1
|
Trecourt A, Donzel M, Gaillot-Durand L, Bolze PA, Golfier F, Descargues P, Hajri T, Mauduit C, Devouassoux-Shisheboran M, Allias F. SALL4 as a Useful Marker for the Distinction of Various Gestational Trophoblastic Disease Subtypes: Choriocarcinoma From Other Trophoblastic Lesions and Early Complete Hydatidiform Mole From Partial Mole and NonMolar Villi. Am J Surg Pathol 2025:00000478-990000000-00471. [PMID: 39876093 DOI: 10.1097/pas.0000000000002358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The distinction between choriocarcinoma and residual trophoblastic cell proliferation from a complete hydatidiform mole/invasive mole (CHM/IM) without villi is challenging on curettage materials. We investigated whether SALL4 immunostaining could help differentiate various gestational trophoblastic diseases. Placental site nodules (PSN; n=10), atypical PSN (APSN; n=8), placental site trophoblastic tumors (PSTT; n=9), epithelioid trophoblastic tumors (ETT; n=5), gestational choriocarcinomas (n=31), partial hydatidiform moles (PHM; n=13), CHM/IM (n=47), and nonmolar products of conception (POC) (n=26) were included. SALL4 immunostaining was quantified (0 [1% to 10%], [11% to 100%]) and characterized (scattered single-cell or clustered nuclear positivity) in 2 locations: cytotrophoblast/intermediate trophoblast and villous stromal fibroblasts. A diffuse (11% to 100%) and clustered pattern of SALL4 immunostaining in cytotrophoblast/intermediate trophoblast was statistically associated with choriocarcinomas (74.2%, 23/31) as compared with PSN (0/10; P<0.0001), APSN (0/8; P=0.0002), PSTT (0/9; P<0.0001), ETT (0/5; P=0.0034), PHM (0/13; P<0.0001), CHM/IM (0/47; P<0.0001), and nonmolar POC (0/26; P<0.0001). Most nonchoriocarcinoma samples showed no SALL4 expression; when present, it was of low level (1% to 10%) and with a scattered single-cell staining in 3/9 PSTT (33%), 1/13 PHM (7.7%), 19/47 CHM/IM (40%), and 1/26 nonmolar POC (1.7%). These results were confirmed using a validation cohort. In addition, 66% (31/47) of CHM/IM villous stromal fibroblasts showed SALL4 expression (11% to 100%) (all before 14 gestational weeks), whereas this level of expression was never observed in PHM (0/13), nor in nonmolar POC (0/26; P<0.0001). Finally, a clustered and >10% SALL4 immunostaining in cytotrophoblast/intermediate trophoblast favors choriocarcinoma diagnosis. SALL4 expression in >10% villous stromal fibroblasts before 14 gestational weeks favors CHM/IM rather than PHM and nonmolar POC.
Collapse
Affiliation(s)
- Alexis Trecourt
- Service de Pathologie Multi-Site, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon
- Centre pour l'innovation en cancérologie de Lyon (CICLY), Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon-1
| | - Marie Donzel
- Service de Pathologie Multi-Site, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1111, Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon-1, Centre International de Recherche en Infectiologie (CIRI), UMR5308, Ecole Normale Supérieure de Lyon
| | - Lucie Gaillot-Durand
- Service de Pathologie Multi-Site, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon
- Centre Français de Référence des maladies trophoblastique
| | - Pierre A Bolze
- Service de Chirurgie Gynécologique et Oncologique, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Université Lyon 1, Obstétrique, CICLY, Pierre Bénite
- Centre Français de Référence des maladies trophoblastique
| | - François Golfier
- Service de Chirurgie Gynécologique et Oncologique, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Université Lyon 1, Obstétrique, CICLY, Pierre Bénite
- Centre Français de Référence des maladies trophoblastique
| | - Pierre Descargues
- Service de Chirurgie Gynécologique et Oncologique, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Université Lyon 1, Obstétrique, CICLY, Pierre Bénite
- Centre Français de Référence des maladies trophoblastique
| | - Touria Hajri
- Centre Français de Référence des maladies trophoblastique
| | - Claire Mauduit
- Service de Pathologie Multi-Site, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon
- Centre Méditerranéen de Médecine Moléculaire (C3M), Institut National de la Santé et de la Recherche Médicale, Unité 1065, Nice, France
| | - Mojgan Devouassoux-Shisheboran
- Service de Pathologie Multi-Site, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon
- Centre pour l'innovation en cancérologie de Lyon (CICLY), Faculté de Médecine Lyon Sud, Université Claude Bernard Lyon-1
- Centre Français de Référence des maladies trophoblastique
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon-1, Lyon
| | - Fabienne Allias
- Service de Pathologie Multi-Site, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon
- Centre Français de Référence des maladies trophoblastique
| |
Collapse
|
2
|
Ling RE, Cross JW, Roy A. Aberrant stem cell and developmental programs in pediatric leukemia. Front Cell Dev Biol 2024; 12:1372899. [PMID: 38601080 PMCID: PMC11004259 DOI: 10.3389/fcell.2024.1372899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024] Open
Abstract
Hematopoiesis is a finely orchestrated process, whereby hematopoietic stem cells give rise to all mature blood cells. Crucially, they maintain the ability to self-renew and/or differentiate to replenish downstream progeny. This process starts at an embryonic stage and continues throughout the human lifespan. Blood cancers such as leukemia occur when normal hematopoiesis is disrupted, leading to uncontrolled proliferation and a block in differentiation of progenitors of a particular lineage (myeloid or lymphoid). Although normal stem cell programs are crucial for tissue homeostasis, these can be co-opted in many cancers, including leukemia. Myeloid or lymphoid leukemias often display stem cell-like properties that not only allow proliferation and survival of leukemic blasts but also enable them to escape treatments currently employed to treat patients. In addition, some leukemias, especially in children, have a fetal stem cell profile, which may reflect the developmental origins of the disease. Aberrant fetal stem cell programs necessary for leukemia maintenance are particularly attractive therapeutic targets. Understanding how hijacked stem cell programs lead to aberrant gene expression in place and time, and drive the biology of leukemia, will help us develop the best treatment strategies for patients.
Collapse
Affiliation(s)
- Rebecca E. Ling
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Joe W. Cross
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Anindita Roy
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Great Ormond Street Hospital for Children, London, United Kingdom
| |
Collapse
|
3
|
Nie Y, Xu L, Bai Z, Liu Y, Wang S, Zeng Q, Gao X, Xia X, Chang D. Prognostic utility of TME-associated genes in pancreatic cancer. Front Genet 2023; 14:1218774. [PMID: 37727377 PMCID: PMC10505756 DOI: 10.3389/fgene.2023.1218774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023] Open
Abstract
Background: Pancreatic cancer (PC) is a deadly disease. The tumor microenvironment (TME) participates in PC oncogenesis. This study focuses on the assessment of the prognostic and treatment utility of TME-associated genes in PC. Methods: After obtaining the differentially expressed TME-related genes, univariate and multivariate Cox analyses and least absolute shrinkage and selection operator (LASSO) were performed to identify genes related to prognosis, and a risk model was established to evaluate risk scores, based on The Cancer Genome Atlas (TCGA) data set, and it was validated by external data sets from the Gene Expression Omnibus (GEO) and Clinical Proteomic Tumor Analysis Consortium (CPTAC). Multiomics analyses were adopted to explore the potential mechanisms, discover novel treatment targets, and assess the sensitivities of immunotherapy and chemotherapy. Results: Five TME-associated genes, namely, FERMT1, CARD9, IL20RB, MET, and MMP3, were identified and a risk score formula constructed. Next, their mRNA expressions were verified in cancer and normal pancreatic cells. Multiple algorithms confirmed that the risk model displayed a reliable ability of prognosis prediction and was an independent prognostic factor, indicating that high-risk patients had poor outcomes. Immunocyte infiltration, gene set enrichment analysis (GSEA), and single-cell analysis all showed a strong relationship between immune mechanism and low-risk samples. The risk score could predict the sensitivity of immunotherapy and some chemotherapy regimens, which included oxaliplatin and irinotecan. Various latent treatment targets (LAG3, TIGIT, and ARID1A) were addressed by mutation landscape based on the risk model. Conclusion: The risk model based on TME-related genes can reflect the prognosis of PC patients and functions as a novel set of biomarkers for PC therapy.
Collapse
Affiliation(s)
- Yuanhua Nie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Longwen Xu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zilong Bai
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yaoyao Liu
- Geneplus-Beijing, Co., Ltd., Beijing, China
| | - Shilong Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qingnuo Zeng
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- GenePlus- Shenzhen Clinical Laboratory, Shenzhen, China
| | | | - Dongmin Chang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Tatetsu H, Watanabe M, Liu J, Tokunaga K, Iwanaga E, Komohara Y, Thrash E, Bassal MA, Matsuoka M, Tenen DG, Chai L. Dissecting the cell of origin of aberrant SALL4 expression in myelodysplastic syndrome. Clin Transl Med 2023; 13:e1327. [PMID: 37501279 PMCID: PMC10374880 DOI: 10.1002/ctm2.1327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/25/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Affiliation(s)
- Hiro Tatetsu
- Department of HematologyRheumatology and Infectious DiseasesFaculty of Life SciencesKumamoto UniversityKumamotoJapan
- Department of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Miho Watanabe
- Department of HematologyRheumatology and Infectious DiseasesFaculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Jun Liu
- Department of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kenji Tokunaga
- Department of HematologyRheumatology and Infectious DiseasesFaculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Eisaku Iwanaga
- Department of HematologyRheumatology and Infectious DiseasesFaculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Yoshihiro Komohara
- Department of Cell PathologyFaculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Emily Thrash
- FLUIDIGMFluidigm Canada Inc.MarkhamOntarioCanada
| | - Mahmoud A. Bassal
- Harvard Stem Cell InstituteBostonMassachusettsUSA
- Cancer Science Institute of SingaporeSingapore
| | - Masao Matsuoka
- Department of HematologyRheumatology and Infectious DiseasesFaculty of Life SciencesKumamoto UniversityKumamotoJapan
| | - Daniel G. Tenen
- Harvard Stem Cell InstituteBostonMassachusettsUSA
- Cancer Science Institute of SingaporeSingapore
| | - Li Chai
- Department of PathologyBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
5
|
Dual-Regulated Mechanism of EZH2 and KDM6A on SALL4 Modulates Tumor Progression via Wnt/β-Catenin Pathway in Gastric Cancer. Dig Dis Sci 2023; 68:1292-1305. [PMID: 36877334 DOI: 10.1007/s10620-022-07790-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 12/06/2022] [Indexed: 03/07/2023]
Abstract
BACKGROUND SALL4 has been demonstrated in many cancers and participated in tumorigenesis and tumor progression, however, its expression and function still remain ambiguous in GC, especially its upstream mechanistic modulators. PURPOSE We explored whether the dual mediation of EZH2 and KDM6A could be involved in upstream regulation of SALL4, which promotes GC cell progression via the Wnt/β-catenin pathway. METHOD Analysis of discrepant gene expression in GC and normal gastric tissues from The Cancer Genome Atlas (TCGA) dataset. GC cell lines were transfected by siEZH2 and siKDM6A, the transduction molecules of KDM6A/EZH2-SALL4-β-catenin signaling were quantified in the GC cells. RESULTS Here, we showed that only SALL4 levels of SALL family members were upregulated in nonpaired and paired GC tissues than those in corresponding normal tissues and were associated with its histological types, pathological stages, TNM stages including T stage (local invasion), N stage (lymph node metastasis), M stage (distant metastasis), and overall survival from the TCGA dataset. SALL4 level was elevated in GC cells compared to normal gastric epithelial cell line (GES-1) and was correlated to cancer cell progression and invasion through the Wnt/β-catenin pathway in GC, which levels would be separately upregulated or downregulated by KDM6A or EZH2. CONCLUSION We first proposed and demonstrated that SALL4 promoted GC cell progression via the Wnt/β-catenin pathway, which was mediated by the dual regulation of EZH2 and KDM6A on SALL4. This mechanistic pathway in gastric cancer represents a novel targetable pathway.
