthotopic tumor growth in mice. Oncogene 2013; 33:3451-62. [DOI: 10.1038/onc.2013.305] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 03/24/2013] [Accepted: 06/04/2013] [Indexed: 01/03/2023]
|
38
|
The integrin inhibitor cilengitide enhances the anti-glioma efficacy of vasculostatin-expressing oncolytic virus. Cancer Gene Ther 2013; 20:437-44. [PMID: 23827879 DOI: 10.1038/cgt.2013.38] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/02/2013] [Indexed: 01/03/2023]
Abstract
Oncolytic viral (OV) therapy has been considered as a promising treatment modality for brain tumors. Vasculostatin, the fragment of brain-specific angiogenesis inhibitor-1, shows anti-angiogenic activity against malignant gliomas. Previously, a vasculostatin-expressing oncolytic herpes simplex virus-1, Rapid Antiangiogenesis Mediated By Oncolytic virus (RAMBO), was reported to have a potent antitumor effect. Here, we investigated the therapeutic efficacy of RAMBO and cilengitide, an integrin inhibitor, combination therapy for malignant glioma. In vitro, tube formation was significantly decreased in RAMBO and cilengitide combination treatment compared with RAMBO or cilengitide monotherapy. Moreover, combination treatment induced a synergistic suppressive effect on endothelial cell migration compared with the control virus. RAMBO, combined with cilengitide, induced synergistic cytotoxicity on glioma cells. In the caspase-8 and -9 assays, the relative absorption of U87ΔEGFR cell clusters treated with cilengitide and with RAMBO was significantly higher than that of those treated with control. In addition, the activity of caspase 3/7 was significantly increased with combination therapy. In vivo, there was a significant increase in the survival of mice treated with combination therapy compared with RAMBO or cilengitide monotherapy. These results indicate that cilengitide enhanced vasculostatin-expressing OV therapy for malignant glioma and provide a rationale for designing future clinical trials combining these two agents.
Collapse
|
39
|
Onishi M, Kurozumi K, Ichikawa T, Michiue H, Fujii K, Ishida J, Shimazu Y, Chiocca EA, Kaur B, Date I. Gene expression profiling of the anti-glioma effect of Cilengitide. SPRINGERPLUS 2013; 2:160. [PMID: 23667810 PMCID: PMC3647089 DOI: 10.1186/2193-1801-2-160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 04/04/2013] [Indexed: 11/16/2022]
Abstract
Cilengitide (EMD121974), an inhibitor of the adhesive function of integrins, demonstrated preclinical efficacy against malignant glioma. It is speculated that cilengitide can inhibit tumor growth, invasion, and angiogenesis. However, the effects of cilengitide on these processes have not been sufficiently examined. In this study, we investigated the anti-glioma effect of cilengitide using DNA microarray analysis. U87ΔEGFR cells (human malignant glioma cell line) were used for this experiment. The cells were harvested after 16 h of cilengitide treatment, and mRNA was extracted. Gene expression and pathway analyses were performed using a DNA microarray (CodeLink™Human Whole Genome Bioarray). The expression of 265 genes was changed with cilengitide treatment. The expression of 214 genes was up-regulated by more than 4-fold and the expression of 51 genes was down-regulated by more than 4-fold compared to the controls. In pathway analysis, “apoptotic cleavage of cellular proteins” and “TNF receptor signaling pathway” were over-represented. Apoptotic-associated genes such as caspase 8 were up-regulated. Gene expression profiling revealed more detailed mechanism of the anti-glioma effect of cilengitide. Genes associated with apoptosis were over-represented following cilengitide treatment.
Collapse
Affiliation(s)
- Manabu Onishi
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558 Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dalmas Wilk DA, Scicchitano MS, Morel D. In vitro investigation of integrin-receptor antagonist-induced vascular toxicity in the mouse. Toxicol In Vitro 2013; 27:272-81. [DOI: 10.1016/j.tiv.2012.08.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/13/2012] [Accepted: 08/24/2012] [Indexed: 01/21/2023]
|
41
|
Georgoulis A, Havaki S, Drosos Y, Goutas N, Vlachodimitropoulos D, Aleporou-Marinou V, Kittas C, Marinos E, Kouloukoussa M. RGD binding to integrin alphavbeta3 affects cell motility and adhesion in primary human breast cancer cultures. Ultrastruct Pathol 2012. [PMID: 23181508 DOI: 10.3109/01913123.2012.681834] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Integrins mediate cell adhesion to the extracellular matrix. Integrin alphavbeta3 recognizes the RGD motif as a ligand-binding site and has been associated with high malignant potential in breast cancer cells, signaling the onset of widespread metastasis. In recent years, several antagonists of integrin alphavbeta3, including RGD peptides, have been used as potential anti-cancer agents. In the present work, the effect of the linear RGD hexapeptide GRGDSP was studied, for the first time, on breast tumor explants, as well as on well-spread human breast cancer cells from primary cultures, using the explant technique, to clarify the role of this peptide in the suppression of breast cancer cell migration. The results showed that incubation of breast tumor explants with RGD peptide at the beginning of culture development inhibited completely the migration of cancer cells out of the tissue fragment as revealed by electron microscopy. RGD incubation of well-spread breast cancer cells from primary culture resulted in rounding and shrinkage of the cells accompanied by altered distribution of integrin alphavbeta3 and concomitant F-actin cytoskeletal disorganization, as revealed by immunofluorescence. Electron immunocytochemistry showed aggregation of integrin alphavbeta3 at the cell periphery and its detection in noncoated vesicles. However, Western immunoblotting showed no change in beta3 subunit expression, despite the altered distribution of the integrin alphavbeta3. In light of the above, it appears that the RGD peptide plays an important role in the modulation of cell motility and in the perturbation of cell attachment affecting the malignant potential of breast cancer cells in primary cultures.
