1
|
Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, Chen C, Wang A, Wang Y, Zhong J, Zhu Y, Wagstaff W, Haydon RC, Luu HH, Ho S, Lee MJ, Strelzow J, Reid RR, He TC. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis 2024; 11:101026. [PMID: 38292186 PMCID: PMC10825312 DOI: 10.1016/j.gendis.2023.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 03/18/2023] [Accepted: 04/12/2023] [Indexed: 02/01/2024] Open
Abstract
The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (β-catenin dependent) and non-canonical (β-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.
Collapse
Affiliation(s)
- Michael Yu
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Kevin Qin
- School of Medicine, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Jiamin Zhong
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Yi Zhu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Orthopaedic Surgery, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin Ho
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael J. Lee
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Lynch J, Troadec E, Fung TK, Gladysz K, Virely C, Lau PNI, Cheung N, Zeisig B, Wong JWH, Lopes M, Huang S, So CWE. Hematopoietic stem cell quiescence and DNA replication dynamics maintained by the resilient β-catenin/Hoxa9/Prmt1 axis. Blood 2024; 143:1586-1598. [PMID: 38211335 PMCID: PMC11103100 DOI: 10.1182/blood.2023022082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
ABSTRACT Maintenance of quiescence and DNA replication dynamics are 2 paradoxical requirements for the distinct states of dormant and active hematopoietic stem cells (HSCs), which are required to preserve the stem cell reservoir and replenish the blood cell system in response to hematopoietic stress, respectively. Here, we show that key self-renewal factors, β-catenin or Hoxa9, largely dispensable for HSC integrity, in fact, have dual functions in maintaining quiescence and enabling efficient DNA replication fork dynamics to preserve the functionality of hematopoietic stem and progenitor cells (HSPCs). Although β-catenin or Hoxa9 single knockout (KO) exhibited mostly normal hematopoiesis, their coinactivation led to severe hematopoietic defects stemmed from aberrant cell cycle, DNA replication, and damage in HSPCs. Mechanistically, β-catenin and Hoxa9 function in a compensatory manner to sustain key transcriptional programs that converge on the pivotal downstream target and epigenetic modifying enzyme, Prmt1, which protects the quiescent state and ensures an adequate supply of DNA replication and repair factors to maintain robust replication fork dynamics. Inactivation of Prmt1 phenocopied both cellular and molecular phenotypes of β-catenin/Hoxa9 combined KO, which at the same time could also be partially rescued by Prmt1 expression. The discovery of the highly resilient β-catenin/Hoxa9/Prmt1 axis in protecting both quiescence and DNA replication dynamics essential for HSCs at different key states provides not only novel mechanistic insights into their intricate regulation but also a potential tractable target for therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer Lynch
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Estelle Troadec
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Tsz Kan Fung
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
- Department of Haematological Medicine, King’s College Hospital, London, United Kingdom
| | - Kornelia Gladysz
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Clemence Virely
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Priscilla Nga Ieng Lau
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Ngai Cheung
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| | - Bernd Zeisig
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
- Department of Haematological Medicine, King’s College Hospital, London, United Kingdom
| | - Jason W. H. Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Suming Huang
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Chi Wai Eric So
- Leukaemia and Stem Cell Biology Group, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
- Department of Haematological Medicine, King’s College Hospital, London, United Kingdom
| |
Collapse
|
3
|
Xie Y, Xiang D, Hu X, Pakula H, Park ES, Chi J, Linn DE, Tao L, Li Z. Interplay of IGF1R and estrogen signaling regulates hematopoietic stem and progenitor cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.20.585808. [PMID: 38562745 PMCID: PMC10983897 DOI: 10.1101/2024.03.20.585808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Tissue stem cells often exhibit developmental stage-specific and sexually dimorphic properties, but the underlying mechanism remains largely elusive. By characterizing IGF1R signaling in hematopoietic cells, here we report that its disruption exerts sex-specific effects in adult hematopoietic stem and progenitor cells (HSPCs). Loss of IGF1R decreases the HSPC population in females but not in males, in part due to a reduction in HSPC proliferation induced by estrogen. In addition, the adult female microenvironment enhances engraftment of wild-type but not Igf1r-null HSPCs. In contrast, during gestation, when both female and male fetuses are exposed to placental estrogens, loss of IGF1R reduces the numbers of their fetal liver HSPCs regardless of sex. Collectively, these data support the interplay of IGF1R and estrogen pathways in HSPCs and suggest that the proliferation-promoting effect of estrogen on HSPCs is in part mediated via IGF1R signaling.
Collapse
Affiliation(s)
- Ying Xie
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dongxi Xiang
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Xin Hu
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Hubert Pakula
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Eun-Sil Park
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jiadong Chi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Douglas E Linn
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Luwei Tao
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Zhe Li
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
4
|
Cosgun KN, Jumaa H, Robinson ME, Kistner KM, Xu L, Xiao G, Chan LN, Lee J, Kume K, Leveille E, Fonseca-Arce D, Khanduja D, Ng HL, Feldhahn N, Song J, Chan WC, Chen J, Taketo MM, Kothari S, Davids MS, Schjerven H, Jellusova J, Müschen M. Targeted engagement of β-catenin-Ikaros complexes in refractory B-cell malignancies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532152. [PMID: 36993619 PMCID: PMC10054980 DOI: 10.1101/2023.03.13.532152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
UNLABELLED In most cell types, nuclear β-catenin functions as prominent oncogenic driver and pairs with TCF7-family factors for transcriptional activation of MYC. Surprisingly, B-lymphoid malignancies not only lacked expression and activating lesions of β-catenin but critically depended on GSK3β for effective β-catenin degradation. Our interactome studies in B-lymphoid tumors revealed that β-catenin formed repressive complexes with lymphoid-specific Ikaros factors at the expense of TCF7. Instead of MYC-activation, β-catenin was essential to enable Ikaros-mediated recruitment of nucleosome remodeling and deacetylation (NuRD) complexes for transcriptional repression of MYC. To leverage this previously unrecognized vulnerability of B-cell-specific repressive β-catenin-Ikaros-complexes in refractory B-cell malignancies, we examined GSK3β small molecule inhibitors to subvert β-catenin degradation. Clinically approved GSK3β-inhibitors that achieved favorable safety prof les at micromolar concentrations in clinical trials for neurological disorders and solid tumors were effective at low nanomolar concentrations in B-cell malignancies, induced massive accumulation of β-catenin, repression of MYC and acute cell death. Preclinical in vivo treatment experiments in patient-derived xenografts validated small molecule GSK3β-inhibitors for targeted engagement of lymphoid-specific β-catenin-Ikaros complexes as a novel strategy to overcome conventional mechanisms of drug-resistance in refractory malignancies. HIGHLIGHTS Unlike other cell lineages, B-cells express nuclear β-catenin protein at low baseline levels and depend on GSK3β for its degradation.In B-cells, β-catenin forms unique complexes with lymphoid-specific Ikaros factors and is required for Ikaros-mediated tumor suppression and assembly of repressive NuRD complexes. CRISPR-based knockin mutation of a single Ikaros-binding motif in a lymphoid MYC superenhancer region reversed β-catenin-dependent Myc repression and induction of cell death. The discovery of GSK3β-dependent degradation of β-catenin as unique B-lymphoid vulnerability provides a rationale to repurpose clinically approved GSK3β-inhibitors for the treatment of refractory B-cell malignancies. GRAPHICAL ABSTRACT Abundant nuclear β-cateninβ-catenin pairs with TCF7 factors for transcriptional activation of MYCB-cells rely on efficient degradation of β-catenin by GSK3βB-cell-specific expression of Ikaros factors Unique vulnerability in B-cell tumors: GSK3β-inhibitors induce nuclear accumulation of β-catenin.β-catenin pairs with B-cell-specific Ikaros factors for transcriptional repression of MYC.
Collapse
|
5
|
Hsieh HH, Yao H, Ma Y, Zhang Y, Xiao X, Stephens H, Wajahat N, Chung SS, Xu L, Xu J, Rampal RK, Huang LJS. Epo-IGF1R cross talk expands stress-specific progenitors in regenerative erythropoiesis and myeloproliferative neoplasm. Blood 2022; 140:2371-2384. [PMID: 36054916 PMCID: PMC9837451 DOI: 10.1182/blood.2022016741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/22/2022] [Indexed: 01/21/2023] Open
Abstract
We found that in regenerative erythropoiesis, the erythroid progenitor landscape is reshaped, and a previously undescribed progenitor population with colony-forming unit-erythroid (CFU-E) activity (stress CFU-E [sCFU-E]) is expanded markedly to restore the erythron. sCFU-E cells are targets of erythropoietin (Epo), and sCFU-E expansion requires signaling from the Epo receptor (EpoR) cytoplasmic tyrosines. Molecularly, Epo promotes sCFU-E expansion via JAK2- and STAT5-dependent expression of IRS2, thus engaging the progrowth signaling from the IGF1 receptor (IGF1R). Inhibition of IGF1R and IRS2 signaling impairs sCFU-E cell growth, whereas exogenous IRS2 expression rescues cell growth in sCFU-E expressing truncated EpoR-lacking cytoplasmic tyrosines. This sCFU-E pathway is the major pathway involved in erythrocytosis driven by the oncogenic JAK2 mutant JAK2(V617F) in myeloproliferative neoplasm. Inability to expand sCFU-E cells by truncated EpoR protects against JAK2(V617F)-driven erythrocytosis. In samples from patients with myeloproliferative neoplasm, the number of sCFU-E-like cells increases, and inhibition of IGR1R and IRS2 signaling blocks Epo-hypersensitive erythroid cell colony formation. In summary, we identified a new stress-specific erythroid progenitor cell population that links regenerative erythropoiesis to pathogenic erythrocytosis.