Collapse
|
6
|
Wang L, Tan X, Chen L, Xu S, Huang W, Chen N, Wu Y, Wang C, Zhou D, Li M. Sall4 Guides p53-Mediated Enhancer Interference upon DNA Damage in Mouse Embryonic Stem Cells. Stem Cells 2022; 40:1008-1019. [PMID: 35977539 DOI: 10.1093/stmcls/sxac058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022]
Abstract
p53 plays a pivotal role in maintaining the genomic stability of mouse embryonic stem cells (mESCs) through transcriptionally activating and repressing target genes. However, how p53 recognizes its repressed targets remains largely unknown. Herein, we demonstrate that Sall4 negatively regulates DNA damage induced apoptosis (DIA) of mESCs through mediating p53 recruitment to enhancers of ESC-associated genes repressed by p53 from promoters of p53-activated genes. Upon DNA damage, Sall4 is transcriptionally repressed by p53 and plays an anti-apoptotic role without altering p53 activation. Moreover, Sall4 is identified as a novel p53-interacting partner. Consistently, Sall4 exerts its anti-apoptotic function in a p53-dependent manner. Intriguingly, Sall4 depletion not only promotes the transcriptional activation of several p53-regulated pro-apoptotic genes but also compromises p53-mediated repression of ESC master transcription factors in response to DNA damage. Mechanistically, Sall4 balances p53-binding affinity between p53-activated and -repressed genes through tethering p53 to ESC enhancers. In light of our study, Sall4 may contribute to tumorigenesis by antagonizing p53-mediated apoptosis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xiaojun Tan
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Lu Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Sisi Xu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Weiping Huang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Nan Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Yizhou Wu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Chunyan Wang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Daqiang Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Mangmang Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Moein S, Tenen DG, Amabile G, Chai L. SALL4: An Intriguing Therapeutic Target in Cancer Treatment. Cells 2022; 11:cells11162601. [PMID: 36010677 PMCID: PMC9406946 DOI: 10.3390/cells11162601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Spalt-Like Transcription Factor 4 (SALL4) is a critical factor for self-renewal ability and pluripotency of stem cells. On the other hand, various reports show tight relation of SALL4 to cancer occurrence and metastasis. SALL4 exerts its effects not only by inducing gene expression but also repressing a large cluster of genes through interaction with various epigenetic modifiers. Due to high expression of SALL4 in cancer cells and its silence in almost all adult tissues, it is an ideal target for cancer therapy. However, targeting SALL4 meets various challenges. SALL4 is a transcription factor and designing appropriate drug to inhibit this intra-nucleus component is challenging. On the other hand, due to lack of our knowledge on structure of the protein and the suitable active sites, it becomes more difficult to reach the appropriate drugs against SALL4. In this review, we have focused on approaches applied yet to target this oncogene and discuss the potential of degrader systems as new therapeutics to target oncogenes.
Collapse
Affiliation(s)
- Shiva Moein
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
| | - Daniel G. Tenen
- Cancer Science Institute of Singapore, Singapore 117599, Singapore
- Harvard Stem Cells Institute, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| | - Giovanni Amabile
- Believer Pharmaceuticals, Inc., Wilmington, DE 19801, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| | - Li Chai
- Harvard Stem Cells Institute, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Correspondence: (D.G.T.); (G.A.); (L.C.)
| |
Collapse
|
8
|
Dekker TJA. Oncogene Up-Regulation after Hypomethylating Therapy. N Engl J Med 2022; 387:476. [PMID: 35921465 DOI: 10.1056/nejmc2208134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Tim J A Dekker
- Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
9
|
The Invasion and Metastasis of Colon Adenocarcinoma (COAD) Induced by SALL4. J Immunol Res 2022; 2022:9385820. [PMID: 35692499 PMCID: PMC9177309 DOI: 10.1155/2022/9385820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
Objective The development and progression of many cancers may be related to SALL4, the role and molecular mechanism of which are unclear in colon adenocarcinoma (COAD). Methods The SALL4 expression in adjacent normal mucosa tissues and carcinoma tissues of patients with COAD was detected through bioinformatic analysis based on TCGA database and immunohistochemistry. Single-cell analysis showed that the expression of SALL4 in normal tissue was noticeably low. GSEA analysis suggested that the SALL4 upregulated the GO and pathway of growth and cancer development and downregulated metabolization pathway. The relationship between lymph node metastasis, histological grading, clinical staging, and the expression of SALL4 in carcinoma tissues was analyzed. The upregulated or downregulated SALL4 expression of COAD cell lines was established. The influence of SALL4 on COAD cells invasion and proliferation was detected using plate cloning assay and Transwell. The expressions of EMT-related proteins E-cadherin, N-cadherin, vimentin, and Twist were detected by Western blot. The EMT phenotype was analyzed by immunofluorescence. Results The study confirmed that the expression of SALL4 was upregulated in COAD and positively correlated with the degree of tumor differentiation, tumor staging, and metastasis. The overexpression of SALL4 was related to a poor prognosis, promoted the invasion and proliferation of colorectal cancer cells, and accelerated the occurrence of EMT, which was characterized by upregulation of Twist, vimentin, and N-cadherin expressions and downregulation of E-cadherin. The immunofluorescence staining confirmed the EMT phenotype. On the contrary, knocking out SALL4 gene reversed EMT, weakened cell proliferation and invasion, inhibited upregulation of Twist, vimentin, and N-cadherin expressions and downregulation of E-cadherin. Conclusion To sum up, TNM grading, histological grading, and lymphatic metastasis were significantly correlated with SALL4 in tumor tissues. SALL4 played a vital role in tumor proliferation, invasion, and tumor EMT and may be a novel target for COAD.
Collapse
|
10
|
Sun B, Xu L, Bi W, Ou WB. SALL4 Oncogenic Function in Cancers: Mechanisms and Therapeutic Relevance. Int J Mol Sci 2022; 23:ijms23042053. [PMID: 35216168 PMCID: PMC8876671 DOI: 10.3390/ijms23042053] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
SALL4, a member of the SALL family, is an embryonic stem cell regulator involved in self-renewal and pluripotency. Recently, SALL4 overexpression was found in malignant cancers, including lung cancer, hepatocellular carcinoma, breast cancer, gastric cancer, colorectal cancer, osteosarcoma, acute myeloid leukemia, ovarian cancer, and glioma. This review updates recent advances of our knowledge of the biology of SALL4 with a focus on its mechanisms and regulatory functions in tumors and human hematopoiesis. SALL4 overexpression promotes proliferation, development, invasion, and migration in cancers through activation of the Wnt/β-catenin, PI3K/AKT, and Notch signaling pathways; expression of mitochondrial oxidative phosphorylation genes; and inhibition of the expression of the Bcl-2 family, caspase-related proteins, and death receptors. Additionally, SALL4 regulates tumor progression correlated with the immune microenvironment involved in the TNF family and gene expression through epigenetic mechanisms, consequently affecting hematopoiesis. Therefore, SALL4 plays a critical oncogenic role in gene transcription and tumor growth. However, there are still some scientific hypotheses to be tested regarding whether SALL4 is a therapeutic target, such as different tumor microenvironments and drug resistance. Thus, an in-depth understanding and study of the functions and mechanisms of SALL4 in cancer may help develop novel strategies for cancer therapy.
Collapse
Affiliation(s)
| | | | | | - Wen-Bin Ou
- Correspondence: ; Tel./Fax: +86-571-8684-3303
| |
Collapse
|
11
|
SALL Proteins; Common and Antagonistic Roles in Cancer. Cancers (Basel) 2021; 13:cancers13246292. [PMID: 34944911 PMCID: PMC8699250 DOI: 10.3390/cancers13246292] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Simple Summary Transcription factors play essential roles in regulating gene expression, impacting the cell phenotype and function, and in the response of cells to environmental conditions. Alterations in transcription factors, including gene amplification or deletion, point mutations, and expression changes, are implicated in carcinogenesis, cancer progression, metastases, and resistance to cancer treatments. Not surprisingly, transcription factor activity is altered in numerous cancers, representing a unique class of cancer drug targets. This review updates and integrates information on the SALL family of transcription factors, highlighting the synergistic and/or antagonistic functions they perform in various cancer types. Abstract SALL proteins are a family of four conserved C2H2 zinc finger transcription factors that play critical roles in organogenesis during embryonic development. They regulate cell proliferation, survival, migration, and stemness; consequently, they are involved in various human genetic disorders and cancer. SALL4 is a well-recognized oncogene; however, SALL1–3 play dual roles depending on the cancer context and stage of the disease. Current reviews of SALLs have focused only on SALL2 or SALL4, lacking an integrated view of the SALL family members in cancer. Here, we update the recent advances of the SALL members in tumor development, cancer progression, and therapy, highlighting the synergistic and/or antagonistic functions they perform in similar cancer contexts. We identified common regulatory mechanisms, targets, and signaling pathways in breast, brain, liver, colon, blood, and HPV-related cancers. In addition, we discuss the potential of the SALL family members as cancer biomarkers and in the cancer cells’ response to therapies. Understanding SALL proteins’ function and relationship will open new cancer biology, clinical research, and therapy perspectives.
Collapse
|
12
|
Kwon J, Liu YV, Gao C, Bassal MA, Jones AI, Yang J, Chen Z, Li Y, Yang H, Chen L, Di Ruscio A, Tay Y, Chai L, Tenen DG. Pseudogene-mediated DNA demethylation leads to oncogene activation. SCIENCE ADVANCES 2021; 7:eabg1695. [PMID: 34597139 PMCID: PMC10938534 DOI: 10.1126/sciadv.abg1695] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Pseudogenes, noncoding homologs of protein-coding genes, once considered nonfunctional evolutionary relics, have recently been linked to patient prognoses and cancer subtypes. Despite this potential clinical importance, only a handful of >12,000 pseudogenes in humans have been characterized in cancers to date. Here, we describe a previously unrecognized role for pseudogenes as potent epigenetic regulators that can demethylate and activate oncogenes. We focused on SALL4, a known oncogene in hepatocellular carcinoma (HCC) with eight pseudogenes. Using a locus-specific demethylating technology, we identified the critical CpG region for SALL4 expression. We demonstrated that SALL4 pseudogene 5 hypomethylates this region through interaction with DNMT1, resulting in SALL4 up-regulation. Intriguingly, pseudogene 5 is significantly up-regulated in a hepatitis B virus model before SALL4 induction, and both are increased in patients with HBV-HCC. Our results suggest that pseudogene-mediated demethylation represents a novel mechanism of oncogene activation in cancer.
Collapse
Affiliation(s)
- Junsu Kwon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Yanjing V. Liu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Chong Gao
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Mahmoud A. Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Adrianna I. Jones
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Junyu Yang
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Zhiyuan Chen
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Ying Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Leilei Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Annalisa Di Ruscio
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Translational Medicine, University of Eastern Piedmont, Novara 28100, Italy
- Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Li Chai
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Daniel G. Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115 USA
- Harvard Medical School Initiative for RNA Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Boustan A, Mosaffa F, Jahangiri R, Heidarian-Miri H, Dahmardeh-Ghalehno A, Jamialahmadi K. Role of SALL4 and Nodal in the prognosis and tamoxifen resistance of estrogen receptor-positive breast cancer. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2021; 10:109-119. [PMID: 34476264 PMCID: PMC8340312 DOI: 10.22099/mbrc.2021.39878.1597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the discovery of a number of different mechanisms underlying tamoxifen resistance, its molecular pathway is not completely clear. The upregulation of SALL4 and Nodal has been reported in breast cancer. Nevertheless, their role in tamoxifen resistance has not been investigated. In the present study, we compared Nodal and SALL4 expression in 72 tamoxifen sensitive (TAMS) and tamoxifen-resistant (TAMR) patients. Afterward, the correlation of expression data with clinicopathological features and survival of patients was studied. Results showed that both SALL4 and Nodal were significantly upregulated in TAMR compared to TAMS patients. Besides, there was a positive association between Nodal and SALL4 expression. Furthermore, we evaluated their correlation with the expression of Oct4, Nanog and Sox2 stemness markers. The results demonstrated that in most tissue samples there was a positive correlation between Nodal and SALL4 expression with these stemness markers. Besides, the overexpression of SALL4 and Nodal significantly correlated with the N stage. Moreover, the overexpression of SALL4 was associated with extracapsular invasion and lymphatic invasion. High level expressions of SALL4 and Nodal had a significant association with worse disease-free survival (DFS) rates. In addition, increased level of Nodal expression provides a superior predictor factor for DFS. The multivariate Cox regression analysis also revealed that for DFS, perineural invasion (PNI) was independently an unfavorable prognostic value. These findings suggest that the high expression of SALL4 and Nodal could contribute to tamoxifen resistance and worse survival rates in tamoxifen-treated ER+ breast cancer patients.