Collapse
Affiliation(s)
- Anastasios Georgoulis
- Laboratory of Histology and Embryology, Medical School, University of Athens, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li L, Yang J, Wang WW, Yao YC, Fang SH, Dai ZY, Hong HH, Yang X, Shuai XT, Gao GQ. Pigment epithelium-derived factor gene loaded in cRGD–PEG–PEI suppresses colorectal cancer growth by targeting endothelial cells. Int J Pharm 2012; 438:1-10. [DOI: 10.1016/j.ijpharm.2012.08.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/30/2012] [Accepted: 08/21/2012] [Indexed: 01/19/2023]
|
43
|
Chang MW, Lo JM, Juan HF, Chang HY, Chuang CY. Combination of RGD compound and low-dose paclitaxel induces apoptosis in human glioblastoma cells. PLoS One 2012; 7:e37935. [PMID: 22655084 PMCID: PMC3360022 DOI: 10.1371/journal.pone.0037935] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/26/2012] [Indexed: 12/01/2022] Open
Abstract
Background Integrins are a family of transmembrane adhesion proteins that mediate cell adhesion and intracellular signaling. Integrin-αvβ3 is expressed on the surface of human glioblastoma cells, and can be further induced by chemical stress. The Arg-Gly-Asp (RGD) motif-containing peptides are specifically bound to integrin-αvβ3, and to inhibit neovasculature underlying competition to normal extracellular matrix proteins. This study employed two types of RGD peptides, cyclic RGD (c(RGDyK)) and bi-cyclic RGD (E[c(RGDyK)]2) peptide, to human glioblastoma U87MG cells with combination of low dose Paclitaxel (PTX) pre-treatment to augment therapeutic activity for RGD peptide-induced apoptosis. Principal Findings Human glioblastoma U87MG cells were treated with RGD peptides in the absence or presence of initial exposure to low-dose 10 nM PTX. Results showed that integrin-αvβ3 expressing on the surface of U87MG cells was induced by 10 nM PTX pre-treatment for 12 hrs. Additionally, the U87MG cells pre-treated with PTX and followed by RGD peptides exhibited greater expression of caspases-3, -8 and -9 than those merely treated with single agent of PTX or RGD peptide. Furthermore, the caspase-3, -8 and -9 inhibitor presented significant protection against E[c(RGDyK)]2 peptide induced U87MG programmed cell death. The increased expression of PTX-induced integrin-αvβ3 was correlated with the enhanced apoptosis in U87MG cells. Conclusions This study provides a novel concept of targeting integrin-αvβ3 with RGD peptides in combination with low-dose PTX pre-treatment to improve efficiency in human glioblastoma treatment.
Collapse
Affiliation(s)
- Ming-Wei Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Jem-Mau Lo
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsueh-Fen Juan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
44
|
Differential response of arterial and venous endothelial cells to extracellular matrix is modulated by oxygen. Histochem Cell Biol 2012; 137:641-55. [PMID: 22294260 DOI: 10.1007/s00418-012-0917-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2012] [Indexed: 12/11/2022]
Abstract
Binding of endothelial cell (EC) integrins to extracellular-matrix (ECM) components is one of the key events to trigger intracellular signaling that will ultimately result in proper vascular development. Even within one tissue, the endothelial phenotype differs between arteries and veins. Here, we tested the hypothesis that anchorage dependent processes, such as proliferation, viability, survival and actin organization of venous (VEC) and arterial EC (AEC) differently depend on ECM proteins. Moreover,because of different oxygen tension in AEC and VEC, we tested oxygen as a co-modulator of ECM effects. Primary human placental VEC and AEC were grown in collagens I and IV, fibronectin, laminin, gelatin and uncoated plates and exposed to 12 and 21% oxygen. Our main findings revealed that VEC are more sensitive than AEC to changes in the ECM composition. Proliferation and survival of VEC, in contrast to AEC, were profoundly increased by the presence of collagen I and fibronectin when compared with gelatin or uncoated plates. These effects were reversed by inhibition of focal adhesion kinase (Fak) and modulated by oxygen. VEC were more susceptible to the oxygen dependent ECM effects than AEC. However, no differential ECM effect on actin organization was observed between the two cell types. These data provide first evidence that AEC and VEC from the same vascular loop respond differently to ECM and oxygen in a Fak-dependent manner.