Collapse
Affiliation(s)
- Hsi-Hsien Hsieh
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Huiyu Yao
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Yue Ma
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Yuannyu Zhang
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX
| | - Xue Xiao
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX
| | - Helen Stephens
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Naureen Wajahat
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX
| | - Stephen S. Chung
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Lin Xu
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX
| | - Jian Xu
- Children’s Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, TX
| | - Raajit K. Rampal
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
6
|
TCF-1: a maverick in T cell development and function. Nat Immunol 2022; 23:671-678. [PMID: 35487986 PMCID: PMC9202512 DOI: 10.1038/s41590-022-01194-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/22/2022] [Indexed: 02/01/2023]
Abstract
The T cell-specific DNA-binding protein TCF-1 is a central regulator of T cell development and function along multiple stages and lineages. Because it interacts with β-catenin, TCF-1 has been classically viewed as a downstream effector of canonical Wnt signaling, although there is strong evidence for β-catenin-independent TCF-1 functions. TCF-1 co-binds accessible regulatory regions containing or lacking its conserved motif and cooperates with other nuclear factors to establish context-dependent epigenetic and transcription programs that are essential for T cell development and for regulating immune responses to infection, autoimmunity and cancer. Although it has mostly been associated with positive regulation of chromatin accessibility and gene expression, TCF-1 has the potential to reduce chromatin accessibility and thereby suppress gene expression. In addition, the binding of TCF-1 bends the DNA and affects the chromatin conformation genome wide. This Review discusses the current understanding of the multiple roles of TCF-1 in T cell development and function and their mechanistic underpinnings.
Collapse
|
7
|
Antoszewski M, Fournier N, Ruiz Buendía GA, Lourenco J, Liu Y, Sugrue T, Dubey C, Nkosi M, Pritchard CE, Huijbers IJ, Segat GC, Alonso-Moreno S, Serracanta E, Belver L, Ferrando AA, Ciriello G, Weng AP, Koch U, Radtke F. Tcf1 is essential for initiation of oncogenic Notch1-driven chromatin topology in T-ALL. Blood 2022; 139:2483-2498. [PMID: 35020836 PMCID: PMC9710489 DOI: 10.1182/blood.2021012077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 12/22/2021] [Indexed: 01/16/2023] Open
Abstract
NOTCH1 is a well-established lineage specifier for T cells and among the most frequently mutated genes throughout all subclasses of T cell acute lymphoblastic leukemia (T-ALL). How oncogenic NOTCH1 signaling launches a leukemia-prone chromatin landscape during T-ALL initiation is unknown. Here we demonstrate an essential role for the high-mobility-group transcription factor Tcf1 in orchestrating chromatin accessibility and topology, allowing aberrant Notch1 signaling to convey its oncogenic function. Although essential, Tcf1 is not sufficient to initiate leukemia. The formation of a leukemia-prone epigenetic landscape at the distal Notch1-regulated Myc enhancer, which is fundamental to this disease, is Tcf1-dependent and occurs within the earliest progenitor stage even before cells adopt a T lymphocyte or leukemic fate. Moreover, we discovered a unique evolutionarily conserved Tcf1-regulated enhancer element in the distal Myc-enhancer, which is important for the transition of preleukemic cells to full-blown disease.
Collapse
Affiliation(s)
- Mateusz Antoszewski
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Nadine Fournier
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Gustavo A. Ruiz Buendía
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Joao Lourenco
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Yuanlong Liu
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Tara Sugrue
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Botnar Research Centre for Child Health, University of Basel & ETH Zürich, Basel, Switzerland
| | - Christelle Dubey
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- INSELSPITAL, Universitätsspital Bern, Universitätsklinik für Thoraxchirurgie, Forschungsabteilung Thoraxchirurgie, Bern, Switzerland
| | - Marianne Nkosi
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Colin E.J. Pritchard
- Mouse Clinic for Cancer & Aging (MCCA)/Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ivo J. Huijbers
- Mouse Clinic for Cancer & Aging (MCCA)/Transgenic Core Facility, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Laura Belver
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
- Catalan Institute of Oncology-Immuno Procure, Barcelona, Spain
| | - Adolfo A. Ferrando
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY
| | - Giovanni Ciriello
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
- Department of Computational Biology, University of Lausanne (UNIL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | - Ute Koch
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), Lausanne, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| |
Collapse
|
8
|
Targeting β-catenin in acute myeloid leukaemia: past, present, and future perspectives. Biosci Rep 2022; 42:231097. [PMID: 35352805 PMCID: PMC9069440 DOI: 10.1042/bsr20211841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Acute myeloid leukaemia (AML) is an aggressive disease of the bone marrow with a poor prognosis. Evidence suggests long established chemotherapeutic regimens used to treat AML are reaching the limits of their efficacy, necessitating the urgent development of novel targeted therapies. Canonical Wnt signalling is an evolutionary conserved cascade heavily implicated in normal developmental and disease processes in humans. For over 15 years its been known that the central mediator of this pathway, β-catenin, is dysregulated in AML promoting the emergence, maintenance, and drug resistance of leukaemia stem cells. Yet, despite this knowledge, and subsequent studies demonstrating the therapeutic potential of targeting Wnt activity in haematological cancers, β-catenin inhibitors have not yet reached the clinic. The aim of this review is to summarise the current understanding regarding the role and mechanistic dysregulation of β-catenin in AML, and assess the therapeutic merit of pharmacologically targeting this molecule, drawing on lessons from other disease contexts.
Collapse
|
9
|
Canonical Wnt: a safeguard and threat for erythropoiesis. Blood Adv 2021; 5:3726-3735. [PMID: 34516644 DOI: 10.1182/bloodadvances.2021004845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/09/2021] [Indexed: 11/20/2022] Open
Abstract
Myeloid dysplastic syndrome (MDS) reflects a preleukemic bone marrow (BM) disorder with limited treatment options and poor disease survival. As only a minority of MDS patients are eligible for curative hematopoietic stem cell transplantation, there is an urgent need to develop alternative treatment options. Chronic activation of Wnt/β-catenin has been implicated to underlie MDS formation and recently assigned to drive MDS transformation to acute myeloid leukemia. Wnt/β-catenin signaling therefore may harbor a pharmaceutical target to treat MDS and/or prevent leukemia formation. However, targeting the Wnt/β-catenin pathway will also affect healthy hematopoiesis in MDS patients. The control of Wnt/β-catenin in healthy hematopoiesis is poorly understood. Whereas Wnt/β-catenin is dispensable for steady-state erythropoiesis, its activity is essential for stress erythropoiesis in response to BM injury and anemia. Manipulation of Wnt/β-catenin signaling in MDS may therefore deregulate stress erythropoiesis and even increase anemia severity. Here, we provide a comprehensive overview of the most recent and established insights in the field to acquire more insight into the control of Wnt/β-catenin signaling in healthy and inefficient erythropoiesis as seen in MDS.
Collapse
|
10
|
Anani M, Nobuhisa I, Taga T. Sry-related High Mobility Group Box 17 Functions as a Tumor Suppressor by Antagonizing the Wingless-related Integration Site Pathway. J Cancer Prev 2020; 25:204-212. [PMID: 33409253 PMCID: PMC7783240 DOI: 10.15430/jcp.2020.25.4.204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 11/16/2022] Open
Abstract
A transcription factor Sry-related high mobility group box (Sox) 17 is involved in developmental processes including spermatogenesis, cardiovascular system, endoderm formation, and so on. In this article, we firstly review the studies on the relation between the Sox17 expression and tumor malignancy. Although Sox17 positively promotes various tissue development, most of the cancers associated with Sox17 show decreased expression levels of Sox17, and an inverse correlation between Sox17 expression and malignancy is revealed. We briefly discuss the mechanism of such Sox17 down-regulation by focusing on DNA methylation of CpG sites located in the Sox17 gene promoter. Next, we overview the function of Sox17 in the fetal hematopoiesis, particularly in the dorsal aorta in midgestation mouse embryos. The Sox17 expression in hematopoietic stem cell (HSC)-containing intra-aortic hematopoietic cell cluster (IAHCs) is important for the cluster formation with the hematopoietic ability. The sustained expression of Sox17 in adult bone marrow HSCs and the cells in IAHCs of the dorsal aorta indicate abnormalities that are low lymphocyte chimerism and the aberrant proliferation of common myeloid progenitors in transplantation experiments. We then summarize the perspectives of Sox17 research in cancer control.
Collapse
Affiliation(s)
- Maha Anani
- Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ikuo Nobuhisa
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tetsuya Taga
- Department of Stem Cell Regulation, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
11
|
Danek P, Kardosova M, Janeckova L, Karkoulia E, Vanickova K, Fabisik M, Lozano-Asencio C, Benoukraf T, Tirado-Magallanes R, Zhou Q, Burocziova M, Rahmatova S, Pytlik R, Brdicka T, Tenen DG, Korinek V, Alberich-Jorda M. β-Catenin-TCF/LEF signaling promotes steady-state and emergency granulopoiesis via G-CSF receptor upregulation. Blood 2020; 136:2574-2587. [PMID: 32822472 PMCID: PMC7714095 DOI: 10.1182/blood.2019004664] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
The canonical Wnt signaling pathway is mediated by interaction of β-catenin with the T-cell factor/lymphoid enhancer-binding factor (TCF/LEF) transcription factors and subsequent transcription activation of Wnt-target genes. In the hematopoietic system, the function of the pathway has been mainly investigated by rather unspecific genetic manipulations of β-catenin that yielded contradictory results. Here, we used a mouse expressing a truncated dominant negative form of the human TCF4 transcription factor (dnTCF4) that specifically abrogates β-catenin-TCF/LEF interaction. Disruption of the β-catenin-TCF/LEF interaction resulted in the accumulation of immature cells and reduced granulocytic differentiation. Mechanistically, dnTCF4 progenitors exhibited downregulation of the Csf3r gene, reduced granulocyte colony-stimulating factor (G-CSF) receptor levels, attenuation of downstream Stat3 phosphorylation after G-CSF treatment, and impaired G-CSF-mediated differentiation. Chromatin immunoprecipitation assays confirmed direct binding of TCF/LEF factors to the promoter and putative enhancer regions of CSF3R. Inhibition of β-catenin signaling compromised activation of the emergency granulopoiesis program, which requires maintenance and expansion of myeloid progenitors. Consequently, dnTCF4 mice were more susceptible to Candida albicans infection and more sensitive to 5-fluorouracil-induced granulocytic regeneration. Importantly, genetic and chemical inhibition of β-catenin-TCF/LEF signaling in human CD34+ cells reduced granulocytic differentiation, whereas its activation enhanced myelopoiesis. Altogether, our data indicate that the β-catenin-TCF/LEF complex directly regulates G-CSF receptor levels, and consequently controls proper differentiation of myeloid progenitors into granulocytes in steady-state and emergency granulopoiesis. Our results uncover a role for the β-catenin signaling pathway in fine tuning the granulocytic production, opening venues for clinical intervention that require enhanced or reduced production of neutrophils.