Collapse
Affiliation(s)
- Arad Boustan
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rosa Jahangiri
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Heidarian-Miri
- Department of Epidemiology, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asefeh Dahmardeh-Ghalehno
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khadijeh Jamialahmadi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Lambrou GI, Karakonstantakis T, Vlahopoulos S, Zaravinos A. Dual Mechanisms of Metabolism and Gene Expression of the CCRF-CEM Leukemia Cells under Glucocorticoid Treatment. Int J Mol Sci 2021; 22:ijms22115889. [PMID: 34072627 PMCID: PMC8198442 DOI: 10.3390/ijms22115889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Glucocorticoids play an essential part in anti-leukemic therapies, but resistance is a crucial event for the prognosis of the disease. Glucocorticoids influence the metabolic properties of leukemic cells. The inherent plasticity of clinically evolving cancer cells justifies the characterization of drug-induced early oncogenic pathways, which represent a likely source of detrimental secondary effects. AIM The present work aims to investigate the effect of glucocorticoids in metabolic pathways in the CCRF-CEM leukemic cells. Metabolic factors and gene expression profiles were examined in order to unravel the possible mechanisms of the CCRF-CEM leukemic cell growth dynamics. METHODS CCRF-CEM cells were used as a model. Cells were treated with prednisolone with concentrations 0-700 μM. Cell culture supernatants were used for glucose, lactic acid, LDH, Na+, K+ and Ca++ measurements. Cytotoxicity was determined with flow cytometry. Microarray analysis was performed using two different chips of 1.2 k and 4.8 k genes. Gene Ontology enrichment analysis was applied to find metabolism- and GC-related genes. RESULTS Higher prednisolone concentrations inhibited glucose uptake, without exhibiting any cytotoxic effects. Glucose consumption did not correlate with the total cell population, or the viable population, indicating that growth is not directly proportional to glucose consumption. Neither of the subpopulations, i.e., viable, necrotic, or apoptotic cells, contributed to this. CONCLUSIONS Different types of leukemic cells seem to exhibit different patterns of glucose metabolism. Both resistant and sensitive CCRF-CEM cells followed the aerobic pathway of glycolysis. There is probably a rapid change in membrane permeability, causing a general shutdown towards everything that is outside the cell. This could in part also explain the observed resistance. Glucocorticoids do not enter the cell passively anymore and therefore no effects are observed. Based on our observations, ion concentrations are measurable factors both in vitro and in vivo, which makes them possible markers of glucocorticoid cytotoxic action.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
- Correspondence: (G.I.L.); (A.Z.); Tel.: +30-210-746-7427 (G.I.L.)
| | | | - Spiros Vlahopoulos
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus
- Correspondence: (G.I.L.); (A.Z.); Tel.: +30-210-746-7427 (G.I.L.)
| |
Collapse
|
15
|
Yang Y, Wang X, Liu Y, Hu Y, Li Z, Li Z, Bu Z, Wu X, Zhang L, Ji J. Up-Regulation of SALL4 Is Associated With Survival and Progression via Putative WNT Pathway in Gastric Cancer. Front Cell Dev Biol 2021; 9:600344. [PMID: 33644042 PMCID: PMC7905055 DOI: 10.3389/fcell.2021.600344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
SALL4, a transcriptional factor involved in embryonic stem cell self-renewal and pluripotency, is overexpressed in gastric cancer (GC). However, the association of SALL4 with the survival of GC patients is not well-understood, and the role of SALL4 in cancer progression is still unknown. In the present study, a total of 1,815 GC patients who underwent radical resection at Peking Cancer Hospital were included consecutively from 2015 to 2018, confirming the prognostic value of SALL4 and validating by data from TCGA and GEO. The protein and mRNA expression levels of SALL4 were evaluated by immunohistochemistry and qPCR, respectively. Besides, GSEA and WGCNA were applied to explore the SALL4-related cancer-promoting signaling pathways and gene modules. Our results showed that overexpression of SALL4 was observed in 16.7% of GC patients. SALL4 positivity was associated with male, older age, mixed-type histology, late stages, lymphatic metastasis, vascular invasion, non-cardia location, high AFP level, and no EBV infection background. SALL4 could be served as a marker for prognostic prediction in GC, and SALL4-positive GC was significantly associated with shortened survival. Further, the bioinformatic analysis indicated that the Wnt/β-catenin signaling pathway was activated in SALL4-high cases compared with SALL4-low cases. Expression of SALL4 was also positively correlated with the expression of multiple co-expressed genes, such as TRIB3, which plays an important role in activating the Wnt/β-catenin pathway. Our findings indicate that SALL4 is associated with clinicopathological features related to cancer progression in GC and its function in the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yang Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Tissue Bank, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaohong Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Tissue Bank, Peking University Cancer Hospital and Institute, Beijing, China
| | - Yiqiang Liu
- Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ying Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Tissue Bank, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhongwu Li
- Department of Pathology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Ziyu Li
- Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhaode Bu
- Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaojiang Wu
- Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Lianhai Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Tissue Bank, Peking University Cancer Hospital and Institute, Beijing, China.,Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Tissue Bank, Peking University Cancer Hospital and Institute, Beijing, China.,Gastrointestinal Cancer Center, Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
16
|
Ouban A. SALL4 stemness agent expression in oral squamous cell cancer and its clinical significance. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1914165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Abderrahman Ouban
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
17
|
Islami M, Soleimanifar F. A Review of Evaluating Hematopoietic Stem Cells Derived from Umbilical Cord Blood's Expansion and Homing. Curr Stem Cell Res Ther 2020; 15:250-262. [PMID: 31976846 DOI: 10.2174/1574888x15666200124115444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/15/2019] [Accepted: 12/25/2019] [Indexed: 12/14/2022]
Abstract
Transplantation of hematopoietic stem cells (HSCs) derived from umbilical cord blood (UCB) has been taken into account as a therapeutic approach in patients with hematologic malignancies. Unfortunately, there are limitations concerning HSC transplantation (HSCT), including (a) low contents of UCB-HSCs in a single unit of UCB and (b) defects in UCB-HSC homing to their niche. Therefore, delays are observed in hematopoietic and immunologic recovery and homing. Among numerous strategies proposed, ex vivo expansion of UCB-HSCs to enhance UCB-HSC dose without any differentiation into mature cells is known as an efficient procedure that is able to alter clinical treatments through adjusting transplantation-related results and making them available. Accordingly, culture type, cytokine combinations, O2 level, co-culture with mesenchymal stromal cells (MSCs), as well as gene manipulation of UCB-HSCs can have effects on their expansion and growth. Besides, defects in homing can be resolved by exposing UCB-HSCs to compounds aimed at improving homing. Fucosylation of HSCs before expansion, CXCR4-SDF-1 axis partnership and homing gene involvement are among strategies that all depend on efficiency, reasonable costs, and confirmation of clinical trials. In general, the present study reviewed factors improving the expansion and homing of UCB-HSCs aimed at advancing hematopoietic recovery and expansion in clinical applications and future directions.
Collapse
Affiliation(s)
- Maryam Islami
- Department of Biotechnology, School of Medicine, Alborz University of Medical Science, Karaj, Iran
| | - Fatemeh Soleimanifar
- Department of Biotechnology, School of Medicine, Alborz University of Medical Science, Karaj, Iran
| |
Collapse
|
18
|
Liu C, Yao F, Mao X, Li W, Chen H. Effect of SALL4 on the Proliferation, Invasion and Apoptosis of Breast Cancer Cells. Technol Cancer Res Treat 2020; 19:1533033820980074. [PMID: 33308020 PMCID: PMC7739211 DOI: 10.1177/1533033820980074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Objective: We aimed to identify the expression of Sal-like 4 (SALL4) in breast cancer tissues and to explore the role of this gene in the carcinogenesis of breast cancer cells. Methods: A total of 62 paired breast cancer and noncancerous tissue samples were obtained from patients with breast cancer. SALL4 expression patterns and their association with clinicopathological characteristics were investigated by qRT-PCR, western blotting, and immunochemistry in breast cancer tissues. After the knockdown of SALL4 by short hairpin RNAs (shRNAs), the proliferative, invasive, and apoptotic abilities of MDA-MB-435 and MDA-MB-468 cells (breast cancer cell lines) were measured by colony formation and CCK-8 assays, wound healing and transwell assays, and flow cytometry, respectively. Results: SALL4 expression was higher in breast cancer tissues than that in the paired noncancerous tissues, and increased SALL4 expression in tumor tissues was closely related to tumor size and lymphatic metastasis. Furthermore, functional experiments revealed that SALL4 knockdown inhibited the cell proliferation, induced cell cycle arrest in G0/G1phase and apoptosis, and decreased the ability of migration and invasion in breast cancer cells. Additionally, our study first demonstrated that SALL4 played a critical role in modulating the tumorigenicity of breast cancer cells via the WNT/β-catenin signaling pathway. Conclusions: Our results suggest that the expression of SALL4 is upregulated in breast cancer, and this upregulation is involved in the regulation of cell growth, invasion, and apoptosis. Hence, SALL4 may be a promising target for diagnosis and therapy in patients with breast cancer.
Collapse
Affiliation(s)
- Chong Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fan Yao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Wanming Li
- Department of Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Hang Chen
- Experiment Teaching Center of Functional Subjects, College of Basic Medicine, China Medical University, Shenyang, China
| |
Collapse
|
19
|
Chang S, Sun G, Zhang D, Li Q, Qian H. MiR-3622a-3p acts as a tumor suppressor in colorectal cancer by reducing stemness features and EMT through targeting spalt-like transcription factor 4. Cell Death Dis 2020; 11:592. [PMID: 32719361 PMCID: PMC7385142 DOI: 10.1038/s41419-020-02789-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs are a class of small non-coding RNAs which act as oncogenes or tumor suppressors through targeting specific mRNAs. Colorectal cancer (CRC) is one of the most common malignancies worldwide. MiR-3622a-3p is found to be decreased in colorectal cancer (CRC) by analyzing data from TCGA database and there are few reports about the role of miR-3622a-3p in cancers. Our research aimed to explore the effects of miR-3622a-3p on CRC. MiR-3622a-3p was found to be down-regulated in CRC tissues and cells by qRT-PCR. The effect of miR-3622a-3p on proliferation, apoptosis, cell cycle, migration and invasion of CRC cells were investigated by a serious of biological function assays and the results revealed that miR-3622a-3p could inhibit the malignant biological properties of CRC. We performed dual luciferase assay, RNA immunoprecipitation (RIP) assay and pull-down assay to confirm the interaction between miR-3622a-3p and spalt-like transcription factor 4 (SALL4). Western blot was carried out to determine the effects of miR-3622a-3p and SALL4 on stemness features and EMT. We found that miR-3622a-3p suppressed stemness features and EMT of CRC cells by SALL4 mRNA degradation. MiR-3622a-3p could inhibit CRC cell proliferation and metastasis in vivo with tumor xenograft model and in vivo metastasis model. The CRC organoid model was constructed with fresh CRC tissues and the growth of organoids was suppressed by miR-3622a-3p. Taken together, the results of our study indicate miR-3622a-3p exerts antioncogenic role in CRC by downregulation of SALL4. The research on miR-3622a-3p might provide a new insight into treatment of CRC.
