1
|
Puxeddu I, Pistone F, Pisani F, Levi-Schaffer F. Mast cell signaling and its role in urticaria. Ann Allergy Asthma Immunol 2024; 133:374-379. [PMID: 38663722 DOI: 10.1016/j.anai.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/08/2024]
Abstract
Chronic urticaria is a mast cell (MC)-driven disease characterized by the development of itching wheals and/or angioedema. In the last decades, outstanding progress has been made in defining the mechanisms involved in MC activation, and novel activating and inhibitory receptors expressed in MC surface were identified and characterized. Besides an IgE-mediated activation through high-affinity IgE receptor cross-linking, other activating receptors, including Mas-related G-protein-coupled receptor-X2, C5a receptor, and protease-activated receptors 1 and 2 are responsible for MC activation. This would partly explain the reason some subgroups of chronic spontaneous urticaria (CSU), the most frequent form of urticaria in the general population, do not respond to IgE target therapies, requiring other therapeutic approaches for improving the management of the disease. In this review, we shed some light on the current knowledge of the immunologic and nonimmunologic mechanisms regulating MC activation in CSU, considering the complex inflammatory scenario underlying CSU pathogenesis, and novel potential MC-targeted therapies, including surface receptors and cytoplasmic signaling proteins.
Collapse
Affiliation(s)
- Ilaria Puxeddu
- Immunoallergology Unit, Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy.
| | - Francesca Pistone
- Immunoallergology Unit, Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - Francesco Pisani
- Immunoallergology Unit, Department of Clinical and Experimental Medicine, Pisa University, Pisa, Italy
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Bernstein JA, Maurer M, Saini SS. BTK signaling-a crucial link in the pathophysiology of chronic spontaneous urticaria. J Allergy Clin Immunol 2024; 153:1229-1240. [PMID: 38141832 DOI: 10.1016/j.jaci.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Chronic spontaneous urticaria (CSU) is an inflammatory skin disorder that manifests with itchy wheals, angioedema, or both for more than 6 weeks. Mast cells and basophils are the key pathogenic drivers of CSU; their activation results in histamine and cytokine release with subsequent dermal inflammation. Two overlapping mechanisms of mast cell and basophil activation have been proposed in CSU: type I autoimmunity, also called autoallergy, which is mediated via IgE against various autoallergens, and type IIb autoimmunity, which is mediated predominantly via IgG directed against the IgE receptor FcεRI or FcεRI-bound IgE. Both mechanisms involve cross-linking of FcεRI and activation of downstream signaling pathways, and they may co-occur in the same patient. In addition, B-cell receptor signaling has been postulated to play a key role in CSU by generating autoreactive B cells and autoantibody production. A cornerstone of FcεRI and B-cell receptor signaling is Bruton tyrosine kinase (BTK), making BTK inhibition a clear therapeutic target in CSU. The potential application of early-generation BTK inhibitors, including ibrutinib, in allergic and autoimmune diseases is limited owing to their unfavorable benefit-risk profile. However, novel BTK inhibitors with improved selectivity and safety profiles have been developed and are under clinical investigation in autoimmune diseases, including CSU. In phase 2 trials, the BTK inhibitors remibrutinib and fenebrutinib have demonstrated rapid and sustained improvements in CSU disease activity. With phase 3 studies of remibrutinib ongoing, it is hoped that BTK inhibitors will present an effective, well-tolerated option for patients with antihistamine-refractory CSU, a phenotype that presents a considerable clinical challenge.
Collapse
Affiliation(s)
- Jonathan A Bernstein
- Department of Internal Medicine, Allergy and Immunology Section, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Marcus Maurer
- Institute of Allergology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Sarbjit S Saini
- Johns Hopkins Asthma and Allergy Center, Division of Allergy and Clinical Immunology, The Johns Hopkins University School of Medicine, Baltimore, Md.
| |
Collapse
|
3
|
Ieven T, Coorevits L, Vandebotermet M, Tuyls S, Vanneste H, Santy L, Wets D, Proost P, Frans G, Devolder D, Breynaert C, Bullens DMA, Schrijvers R. Endotyping of IgE-Mediated Polyethylene Glycol and/or Polysorbate 80 Allergy. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3146-3160. [PMID: 37380070 PMCID: PMC10291891 DOI: 10.1016/j.jaip.2023.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND Polyethylene glycol (PEG) and polysorbate 80 (PS80) allergy preclude from SARS-CoV-2 vaccination. The mechanism(s) governing cross-reactivity and PEG molecular weight dependence remain unclear. OBJECTIVES To evaluate PEGylated lipid nanoparticle (LNP) vaccine (BNT162b2) tolerance and explore the mechanism of reactivity in PEG and/or PS80 allergic patients. METHODS PEG/PS80 dual- (n = 3), PEG mono- (n = 7), and PS80 mono-allergic patients (n = 2) were included. Tolerability of graded vaccine challenges was assessed. Basophil activation testing on whole blood (wb-BAT) or passively sensitized donor basophils (allo-BAT) was performed using PEG, PS80, BNT162b2, and PEGylated lipids (ALC-0159). Serum PEG-specific IgE was measured in patients (n = 10) and controls (n = 15). RESULTS Graded BNT162b2 challenge in dual- and PEG mono-allergic patients (n = 3/group) was well tolerated and induced anti-spike IgG seroconversion. PS80 mono-allergic patients (n = 2/2) tolerated single-dose BNT162b2 vaccination. Wb-BAT reactivity to PEG-containing antigens was observed in dual- (n = 3/3) and PEG mono- (n = 2/3), but absent in PS80 mono-allergic patients (n = 0/2). BNT162b2 elicited the highest in vitro reactivity. BNT162b2 reactivity was IgE mediated, complement independent, and inhibited in allo-BAT by preincubation with short PEG motifs, or detergent-induced LNP degradation. PEG-specific IgE was only detectable in dual-allergic (n = 3/3) and PEG mono-allergic (n = 1/6) serum. CONCLUSION PEG and PS80 cross-reactivity is determined by IgE recognizing short PEG motifs, whereas PS80 mono-allergy is PEG-independent. PS80 skin test positivity in PEG allergics was associated with a severe and persistent phenotype, higher serum PEG-specific IgE levels, and enhanced BAT reactivity. Spherical PEG exposure via LNP enhances BAT sensitivity through increased avidity. All PEG and/or PS80 excipient allergic patients can safely receive SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Toon Ieven
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Lieve Coorevits
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Martijn Vandebotermet
- Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium; Department of Pulmonology, AZ Groeninge Hospital, Kortrijk, Belgium
| | - Sebastiaan Tuyls
- Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium; Department of Pulmonology, GZA St-Augustinus Hospital, Wilrijk, Belgium
| | - Hélène Vanneste
- Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium; Department of Pulmonology, AZ Vesalius, Tongeren, Belgium
| | - Lisa Santy
- Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium; Department of Internal Medicine, Division of Pulmonology, St-Jozefskliniek, Izegem, Belgium
| | - Dries Wets
- Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Paul Proost
- KU Leuven Department of Microbiology, Immunology and Transplantation, Laboratory of Molecular Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Glynis Frans
- Clinical Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium
| | - David Devolder
- Pharmacy Department, University Hospitals Leuven, Leuven, Belgium
| | - Christine Breynaert
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Dominique M A Bullens
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Rik Schrijvers
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium; Department of General Internal Medicine, Division of Allergy and Clinical Immunology, University Hospitals Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Remibrutinib, a novel BTK inhibitor, demonstrates promising efficacy and safety in chronic spontaneous urticaria. J Allergy Clin Immunol 2022; 150:1498-1506.e2. [PMID: 36096203 DOI: 10.1016/j.jaci.2022.08.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Chronic spontaneous urticaria (CSU) is inadequately controlled in many patients and greatly affects quality of life. Remibrutinib, a highly selective, oral, novel covalent Bruton tyrosine kinase inhibitor, might be effective in CSU. OBJECTIVE This first-in-patient trial aimed to evaluate the efficacy and safety of remibrutinib in CSU treatment and characterize the dose-response. METHODS This randomized, double-blind, placebo-controlled, phase 2b dose-finding trial evaluated remibrutinib (12 weeks) in patients inadequately controlled with second-generation H1-antihistamines, with at least moderately active CSU, with or without prior anti-IgE treatment (NCT03926611). Patients received remibrutinib 10 mg once daily, 35 mg once daily, 100 mg once daily, 10 mg twice daily, 25 mg twice daily, 100 mg twice daily, or placebo (1:1:1:1:1:1:1 ratio). The main end points were weekly Urticaria Activity Score change from baseline at week 4 and safety. RESULTS Overall, 311 patients were randomized. Reduced symptom score was observed for all remibrutinib doses from week 1 until week 12, with weekly Urticaria Activity Score change from baseline at week 4: -19.1 (10 mg once daily), -19.1 (35 mg once daily), -14.7 (100 mg once daily), -16.0 (10 mg twice daily), -20.0 (25 mg twice daily), -18.1 (100 mg twice daily), and -5.4 for placebo (nominal P < .0001 for all doses vs placebo). Most adverse events were mild or moderate, with no dose-dependent pattern. CONCLUSION Remibrutinib was highly effective in the treatment of CSU over the entire dose range, with a rapid onset of action and a favorable safety profile.
Collapse
|
5
|
Poto R, Criscuolo G, Marone G, Brightling CE, Varricchi G. Human Lung Mast Cells: Therapeutic Implications in Asthma. Int J Mol Sci 2022; 23:14466. [PMID: 36430941 PMCID: PMC9693207 DOI: 10.3390/ijms232214466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Mast cells are strategically located in different compartments of the lung in asthmatic patients. These cells are widely recognized as central effectors and immunomodulators in different asthma phenotypes. Mast cell mediators activate a wide spectrum of cells of the innate and adaptive immune system during airway inflammation. Moreover, these cells modulate the activities of several structural cells (i.e., fibroblasts, airway smooth muscle cells, bronchial epithelial and goblet cells, and endothelial cells) in the human lung. These findings indicate that lung mast cells and their mediators significantly contribute to the immune induction of airway remodeling in severe asthma. Therapies targeting mast cell mediators and/or their receptors, including monoclonal antibodies targeting IgE, IL-4/IL-13, IL-5/IL-5Rα, IL-4Rα, TSLP, and IL-33, have been found safe and effective in the treatment of different phenotypes of asthma. Moreover, agonists of inhibitory receptors expressed by human mast cells (Siglec-8, Siglec-6) are under investigation for asthma treatment. Increasing evidence suggests that different approaches to depleting mast cells show promising results in severe asthma treatment. Novel treatments targeting mast cells can presumably change the course of the disease and induce drug-free remission in bronchial asthma. Here, we provide an overview of current and promising treatments for asthma that directly or indirectly target lung mast cells.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy
| | - Chris E. Brightling
- Department of Respiratory Sciences, Leicester NIHR BRC, Institute for Lung Health, University of Leicester, Leicester LE1 7RH, UK
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, 80131 Naples, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), 80131 Naples, Italy
- Institute of Experimental Endocrinology and Oncology “G. Salvatore”, National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
6
|
Valent P, Akin C, Hartmann K, Reiter A, Gotlib J, Sotlar K, Sperr WR, Degenfeld-Schonburg L, Smiljkovic D, Triggiani M, Horny HP, Arock M, Galli SJ, Metcalfe DD. Drug-Induced Mast Cell Eradication: A Novel Approach to Treat Mast Cell Activation Disorders? J Allergy Clin Immunol 2022; 149:1866-1874. [PMID: 35421448 DOI: 10.1016/j.jaci.2022.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/28/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022]
Abstract
Mast cell activation is a key event in allergic reactions, other inflammatory states, and mast cell activation syndromes. Mast cell-stabilizing agents, mediator-targeting drugs and drugs interfering with mediator effects are often prescribed in these patients. However, the clinical efficacy of these drugs varies, depending on the numbers of involved mast cells and the underlying pathology. One straightforward approach would be to eradicate the primary target cell. However, to date, no mast cell-eradicating treatment approach has been developed for patients suffering from mast cell activation disorders. Nevertheless, recent data suggest that long-term treatment with agents that effectively inhibit KIT-function results in the virtual eradication of tissue mast cells and a sustained decrease in serum tryptase levels. In many of these patients, mast cell depletion is associated with a substantial improvement in mediator-induced symptoms. In patients with an underlying KIT D816V+ mastocytosis, such mast cell eradication requires an effective inhibitor of KIT D816V, such as avapritinib. However, the use of KIT inhibitors must be balanced against potential side effects. We here discuss mast cell-eradicating strategies in various disease models, the feasibility of this approach, available clinical data, and future prospects for the use of KIT-targeting drugs in mast cell activation disorders.