Collapse
Affiliation(s)
- Petr Danek
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Miroslava Kardosova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | - Elena Karkoulia
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Karolina Vanickova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Matej Fabisik
- Department of Leukocyte Cell Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Carlos Lozano-Asencio
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Touati Benoukraf
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | - Qiling Zhou
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Monika Burocziova
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Sarka Rahmatova
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic; and
| | - Robert Pytlik
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic; and
| | - Tomas Brdicka
- Department of Leukocyte Cell Signaling, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | | | - Meritxell Alberich-Jorda
- Department of Hemato-oncology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Childhood Leukemia Investigation Prague, Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
12
|
Optimizing BIO feeding strategy promotes ex vivo expansion of human hematopoietic stem and progenitor cells. J Biosci Bioeng 2020; 131:190-197. [PMID: 33127294 DOI: 10.1016/j.jbiosc.2020.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 11/21/2022]
Abstract
Ex vivo expansion is critical in facilitating the application of hematopoietic/progenitor stem cells (HSPCs) for regenerative therapies. Wnt signaling is implicated in the expansion and self-renewal maintenance of HSPCs. However, a reasonable method to regulate Wnt signaling in ex vivo cultures to achieve robust expansion of HSPCs has not yet been investigated. Here, cord blood-derived CD34+ cells were cultured with the activator of Wnt signaling 6-bromoindirubin-3'-oxime (BIO) under the following conditions: vehicle control (group A); BIO was added to the culture on days 0, 4, and 7 (group B); and BIO was added to the culture on days 0 and 7 (group C). Initial BIO treatment promoted the expansion of CD34+ cells on day 4. However, BIO supplementation on days 0 and 4 in group B attenuated HSPC expansion on day 7, while enhancing the multilineage commit potential and secondary expansion ability of expanded CD34+ cells. Based on this finding, an optimized BIO feeding strategy (group C) was proposed to support substantial expansion of HSPCs. After 10 days of culture, the expansion fold of CD34+ cells was 28.70 ± 0.46-folds, which was significantly higher than group A (16.20 ± 0.72-folds, p < 0.05). Moreover, the optimized BIO feeding strategy achieved increased primitive HSPC expansion without the loss of biological functions. Mechanistically, the optimized BIO feeding strategy avoided the excessive activation of Wnt observed in group B while maintaining a moderate level of intracellular β-catenin. These results provide an experimental and theoretical basis for Wnt regulation in ex vivo culture process and a potential strategy to expand HSPCs for transplantation.
Collapse
|
13
|
Abstract
: Hematopoietic stem cells (HSCs) are a unique population of cells with the remarkable ability to replenish themselves through self-renewal and to give rise to differentiated cell lineages. Though having been discovered more than 50 years ago, and having been widely used in bone marrow transplantation to treat blood disorders including leukemia, expansion of HSCs remains an unmet task, thus affecting its more effective usage in clinical practice. PURPOSE OF REVIEW The purpose of this review article is to summarize past efforts in ex-vivo HSC expansion and to compare recent advances in expanding murine and human HSCs by targeting the N-methyladenosine (mA) pathway. RECENT FINDINGS Unlike past many efforts that mainly target single or limited pathways and often lead to lineage bias or expansion of progenitor cells or limited long-term HSCs (LT-HSCs), the blocking the degradation of mA pathway has an advantage of stabilizing hundreds of key factors required for maintaining HSCs, thus resulting in expansion of functional LT-HSCs. SUMMARY The new approach of targeting the mA pathway has a promising application in clinical HSC-based transplantation.
Collapse
|
14
|
Zhao X, Shao P, Gai K, Li F, Shan Q, Xue HH. β-catenin and γ-catenin are dispensable for T lymphocytes and AML leukemic stem cells. eLife 2020; 9:55360. [PMID: 32820720 PMCID: PMC7462606 DOI: 10.7554/elife.55360] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
The β-catenin transcriptional coregulator is involved in various biological and pathological processes; however, its requirements in hematopoietic cells remain controversial. We re-targeted the Ctnnb1 gene locus to generate a true β-catenin-null mutant mouse strain. Ablation of β-catenin alone, or in combination with its homologue γ-catenin, did not affect thymocyte maturation, survival or proliferation. Deficiency in β/γ-catenin did not detectably affect differentiation of CD4+T follicular helper cells or that of effector and memory CD8+ cytotoxic cells in response to acute viral infection. In an MLL-AF9 AML mouse model, genetic deletion of β-catenin, or even all four Tcf/Lef family transcription factors that interact with β-catenin, did not affect AML onset in primary recipients, or the ability of leukemic stem cells (LSCs) in propagating AML in secondary recipients. Our data thus clarify on a long-standing controversy and indicate that β-catenin is dispensable for T cells and AML LSCs.
Collapse
Affiliation(s)
- Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States
| | - Peng Shao
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Kexin Gai
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States
| | - Fengyin Li
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiang Shan
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States.,New Jersey Veterans Affairs Health Care System, East Orange, United States
| |
Collapse
|
15
|
Sheng Y, Yu C, Liu Y, Hu C, Ma R, Lu X, Ji P, Chen J, Mizukawa B, Huang Y, Licht JD, Qian Z. FOXM1 regulates leukemia stem cell quiescence and survival in MLL-rearranged AML. Nat Commun 2020; 11:928. [PMID: 32066721 PMCID: PMC7026046 DOI: 10.1038/s41467-020-14590-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
FOXM1, a known transcription factor, promotes cell proliferation in a variety of cancer cells. Here we show that Foxm1 is required for survival, quiescence and self-renewal of MLL-AF9 (MA9)-transformed leukemia stem cells (LSCs) in vivo. Mechanistically, Foxm1 upregulation activates the Wnt/β-catenin signaling pathways by directly binding to β-catenin and stabilizing β-catenin protein through inhibiting its degradation, thereby preserving LSC quiescence, and promoting LSC self-renewal in MLL-rearranged AML. More importantly, inhibition of FOXM1 markedly suppresses leukemogenic potential and induces apoptosis of primary LSCs from MLL-rearranged AML patients in vitro and in vivo in xenograft mice. Thus, our study shows a critical role and mechanisms of Foxm1 in MA9-LSCs, and indicates that FOXM1 is a potential therapeutic target for selectively eliminating LSCs in MLL-rearranged AML.
Collapse
Affiliation(s)
- Yue Sheng
- Division of Hematology/Oncology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Chunjie Yu
- Division of Hematology/Oncology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yin Liu
- Division of Hematology/Oncology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Chao Hu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rui Ma
- Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Xinyan Lu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, IL, USA
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, IL, USA
| | - Jianjun Chen
- Department of System Biology, City of Hope, CA, USA
| | - Benjamin Mizukawa
- Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yong Huang
- Department of Medicine, University of Virginia, Charlottestville, VA, USA
| | - Jonathan D Licht
- Division of Hematology/Oncology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Zhijian Qian
- Division of Hematology/Oncology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
16
|
Qian J, Huang X, Zhang Y, Ye X, Qian W. γ-Catenin Overexpression in AML Patients May Promote Tumor Cell Survival via Activation of the Wnt/β-Catenin Axis. Onco Targets Ther 2020; 13:1265-1276. [PMID: 32103994 PMCID: PMC7024797 DOI: 10.2147/ott.s230873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background Canonical Wnt/β-catenin signaling is frequently dysregulated in acute myeloid leukemia (AML) and has been implicated in leukemogenesis. γ-catenin was previously demonstrated to be associated with the nuclear localization of β-catenin, the central mediator, and to exert oncogenic effects in AML; however, the underlying mechanisms remain unclear. Our study aimed to investigate the expression characteristics of γ-catenin in AML patients, explore the mechanisms by which γ-catenin regulates β-catenin, and discuss the feasibility of targeting γ-catenin for AML treatment. Methods The mRNA expression levels of γ-catenin in AML patients were measured by qRT-PCR. Cell proliferation was examined via Cell Counting Kit-8 (CCK-8) assays. The expression levels of related proteins were measured via Western blotting. Specific siRNA was used to modulate the expression level of the γ-catenin gene. Apoptosis and cell cycle distribution were quantified by flow cytometry. The subcellular localization of γ-catenin and β-catenin was examined via immunofluorescence with a confocal laser scanning microscope. Results Overexpression of γ-catenin was frequently observed in AML and correlated with poor prognosis. Consistent with this finding, suppression of γ-catenin in the AML cell line THP-1 induced growth inhibition, promoted apoptosis and blocked β-catenin nuclear translocation. Interestingly, γ-catenin knockdown sensitized THP-1 cells to cytotoxic chemotherapeutic agents such as cytarabine and homoharringtonine and further inhibited β-catenin nuclear localization. Moreover, our data implied the relationship between γ-catenin and GSK3β (whose effect on β-catenin is mediated by its own phosphorylation), which may be the principal mechanism underlying the anti-AML effect of γ-catenin inhibition. Conclusion Taken together, our results revealed a potential role of γ-catenin in AML pathogenesis–mainly through the inhibition of GSK3β-mediated nuclear localization of β-catenin–and indicate that targeting γ-catenin might offer new AML treatments.
Collapse
Affiliation(s)
- Jiejin Qian
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Xianbo Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Yinyin Zhang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Xiujin Ye
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Wenbin Qian
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| |
Collapse
|
17
|
Bigas A, Guillén Y, Schoch L, Arambilet D. Revisiting β-Catenin Signaling in T-Cell Development and T-Cell Acute Lymphoblastic Leukemia. Bioessays 2019; 42:e1900099. [PMID: 31854474 DOI: 10.1002/bies.201900099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/28/2019] [Indexed: 12/25/2022]
Abstract
β-Catenin/CTNNB1 is critical for leukemia initiation or the stem cell capacity of several hematological malignancies. This review focuses on a general evaluation of β-catenin function in normal T-cell development and T-cell acute lymphoblastic leukemia (T-ALL). The integration of the existing literature offers a state-of-the-art dissection of the complexity of β-catenin function in leukemia initiation and maintenance in both Notch-dependent and independent contexts. In addition, β-catenin mutations are screened for in T-ALL primary samples, and it is found that they are rare and with little clinical relevance. Transcriptional analysis of Wnt family members (Ctnnb1, Axin2, Tcf7, and Lef1) and Myc in different publicly available T-ALL cohorts indicates that the expression of these genes may correlate with T-ALL subtypes and/or therapy outcomes.
