1
|
Moulinet T, Moussu A, Pierson L, Pagliuca S. The many facets of immune-mediated thrombocytopenia: Principles of immunobiology and immunotherapy. Blood Rev 2024; 63:101141. [PMID: 37980261 DOI: 10.1016/j.blre.2023.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/08/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune condition, due to peripheral platelet destruction through antibody-dependent cellular phagocytosis, complement-dependent cytotoxicity, cytotoxic T lymphocyte-mediated cytotoxicity, and megakaryopoiesis alteration. This condition may be idiopathic or triggered by drugs, vaccines, infections, cancers, autoimmune disorders and systemic diseases. Recent advances in our understanding of ITP immunobiology support the idea that other forms of thrombocytopenia, for instance, occurring after immunotherapy or cellular therapies, may share a common pathophysiology with possible therapeutic implications. If a decent pipeline of old and new agents is currently deployed for classical ITP, in other more complex immune-mediated thrombocytopenic disorders, clinical management is less harmonized and would deserve further prospective investigations. Here, we seek to provide a fresh overview of pathophysiology and current therapeutical algorithms for adult patients affected by this disorder with specific insights into poorly codified scenarios, including refractory ITP and post-immunotherapy/cellular therapy immune-mediated thrombocytopenia.
Collapse
Affiliation(s)
- Thomas Moulinet
- Department of Internal Medicine and Clinical Immunology, Regional Competence Center for Rare and Systemic Auto-Immunes Diseases and Auto-Immune cytopenias, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France; UMR 7365, IMoPA, Lorraine University, CNRS, Nancy, France
| | - Anthony Moussu
- Department of Internal Medicine and Clinical Immunology, Regional Competence Center for Rare and Systemic Auto-Immunes Diseases and Auto-Immune cytopenias, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Ludovic Pierson
- Department of Internal Medicine and Clinical Immunology, Regional Competence Center for Rare and Systemic Auto-Immunes Diseases and Auto-Immune cytopenias, Nancy University Hospital, Lorraine University, Vandoeuvre-lès-Nancy, France
| | - Simona Pagliuca
- UMR 7365, IMoPA, Lorraine University, CNRS, Nancy, France; Department of Hematology, Regional Competence Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria, Nancy University Hospital, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
2
|
Petito E, Gresele P. Immune attack on megakaryocytes in immune thrombocytopenia. Res Pract Thromb Haemost 2024; 8:102345. [PMID: 38525349 PMCID: PMC10960061 DOI: 10.1016/j.rpth.2024.102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/26/2024] Open
Abstract
A State of the Art lecture titled "Immune Attack on Megakaryocytes in ITP: The Role of Megakaryocyte Impairment" was presented at the International Society on Thrombosis and Haemostasis Congress in 2023. Immune thrombocytopenia (ITP) is an acquired autoimmune disorder caused by autoantibodies against platelet surface glycoproteins that provoke increased clearance of circulating platelets, leading to reduced platelet number. However, there is also evidence of a direct effect of antiplatelet autoantibodies on bone marrow megakaryocytes. Indeed, immunologic cells responsible for autoantibody production reside in the bone marrow; megakaryocytes progressively express during their maturation the same glycoproteins against which ITP autoantibodies are directed, and platelet autoantibodies have been detected in the bone marrow of patients with ITP. In vitro studies using ITP sera or monoclonal antibodies against platelet and megakaryocyte surface glycoproteins have shown an impairment of many steps of megakaryopoiesis and thrombopoiesis, such as megakaryocyte differentiation and maturation, migration from the osteoblastic to the vascular niche, adhesion to extracellular matrix proteins, and proplatelet formation, resulting in impaired and ectopic platelet production in the bone marrow and diminished platelet release in the bloodstream. Moreover, cytotoxic T cells may target bone marrow megakaryocytes, resulting in megakaryocyte destruction. Altogether, these findings suggest that antiplatelet autoantibodies and cellular immunity against bone marrow megakaryocytes may significantly contribute to thrombocytopenia in some patients with ITP. Finally, we summarize relevant new data on this topic presented during the 2023 International Society on Thrombosis and Haemostasis Congress. The complete unraveling of the mechanisms of immune attack-induced impairment of megakaryopoiesis and thrombopoiesis may open the way to new therapeutic approaches.
Collapse
Affiliation(s)
- Eleonora Petito
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paolo Gresele
- Section of Internal and Cardiovascular Medicine, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
3
|
Cines DB. Pathogenesis of refractory ITP: Overview. Br J Haematol 2023; 203:10-16. [PMID: 37735546 PMCID: PMC10539016 DOI: 10.1111/bjh.19083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/09/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023]
Abstract
A subset of individuals with 'primary' or 'idiopathic' immune thrombocytopenia (ITP) who fail to respond to conventional first- and second-line agents or who lose responsiveness are considered to have 'refractory' disease (rITP), placing them at increased risk of bleeding and complications of intensive treatment. However, the criteria used to define the refractory state vary among studies, which complicates research and clinical investigation. Moreover, it is unclear whether rITP is simply 'more severe' ITP, or if there are specific pathogenic pathways that are more likely to result in refractory disease, and whether the presence or development of rITP can be established or anticipated based on these differences. This paper reviews potential biological features that may be associated with rITP, including genetic and epigenetic risk factors, dysregulation of T cells and cytokine networks, antibody affinity and specificity, activation of complement, impaired platelet production and alterations in platelet viability and clearance. These findings indicate the need for longitudinal studies using novel clinically available methodologies to identify and monitor pathogenic T cells, platelet antibodies and other clues to the development of refractory disease.
Collapse
Affiliation(s)
- Douglas B Cines
- Department of Pathology and Laboratory Medicine, Perelman-University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Medicine, Perelman-University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
4
|
Xie D, Feng Z, Yang W, Wang Y, Li R, Zhang S, Zhou Z. A mAb to SIRPα downregulates the priming of naive CD4 + T cell in Primary immune thrombocytopenia. Cell Immunol 2023; 391-392:104757. [PMID: 37660478 DOI: 10.1016/j.cellimm.2023.104757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023]
Abstract
SIRPα is a transmembrane protein that binds the protein tyrosine phosphatases SHP-1 and SHP-2 through its cytoplasmic region and is abundantly expressed on monocytes, dendritic cells, and macrophages. Studies recently showed that SIRPα is essential for priming of CD4 + T cells by DCs and for development of Th17 cell-mediated autoimmune diseases. We have now further evaluated the importance of SIRPα and that of its ligand CD47 in primary immune thrombocytopenia (ITP). In this study, we show that there was a low expression state of SIRPα on the surface of monocytes. Treatment of cells culture from ITP patients with a mAb to SIRPα that blocks the binding of SIRPα to CD47 downregulated the ITP response. The abilities of monocytes from ITP patients to stimulate an allogenic MLR were reduced. The proliferation of, and production of IL-2, by CD4 + T cells from ITP patients were inhibited, the Treg cell numbers and the production of IL-10 pairs were upregulated, and the production of TGF-β not was inhibited, by a mAb to SIRPα. Moreover, a mAb to SIRPα, the expression of HLA-DR and CD86 were markedly inhibited and the expression of CD80 was slightly upregulated, on the surface of CD14 + monocytes from ITP patients as compared with healthy subjects. However, blockade of SIRPα increased the secretion of TLR-dependent cytokines TNF-α, IL-6 and IL-1β by PBMCs, which may be considered as a reserve in response to danger signals. These results suggest that SIRPα on monocytes is essential for the priming of naive T cells and the development of ITP. Therefore, SIRPα is a potential therapeutic target for ITP and other autoimmune diseases.
Collapse
Affiliation(s)
- Dongmei Xie
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Zhihui Feng
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Wen Yang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Yacan Wang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Renxia Li
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Shiqi Zhang
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China
| | - Zeping Zhou
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University, Yunnan, China.
| |
Collapse
|
5
|
Strati P, Li X, Deng Q, Marques-Piubelli ML, Henderson J, Watson G, Deaton L, Cain T, Yang H, Ravanmehr V, Fayad LE, Iyer SP, Nastoupil LJ, Hagemeister FB, Parra ER, Saini N, Takahashi K, Fowler NH, Westin JR, Steiner RE, Nair R, Flowers CR, Wang L, Ahmed S, Al-Atrash G, Vega F, Neelapu SS, Green MR. Prolonged cytopenia following CD19 CAR T cell therapy is linked with bone marrow infiltration of clonally expanded IFNγ-expressing CD8 T cells. Cell Rep Med 2023; 4:101158. [PMID: 37586321 PMCID: PMC10439270 DOI: 10.1016/j.xcrm.2023.101158] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Autologous anti-CD19 chimeric antigen receptor T cell (CAR T) therapy is highly effective in relapsed/refractory large B cell lymphoma (rrLBCL) but is associated with toxicities that delay recovery. While the biological mechanisms of cytokine release syndrome and neurotoxicity have been investigated, the pathophysiology is poorly understood for prolonged cytopenia, defined as grade ≥3 cytopenia lasting beyond 30 days after CAR T infusion. We performed single-cell RNA sequencing of bone marrow samples from healthy donors and rrLBCL patients with or without prolonged cytopenia and identified significantly increased frequencies of clonally expanded CX3CR1hi cytotoxic T cells, expressing high interferon (IFN)-γ and cytokine signaling gene sets, associated with prolonged cytopenia. In line with this, we found that hematopoietic stem cells from these patients expressed IFN-γ response signatures. IFN-γ deregulates hematopoietic stem cell self-renewal and differentiation and can be targeted with thrombopoietin agonists or IFN-γ-neutralizing antibodies, highlighting a potential mechanism-based approach for the treatment of CAR T-associated prolonged cytopenia.
Collapse
Affiliation(s)
- Paolo Strati
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xubin Li
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qing Deng
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mario L Marques-Piubelli
- Department Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jared Henderson
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Grace Watson
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Laurel Deaton
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Taylor Cain
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Haopeng Yang
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vida Ravanmehr
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luis E Fayad
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Swaminathan P Iyer
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Loretta J Nastoupil
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frederick B Hagemeister
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin R Parra
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neeraj Saini
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Koichi Takahashi
- Department Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nathan H Fowler
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason R Westin
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Raphael E Steiner
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ranjit Nair
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher R Flowers
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sairah Ahmed
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gheath Al-Atrash
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sattva S Neelapu
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Michael R Green
- Department of Lymphoma & Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Xiao Z, Murakhovskaya I. Rituximab resistance in ITP and beyond. Front Immunol 2023; 14:1215216. [PMID: 37575230 PMCID: PMC10422042 DOI: 10.3389/fimmu.2023.1215216] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
The pathophysiology of immune thrombocytopenia (ITP) is complex and encompasses innate and adaptive immune responses, as well as megakaryocyte dysfunction. Rituximab is administered in relapsed cases and has the added benefit of inducing treatment-free remission in over 50% of patients. Nevertheless, the responses to this therapy are not long-lasting, and resistance development is frequent. B cells, T cells, and plasma cells play a role in developing resistance. To overcome this resistance, targeting these pathways through splenectomy and novel therapies that target FcγR pathway, FcRn, complement, B cells, plasma cells, and T cells can be useful. This review will summarize the pathogenetic mechanisms implicated in rituximab resistance and examine the potential therapeutic interventions to overcome it. This review will explore the efficacy of established therapies, as well as novel therapeutic approaches and agents currently in development.