Collapse
Affiliation(s)
- Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria.
| | - Cem Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Karin Hartmann
- Division of Allergy, Department of Dermatology, University Hospital Basel and University of Basel, Switzerland; Department of Biomedicine, University Hospital Basel and University of Basel, Switzerland
| | - Andreas Reiter
- Department of Hematology and Oncology, University Hospital Mannheim, Germany
| | - Jason Gotlib
- Stanford Cancer Institute/Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA
| | - Karl Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria
| | - Lina Degenfeld-Schonburg
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria
| | - Dubravka Smiljkovic
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Austria
| | - Massimo Triggiani
- Division of Allergy and Clinical Immunology, University of Salerno, Italy
| | - Hans-Peter Horny
- Institute of Pathology, Ludwig-Maximilian-University, Munich, Germany
| | - Michel Arock
- Department of Hematological Biology, Pitié-Salpêtrière Charles-Foix Hospital, AP-HP Sorbonne University, Paris, France
| | - Stephen J Galli
- Department of Pathology, Department of Microbiology and Immunology, and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Dean D Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, NIAID, NIH, Bethesda, MD, USA
| |
Collapse
|
7
|
Yang T, Li C, Xue W, Huang L, Wang Z. Natural immunomodulating substances used for alleviating food allergy. Crit Rev Food Sci Nutr 2021; 63:2407-2425. [PMID: 34494479 DOI: 10.1080/10408398.2021.1975257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Food allergy is a serious health problem affecting more than 10% of the human population worldwide. Medical treatments for food allergy remain limited because immune therapy is risky and costly, and anti-allergic drugs have many harmful side effects and can cause drug dependence. In this paper, we review natural bioactive substances capable of alleviating food allergy. The sources of the anti-allergic substances reviewed include plants, animals, and microbes, and the types of substances include polysaccharides, oligosaccharides, polyphenols, phycocyanin, polyunsaturated fatty acids, flavonoids, terpenoids, quinones, alkaloids, phenylpropanoids, and probiotics. We describe five mechanisms involved in anti-allergic activities, including binding with epitopes located in allergens, affecting the gut microbiota, influencing intestinal epithelial cells, altering antigen presentation and T cell differentiation, and inhibiting the degranulation of effector cells. In the discussion, we present the limitations of existing researches as well as promising advances in the development of anti-allergic foods and/or immunomodulating food ingredients that can effectively prevent or alleviate food allergy. This review provides a reference for further research on anti-allergic materials and their hyposensitizing mechanisms.
Collapse
Affiliation(s)
- Tian Yang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Cheng Li
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Wentong Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Linjuan Huang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| | - Zhongfu Wang
- Key Laboratory of Glycobiology and Glycoengineering of Xi'an, College of Food Science and Technology, Northwest University, Xi'an, China
| |
Collapse
|
8
|
Grassilli E, Cerrito MG, Bonomo S, Giovannoni R, Conconi D, Lavitrano M. p65BTK Is a Novel Biomarker and Therapeutic Target in Solid Tumors. Front Cell Dev Biol 2021; 9:690365. [PMID: 34164404 PMCID: PMC8215537 DOI: 10.3389/fcell.2021.690365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/07/2021] [Indexed: 12/30/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a non-receptor intracellular kinase playing a key role in the proliferation and survival of normal and malignant B-lymphocytes. Its targeting by Ibrutinib, the first specific inhibitor, represented a turning point for the therapy of certain types of B-cell leukemias/lymphomas and several more BTK inhibitors are today in the clinic or advanced clinical trials. BTK expression was successively found to occur also outside of the hematopoietic compartment. In fact, we identified p65BTK, a novel 65 kDa isoform lacking an N-term stretch of 86 amino acids (compared to the 77 kDa protein expressed in B cells) as highly expressed in colon cancer patients. We demonstrated that p65BTK is a powerful oncogene acting downstream of the RAS/MAPK pathway and necessary for RAS-mediated transformation. Notably, the kinase domain is conserved and therefore inhibited by the available BTK-targeting drugs (Ibrutinib, Spebrutinib, etc.) which we used to demonstrate that p65BTK is an actionable target in drug-resistant colorectal carcinomas. We found p65BTK expressed also in >50% non-small cell lung cancers (NSCLC) and demonstrated that it is an actionable target in KRAS-mutated/EGFR-wild type drug-resistant NSCLC models (for which no targeted therapy is available). We also reported a significant correlation between p65BTK expression and low-grade tumors and overall survival of patients with grade III gliomas and showed that its targeting induced a significant decrease in the viability of in glioma stem cells. Finally, in ovarian cancer patients, p65BTK expression levels correlate with early relapse and shorter progression-free survival, both indicators of resistance to therapy. Remarkably, Ibrutinib is more effective than standard of care (SOC) therapeutics in in vitro and ex vivo settings. On the whole, our preclinical data indicate that, depending on the tumor type, BTK inhibitors used alone can induce cytotoxicity (gliomas), be more effective than SOC chemotherapy (ovarian cancer) or can kill drug-resistant tumor cells when used in combination with SOC chemotherapy (colon cancer and NSCLC) or targeted therapy (NSCLC and ovarian cancer), thus suggesting that p65BTK may be an actionable target in different solid tumors. In addition, our data also give the proof-of-concept for starting clinical trials using BTK inhibitors, alone or in combination, to improve the therapeutic options for solid tumors treatment.
Collapse
Affiliation(s)
- Emanuela Grassilli
- Laboratory of Molecular Medicine, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Maria Grazia Cerrito
- Laboratory of Molecular Medicine, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Sara Bonomo
- Laboratory of Molecular Medicine, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Roberto Giovannoni
- Laboratory of Molecular Medicine, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Donatella Conconi
- Laboratory of Molecular Medicine, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Marialuisa Lavitrano
- Laboratory of Molecular Medicine, Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
9
|
Neys SFH, Hendriks RW, Corneth OBJ. Targeting Bruton's Tyrosine Kinase in Inflammatory and Autoimmune Pathologies. Front Cell Dev Biol 2021; 9:668131. [PMID: 34150760 PMCID: PMC8213343 DOI: 10.3389/fcell.2021.668131] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/07/2021] [Indexed: 12/15/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) was discovered due to its importance in B cell development, and it has a critical role in signal transduction downstream of the B cell receptor (BCR). Targeting of BTK with small molecule inhibitors has proven to be efficacious in several B cell malignancies. Interestingly, recent studies reveal increased BTK protein expression in circulating resting B cells of patients with systemic autoimmune disease (AID) compared with healthy controls. Moreover, BTK phosphorylation following BCR stimulation in vitro was enhanced. In addition to its role in BCR signaling, BTK is involved in many other pathways, including pattern recognition, Fc, and chemokine receptor signaling in B cells and myeloid cells. This broad involvement in several immunological pathways provides a rationale for the targeting of BTK in the context of inflammatory and systemic AID. Accordingly, numerous in vitro and in vivo preclinical studies support the potential of BTK targeting in these conditions. Efficacy of BTK inhibitors in various inflammatory and AID has been demonstrated or is currently evaluated in clinical trials. In addition, very recent reports suggest that BTK inhibition may be effective as immunosuppressive therapy to diminish pulmonary hyperinflammation in coronavirus disease 2019 (COVID-19). Here, we review BTK's function in key signaling pathways in B cells and myeloid cells. Further, we discuss recent advances in targeting BTK in inflammatory and autoimmune pathologies.
Collapse
|
10
|
Fenebrutinib in H 1 antihistamine-refractory chronic spontaneous urticaria: a randomized phase 2 trial. Nat Med 2021; 27:1961-1969. [PMID: 34750553 PMCID: PMC8604722 DOI: 10.1038/s41591-021-01537-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022]
Abstract
Bruton's tyrosine kinase (BTK) is crucial for FcεRI-mediated mast cell activation and essential for autoantibody production by B cells in chronic spontaneous urticaria (CSU). Fenebrutinib, an orally administered, potent, highly selective, reversible BTK inhibitor, may be effective in CSU. This double-blind, placebo-controlled, phase 2 trial (EudraCT ID 2016-004624-35 ) randomized 93 adults with antihistamine-refractory CSU to 50 mg daily, 150 mg daily and 200 mg twice daily of fenebrutinib or placebo for 8 weeks. The primary end point was change from baseline in urticaria activity score over 7 d (UAS7) at week 8. Secondary end points were the change from baseline in UAS7 at week 4 and the proportion of patients well-controlled (UAS7 ≤ 6) at week 8. Fenebrutinib efficacy in patients with type IIb autoimmunity and effects on IgG-anti-FcεRI were exploratory end points. Safety was also evaluated. The primary end point was met, with dose-dependent improvements in UAS7 at week 8 occurring at 200 mg twice daily and 150 mg daily, but not at 50 mg daily of fenebrutinib versus placebo. Asymptomatic, reversible grade 2 and 3 liver transaminase elevations occurred in the fenebrutinib 150 mg daily and 200 mg twice daily groups (2 patients each). Fenebrutinib diminished disease activity in patients with antihistamine-refractory CSU, including more patients with refractory type IIb autoimmunity. These results support the potential use of BTK inhibition in antihistamine-refractory CSU.
Collapse
|
11
|
Creeden JF, Alganem K, Imami AS, Henkel ND, Brunicardi FC, Liu SH, Shukla R, Tomar T, Naji F, McCullumsmith RE. Emerging Kinase Therapeutic Targets in Pancreatic Ductal Adenocarcinoma and Pancreatic Cancer Desmoplasia. Int J Mol Sci 2020; 21:ijms21228823. [PMID: 33233470 PMCID: PMC7700673 DOI: 10.3390/ijms21228823] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Kinase drug discovery represents an active area of therapeutic research, with previous pharmaceutical success improving patient outcomes across a wide variety of human diseases. In pancreatic ductal adenocarcinoma (PDAC), innovative pharmaceutical strategies such as kinase targeting have been unable to appreciably increase patient survival. This may be due, in part, to unchecked desmoplastic reactions to pancreatic tumors. Desmoplastic stroma enhances tumor development and progression while simultaneously restricting drug delivery to the tumor cells it protects. Emerging evidence indicates that many of the pathologic fibrotic processes directly or indirectly supporting desmoplasia may be driven by targetable protein tyrosine kinases such as Fyn-related kinase (FRK); B lymphoid kinase (BLK); hemopoietic cell kinase (HCK); ABL proto-oncogene 2 kinase (ABL2); discoidin domain receptor 1 kinase (DDR1); Lck/Yes-related novel kinase (LYN); ephrin receptor A8 kinase (EPHA8); FYN proto-oncogene kinase (FYN); lymphocyte cell-specific kinase (LCK); tec protein kinase (TEC). Herein, we review literature related to these kinases and posit signaling networks, mechanisms, and biochemical relationships by which this group may contribute to PDAC tumor growth and desmoplasia.