Collapse
Affiliation(s)
- Shuchen Chang
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu province, China
| | - Guangli Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu province, China
| | - Dan Zhang
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu province, China
| | - Qing Li
- Medical College of Southeast University, Nanjing, 210009, Jiangsu province, China
| | - Haihua Qian
- Department of Anorectal Surgery, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, Jiangsu province, China.
| |
Collapse
|
20
|
The Role of CARD9 in Metabolic Diseases. Curr Med Sci 2020; 40:199-205. [DOI: 10.1007/s11596-020-2166-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/16/2020] [Indexed: 01/19/2023]
Abstract
SummaryCaspase recruitment domain containing protein 9 (CARD9) is an adaptor protein that plays a critical role in pattern recognition receptors (PRRs)-mediated activation of NF-?B and mitogen-activated protein kinase (MAPK). This elicits initiation of the pro-inflammatory cytokines and leads to inflammatory responses, which has been recognized as a critical contributor to chronic inflammation. Current researches demonstrate that CARD9 is strongly associated with metabolic diseases, such as obesity, insulin resistance, atherosclerosis and so on. In this review, we summarize CARD9 signaling pathway and the role of CARD9 in metabolic diseases.
Collapse
|
21
|
Sun J, Zhang J, Wang D, Shen J. The transcription factor Spalt and human homologue SALL4 induce cell invasion via the dMyc-JNK pathway in Drosophila. Biol Open 2020; 9:bio048850. [PMID: 32098783 PMCID: PMC7104861 DOI: 10.1242/bio.048850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/22/2020] [Indexed: 01/09/2023] Open
Abstract
Cancer cell metastasis is a leading cause of mortality in cancer patients. Therefore, revealing the molecular mechanism of cancer cell invasion is of great significance for the treatment of cancer. In human patients, the hyperactivity of transcription factor Spalt-like 4 (SALL4) is sufficient to induce malignant tumorigenesis and metastasis. Here, we found that when ectopically expressing the Drosophila homologue spalt (sal) or human SALL4 in Drosophila, epithelial cells delaminated basally with penetration of the basal lamina and degradation of the extracellular matrix, which are essential properties of cell invasion. Further assay found that sal/SALL4 promoted cell invasion via dMyc-JNK signaling. Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway through suppressing matrix metalloprotease 1, or basket can achieve suppression of cell invasion. Moreover, expression of dMyc, a suppressor of JNK signaling, dramatically blocked cell invasion induced by sal/SALL4 in the wing disc. These findings reveal a conserved role of sal/SALL4 in invasive cell movement and link the crucial mediator of tumor invasion, the JNK pathway, to SALL4-mediated cancer progression.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jie Sun
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing 100193, China
| | - Junzheng Zhang
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing 100193, China
| | - Dan Wang
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing 100193, China
| | - Jie Shen
- Department of Entomology and MOA Key Laboratory for Monitory and Green Control of Crop Pest, China Agricultural University, Beijing 100193, China
| |
Collapse
|
22
|
Ohadi F, Rahgozar S, Ghodousi ES. Sal-Like Protein 4 Transcription Factor: A Significant Diagnostic Biomarker Involved in Childhood ALL Resistance and Relapse. Cancer Manag Res 2020; 12:1611-1619. [PMID: 32184664 PMCID: PMC7061427 DOI: 10.2147/cmar.s240469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/08/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose Sal‐like protein 4 transcription factor (SALL4) is a stem cell transcription factor that plays an essential role in the maintenance and self-renewal of embryonic and hematopoietic stem cells, functioning as an oncogene in several cancers. However, the role of SALL4 in the biological behavior of childhood acute lymphoblastic leukemia and its relationship with multidrug resistance and relapse has remained largely unknown. Patients and Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to characterize the expression pattern of SALL4 in the bone marrow samples of 43 patients with Philadelphia negative ALL and 18 children in the non-cancer control group. The presence of minimal residual disease was measured a year after the initial therapy using SSCP (single-strand conformation polymorphism). In addition, the correlation between the expression of SALL4 and ABCA3 in relapsed patients was analyzed statistically. Results Results showed an overexpression of SALL4 in de novo patients compared with the control group (P=0.0001, AUC= 0.93), indicating the importance of this gene in the induction of leukemia. A significant increase in the ABCA3 expression levels was revealed in the relapsed patients, in comparison with the drug-sensitive group (P = 0.0005). The leukemogenetic effect of SALL4 can be related to the effect of this gene on the maintenance of pluripotency in cancer stem cells. Results also suggest that the expression of SALL4 can be considered as a diagnostic marker for pediatric ALL. Moreover, SALL4 expression levels in the minimal residual disease positive (mrd+) ALL group was significantly higher than those in the mrd− group (p=0.0001, AUC= 0.92). Conclusion These data demonstrate the prognostic impact of SALL4 in childhood ALL. Our findings also indicated a direct correlation between the mRNA expression levels of SALL4 and ABCA3 transporter in the relapsed group of ALL patients (r=0.7). These results describe a possible mechanism by which SALL4 may lead to the development of multidrug resistance.
Collapse
Affiliation(s)
- Farzaneh Ohadi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Soheila Rahgozar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Elaheh Sadat Ghodousi
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
23
|
Cruz W, Huang H, Barber B, Pasini E, Ding L, Zheng G, Chen J, Bhat M. Lipoprotein-Like Nanoparticle Carrying Small Interfering RNA Against Spalt-Like Transcription Factor 4 Effectively Targets Hepatocellular Carcinoma Cells and Decreases Tumor Burden. Hepatol Commun 2020; 4:769-782. [PMID: 32363325 PMCID: PMC7193129 DOI: 10.1002/hep4.1493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/29/2020] [Indexed: 01/09/2023] Open
Abstract
Patients with advanced hepatocellular carcinoma (HCC) are often unable to tolerate chemotherapy due to liver dysfunction in the setting of cirrhosis. We investigate high-density lipoprotein (HDL)-mimicking peptide phospholipid scaffold (HPPS), which are nanoparticles that capitalize on normal lipoprotein metabolism and transport, as a solution for directed delivery of small interfering RNA (siRNA) cargo into HCC cells. Spalt-like transcription factor 4 (SALL4), a fetal oncoprotein expressed in aggressive HCCs, is specifically targeted as a case study to evaluate the efficacy of HPPS carrying siRNA cargo. HPPS containing different formulations of siRNA therapy against SALL4 were generated specifically for HCC cells. These were investigated both in vitro and in vivo using fluorescence imaging. HPPS-SALL4 effectively bound to scavenger receptor, class B type 1 (SR-BI) and delivered the siRNA cargo into HCC cells, as seen in vitro. HPPS-SALL4 effectively inhibited HCC tumor growth (P < 0.05) and induced a 3-fold increase in apoptosis of the cancer cells in vivo compared to HPPS-scramble. Additionally, there was no immunogenicity associated with HPPS-SALL4 as measured by cytokine production. Conclusion: We have developed unique HDL-like nanoparticles that directly deliver RNA interference (RNAi) therapy against SALL4 into the cytosol of HCC cells, effectively inhibiting HCC tumor growth without any systemic immunogenicity. This therapeutic modality avoids the need for hepatic metabolism in this cancer, which develops in the setting of cirrhosis and liver dysfunction. These natural lipoprotein-like nanoparticles with RNAi therapy are a promising therapeutic strategy for HCC.
Collapse
Affiliation(s)
- William Cruz
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada.,DLVR Therapeutics University of Toronto Toronto ON Canada
| | - Huang Huang
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada.,DLVR Therapeutics University of Toronto Toronto ON Canada
| | - Brian Barber
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada.,DLVR Therapeutics University of Toronto Toronto ON Canada
| | - Elisa Pasini
- Multi Organ Transplant Program University Health Network Toronto ON Canada
| | - Lili Ding
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada.,Department of Medical Biophysics University of Toronto Toronto ON Canada
| | - Juan Chen
- Princess Margaret Cancer Centre University Health Network Toronto ON Canada
| | - Mamatha Bhat
- Multi Organ Transplant Program University Health Network Toronto ON Canada.,Division of Gastroenterology Department of Medicine University Health Network and University of Toronto Toronto ON Canada
| |
Collapse
|
24
|
Hesari A, Rajab S, Rezaei M, Basam M, Golmohamadi S, Ghasemi F. Knockdown of Sal-like 4 expression by siRNA induces apoptosis in colorectal cancer. J Cell Biochem 2019; 120:11531-11538. [PMID: 30771239 DOI: 10.1002/jcb.28433] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 11/22/2018] [Accepted: 11/29/2018] [Indexed: 01/24/2023]
Abstract
Colorectal cancer (CRC) is known as the third most common malignancies among men and women and is also the second leading cause of cancer-related deaths worldwide. It has been indicated that a variety of risk factors are involved in the pathogenesis of CRC. Spalt-like transcription factor 4 (SALL4) is known as a transcription factor that plays an important role in the proliferation of cancerous cells. In this study, using a specific sequence of small interfering RNA (siRNA) against the sequence of SALL4, its activity is investigated in the CRC cell line (sw742). The CRC cells (sw742) were cultured and then, using a specific anti-SALL4 siRNA, their toxic doses were determined. Then, the gene is transfected into the cell. Proliferation and expression of the SALL4 and Bcl-2 gene were measured using the real-time polymerase chain reaction method. Cell death was evaluated by propidium iodide staining and fluorescence-activated cell sorting analysis. Our results indicated that the specific concentration of siRNA of the SALL4 gene was 62.5 nmole. Gene expression of SALL4 and Bcl-2 results showed that expression of Bcl-2 gene in the siRNA group was significantly reduced. In conclusion, our finding indicated that it could be used as a therapeutic and diagnostic biomarker in the treatment of patients with CRC.
Collapse
Affiliation(s)
- AmirReza Hesari
- Department of Biotechnology, Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Shadi Rajab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Marzieh Rezaei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Basam
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Sara Golmohamadi
- Department of Biotechnology, Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Department of Biotechnology, Molecular and Medicine Research Center, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
25
|
Nie X, Guo E, Wu C, Liu D, Sun W, Zhang L, Long G, Mei Q, Wu K, Xiong H, Hu G. SALL4 induces radioresistance in nasopharyngeal carcinoma via the ATM/Chk2/p53 pathway. Cancer Med 2019; 8:1779-1792. [PMID: 30907073 PMCID: PMC6488116 DOI: 10.1002/cam4.2056] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/09/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022] Open
Abstract
Radiotherapy is the mainstay and primary curative treatment modality in nasopharyngeal carcinoma (NPC), whose efficacy is limited by the development of intrinsic and acquired radioresistance. Thus, deciphering new molecular targets and pathways is essential for enhancing the radiosensitivity of NPC. SALL4 is a vital factor in the development and prognosis of various cancers, but its role in radioresistance remains elusive. This study aimed to explore the association of SALL4 expression with radioresistance of NPC. It was revealed that SALL4 expression was closely correlated with advanced T classification of NPC patients. Inhibition of SALL4 reduced proliferation and sensitized cells to radiation both in vitro and in vivo. Furthermore, SALL4 silencing increased radiation-induced DNA damage, apoptosis, and G2/M arrest in CNE2 and CNE2R cells. Moreover, knockdown of SALL4 impaired the expression of p-ATM, p-Chk2, p-p53, and anti-apoptosis protein Bcl-2, while pro-apoptosis protein was upregulated. These findings indicate that SALL4 could induce radioresistance via ATM/Chk2/p53 pathway and its downstream proteins related to apoptosis. Targeting SALL4 might be a promising approach for the development of novel radiosensitizing therapeutic agents for radioresistant NPC patients.
Collapse
Affiliation(s)
- Xin Nie
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ergang Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Cheng Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Dongbo Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Wei Sun
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Linli Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Guoxian Long
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qi Mei
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Guoqing Hu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
26
|
Zhong X, Chen B, Yang L, Yang Z. Card9 as a critical regulator of tumor development. Cancer Lett 2019; 451:150-155. [PMID: 30872079 DOI: 10.1016/j.canlet.2019.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Caspase recruitment domain-containing protein 9 (Card9) is a myeloid cell-specific signaling protein that plays a critical role in NF-κB and MAPK activation. This leads to initiation of the inflammatory cytokine cascade, and elicits the host immune response against microbial invasion, especially in fungal infection. Current research indicates that Card9 plays an important role in tumor progression. Here, we review the data from preclinical and clinical studies of Card9 and suggest the potential for Card9-targeted interventions in the prevention or treatment of certain tumors.