Collapse
Affiliation(s)
- Anna Bigas
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Yolanda Guillén
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - Leonie Schoch
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| | - David Arambilet
- Cancer Research Program, CIBERONC, Institut Mar d'Investigacions Mèdiques (IMIM), Doctor Aiguader 88, 08003, Barcelona, Spain
| |
Collapse
|
18
|
Liu J, Cui Z, Wang F, Yao Y, Yu G, Liu J, Cao D, Niu S, You M, Sun Z, Lian D, Zhao T, Kang Y, Zhao Y, Xue HH, Yu S. Lrp5 and Lrp6 are required for maintaining self-renewal and differentiation of hematopoietic stem cells. FASEB J 2019; 33:5615-5625. [PMID: 30668923 DOI: 10.1096/fj.201802072r] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem cells (HSCs) have the capacity for self-renewal to maintain the HSCs' pool and the ability for multilineage differentiation, which are responsible for sustained production of multiple blood lineages. The regulation of HSC development is controlled precisely by complex signal networks and hematopoietic microenvironment, which has been termed the HSCs' niche. The Wnt signaling pathway is one of a variety of signaling pathways that have been involved in HSC self-renewal and maintenance. Previous studies are indeterminant on the regulation of adult HSCs upon canonical Wnt signaling pathways because of the different experimental systems and models used. In this study, we generated the conditional knockout Wnt coreceptor low-density lipoprotein receptor-related protein 5 (Lrp5) and low-density lipoprotein receptor-related protein 6 (Lrp6) mice in adult hematopoiesis via Vav-Cre Loxp system. Inactivation of Lrp5 and -6 in a hematopoietic system diminished the pool of HSCs, but there were no obvious defects in mature immune cells. Lrp5 and -6 double deficiency HSCs showed intrinsic defects in self-renewal and differentiation due to reduced proliferation and increased quiescence of the cell cycle. Analysis of HSC gene expression suggested that the quiescence regulators were significantly up-regulated, such as Egr1, Cdkn1a, Nr4a1, Gata2, Junb and Btg2, and the positive cell cycle regulators were correspondingly down-regulated, such as Ccna2 and Ranbp1. Taken together, we investigated the roles of Lrp5 and -6 in HSCs by functional and bioinformatic assays, and we demonstrated that Lrp5 and -6 are required for the self-renewal and differentiation of adult HSCs. The canonical Wnt pathway may contribute to maintaining the HSC pool and regulate the differentiation of adult HSCs by controlling cell cycle gene regulatory module.-Liu, J., Cui, Z., Wang, F., Yao, Y., Yu, G., Liu, J., Cao, D., Niu, S., You, M., Sun, Z., Lian, D., Zhao, T., Kang, Y., Zhao, Y., Xue, H.-H., Yu, S. Lrp5 and Lrp6 are required for maintaining self-renewal and differentiation of hematopoietic stem cells.
Collapse
Affiliation(s)
- Juanjuan Liu
- State Key Laboratory of Agrobiotechnology and, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Zhengzhi Cui
- State Key Laboratory of Agrobiotechnology and, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Fang Wang
- State Key Laboratory of Agrobiotechnology and, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Yingpeng Yao
- State Key Laboratory of Agrobiotechnology and, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Guotao Yu
- State Key Laboratory of Agrobiotechnology and, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Jingjing Liu
- State Key Laboratory of Agrobiotechnology and, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Dengchao Cao
- State Key Laboratory of Agrobiotechnology and, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Shuaishuai Niu
- State Key Laboratory of Agrobiotechnology and, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Menghao You
- State Key Laboratory of Agrobiotechnology and, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Zhen Sun
- State Key Laboratory of Agrobiotechnology and, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Di Lian
- State Key Laboratory of Agrobiotechnology and, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Tianyan Zhao
- State Key Laboratory of Agrobiotechnology and, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China; and
| | - Youmin Kang
- State Key Laboratory of Agrobiotechnology and, China Agricultural University, Beijing, China
| | - Yaofeng Zhao
- State Key Laboratory of Agrobiotechnology and, China Agricultural University, Beijing, China
| | - Hai-Hui Xue
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shuyang Yu
- State Key Laboratory of Agrobiotechnology and, China Agricultural University, Beijing, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, Beijing, China; and
| |
Collapse
|
19
|
Morgan RG, Ridsdale J, Payne M, Heesom KJ, Wilson MC, Davidson A, Greenhough A, Davies S, Williams AC, Blair A, Waterman ML, Tonks A, Darley RL. LEF-1 drives aberrant β-catenin nuclear localization in myeloid leukemia cells. Haematologica 2019; 104:1365-1377. [PMID: 30630973 PMCID: PMC6601079 DOI: 10.3324/haematol.2018.202846] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/03/2019] [Indexed: 12/24/2022] Open
Abstract
Canonical Wnt/β-catenin signaling is frequently dysregulated in myeloid leukemias and is implicated in leukemogenesis. Nuclear-localized β-catenin is indicative of active Wnt signaling and is frequently observed in acute myeloid leukemia (AML) patients; however, some patients exhibit little or no nuclear β-catenin even where cytosolic β-catenin is abundant. Control of the subcellular localization of β-catenin therefore represents an additional mechanism regulating Wnt signaling in hematopoietic cells. To investigate the factors mediating the nuclear-localization of β-catenin, we carried out the first nuclear/cytoplasmic proteomic analysis of the β-catenin interactome in myeloid leukemia cells and identified putative novel β-catenin interactors. Comparison of interacting factors between Wnt-responsive cells (high nuclear β-catenin) versus Wnt-unresponsive cells (low nuclear β-catenin) suggested the transcriptional partner, LEF-1, could direct the nuclear-localization of β-catenin. The relative levels of nuclear LEF-1 and β-catenin were tightly correlated in both cell lines and in primary AML blasts. Furthermore, LEF-1 knockdown perturbed β-catenin nuclear-localization and transcriptional activation in Wnt-responsive cells. Conversely, LEF-1 overexpression was able to promote both nuclear-localization and β-catenin-dependent transcriptional responses in previously Wnt-unresponsive cells. This is the first β-catenin interactome study in hematopoietic cells and reveals LEF-1 as a mediator of nuclear β- catenin level in human myeloid leukemia.
Collapse
Affiliation(s)
- Rhys G Morgan
- School of Life Sciences, University of Sussex, Brighton, UK .,School of Cellular and Molecular Medicine, University of Bristol, UK
| | - Jenna Ridsdale
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, UK
| | - Megan Payne
- School of Life Sciences, University of Sussex, Brighton, UK
| | | | | | | | | | - Sara Davies
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, UK
| | - Ann C Williams
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Allison Blair
- School of Life Sciences, University of Sussex, Brighton, UK
| | - Marian L Waterman
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | - Alex Tonks
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, UK
| | - Richard L Darley
- Department of Haematology, Division of Cancer and Genetics, School of Medicine, Cardiff University, UK
| |
Collapse
|
20
|
Ge Y, Fuchs E. Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nat Rev Genet 2018; 19:311-325. [PMID: 29479084 PMCID: PMC6301069 DOI: 10.1038/nrg.2018.9] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Stem cells (SCs) govern tissue homeostasis and wound repair. They reside within niches, the special microenvironments within tissues that control SC lineage outputs. Upon injury or stress, new signals emanating from damaged tissue can divert nearby cells into adopting behaviours that are not part of their homeostatic repertoire. This behaviour, known as SC plasticity, typically resolves as wounds heal. However, in cancer, it can endure. Recent studies have yielded insights into the orchestrators of maintenance and lineage commitment for SCs belonging to three mammalian tissues: the haematopoietic system, the skin epithelium and the intestinal epithelium. We delineate the multifactorial determinants and general principles underlying the remarkable facets of SC plasticity, which lend promise for regenerative medicine and cancer therapeutics.
Collapse
Affiliation(s)
- Yejing Ge
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| |
Collapse
|
21
|
Aktary Z, Alaee M, Pasdar M. Beyond cell-cell adhesion: Plakoglobin and the regulation of tumorigenesis and metastasis. Oncotarget 2018; 8:32270-32291. [PMID: 28416759 PMCID: PMC5458283 DOI: 10.18632/oncotarget.15650] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/16/2016] [Indexed: 12/13/2022] Open
Abstract
Plakoglobin (also known as? -catenin) is a member of the Armadillo family of proteins and a paralog of β -catenin. Plakoglobin is a component of both the adherens junctions and desmosomes, and therefore plays a vital role in the regulation of cell-cell adhesion. Similar to β -catenin, plakoglobin is capable of participating in cell signaling in addition to its role in cell-cell adhesion. In this context, β -catenin has a well-documented oncogenic potential as a component of the Wnt signaling pathway. In contrast, while some studies have suggested a tumor promoting activity of plakoglobin in a cell/malignancy specific context, it generally acts as a tumor/metastasis suppressor. How plakoglobin acts as a growth/metastasis inhibitory protein has remained, until recently, unclear. Recent evidence suggests that plakoglobin may suppress tumorigenesis and metastasis by multiple mechanisms, including the suppression of oncogenic signaling, interactions with various proteins involved in tumorigenesis and metastasis, and the regulation of the expression of genes involved in these processes. This review is primarily focused on various mechanisms by which plakoglobin may inhibit tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Zackie Aktary
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada.,Institut Curie, Orsay, France
| | - Mahsa Alaee
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Manijeh Pasdar
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Kwarteng EO, Hétu-Arbour R, Heinonen KM. Frontline Science: Wnt/β-catenin pathway promotes early engraftment of fetal hematopoietic stem/progenitor cells. J Leukoc Biol 2018; 103:381-393. [DOI: 10.1002/jlb.1hi0917-373r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/15/2022] Open
Affiliation(s)
- Edward O. Kwarteng
- Institut national de la recherche scientifique; INRS-Institut Armand-Frappier; Université du Québec; Laval Quebec Canada
| | - Roxann Hétu-Arbour
- Institut national de la recherche scientifique; INRS-Institut Armand-Frappier; Université du Québec; Laval Quebec Canada
| | - Krista M. Heinonen
- Institut national de la recherche scientifique; INRS-Institut Armand-Frappier; Université du Québec; Laval Quebec Canada
| |
Collapse
|
23
|
Famili F, Brugman MH, Taskesen E, Naber BEA, Fodde R, Staal FJT. High Levels of Canonical Wnt Signaling Lead to Loss of Stemness and Increased Differentiation in Hematopoietic Stem Cells. Stem Cell Reports 2017; 6:652-659. [PMID: 27167156 PMCID: PMC4939829 DOI: 10.1016/j.stemcr.2016.04.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022] Open
Abstract
Canonical Wnt signaling regulates the self-renewal of most if not all stem cell systems. In the blood system, the role of Wnt signaling has been the subject of much debate but there is consensus that high Wnt signals lead to loss of reconstituting capacity. To better understand this phenomenon, we have taken advantage of a series of hypomorphic mutant Apc alleles resulting in a broad range of Wnt dosages in hematopoietic stem cells (HSCs) and performed whole-genome gene expression analyses. Gene expression profiling and functional studies show that HSCs with APC mutations lead to high Wnt levels, enhanced differentiation, and diminished proliferation but have no effect on apoptosis, collectively leading to loss of stemness. Thus, we provide mechanistic insight into the role of APC mutations and Wnt signaling in HSC biology. As Wnt signals are explored in various in vivo and ex vivo expansion protocols for HSCs, our findings also have clinical ramifications.