Collapse
Affiliation(s)
- Justin F. Creeden
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
- Correspondence: ; Tel.: +1-419-383-6474
| | - Khaled Alganem
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Ali S. Imami
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Nicholas D. Henkel
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - F. Charles Brunicardi
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
| | - Shi-He Liu
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (F.C.B.); (S.-H.L.)
- Department of Surgery, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 6038, USA
| | - Rammohan Shukla
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
| | - Tushar Tomar
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Faris Naji
- PamGene International BV, 5200 BJ’s-Hertogenbosch, The Netherlands; (T.T.); (F.N.)
| | - Robert E. McCullumsmith
- Department of Neurosciences, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA; (K.A.); (A.S.I.); (N.D.H.); (R.S.); (R.E.M.)
- Neurosciences Institute, ProMedica, Toledo, OH 6038, USA
| |
Collapse
|
12
|
Gamperl S, Stefanzl G, Willmann M, Valent P, Hadzijusufovic E. In vitro effects of histamine receptor 1 antagonists on proliferation and histamine release in canine neoplastic mast cells. Vet Med Sci 2020; 7:57-68. [PMID: 32924324 PMCID: PMC7840218 DOI: 10.1002/vms3.336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/12/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
Canine mastocytomas (MCTs) are characterized by rapid proliferation of neoplastic mast cells (MCs) and clinical signs caused by MC-derived mediators. In dogs suffering from MCT, histamine receptor 1 (HR1) antagonists are frequently used to control mediator-related clinical symptoms. Previous studies have shown that the HR1 antagonists loratadine and terfenadine exert some growth-inhibitory effects on neoplastic MCs. We examined whether other HR1 antagonists used in clinical practice (desloratadine, rupatadine, cyproheptadine, dimetindene, diphenhydramine) affect proliferation and survival of neoplastic MCs. Furthermore, we analysed whether these HR1 antagonists counteract IgE-dependent histamine release from a MC line harbouring a functional IgE-receptor. HR1 antagonists were applied on two canine MC lines, C2 and NI-1, and on primary MCs obtained from three MCT samples. The HR1 antagonists desloratadine, rupatadine and cyproheptadine were found to be more potent in decreasing proliferation of C2 and NI-1 cells when compared with dimetindene and diphenhydramine. Similar effects were seen in primary neoplastic MCs, except for diphenhydramine, which exerted more potent growth-inhibitory effects than the other HR1 antagonists. Drug-induced growth-inhibition in C2 and NI-1 cells was accompanied by apoptosis. Loratadine, desloratadine and rupatadine also suppressed IgE-dependent histamine release in NI-1 cells. However, drug concentrations required to elicit substantial effects on growth or histamine release were relatively high (>10 µM). Therefore, it remains unknown whether these drugs or similar, more potent, HR1-targeting drugs can suppress growth or activation of canine neoplastic MCs in vivo.
Collapse
Affiliation(s)
- Susanne Gamperl
- Division of Hematology & Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gabriele Stefanzl
- Division of Hematology & Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Willmann
- Department of Companion Animals and Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Peter Valent
- Division of Hematology & Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Emir Hadzijusufovic
- Division of Hematology & Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria.,Department of Companion Animals and Horses, Clinic for Internal Medicine and Infectious Diseases, University of Veterinary Medicine Vienna, Vienna, Austria.,Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
13
|
Lee D, Park YH, Lee JE, Kim HS, Min KY, Jo MG, Kim HS, Choi WS, Kim YM. Dasatinib Inhibits Lyn and Fyn Src-Family Kinases in Mast Cells to Suppress Type I Hypersensitivity in Mice. Biomol Ther (Seoul) 2020; 28:456-464. [PMID: 32268657 PMCID: PMC7457176 DOI: 10.4062/biomolther.2020.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022] Open
Abstract
Mast cells (MCs) are systemically distributed and secrete several allergic mediators such as histamine and leukotrienes to cause type I hypersensitivity. Dasatinib is a type of anti-cancer agent and it has also been reported to inhibit human basophils. However, dasatinib has not been reported for its inhibitory effects on MCs or type I hypersensitivity in mice. In this study, we examined the inhibitory effect of dasatinib on MCs and MC-mediated allergic response in vitro and in vivo. in vitro, dasatinib inhibited the degranulation of MCs by antigen stimulation in a dose-dependent manner (IC50, ~34 nM for RBL-2H3 cells; ~52 nM for BMMCs) without any cytotoxicity. It also suppressed the secretion of inflammatory cytokines IL-4 and TNF-α by antigen stimulation. Furthermore, dasatinib inhibited MC-mediated passive cutaneous anaphylaxis (PCA) in mice (ED50, ~29 mg/kg). Notably, dasatinib significantly suppressed the degranulation of MCs in the ear tissue. As the mechanism of its effect, dasatinib inhibited the activation of Syk and Syk-mediated downstream signaling proteins, LAT, PLCγ1, and three typical MAP kinases (Erk1/2, JNK, and p38), which are essential for the activation of MCs. Interestingly, in vitro tyrosine kinase assay, dasatinib directly inhibited the activities of Lyn and Fyn, the upstream tyrosine kinases of Syk in MCs. Taken together, dasatinib suppresses MCs and PCA in vitro and in vivo through the inhibition of Lyn and Fyn Src-family kinases. Therefore, we suggest the possibility of repositioning the anti-cancer drug dasatinib as a treatment for various MC-mediated type I hypersensitive diseases.
Collapse
Affiliation(s)
- Dajeong Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Young Hwan Park
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Ji Eon Lee
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea.,College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyuk Soon Kim
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Keun Young Min
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Min Geun Jo
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon 6419, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
14
|
Yasui K, Matsuyama N, Takihara Y, Hirayama F. New insights into allergic transfusion reactions and their causal relationships, pathogenesis, and prevention. Transfusion 2020; 60:1590-1601. [DOI: 10.1111/trf.15845] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/22/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Kazuta Yasui
- Japanese Red Cross Kinki Block Blood Center Ibaraki Osaka Japan
| | | | | | - Fumiya Hirayama
- Japanese Red Cross Kinki Block Blood Center Ibaraki Osaka Japan
| |
Collapse
|
15
|
Smiljkovic D, Kiss R, Lupinek C, Hoermann G, Greiner G, Witzeneder N, Krajnik G, Trautinger F, Vrtala S, Mittermann I, Kundi M, Jilma B, Valenta R, Sperr WR, Valent P. Microarray-Based Detection of Allergen-Reactive IgE in Patients with Mastocytosis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2020; 8:2761-2768.e16. [PMID: 32348913 DOI: 10.1016/j.jaip.2020.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/03/2020] [Accepted: 04/11/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Because of a high risk to develop fatal anaphylaxis, early detection of immunoglobulin E (IgE)-dependent allergy is of particular importance in patients with mastocytosis. OBJECTIVE We examined whether microarray-based screening for allergen-reactive IgE (allergen-chip) is a sensitive and robust approach to detect specific IgE in patients with mastocytosis. METHODS Sera for 42 patients were analyzed, including 4 with cutaneous mastocytosis, 2 with mastocytosis in the skin, and 36 with systemic mastocytosis. In addition, sera from an age- and sex-matched control cohort (n = 42) were analyzed. RESULTS In 15 of 42 patients with mastocytosis (35.7%), specific IgE was detected by allergen-chip profiling. Ves v 5 and Bet v 1 were the most frequently detected allergens (Ves v 5: 16.7% of patients; Bet v 1: 11.9% of patients). Allergen reactivity was confirmed by demonstrating upregulation of CD203c on blood basophils upon exposure to the respective allergen(s) in these patients. Specific IgE was identified by chip studies in 11 of 26 patients with mastocytosis with mediator-related symptoms (42.3%) and in 4 of 14 patients with mastocytosis without symptoms (28.6%). In the cohort with known allergy, 9 of 9 patients (100%) had a positive allergen-chip result. In patients with mastocytosis without a known allergy (n = 31), the chip identified 6 positive cases (19.5%). The prevalence of chip-positive patients was slightly lower in the mastocytosis group (35.7%) compared with age- and sex-matched controls (40.5%). CONCLUSIONS Although specific IgE may not be detectable in all sensitized patients with mastocytosis, allergy chip-profiling is a reliable screening approach for the identification of patients with mastocytosis suffering from IgE-dependent allergies.
Collapse
Affiliation(s)
- Dubravka Smiljkovic
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria
| | - Renata Kiss
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Immunology and Infectiology, Medical University of Vienna, Vienna, Austria
| | - Christian Lupinek
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Immunology and Infectiology, Medical University of Vienna, Vienna, Austria
| | - Gregor Hoermann
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria; Central Institute of Medical and Chemical Laboratory Diagnostics, University Hospital Innsbruck, Innsbruck, Austria
| | - Georg Greiner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | - Nadine Witzeneder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Gerhard Krajnik
- Department of Internal Medicine I, University Hospital St. Poelten, St. Poelten, Austria
| | - Franz Trautinger
- Department of Dermatology, University Hospital St. Poelten, St. Poelten, Austria
| | - Susanne Vrtala
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Immunology and Infectiology, Medical University of Vienna, Vienna, Austria
| | - Irene Mittermann
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Immunology and Infectiology, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Institute of Environmental Health of the Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Immunology and Infectiology, Medical University of Vienna, Vienna, Austria; NRC Institute of Immunology FMBA of Russia, Moscow, Russia; Laboratory for Immunopathology, Department of Clinical Immunology and Allergy, Sechenov First Moscow State Medical University, Moscow, Russia; Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Wolfgang R Sperr
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria.
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
IgE-binding epitope mapping of tropomyosin allergen (Exo m 1) from Exopalaemon modestus, the freshwater Siberian prawn. Food Chem 2019; 309:125603. [PMID: 31707198 DOI: 10.1016/j.foodchem.2019.125603] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/18/2022]
Abstract
Exopalaemon modestus (EM) is a shrimp delicacy that could cause food allergy, the major allergen of EM is Exo m 1. The amino acid (AA) sequence, IgE-binding epitopes and allergenic peptides in gastrointestinal (GI) digests of Exo m 1, and their effects on basophil function were investigated. Exo m 1 has an AA-sequence of high similarity with other shrimp tropomyosins, while not 100% matching. The IgE-binding epitopes of Exo m 1 are epitope 1 (43-59, VHNLQKRMQQLENDLDS), epitope 2 (85-105, VAALNRRIQLLEEDLERSEER), epitope 3 (131-164, ENRSLSDEERMDALENQLKEARFLAEEADRKYDE), epitope 4 (187-201, ESKIVELEEELRVVG) and epitope 5 (243-280, ERSVQKLQKEVDRLEDELVNEKEKYKSITDELDQTFSE). Among the thirty-three peptides of Exo m 1 identified in GI digests, two were highly recognized by IgE, twenty-four moderately or weakly bound IgE, and seven had no IgE-reactivities. These IgE-binding epitopes and GI digestion induced-allergenic peptides could activate basophil degranulation, and CD63 and CD203c expression, they could be potential peptide-based immunotherapy for shrimp allergic individuals.