Collapse
Affiliation(s)
| | - Bin Chen
- Surgery Department, First Affiliated Hospital of Gannan Medical University, Gannan Medical University, Ganzhou, China
| | - Liang Yang
- Nanjing Medical University, The Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Nanjing, China
| | - Zhiwen Yang
- Department of Pharmacy, Songjiang Hospital Affiliated Shanghai First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
27
|
Hesari A, Anoshiravani AA, Talebi S, Noruzi S, Mohammadi R, Salarinia R, Zare R, Ghasemi F. Knockdown of sal-like 4 expression by small interfering RNA induces apoptosis in breast cancer cells. J Cell Biochem 2018; 120:9392-9399. [PMID: 30520112 DOI: 10.1002/jcb.28214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022]
Abstract
Breast cancer is the most prevalent cancers worldwide and causes a significant amount of deaths annually. Spalt-like transcription factor 4 is known as a transcription factor, which has an important role in the proliferation of cancerous cells. Small interfering RNA (siRNA) is a short-chain molecule of 20 to 25 nucleotides that protrude on two sides of the 3', two nucleotides. In this study, using a specific sequence of siRNA against the sequence of this gene, its activity is investigated in the cell line of breast cancer. The breast cancer cells (MCF-7) were cultured and then, using a specific anti-sal-like 4 (SALL4) siRNA, their toxic doses were determined. Then, the gene is transfected into the cell. Proliferation and expression of the SALL4 and BCL-2 gene were measured using the real-time polymerase chain reaction method. The specific concentration of siRNA IC50 of the SALL4 gene was 40.35 nmole. Gene expression results indicated that the expression of the Bcl-2 gene in the siRNA group was significantly reduced ( P < 0.05). SiRNA can increase the apoptosis of breast cancer cells by reducing the gene expression of SALL4 gene and Bcl-2; it can be used as a novel targeted therapy. This strategy, in addition to increasing the specificity of the drug, also reduces the side effects when compared with conventional chemotherapy.
Collapse
Affiliation(s)
- Amireza Hesari
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | | | - Samaneh Talebi
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Somayye Noruzi
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Rezvan Mohammadi
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Salarinia
- Student Research Committee, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran.,Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Reza Zare
- Student Research Committee, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Ghasemi
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.,Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Next to Milad Tower, Tehran, Iran
| |
Collapse
|
28
|
miR-103/miR-195/miR-15b Regulate SALL4 and Inhibit Proliferation and Migration in Glioma. Molecules 2018; 23:molecules23112938. [PMID: 30423818 PMCID: PMC6278493 DOI: 10.3390/molecules23112938] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/01/2018] [Accepted: 11/07/2018] [Indexed: 01/13/2023] Open
Abstract
Glioma is the common highly malignant primary brain tumor. However, the molecular pathways that result in the pathogenesis of glioma remain elusive. In this study, we found that microRNA-103 (miR-103), microRNA-195 (miR-195), or microRNA-15b (miR-15b), which all have the same 5' "seed" miRNA portion and share common binding sites in the SALL4 3'-untranslated region (UTR), were downregulated in glioma tissues and cell lines. These miRNAs suppressed glioma cell proliferation, migration, and invasion, induced cell apoptosis, and decreased the level of the SALL4 protein, but not that of SALL4 mRNA, which was identified as a direct target of all three miRNAs. The caspase-3/7 activity expression in U251 cells overexpressing these miRNAs was rescued during SALL4 upregulation. An obvious inverse correlation was observed between SALL4 and miR-103 or miR-195 expression levels in clinical glioma samples. Moreover, enforced expression of SALL4 stimulated cell proliferation, migration, and invasion. In conclusion, these data suggest that miR-103, miR-195, and miR-15b post-transcriptionally downregulated the expression of SALL4 and suppressed glioma cell growth, migration, and invasion, and increased cell apoptosis. These results provide a potential therapeutic target that may downregulate SALL4 in glioma.
Collapse
|
29
|
Zhang X, Zhang P, Shao M, Zang X, Zhang J, Mao F, Qian H, Xu W. SALL4 activates TGF-β/SMAD signaling pathway to induce EMT and promote gastric cancer metastasis. Cancer Manag Res 2018; 10:4459-4470. [PMID: 30349378 PMCID: PMC6188178 DOI: 10.2147/cmar.s177373] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Increasing evidence suggests that SALL4 plays oncogenic roles in cancer development and progression. We have previously shown that SALL4 is highly expressed in gastric cancer, and its upregulation is associated with lymph node metastasis and poor prognosis. The role of SALL4 in gastric cancer metastasis and the underlying mechanism remain unclear. Materials and methods The biological roles of SALL4 in gastric cancer cell mobility, migration, and invasion were investigated by wound healing, transwell migration assay, and Matrigel invasion assay. The effects of SALL4 on epithelial-mesenchymal transition (EMT) in gastric cancer cells were examined by quantitative real-time PCR and Western blot. The downstream target genes of SALL4 were identified by microarray. The regulation of TGF-β1 by SALL4 in gastric cancer cells was analyzed by luciferase reporter assay and chromatin immunoprecipitation assay. Results SALL4 knockdown inhibited, while SALL4 overexpression promoted the motility, migration, and invasion abilities of gastric cancer cells in vitro. SALL4 knockdown also suppressed the peritoneal metastasis of gastric cancer cells in nude mice. SALL4 knockdown suppressed, while SALL4 overexpression induced the activation of TGF-β/SMAD signaling pathway and triggered EMT in gastric cancer cells. TGF-β1 was identified as a direct target gene of SALL4. The results of chromatin immunoprecipitation study and luciferase reporter assay further confirmed that SALL4 bound to the promoter of TGF-b1 gene and activated its expression. TGF-β1 knockdown reversed SALL4-mediated promotion of gastric cancer cell motility, migration, and invasion, indicating that TGF-β1 acts as a downstream effector of SALL4. Furthermore, the expression of TGF-β1 was found to be closely associated with that of SALL4 in gastric cancer tissues. Conclusion SALL4 promotes the metastasis of gastric cancer, at least partly, by directly activating TGF-β1, suggesting that SALL4 may serve as a new target for gastric cancer therapy.
Collapse
Affiliation(s)
- Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China, .,Zhenjiang Key Laboratory of Gastrointestinal Cancer, Jiangsu University, Zhenjiang, Jiangsu 212013, China,
| | - Peng Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China,
| | - Meng Shao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China,
| | - Xueyan Zang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China,
| | - Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China,
| | - Fei Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China,
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China, .,Zhenjiang Key Laboratory of Gastrointestinal Cancer, Jiangsu University, Zhenjiang, Jiangsu 212013, China,
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China, .,Zhenjiang Key Laboratory of Gastrointestinal Cancer, Jiangsu University, Zhenjiang, Jiangsu 212013, China,
| |
Collapse
|
30
|
Wu HK, Liu C, Fan XX, Wang H, Zhou L. Spalt-like transcription factor 4 as a potential diagnostic and prognostic marker of colorectal cancer. Cancer Biomark 2018; 20:191-198. [PMID: 28869451 DOI: 10.3233/cbm-170204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The study aimed to investigate the role of spalt-like transcription factor 4 (SALL4) in the diagnosis and prognosis of colorectal cancer (CRC). METHODS Between May 2008 and January 2010, 135 patients with CRC were recruited and subsequently assigned into the case group of the study. Additionally, 140 healthy individuals under identical conditions were selected as the control group. Venous blood was collected from all subjects. High expression of SALL4 was detected by immunohistochemistry, and SALL4 serum levels were detected using ELISA. A 5-year follow-up was conducted. A Kaplan-Meier curve was applied for analysis of survival rates, and a log-rank was used for univariate analysis. RESULTS The case group exhibited largely positive expression levels of SALL4. Levels of SALL4 serum were much higher than those in the control group. The AUC value of CRC detected by serum SALL4 was 0.916 (95% CI was 0.881-0.951), which regarded 0.1255 μcg/l to be the point of critical value. This result was in direct relation to data from the receiver operating characteristic curve (ROC). The sensitivity and specificity of serum SALL4 levels in the diagnosis of CRC were 85.9% and 85.7%, respectively. The AUC value of CRC detected by tissue SALL4 was 0.727 (95% CI was 0.666-0.789), 0.5 was regarded as the critical value. The sensitivity and specificity of SALL4 expression in CRC tissues regarding the diagnosis of CRC was determined to be 58.6% and 86.9% respectively. The levels of SALL4 expression in serum and tissues highlighted a correlation to lymph node metastasis (LNM), differentiation degree, Dukes staging and tumor node metastasis staging. Lower serum SALL4 levels were associated with higher survival rates in CRC patients. In accordance with a COX regression, LNM, differentiation degree and SALL4 levels were determined as being prognostic factors in patients with CRC (both P< 0.05). CONCLUSION Our experimental data indicated that over expression of SALL4 was found in CRC and low expression of SALL4 was connected with high survival rate after surgery. Thus our study suggested that SALL4 could serve as a potential diagnostic and prognostic marker of CRC.
Collapse
|
31
|
Ma C, Wang F, Han B, Zhong X, Si F, Ye J, Hsueh EC, Robbins L, Kiefer SM, Zhang Y, Hunborg P, Varvares MA, Rauchman M, Peng G. SALL1 functions as a tumor suppressor in breast cancer by regulating cancer cell senescence and metastasis through the NuRD complex. Mol Cancer 2018; 17:78. [PMID: 29625565 PMCID: PMC5889587 DOI: 10.1186/s12943-018-0824-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/11/2018] [Indexed: 01/19/2023] Open
Abstract
Background SALL1 is a multi-zinc finger transcription factor that regulates organogenesis and stem cell development, but the role of SALL1 in tumor biology and tumorigenesis remains largely unknown. Methods We analyzed SALL1 expression levels in human and murine breast cancer cells as well as cancer tissues from different types of breast cancer patients. Using both in vitro co-culture system and in vivo breast tumor models, we investigated how SALL1 expression in breast cancer cells affects tumor cell growth and proliferation, metastasis, and cell fate. Using the gain-of function and loss-of-function strategies, we dissected the molecular mechanism responsible for SALL1 tumor suppressor functions. Results We demonstrated that SALL1 functions as a tumor suppressor in breast cancer, which is significantly down-regulated in the basal like breast cancer and in estrogen receptor (ER), progesterone receptor (PR) and epidermal growth factor receptor 2 (HER2) triple negative breast cancer patients. SALL1 expression in human and murine breast cancer cells inhibited cancer cell growth and proliferation, metastasis, and promoted cell cycle arrest. Knockdown of SALL1 in breast cancer cells promoted cancer cell growth, proliferation, and colony formation. Our studies revealed that tumor suppression was mediated by recruitment of the Nucleosome Remodeling and Deacetylase (NuRD) complex by SALL1, which promoted cancer cell senescence. We further demonstrated that the mechanism of inhibition of breast cancer cell growth and invasion by SALL1-NuRD depends on the p38 MAPK, ERK1/2, and mTOR signaling pathways. Conclusion Our studies indicate that the developmental control gene SALL1 plays a critical role in tumor suppression by recruiting the NuRD complex and thereby inducing cell senescence in breast cancer cells. Electronic supplementary material The online version of this article (10.1186/s12943-018-0824-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunling Ma
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,Department of Laboratory Medicine, Women & Children's Hospital of Linyi, Shandong Medical College, Linyi, 276000, People's Republic of China
| | - Fang Wang
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Bing Han
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.,Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, People's Republic of China
| | - Xiaoli Zhong
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Fusheng Si
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Jian Ye
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Eddy C Hsueh
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Lynn Robbins
- VA Saint Louis Health Care System, John Cochran Division, St. Louis, MO, 63106, USA.,Department of Medicine, Washington University, Saint. Louis, MO, 63110, USA
| | - Susan M Kiefer
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Yanping Zhang
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Pamela Hunborg
- Department of Surgery, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA
| | - Mark A Varvares
- Department of Otolaryngology, Saint Louis University School of Medicine, Saint Louis, MO, 63110, USA.,Department of Otolaryngology, Harvard Medical School, Boston, MA, 02114, USA
| | - Michael Rauchman
- VA Saint Louis Health Care System, John Cochran Division, St. Louis, MO, 63106, USA. .,Department of Medicine, Washington University, Saint. Louis, MO, 63110, USA.
| | - Guangyong Peng
- Department of Internal Medicine, Saint Louis University School of Medicine, Saint Louis, MO, 63104, USA.
| |
Collapse
|
32
|
Fusarium solani Activates Dectin-1 in Experimentally Induced Keratomycosis. Curr Med Sci 2018; 38:153-159. [PMID: 30074165 DOI: 10.1007/s11596-018-1859-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/30/2017] [Indexed: 12/13/2022]
Abstract
In this study, the response of Dectin-1 on macrophages to Fusarium solani (F. solani) and the expression patterns of Dectin-1 in experimentally F. solani-induced keratomycosis were investigated. Peritoneal macrophages isolated after intraperitoneal injection of sodium thioglycollate were co-cultured with laminarin and spores of F. solani for 12 h. The expression levels of Dectin-1 and CARD9 were detected by immunofluorescence and real-time quantitative polymerase chain reaction. A mouse model of fungal keratitis was established by substromal inoculation with spores of F. solani. Corneal lesions and inflammatory responses were observed by slit-lamp and histopathology at 1, 2, 3, 5, and 7 day(s) after infection. Dectin-1 expression was significantly upregulated on macrophages stimulated by spores of F. solani. Dectin-1 was not detected in normal corneas of C57BL/6 mice, but detected in infected corneas from the first day after inoculation, with high mRNA levels observed on days 2 and 3. CARD9, a key transducer of Dectin-1 signaling, was also upregulated in infected corneas. In conclusion, Dectin-1 is an important recognition receptor in F. solani-induced keratitis, but the molecular mechanisms warrant further investigation.