Collapse
Affiliation(s)
| | - Irina Murakhovskaya
- Division of Hematology, Department of Hematology-Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| |
Collapse
|
7
|
Rivière E, Thiébaut R, Lazaro E, Guy A, James C, Mansier O, Blanco P, Viallard JF. Assessment of circulating blood lymphocytes in adult patients on rituximab to treat immune thrombocytopenia: Circulating number of NK cells is associated with the response at 6 months. Br J Haematol 2023. [PMID: 37081607 DOI: 10.1111/bjh.18818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/19/2023] [Accepted: 04/09/2023] [Indexed: 04/22/2023]
Abstract
Immune thrombocytopenia (ITP) is defined by a low platelet count that can trigger potentially life-threatening haemorrhages. Three-quarters of adult patients exhibit persistent or chronic disease and require second-line treatments. Among these, rituximab, an anti-CD20 antibody, has yielded valuable results, with global responses in 60% of patients at 6 months and complete responses in 30% at 5 years. Factors predictive of response to ITP therapy would help physicians choose optimal treatments. We retrospectively analysed clinical courses, biological markers and blood lymphocyte subset numbers of 72 patients on rituximab to treat persistent/chronic ITP followed-up in our department between 2007 and 2021, divided into three groups according to the platelet count at 6 months: complete, partial or no response. Among all studied parameters, a low number of CD3- CD16+ CD56+ circulating NK cells was associated with the complete response to rituximab. We also found that, after rituximab therapy, complete responders exhibited increased NK and decreased activated CD8+ T cell percentages. These results emphasize that the role played by NK cells in ITP remains incompletely known but that factors predictive of response to rituximab can be easily derived using blood lymphocyte subset data.
Collapse
Affiliation(s)
- Etienne Rivière
- Internal Medicine and Infectious Diseases Unit, Haut-Leveque Hospital, University Hospital Centre of Bordeaux, Pessac, France
- INSERM U1034, Bordeaux University, Pessac Cedex, France
| | - Rodolphe Thiébaut
- Department of Public Health, University of Bordeaux, INSERM U1219 Bordeaux Population Health Research Centre, Inria SISTM, UMR 1219, Bordeaux, France
- Department of Medical Information, University Hospital Centre of Bordeaux, Bordeaux, France
| | - Estibaliz Lazaro
- Internal Medicine and Infectious Diseases Unit, Haut-Leveque Hospital, University Hospital Centre of Bordeaux, Pessac, France
- UMR CNRS 5164, ImmunoconcEpT & FHU ACRONIM, Bordeaux University, Bordeaux, France
| | - Alexandre Guy
- INSERM U1034, Bordeaux University, Pessac Cedex, France
- Laboratory of Hematology, Haut-Leveque Hospital, University Hospital Centre of Bordeaux, Pessac, France
| | - Chloé James
- INSERM U1034, Bordeaux University, Pessac Cedex, France
- Laboratory of Hematology, Haut-Leveque Hospital, University Hospital Centre of Bordeaux, Pessac, France
| | - Olivier Mansier
- INSERM U1034, Bordeaux University, Pessac Cedex, France
- Laboratory of Hematology, Haut-Leveque Hospital, University Hospital Centre of Bordeaux, Pessac, France
| | - Patrick Blanco
- Internal Medicine and Infectious Diseases Unit, Haut-Leveque Hospital, University Hospital Centre of Bordeaux, Pessac, France
- UMR CNRS 5164, ImmunoconcEpT & FHU ACRONIM, Bordeaux University, Bordeaux, France
| | - Jean-François Viallard
- Internal Medicine and Infectious Diseases Unit, Haut-Leveque Hospital, University Hospital Centre of Bordeaux, Pessac, France
- INSERM U1034, Bordeaux University, Pessac Cedex, France
| |
Collapse
|
8
|
González-López TJ, Provan D. Sustained Remission Off-Treatment (SROT) of TPO-RAs: The Burgos Ten-Step Eltrombopag Tapering Scheme. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:659. [PMID: 37109617 PMCID: PMC10145072 DOI: 10.3390/medicina59040659] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Background and Objectives: TPO-RAs (romiplostim/eltrombopag/avatrombopag) have broadly demonstrated high efficacy rates (59-88%), durable responses (up to three years) and a satisfactory safety profile in clinical trials. The effect of TPO-RAs is classically considered to be transient because platelet numbers usually dropped rapidly to baseline unless therapy was maintained. However, several groups have reported the possibility of successfully discontinuing TPO-RAs in some patients without further need for concomitant treatments. This concept is usually referred as sustained remission off-treatment (SROT). Materials and Methods: Unfortunately, we still lack predictors of the response to discontinuation even after the numerous biological, clinical and in vitro studies performed to study this phenomenon. The frequency of successful discontinuation is matter of controversy, although a percentage in the range of 25-40% may probably be considered a consensus. Here, we describe all major routine clinical practice studies and reviews that report the current position on this topic and compare them with our own results in Burgos. Results: We report our Burgos ten-step eltrombopag tapering scheme with which we have achieved an elevated percentage rate of success (70.3%) in discontinuing treatment. Conclusions: We hope this protocol may help successfully taper and discontinue TPO-RAs in daily clinical practice.
Collapse
Affiliation(s)
| | - Drew Provan
- Academic Haematology Unit, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2BB, UK;
| |
Collapse
|
9
|
Allegra A, Cicero N, Mirabile G, Giorgianni CM, Gangemi S. Novel Biomarkers for Diagnosis and Monitoring of Immune Thrombocytopenia. Int J Mol Sci 2023; 24:ijms24054438. [PMID: 36901864 PMCID: PMC10003036 DOI: 10.3390/ijms24054438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/12/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Lower-than-normal platelet counts are a hallmark of the acquired autoimmune illness known as immune thrombocytopenia, which can affect both adults and children. Immune thrombocytopenia patients' care has evolved significantly in recent years, but the disease's diagnosis has not, and it is still only clinically achievable with the elimination of other causes of thrombocytopenia. The lack of a valid biomarker or gold-standard diagnostic test, despite ongoing efforts to find one, adds to the high rate of disease misdiagnosis. However, in recent years, several studies have helped to elucidate a number of features of the disease's etiology, highlighting how the platelet loss is not only caused by an increase in peripheral platelet destruction but also involves a number of humoral and cellular immune system effectors. This made it possible to identify the role of immune-activating substances such cytokines and chemokines, complement, non-coding genetic material, the microbiome, and gene mutations. Furthermore, platelet and megakaryocyte immaturity indices have been emphasized as new disease markers, and prognostic signs and responses to particular types of therapy have been suggested. Our review's goal was to compile information from the literature on novel immune thrombocytopenia biomarkers, markers that will help us improve the management of these patients.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98100 Messina, Italy
- Correspondence:
| | - Nicola Cicero
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, 98100 Messina, Italy
| | - Giuseppe Mirabile
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98100 Messina, Italy
| | - Concetto Mario Giorgianni
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences (BIOMORF), University of Messina, 98100 Messina, Italy
| | - Sebastiano Gangemi
- Allergy and Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Messina, 98100 Messina, Italy
| |
Collapse
|
10
|
Liu XG, Hou Y, Hou M. How we treat primary immune thrombocytopenia in adults. J Hematol Oncol 2023; 16:4. [PMID: 36658588 PMCID: PMC9850343 DOI: 10.1186/s13045-023-01401-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Primary immune thrombocytopenia (ITP) is an immune-mediated bleeding disorder characterized by decreased platelet counts and an increased risk of bleeding. Multiple humoral and cellular immune abnormalities result in accelerated platelet destruction and suppressed platelet production in ITP. The diagnosis remains a clinical exclusion of other causes of thrombocytopenia. Treatment is not required except for patients with active bleeding, severe thrombocytopenia, or cases in need of invasive procedures. Corticosteroids, intravenous immunoglobulin, and anti-RhD immunoglobulin are the classical initial treatments for newly diagnosed ITP in adults, but these agents generally cannot induce a long-term response in most patients. Subsequent treatments for patients who fail the initial therapy include thrombopoietic agents, rituximab, fostamatinib, splenectomy, and several older immunosuppressive agents. Other potential therapeutic agents, such as inhibitors of Bruton's tyrosine kinase and neonatal Fc receptor, are currently under clinical evaluation. An optimized treatment strategy should aim at elevating the platelet counts to a safety level with minimal toxicity and improving patient health-related quality of life, and always needs to be tailored to the patients and disease phases. In this review, we address the concepts of adult ITP diagnosis and management and provide a comprehensive overview of current therapeutic strategies under general and specific situations.
Collapse
Affiliation(s)
- Xin-Guang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China. .,Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
11
|
Ammon Shimano K, Noel P. Immunohematologic Disorders. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00062-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
12
|
Yu TS, Wang HY, Zhao YJ, Yu YF, Hou Y, Liu S, Han PP, Ni XF, Ji XB, Peng J, Liu XG, Hou M. Abnormalities of bone marrow B cells and plasma cells in primary immune thrombocytopenia. Blood Adv 2021; 5:4087-4101. [PMID: 34507351 PMCID: PMC8945629 DOI: 10.1182/bloodadvances.2020003860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/27/2021] [Indexed: 12/12/2022] Open
Abstract
Primary immune thrombocytopenia (ITP) is an autoantibody-mediated hemorrhagic disorder in which B cells play an essential role. Previous studies have focused on peripheral blood (PB), but B cells in bone marrow (BM) have not been well characterized. We aimed to explore the profile of B-cell subsets and their cytokine environments in the BM of patients with ITP to further clarify the pathogenesis of the disease. B-cell subpopulations and their cytokine/chemokine receptors were detected by using flow cytometry. Plasma concentrations of cytokines/chemokines were measured by using enzyme-linked immunosorbent assay. Messenger RNA levels of B cell-related transcription factors were determined by using quantitative polymerase chain reaction. Regulatory B cell (Breg) function was assessed by quantifying their inhibitory effects on monocytes and T cells in vitro. Decreased proportions of total B cells, naive B cells, and defective Bregs were observed in patients with ITP compared with healthy controls (HCs), whereas an elevated frequency of long-lived plasma cells was found in BM of autoantibody-positive patients. No statistical difference was observed in plasmablasts or in short-lived plasma cells between patients with ITP and HCs. The immunosuppressive capacity of BM Bregs from patients with ITP was considerably weaker than HCs. An in vivo study using an active ITP murine model revealed that Breg transfusion could significantly alleviate thrombocytopenia. Moreover, overactivation of CXCL13-CXCR5 and BAFF/APRIL systems were found in ITP patient BM. Taken together, B-cell subsets in BM were skewed toward a proinflammatory profile in patients with ITP, suggesting the involvement of dysregulated BM B cells in the development of the disease.