Collapse
|
17
|
Zhang Z, Xiao H, Zhou P. Allergenicity suppression of tropomyosin from Exopalaemon modestus by glycation with saccharides of different molecular sizes. Food Chem 2019; 288:268-275. [DOI: 10.1016/j.foodchem.2019.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 01/30/2023]
|
18
|
Seiter K, Latremouille-Viau D, Guerin A, Ndife B, Habucky K, Tang DH, Pivneva I, Gagnon-Sanschagrin P, Joseph GJ. Burden of Infections Among Chronic Myeloid Leukemia Patients Receiving Dasatinib or Nilotinib: A Real-World Retrospective Healthcare Claims Study in the United States. Adv Ther 2018; 35:1671-1685. [PMID: 30155792 DOI: 10.1007/s12325-018-0772-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Tyrosine kinase inhibitors (TKI) have been demonstrated to prolong survival in patients with chronic myeloid leukemia (CML). However, TKIs may be associated with an increased risk of infections. This study compared healthcare resource utilization (HRU) and costs among patients with CML receiving dasatinib or nilotinib, with a focus on infection-related economic outcomes. METHODS Two large administrative databases were used to identify adult patients newly diagnosed with CML who initiated dasatinib or nilotinib as first- (1L) or second-line (2L) therapy and were classified into the following 1L (dasatinib 1L/nilotinib 1L cohorts) or 2L (dasatinib 2L/nilotinib 2L) cohorts based on the initiated 1L/2L TKI therapy. Infection-related HRU and healthcare costs were compared between cohorts, separately for 1L and 2L. RESULTS Cohorts included 1156 patients in the dasatinib 1L and 677 patients in the nilotinib 1L cohorts, 322 patients in the dasatinib 2L, and 207 in the nilotinib 2L cohorts. In 1L and 2L, infection-related HRU was higher for dasatinib than nilotinib cohorts. Infection-related inpatient (IP) days constituted a larger proportion of all-cause IP days in the 1L/2L dasatinib than 1L/2L nilotinib cohorts (dasatinib 1L/2L: 53%/58%; nilotinib 1L/2L: 50%/46%). Compared to the nilotinib cohort, the dasatinib cohort had higher all-cause total costs per patient per year by US$17,901 in 1L and $28,625 in 2L. Of the total cost difference, infection-related were $6048 (34%) in 1L and $28,192 (99%) in 2L, largely driven by IP cost differences (1L/2L: 96%/98%). CONCLUSIONS Dasatinib was associated with higher HRU and healthcare costs compared to nilotinib, particularly related to infections. FUNDING Novartis Pharmaceutical Corporation.
Collapse
Affiliation(s)
| | | | | | - Briana Ndife
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Karen Habucky
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | - Derek H Tang
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | | | | | |
Collapse
|
19
|
Liu QM, Xie CL, Gao YY, Liu B, Lin WX, Liu H, Cao MJ, Su WJ, Yang XW, Liu GM. Deep-Sea-Derived Butyrolactone I Suppresses Ovalbumin-Induced Anaphylaxis by Regulating Mast Cell Function in a Murine Model. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:5581-5592. [PMID: 29763312 DOI: 10.1021/acs.jafc.8b01674] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Deep-sea-derived butyrolactone I (BTL-I), which was identified as a type of butanolide, was isolated from Aspergillus sp. Ovalbumin (OVA)-induced BALB/c anaphylaxis was established to explore the antifood allergic activity of BTL-I. As a result, BTL-I was able to alleviate OVA-induced allergy symptoms, reduce the levels of histamine and mouse mast cell proteinases, inhibit OVA-specific IgE, and decrease the population of mast cells in the spleen and mesenteric lymph nodes. BTL-I also significantly suppressed mast-dependent passive cutaneous anaphylaxis. Additionally, the maturation of bone marrow-derived mast cells (BMMCs) declined as BTL-I caused down-regulation of c-KIT receptors. Furthermore, molecular docking analyses revealed that BTL-I interacted with the inhibitory receptor, FcγRIIB. In conclusion, the reduction of mast cell function by deep-sea-derived BTL-I as well as its interactions with the inhibitory receptor, FcγRIIB, may contribute to BTL-I-related protection against food anaphylaxis.
Collapse
Affiliation(s)
- Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P.R. China
| | - Chun-Lan Xie
- Key Laboratory of Marine Biogenetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center , Third Institute of Oceanography, State Oceanic Administration , 184 Daxue Road , Xiamen , 361005 Fujian , P.R. China
| | - Yuan-Yuan Gao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P.R. China
| | - Bo Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P.R. China
| | - Wei-Xiang Lin
- Key Laboratory of Marine Biogenetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center , Third Institute of Oceanography, State Oceanic Administration , 184 Daxue Road , Xiamen , 361005 Fujian , P.R. China
| | - Hong Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P.R. China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P.R. China
| | - Wen-Jin Su
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P.R. China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center , Third Institute of Oceanography, State Oceanic Administration , 184 Daxue Road , Xiamen , 361005 Fujian , P.R. China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources , Jimei University , 43 Yindou Road , Xiamen , 361021 Fujian , P.R. China
| |
Collapse
|
20
|
L'Italien L, Orozco O, Abrams T, Cantagallo L, Connor A, Desai J, Ebersbach H, Gelderblom H, Hoffmaster K, Lees E, Maacke H, Schleyer S, Skegro D, Lee-Hoeflich ST. Mechanistic Insights of an Immunological Adverse Event Induced by an Anti-KIT Antibody Drug Conjugate and Mitigation Strategies. Clin Cancer Res 2018; 24:3465-3474. [PMID: 29615457 DOI: 10.1158/1078-0432.ccr-17-3786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/06/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Hypersensitivity reactions (HSRs) were observed in three patients dosed in a phase I clinical trial treated with LOP628, a KIT targeted antibody drug conjugate. Mast cell degranulation was implicated as the root cause for the HSR. Underlying mechanism of this reported HSR was investigated with an aim to identifying potential mitigation strategies.Experimental Design: Biomarkers for mast cell degranulation were evaluated in patient samples and in human peripheral blood cell-derived mast cell (PBC-MC) cultures treated with LOP628. Mitigation strategies interrogated include pretreatment of mast cells with small molecule inhibitors that target KIT or signaling pathways downstream of FcεR1, FcγR, and treatment with Fc silencing antibody formats.Results: Transient elevation of serum tryptase was observed in patients 1-hour posttreatment of LOP628. In agreement with the clinical observation, LOP628 and its parental antibody LMJ729 induced degranulation of human PBC-MCs. Unexpectedly, KIT small molecule inhibitors did not abrogate mast cell degranulation. By contrast, small molecule inhibitors that targeted pathways downstream of Fc receptors blunted degranulation. Furthermore, interference of the KIT antibody to engage Fc receptors by pre-incubation with IgG or using engineered Fc silencing mutations reduced or prevented degranulation. Characterization of Fcγ receptors revealed human PBC-MCs expressed both FcγRII and low levels of FcγRI. Interestingly, increasing the level of FcγRI upon addition of IFNγ, significantly enhanced LOP628-mediated mast cell degranulation.Conclusions: Our data suggest LOP628-mediated mast cell degranulation is the likely cause of HSR observed in the clinic due to co-engagement of the FcγR and KIT, resulting in mast cell activation. Clin Cancer Res; 24(14); 3465-74. ©2018 AACR.
Collapse
Affiliation(s)
| | - Olivia Orozco
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Tinya Abrams
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Lisa Cantagallo
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Anu Connor
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Jayesh Desai
- Royal Melbourne Hospital, Parkville VIC, Australia
| | - Hilmar Ebersbach
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | | | - Keith Hoffmaster
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Emma Lees
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Heiko Maacke
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | - Siew Schleyer
- Novartis Institutes for Biomedical Research, Shanghai, China
| | - Darko Skegro
- Novartis Institutes for Biomedical Research, Novartis Campus, Basel, Switzerland
| | | |
Collapse
|
21
|
Possible Utility of the Basophil Activation Test for the Analysis of Mechanisms Involved in Allergic Transfusion Reactions. Transfus Med Rev 2018; 32:43-51. [DOI: 10.1016/j.tmrv.2017.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/18/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022]
|
22
|
Smiljkovic D, Blatt K, Stefanzl G, Dorofeeva Y, Skrabs C, Focke‐Tejkl M, Sperr WR, Jaeger U, Valenta R, Valent P. BTK inhibition is a potent approach to block IgE-mediated histamine release in human basophils. Allergy 2017; 72:1666-1676. [PMID: 28328081 PMCID: PMC5655929 DOI: 10.1111/all.13166] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2017] [Indexed: 12/29/2022]
Abstract
Background Recent data suggest that Bruton's tyrosine kinase (BTK) is an emerging therapeutic target in IgE receptor (IgER)‐cross‐linked basophils. Methods We examined the effects of four BTK inhibitors (ibrutinib, dasatinib, AVL‐292, and CNX‐774) on IgE‐dependent activation and histamine release in blood basophils obtained from allergic patients (n=11) and nonallergic donors (n=5). In addition, we examined the effects of these drugs on the growth of the human basophil cell line KU812 and the human mast cell line HMC‐1. Results All four BTK blockers were found to inhibit anti‐IgE‐induced histamine release from basophils in nonallergic subjects and allergen‐induced histamine liberation from basophils in allergic donors. Drug effects on allergen‐induced histamine release were dose dependent, with IC50 values ranging between 0.001 and 0.5 μmol/L, and the following rank order of potency: ibrutinib>AVL‐292>dasatinib>CNX‐774. The basophil‐targeting effect of ibrutinib was confirmed by demonstrating that IgE‐dependent histamine release in ex vivo blood basophils is largely suppressed in a leukemia patient treated with ibrutinib. Dasatinib and ibrutinib were also found to counteract anti‐IgE‐induced and allergen‐induced upregulation of CD13, CD63, CD164, and CD203c on basophils, whereas AVL‐292 and CNX‐774 showed no significant effects. Whereas dasatinib and CNX‐774 were found to inhibit the growth of HMC‐1 cells and KU812 cells, no substantial effects were seen with ibrutinib or AVL‐292. Conclusions BTK‐targeting drugs are potent inhibitors of IgE‐dependent histamine release in human basophils. The clinical value of BTK inhibition in the context of allergic diseases remains to be determined.