Collapse
|
33
|
Kroemer M, Spehner L, Mercier-Letondal P, Boullerot L, Kim S, Jary M, Galaine J, Picard E, Ferrand C, Nguyen T, Larosa F, Adotévi O, Godet Y, Borg C. SALL4 oncogene is an immunogenic antigen presented in various HLA-DR contexts. Oncoimmunology 2018; 7:e1412030. [PMID: 29632725 PMCID: PMC5889287 DOI: 10.1080/2162402x.2017.1412030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/11/2017] [Accepted: 11/26/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose: To investigate the immunoprevalence of SALL4-derived peptides in healthy volunteers and cancer patients. Experimental Design: A multistep approach including prediction algorithms was used to design in silico SALL4-derived peptides theoretically able to bind on common HLA-DR and HLA-A/B molecules. The presence of T-cell responses after a long term T-cell assay (28 days) against SALL4 was monitored in 14 healthy donors and the presence of T-cell responses after a short term T-cell assay (10 days) was monitored in 67 cancer patients using IFN-γ ELISPOT assay. A T-cell clone specific for the immunoprevalent A18 K-derived peptide was isolated, characterized and used as a tool to characterize the natural processing of A18 K. Results: A SALL4 specific T-cell repertoire was present in healthy donors (8/14) and cancer patients (29/67) after short term T-cell assay. We further identified two immunoprevalant SALL4-derived peptides, R18 A and A18 K, which bind MHC-class II. In parallel, an A18 K specific Th1 clone recognized monocyte derived Dendritic Cell (moDC) loaded with SALL4 containing cell lysate. The level of IFN-γ secreted by specific T-cell clone was greater in presence of moDC loaded with SALL4 containing cell lysate (49.23 ± 14.02%) than with moDC alone (18.03 ± 3.072%) (p = 0.0477) Conclusion: These results show for the first time immunogenicity of SALL4 oncogenic protein-derived peptides, especially A18 K and R18 A peptides and make them potential targets for personalized medicine. Thus, SALL4 possess major characteristics of a tumor antigen.
Collapse
Affiliation(s)
- Marie Kroemer
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
- Department of pharmacy, University hospital of Besançon, Besançon, France
| | - Laurie Spehner
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
| | - Patricia Mercier-Letondal
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
| | - Laura Boullerot
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
| | - Stefano Kim
- Department of medical oncology, University Hospital of Besançon, Besançon, France
| | - Marine Jary
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
- Department of medical oncology, University Hospital of Besançon, Besançon, France
| | - Jeanne Galaine
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
| | - Emilie Picard
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
| | - Christophe Ferrand
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
| | - Thierry Nguyen
- Department of medical oncology, University Hospital of Besançon, Besançon, France
| | - Fabrice Larosa
- Department of hematology, University Hospital of Besançon, Besançon, France
| | - Olivier Adotévi
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
- Department of medical oncology, University Hospital of Besançon, Besançon, France
| | - Yann Godet
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
| | - Christophe Borg
- University of Bourgogne Franche-Comté (UBFC), INSERM, EFS BFC, UMR1098, Interactions hôte-greffon-tumeur – Ingénierie Cellulaire et Génique, Besançon, France
- Department of medical oncology, University Hospital of Besançon, Besançon, France
| |
Collapse
|
34
|
Yang J. SALL4 as a transcriptional and epigenetic regulator in normal and leukemic hematopoiesis. Biomark Res 2018; 6:1. [PMID: 29308206 PMCID: PMC5751604 DOI: 10.1186/s40364-017-0115-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
In recent years, there has been substantial progress in our knowledge of the molecular pathways by which stem cell factor SALL4 regulates the embryonic stem cell (ESC) properties, developmental events, and human cancers. This review summarizes recent advances in the biology of SALL4 with a focus on its regulatory functions in normal and leukemic hematopoiesis. In the normal hematopoietic system, expression of SALL4 is mainly enriched in the bone marrow hematopoietic stem/progenitor cells (HSCs/HPCs), but is rapidly silenced following lineage differentiation. In hematopoietic malignancies, however, SALL4 expression is abnormally re-activated and linked with deteriorated disease status in patients. Further, SALL4 activation participates in the pathogenesis of tumor initiation and disease progression. Thus, a better understanding of SALL4's biologic functions and mechanisms will facilitate development of advanced targeted anti-leukemia approaches in future.
Collapse
Affiliation(s)
- Jianchang Yang
- Department of Surgery and Medicine, Baylor College of Medicine, Houston, TX 77030 USA
| |
Collapse
|
35
|
Yang L, Liu L, Gao H, Pinnamaneni JP, Sanagasetti D, Singh VP, Wang K, Mathison M, Zhang Q, Chen F, Mo Q, Rosengart T, Yang J. The stem cell factor SALL4 is an essential transcriptional regulator in mixed lineage leukemia-rearranged leukemogenesis. J Hematol Oncol 2017; 10:159. [PMID: 28974232 PMCID: PMC5627455 DOI: 10.1186/s13045-017-0531-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 09/27/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The stem cell factor spalt-like transcription factor 4 (SALL4) plays important roles in normal hematopoiesis and also in leukemogenesis. We previously reported that SALL4 exerts its effect by recruiting important epigenetic factors such as DNA methyltransferases DNMT1 and lysine-specific demethylase 1 (LSD1/KDM1A). Both of these proteins are critically involved in mixed lineage leukemia (MLL)-rearranged (MLL-r) leukemia, which has a very poor clinical prognosis. Recently, SALL4 has been further linked to the functions of MLL and its target gene homeobox A9 (HOXA9). However, it remains unclear whether SALL4 is indeed a key player in MLL-r leukemia pathogenesis. METHODS Using a mouse bone marrow retroviral transduction/ transplantation approach combined with tamoxifen-inducible, CreERT2-mediated Sall4 gene deletion, we studied SALL4 functions in leukemic transformation that was induced by MLL-AF9-one of the most common MLL-r oncoproteins found in patients. In addition, the underlying transcriptional and epigenetic mechanisms were explored using chromatin immunoprecipitation (ChIP) sequencing (ChIP-Seq), mRNA microarray, qRT-PCR, histone modification, co-immunoprecipitation (co-IP), cell cycle, and apoptosis assays. The effects of SALL4 loss on normal hematopoiesis in mice were also investigated. RESULTS In vitro and in vivo studies revealed that SALL4 expression is critically required for MLL-AF9-induced leukemic transformation and disease progression in mice. Loss of SALL4 in MLL-AF9-transformed cells induced apoptosis and cell cycle arrest at G1. ChIP-Seq assay identified that Sall4 binds to key MLL-AF9 target genes and important MLL-r or non-MLL-r leukemia-related genes. ChIP-PCR assays indicated that SALL4 affects the levels of the histone modification markers H3K79me2/3 and H3K4me3 at MLL-AF9 target gene promoters by physically interacting with DOT1-like histone H3K79 methyltransferase (DOT1l) and LSD1/KDM1A, and thereby regulates transcript expression. Surprisingly, normal Sall4 f/f /CreERT2 mice treated with tamoxifen or vav-Cre-mediated (hematopoietic-specific) Sall4 -/- mice were healthy and displayed no significant hematopoietic defects. CONCLUSIONS Our findings indicate that SALL4 critically contributes to MLL-AF9-induced leukemia, unraveling the underlying transcriptional and epigenetic mechanisms in this disease and suggesting that selectively targeting the SALL4 pathway may be a promising approach for managing human MLL-r leukemia.
Collapse
Affiliation(s)
- Lina Yang
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Li Liu
- Department of Pathology, Stony Brook University Medicine, Stony Brook, NY, USA
| | - Hong Gao
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Jaya Pratap Pinnamaneni
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Deepthi Sanagasetti
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Vivek P Singh
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Kai Wang
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Megumi Mathison
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Qianzi Zhang
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Fengju Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Qianxing Mo
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.,Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Todd Rosengart
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA
| | - Jianchang Yang
- Department of Surgery and Medicine, Baylor College of Medicine (BCM), Houston, TX, 77030, USA. .,Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
36
|
Sheikhrezaei Z, Heydari P, Farsinezhad A, Fatemi A, Khanamani Falahati-Pour S, Darakhshan S, Noroozi Karimabad M, Darekordi A, Khorramdelazad H, Hassanshahi G. A New Indole Derivative Decreased SALL4 Gene Expression in Acute Promyelocytic Leukemia Cell Line (NB4). IRANIAN BIOMEDICAL JOURNAL 2017; 22:99-106. [PMID: 28800701 PMCID: PMC5786664 DOI: 10.22034/ibj.22.2.99] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background: Acute myeloblastic leukemia (AML) is a clonal disorder due to bone marrow failure and uncontrolled proliferation of myeloid lineage. Acute promyelocytic leukemia (APL) is a subtype of AML. Heterocyclic compounds, such as indole, are considered as attractive candidates for cancer therapy, due to their abundance in nature and known biological activity. Sal-like protein (SALL4) is a zinc finger transcription factor involving in the multi-potency of stem cells, in the NB4 cell line. This study was aimed to evaluate the effects of basal indole and its new derivative, 2-(1-((2, 4-Aril)imino)-2,2,2-trifluoroethyl) phenyl-1H Indole-3- carbaldehyde (TFPHC), on the expression of SALL4. Methods: Cells were cultured and treated with different concentrations (75, 150, and 300 µg/mL) of the new indole derivative and DMSO, as a vehicle control, for 24 and 48 hours. Cell proliferation was evaluated by using Trypan blue exclusion and MTT assays. The percentage of apoptotic cells was determined by flowcytometry analysis using the Annexin V/PI apoptosis detection kit; mRNA expression of SALL4 was studied using absolute quantitative RT-PCR. Results: Our findings demonstrated the effects of new indole derivatives on SALL4 mRNA expression. Expression of SALL4 mRNA was significantly decreased at 75, 150, and 300 µg/mL concentrations. Conclusion: SALL4 plays a role in the survival of APL cells. SALL4 expression could be suppressed by the novel indole derivative. Additionally, SALL4 gene suppression can serve as a target in APL therapy.