Collapse
Affiliation(s)
- Tian-shu Yu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Hao-yi Wang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Ya-jing Zhao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Ya-fei Yu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Yu Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Shuang Liu
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Pan-pan Han
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Xiao-fei Ni
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Xue-bin Ji
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University; and
| | - Xin-guang Liu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University
- Shandong Provincial Key Laboratory of Immunohematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University; and
- Leading Research Group of Scientific Innovation, Department of Science and Technology of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
13
|
Vrbensky JR, Nazy I, Clare R, Larché M, Arnold DM. T cell-mediated autoimmunity in immune thrombocytopenia. Eur J Haematol 2021; 108:18-27. [PMID: 34487584 DOI: 10.1111/ejh.13705] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/22/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by a low platelet count and an increased risk of bleeding. In addition to anti-platelet autoantibodies, CD8+ T cells have been implicated as a mechanism of platelet destruction. The current evidence for the existence of platelet-specific CD8+ T cells in ITP is inconclusive. The purpose of this review is to summarize the studies that investigated CD8+ T cells in ITP and to review the methods that have been used to detect autoreactive CD8+ T cells in other autoimmune diseases.
Collapse
Affiliation(s)
- John R Vrbensky
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ishac Nazy
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada
| | - Rumi Clare
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Mark Larché
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada
| | - Donald M Arnold
- Department of Medicine, Michael G. DeGroote School of Medicine, McMaster University, Hamilton, ON, Canada.,McMaster Centre for Transfusion Research, McMaster University, Hamilton, ON, Canada.,Canadian Blood Services, Hamilton, ON, Canada
| |
Collapse
|
14
|
Diversity, localization, and (patho)physiology of mature lymphocyte populations in the bone marrow. Blood 2021; 137:3015-3026. [PMID: 33684935 DOI: 10.1182/blood.2020007592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
The bone marrow (BM) is responsible for generating and maintaining lifelong output of blood and immune cells. In addition to its key hematopoietic function, the BM acts as an important lymphoid organ, hosting a large variety of mature lymphocyte populations, including B cells, T cells, natural killer T cells, and innate lymphoid cells. Many of these cell types are thought to visit the BM only transiently, but for others, like plasma cells and memory T cells, the BM provides supportive niches that promote their long-term survival. Interestingly, accumulating evidence points toward an important role for mature lymphocytes in the regulation of hematopoietic stem cells (HSCs) and hematopoiesis in health and disease. In this review, we describe the diversity, migration, localization, and function of mature lymphocyte populations in murine and human BM, focusing on their role in immunity and hematopoiesis. We also address how various BM lymphocyte subsets contribute to the development of aplastic anemia and immune thrombocytopenia, illustrating the complexity of these BM disorders and the underlying similarities and differences in their disease pathophysiology. Finally, we summarize the interactions between mature lymphocytes and BM resident cells in HSC transplantation and graft-versus-host disease. A better understanding of the mechanisms by which mature lymphocyte populations regulate BM function will likely improve future therapies for patients with benign and malignant hematologic disorders.
Collapse
|
15
|
Immune Thrombocytopenia: Recent Advances in Pathogenesis and Treatments. Hemasphere 2021; 5:e574. [PMID: 34095758 PMCID: PMC8171374 DOI: 10.1097/hs9.0000000000000574] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022] Open
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune disease due to both a peripheral destruction of platelets and an inappropriate bone marrow production. Although the primary triggering factors of ITP remain unknown, a loss of immune tolerance-mostly represented by a regulatory T-cell defect-allows T follicular helper cells to stimulate autoreactive splenic B cells that differentiate into antiplatelet antibody-producing plasma cells. Glycoprotein IIb/IIIa is the main target of antiplatelet antibodies leading to platelet phagocytosis by splenic macrophages, through interactions with Fc gamma receptors (FcγRs) and complement receptors. This allows macrophages to activate autoreactive T cells by their antigen-presenting functions. Moreover, the activation of the classical complement pathway participates to platelet opsonization and also to their destruction by complement-dependent cytotoxicity. Platelet destruction is also mediated by a FcγR-independent pathway, involving platelet desialylation that favors their binding to the Ashwell-Morell receptor and their clearance in the liver. Cytotoxic T cells also contribute to ITP pathogenesis by mediating cytotoxicity against megakaryocytes and peripheral platelets. The deficient megakaryopoiesis resulting from both the humoral and the cytotoxic immune responses is sustained by inappropriate levels of thrombopoietin, the major growth factor of megakaryocytes. The better understanding of ITP pathogenesis has provided important therapeutic advances. B cell-targeting therapies and thrombopoietin-receptor agonists (TPO-RAs) have been used for years. New emerging therapeutic strategies that inhibit FcγR signaling, the neonatal Fc receptor or the classical complement pathway, will deeply modify the management of ITP in the near future.
Collapse
|
16
|
Platelet autoantibodies in the bone marrow of patients with immune thrombocytopenia. Blood Adv 2021; 4:2962-2966. [PMID: 32603421 DOI: 10.1182/bloodadvances.2020001846] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
Autoantibodies cause platelet destruction in patients with immune thrombocytopenia (ITP); yet only 50% to 60% of patients have detectable platelet autoantibodies in peripheral blood. We hypothesized that in some ITP patients, platelet autoantibodies are sequestered in the bone marrow where pathological immune reactions target megakaryocytes or newly formed platelets. In this study, we modified the platelet glycoprotein-specific assay to test bone marrow aspiration samples for free platelet autoantibodies or antibodies bound to bone marrow cells in aspirate fluid from patients with ITP (n = 18), patients with nonimmune thrombocytopenia (n = 3), and healthy donors (n = 6). We found that 10 (56%) of 18 patients with ITP had autoantibodies in the bone marrow, including 5 (50%) of 10 with autoantibodies in bone marrow only, and 5 (50%) of 10 with autoantibodies in bone marrow and peripheral blood. In comparison, 6 (33%) of 18 ITP patients had autoantibodies in peripheral blood, most of whom (5 [83%] of 6) also had autoantibodies in bone marrow. Bone marrow autoantibodies were not detected in patients with nonimmune thrombocytopenia or healthy donors; however, peripheral blood autoantibodies were detectable in 1 (33%) of 3 patients with nonimmune thrombocytopenia. The sensitivity of platelet autoantibodies for the diagnosis of ITP increased from 60% (peripheral blood testing) to 72% (peripheral blood and bone marrow testing). Immune reactions limited to the bone marrow may be characteristic of certain subsets of ITP patients.
Collapse
|
17
|
Zhang D, Zhang X, Li H, Xue F, Zhang L, Yang R. Association of FOXP3 gene polymorphisms with chronic immune thrombocytopenia in a Chinese Han population. Int J Lab Hematol 2021; 43:1104-1109. [PMID: 33759370 DOI: 10.1111/ijlh.13525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/21/2021] [Accepted: 03/11/2021] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Forkhead box P3 (Foxp3) is encoded by the human FOXP3, an X-chromosome gene, and is a transcription factor that regulates regulatory T-cell (Treg) development and function. FOXP3 gene polymorphisms have recently been investigated as candidate risk factors in various autoimmune diseases. This study aimed to investigate the possible influence of FOXP3 gene polymorphisms on genetic predisposition to chronic immune thrombocytopenia (ITP). METHODS The study cohort comprised 329 chronic ITP patients and 279 healthy controls, who were genotyped for three polymorphisms in the promoter region of FOXP3 gene, -6054 del/ATT, -3279 A/C, and -924 A/G. RESULTS Of the three polymorphisms identified, the -3279 AA genotype was more frequent in female patients with chronic ITP than in female controls (P = .035, OR 0.434, 95% CI 0.223-0.846), and the -3279 A carrier was shown to be associated with the risk of chronic ITP in female cohort (P = .003, OR 0.610, 95% CI 0.437-0.851). Furthermore, the female patients with chronic ITP had remarkably more frequent haplotype -6054 del/-3279 A/-924 A (P = .027, OR 3.584, 95% CI 1.148-11.186) and less haplotype -6054 del/-3279 C/-924 G (P = .039, OR 0.445, 95% CI 0.204-0.973) in comparison with female healthy controls. Although there were no significant differences in the male cohort, when the combined alleles and haplotypes of the two genders were analyzed, the results obtained were similar to those of females. CONCLUSION According to our data, the -3279 A/C polymorphism of FOXP3 gene may be associated with the susceptibility to chronic ITP in Chinese Han population.
Collapse
Affiliation(s)
- Donglei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xian Zhang
- Department of hematology, Zhongnan hospital of Wuhan University, Wuhan, China
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China.,Tianjin Laboratory of Blood Disease Gene Therapy, Tianjin, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China.,Tianjin Laboratory of Blood Disease Gene Therapy, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China.,Tianjin Laboratory of Blood Disease Gene Therapy, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological disorders, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,CAMS Key Laboratory of Gene Therapy for Blood Diseases, Tianjin, China.,Tianjin Laboratory of Blood Disease Gene Therapy, Tianjin, China
| |
Collapse
|
18
|
Lin X, Xu A, Zhou L, Zhao N, Zhang X, Xu J, Feng S, Zheng C. Imbalance of T Lymphocyte Subsets in Adult Immune Thrombocytopenia. Int J Gen Med 2021; 14:937-947. [PMID: 33776472 PMCID: PMC7989055 DOI: 10.2147/ijgm.s298888] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/08/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Primary immune thrombocytopenia (ITP) is defined as an acquired autoimmune disease characterized by isolated thrombocytopenia. This work is to further clarify the relationship between T cell immune dysfunction and the pathogenesis of ITP. METHODS 37 adult patients with ITP were selected and were classified into newly diagnosed ITP (nITP, n = 13), persistent ITP (pITP, n = 6) and chronic ITP (cITP n = 18). The frequency of cytotoxic T lymphocytes (Tc1, Tc2, and Tc17) and helper T cells (Th1, Th2, and Th17), Tregs, and the expression of chemokine receptors and PD-1 on CD4+ T cells were investigated by flow cytometry. Plasma levels of T cell-related cytokines (IL-2, IL-4, IL-6, IL-10, TNF-α, IFN-γ, IL-17) were measured by cytometric beads array (CBA). RESULTS The percentage of Tc1 in cITP was greatly higher than nITP and healthy controls (p < 0.05, p < 0.01). The percentage of Treg in nITP and cITP groups was remarkably lower than those in healthy control group (p < 0.05, p < 0.001); and according to platelet count analysis (PLT<50x109/L or PLT>50x109/L), Treg cells in ITP group were significantly lower than those in healthy control group (p < 0.001, p < 0.05). The percentage of CD4+CXCR3+ of cITP was significantly higher than healthy controls and nITP (p < 0.01, p < 0.05). The percentage of CD4+CCR6+ in cITP was significantly higher than healthy controls and nITP (p < 0.001, p < 0.05). The expression of PD-1 in cITP patients was higher than healthy control (p < 0.05), but there was no significant difference among nITP, pITP and cITP (p = 0.25). The levels of IL-2, IFN-γ and TNFα in nITP group and cITP group were significantly higher than those in healthy control group (p < 0.01, p < 0.05; p < 0.01, p < 0.05; p < 0.05, p < 0.05), and the level of IL-10 in nITP group was significantly higher than that in pITP group (p < 0.05). CONCLUSION Our results suggest that T lymphocyte immune dysfunction does exist in adult ITP patients and plays an important role in the pathogenesis of ITP.