Collapse
Affiliation(s)
- D. Smiljkovic
- Department of Internal Medicine I Division of Hematology & Hemostaseology Medical University of Vienna Vienna Austria
| | - K. Blatt
- Department of Internal Medicine I Division of Hematology & Hemostaseology Medical University of Vienna Vienna Austria
- Ludwig Boltzmann Cluster Oncology Medical University of Vienna Vienna Austria
| | - G. Stefanzl
- Department of Internal Medicine I Division of Hematology & Hemostaseology Medical University of Vienna Vienna Austria
- Ludwig Boltzmann Cluster Oncology Medical University of Vienna Vienna Austria
| | - Y. Dorofeeva
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center for Pathophysiology, Immunology and Infectiology Medical University of Vienna Vienna Austria
| | - C. Skrabs
- Department of Internal Medicine I Division of Hematology & Hemostaseology Medical University of Vienna Vienna Austria
| | - M. Focke‐Tejkl
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center for Pathophysiology, Immunology and Infectiology Medical University of Vienna Vienna Austria
| | - W. R. Sperr
- Department of Internal Medicine I Division of Hematology & Hemostaseology Medical University of Vienna Vienna Austria
- Ludwig Boltzmann Cluster Oncology Medical University of Vienna Vienna Austria
| | - U. Jaeger
- Department of Internal Medicine I Division of Hematology & Hemostaseology Medical University of Vienna Vienna Austria
- Ludwig Boltzmann Cluster Oncology Medical University of Vienna Vienna Austria
| | - R. Valenta
- Division of Immunopathology Department of Pathophysiology and Allergy Research Center for Pathophysiology, Immunology and Infectiology Medical University of Vienna Vienna Austria
| | - P. Valent
- Department of Internal Medicine I Division of Hematology & Hemostaseology Medical University of Vienna Vienna Austria
- Ludwig Boltzmann Cluster Oncology Medical University of Vienna Vienna Austria
| |
Collapse
|
23
|
Valent P, Akin C, Hartmann K, George TI, Sotlar K, Peter B, Gleixner KV, Blatt K, Sperr WR, Manley PW, Hermine O, Kluin-Nelemans HC, Arock M, Horny HP, Reiter A, Gotlib J. Midostaurin: a magic bullet that blocks mast cell expansion and activation. Ann Oncol 2017; 28:2367-2376. [PMID: 28945834 PMCID: PMC7115852 DOI: 10.1093/annonc/mdx290] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Clinically relevant features in patients with systemic mastocytosis (SM) include the cosmetic burden of lesional skin, mediator-related symptoms, and organ damage resulting from mast cell (MC) infiltration in advanced forms of SM. Regardless of the SM variant, expansion of neoplastic MC in the skin and other organs is triggered by mutant forms of KIT, the most prevalent being D816V. Activation of MC with subsequent release of chemical mediators is often caused by IgE-dependent mechanisms in these patients. Midostaurin, also known as PKC412, blocks the kinase activity of wild-type KIT and KIT D816V, counteracts KIT-dependent growth of neoplastic MC, and inhibits IgE-dependent mediator secretion. Based on this activity-profile, the drug has been used for treatment of patients with advanced SM. Indeed, encouraging results have been obtained with the drug in a recent multi-center phase II trial in patients with advanced SM, with an overall response rate of 60% and a substantial decrease in the burden of neoplastic MC in various organs. Moreover, midostaurin improved the overall survival and relapse-free survival in patients with advanced SM compared with historical controls. In addition, midostaurin was found to improve mediator-related symptoms and quality of life, suggesting that the drug may also be useful in patients with indolent SM suffering from mediator-related symptoms resistant to conventional therapies or those with MC activation syndromes. Ongoing and future studies will determine the actual value of midostaurin-induced MC depletion and MC deactivation in these additional indications.
Collapse
Affiliation(s)
- P Valent
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria;; Division of Hematology & Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria;.
| | - C Akin
- Division of Allergy and Clinical Immunology, University of Michigan, Ann Arbor, USA
| | - K Hartmann
- Department of Dermatology, University of Luebeck, Luebeck, Germany
| | - T I George
- Department of Pathology, University of New Mexico, Albuquerque, USA
| | - K Sotlar
- Institute of Pathology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - B Peter
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria;; Division of Hematology & Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - K V Gleixner
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria;; Division of Hematology & Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - K Blatt
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria;; Division of Hematology & Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - W R Sperr
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria;; Division of Hematology & Hemostaseology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | | | - O Hermine
- Centre National de Référence des Mastocytoses, Imagine Institute Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - H C Kluin-Nelemans
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M Arock
- LBPA CNRS UMR8113, Ecole Normale Supérieure de Cachan, Cachan, France
| | - H-P Horny
- Institute of Pathology, Ludwig-Maximilians-University, Munich, Germany
| | - A Reiter
- Department of Hematology and Oncology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - J Gotlib
- Stanford University School of Medicine/Stanford Cancer Institute, Stanford, USA
| |
Collapse
|
24
|
Yasui K, Matsuyama N, Okamura-Shiki I, Ikeda T, Ishii K, Furuta RA, Hirayama F. Clinical utility of a passive immune basophil activation test for the analysis of allergic transfusion reactions. Transfusion 2017; 57:2084-2095. [PMID: 28656655 DOI: 10.1111/trf.14208] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND In previous studies, we demonstrated that the basophil activation test, which is performed using patient blood and the supernatants from transfused blood components, was able to elucidate not only the causative relationship between allergic transfusion reactions and the transfusion but also the mechanisms behind allergic transfusion reactions. However, for a large number of allergic transfusion reactions, patients are in a state of myelosuppression, and the basophil activation test cannot be performed for these patients because there are insufficient numbers of peripheral blood basophils. STUDY DESIGN AND METHODS To overcome this obstacle, we developed a passive immune basophil activation test, in which patient plasma and residually transfused blood are used as the patient's sources of immunoglobulin E and allergen, respectively, whereas healthy volunteer basophils serve as the responder cell source. The passive immune basophil activation test was performed for two patients who had severe allergic transfusion reactions, using supernatants of the residual platelet concentrates and the patients' own immunoglobulin E. RESULTS There were no differences in either surface immunoglobulin E or activation in response to allergens between untreated basophils and so-called quasi-basophils, in which immunoglobulin E was replaced by a third party's immunoglobulin E. In these patients, the supernatants of the residual platelet concentrates exclusively activated basophils in response to quasi-basophils onto which the patients' immunoglobulin E, but not a third party's immunoglobulin E, was bound. CONCLUSION The passive immune basophil activation test may help clarify the causal relationship between allergic transfusion reactions and transfused blood, even when patients experience myelosuppression.
Collapse
Affiliation(s)
- Kazuta Yasui
- Japanese Red Cross Kinki Block Blood Center, Osaka, Japan
| | | | - Ikue Okamura-Shiki
- Division of Hematology and Stem Cell Transplantation, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takashi Ikeda
- Division of Hematology and Stem Cell Transplantation, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kazuyoshi Ishii
- Department of Hematology and Oncology, Kansai Medical University Medical Center, Osaka, Japan
| | - Rika A Furuta
- Japanese Red Cross Kinki Block Blood Center, Osaka, Japan
| | | |
Collapse
|
25
|
Klein O, Ngo-Nyekel F, Stefanache T, Torres R, Salomonsson M, Hallgren J, Rådinger M, Bambouskova M, Campbell M, Cohen-Mor S, Dema B, Rose CG, Abrink M, Charles N, Ainooson G, Paivandy A, Pavlova VG, Serrano-Candelas E, Yu Y, Hellman L, Jensen BM, Van Anrooij B, Grootens J, Gura HK, Stylianou M, Tobio A, Blank U, Öhrvik H, Maurer M. Identification of Biological and Pharmaceutical Mast Cell- and Basophil-Related Targets. Scand J Immunol 2017; 83:465-72. [PMID: 27028428 DOI: 10.1111/sji.12436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/27/2016] [Indexed: 01/09/2023]
Affiliation(s)
- O Klein
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - F Ngo-Nyekel
- Inserm UMRS-1149, Paris, France.,CNRS ERL 8252, Paris, France.,Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Université Paris Diderot, Paris, France
| | - T Stefanache
- Department of Periodontology, University of Medicine and Pharmacy 'Gr. T. Popa', Iasi, Romania
| | - R Torres
- Safety and Sustainability Division, Leitat Technological Center, Barcelona, Spain
| | - M Salomonsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - J Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - M Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - M Bambouskova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - M Campbell
- Institute of Inflammation and Repair and MCCIR, University of Manchester, Manchester, UK
| | - S Cohen-Mor
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - B Dema
- Inserm UMRS-1149, Paris, France.,CNRS ERL 8252, Paris, France.,Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Université Paris Diderot, Paris, France
| | - C G Rose
- Bioengineering, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK.,Immunopharmacology Group, Clinical Experimental Sciences, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, UK
| | - M Abrink
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, VHC, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - N Charles
- Inserm UMRS-1149, Paris, France.,CNRS ERL 8252, Paris, France.,Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Université Paris Diderot, Paris, France
| | - G Ainooson
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - A Paivandy
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - V G Pavlova
- Department of Experimental Morphology, Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - E Serrano-Candelas
- Biochemistry Unit, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Y Yu
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, the Netherlands
| | - L Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - B M Jensen
- Allergy Clinic, Copenhagen University Hospital - Gentofte Hospital, Hellerup, Denmark
| | - B Van Anrooij
- Department of Allergology, Groningen Research Institute of Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J Grootens
- Clinical Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - H K Gura
- Department of Respiratory Diseases and Allergy, Aarhus University Hospital and Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - M Stylianou
- Antifungal Immunity Group, Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - A Tobio
- Inserm UMRS-1149, Paris, France.,CNRS ERL 8252, Paris, France.,Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Université Paris Diderot, Paris, France
| | - U Blank
- Inserm UMRS-1149, Paris, France.,CNRS ERL 8252, Paris, France.,Sorbonne Paris Cite, Laboratoire d'excellence INFLAMEX, Université Paris Diderot, Paris, France
| | - H Öhrvik
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - M Maurer
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité -Universitätsmedizin, Berlin, Germany
| |
Collapse
|
26
|
Okamura I, Matsuyama N, Yasui K, Hirayama F, Ikeda T. Clinical utility of the basophil activation test for analysis of allergic transfusion reactions: a pilot study. Vox Sang 2017; 112:114-121. [PMID: 28070919 DOI: 10.1111/vox.12471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/11/2016] [Accepted: 10/12/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND OBJECTIVES In previous studies, we demonstrated that the basophil-activating effects of supernatants found in residual-transfused platelet concentrates (PC-SNs) on whole blood basophils in cases of allergic transfusion reactions (ATRs) could be assessed by the basophil activation test (BAT) in terms of allergen/IgE dependency. However, in these studies, the basophils were derived from third-party healthy volunteers. In this study, we performed BAT using patients' own blood basophils to analyse ATRs. MATERIALS AND METHODS The BAT was performed in two cases of severe ATRs using residual PC-SNs and the patients' own basophils in the presence and absence of dasatinib, an inhibitor of IgE-mediated basophil activation. RESULTS In both cases, PC-SNs exhibited basophil-activating activity against the patients' basophils, but not against basophils from third-party healthy volunteers. In addition, basophil activation was inhibited in the presence of dasatinib, indicating that the basophils were activated in an allergen/IgE-dependent manner. Of note, the basophils in Case 2, but not in Case 1, were activated by PC-SNs from some unrelated non-haemolytic transfusion reaction cases. CONCLUSION This pilot study indicates that the BAT may be useful in clarifying the causal relationship between ATRs and transfused blood as well as in elucidating the mechanisms behind ATRs considering the allergen/IgE-dependent pathway.
Collapse
Affiliation(s)
- I Okamura
- Division of Hematology and Stem Cell Transplantation, Shizuoka Cancer Center, Shizuoka, Japan
| | - N Matsuyama
- Japanese Red Cross Kinki Block Blood Center, Ibaraki, Osaka, Japan
| | - K Yasui
- Japanese Red Cross Kinki Block Blood Center, Ibaraki, Osaka, Japan
| | - F Hirayama
- Japanese Red Cross Kinki Block Blood Center, Ibaraki, Osaka, Japan
| | - T Ikeda
- Division of Hematology and Stem Cell Transplantation, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
27
|
Liu QM, Yang Y, Maleki SJ, Alcocer M, Xu SS, Shi CL, Cao MJ, Liu GM. Anti-Food Allergic Activity of Sulfated Polysaccharide from Gracilaria lemaneiformis is Dependent on Immunosuppression and Inhibition of p38 MAPK. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4536-4544. [PMID: 27186807 DOI: 10.1021/acs.jafc.6b01086] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polysaccharides from Gracilaria lemaneiformis in particular possess various bioactive functions, but their antiallergic activity remains incompletely defined. Sulfated polysaccharide from Gracilaria lemaneiformis (GLSP) was obtained by water extraction and ethanol precipitation followed by column chromatography. BALB/c mice, RBL-2H3, and KU812 cells were used for verifying the anti food allergic activity of GLSP. According to the results of mice experiment, GLSP was able to alleviate allergy symptoms, to reduce TM-specific IgE and IgG1, to suppress Th2 cell polarization, and to promote the function of regulatory T (Treg) cells. In addition, GLSP had the ability to inhibit the function of RBL-2H3 cells. Furthermore, GLSP inhibited the activation of KU812 via suppression of p38 mitogen-activated protein kinase (MAPK). In conclusion, immunosuppression as well as the reduction in the level of p38 MAPK may contribute to GLSP's putative activity against food allergy. GLSP may be used as a functional food component for allergic patients.