Collapse
Affiliation(s)
- Farbod Famili
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 Leiden, the Netherlands
| | - Martijn H Brugman
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 Leiden, the Netherlands
| | - Erdogan Taskesen
- Department of Clinical Genetics, VU University, 1081 Amsterdam, the Netherlands
| | - Brigitta E A Naber
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 Leiden, the Netherlands
| | - Riccardo Fodde
- Department of Pathology, Erasmus Medical Center, 3000 Rotterdam, the Netherlands
| | - Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2300 Leiden, the Netherlands.
| |
Collapse
|
24
|
Siriboonpiputtana T, Zeisig BB, Zarowiecki M, Fung TK, Mallardo M, Tsai CT, Lau PNI, Hoang QC, Veiga P, Barnes J, Lynn C, Wilson A, Lenhard B, So CWE. Transcriptional memory of cells of origin overrides β-catenin requirement of MLL cancer stem cells. EMBO J 2017; 36:3139-3155. [PMID: 28978671 PMCID: PMC5666593 DOI: 10.15252/embj.201797994] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 01/03/2023] Open
Abstract
While β-catenin has been demonstrated as an essential molecule and therapeutic target for various cancer stem cells (CSCs) including those driven by MLL fusions, here we show that transcriptional memory from cells of origin predicts AML patient survival and allows β-catenin-independent transformation in MLL-CSCs derived from hematopoietic stem cell (HSC)-enriched LSK population but not myeloid-granulocyte progenitors. Mechanistically, β-catenin regulates expression of downstream targets of a key transcriptional memory gene, Hoxa9 that is highly enriched in LSK-derived MLL-CSCs and helps sustain leukemic self-renewal. Suppression of Hoxa9 sensitizes LSK-derived MLL-CSCs to β-catenin inhibition resulting in abolishment of CSC transcriptional program and transformation ability. In addition, further molecular and functional analyses identified Prmt1 as a key common downstream mediator for β-catenin/Hoxa9 functions in LSK-derived MLL-CSCs. Together, these findings not only uncover an unexpectedly important role of cells of origin transcriptional memory in regulating CSC self-renewal, but also reveal a novel molecular network mediated by β-catenin/Hoxa9/Prmt1 in governing leukemic self-renewal.
Collapse
MESH Headings
- Animals
- Antigens, Ly/genetics
- Antigens, Ly/metabolism
- Cell Proliferation
- Cell Survival
- Disease Models, Animal
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cells/metabolism
- Hematopoietic Stem Cells/pathology
- Homeodomain Proteins/antagonists & inhibitors
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/pathology
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Protein-Arginine N-Methyltransferases/genetics
- Protein-Arginine N-Methyltransferases/metabolism
- Proto-Oncogene Proteins c-kit/genetics
- Proto-Oncogene Proteins c-kit/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- Survival Analysis
- Transcription, Genetic
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Teerapong Siriboonpiputtana
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Bernd B Zeisig
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Magdalena Zarowiecki
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Tsz Kan Fung
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Maria Mallardo
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Chiou-Tsun Tsai
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Priscilla Nga Ieng Lau
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Quoc Chinh Hoang
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Pedro Veiga
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Jo Barnes
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Claire Lynn
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Amanda Wilson
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| | - Boris Lenhard
- Faculty of Medicine, Institute of Clinical Sciences, Imperial College London, London, UK
- Computational Regulatory Genomics, MRC London Institute of Medical Sciences, London, UK
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Chi Wai Eric So
- Department of Haematological Medicine, Division of Cancer Studies, Leukemia and Stem Cell Biology Team, King's College London, London, UK
| |
Collapse
|
25
|
Kumar S, Geiger H. HSC Niche Biology and HSC Expansion Ex Vivo. Trends Mol Med 2017; 23:799-819. [PMID: 28801069 DOI: 10.1016/j.molmed.2017.07.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 02/08/2023]
Abstract
Hematopoietic stem cell (HSC) transplantation can restore a new functional hematopoietic system in recipients in cases where the system of the recipient is not functional or for example is leukemic. However, the number of available donor HSCs is often too low for successful transplantation. Expansion of HSCs and thus HSC self-renewal ex vivo would greatly improve transplantation therapy in the clinic. In vivo, HSCs expand significantly in the niche, but establishing protocols that result in HSC expansion ex vivo remains challenging. In this review we discuss current knowledge of niche biology, the intrinsic regulators of HSC self-renewal in vivo, and introduce novel niche-informed strategies of HSC expansion ex vivo.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| | - Hartmut Geiger
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA; Institute of Molecular Medicine, Ulm University, Ulm, Germany; Aging Research Center, Ulm University, Ulm, Germany.
| |
Collapse
|
26
|
Kim YM, Gang EJ, Kahn M. CBP/Catenin antagonists: Targeting LSCs' Achilles heel. Exp Hematol 2017; 52:1-11. [PMID: 28479420 PMCID: PMC5526056 DOI: 10.1016/j.exphem.2017.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/07/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs), including leukemia stem cells (LSCs), exhibit self-renewal capacity and differentiation potential and have the capacity to maintain or renew and propagate a tumor/leukemia. The initial isolation of CSCs/LSCs was in adult myelogenous leukemia, although more recently, the existence of CSCs in a wide variety of other cancers has been reported. CSCs, in general, and LSCs, specifically with respect to this review, are responsible for initiation of disease, therapeutic resistance and ultimately disease relapse. One key focus in cancer research over the past decade has been the development of therapies that safely eliminate the LSC/CSC population. One major obstacle to this goal is the identification of key mechanisms that distinguish LSCs from normal endogenous hematopoietic stem cells. An additional daunting feature that has recently come to light with advances in next-generation sequencing and single-cell sequencing is the heterogeneity within leukemias/tumors, with multiple combinations of mutations, gain and loss of function of genes, and so on being capable of driving disease, even within the CSC/LSC population. The focus of this review/perspective is on our work in identifying and validating, in both chronic myelogenous leukemia and acute lymphoblastic leukemia, a safe and efficacious mechanism to target an evolutionarily conserved signaling nexus, which constitutes a common "Achilles heel" for LSCs/CSCs, using small molecule-specific CBP/catenin antagonists.
Collapse
Affiliation(s)
- Yong-Mi Kim
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Blood and Bone Marrow Transplantation, University of Southern California, Los Angeles, CA
| | - Eun-Ji Gang
- Children's Hospital Los Angeles, Department of Pediatrics, Division of Blood and Bone Marrow Transplantation, University of Southern California, Los Angeles, CA
| | - Michael Kahn
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, CA; Department of Molecular Pharmacology and Toxicology, University of Southern California, Los Angeles, CA; Center for Molecular Pathways and Drug Discovery, University of Southern California, Los Angeles, CA; Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA.
| |
Collapse
|
27
|
Li L, Sheng Y, Li W, Hu C, Mittal N, Tohyama K, Seba A, Zhao YY, Ozer H, Zhu T, Qian Z. β-Catenin Is a Candidate Therapeutic Target for Myeloid Neoplasms with del(5q). Cancer Res 2017; 77:4116-4126. [PMID: 28611040 DOI: 10.1158/0008-5472.can-17-0202] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/19/2017] [Accepted: 06/05/2017] [Indexed: 12/16/2022]
Abstract
Deletion of the chromosome 5q [del(5q)] is one of the most common cytogenetic abnormalities observed in patients with de novo myelodysplastic syndromes (MDS) and therapy-related MDS or acute myeloid leukemia (t-MDS/tAML). Emerging evidence indicates that activation of the Wnt/β-catenin pathway contributes to the development of myeloid neoplasms with del(5q). Whether β-catenin is a potential therapeutic target for myeloid neoplasms with del(5q) has yet to be evaluated. Here, we report that genetic deletion of a single allele of β-catenin rescues ineffective hematopoiesis in an Apc haploinsufficient mouse model, which recapitulates several characteristic features of the preleukemic stage of myeloid neoplasms with a -5/del(5q). In addition, loss of a single allele of β-catenin reversed the defective self-renewal capacity of Apc-haploinsufficient hematopoietic stem cells and reduced the frequency of apoptosis induced by Apc haploinsufficiency. Suppression of β-catenin by indomethacin or β-catenin shRNA reduced proliferation and survival of human leukemia cell lines with del(5q) but not of control leukemia cell lines in vitro; β-catenin inactivation also inhibited leukemia progression in vivo in xenograft mice reconstituted with del(5q) leukemia cell lines. Inhibition of β-catenin also stunted growth and colony-forming abilities of primary bone marrow cells from del(5q) AML patients in vitro Overall, our data support the idea that β-catenin could serve as a therapeutic target for the treatment of myeloid neoplasms with del(5q). Cancer Res; 77(15); 4116-26. ©2017 AACR.