Collapse
Affiliation(s)
- Xiuxiu Lin
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Anhui Xu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Li Zhou
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Na Zhao
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Xinhui Zhang
- Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei, People’s Republic of China
| | - Jin Xu
- Wannan Medical College, Wuhu, People’s Republic of China
| | - Shanglong Feng
- Department of Hematology, Anhui Provincial Hospital, Anhui Medical University, Hefei, People’s Republic of China
| | - Changcheng Zheng
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People’s Republic of China
| |
Collapse
|
19
|
Chen Y, Hu J, Chen Y. Platelet desialylation and TFH cells-the novel pathway of immune thrombocytopenia. Exp Hematol Oncol 2021; 10:21. [PMID: 33722280 PMCID: PMC7958461 DOI: 10.1186/s40164-021-00214-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/07/2021] [Indexed: 12/15/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by immune-mediated destruction of one's own platelets. The progression of thrombocytopenia involves an imbalance of platelet production and clearance. B cells can induce autoantibodies, and T cells contribute to the pathological progression as well. Some patients with ITP have a poor response to common first-line therapies. Recent studies have shown that a novel Fc-independent platelet clearance pathway is associated with poor prognosis in these patients. By this pathway, desialylated platelets can be cleared by Ashwell-Morell receptor (AMR) on hepatocytes. Research has demonstrated that patients with refractory ITP usually have a high level of desialylation, indicating the important role of sialylation on platelet membrane glycoprotein (GP) in patients with primary immune thrombocytopenia, and neuraminidase 1(NEU1) translocation might be involved in this process. Patients with ITP who are positive for anti-GPIbα antibodies have a poor prognosis, which indicates that anti-GPIbα antibodies are associated with this Fc-independent platelet clearance pathway. Experiments have proven that these antibodies could lead to the desialylation of GPs on platelets. The T follicular helper (TFH) cell level is related to the expression of the anti-GPIbα antibody, which indicates its role in the progression of desialylation. This review will discuss platelet clearance and production, especially the role of the anti-GPIbα antibody and desialylation in the pathophysiology of ITP and therapy for this disease.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Jianda Hu
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China
| | - Yingyu Chen
- Department of Hematology, Fujian Provincial Key Laboratory of Hematology, Fujian Institute of Hematology, Fujian Medical University Union Hospital, No.29 Xinquan Road, 350001, Fuzhou, Fujian, China.
| |
Collapse
|
20
|
Abstract
Platelets, small anucleate cells circulating in the blood, are critical mediators in haemostasis and thrombosis. Interestingly, recent studies demonstrated that platelets contain both pro-inflammatory and anti-inflammatory molecules, equipping platelets with immunoregulatory function in both innate and adaptive immunity. In the context of infectious diseases, platelets are involved in early detection of invading microorganisms and are actively recruited to sites of infection. Platelets exert their effects on microbial pathogens either by direct binding to eliminate or restrict dissemination, or by shaping the subsequent host immune response. Reciprocally, many invading microbial pathogens can directly or indirectly target host platelets, altering platelet count or/and function. In addition, microbial pathogens can impact the host auto- and alloimmune responses to platelet antigens in several immune-mediated diseases, such as immune thrombocytopenia, and fetal and neonatal alloimmune thrombocytopenia. In this review, we discuss the mechanisms that contribute to the bidirectional interactions between platelets and various microbial pathogens, and how these interactions hold relevant implications in the pathogenesis of many infectious diseases. The knowledge obtained from "well-studied" microbes may also help us understand the pathogenesis of emerging microbes, such as SARS-CoV-2 coronavirus.
Collapse
Affiliation(s)
- Conglei Li
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, ON, Canada
| | - June Li
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
| | - Heyu Ni
- Toronto Platelet Immunobiology Group, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Audia S, Mahevas M, Bonnotte B. [Immune thrombocytopenia: From pathogenesis to treatment]. Rev Med Interne 2020; 42:16-24. [PMID: 32741715 DOI: 10.1016/j.revmed.2020.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/29/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022]
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune disease due to an immune peripheral destruction of platelets and an inappropriate platelet production. The pathogenesis of ITP is now better understood: it involves a humoral immune response which dependents on the stimulation of B cells by specific T cells called T follicular helper cells, leading to their differentiation into plasma cells that produce antiplatelet antibodies thus promoting the phagocytosis of platelets mainly by splenic macrophages. The deciphering of ITP pathogenesis has led to a better understanding of the inefficiency of treatments such as rituximab, although it has not provided yet the determination of biological predictive factor of response to treatments. Moreover, new therapeutic perspectives have been opened in the last few years with the development of molecules targeting Fcγ receptor signalling such as Syk inhibitor, or molecules increasing the clearance of pathogenic autoantibodies such as inhibitors of the neonatal Fc receptor (FcRn).
Collapse
Affiliation(s)
- S Audia
- Service de Médecine Interne et Immunologie Clinique, Médecine 1-SOC 1, Hôpital François Mitterrand, Centre de référence des cytopénies auto-immunes de l'adulte, CHU Dijon-Bourgogne, 14 rue Paul Gaffarel, 21079 Dijon, France; Unité RIGHT, INSERM UMR 1098, Équipe "Immunorégulation et immunopathologie", Bâtiment B3, 15 rue Maréchal de Lattre de Tassigny, 21000 Dijon, France.
| | - M Mahevas
- 1 Service de Médecine Interne, Centre National de Référence des Cytopénies Auto-Immunes de l'Adulte, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Université Paris Est Créteil, Créteil, France; IMRB - U955 - Equipe n°2 "Transfusion et maladies du globule rouge" EFS Île-de-France, Hôpital Henri-Mondor, AP-HP, 51, avenue du Maréchal-de-Lattre-de-Tassigny, France
| | - B Bonnotte
- Service de Médecine Interne et Immunologie Clinique, Médecine 1-SOC 1, Hôpital François Mitterrand, Centre de référence des cytopénies auto-immunes de l'adulte, CHU Dijon-Bourgogne, 14 rue Paul Gaffarel, 21079 Dijon, France; Unité RIGHT, INSERM UMR 1098, Équipe "Immunorégulation et immunopathologie", Bâtiment B3, 15 rue Maréchal de Lattre de Tassigny, 21000 Dijon, France
| |
Collapse
|
22
|
Ebbo M, Rivière E, Godeau B. [Adult immune thrombocytopenia and thrombopoietin receptor agonist: Ten years later]. Rev Med Interne 2020; 42:38-45. [PMID: 32712041 DOI: 10.1016/j.revmed.2020.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/22/2020] [Indexed: 12/24/2022]
Abstract
Ten years after their licence in France, the use of the two thrombopoietin receptor agonists (TPO-RA), eltrombopag and romiplostim, has deeply modified the landscape of immune thrombocytopenia (ITP) treatment. In this review, we summarise data on efficacy and safety of these treatments during ITP, as well as their use in clinical practice. Their place in therapeutic strategy, the recent description of persistant remission after discontinuation of TPO-RA, and future new thrombopoietic agents are also discussed. Their use has progressively increased and early use at a newly diagnosed stage of the disease is under evaluation. However physician have to keep in mind that thromboembolism rates appear to be higher with TPO-RA treatment in ITP patients at high risk of thrombosis, and that data from "real-life" studies with very long term follow up are not available. Finally, the cost of these treatments should also be evaluated in future therapeutic strategies comparisons.
Collapse
Affiliation(s)
- M Ebbo
- Département de Médecine Interne, Hôpital de la Timone, AP-HM, Marseille, France; Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille Luminy, Marseille, France
| | - E Rivière
- Université de Bordeaux, Faculté de Médecine, 232 rue Léo Saignat, 33000 Bordeaux, France; CHU de Bordeaux, Service de Médecine Interne et Maladies Infectieuses, Hôpital Haut-Lévêque, 33604 Pessac, France
| | - B Godeau
- Service de médecine interne, Centre de référence des cytopénies autoimmunes de l'adulte, CHU Henri Mondor, APHP, UPEC, 94010 Créteil, France.
| |
Collapse
|
23
|
Rituximab and immune thrombocytopenia in adults: The state of knowledge 20 years later. Rev Med Interne 2020; 42:32-37. [PMID: 32680716 DOI: 10.1016/j.revmed.2020.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/23/2020] [Indexed: 01/19/2023]
Abstract
Rituximab has been used for immune thrombocytopenia (ITP) for almost 20 years and is now considered a valid off-label second-line treatment. About 60% to 70% of patients with ITP show initial response to rituximab, but in half of these patients, the disease will eventually relapse. Therefore, in 30% of patients with persistent or chronic ITP, one course of rituximab at 375 mg/m2/week for 4 weeks or 2 fixed 1000-mg rituximab infusions allows for a sustained response rate at 5 years. Unfortunately, to date, no robust predictor of long-term sustained response has been found to assist the physician in deciding to treat with rituximab on an individual basis, and the choice of rituximab or another second-line treatment must be individualized and shared with the patient. Retreatment with rituximab has been found efficient, with a similar or higher magnitude and duration of response in most patients. Rituximab is usually well tolerated, with mainly mild and easily manageable infusion-related adverse events. Severe infections are uncommon, including in the long-term, and occur in patients with at least another contributing factor in more than two thirds. Several issues remain to be resolved. Indeed, head-to-head comparisons with other and new treatments in ITP and robust predictors of long-term response are urgently needed to better determine the position of rituximab in the therapeutic armamentarium for adult ITP. Additionally, the place of combination therapies, maintenance therapy with rituximab and rituximab in newly-diagnosed ITP deserve additional studies.