Collapse
|
45
|
Belotti D, Foglieni C, Resovi A, Giavazzi R, Taraboletti G. Targeting angiogenesis with compounds from the extracellular matrix. Int J Biochem Cell Biol 2011; 43:1674-85. [DOI: 10.1016/j.biocel.2011.08.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/05/2011] [Accepted: 08/10/2011] [Indexed: 02/08/2023]
|
46
|
Aguzzi MS, D'Arcangelo D, Giampietri C, Capogrossi MC, Facchiano A. RAM, an RGDS analog, exerts potent anti-melanoma effects in vitro and in vivo. PLoS One 2011; 6:e25352. [PMID: 21984914 PMCID: PMC3184964 DOI: 10.1371/journal.pone.0025352] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 09/01/2011] [Indexed: 01/05/2023] Open
Abstract
Peptides containing the RGD sequence are under continuous investigation given their ability to control cell adhesion and apoptosis. Since small peptides are quickly metabolized and degraded in vivo, developing analogs resistant to serum-induced degradation is a challenging task. RGD analogs developed so far are known as molecules mostly inhibiting cell adhesion; this feature may reduce cell proliferation and tumor development but may not induce regression of tumors or metastases already formed. In the current study, carried out in melanoma in vitro and in vivo models, we show that RAM, an RGD-non-peptide Analog-Molecule, strongly inhibits cells adhesion onto plastic, vitronectin, fibronectin, laminin and von Willebrand Factor while it does not inhibit cell adhesion onto collagen IV, similarly to the RGDS template peptide. It also strongly inhibits in vitro cell proliferation, migration and DNA-synthesis, increases melanoma cells apoptosis and reduces survivin expression. All such effects were observed in collagen IV seeded cells, therefore are most likely independent from the anti adhesive properties. Further, RAM is more stable than the template RGDS; in fact it maintains its anti-proliferation and anti-adhesion effects after long serum exposure while RGDS almost completely loses its effects upon serum exposure. In a mouse metastatic melanoma in vivo model, increasing doses of RAM significantly reduce up to about 80% lung metastases development, while comparable doses of RGDS are less potent. In conclusion these data show that RAM is a potent inhibitor of melanoma growth in vitro, strongly reduces melanoma metastases development in vivo and represents a novel candidate for further in vivo investigations in the cancer treatment field.
Collapse
Affiliation(s)
- Maria Simona Aguzzi
- Laboratorio Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Daniela D'Arcangelo
- Laboratorio Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Claudia Giampietri
- D.A.H.F.M.O. Section of Histology & Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Maurizio C. Capogrossi
- Laboratorio Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Antonio Facchiano
- Laboratorio Patologia Vascolare, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
- * E-mail: ,
| |
Collapse
|
47
|
Hayashi S, Wang Z, Bryan J, Kobayashi C, Faccio R, Sandell LJ. The type II collagen N-propeptide, PIIBNP, inhibits cell survival and bone resorption of osteoclasts via integrin-mediated signaling. Bone 2011; 49:644-52. [PMID: 21708300 PMCID: PMC3166963 DOI: 10.1016/j.bone.2011.06.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Type IIB procollagen is characteristic of cartilage, comprising 50% of the extracellular matrix. The NH(2)-propeptide of type IIB collagen, PIIBNP, can kill tumor cells via binding to integrins α(V)β(3) and α(V)β(5). As osteoclasts rely on α(V)β(3) integrins for function in bone erosion, we sought to determine whether PIIBNP could inhibit osteoclast function. METHODS We undertook in vitro and in vivo experiments to evaluate both osteoblast and osteoclast functions in the presence of recombinant PIIBNP. Adhesion of osteoclasts to PIIBNP was analyzed by staining of attached cells with crystal violet. PIIBNP-induced cell death was evaluated by counting Trypan Blue stained cells. The mechanism of cell death was evaluated by DNA fragmentation, TUNEL staining and western blotting to detect cleaved caspases. To determine the role of α(V)β(3) integrin, osteoclasts were pretreated with α(V) or β(3) integrin specific siRNA before the treatment with PIIBNP. To explore PIIBNP function in vivo, a lipopolysaccharide-induced mouse calvaria lysis model was employed. RESULTS Osteoclasts adhered to PIIBNP via an RGD-mediated mechanism. When osteoclasts were plated on extracellular matrix proteins, PIIBNP induced apoptosis of osteoclasts via caspase 3/8 activation. Osteoblasts and macrophages were not killed. Reduction of α(V) or β(3) integrin levels on osteoclasts by siRNA reduced cell death in a dose-dependent manner. In vivo, PIIBNP could inhibit bone resorption. CONCLUSION We conclude that PIIBNP can inhibit osteoclast survival and bone resorption via signal transduction through the α(V)β(3) integrins. Because of this property and the cell specificity, we propose that PIIBNP may play a role in vivo in protecting cartilage from osteoclast invasion and also could be a new therapeutic strategy for decreasing bone loss.