Collapse
Affiliation(s)
- Liping Li
- Department of Medicine, Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois.,Fudan University Zhong Shan Hospital, Shanghai, China
| | - Yue Sheng
- Department of Medicine, Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois
| | - Wenshu Li
- College of Arts and Sciences, Shanghai New York University, Shanghai, China
| | - Chao Hu
- Department of Medicine, Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois.,Fudan University Zhong Shan Hospital, Shanghai, China
| | - Nupur Mittal
- Department of Pediatrics, Division of Pediatric Hematology Oncology, University of Illinois at Chicago (Fellow, UIC-Rush-Stroger Fellowship Program, Chicago), Chicago, Illinois
| | - Kaoru Tohyama
- Department of Laboratory Medicine, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Amber Seba
- Department of Medicine, Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois
| | - You-Yang Zhao
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Howard Ozer
- Department of Medicine, Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois
| | - Tongyu Zhu
- Fudan University Zhong Shan Hospital, Shanghai, China
| | - Zhijian Qian
- Department of Medicine, Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
28
|
Abstract
Stem cell niches are specialized microenvironments that promote the maintenance of stem cells and regulate their function. Recent advances have improved our understanding of the niches that maintain adult haematopoietic stem cells (HSCs). These advances include new markers for HSCs and niche cells, systematic analyses of the expression patterns of niche factors, genetic tools for functionally identifying niche cells in vivo, and improved imaging techniques. Together, they have shown that HSC niches are perivascular in the bone marrow and spleen. Endothelial cells and mesenchymal stromal cells secrete factors that promote HSC maintenance in these niches, but other cell types also directly or indirectly regulate HSC niches.
Collapse
|
29
|
Wnt Signaling as Master Regulator of T-Lymphocyte Responses: Implications for Transplant Therapy. Transplantation 2017; 100:2584-2592. [PMID: 27861287 DOI: 10.1097/tp.0000000000001393] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
T cell-mediated immune responses to the grafted tissues are the major reason for failed organ transplantation. The regulation of T cell responses is complex and involves major histocompatibility complex molecules on transplanted organs, cytokines, regulatory cells, and antigen-presenting cells. The evolutionary conserved Wnt signal transduction pathway has long been known for its importance in development of stem cells and immature T cells in the thymus. Recent evidence indicates the Wnt pathway as a master regulator of T cell immune responses via governing the balance between T helper 17/regulatory T cells and by regulating the formation of effector and memory cytotoxic CD8 T cell responses. In doing so, Wnt signals influence the outcome of immune responses in transplantation settings.
Collapse
|
30
|
Zhao Y, Wu K, Nguyen C, Smbatyan G, Melendez E, Higuchi Y, Chen Y, Kahn M. Small molecule p300/catenin antagonist enhances hematopoietic recovery after radiation. PLoS One 2017; 12:e0177245. [PMID: 28486541 PMCID: PMC5423697 DOI: 10.1371/journal.pone.0177245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/24/2017] [Indexed: 12/26/2022] Open
Abstract
There is currently no FDA approved therapeutic agent for ARS mitigation post radiation exposure. Here we report that the small molecule YH250, which specifically antagonizes p300/catenin interaction, stimulates hematopoiesis in lethally or sublethally irradiated mice. A single administration of YH250 24 hours post irradiation can significantly stimulate HSC proliferation, improve survival and accelerate peripheral blood count recovery. Our studies suggest that promotion of the expansion of the remaining HSC population via stimulation of symmetric non-differentiative proliferation is at least part of the mechanism of action.
Collapse
Affiliation(s)
- Yi Zhao
- Department of Medicine, Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
- Center for Molecular Pathways and Drug Discovery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
| | - Kaijin Wu
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Research Center, Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
| | - Cu Nguyen
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Research Center, Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
| | - Goar Smbatyan
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Research Center, Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
| | - Elisabeth Melendez
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Research Center, Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
| | - Yusuke Higuchi
- Center for Molecular Pathways and Drug Discovery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Research Center, Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
- Department of Organic Fine Chemicals, The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
| | - Yibu Chen
- Bioinformatics Service Program, Norris Medical Library, University of Southern California, Los Angeles, California, United States of America
| | - Michael Kahn
- Center for Molecular Pathways and Drug Discovery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, United States of America
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Research Center, Keck School of Medicine of University of Southern California, Los Angeles, California, United States of America
- Department of Molecular Pharmacology and Toxicology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
31
|
Bhavanasi D, Klein PS. Wnt Signaling in Normal and Malignant Stem Cells. CURRENT STEM CELL REPORTS 2016; 2:379-387. [PMID: 28503404 DOI: 10.1007/s40778-016-0068-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Wnt signaling plays important roles in stem cell self-renewal and differentiation in adults as well as in embryonic development. Mutations that activate canonical Wnt/β-catenin signaling also initiate and maintain several cancer states, including colorectal cancer and leukemia, and hence Wnt inhibitors are currently being explored as therapeutic options. In this review, we summarize previous studies and update recent findings on canonical Wnt signaling and its components, as well as their roles in somatic stem cell homeostasis and maintenance of cancer initiating cells.
Collapse
Affiliation(s)
- Dheeraj Bhavanasi
- Department of Medicine (Hematology-Oncology), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Peter S Klein
- Department of Medicine (Hematology-Oncology), University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.,Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Ruf F, Schreck C, Wagner A, Grziwok S, Pagel C, Romero S, Kieslinger M, Shimono A, Peschel C, Götze KS, Istvanffy R, Oostendorp RAJ. Loss of Sfrp2 in the Niche Amplifies Stress-Induced Cellular Responses, and Impairs the In Vivo Regeneration of the Hematopoietic Stem Cell Pool. Stem Cells 2016; 34:2381-92. [PMID: 27299503 DOI: 10.1002/stem.2416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 04/15/2016] [Accepted: 04/29/2016] [Indexed: 12/30/2022]
Abstract
Sfrp2 is overexpressed in stromal cells which maintain hematopoietic stem cells (HSCs) during in vitro culture. We here showed, that coculture of hematopoetic cells with stromal cells with reduced expression of Sfrp2 increases the number lineage-negative Kit(+) Sca-1(+) (LSK) and progenitor cells in vitro. The LSK cells from these cocultures showed activation of canonical Wnt signaling, higher levels of Ki-67, BrdU incorporation, and the number of γH2A.X positive foci. Total repopulating activity of these cultures was, however, diminished, indicating loss of HSC. To extend these in vitro data, we modelled stress in vivo, i.e., by aging, or 5-FU treatment in Sfrp2(-) (/) (-) mice, or replicative stress in regeneration of HSCs in Sfrp2(-) (/) (-) recipients. In all three in vivo stress situations, we noted an increase of LSK cells, characterized by increased levels of β-catenin and cyclin D1. In the transplantation experiments, the increase in LSK cells in primary recipients was subsequently associated with a progressive loss of HSCs in serial transplantations. Similar to the in vitro coculture stress, in vivo genotoxic stress in 5-FU-treated Sfrp2(-) (/) (-) mice increased cell cycle activity of LSK cells with higher levels of BrdU incorporation, increased expression of Ki-67, and canonical Wnt signaling. Importantly, as noted in vitro, increased cycling of LSKs in vivo was accompanied by a defective γH2A.X-dependent DNA damage response and depolarized localization of acetylated H4K16. Our experiments support the view that Sfrp2 expression in the niche is required to maintain the HSC pool by limiting stress-induced DNA damage and attenuating canonical Wnt-mediated HSC activation. Stem Cells 2016;34:2381-2392.
Collapse
Affiliation(s)
- Franziska Ruf
- 3rd Department of Internal Medicine, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Christina Schreck
- 3rd Department of Internal Medicine, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Alina Wagner
- 3rd Department of Internal Medicine, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Sandra Grziwok
- 3rd Department of Internal Medicine, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Charlotta Pagel
- 3rd Department of Internal Medicine, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Sandra Romero
- 3rd Department of Internal Medicine, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Matthias Kieslinger
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Akihiko Shimono
- RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | - Christian Peschel
- 3rd Department of Internal Medicine, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany.,German Cancer Consortium (DKTK) and the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina S Götze
- 3rd Department of Internal Medicine, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany.,German Cancer Consortium (DKTK) and the German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rouzanna Istvanffy
- 3rd Department of Internal Medicine, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany
| | - Robert A J Oostendorp
- 3rd Department of Internal Medicine, Klinikum Rechts Der Isar, Technische Universität München, Munich, Germany.
| |
Collapse
|
33
|
Sugimura R. Bioengineering Hematopoietic Stem Cell Niche toward Regenerative Medicine. Adv Drug Deliv Rev 2016; 99:212-220. [PMID: 26527127 DOI: 10.1016/j.addr.2015.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/20/2015] [Accepted: 10/15/2015] [Indexed: 12/20/2022]
Abstract
The scope of this chapter is to introduce the current consensus of hematopoietic stem cell (HSC) niche biology to bioengineering field so that can apply to regenerative medicine. A decade of research has been addressing "what is HSC niche", then next step is "how it advances medicine". The demand to improve HSC transplantation has advanced the methodology to expand HSC in vitro. Still precise modeling of bone marrow (BM) is demanded by bioengineering HSC niche in vitro. Better understanding of HSC niche is essential toward this progress. Now it would be the time to apply the knowledge of HSC niche field to the venue of bioengineering, so that a promising new approach to regenerative medicine might appear. This chapter describes the current consensus of niche that endothelial cell and perivascular mesenchymal stromal cell maintain HSC, expansion of cord blood HSC by small molecules, bioengineering efforts to model HSC niche by microfluidics chip, organoids, and breakthroughs to induce HSC from heterologous types of cells.
Collapse
|
34
|
Staal FJT, Chhatta A, Mikkers H. Caught in a Wnt storm: Complexities of Wnt signaling in hematopoiesis. Exp Hematol 2016; 44:451-7. [PMID: 27016274 DOI: 10.1016/j.exphem.2016.03.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/11/2016] [Accepted: 03/15/2016] [Indexed: 01/10/2023]
Abstract
The Wnt signaling pathway is an evolutionary conserved pathway that is involved in the development of almost every organ system in the body and provides self-renewal signals for most, if not all, adult stem cell systems. In recent years, this pathway has been studied by various research groups working on hematopoietic stem cells, resulting in contradicting conclusions. Here, we discuss and interpret the results of these studies and propose that Wnt dosage, the source of hematopoietic stem cells, and interactions with other pathways explain these disparate results.