Collapse
Affiliation(s)
- Qing-Mei Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| | - Yang Yang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| | - Soheila J Maleki
- U.S. Department of Agriculture, Agriculture Research Service , Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, Louisiana 70124, United States
| | - Marcos Alcocer
- School of Biosciences, Sutton Bonington Campus, University of Nottingham , Loughborough, LE125RD, United Kingdom
| | - Sha-Sha Xu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| | - Chao-Lan Shi
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University , 43 Yindou Road, Xiamen, 361021 Fujian, P.R. China
| |
Collapse
|
28
|
da Silva AL, Magalhães RF, Branco VC, Silva JD, Cruz FF, Marques PS, Ferreira TPT, Morales MM, Martins MA, Olsen PC, Rocco PRM. The tyrosine kinase inhibitor dasatinib reduces lung inflammation and remodelling in experimental allergic asthma. Br J Pharmacol 2016; 173:1236-47. [PMID: 26989986 DOI: 10.1111/bph.13430] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND AND PURPOSE Asthma is characterized by chronic lung inflammation and airway hyperresponsiveness. Despite recent advances in understanding of its pathophysiology, asthma remains a major public health problem, and new therapeutic strategies are urgently needed. In this context, we sought to ascertain whether treatment with the TK inhibitor dasatinib might repair inflammatory and remodelling processes, thus improving lung function, in a murine model of asthma. EXPERIMENTAL APPROACH Animals were sensitized and subsequently challenged, with ovalbumin (OVA) or saline. Twenty-four hours after the last challenge, animals were treated with dasatinib, dexamethasone, or saline, every 12 h for 7 consecutive days. Twenty-four hours after the last treatment, the animals were killed, and data were collected. Lung structure and remodelling were evaluated by morphometric analysis, immunohistochemistry, and transmission electron microscopy of lung sections. Inflammation was assessed by cytometric analysis and ELISA, and lung function was evaluated by invasive whole-body plethysmography. KEY RESULTS In OVA mice, dasatinib, and dexamethasone led to significant reductions in airway hyperresponsiveness. Dasatinib was also able to attenuate alveolar collapse, contraction index, and collagen fibre deposition, as well as increasing elastic fibre content, in OVA mice. Concerning the inflammatory process, dasatinib reduced inflammatory cell influx to the airway and lung-draining mediastinal lymph nodes, without inducing the thymic atrophy promoted by dexamethasone. CONCLUSIONS AND IMPLICATIONS In this model of allergic asthma, dasatinib effectively blunted the inflammatory and remodelling processes in asthmatic lungs, enhancing airway repair and thus improving lung mechanics.
Collapse
Affiliation(s)
- A L da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R F Magalhães
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - V C Branco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - J D Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - F F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P S Marques
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - T P T Ferreira
- Laboratory of Inflammation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - M M Morales
- Laboratory of Cellular and Molecular Physiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M A Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - P C Olsen
- Laboratory of Clinical Bacteriology and Immunology, Department of Toxicological and Clinical Analysis, Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - P R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Dasatinib Reduces Lung Inflammation and Fibrosis in Acute Experimental Silicosis. PLoS One 2016; 11:e0147005. [PMID: 26789403 PMCID: PMC4720427 DOI: 10.1371/journal.pone.0147005] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 12/28/2015] [Indexed: 12/31/2022] Open
Abstract
Silicosis is an occupational lung disease with no effective treatment. We hypothesized that dasatinib, a tyrosine kinase inhibitor, might exhibit therapeutic efficacy in silica-induced pulmonary fibrosis. Silicosis was induced in C57BL/6 mice by a single intratracheal administration of silica particles, whereas the control group received saline. After 14 days, when the disease was already established, animals were randomly assigned to receive DMSO or dasatinib (1 mg/kg) by oral gavage, twice daily, for 14 days. On day 28, lung morphofunction, inflammation, and remodeling were investigated. RAW 264.7 cells (a macrophage cell line) were incubated with silica particles, followed by treatment or not with dasatinib, and evaluated for macrophage polarization. On day 28, dasatinib improved lung mechanics, increased M2 macrophage counts in lung parenchyma and granuloma, and was associated with reduction of fraction area of granuloma, fraction area of collapsed alveoli, protein levels of tumor necrosis factor-α, interleukin-1β, transforming growth factor-β, and reduced neutrophils, M1 macrophages, and collagen fiber content in lung tissue and granuloma in silicotic animals. Additionally, dasatinib reduced expression of iNOS and increased expression of arginase and metalloproteinase-9 in silicotic macrophages. Dasatinib was effective at inducing macrophage polarization toward the M2 phenotype and reducing lung inflammation and fibrosis, thus improving lung mechanics in a murine model of acute silicosis.
Collapse
|
30
|
Radic-Sarikas B, Rix U, Stukalov A, Gridling M, Müller AC, Colinge J, Superti-Furga G, Bennett KL. Enhancing cognate target elution efficiency in gel-free chemical proteomics. EUPA OPEN PROTEOMICS 2015. [DOI: 10.1016/j.euprot.2015.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth. Leukemia 2015; 30:464-72. [PMID: 26349526 DOI: 10.1038/leu.2015.242] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 01/08/2023]
Abstract
Proteomic-based drug testing is an emerging approach to establish the clinical value and anti-neoplastic potential of multikinase inhibitors. The multikinase inhibitor midostaurin (PKC412) is a promising new agent used to treat patients with advanced systemic mastocytosis (SM). We examined the target interaction profiles and the mast cell (MC)-targeting effects of two pharmacologically relevant midostaurin metabolites, CGP52421 and CGP62221. All three compounds, midostaurin and the two metabolites, suppressed IgE-dependent histamine secretion in basophils and MC with reasonable IC(50) values. Midostaurin and CGP62221 also produced growth inhibition and dephosphorylation of KIT in the MC leukemia cell line HMC-1.2, whereas the second metabolite, CGP52421, which accumulates in vivo, showed no substantial effects. Chemical proteomic profiling and drug competition experiments revealed that midostaurin interacts with KIT and several additional kinase targets. The key downstream regulator FES was recognized by midostaurin and CGP62221, but not by CGP52421 in MC lysates, whereas the IgE receptor downstream target SYK was recognized by both metabolites. Together, our data show that the clinically relevant midostaurin metabolite CGP52421 inhibits IgE-dependent histamine release, but is a weak inhibitor of MC proliferation, which may have clinical implications and may explain why mediator-related symptoms improve in SM patients even when disease progression occurs.
Collapse
|
32
|
Tobío A, Alfonso A, Botana LM. C-kit mutations determine dasatinib mechanism of action in HMC-1 neoplastic mast cells: dasatinib differently regulates PKCδ translocation in HMC-1(560) and HMC-1(560,816) cell lines. Immunopharmacol Immunotoxicol 2015; 37:380-7. [PMID: 26181649 DOI: 10.3109/08923973.2015.1064132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The second generation of tyrosine kinase inhibitors is a group of compounds that inhibit c-kit receptor activity and therefore widely used in the treatment of mastocytosis. In this research, the relationship between the mechanism of action of tyrosine kinase inhibitors and protein kinase C is investigated in HMC-1(560) or HMC-1(560,816) cell lines. RESULTS From all the tyrosine kinase inhibitors tested, nilotinib is the compound that has the highest cytotoxic effect against HMC-1(560) mast cell line, while midostaurin is the most potent in HMC-1(560,816). Moreover, an increase on histamine release is observed after protein kinase C activation either in HMC-1(560) or HMC-1(560,816) cells. Furthermore, dasatinib increases histamine release in both mast cell lines, which could be related with the secondary reactions previously described in dasatinib-treated patients. Dasatinib also induces Ca(2+)-dependent protein kinase C isoforms translocation from the cytosol to the membrane, whereas protein kinase Cδ is translocated from the cytosol to the nucleus in the HMC-1(560,816) cell line, but not in HMC-1(560) cells. CONCLUSION Results obtained demonstrate that dasatinib induces an important cytotoxic effect in both HMC-1 cell lines and differently regulates protein kinase Cδ in HMC-1(560) and HMC-1(560,816) cells. Finally, our results confirm that PKCδ is an essential target for dasatinib.
Collapse
Affiliation(s)
- Araceli Tobío
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, Campus Universitario , Lugo , Spain
| | | | | |
Collapse
|
33
|
Zhang T, Finn DF, Barlow JW, Walsh JJ. Mast cell stabilisers. Eur J Pharmacol 2015; 778:158-68. [PMID: 26130122 DOI: 10.1016/j.ejphar.2015.05.071] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/05/2015] [Accepted: 05/17/2015] [Indexed: 01/18/2023]
Abstract
Mast cells play a critical role in type 1 hypersensitivity reactions. Indeed, mast cell mediators are implicated in many different conditions including allergic rhinitis, conjunctivitis, asthma, psoriasis, mastocytosis and the progression of many different cancers. Thus, there is intense interest in the development of agents which prevent mast cell mediator release or which inhibit the actions of such mediators once released into the environment of the cell. Much progress into the design of new agents has been made since the initial discovery of the mast cell stabilising properties of khellin from Ammi visnaga and the clinical approval of cromolyn sodium. This review critically examines the progress that has been made in the intervening years from the design of new agents that target a specific signalling event in the mast cell degranulation pathway to those agents which have been developed where the precise mechanism of action remains elusive. Particular emphasis is also placed on clinically used drugs for other indications that stabilise mast cells and how this additional action may be harnessed for their clinical use in disease processes where mast cells are implicated.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - Deirdre Frances Finn
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland
| | - James William Barlow
- Department of Pharmaceutical & Medicinal Chemistry, Royal College of Surgeons in Ireland, Stephens Green, Dublin 2, Ireland
| | - John Jarlath Walsh
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
34
|
Identification of bromodomain-containing protein-4 as a novel marker and epigenetic target in mast cell leukemia. Leukemia 2015; 29:2230-7. [PMID: 26055303 PMCID: PMC4610040 DOI: 10.1038/leu.2015.138] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/31/2022]
Abstract
Advanced systemic mastocytosis (SM) is a life-threatening neoplasm characterized by uncontrolled growth and accumulation of neoplastic mast cells (MCs) in various organs and a poor survival. So far, no curative treatment concept has been developed for these patients. We identified the epigenetic reader bromodomain-containing protein-4 (BRD4) as novel drug target in aggressive SM (ASM) and MC leukemia (MCL). As assessed by immunohistochemistry and PCR, neoplastic MCs expressed substantial amounts of BRD4 in ASM and MCL. The human MCL lines HMC-1 and ROSA also expressed BRD4, and their proliferation was blocked by a BRD4-specific short hairpin RNA. Correspondingly, the BRD4-targeting drug JQ1 induced dose-dependent growth inhibition and apoptosis in HMC-1 and ROSA cells, regardless of the presence or absence of KIT D816V. In addition, JQ1 suppressed the proliferation of primary neoplastic MCs obtained from patients with ASM or MCL (IC50: 100-500 nm). In drug combination experiments, midostaurin (PKC412) and all-trans retinoic acid were found to cooperate with JQ1 in producing synergistic effects on survival in HMC-1 and ROSA cells. Taken together, we have identified BRD4 as a promising drug target in advanced SM. Whether JQ1 or other BET-bromodomain inhibitors are effective in vivo in patients with advanced SM remains to be elucidated.