Collapse
|
24
|
Zaja F, Carpenedo M, Baratè C, Borchiellini A, Chiurazzi F, Finazzi G, Lucchesi A, Palandri F, Ricco A, Santoro C, Scalzulli P. Tapering and discontinuation of thrombopoietin receptor agonists in immune thrombocytopenia: Real-world recommendations. Blood Rev 2020; 41:100647. [DOI: 10.1016/j.blre.2019.100647] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 01/23/2023]
|
25
|
Idiopathic thrombocytopenic purpura (ITP) - new era for an old disease. ACTA ACUST UNITED AC 2020; 57:273-283. [PMID: 31199777 DOI: 10.2478/rjim-2019-0014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Indexed: 01/19/2023]
Abstract
Immune thrombocytopenia is an autoimmune hematological disorder characterized by severely decreased platelet count of peripheral cause: platelet destruction via antiplatelet antibodies which may also affect marrow megakaryocytes. Patients may present in critical situations, with cutaneous and/or mucous bleeding and possibly life-threatening organ hemorrhages (cerebral, digestive, etc.) Therefore, rapid diagnosis and therapeutic intervention are mandatory. Corticotherapy represents the first treatment option, but as in any autoimmune disorder, there is a high risk of relapse. Second line therapy options include: intravenous immunoglobulins, thrombopoietin receptor agonists, rituximab or immunosuppression, but their benefit is usually temporary. Moreover, the disease generally affects young people who need repeated and prolonged treatment and hospitalization and therefore, it is preferred to choose a long term effect therapy. Splenectomy - removal of the site of platelet destruction - represents an effective and stable treatment, with 70-80% response rate and low complications incidence. A challenging situation is the association of ITP with pregnancy, which further increases the risk due to the immunodeficiency of pregnancy, major dangers of bleeding, vital risks for mother and fetus, potential risks of medication, necessity of prompt intervention in the setting of specific obstetrical situations - delivery, pregnancy loss, obstetrical complications, etc. We present an updated review of the current clinical and laboratory data, as well as a detailed analysis of the available therapeutic options with their benefits and risks, and also particular associations (pregnancy, relapsed and refractory disease, emergency treatment).
Collapse
|
26
|
CD4 + T cell phenotypes in the pathogenesis of immune thrombocytopenia. Cell Immunol 2020; 351:104096. [PMID: 32199587 DOI: 10.1016/j.cellimm.2020.104096] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/03/2020] [Accepted: 03/12/2020] [Indexed: 12/14/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by low platelet counts due to enhanced platelet clearance and compromised production. Traditionally, ITP was regarded a B cell mediated disorder as anti-platelet antibodies are detected in most patients. The very nature of self-antigens, evident processes of isotype switching and the affinity maturation of anti-platelet antibodies indicate that B cells in order to mount anti-platelet immune response require assistance of auto-reactive CD4+ T cells. For a long time, ITP pathogenesis has been exclusively reviewed through the prism of the disturbed balance between Th1 and Th2 subsets of CD4+ T cells, however, more recently new subsets of these cells have been described including Th17, Th9, Th22, T follicular helper and regulatory T cells. In this paper, we review the current understanding of the role and immunological mechanisms by which CD4+ T cells contribute to the pathogenesis of ITP.
Collapse
|
27
|
Hicks SM, Coupland LA, Jahangiri A, Choi PY, Gardiner EE. Novel scientific approaches and future research directions in understanding ITP. Platelets 2020; 31:315-321. [PMID: 32054377 DOI: 10.1080/09537104.2020.1727871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Diagnosis of immune thrombocytopenia (ITP) and prediction of response to therapy remain significant and constant challenges in hematology. In patients who present with ITP, the platelet count is frequently used as a surrogate marker for disease severity, and so often determines the need for therapy. Although there is a clear link between thrombocytopenia and hemostasis, a direct correlation between the extent of thrombocytopenia and bleeding symptoms, especially at lower platelet counts is lacking. Thus, bleeding in ITP is heterogeneous, unpredictable, and nearly always based on a multitude of risk factors, beyond the platelet count. The development of an evidence-based, validated risk stratification model for ITP treatment is a major goal in the ITP community and this review discusses new laboratory approaches to evaluate the various pathobiologies of ITP that may inform such a model.
Collapse
Affiliation(s)
- Sarah M Hicks
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Lucy A Coupland
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,The National Platelet Research and Referral Centre (NPRC), Canberra, Australia
| | - Anila Jahangiri
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Philip Y Choi
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,The National Platelet Research and Referral Centre (NPRC), Canberra, Australia.,Haematology Department, The Canberra Hospital, Canberra, Australia
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,The National Platelet Research and Referral Centre (NPRC), Canberra, Australia
| |
Collapse
|
28
|
Primary Immune Thrombocytopenia: A Translational Research Model for Autoimmune Diseases. J Clin Med 2019; 8:jcm8111971. [PMID: 31739462 PMCID: PMC6912248 DOI: 10.3390/jcm8111971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 12/18/2022] Open
|
29
|
Wang Q, Li J, Yu TS, Liu Y, Li K, Liu S, Liu Y, Feng Q, Zhang L, Li GS, Shao LL, Peng J, Hou M, Liu XG. Disrupted balance of CD4 + T-cell subsets in bone marrow of patients with primary immune thrombocytopenia. Int J Biol Sci 2019; 15:2798-2814. [PMID: 31853219 PMCID: PMC6909963 DOI: 10.7150/ijbs.33779] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 10/05/2019] [Indexed: 12/18/2022] Open
Abstract
Disequilibrium of CD4+ T-cell subpopulations in peripheral blood (PB) of patients with primary immune thrombocytopenia (ITP) has been well established, whereas the profile of CD4+ T-cell subpopulations in bone marrow (BM) remains elusive. In the present study, the frequencies of T helper 22 (Th22), Th17, Th1, Th2, follicular T helper (Tfh) cells and regulatory T cells (Tregs) as well as their effector cytokines in BM and PB from active ITP patients and healthy controls (HCs) were determined. Results showed that the frequencies of Th22, Th17, Th1, and Tfh cells were significantly higher, but Treg number was remarkably lower in BM from ITP patients than from HCs. In the ITP group, it was notable that the numbers of BM Th22, Th17, Th1, Th2, and Tfh cells were significantly elevated compared with the matched PB counterparts, while Treg number in BM was considerably reduced compared with that in PB. In consistence with the BM Th subset pattern, plasma levels of interleukin (IL)-22, IL-17A, and interferon (INF)-γ in BM from ITP patients were significantly increased compared with that from HCs. Therefore, the balance of CD4+ T-cell subsets was disrupted in both BM and PB of ITP patients, suggesting that this might play important roles in the pathophysiological process of ITP.
Collapse
Affiliation(s)
- Qian Wang
- Department of Hematology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, P. R. China.,Department of Clinical Laboratory, Qilu Hospital, Shandong University (Qingdao), 758 Hefei Road, Qingdao, P. R. China
| | - Juan Li
- Department of Clinical Laboratory, Qilu Hospital, Shandong University (Qingdao), 758 Hefei Road, Qingdao, P. R. China
| | - Tian-Shu Yu
- Department of Hematology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, P. R. China
| | - Yu Liu
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, 3501 Daxue Road, Jinan, P. R. China
| | - Kai Li
- Department of Radiotherapy, Zhangqiu People's Hospital, 1920 Huiquan Road, Jinan, P. R. China
| | - Shuang Liu
- Department of Hematology, Taian Central Hospital, Taian, P. R. China
| | - Yang Liu
- Department of Hematology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, P. R. China
| | - Qi Feng
- Department of Hematology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, P. R. China
| | - Lei Zhang
- Department of Orthopedics, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Guo-Sheng Li
- Department of Hematology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, P. R. China
| | - Lin-Lin Shao
- Department of Hematology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, P. R. China
| | - Jun Peng
- Department of Hematology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, P. R. China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, P. R. China.,Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Jinan, China
| | - Xin-Guang Liu
- Department of Hematology, Qilu Hospital, Shandong University, 107 West Wenhua Road, Jinan, P. R. China
| |
Collapse
|
30
|
Lozier JN, Noel P. Immunohematological Disorders. Clin Immunol 2019. [DOI: 10.1016/b978-0-7020-6896-6.00062-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Lucchini E, Fanin R, Cooper N, Zaja F. Management of immune thrombocytopenia in elderly patients. Eur J Intern Med 2018; 58:70-76. [PMID: 30274902 DOI: 10.1016/j.ejim.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/08/2018] [Accepted: 09/10/2018] [Indexed: 02/07/2023]
Abstract
Despite the improvement in understanding its pathogenesis and the introduction of novel treatment options, the management of primary immune thrombocytopenia (ITP) still remains challenging. Considering its increased incidence with aging and prolonged life-expectancy, ITP is often diagnosed in elderly patients, a subset that deserves some special precautions. Ensure the diagnosis is a crucial step, and carefully attention must be given in excluding other causes of thrombocytopenia, especially among older people that frequently suffer from many comorbidities. When it comes to treatment decision, it is worth keeping into account that the elderly have an increased risk of bleeding, thrombosis and infections, that they often require many concomitant therapies, including antiplatelet or anticoagulant agents, and that treatment-related toxicities are often increased and sometimes more dangerous that the disease itself. There are not dedicated guidelines, and only few specific studies. Steroids with or without IVIG remain the first-line treatment. Splenectomy is less effective than in youngers and burdened by an increased thrombotic and infectious risk. Rituximab is a good option in non-immunocompromised patients, but long-term remissions are few. Eltrombopag and romiplostim have a good safety and efficacy profile, and have become a prominent drug in this subset, even if they are associated with a possible increased risk of thrombosis, and long-term toxicity is unknown. Other drugs, such as dapsone and danazol, have a well-known efficacy and safety profile, and still represent a valid option among elderly patients.
Collapse
Affiliation(s)
- Elisa Lucchini
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari "C. Melzi", DAME, Università degli Studi, Udine, Italy.
| | - Renato Fanin
- Clinica Ematologica, Centro Trapianti e Terapie Cellulari "C. Melzi", DAME, Università degli Studi, Udine, Italy
| | | | - Francesco Zaja
- S.C. Ematologia, Azienda Sanitaria Universitaria Integrata, Trieste, Italy
| |
Collapse
|
32
|
Swinkels M, Rijkers M, Voorberg J, Vidarsson G, Leebeek FWG, Jansen AJG. Emerging Concepts in Immune Thrombocytopenia. Front Immunol 2018; 9:880. [PMID: 29760702 PMCID: PMC5937051 DOI: 10.3389/fimmu.2018.00880] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/09/2018] [Indexed: 01/19/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease defined by low platelet counts which presents with an increased bleeding risk. Several genetic risk factors (e.g., polymorphisms in immunity-related genes) predispose to ITP. Autoantibodies and cytotoxic CD8+ T cells (Tc) mediate the anti-platelet response leading to thrombocytopenia. Both effector arms enhance platelet clearance through phagocytosis by splenic macrophages or dendritic cells and by induction of apoptosis. Meanwhile, platelet production is inhibited by CD8+ Tc targeting megakaryocytes in the bone marrow. CD4+ T helper cells are important for B cell differentiation into autoantibody secreting plasma cells. Regulatory Tc are essential to secure immune tolerance, and reduced levels have been implicated in the development of ITP. Both Fcγ-receptor-dependent and -independent pathways are involved in the etiology of ITP. In this review, we present a simplified model for the pathogenesis of ITP, in which exposure of platelet surface antigens and a loss of tolerance are required for development of chronic anti-platelet responses. We also suggest that infections may comprise an important trigger for the development of auto-immunity against platelets in ITP. Post-translational modification of autoantigens has been firmly implicated in the development of autoimmune disorders like rheumatoid arthritis and type 1 diabetes. Based on these findings, we propose that post-translational modifications of platelet antigens may also contribute to the pathogenesis of ITP.