Collapse
Affiliation(s)
- Shinya Hayashi
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhepeng Wang
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer Bryan
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Chikashi Kobayashi
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Roberta Faccio
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Linda J. Sandell
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
48
|
Patel A, Toia GV, Colletta K, Bradaric BD, Carvey PM, Hendey B. An angiogenic inhibitor, cyclic RGDfV, attenuates MPTP-induced dopamine neuron toxicity. Exp Neurol 2011; 231:160-70. [PMID: 21703263 DOI: 10.1016/j.expneurol.2011.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 05/23/2011] [Accepted: 06/07/2011] [Indexed: 12/17/2022]
Abstract
We previously demonstrated that several dopamine (DA) neurotoxins produced punctate areas of FITC-labeled albumin (FITC-LA) leakage in the substantia nigra and striatum suggesting blood brain barrier (BBB) dysfunction. Further, this leakage was co-localized with αvβ3 integrin up-regulation, a marker for angiogenesis. This suggested that the FITC-LA leakage might have been a result of angiogenesis. To assess the possible role of angiogenesis in DA neuron loss, we treated mice with 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP) and on the following day treated with cyRGDfV, a cyclic peptide that binds to integrin αvβ3 and prevents angiogenesis. Post-treatment for 3 days (b.i.d.) with cyRGDfV blocked the MPTP-induced upregulation of integrin β3 immunoreactivity (a marker for angiogenesis), leakage of FITC-LA into brain parenchyma (a marker for BBB disruption) as well as the down regulation of Zona Occludin-1 (ZO-1; a marker for tight junction integrity). In addition, cyRGDfV also completely prevented tyrosine hydroxylase immunoreactive cell loss (a marker for DA neurons) and markedly attenuated the up-regulation of activated microglia (Iba1 cell counts and morphology). These data suggest that cyRGDfV, and perhaps other anti-angiogenic drugs, are neuroprotective following acute MPTP treatment and may suggest that compensatory angiogenesis and BBB dysfunction may contribute to inflammation and DA neuron loss.
Collapse
Affiliation(s)
- Aditiben Patel
- Department of Pharmacology, Rush University, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
49
|
Beaufort N, Corvazier E, Hervieu A, Choqueux C, Dussiot M, Louedec L, Cady A, de Bentzmann S, Michel JB, Pidard D. The thermolysin-like metalloproteinase and virulence factor LasB from pathogenic Pseudomonas aeruginosa induces anoikis of human vascular cells. Cell Microbiol 2011; 13:1149-67. [DOI: 10.1111/j.1462-5822.2011.01606.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Isthmin exerts pro-survival and death-promoting effect on endothelial cells through alphavbeta5 integrin depending on its physical state. Cell Death Dis 2011; 2:e153. [PMID: 21544092 PMCID: PMC3122116 DOI: 10.1038/cddis.2011.37] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isthmin (ISM) is a 60 kDa secreted-angiogenesis inhibitor that suppresses tumor growth in mouse and disrupts vessel patterning in zebrafish embryos. It selectively binds to alphavbeta5 (αvβ5) integrin on the surface of endothelial cells (ECs), but the mechanism of its antiangiogenic action remains unknown. In this work, we establish that soluble ISM suppresses in vitro angiogenesis and induces EC apoptosis by interacting with its cell surface receptor αvβ5 integrin through a novel 'RKD' motif localized within its adhesion-associated domain in MUC4 and other proteins domain. ISM induces EC apoptosis through integrin-mediated death (IMD) by direct recruitment and activation of caspase-8 without causing anoikis. On the other hand, immobilized ISM loses its antiangiogenic function and instead promotes EC adhesion, survival and migration through αvβ5 integrin by activating focal adhesion kinase (FAK). ISM unexpectedly has both a pro-survival and death-promoting effect on ECs depending on its physical state. This dual function of a single antiangiogenic protein may impact its antiangiogenic efficacy in vivo.
Collapse
|