Collapse
|
35
|
Draber P, Halova I, Polakovicova I, Kawakami T. Signal transduction and chemotaxis in mast cells. Eur J Pharmacol 2015; 778:11-23. [PMID: 25941081 DOI: 10.1016/j.ejphar.2015.02.057] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/09/2015] [Accepted: 02/17/2015] [Indexed: 01/08/2023]
Abstract
Mast cells play crucial roles in both innate and adaptive arms of the immune system. Along with basophils, mast cells are essential effector cells for allergic inflammation that causes asthma, allergic rhinitis, food allergy and atopic dermatitis. Mast cells are usually increased in inflammatory sites of allergy and, upon activation, release various chemical, lipid, peptide and protein mediators of allergic reactions. Since antigen/immunoglobulin E (IgE)-mediated activation of these cells is a central event to trigger allergic reactions, innumerable studies have been conducted on how these cells are activated through cross-linking of the high-affinity IgE receptor (FcεRI). Development of mature mast cells from their progenitor cells is under the influence of several growth factors, of which the stem cell factor (SCF) seems to be the most important. Therefore, how SCF induces mast cell development and activation via its receptor, KIT, has been studied extensively, including a cross-talk between KIT and FcεRI signaling pathways. Although our understanding of the signaling mechanisms of the FcεRI and KIT pathways is far from complete, pharmaceutical applications of the knowledge about these pathways are underway. This review will focus on recent progresses in FcεRI and KIT signaling and chemotaxis.
Collapse
Affiliation(s)
- Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic.
| | - Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic
| | - Iva Polakovicova
- Department of Signal Transduction, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, CZ 14220 Prague, Czech Republic
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle La Jolla, CA 92037, USA; Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Yokohama 230-0045, Japan
| |
Collapse
|
36
|
Matsuyama N, Yasui K, Amakishi E, Hayashi T, Kuroishi A, Ishii H, Matsukura H, Tani Y, Furuta RA, Hirayama F. The IgE-dependent pathway in allergic transfusion reactions: involvement of donor blood allergens other than plasma proteins. Int J Hematol 2015; 102:93-100. [DOI: 10.1007/s12185-015-1794-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/18/2015] [Accepted: 03/25/2015] [Indexed: 11/25/2022]
|
37
|
The clinically approved drugs dasatinib and bosutinib induce anti-inflammatory macrophages by inhibiting the salt-inducible kinases. Biochem J 2015; 465:271-9. [PMID: 25351958 PMCID: PMC4286194 DOI: 10.1042/bj20141165] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macrophages switch to an anti-inflammatory, ‘regulatory’-like phenotype characterized by the production of high levels of interleukin (IL)-10 and low levels of pro-inflammatory cytokines to promote the resolution of inflammation. A potential therapeutic strategy for the treatment of chronic inflammatory diseases would be to administer drugs that could induce the formation of ‘regulatory’-like macrophages at sites of inflammation. In the present study, we demonstrate that the clinically approved cancer drugs bosutinib and dasatinib induce several hallmark features of ‘regulatory’-like macrophages. Treatment of macrophages with bosutinib or dasatinib elevates the production of IL-10 while suppressing the production of IL-6, IL-12p40 and tumour necrosis factor α (TNFα) in response to Toll-like receptor (TLR) stimulation. Moreover, macrophages treated with bosutinib or dasatinib express higher levels of markers of ‘regulatory’-like macrophages including LIGHT, SPHK1 and arginase 1. Bosutinib and dasatinib were originally developed as inhibitors of the protein tyrosine kinases Bcr-Abl and Src but we show that, surprisingly, the effects of bosutinib and dasatinib on macrophage polarization are the result of the inhibition of the salt-inducible kinases. Consistent with the present finding, bosutinib and dasatinib induce the dephosphorylation of CREB-regulated transcription co-activator 3 (CRTC3) and its nuclear translocation where it induces a cAMP-response-element-binding protein (CREB)-dependent gene transcription programme including that of IL-10. Importantly, these effects of bosutinib and dasatinib on IL-10 gene expression are lost in macrophages expressing a drug-resistant mutant of salt-inducible kinase 2 (SIK2). In conclusion, our study identifies the salt-inducible kinases as major targets of bosutinib and dasatinib that mediate the effects of these drugs on the innate immune system and provides novel mechanistic insights into the anti-inflammatory properties of these drugs. We have discovered that bosutinib and dasatinib, which are protein tyrosine kinase inhibitors used in the clinic to treat human cancer, induce anti-inflammatory but block pro-inflammatory cytokine production by inhibiting the serine/threonine kinases known as the salt-inducible kinases.
Collapse
|
38
|
Winiarska M, Bojarczuk K, Pyrzynska B, Bil J, Siernicka M, Dwojak M, Bobrowicz M, Miazek N, Zapala P, Zagozdzon A, Krol M, Syta A, Podszywalow-Bartnicka P, Pilch Z, Dabrowska-Iwanicka A, Juszczynski P, Efremov DG, Slabicki M, Zenz T, Le Roy A, Olive D, Rygiel TP, Leusen JHW, Golab J. Inhibitors of SRC kinases impair antitumor activity of anti-CD20 monoclonal antibodies. MAbs 2014; 6:1300-13. [PMID: 25517315 PMCID: PMC4622538 DOI: 10.4161/mabs.32106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Clinical trials with SRC family kinases (SFKs) inhibitors used alone or in a combination with anti-CD20 monoclonal antibodies (mAbs) are currently underway in the treatment of B-cell tumors. However, molecular interactions between these therapeutics have not been studied so far. A transcriptional profiling of tumor cells incubated with SFKs inhibitors revealed strong downregulation of MS4A1 gene encoding CD20 antigen. In a panel of primary and established B-cell tumors we observed that SFKs inhibitors strongly affect CD20 expression at the transcriptional level, leading to inhibition of anti-CD20 mAbs binding and increased resistance of tumor cells to complement-dependent cytotoxicity. Activation of the AKT signaling pathway significantly protected cells from dasatinib-triggered CD20 downregulation. Additionally, SFKs inhibitors suppressed antibody-dependent cell-mediated cytotoxicity by direct inhibition of natural killer cells. Abrogation of antitumor activity of rituximab was also observed in vivo in a mouse model. Noteworthy, the effects of SFKs inhibitors on NK cell function are largely reversible. The results of our studies indicate that development of optimal combinations of novel treatment modalities with anti-CD20 mAbs should be preceded by detailed preclinical evaluation of their effects on target cells.
Collapse
Affiliation(s)
- Magdalena Winiarska
- a Department of Immunology; Center for Biostructure Research ; Medical University of Warsaw ; Warsaw , Poland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Barreiro-Costa O, Tobío A, Alfonso A, Botana LM. Different role of cAMP pathway on the human mast cells HMC-1(560) and HMC-1(560,816) activation. J Cell Biochem 2014; 115:896-909. [PMID: 24307603 DOI: 10.1002/jcb.24732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 01/07/2023]
Abstract
HMC-1 are inflammatory cells that release vasoactive substances such as histamine. These cells have the c-kit receptor permanently activated in the membrane due to mutations in the proto-oncogene c-kit: Val-560 → Gly and Asp-816 → Val. Thus, there are two known cellular lines: HMC-1(560) and HMC-1(560,816) . These mutations are involved in a disease called mastocitosys. In the present paper both lines were used to study the influence of cAMP/PKA/PDEs pathway on the histamine release and Ca(2+) signaling since this pathway is often involved in these process. For this, the cells were preincubated with cAMP/PKA/PDEs modulators such as dibutyryl cAMP (dbcAMP), forskolin, H89, rolipram, IBMX, or imidazole and then stimulated with ionomycin. When cells were stimulated with agents that increase cAMP levels, the histamine release was not modified in HMC-1(560) but decreased in HMC-1(560,816) cells. The same happened when PKA was blocked. Furthermore, PDEs role on histamine release was independent of cAMP in HMC-1(560) cells and possibly also in HMC-1(560,816) cells. By contrast, the modulation of PKA and PDEs together changed the response in both cellular lines, therefore a relationship between them was suggested. All these modulatory effects on histamine release are Ca(2+) -independent. On the other hand, the effect of c-kit modulation on the cAMP/PKA/PDEs pathway was also checked. This receptor was blocked with STI571 (imatinib) and BMS-354825 (dasatinib), but only the last one caused a decrease in the cellular response to ionomycin. This article demonstrates for the first time than the cAMP/PKA/PDEs pathway is involved in the activation of HMC-1(560) and HMC-1(560,816) cells.
Collapse
|
40
|
Molecular targets on mast cells and basophils for novel therapies. J Allergy Clin Immunol 2014; 134:530-44. [DOI: 10.1016/j.jaci.2014.03.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/24/2014] [Accepted: 03/07/2014] [Indexed: 01/14/2023]
|
41
|
A designer cell-based histamine-specific human allergy profiler. Nat Commun 2014; 5:4408. [PMID: 25093291 PMCID: PMC4143915 DOI: 10.1038/ncomms5408] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/13/2014] [Indexed: 11/09/2022] Open
Abstract
Allergic disorders are markedly increasing in industrialized countries. The identification of compounds that trigger the immunoglobulin E-dependent allergic reaction remains the key to limit patients’ exposure to critical allergens and improve their quality of life. Here we use synthetic biology principles to design a mammalian cell-based allergy profiler that scores the allergen-triggered release of histamine from whole-blood-derived human basophils. A synthetic signalling cascade engineered within the allergy profiler rewires histamine input to the production of reporter protein, thereby integrating histamine levels in whole-blood samples with remarkable sensitivity and a wide dynamic range, allowing for rapid results or long-term storage of output, respectively. This approach provides non-intrusive allergy profiles for the personalized medicine era. The advancement of sensitive, accurate and non-invasive methods to identify the allergen that drives allergic disease in an individual remains a challenge. Here, the authors develop a synthetic biology approach using human designer cells to profile allergic reactions against an array of allergens measuring histamine release from whole blood.
Collapse
|
42
|
Valent P, Akin C, Arock M. Diagnosis and Treatment of Anaphylaxis in Patients with Mastocytosis. CURRENT TREATMENT OPTIONS IN ALLERGY 2014. [DOI: 10.1007/s40521-014-0021-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
43
|
Mast Cell Activation Disorders. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2014; 2:252-7.e1; quiz 258. [DOI: 10.1016/j.jaip.2014.03.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 12/23/2022]
|
44
|
Couto Alves A, Bruhn S, Ramasamy A, Wang H, Holloway JW, Hartikainen AL, Jarvelin MR, Benson M, Balding DJ, Coin LJM. Dysregulation of complement system and CD4+ T cell activation pathways implicated in allergic response. PLoS One 2013; 8:e74821. [PMID: 24116013 PMCID: PMC3792967 DOI: 10.1371/journal.pone.0074821] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/06/2013] [Indexed: 11/18/2022] Open
Abstract
Allergy is a complex disease that is likely to involve dysregulated CD4+ T cell activation. Here we propose a novel methodology to gain insight into how coordinated behaviour emerges between disease-dysregulated pathways in response to pathophysiological stimuli. Using peripheral blood mononuclear cells of allergic rhinitis patients and controls cultured with and without pollen allergens, we integrate CD4+ T cell gene expression from microarray data and genetic markers of allergic sensitisation from GWAS data at the pathway level using enrichment analysis; implicating the complement system in both cellular and systemic response to pollen allergens. We delineate a novel disease network linking T cell activation to the complement system that is significantly enriched for genes exhibiting correlated gene expression and protein-protein interactions, suggesting a tight biological coordination that is dysregulated in the disease state in response to pollen allergen but not to diluent. This novel disease network has high predictive power for the gene and protein expression of the Th2 cytokine profile (IL-4, IL-5, IL-10, IL-13) and of the Th2 master regulator (GATA3), suggesting its involvement in the early stages of CD4+ T cell differentiation. Dissection of the complement system gene expression identifies 7 genes specifically associated with atopic response to pollen, including C1QR1, CFD, CFP, ITGB2, ITGAX and confirms the role of C3AR1 and C5AR1. Two of these genes (ITGB2 and C3AR1) are also implicated in the network linking complement system to T cell activation, which comprises 6 differentially expressed genes. C3AR1 is also significantly associated with allergic sensitisation in GWAS data.