Collapse
Affiliation(s)
- Maurice Swinkels
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Maaike Rijkers
- Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Jan Voorberg
- Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| | - Frank W G Leebeek
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - A J Gerard Jansen
- Department of Hematology, Erasmus University Medical Centre, Rotterdam, Netherlands.,Department of Plasma Proteins, AMC-Sanquin Landsteiner Laboratory, Amsterdam, Netherlands
| |
Collapse
|
33
|
Zhang J, Zhang Q, Li Y, Tao L, Wu F, Shen Y, Tao Q, Xu X, Wu C, Ruan Y, Wang J, Wang J, Wang Y, Zhai Z. Immune dysregulation in primary immune thrombocytopenia patients. ACTA ACUST UNITED AC 2018; 23:510-516. [PMID: 29409398 DOI: 10.1080/10245332.2018.1435021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To explore the immunological abnormalities in patients with primary immune thrombocytopenia (ITP), and analyze its relationship with treatment. METHODS Proportion of different immune cell subsets were detected in the peripheral blood of 124 ITP patients at different time points and 45 normal controls by flow cytometry. The treatments included glucocorticoids, intravenous IgG as first-line treatment and second-line drugs. RESULTS Elevated CD4/CD8 ratio and decreased the proportion of NK and CD4 + CD25 + CD127low regulatory T cells (Tregs) were found in pre-treated ITP patients than healthy controls. The newly diagnosed group had a significantly higher CD4/CD8 ratio than the relapsed group, but no differences in the proportion of B cells, NK cells and Tregs. No relationships were found between the curative effect and the pre-treated cell subsets within both the effective and ineffective groups. Furthermore, compared with the ineffective group, the effective group had higher Tregs and lower CD4/CD8 ratio post-treatment, but no significant differences in NK and B cells. CONCLUSION ITP patients presented with a high CD4/CD8 ratio and low levels of Tregs and NK cells, suggesting that immune deregulation was involved in the pathogenesis of ITP. The pre-treated immune status of ITP patients may not be related to the curative effect. Tregs significantly increased in the effective group post-treatment, highlighting that the mechanism of restoring Tregs may be involved in the treatment of ITP. However, whether or not the targeted regulation of Tregs is an effective treatment for ITP still requires further studies.
Collapse
Affiliation(s)
- Jiakui Zhang
- a Department of Hematology, Hematological Research Center , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , People's Republic of China
| | - Qiuye Zhang
- a Department of Hematology, Hematological Research Center , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , People's Republic of China
| | - Yingwei Li
- a Department of Hematology, Hematological Research Center , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , People's Republic of China
| | - Lili Tao
- a Department of Hematology, Hematological Research Center , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , People's Republic of China
| | - Fan Wu
- a Department of Hematology, Hematological Research Center , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , People's Republic of China
| | - Yuanyuan Shen
- a Department of Hematology, Hematological Research Center , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , People's Republic of China
| | - Qianshan Tao
- a Department of Hematology, Hematological Research Center , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , People's Republic of China
| | - Xuanxuan Xu
- a Department of Hematology, Hematological Research Center , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , People's Republic of China
| | - Can Wu
- a Department of Hematology, Hematological Research Center , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , People's Republic of China
| | - Yanjie Ruan
- a Department of Hematology, Hematological Research Center , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , People's Republic of China
| | - Jiyu Wang
- a Department of Hematology, Hematological Research Center , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , People's Republic of China
| | - Jeffrey Wang
- b Centre for Transplant and Renal Research , Westmead Institute for Medical Research at University of Sydney , Sydney , New South Wales , Australia
| | - Yiping Wang
- b Centre for Transplant and Renal Research , Westmead Institute for Medical Research at University of Sydney , Sydney , New South Wales , Australia
| | - Zhimin Zhai
- a Department of Hematology, Hematological Research Center , The Second Affiliated Hospital of Anhui Medical University , Hefei , Anhui , People's Republic of China
| |
Collapse
|
34
|
Lee M, Lee Y, Song J, Lee J, Chang SY. Tissue-specific Role of CX 3CR1 Expressing Immune Cells and Their Relationships with Human Disease. Immune Netw 2018; 18:e5. [PMID: 29503738 PMCID: PMC5833124 DOI: 10.4110/in.2018.18.e5] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/31/2017] [Accepted: 01/01/2018] [Indexed: 02/07/2023] Open
Abstract
Chemokine (C-X3-C motif) ligand 1 (CX3CL1, also known as fractalkine) and its receptor chemokine (C-X3-C motif) receptor 1 (CX3CR1) are widely expressed in immune cells and non-immune cells throughout organisms. However, their expression is mostly cell type-specific in each tissue. CX3CR1 expression can be found in monocytes, macrophages, dendritic cells, T cells, and natural killer (NK) cells. Interaction between CX3CL1 and CX3CR1 can mediate chemotaxis of immune cells according to concentration gradient of ligands. CX3CR1 expressing immune cells have a main role in either pro-inflammatory or anti-inflammatory response depending on environmental condition. In a given tissue such as bone marrow, brain, lung, liver, gut, and cancer, CX3CR1 expressing cells can maintain tissue homeostasis. Under pathologic conditions, however, CX3CR1 expressing cells can play a critical role in disease pathogenesis. Here, we discuss recent progresses of CX3CL1/CX3CR1 in major tissues and their relationships with human diseases.
Collapse
Affiliation(s)
- Myoungsoo Lee
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 16499, Korea.,Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea
| | - Yongsung Lee
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 16499, Korea
| | - Jihye Song
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 16499, Korea
| | - Junhyung Lee
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 16499, Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon 16499, Korea.,Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon 16499, Korea
| |
Collapse
|
35
|
Nookaew I, Wadenvik H, Olsson B, Jernås M. Differential expression of T-cell genes in blood and bone marrow between ITP patients and controls. Thromb Haemost 2017; 109:112-7. [DOI: 10.1160/th12-07-0468] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/25/2012] [Indexed: 11/05/2022]
Abstract
SummaryPrimary immune thrombocytopenia (ITP) is an autoimmune disease characterised by premature platelet destruction in spleen, liver and bone marrow and a diminished production of platelets. T-cells are important in all forms of autoimmunity including ITP; however, very little is known about T-cells in organs where platelets are destroyed. Our aim was to investigate differences in gene expression in peripheral blood-derived T-cells and bone marrow-derived T-cells between ITP patients and controls. T-cells and subsequent RNA were isolated from blood and bone marrow from chronic ITP patients and healthy controls followed by DNA microarray analysis. There were 1554 differentially expressed genes in peripheral blood-derived T-cells and 976 in bone marrow-derived T-cells between ITP patients and controls and three genes were verified with real-time PCR. Using Gene Ontology functional enrichment analysis we found that genes involved in growth, development, migration, chemotaxis, adhesion and apoptosis were enriched in bone marrow-derived T-cells in ITP. Immune-related genes involved in T-helper cell differentiation, T-cell chemotaxis, migration, immunoglobulin-mediated immune response and classical and alternative pathway complement activation were also enriched in bone marrow-derived T-cells in ITP. Only 213 T-cell genes were differentially expressed in both blood and bone marrow between ITP patients and controls. In conclusion, our findings show that genes involved in major pathophysiologic pathways in ITP such as T-helper cell differentiation, autoantibody response and complement activation are altered in bone marrow-derived T-cells in ITP patients compared with controls. This further supports the concept that bone marrow is an important compartment in ITP.
Collapse
|
36
|
Behzad MM, Asnafi AA, Jaseb K, Jalali Far MA, Saki N. Expression of CD markers' in immune thrombocytopenic purpura: prognostic approaches. APMIS 2017; 125:1042-1055. [PMID: 28960510 DOI: 10.1111/apm.12755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 07/28/2017] [Indexed: 01/19/2023]
Abstract
Immune Thrombocytopenic Purpura (ITP) is a common autoimmune bleeding disorder characterized by a reduction in peripheral blood platelet counts. In this disease, autoantibodies (Auto-Abs) are produced against platelet GPIIb/GPIIIa by B cells, which require interaction with T cells. In this review, the importance of B and T lymphocytes in ITP prognosis has been studied. Relevant literature was identified by a PubMed search (1990-2016) of English-language papers using the terms B and T lymphocyte, platelet, CD markers and immune thrombocytopenic purpura. T and B lymphocytes are the main immune cells in the body. Defective function causes disrupted balance of different subgroups of lymphocytes, and abnormal expression of surface markers of these cells results in self-tolerance dysfunction, as well as induction of Auto-Abs against platelet glycoproteins (PG). Given the role of B and T cells in production of autoantibodies against PG, it can be stated that the detection of changes in CD markers' expression in these cells can be a good approach for assessing prognosis in ITP patients.
Collapse
Affiliation(s)
- Masumeh Maleki Behzad
- Research Center of Thalassemia & Hemoglobinopathy, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amin Asnafi
- Research Center of Thalassemia & Hemoglobinopathy, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Kaveh Jaseb
- Research Center of Thalassemia & Hemoglobinopathy, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Ali Jalali Far
- Research Center of Thalassemia & Hemoglobinopathy, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Research Center of Thalassemia & Hemoglobinopathy, Health research institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
37
|
Platelets: Pathophysiological Relevance and Therapeutic Potential. Indian J Hematol Blood Transfus 2017; 33:151-152. [DOI: 10.1007/s12288-017-0823-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 11/25/2022] Open
|
38
|
Audia S, Mahévas M, Samson M, Godeau B, Bonnotte B. Pathogenesis of immune thrombocytopenia. Autoimmun Rev 2017; 16:620-632. [DOI: 10.1016/j.autrev.2017.04.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 03/17/2017] [Indexed: 01/19/2023]
|
39
|
Lambert MP, Gernsheimer TB. Clinical updates in adult immune thrombocytopenia. Blood 2017; 129:2829-2835. [PMID: 28416506 PMCID: PMC5813736 DOI: 10.1182/blood-2017-03-754119] [Citation(s) in RCA: 259] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022] Open
Abstract
Immune thrombocytopenia (ITP) occurs in 2 to 4/100 000 adults and results in variable bleeding symptoms and thrombocytopenia. In the last decade, changes in our understanding of the pathophysiology of the disorder have led to the publication of new guidelines for the diagnosis and management of ITP and standards for terminology. Current evidence supports alternatives to splenectomy for second-line management of patients with persistently low platelet counts and bleeding. Long-term follow-up data suggest both efficacy and safety, in particular, for the thrombopoietin receptor agonists and the occurrence of late remissions. Follow-up of patients who have undergone splenectomy for ITP reveals significant potential risks that should be discussed with patients and may influence clinician and patient choice of second-line therapy. Novel therapeutics are in development to address ongoing treatment gaps.