Collapse
Affiliation(s)
- Frank J T Staal
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Amiet Chhatta
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Harald Mikkers
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands; Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
35
|
Zhu N, Chen M, Eng R, DeJong J, Sinha AU, Rahnamay NF, Koche R, Al-Shahrour F, Minehart JC, Chen CW, Deshpande AJ, Xu H, Chu SH, Ebert BL, Roeder RG, Armstrong SA. MLL-AF9- and HOXA9-mediated acute myeloid leukemia stem cell self-renewal requires JMJD1C. J Clin Invest 2016; 126:997-1011. [PMID: 26878175 DOI: 10.1172/jci82978] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 12/18/2015] [Indexed: 01/07/2023] Open
Abstract
Self-renewal is a hallmark of both hematopoietic stem cells (HSCs) and leukemia stem cells (LSCs); therefore, the identification of mechanisms that are required for LSC, but not HSC, function could provide therapeutic opportunities that are more effective and less toxic than current treatments. Here, we employed an in vivo shRNA screen and identified jumonji domain-containing protein JMJD1C as an important driver of MLL-AF9 leukemia. Using a conditional mouse model, we showed that loss of JMJD1C substantially decreased LSC frequency and caused differentiation of MLL-AF9- and homeobox A9-driven (HOXA9-driven) leukemias. We determined that JMJD1C directly interacts with HOXA9 and modulates a HOXA9-controlled gene-expression program. In contrast, loss of JMJD1C led to only minor defects in blood homeostasis and modest effects on HSC self-renewal. Together, these data establish JMJD1C as an important mediator of MLL-AF9- and HOXA9-driven LSC function that is largely dispensable for HSC function.
Collapse
|
36
|
Roos J, Grösch S, Werz O, Schröder P, Ziegler S, Fulda S, Paulus P, Urbschat A, Kühn B, Maucher I, Fettel J, Vorup-Jensen T, Piesche M, Matrone C, Steinhilber D, Parnham MJ, Maier TJ. Regulation of tumorigenic Wnt signaling by cyclooxygenase-2, 5-lipoxygenase and their pharmacological inhibitors: A basis for novel drugs targeting cancer cells? Pharmacol Ther 2016; 157:43-64. [DOI: 10.1016/j.pharmthera.2015.11.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function. Stem Cells Int 2015; 2016:5178965. [PMID: 26798358 PMCID: PMC4699043 DOI: 10.1155/2016/5178965] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 01/15/2023] Open
Abstract
All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function.
Collapse
|
38
|
Abstract
In this issue of Blood, Kabiri and coworkers report the hematopoietic deletion of the endoplasmic reticulum–localized O-acyltransferase porcupine (PORCN), which is necessary for acylation of Wnts in the endoplasmic reticulum, enabling their secretion and binding to the frizzled receptors. Unexpectedly, the absence of secreted Wnt factors does not have major effects on steady-state in vivo hematopoiesis or on long-term repopulating activity of Wnt-deficient hematopoietic stem cells.
Collapse
|
39
|
Regulation of hematopoietic stem cells in the niche. SCIENCE CHINA-LIFE SCIENCES 2015; 58:1209-15. [DOI: 10.1007/s11427-015-4960-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 09/17/2015] [Indexed: 12/31/2022]
|
40
|
Heidel FH, Arreba-Tutusaus P, Armstrong SA, Fischer T. Evolutionarily conserved signaling pathways: acting in the shadows of acute myelogenous leukemia's genetic diversity. Clin Cancer Res 2015; 21:240-8. [PMID: 25593343 DOI: 10.1158/1078-0432.ccr-14-1436] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Acute myelogenous leukemia stem cells (AML-LSC) give rise to the leukemic bulk population and maintain disease. Relapse can arise from residual LSCs that have distinct sensitivity and dependencies when compared with the AML bulk. AML-LSCs are driven by genetic and epigenomic changes, and these alterations influence prognosis and clonal selection. Therapies targeting these molecular aberrations have been developed and show promising responses in advanced clinical trials; however, so far success with LSCs has been limited. Besides the genetic diversity, AML-LSCs are critically influenced by the microenvironment, and a third crucial aspect has recently come to the fore: A group of evolutionarily conserved signaling pathways such as canonical Wnt signaling, Notch signaling, or the Hedgehog pathway can be essential for maintenance of AML-LSC but may be redundant for normal hematopoietic stem cells. In addition, early reports suggest also regulators of cell polarity may also influence hematopoietic stem cells and AML biology. Interactions between these pathways have been investigated recently and suggest a network of signaling pathways involved in regulation of self-renewal and response to oncogenic stress. Here, we review how recent discoveries on regulation of AML-LSC-relevant evolutionarily conserved pathways may open opportunities for novel treatment approaches eradicating residual disease.
Collapse
Affiliation(s)
- Florian H Heidel
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Patricia Arreba-Tutusaus
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | - Scott A Armstrong
- Human Oncology and Pathogenesis Program and Department of Pediatrics, Memorial Sloan Kettering Cancer Institute, New York, New York
| | - Thomas Fischer
- Department of Hematology and Oncology, Center for Internal Medicine, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
41
|
Cao J, Zhang L, Wan Y, Li H, Zhou R, Ding H, Liu Y, Yao Z, Guo X. Ablation of Wntless in endosteal niches impairs lymphopoiesis rather than HSCs maintenance. Eur J Immunol 2015; 45:2650-60. [PMID: 26173091 DOI: 10.1002/eji.201445405] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/29/2015] [Accepted: 07/07/2015] [Indexed: 01/06/2023]
Abstract
Osteoblasts and perivascular stromal cells constitute essential niches for HSC self-renewal and maintenance in the bone marrow. Wnt signaling is important to maintain HSC integrity. However, the paracrine role of Wnt proteins in osteoblasts-supported HSC maintenance and differentiation remains unclear. Here, we investigated hematopoiesis in mice with Wntless (Wls) deficiency in osteoblasts or Nestin-positive mesenchymal progenitor cells, which presumptively block Wnt secretion in osteoblasts. We detected defective B-cell lymphopoiesis and abnormal T-cell infiltration in the bone marrow of Wls mutant mice. Notably, no impact on HSC frequency and repopulation in the bone marrow was observed with the loss of osteoblastic Wls. Our findings revealed a supportive role of Wnts in osteoblasts-regulated B-cell lymphopoiesis. They also suggest a preferential niche role of osteoblastic Wnts for lymphoid cells rather than HSCs, providing new clues for the molecular nature of distinct niches occupied by different hematopoietic cells.
Collapse
Affiliation(s)
- Jingjing Cao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lingling Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yong Wan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Hanjun Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Rujiang Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Heyuan Ding
- The Fifth People's Hospital of Shanghai, Fudan University, China
| | | | - Zhengju Yao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Xizhi Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Zhu Y, Wang W, Wang X. Roles of transcriptional factor 7 in production of inflammatory factors for lung diseases. J Transl Med 2015; 13:273. [PMID: 26289446 PMCID: PMC4543455 DOI: 10.1186/s12967-015-0617-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/27/2015] [Indexed: 12/25/2022] Open
Abstract
Lung disease is the major cause of death and hospitalization worldwide. Transcription factors such as transcription factor 7 (TCF7) are involved in the pathogenesis of lung diseases. TCF7 is important for T cell development and differentiation, embryonic development, or tumorogenesis. Multiple TCF7 isoforms can be characterized by the full-length isoform (FL-TCF7) as a transcription activator, or dominant negative isoform (dn-TCF7) as a transcription repressor. TCF7 interacts with multiple proteins or target genes and participates in several signal pathways critical for lung diseases. TCF7 is involved in pulmonary infection, allergy or asthma through promoting T cells differentiating to Th2 or memory T cells. TCF7 also works in tissue repair and remodeling after acute lung injury. The dual roles of TCF7 in lung cancers were discussed and it is associated with the cellular proliferation, invasion or metastasis. Thus, TCF7 plays critical roles in lung diseases and should be considered as a new therapeutic target.
Collapse
Affiliation(s)
- Yichun Zhu
- Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University Center for Clinical Bioinformatics, Fenglin Rd 180, Shanghai, 200032, China.
| | - William Wang
- Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University Center for Clinical Bioinformatics, Fenglin Rd 180, Shanghai, 200032, China.
| | - Xiangdong Wang
- Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University Center for Clinical Bioinformatics, Fenglin Rd 180, Shanghai, 200032, China.
| |
Collapse
|
43
|
New role for the (pro)renin receptor in T-cell development. Blood 2015; 126:504-7. [PMID: 26063165 DOI: 10.1182/blood-2015-03-635292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/08/2015] [Indexed: 01/08/2023] Open
Abstract
The (pro)renin receptor (PRR) was originally thought to be important for regulating blood pressure via the renin-angiotensin system. However, it is now emerging that PRR has instead a generic role in cellular development. Here, we have specifically deleted PRR from T cells. T-cell-specific PRR-knockout mice had a significant decrease in thymic cellularity, corresponding with a 100-fold decrease in the number of CD4(+) and CD8(+) thymocytes, and a large increase in double-negative (DN) precursors. Gene expression analysis on sorted DN3 thymocytes indicated that PRR-deficient thymocytes have perturbations in key cellular pathways essential at the DN3 stage, including transcription and translation. Further characterization of DN T-cell progenitors leads us to propose that PRR deletion affects thymocyte survival and development at multiple stages; from DN3 through to DN4, double-positive, and single-positive CD4 and CD8. Our study thus identifies a new role for PRR in T-cell development.
Collapse
|
44
|
Lin S, Zhao R, Xiao Y, Li P. Mechanisms determining the fate of hematopoietic stem cells. Stem Cell Investig 2015; 2:10. [PMID: 27358878 DOI: 10.3978/j.issn.2306-9759.2015.05.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 04/28/2015] [Indexed: 12/21/2022]
Abstract
Successful in vitro expansion of hematopoietic stem cells (HSCs) will facilitate the application of HSC transplantation for the treatment of various diseases, including hematological malignancies. To achieve this expansion, the molecular mechanisms that control the fate of HSCs must be deciphered. Leukemia-initiating cells (LICs) or leukemia stem cells (LSCs) may originate from normal HSCs, which suggest that the dysregulation of the mechanisms that regulate the cell fate of HSCs may underlie leukemogenesis. Here we review the recent progress in the application of HSCs, the regulatory mechanisms of the fate of HSCs, and the origins of leukemia.