Collapse
MESH Headings
- Allergens/pharmacology
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cytokines/genetics
- Cytokines/metabolism
- GATA3 Transcription Factor/genetics
- GATA3 Transcription Factor/metabolism
- Gene Expression Profiling
- Humans
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Pollen
- Receptors, Complement/genetics
- Receptors, Complement/metabolism
- Rhinitis, Allergic, Seasonal/genetics
- Rhinitis, Allergic, Seasonal/immunology
- Rhinitis, Allergic, Seasonal/metabolism
Collapse
Affiliation(s)
- Alexessander Couto Alves
- Department of Epidemiology and Biostatistics, Imperial College London, MRC-HPA Centre for Environment and Health, Imperial College London, London, United Kingdom
| | - Sören Bruhn
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Adaikalavan Ramasamy
- Department of Epidemiology and Biostatistics, Imperial College London, MRC-HPA Centre for Environment and Health, Imperial College London, London, United Kingdom
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Hui Wang
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Dept of Paediatrics, Gothenburg University, Gothenburg, Sweden
| | - John W. Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anna-Liisa Hartikainen
- Department of Clinical Sciences, Obstetrics and Gynecology, Institute of Clinical Medicine, University of Oulu, Oulu, Finland
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, Imperial College London, MRC-HPA Centre for Environment and Health, Imperial College London, London, United Kingdom
- Institute of Health Sciences, University of Oulu, and Unit of General Practice, University Hospital of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- National Institute of Health and Welfare, Oulu, Finland
| | - Mikael Benson
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - David J. Balding
- Department of Epidemiology and Biostatistics, Imperial College London, MRC-HPA Centre for Environment and Health, Imperial College London, London, United Kingdom
- Genetics Institute, University College London, United Kingdom
| | - Lachlan J. M. Coin
- Department of Genomics of Common Diseases, School of Public Health, Imperial College London, London, United Kingdom
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| |
Collapse
|
45
|
Vargas L, Hamasy A, Nore BF, E. Smith CI. Inhibitors of BTK and ITK: State of the New Drugs for Cancer, Autoimmunity and Inflammatory Diseases. Scand J Immunol 2013; 78:130-9. [DOI: 10.1111/sji.12069] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/05/2013] [Indexed: 01/01/2023]
Affiliation(s)
- L. Vargas
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Karolinska University Hospital; Huddinge; Sweden
| | | | | | - C. I. E. Smith
- Department of Laboratory Medicine; Clinical Research Center; Karolinska Institutet; Karolinska University Hospital; Huddinge; Sweden
| |
Collapse
|
46
|
Gleixner KV, Peter B, Blatt K, Suppan V, Reiter A, Radia D, Hadzijusufovic E, Valent P. Synergistic growth-inhibitory effects of ponatinib and midostaurin (PKC412) on neoplastic mast cells carrying KIT D816V. Haematologica 2013; 98:1450-7. [PMID: 23539538 DOI: 10.3324/haematol.2012.079202] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Patients with advanced systemic mastocytosis, including mast cell leukemia, have a poor prognosis. In these patients, neoplastic mast cells usually harbor the KIT mutant D816V that confers resistance against tyrosine kinase inhibitors. We examined the effects of the multi-kinase blocker ponatinib on neoplastic mast cells and investigated whether ponatinib acts synergistically with other antineoplastic drugs. Ponatinib was found to inhibit the kinase activity of KIT G560V and KIT D816V in the human mast cell leukemia cell line HMC-1. In addition, ponatinib was found to block Lyn- and STAT5 activity in neoplastic mast cells. Ponatinib induced growth inhibition and apoptosis in HMC-1.1 cells (KIT G560V(+)) and HMC-1.2 cells (KIT G560V(+)/KIT D816V(+)) as well as in primary neoplastic mast cells. The effects of ponatinib were dose-dependent, but higher IC50-values were obtained in HMC-1 cells harboring KIT D816V than in those lacking KIT D816V. In drug combination experiments, ponatinib was found to synergize with midostaurin in producing growth inhibition and apoptosis in HMC-1 cells and primary neoplastic mast cells. The ponatinib+midostaurin combination induced substantial inhibition of KIT-, Lyn-, and STAT5 activity, but did not suppress Btk. We then applied a Btk short interfering RNA and found that Btk knockdown sensitizes HMC-1 cells against ponatinib. Finally, we were able to show that ponatinib synergizes with the Btk-targeting drug dasatinib to produce growth inhibition in HMC-1 cells. In conclusion, ponatinib exerts major growth-inhibitory effects on neoplastic mast cells in advanced systemic mastocytosis and synergizes with midostaurin and dasatinib in inducing growth arrest in neoplastic mast cells.
Collapse
Affiliation(s)
- Karoline V Gleixner
- Department of Internal Medicine I, Division of Hematology & Hemostaseology, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Lewis A, Wan J, Baothman B, Monk PN, Suvarna SK, Peachell PT. Heterogeneity in the responses of human lung mast cells to stem cell factor. Clin Exp Allergy 2012; 43:50-9. [DOI: 10.1111/cea.12045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/24/2012] [Accepted: 10/12/2012] [Indexed: 11/29/2022]
Affiliation(s)
- A. Lewis
- Academic Unit of Respiratory Medicine; The Medical School; University of Sheffield; Beech Hill Road; Sheffield; S10 2RX; UK
| | - J. Wan
- Academic Unit of Respiratory Medicine; The Medical School; University of Sheffield; Beech Hill Road; Sheffield; S10 2RX; UK
| | - B. Baothman
- Academic Unit of Respiratory Medicine; The Medical School; University of Sheffield; Beech Hill Road; Sheffield; S10 2RX; UK
| | - P. N. Monk
- Department of Infection and Immunity; The Medical School; University of Sheffield; Beech Hill Road; Sheffield; S10 2RX; UK
| | - S. K. Suvarna
- Department of Histopathology; Northern General Hospital; Herries Road; Sheffield; S5 7AU; UK
| | - P. T. Peachell
- Academic Unit of Respiratory Medicine; The Medical School; University of Sheffield; Beech Hill Road; Sheffield; S10 2RX; UK
| |
Collapse
|
48
|
Abstract
Mast cell leukemia (MCL) is a very rare form of aggressive systemic mastocytosis accounting for < 1% of all mastocytosis. It may appear de novo or secondary to previous mastocytosis and shares more clinicopathologic aspects with systemic mastocytosis than with acute myeloid leukemia. Symptoms of mast cell activation-involvement of the liver, spleen, peritoneum, bones, and marrow-are frequent. Diagnosis is based on the presence of ≥ 20% atypical mast cells in the marrow or ≥ 10% in the blood; however, an aleukemic variant is frequently encountered in which the number of circulating mast cells is < 10%. The common phenotypic features of pathologic mast cells encountered in most forms of mastocytosis are unreliable in MCL. Unexpectedly, non-KIT D816V mutations are frequent and therefore, complete gene sequencing is necessary. Therapy usually fails and the median survival time is < 6 months. The role of combination therapies and bone marrow transplantation needs further investigation.
Collapse
|
49
|
Futosi K, Németh T, Pick R, Vántus T, Walzog B, Mócsai A. Dasatinib inhibits proinflammatory functions of mature human neutrophils. Blood 2012; 119:4981-91. [PMID: 22411867 PMCID: PMC3367900 DOI: 10.1182/blood-2011-07-369041] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 03/02/2012] [Indexed: 12/25/2022] Open
Abstract
Dasatinib is a tyrosine kinase inhibitor used to treat imatinib-resistant chronic myeloid leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia. At present, little is known about how dasatinib influences nonmalignant cells. In the present study, we tested the effect of dasatinib on functional responses of normal mature human neutrophils. Dasatinib completely blocked integrin- and Fc-receptor-mediated neutrophil functions, with the lowest IC(50) values below 10nM under serum-free conditions. Dasatinib caused a partial inhibition of neutrophil responses triggered by G-protein-coupled receptors and had a moderate effect on neutrophil responses triggered by microbial compounds. Whereas dasatinib inhibited neutrophil chemotaxis under static conditions in 2 dimensions, it did not affect migration under flow conditions or in 3-dimensional environments. Dasatinib did not have any major effect on phagocytosis or killing of bacteria by neutrophils. Adhesion of human neutrophils in the presence of whole serum was significantly inhibited by 50-100nM dasatinib, which corresponds to the reported serum concentrations in dasatinib-treated patients. Finally, ex vivo adhesion of mouse peripheral blood neutrophils was strongly reduced after oral administration of 5 mg/kg of dasatinib. Those results suggest that dasatinib treatment may affect the proinflammatory functions of mature neutrophils and raise the possibility that dasatinib-related compounds may provide clinical benefit in neutrophil-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Krisztina Futosi
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
50
|
Herrmann H, Blatt K, Ghanim V, Kneidinger M, Marth K, Valenta R, Valent P. Glucocorticosteroids rescue basophils from dasatinib-augmented immunoglobulin E-mediated histamine release. Int Arch Allergy Immunol 2012; 159:15-22. [PMID: 22555087 DOI: 10.1159/000335146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 10/28/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Dasatinib is a multikinase inhibitor active against several tyrosine kinases including ABL, KIT, Lyn and Btk. Apart from its known antileukemic activity, the drug produces several side effects including edemas and pleural effusions, which are supposedly triggered by activated immune cells. Effusion formation can be treated effectively by glucocorticosteroids. We have recently shown that low concentrations of dasatinib (<0.1 µM) promote IgE-dependent secretion of histamine in basophils, especially in allergic individuals. In the current study, we asked whether glucocorticosteroids inhibit dasatinib-induced activation of basophils. METHODS Basophils were preincubated with dexamethasone, prednisolone and hydrocortisone for 24 h, and were then exposed to an anti-IgE antibody (normal basophils) or the allergens Bet v 1 and Phl p 5 (allergic patients) with or without low concentrations of dasatinib (0.025 µM). After incubation, basophils were examined for histamine release and expression of CD63 and CD203c. RESULTS All three glucocorticosteroids were found to counteract IgE-dependent and dasatinib-enhanced histamine release in basophils in nonallergic and allergic individuals. In addition, glucocorticosteroids were found to inhibit anti-IgE-induced upregulation of CD63 and CD203c in the presence or absence of dasatinib. The inhibitory effects of glucocorticosteroids were dose-dependent (effective range: 1-10 µM) and seen in all donors examined. CONCLUSIONS Glucocorticosteroids rescue IgE receptor cross-linked basophils from additional costimulatory effects of low-dose dasatinib which may have clinical implications in dasatinib-treated patients.
Collapse
Affiliation(s)
- Harald Herrmann
- Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|