Collapse
MESH Headings
- Adult
- Female
- Hemorrhage/blood
- Hemorrhage/diagnosis
- Hemorrhage/physiopathology
- Hemorrhage/therapy
- Humans
- Male
- Platelet Count
- Practice Guidelines as Topic
- Purpura, Thrombocytopenic, Idiopathic/blood
- Purpura, Thrombocytopenic, Idiopathic/diagnosis
- Purpura, Thrombocytopenic, Idiopathic/physiopathology
- Purpura, Thrombocytopenic, Idiopathic/therapy
- Receptors, Thrombopoietin/agonists
- Receptors, Thrombopoietin/metabolism
- Splenectomy
Collapse
Affiliation(s)
- Michele P Lambert
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA; and
| | - Terry B Gernsheimer
- Division of Hematology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
40
|
Joo EJ, Chang Y, Yeom JS, Lee YG, Ryu S. Hepatitis B infection is associated with an increased incidence of thrombocytopenia in healthy adults without cirrhosis. J Viral Hepat 2017; 24:253-258. [PMID: 27860000 DOI: 10.1111/jvh.12642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
The association between HBV infection and incident thrombocytopenia among subjects without cirrhosis or splenomegaly is unknown. Therefore, we sought to elucidate the association between HBV infection and the development of thrombocytopenia in a large cohort of apparently healthy men and women. A cohort study was performed in 122 200 participants without liver cirrhosis or splenomegaly who underwent comprehensive health examinations and were followed until December 2014. HBV infection was defined by the presence of hepatitis B surface antigen (HBsAg) at baseline. Thrombocytopenia was defined as a platelet count <150 000/μL. Cox proportional hazard models were used to estimate adjusted hazard ratios with 95% confidence intervals (CIs) for incident thrombocytopenia. HBsAg was positive in 4857 of 122 200 subjects (4.0%) at baseline. During 883 983 person-years of follow-up, 2037 incident cases of thrombocytopenia were identified (incident rate 2.3 per 1000 person-years). HBsAg-positive subjects had a higher incidence of thrombocytopenia than did healthy controls (11.2 vs 1.9 per 1000 person-years, respectively). The multivariate-adjusted hazard ratio (95% CI) for incident thrombocytopenia comparing HBsAg-positive to HBsAg-negative subjects was 5.71 (5.10-6.38). Strong associations between HBsAg positivity and thrombocytopenia were consistently observed across prespecified subgroups. In this large cohort study of an apparently healthy population, HBsAg positivity was strongly and independently associated with incident thrombocytopenia, indicating that mechanisms of thrombocytopenia other than portal hypertension may exist in healthy HBV carriers.
Collapse
Affiliation(s)
- E-J Joo
- Division of Infectious Diseases, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Y Chang
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Centre for Cohort Studies, Total Healthcare Centre, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - J-S Yeom
- Division of Infectious Diseases, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Y-G Lee
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - S Ryu
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Centre for Cohort Studies, Total Healthcare Centre, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, South Korea
| |
Collapse
|
41
|
Zufferey A, Kapur R, Semple JW. Pathogenesis and Therapeutic Mechanisms in Immune Thrombocytopenia (ITP). J Clin Med 2017; 6:jcm6020016. [PMID: 28208757 PMCID: PMC5332920 DOI: 10.3390/jcm6020016] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/04/2017] [Indexed: 01/19/2023] Open
Abstract
Immune thrombocytopenia (ITP) is a complex autoimmune disease characterized by low platelet counts. The pathogenesis of ITP remains unclear although both antibody-mediated and/or T cell-mediated platelet destruction are key processes. In addition, impairment of T cells, cytokine imbalances, and the contribution of the bone marrow niche have now been recognized to be important. Treatment strategies are aimed at the restoration of platelet counts compatible with adequate hemostasis rather than achieving physiological platelet counts. The first line treatments focus on the inhibition of autoantibody production and platelet degradation, whereas second-line treatments include immunosuppressive drugs, such as Rituximab, and splenectomy. Finally, third-line treatments aim to stimulate platelet production by megakaryocytes. This review discusses the pathophysiology of ITP and how the different treatment modalities affect the pathogenic mechanisms.
Collapse
Affiliation(s)
- Anne Zufferey
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
- The Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
| | - Rick Kapur
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
- The Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
- Canadian Blood Services, Toronto, ON M5B 1W8, Canada.
| | - John W Semple
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
- The Toronto Platelet Immunobiology Group, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
- Canadian Blood Services, Toronto, ON M5B 1W8, Canada.
- Department of Pharmacology, Medicine, and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5B 1W8, Canada.
- Division of Hematology and Transfusion Medicine, Lund University, 221 84 Lund, Sweden.
| |
Collapse
|
42
|
Zhang J, Ruan Y, Shen Y, Tao Q, Wang H, Tao L, Pan Y, Fang H, Wang Y, Zhai Z. Low dose IL-2 increase regulatory T cells and elevate platelets in a patient with immune thrombocytopenia. CYTOMETRY PART B-CLINICAL CYTOMETRY 2016; 94:400-404. [PMID: 27862977 DOI: 10.1002/cyto.b.21494] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/13/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disorder in which its immune system destroys platelets and leads to haemorrhage symptom. Recent studies have found that regulatory T cells (Tregs) in peripheral blood, bone marrow, and spleen were reduced in ITP patients and recovered after effective ITP therapy. Low-dose Interleukin-2 (IL-2) has been reported recently to increase Tregs and used to treat autoimmune disease including graft-versus-host disease (GVHD) after organ transplantation and HCV-related autoimmune vasculitis. However, it is unknown whether IL-2 is able to treat ITP. We have used low-dose IL-2 (1.0 million IU/day) on 5 consecutive days per week for 4 weeks in a 36-year-old patient with ITP. The result has shown that low-dose IL-2 induces expansion of Tregs significantly and increase platelet count was gradually from 36 × 109 /L to maximum 85 × 109 /L. No side effects of IL-2 have been found. This result suggested that low-dose of IL-2 may have therapeutic potential for ITP. © 2016 International Clinical Cytometry Society.
Collapse
Affiliation(s)
- Jiakui Zhang
- Department of Hematology, Hamatological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People's Republic of China
| | - Yanjie Ruan
- Department of Hematology, Hamatological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People's Republic of China
| | - Yuanyuan Shen
- Department of Hematology, Hamatological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People's Republic of China
| | - Qianshan Tao
- Department of Hematology, Hamatological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People's Republic of China
| | - Huiping Wang
- Department of Hematology, Hamatological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People's Republic of China
| | - Lili Tao
- Department of Hematology, Hamatological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People's Republic of China
| | - Yin Pan
- Department of Hematology, Hamatological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People's Republic of China
| | - Huizi Fang
- Department of Hematology, Hamatological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People's Republic of China
| | - Yiping Wang
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research at University of Sydney, Sydney, Australia
| | - Zhimin Zhai
- Department of Hematology, Hamatological Research Center, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People's Republic of China
| |
Collapse
|
43
|
Liu W, Li H, Hao Y, Li Y, Lv M, Xue F, Liu X, Zhang L, Yang R. Decreased immunosuppressive actions of 1α, 25-dihydroxyvitamin D 3 in patients with immune thrombocytopenia. Mol Immunol 2016; 78:89-97. [PMID: 27614264 DOI: 10.1016/j.molimm.2016.08.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 01/16/2023]
Abstract
Primary immune thrombocytopenia (ITP) is an acquired autoimmune disease. 1α, 25-dihydroxyvitamin D3 [1,25(OH)2D3] and vitamin D receptor (VDR) play important immune-suppressive roles in immune system. It has been reported that serum 1,25(OH)2D3 were lower in ITP patients. In this study, we evaluated local 1,25(OH)2D3 level and VDR mRNA expression further, and determined whether 1,25(OH)2D3/VDR were correlated with T cell dysfunction in ITP patients. We found that 1,25(OH)2D3/VDR levels were decreased in active ITP patients, and 1,25(OH)2D3 had significant anti-inflammatory effects on ITP patients, including both anti-proliferation of peripheral blood mononuclear cells (PBMCs) and reversing the abnormal T cells polarization. 1,25(OH)2D3 inhibited the differentiation of T helper (Th)1 and Tc1 cells but induced the differentiation of Th2, Tc2 and T regulatory (Treg) cells in ITP patients. However, the percentage of Th17 cells were not affected obviously with 1,25(OH)2D3. In addition, 1,25(OH)2D3 also suppressed pro-inflammatory cytokines (INF-γ and IL-17A) but promoted anti-inflammatory cytokine (IL-10) secretion in ITP patients. In conclusion, decreased 1,25(OH)2D3/VDR might participate in the pathogenesis of ITP, and appropriate supplement of 1,25(OH)2D3 may be a promising treatment.
Collapse
Affiliation(s)
- Wenjie Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China; Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China.
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yating Hao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yang Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mingen Lv
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| |
Collapse
|
44
|
Sand K, Theorell J, Bruserud Ø, Bryceson YT, Kittang AO. Reduced potency of cytotoxic T lymphocytes from patients with high-risk myelodysplastic syndromes. Cancer Immunol Immunother 2016; 65:1135-47. [PMID: 27481108 PMCID: PMC11029614 DOI: 10.1007/s00262-016-1865-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 07/01/2016] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Myelodysplastic syndromes (MDS) are a group of clonal bone marrow disorders, with dysplasia, cytopenias and increased risk of progression to acute myeloid leukemia. A dysregulated immune system precipitates MDS, and to gain insights into the relevance of cytotoxic T lymphocyte (CTL) in this process, we examined the frequency and function of CX3CR1- and CD57-positive T lymphocytes from MDS patients. MATERIALS AND METHODS Peripheral blood and/or bone marrow samples from 31 MDS patients and 12 healthy controls were examined by flow cytometry. Expression of cytotoxic granule constituents, immunological co-receptors, adhesion molecules and markers of activation were quantified on unstimulated lymphocytes. Degranulation, cytotoxicity and conjugate formation with target cells following co-culture of CTL with target cell lines or autologous bone marrow-derived CD34(+) cells were quantified by flow cytometry. RESULTS CX3CR1 expression was increased in bone marrow from high-risk MDS patients compared to healthy controls. Expression of CD57 and CX3CR1 was closely correlated, identifying a CTL subset with high cytotoxic capacity. In vitro, TCR-induced redirected cytotoxicity was markedly decreased for high-risk MDS patients compared to controls. CTL from MDS patients with the lowest target cell cytotoxicity had reduced expression of adhesion molecules and formed fewer conjugates with target cells. DISCUSSION Although phenotypically defined CTL numbers were increased in the bone marrow of MDS patients, we found that CTL from high-risk MDS patients exhibited a lower TCR-induced redirected cytotoxic capacity. Thus, decreased T cell cytotoxicity seems related to reduced adhesion to target cells and may contribute to impaired anti-leukemic immune surveillance in MDS.