Collapse
Affiliation(s)
- Zahra Sheikhrezaei
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Parisa Heydari
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Alireza Farsinezhad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Ahmad Fatemi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Shokoofeh Darakhshan
- Department of Pediatrics, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Ali Darekordi
- Department of Chemistry, Faculty of Science, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Hossein Khorramdelazad
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamhossein Hassanshahi
- Molecular Medicine Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Immunology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
37
|
Expression of OCT4 and SALL4 in Diffuse Large B-cell Lymphoma: An Analysis of 145 Consecutive Cases and Testicular Lymphomas. Am J Surg Pathol 2017; 40:950-7. [PMID: 27035612 DOI: 10.1097/pas.0000000000000648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OCT4 and SALL4 are transcription factors within a complex network that functions to maintain pluripotency in primitive stem cells and germ cells. Nuclear expression of OCT4 is widely cited as sensitive and specific for primary and metastatic germ cell tumors and is commonly used in the diagnosis of central nervous system (CNS) germinomas. Studies have failed to systematically examine the expression of OCT4 or SALL4 in diffuse large B-cell lymphoma (DLBCL), although this entity enters the morphologic differential diagnosis of some germ cell tumors. A retrospective review was conducted on 145 consecutive cases of DLBCL and testicular lymphoma to evaluate the prevalence of OCT4 and SALL4 expression. Nuclear OCT4 expression was present in 2/11 (18%) testicular DLBCLs and 6/134 (4.5%) nontesticular DLBCLs. Most OCT4 cases demonstrated moderate to strong expression in >50% of neoplastic cells. Rare, weak nuclear SALL4 expression was detected in only 3 nontesticular DLBCLs. Within the extratesticular DLBCL group, 2/6 (33%) primary CNS DLBCLs expressed nuclear OCT4. In addition, OCT4 DLBCL showed an overall predilection toward non-germinal center B-cell phenotype (7/8; 88%) and had a higher than expected rate of CD5 coexpression (4/8, 50%). These results are cautionary against using OCT4 as a sole marker of germ cell differentiation in testicular and extratesticular sites, especially in the CNS. The apparent associations of OCT4 expression with primary CNS DLBCL, non-germinal center B-cell phenotype, and CD5 coexpression raise the question of whether OCT4 expression in DLBCL may reflect more aggressive biology.
Collapse
|
38
|
Abdelbaset-Ismail A, Borkowska S, Janowska-Wieczorek A, Tonn T, Rodriguez C, Moniuszko M, Bolkun L, Koloczko J, Eljaszewicz A, Ratajczak J, Ratajczak MZ, Kucia M. Novel evidence that pituitary gonadotropins directly stimulate human leukemic cells-studies of myeloid cell lines and primary patient AML and CML cells. Oncotarget 2016; 7:3033-46. [PMID: 26701888 PMCID: PMC4823088 DOI: 10.18632/oncotarget.6698] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/21/2015] [Indexed: 12/22/2022] Open
Abstract
We recently reported that normal hematopoietic stem cells express functional pituitary sex hormone (SexH) receptors. Here we report for the first time that pituitary-secreted gonadotrophins stimulate migration, adhesion, and proliferation of several human myeloid and lymphoid leukemia cell lines. Similar effects were observed after stimulation of human leukemic cell lines by gonadal SexHs. This effect seems to be direct, as the SexH receptors expressed by leukemic cells responded to stimulation by phosphorylation of MAPKp42/44 and AKTser473. Furthermore, in parallel studies we confirmed that human primary patient-derived AML and CML blasts also express several functional SexH receptors. These results shed more light on the potential role of SexHs in leukemogenesis and, in addition, provide further evidence suggesting a developmental link between hematopoiesis and the germline.
Collapse
Affiliation(s)
| | | | | | - Torsten Tonn
- Transfusion Medicine, Medical Faculty Carl Gustav Carus - Technische Universtität Dresden, German Red Cross Blood Donation Service North East, Dresden, Germany
| | - Cesar Rodriguez
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Marcin Moniuszko
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Lukasz Bolkun
- Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Janusz Koloczko
- Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Andrzej Eljaszewicz
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, Bialystok, Poland
| | - Janina Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA
| | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA.,Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland
| | - Magda Kucia
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, KY, USA.,Department of Regenerative Medicine Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
39
|
Wu J, Xiao L, Zhou H, Liu H, Ge Y, Yang J, Li Y, Wu D, Zhao Y, Zhang X. ZFX modulates the growth of human leukemic cells via B4GALT1. Acta Biochim Biophys Sin (Shanghai) 2016; 48:1120-1127. [PMID: 27797721 DOI: 10.1093/abbs/gmw109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/04/2016] [Indexed: 11/14/2022] Open
Abstract
Zinc finger protein X-linked (ZFX) is a key regulator of both embryonic stem cells (ESCs) and hematopoietic stem cells (HSCs), which is required for both Notch intracellular domain (NotchIC)-induced acute T-cell leukemia and MLL-AF9-induced myeloid leukemia in mouse models. However, the role of ZFX and its underlying mechanism in human leukemic cells remain unclear yet, though accumulating data have demonstrated that ZFX is aberrantly expressed in various human tumors and plays an important role. Herein, we found that ZFX was aberrantly expressed in various human leukemic cell lines and primary cells from leukemia patients compared with control cells. The silence of ZFX led to the growth suppression through either the deregulated cell cycle or the induction of apoptosis in various cells including K562, Jurkat, Namalwa, and THP-1 cells. The gene expression analysis revealed that UDP-Gal:βGlcNAc β 1,4-galactosyltransferase, polypeptide 1 (B4GALT1) was significantly down-regulated upon ZFX silencing, which is implicated in the response of K562 cells to the treatment of imatinib mesylate (IM). In addition, lectin blot assay showed that the galactosylation of glycoproteins in K562 cells was suppressed upon ZFX silencing. Interestingly, overexpression of B4GALT1 restored the growth and conferred drug resistance to ZFX-silenced cells. Taken together, we have demonstrated that ZFX is aberrantly expressed in multiple human leukemic cells and it modulates the growth and drug response of leukemic cells partially via B4GALT1, which suggests that ZFX is a new regulator of leukemic cells and warrants intensive investigations on this 'stemness' regulator in these deadly diseases.
Collapse
Affiliation(s)
- Jie Wu
- Cyrus Tang Hematology Center , Soochow University, Suzhou 215123, China
| | - Lun Xiao
- Cyrus Tang Hematology Center , Soochow University, Suzhou 215123, China
| | - Haixia Zhou
- The First Affiliated Hospital, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Soochow University, Suzhou 215006, China
| | - Hong Liu
- The First Affiliated Hospital, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Soochow University, Suzhou 215006, China
| | - Yue Ge
- Cyrus Tang Hematology Center , Soochow University, Suzhou 215123, China
| | - Jing Yang
- Shanghai Center for Bioinformation Technology, Shanghai 200235, China
| | - Yuanyuan Li
- Shanghai Center for Bioinformation Technology, Shanghai 200235, China
| | - Depei Wu
- The First Affiliated Hospital, Jiangsu Institute of Hematology, Key Laboratory of Thrombosis and Hemostasis, Soochow University, Suzhou 215006, China
- The Collaborative Innovation Center of Hematology , Soochow University, Suzhou 215006, China
| | - Yun Zhao
- Cyrus Tang Hematology Center , Soochow University, Suzhou 215123, China
- The Collaborative Innovation Center of Hematology , Soochow University, Suzhou 215006, China
| | - Xiuyan Zhang
- Cyrus Tang Hematology Center , Soochow University, Suzhou 215123, China
- The Collaborative Innovation Center of Hematology , Soochow University, Suzhou 215006, China
| |
Collapse
|
40
|
SALL4 promotes gastric cancer progression through activating CD44 expression. Oncogenesis 2016; 5:e268. [PMID: 27819668 PMCID: PMC5141291 DOI: 10.1038/oncsis.2016.69] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/30/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022] Open
Abstract
The stem cell factor SALL4 (Sal-like protein 4) plays important roles in the development and progression of cancer. SALL4 is critically involved in tumour growth, metastasis and therapy resistance. However, the underlying mechanisms responsible for the oncogenic roles of SALL4 have not been well characterized. In this study, we demonstrated that SALL4 knockdown by short hairpin RNA greatly inhibited the proliferation, migration and invasion of gastric cancer cells. We further confirmed the inhibitory effects of SALL4 knockdown on gastric cancer cells by using a tetracycline-inducible system. Mechanistically, SALL4 knockdown downregulated the expression of CD44. The results of luciferase assay and chromatin immunoprecipitation study showed that SALL4 bound to CD44 promoter region and transcriptionally activated CD44. The results of rescue study revealed that CD44 overexpression antagonized SALL4 knockdown-mediated inhibition of gastric cancer cell proliferation, migration, and invasion in vitro and gastric cancer growth in vivo. Collectively, our findings indicate that SALL4 promotes gastric cancer progression through directly activating CD44 expression, which suggests a novel mechanism for the oncogenic roles of SALL4 in gastric cancer and represents a new target for gastric cancer therapy.
Collapse
|
41
|
Hes1 promotes cell proliferation and migration by activating Bmi-1 and PTEN/Akt/GSK3β pathway in human colon cancer. Oncotarget 2016; 6:38667-80. [PMID: 26452029 PMCID: PMC4770728 DOI: 10.18632/oncotarget.5484] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/25/2015] [Indexed: 12/11/2022] Open
Abstract
Hes1 is a transcription factor that influences cell proliferation and differentiation. However, the effect of Hes1 on invasiveness and the underlying mechanism remain unknown. In the current study, we found that Hes1 suppressed cell apoptosis, promoted cell growth, induced EMT phenotype and cytoskeleton reconstruction, and enhanced the metastatic potential of colon cancer cells in vitro and in vivo. Furthermore, we indicated that Bmi-1 mediated Hes1-induced cell proliferation and migration, downregulated PTEN and activated the Akt/GSK3β pathway, consequently induced EMT and cytoskeleton reconstruction, ultimately leading to enhanced invasiveness of cancer cells. In addition, we also found that both Hes1 and Bmi-1 could directly regulate PTEN by associating at the PTEN locus, and played important roles in regulating PTEN/Akt/GSK3β pathway. Our results provide functional and mechanistic links between Hes1 and Bmi-1/PTEN/Akt/GSK3β signaling in the development and progression of colon cancer.
Collapse
|
42
|
The Progress and Prospects of Putative Biomarkers for Liver Cancer Stem Cells in Hepatocellular Carcinoma. Stem Cells Int 2016; 2016:7614971. [PMID: 27610139 PMCID: PMC5005617 DOI: 10.1155/2016/7614971] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/06/2016] [Accepted: 07/04/2016] [Indexed: 01/30/2023] Open
Abstract
Accumulating evidence suggests that hepatocellular carcinoma (HCC) is organized by liver cancer stem cells (LCSCs), which are a subset of cells with “stem-like” characteristics. Identification of the LCSCs is a fundamental and important problem in HCC research. LCSCs have been investigated by various stem cell biomarkers. There is still lack of consensus regarding the existence of a “global” marker for LCSCs in HCC. In this review article, we summarize the progress and prospects of putative biomarkers for LCSCs in the past decades, which is essential to develop future therapies targeting CSCs and to predict prognosis and curative effect of these therapies.