Collapse
Affiliation(s)
- Shouheng Lin
- 1 Key Laboratory of Regenerative Biology, 2 Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Ruocong Zhao
- 1 Key Laboratory of Regenerative Biology, 2 Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yiren Xiao
- 1 Key Laboratory of Regenerative Biology, 2 Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Peng Li
- 1 Key Laboratory of Regenerative Biology, 2 Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
45
|
Chereda B, Melo JV. Natural course and biology of CML. Ann Hematol 2015; 94 Suppl 2:S107-21. [PMID: 25814077 DOI: 10.1007/s00277-015-2325-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 12/07/2014] [Indexed: 12/14/2022]
Abstract
Chronic myeloid leukaemia (CML) is a myeloproliferative disorder arising in the haemopoietic stem cell (HSC) compartment. This disease is characterised by a reciprocal t(9;22) chromosomal translocation, resulting in the formation of the Philadelphia (Ph) chromosome containing the BCR-ABL1 gene. As such, diagnosis and monitoring of disease involves detection of BCR-ABL1. It is the BCR-ABL1 protein, in particular its constitutively active tyrosine kinase activity, that forges the pathogenesis of CML. This aberrant kinase signalling activates downstream targets that reprogram the cell to cause uncontrolled proliferation and results in myeloid hyperplasia and 'indolent' symptoms of chronic phase (CP) CML. Without successful intervention, the disease will progress into blast crisis (BC), resembling an acute leukaemia. This advanced disease stage takes on an aggressive phenotype and is almost always fatal. The cell biology of CML is also centred on BCR-ABL1. The presence of BCR-ABL1 can explain virtually all the cellular features of the leukaemia (enhanced cell growth, inhibition of apoptosis, altered cell adhesion, growth factor independence, impaired genomic surveillance and differentiation). This article provides an overview of the clinical and cell biology of CML, and highlights key findings and unanswered questions essential for understanding this disease.
Collapse
MESH Headings
- Animals
- Disease Progression
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/physiopathology
- Mutation
- Neoplasm Proteins/chemistry
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Prognosis
Collapse
Affiliation(s)
- Bradley Chereda
- Departments of Genetics and Molecular Pathology, and Haematology, Centre for Cancer Biology, SA Pathology, Frome Road, Adelaide, 5000, Australia,
| | | |
Collapse
|
46
|
Abstract
The lymphocyte family has expanded significantly in recent years to include not only the adaptive lymphocytes (T cells, B cells) and NK cells, but also several additional innate lymphoid cell (ILC) types. ILCs lack clonally distributed antigen receptors characteristic of adaptive lymphocytes and instead respond exclusively to signaling via germline-encoded receptors. ILCs resemble T cells more closely than any other leukocyte lineage at the transcriptome level and express many elements of the core T cell transcriptional program, including Notch, Gata3, Tcf7, and Bcl11b. We present our current understanding of the shared and distinct transcriptional regulatory mechanisms involved in the development of adaptive T lymphocytes and closely related ILCs. We discuss the possibility that a core set of transcriptional regulators common to ILCs and T cells establish enhancers that enable implementation of closely aligned effector pathways. Studies of the transcriptional regulation of lymphopoiesis will support the development of novel therapeutic approaches to correct early lymphoid developmental defects and aberrant lymphocyte function.
Collapse
Affiliation(s)
- Maria Elena De Obaldia
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | |
Collapse
|
47
|
Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 2014; 20:833-46. [PMID: 25100529 DOI: 10.1038/nm.3647] [Citation(s) in RCA: 575] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 07/03/2014] [Indexed: 02/08/2023]
Abstract
The bone marrow niche has mystified scientists for many years, leading to widespread investigation to shed light into its molecular and cellular composition. Considerable efforts have been devoted toward uncovering the regulatory mechanisms of hematopoietic stem cell (HSC) niche maintenance. Recent advances in imaging and genetic manipulation of mouse models have allowed the identification of distinct vascular niches that have been shown to orchestrate the balance between quiescence, proliferation and regeneration of the bone marrow after injury. Here we highlight the recently discovered intrinsic mechanisms, microenvironmental interactions and communication with surrounding cells involved in HSC regulation, during homeostasis and in regeneration after injury and discuss their implications for regenerative therapy.
Collapse
|
48
|
Cabezas-Wallscheid N, Klimmeck D, Hansson J, Lipka DB, Reyes A, Wang Q, Weichenhan D, Lier A, von Paleske L, Renders S, Wünsche P, Zeisberger P, Brocks D, Gu L, Herrmann C, Haas S, Essers MAG, Brors B, Eils R, Huber W, Milsom MD, Plass C, Krijgsveld J, Trumpp A. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 2014; 15:507-522. [PMID: 25158935 DOI: 10.1016/j.stem.2014.07.005] [Citation(s) in RCA: 381] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/25/2014] [Accepted: 07/18/2014] [Indexed: 02/07/2023]
Abstract
In this study, we present integrated quantitative proteome, transcriptome, and methylome analyses of hematopoietic stem cells (HSCs) and four multipotent progenitor (MPP) populations. From the characterization of more than 6,000 proteins, 27,000 transcripts, and 15,000 differentially methylated regions (DMRs), we identified coordinated changes associated with early differentiation steps. DMRs show continuous gain or loss of methylation during differentiation, and the overall change in DNA methylation correlates inversely with gene expression at key loci. Our data reveal the differential expression landscape of 493 transcription factors and 682 lncRNAs and highlight specific expression clusters operating in HSCs. We also found an unexpectedly dynamic pattern of transcript isoform regulation, suggesting a critical regulatory role during HSC differentiation, and a cell cycle/DNA repair signature associated with multipotency in MPP2 cells. This study provides a comprehensive genome-wide resource for the functional exploration of molecular, cellular, and epigenetic regulation at the top of the hematopoietic hierarchy.
Collapse
Affiliation(s)
- Nina Cabezas-Wallscheid
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Daniel Klimmeck
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Jenny Hansson
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Daniel B Lipka
- Division of Epigenomics and Cancer Risk Factors, DKFZ, 69120 Heidelberg, Germany
| | - Alejandro Reyes
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Qi Wang
- Division of Theoretical Bioinformatics, Department of Bioinformatics and Functional Genomics, DKFZ, 69120 Heidelberg, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Epigenomics and Cancer Risk Factors, DKFZ, 69120 Heidelberg, Germany
| | - Amelie Lier
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Junior Research Group Experimental Hematology, Division of Stem Cells and Cancer, DKFZ, 69120 Heidelberg, Germany
| | - Lisa von Paleske
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Simon Renders
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Peer Wünsche
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - Petra Zeisberger
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany
| | - David Brocks
- Division of Epigenomics and Cancer Risk Factors, DKFZ, 69120 Heidelberg, Germany
| | - Lei Gu
- Division of Epigenomics and Cancer Risk Factors, DKFZ, 69120 Heidelberg, Germany; Division of Theoretical Bioinformatics, Department of Bioinformatics and Functional Genomics, DKFZ, 69120 Heidelberg, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Carl Herrmann
- Division of Theoretical Bioinformatics, Department of Bioinformatics and Functional Genomics, DKFZ, 69120 Heidelberg, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Simon Haas
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Junior Research Group Stress-induced Activation of Hematopoietic Stem Cells, Division of Stem Cells and Cancer, DKFZ, 69120 Heidelberg, Germany
| | - Marieke A G Essers
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Junior Research Group Stress-induced Activation of Hematopoietic Stem Cells, Division of Stem Cells and Cancer, DKFZ, 69120 Heidelberg, Germany
| | - Benedikt Brors
- Division of Theoretical Bioinformatics, Department of Bioinformatics and Functional Genomics, DKFZ, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics, Department of Bioinformatics and Functional Genomics, DKFZ, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Institute for Pharmacy and Molecular Biotechnology (IPMB) and BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| | - Wolfgang Huber
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Michael D Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; Junior Research Group Experimental Hematology, Division of Stem Cells and Cancer, DKFZ, 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Epigenomics and Cancer Risk Factors, DKFZ, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, Deutsches Krebsforschungszentrum (DKFZ), 69120 Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
49
|
Abstract
Ionizing radiation exposure is fatal due to widespread hematopoietic destruction. Lento et al. found that TCF/Lef H2B-GFP reporter mice display robust activation in HSCs following injury. Loss of β-catenin impaired HSC regeneration and recovery after radiation damage. β-Catenin-null HSCs exhibited reduced expression of catalase, an enzyme responsible for eliminating hydrogen peroxide. Consistent with this, irradiated β-catenin-null HSCs accumulate ROS and double-strand breaks. This study suggests that β-catenin loss compromises genomic integrity after ionizing radiation injury. Accidental or deliberate ionizing radiation exposure can be fatal due to widespread hematopoietic destruction. However, little is known about either the course of injury or the molecular pathways that regulate the subsequent regenerative response. Here we show that the Wnt signaling pathway is critically important for regeneration after radiation-induced injury. Using Wnt reporter mice, we show that radiation triggers activation of Wnt signaling in hematopoietic stem and progenitor cells. β-Catenin-deficient mice, which lack the ability to activate canonical Wnt signaling, exhibited impaired hematopoietic stem cell regeneration and bone marrow recovery after radiation. We found that, as part of the mechanism, hematopoietic stem cells lacking β-catenin fail to suppress the generation of reactive oxygen species and cannot resolve DNA double-strand breaks after radiation. Consistent with the impaired response to radiation, β-catenin-deficient mice are also unable to recover effectively after chemotherapy. Collectively, these data indicate that regenerative responses to distinct hematopoietic injuries share a genetic dependence on β-catenin and raise the possibility that modulation of Wnt signaling may be a path to improving bone marrow recovery after damage.
Collapse
|
50
|
Shah DK, Zúñiga-Pflücker JC. An overview of the intrathymic intricacies of T cell development. THE JOURNAL OF IMMUNOLOGY 2014; 192:4017-23. [PMID: 24748636 DOI: 10.4049/jimmunol.1302259] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The generation of a functional and diverse repertoire of T cells occurs in the thymus from precursors arriving from the bone marrow. In this article, we introduce the various stages of mouse thymocyte development and highlight recent work using various in vivo, and, where appropriate, in vitro models of T cell development that led to discoveries in the regulation afforded by transcription factors and receptor-ligand signaling pathways in specifying, maintaining, and promoting the T cell lineage and the production of T cells. This review also discusses the role of the thymic microenvironment in providing a niche for the successful development of T cells. In particular, we focus on advances in Notch signaling and developments in Notch ligand interactions in this process.
Collapse
Affiliation(s)
- Divya K Shah
- Anthony Nolan Research Institute, Royal Free Hospital, London NW3 2QG, United Kingdom
| | | |
Collapse
|