Collapse
Affiliation(s)
- Kristoffer Sand
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Jakob Theorell
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Øystein Bruserud
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway
| | - Yenan T Bryceson
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Astrid Olsnes Kittang
- Department of Clinical Science, University of Bergen, Bergen, Norway.
- Division for Hematology, Department of Medicine, Haukeland University Hospital, Jonas Lies vei 65, 5021, Bergen, Norway.
| |
Collapse
|
45
|
Song Y, Wang YT, Huang XJ, Kong Y. Abnormalities of the bone marrow immune microenvironment in patients with immune thrombocytopenia. Ann Hematol 2016; 95:959-65. [PMID: 26994009 DOI: 10.1007/s00277-016-2641-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/09/2016] [Indexed: 11/28/2022]
Abstract
Immune thrombocytopenia (ITP) is an acquired autoimmune disease. Although antiplatelet antibodies are considered as the primary immunologic defect in these patients, dysfunctional cellular immunity is also important in the pathophysiology of ITP. Peripheral T cell abnormalities have been demonstrated in patients with ITP; however, whether the impaired bone marrow (BM) microenvironment, specifically the BM immune microenvironment, is involved in the pathogenesis of ITP remains unknown. In this study, the compartments of the BM immune microenvironment and BM vascular microenvironment were analyzed in 26 untreated patients with ITP and 26 healthy donors (HD). Subsets of T cells in the BM immune microenvironment, including Th1, Th2, Tc1, Tc2, Th17, and Treg cells, were analyzed via flow cytometry. BM endothelial cells and perivascular cells, which are key elements of the vascular microenvironment, were analyzed via flow cytometry as well as hematoxylin-eosin (H&E) and immunohistochemical (IHC) staining in situ. Elements of the BM vascular microenvironment were found to be normal in patients with ITP, but abnormal characteristics of the BM immune microenvironment, including excessive polarization in Th1, Tc1, and Th17 cells and a remarkable decrease in Treg cells, were observed in patients with ITP. Therefore, a deregulated T cell response in the BM microenvironment might play an important role in the pathogenesis of ITP.
Collapse
Affiliation(s)
- Yang Song
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu-Tong Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuan Kong
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Collaborative Innovation Center of Hematology, Peking University, Beijing, 100044, China.
| |
Collapse
|
46
|
Saeidi S, Mohammadi-Asl J, Far MAJ, Asnafi AA, Dehuri F, Tavakolifar Y, Saki N. Is There a Relationship Between CXCR4 Gene Expression and Prognosis of Immune Thrombocytopenia in Children? Indian J Hematol Blood Transfus 2016; 33:216-221. [PMID: 28596654 DOI: 10.1007/s12288-016-0648-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 01/15/2016] [Indexed: 12/23/2022] Open
Abstract
Immune thrombocytopenia (ITP) is a common autoimmune disorder characterized by decreased platelet count (thrombocytopenia) and bleeding symptoms due to production of autoantibodies against platelets. Chemokines are molecules inducing chemotaxis and play an important role in megakaryopoiesis, including CXCR4 chemokine receptor. CXCR4 is expressed on cells of megakaryocytic series, especially platelets, and triggers several mechanisms in these cells. The purpose of this study was to evaluate the pattern of CXCR4 gene changes upon diagnosis and after treatment and its comparison with laboratory findings in peripheral blood samples from newly diagnosed ITP patients. 35 newly diagnosed patients with ITP and 35 healthy controls were enrolled in this study. CXCR4 gene expression was investigated before and after treatment using real-time PCR. HPRT gene was used as the reference gene to calculate the expression rate of CXCR4 as CXCR4/HPRT ratio. CXCR4 gene expression upon diagnosis and after treatment in peripheral blood plasma of ITP patients showed a significant decrease in comparison with the control group while its expression did not change before and after treatment. No significant correlation was found between the expression of this gene and laboratory parameters. Due to unpredictable course of ITP in patients and the possibility of its progress to refractory form, accurate choice of a biomarker is essential for evaluating prognosis and detection of resistant forms.
Collapse
Affiliation(s)
- Sajedeh Saeidi
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Javad Mohammadi-Asl
- Department of Medical Genetics, Ahvaz Jundishapur University of Medical Sciences, 61357- 15794 Ahvaz, Iran
| | - Mohammad Ali Jalali Far
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Amin Asnafi
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Firouzeh Dehuri
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Yousef Tavakolifar
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Health Research Institute, Thalassemia and Hemoglobinopathy Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
47
|
Consolini R, Legitimo A, Caparello MC. The Centenary of Immune Thrombocytopenia - Part 1: Revising Nomenclature and Pathogenesis. Front Pediatr 2016; 4:102. [PMID: 27807534 PMCID: PMC5069646 DOI: 10.3389/fped.2016.00102] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/07/2016] [Indexed: 12/24/2022] Open
Abstract
The natural history of the immune thrombocytopenia (ITP) is interesting and intriguing because it traces different steps underlying autoimmune diseases. The review points out the main steps that have accompanied the stages of its history and the consequential changes related to its terminology. ITP is an autoimmune disease resulting from platelet antibody-mediated destruction and impaired megakaryocyte and platelet production. However, research advances highlight that a complex dysregulation of the immune system is involved in the pathogenesis of this condition. The review examines the role of the multiple immune components involved in the autoimmunity process, focusing on the more recent mechanisms, which could be new promising therapeutic targets for ITP patients.
Collapse
Affiliation(s)
- Rita Consolini
- Laboratory of Immunology, Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa , Pisa , Italy
| | - Annalisa Legitimo
- Laboratory of Immunology, Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa , Pisa , Italy
| | - Maria Costanza Caparello
- Laboratory of Immunology, Department of Clinical and Experimental Medicine, Division of Pediatrics, University of Pisa , Pisa , Italy
| |
Collapse
|
48
|
Zhang XH, Wang GX, Zhu HH, Liu YR, Xu LP, Han W, Chen H, Chen YH, Wang FR, Wang JZ, Wang Y, Zhao T, Chen Y, Feng R, Fu HX, Wang M, Zhou Y, Lv M, Liu KY, Huang XJ. Recruitment of CD8(+) T cells into bone marrow might explain the suppression of megakaryocyte apoptosis through high expression of CX3CR1(+) in prolonged isolated thrombocytopenia after allogeneic hematopoietic stem cell transplantation. Ann Hematol 2015; 94:1689-98. [PMID: 26141368 DOI: 10.1007/s00277-015-2436-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/21/2015] [Indexed: 12/27/2022]
Abstract
Prolonged isolated thrombocytopenia is a common complication after allogeneic hematopoietic stem cell transplantation (allo-HSCT), which is associated with a poor prognosis. This study aimed to investigate the pathogenesis of prolonged isolated thrombocytopenia (PT). We analysed the expression of CX3CR1 on CD4 and CD8 T cells in bone marrow (BM) and peripheral blood (PB) at +90 days from allo-HSCT recipients with or without PT by flow cytometry analyses. We then determined the megakaryocytes ploidy distributions, apoptosis rate and Fas expression of recipients with or without PT in vitro directly or after depleting CD8(+) T cells or adding purified autologous CD8(+) T cells to CD8(+) T-dep MNCs. We found that the percentage of CD8(+) T cells in BM was higher in the patients with PT than in the controls. The elevated expression of the CX3CR1 was associated with PT. There was a marked increase in the percentage of low ploidy megakaryocytes in the recipients with PT. The depletion of CD8(+) T cells increased the apoptosis of megakaryocytes and decreased the expression of Fas, which could be corrected by re-adding purified autologous CD8(+) T cells. The increase of CD8(+) T cells and CD8(+)/CX3CR1(+) T cells in BM at +90 days were independent risk factors for PT according to multivariate analysis. Our data implied that the recruitment of CD8(+) T cells into BM might explain the suppression of megakaryocyte apoptosis through the elevated expression of CX3CR1(+) in PT after allo-HSCT. CX3CR1 might be a novel treatment target in recipients with PT.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, 100044, China,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bakchoul T, Sachs UJ. Platelet destruction in immune thrombocytopenia. Understanding the mechanisms. Hamostaseologie 2015; 36:187-94. [PMID: 25982994 DOI: 10.5482/hamo-14-09-0043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 05/04/2015] [Indexed: 01/19/2023] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder characterized by isolated thrombocytopenia. A dysfunctional proliferation of autoreactive T cells is suggested to be responsible for the loss of tolerance to self-platelet antigens in ITP patients. Autoreactive T cells induce uncontrolled proliferation of autoantibody producing B cells leading to persistent anti-platelet autoimmunity in some ITP patients. The autoimmune response causes an increased destruction of platelets by antibody-mediated phagocytosis, complement activation but also by T cell mediated cytotoxicity. In addition, abnormalities in thrombopoiesis and insufficient platelet production due to antibody or T cell mediated megakaryocyte inhibition and destruction contribute to the pathophysiology of ITP. These various effector cell responses may account for the heterogeneity in the clinical manifestation of ITP and also, to success or failure of different treatment strategies. A better understanding of the mechanisms behind ITP will hopefully allow for better diagnostic and, particularly, therapeutic strategies in the future.
Collapse
Affiliation(s)
- Tamam Bakchoul
- Prof. Dr. med. Tamam Bakchoul, Institute for Immunology and Transfusion Medicine, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany, Tel. +49/(0)38 34/86 54 58, Fax +49/(0)38 34/86 54 89, E-mail:
| | | |
Collapse
|
50
|
Jernås M, Hou Y, Strömberg Célind F, Shao L, Wang Q, Ju X, Mellgren K, Wadenvik H, Hou M, Olsson B. Altered cytokine levels in pediatric ITP. Platelets 2015; 26:589-92. [PMID: 25806433 DOI: 10.3109/09537104.2014.974526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease where platelets are destroyed prematurely. In the majority of children, the disease resolves, but in some, it becomes chronic. Cytokines are important mediators of the immune response and are known to be dysregulated in autoimmune diseases. Therefore, our aim was to investigate differences in plasma levels of cytokines between children with ITP and healthy controls. We had two cohorts of children: one Swedish with 18 children with ITP and seven healthy children and a second Chinese one with 58 children with ITP and 30 healthy children. Plasma levels of chemokine (C-X3-C motif) ligand 1 (CX3CL1), transforming growth factor β1 (TGF-β1), and interleukin 22 (IL-22) were analyzed in both cohorts using enzyme-linked immunosorbent assays (ELISAs). We found lower plasma levels of TGF-β1 and elevated levels of CX3CL1 and IL-22 in children with ITP compared with controls in both the Swedish and the Chinese cohort. In conclusion, all three cytokines differ between pediatric ITP and healthy controls and may, therefore, be potential biomarkers for the disease.
Collapse
Affiliation(s)
- Margareta Jernås
- Department of Internal Medicine, University of Gothenburg , Gothenburg , Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|