Collapse
|
43
|
Pirnia A, Parivar K, Hemadi M, Yaghmaei P, Gholami M. Stemness of spermatogonial stem cells encapsulated in alginate hydrogel during cryopreservation. Andrologia 2016; 49. [DOI: 10.1111/and.12650] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2016] [Indexed: 01/15/2023] Open
Affiliation(s)
- A. Pirnia
- Department of Biology; Science and Research Branch; Islamic Azad University; Tehran Iran
| | - K. Parivar
- Department of Biology; Science and Research Branch; Islamic Azad University; Tehran Iran
| | - M. Hemadi
- Fertility and Infertility Research Center; Ahvaz Jundishapur University of Medical Sciences; Ahvaz Iran
| | - P. Yaghmaei
- Department of Biology; Science and Research Branch; Islamic Azad University; Tehran Iran
| | - M. Gholami
- Razi Herbal Medicine Research center and department of Anatomical sciences; Lorestan University of Medical Sciences; Khorramabad Iran
| |
Collapse
|
44
|
Dirican E, Akkiprik M. Functional and clinical significance of SALL4 in breast cancer. Tumour Biol 2016; 37:11701-11709. [DOI: 10.1007/s13277-016-5150-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022] Open
|
45
|
Kavianpour M, Ahmadzadeh A, Shahrabi S, Saki N. Significance of oncogenes and tumor suppressor genes in AML prognosis. Tumour Biol 2016; 37:10041-52. [DOI: 10.1007/s13277-016-5067-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/05/2016] [Indexed: 12/31/2022] Open
|
46
|
Leukemic survival factor SALL4 contributes to defective DNA damage repair. Oncogene 2016; 35:6087-6095. [PMID: 27132514 PMCID: PMC5093088 DOI: 10.1038/onc.2016.146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 02/25/2016] [Accepted: 03/24/2016] [Indexed: 12/12/2022]
Abstract
SALL4 is aberrantly expressed in human myelodysplastic syndromes (MDS) and acute myeloid leukemia (AML). We have generated a SALL4 transgenic (SALL4B Tg) mouse model with pre-leukemic MDS-like symptoms that transform to AML over time. This makes our mouse model applicable for studying human MDS/AML diseases. Characterization of the leukemic initiation population in this model leads to the discovery that Fancl (Fanconi anemia, complementation group L) is downregulated in SALL4B Tg leukemic and pre-leukemic cells. Similar to the reported Fanconi anemia (FA) mouse model, chromosomal instability with radial changes can be detected in pre-leukemic SALL4B Tg bone marrow (BM) cells after DNA damage challenge. Results from additional studies using DNA damage repair reporter assays support a role of SALL4 in inhibiting the homologous recombination pathway. Intriguingly, unlike the FA mouse model, after DNA damage challenge, SALL4B Tg BM cells can survive and generate hematopoietic colonies. We further elucidated that the mechanism by which SALL4 promotes cell survival is through Bcl2 activation. Overall, our studies demonstrate for the first time that SALL4 has a negative impact in DNA damage repair, and support the model of dual functional properties of SALL4 in leukemogenesis through inhibiting DNA damage repair and promoting cell survival.
Collapse
|
47
|
Yin F, Han X, Yao SK, Wang XL, Yang HC. Importance of SALL4 in the development and prognosis of hepatocellular carcinoma. World J Gastroenterol 2016; 22:2837-2843. [PMID: 26973422 PMCID: PMC4778006 DOI: 10.3748/wjg.v22.i9.2837] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/19/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To detect the expression of sal-like protein 4 (SALL4) and to explore its relationship with clinicopathological characteristics and prognosis of hepatocellular carcinoma (HCC).
METHODS: One hundred and twenty-six samples of HCC tissue, 44 of adjacent noncancerous cirrhotic tissue and 10 of liver hemangioma tissue, were obtained from patients who underwent hepatectomy for HCC at the Fourth Hospital of Hebei Medical University. None of the patients had received any form of treatment before the operation. After resection, all the tissues were fixed in 10% neutral formaldehyde and embedded in paraffin. Expression of SALL4 was detected by immunohistochemistry. Patients were followed up for postoperative survival until February 2014. The relationships between SALL4 expression level and clinicopathological data and prognosis of HCC were analyzed.
RESULTS: SALL4 expression was negative in the 10 samples of tissue from liver hemangioma, was weakly positive in the two samples from adjacent noncancerous cirrhotic tissue, and positive in 58 samples of HCC tissues. The differences were statistically significant (P < 0.05). Expression of SALL4 was higher in patients with higher α-fetoprotein (AFP) levels, portal vein tumor thrombus, and later clinical stage based on the Barcelona Clinic Liver Cancer classification (P < 0.05). Among patients with negative expression, weakly positive expression, positive expression, and strongly positive expression of SALL4, the median survival time was 39, 25, 23, and 9 mo, respectively (P < 0.001). When both AFP and SALL4 were detected, patients who were negative for both AFP and SALL4, SALL4-positive only, AFP-positive only, and positive for both AFP and SALL4, had a median survival time of 41, 38, 31, and 12 mo, respectively (P < 0.001).
CONCLUSION: Expression of SALL4 is relevant to the prognosis of HCC patients. Patients with higher expression levels of SALL4 and AFP have worse prognosis.
Collapse
|
48
|
Tatetsu H, Kong NR, Chong G, Amabile G, Tenen DG, Chai L. SALL4, the missing link between stem cells, development and cancer. Gene 2016; 584:111-9. [PMID: 26892498 DOI: 10.1016/j.gene.2016.02.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 01/01/2023]
Abstract
There is a growing body of evidence supporting that cancer cells share many similarities with embryonic stem cells (ESCs). For example, aggressive cancers and ESCs share a common gene expression signature that includes hundreds of genes. Since ESC genes are not present in most adult tissues, they could be ideal candidate targets for cancer-specific diagnosis and treatment. This is an exciting cancer-targeting model. The major hurdle to test this model is to identify the key factors/pathway(s) within ESCs that are responsible for the cancer phenotype. SALL4 is one of few genes that can establish this link. The first publication of SALL4 is on its mutation in a human inherited disorder with multiple developmental defects. Since then, over 300 papers have been published on various aspects of this gene in stem cells, development, and cancers. This review aims to summarize our current knowledge of SALL4, including a SALL4-based approach to classify and target cancers. Many questions about this important gene still remain unanswered, specifically, on how this gene regulates cell fates at a molecular level. Understanding SALL4's molecular functions will allow development of specific targeted approaches in the future.
Collapse
Affiliation(s)
- Hiro Tatetsu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, New Research Building Room 652D, Boston, MA 02115, USA
| | - Nikki R Kong
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, New Research Building Room 652D, Boston, MA 02115, USA
| | - Gao Chong
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, New Research Building Room 652D, Boston, MA 02115, USA
| | | | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Centre for Translational Medicine (MD6), #12-01, 14 Medical Drive, 117599, Singapore; Harvard Stem Cell Institute, Center for Life Science Room 437, 3 Blackfan Circle Room 437, Boston, MA 02115, USA
| | - Li Chai
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, New Research Building Room 652D, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Gavino C, Hamel N, Zeng JB, Legault C, Guiot MC, Chankowsky J, Lejtenyi D, Lemire M, Alarie I, Dufresne S, Boursiquot JN, McIntosh F, Langelier M, Behr MA, Sheppard DC, Foulkes WD, Vinh DC. Impaired RASGRF1/ERK-mediated GM-CSF response characterizes CARD9 deficiency in French-Canadians. J Allergy Clin Immunol 2015; 137:1178-1188.e7. [PMID: 26521038 DOI: 10.1016/j.jaci.2015.09.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 08/10/2015] [Accepted: 09/04/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Caspase recruitment domain-containing protein 9 (CARD9) deficiency is an autosomal recessive primary immunodeficiency conferring human susceptibility to invasive fungal disease, including spontaneous central nervous system candidiasis (sCNSc). However, clinical characterization of sCNSc is variable, hindering its recognition. Furthermore, an in-depth understanding of the bases for this susceptibility has remained elusive. OBJECTIVES We sought to comprehensively characterize sCNSc and to dissect the mechanisms by which a hypomorphic CARD9 mutation causes susceptibility to Candida species. METHODS We describe the clinical and radiologic findings of sCNSc caused by CARD9 deficiency in a French-Canadian cohort. We performed genetic, cellular, and molecular analyses to further decipher its pathophysiology. RESULTS In our French-Canadian series (n = 4) sCNSc had onset in adulthood (median, 38 years) and was often misinterpreted radiologically as brain malignancies; 1 patient had additional novel features (eg, endophthalmitis and osteomyelitis). CARD9 deficiency resulted from a hypomorphic p.Y91H mutation and allelic imbalance established in this population through founder effects. We demonstrate a consistent cellular phenotype of impaired GM-CSF responses. The ability of CARD9 to complex with B-cell CLL/lymphoma 10 (BCL10) and mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is intact in our series, arguing against its involvement in susceptibility to fungi. Instead, we show that the p.Y91H mutation impairs the ability of CARD9 to complex with Ras protein-specific guanine nucleotide-releasing factor 1 (RASGRF1), leading to impaired activation of nuclear factor κB and extracellular signal-regulated kinase (ERK) in monocytes and subsequent GM-CSF responses. Successful treatment of a second patient with adjunctive GM-CSF bolsters the clinical relevance of these findings. CONCLUSIONS Hypomorphic CARD9 deficiency caused by p.Y91H results in adult-onset disease with variable penetrance and expressivity. Our findings establish the CARD9/RASGRF1/ERK/GM-CSF axis as critical to the pathophysiology of sCNSc.
Collapse
Affiliation(s)
- Christina Gavino
- Infectious Disease Susceptibility Program, McGill University Health Centre (MUHC) and Research Institute-MUHC (RI-MUHC), Montreal, Quebec, Canada
| | - Nancy Hamel
- Department of Medical Genetics, RI-MUHC, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Ji Bin Zeng
- Infectious Disease Susceptibility Program, McGill University Health Centre (MUHC) and Research Institute-MUHC (RI-MUHC), Montreal, Quebec, Canada
| | | | | | | | | | - Martine Lemire
- Division of Allergy & Clinical Immunology, MUHC, Montreal, Quebec, Canada
| | - Isabelle Alarie
- Department of Microbiology and Infectious Diseases, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Simon Dufresne
- Department of Microbiology and Infectious Diseases, Hôpital Maisonneuve-Rosemont, Montreal, Quebec, Canada
| | - Jean-Nicolas Boursiquot
- Department of Clinical Immunology and Allergy, Centre Hospitalier Universitaire de Québec, Quebec City, Quebec, Canada
| | - Fiona McIntosh
- McGill International TB Centre, RI-MUHC, Montreal, Quebec, Canada
| | - Mélanie Langelier
- Infectious Disease Susceptibility Program, McGill University Health Centre (MUHC) and Research Institute-MUHC (RI-MUHC), Montreal, Quebec, Canada
| | - Marcel A Behr
- McGill International TB Centre, RI-MUHC, Montreal, Quebec, Canada; Departments of Microbiology and Immunology and Medicine, McGill University, Montreal, Quebec, Canada
| | - Donald C Sheppard
- Departments of Microbiology and Immunology and Medicine, McGill University, Montreal, Quebec, Canada
| | - William D Foulkes
- Department of Medical Genetics, RI-MUHC, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Donald C Vinh
- Infectious Disease Susceptibility Program, McGill University Health Centre (MUHC) and Research Institute-MUHC (RI-MUHC), Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
50
|
Gautam AK, Wang C, Zeng J, Wang J, Lu J, Wei J, Huang G, Mo B, Luo M, Mo B. Expression and clinical significance of SALL4 and LGR5 in patients with lung cancer. Oncol Lett 2015; 10:3629-3634. [PMID: 26788181 DOI: 10.3892/ol.2015.3772] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 09/04/2015] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is the most frequent cancer worldwide, in terms of incidence and mortality. Due to challenges in the diagnosis of the disease, the 5-year overall survival rate is only ~16%. Previous studies have suggested that malignant transformations originate from adult stem cells, and malignant lesions may therefore express stem-cell-associated markers. The purpose of the present study is to investigate the expression and clinical significance of the stem cell-associated markers Sal-like protein 4 (SALL4) and leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) in lung cancer, and to provide novel diagnostic markers and targets for the treatment of lung cancer. The expression of the stem cell-associated markers SALL4 and LGR5 was analyzed by immunohistochemistry performed on 135 human lung cancer tissue specimens and 10 non-cancer lung tissue specimens. The clinical significance of the expression of these markers and correlation between their expression and clinical parameters was also assessed. SALL4 expression was highly upregulated in lung cancer tissues, but was not present in non-cancerous lung tissues, and the sensitivity and specificity of SALL4 reached 88% and 100%, respectively. By contrast, LGR5 demonstrated 97% sensitivity, but the specificity was poor. Therefore, SALL4 may be an extremely useful diagnostic marker for lung cancer, but LGR5 is not as useful.
Collapse
Affiliation(s)
- Ajay Kumar Gautam
- Division of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Changming Wang
- Division of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Jinrong Zeng
- Division of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Jiying Wang
- Division of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Jingyan Lu
- Division of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Jianghong Wei
- Division of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Guojin Huang
- Division of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Bifan Mo
- Division of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Miao Luo
- Division of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Biwen Mo
- Division of Respiratory Diseases, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|