1
|
Liang Y, Chang J, Gao Y, Zhang L, Chen X, Zheng C, Sun Y, Zhang X, Guo C, Zhang Y. Development of a novel prognostic nomogram for AIDS-associated diffuse large B-cell lymphoma: a retrospective study from northern China. Clin Exp Med 2025; 25:62. [PMID: 39964648 PMCID: PMC11835908 DOI: 10.1007/s10238-025-01586-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 02/03/2025] [Indexed: 02/21/2025]
Abstract
Despite advancements in antiretroviral therapy, AIDS-related diffuse large B-cell lymphoma (AR-DLBCL) remains a major cause of morbidity and mortality. Compared to non-HIV-infected individuals, AR-DLBCL presents with considerable disease heterogeneity, which impairs the accuracy of current prognostic tools. This study aims to develop a novel prognostic model to enhance risk assessment for AR-DLBCL. We retrospectively analyzed 90 AR-DLBCL cases using univariate and multivariate analyses to identify clinical factors affecting overall survival (OS) and progression-free survival (PFS). A nomogram was created based on independent OS risk factors. The cohort had a median age of 43 years (range: 22-75), with 96.5% male patients. The median follow-up was 30 months (range: 1-139), with 5-year OS and PFS rates of 60.7% and 58.7%, respectively. Key prognostic factors for OS included decreased absolute lymphocyte count (p = 0.002), extranodal involvement (p = 0.005), reduced hemoglobin (Hb) levels (p = 0.004), Epstein-Barr virus (EBV) infection (p = 0.005), and elevated lactate dehydrogenase (LDH) levels (p = 0.018). The nomogram demonstrated robust predictive performance, with a 5-year receiver operating characteristic curve area under the curve of 0.949. Its C-index of 0.849 surpassed the International Prognostic Index (IPI) and age-adjusted IPI (aaIPI), which had C-index of 0.708 and 0.693, respectively. Additionally, the nomogram identified significant OS differences among low risk, intermediate-low risk, intermediate-high risk, and high-risk groups, with 5-year survival rates of 100%, 88%, 56%, and 8%, respectively. The model offers a personalized risk assessment for AR-DLBCL patients, facilitating precise prognosis prediction and informing individualized treatment strategies.
Collapse
Affiliation(s)
- Ying Liang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Jing Chang
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuxue Gao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xue Chen
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Caopei Zheng
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Sun
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Xiuqun Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Caiping Guo
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Yulin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Youan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Iguh C, Kim J, Akaraonye A, Minja A, Qing X. An Unusual Case of Extracavitary/Solid Variant Primary Effusion Lymphoma With Associated Hemophagocytic Lymphohistiocytosis. J Med Cases 2025; 16:48-54. [PMID: 39935539 PMCID: PMC11809604 DOI: 10.14740/jmc5084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 02/13/2025] Open
Abstract
Primary effusion lymphoma (PEL) is a rare, aggressive large B-cell lymphoma variant that is invariably associated with human herpesvirus 8 (HHV8), predominantly in human immunodeficiency virus (HIV)-infected patients, and its oncogenicity is often augmented by coinfection with Epstein-Barr virus. It typically presents as a serous effusion in body cavities without detectable solid tumors. The extracavitary variant of PEL may represent a diagnostic challenge. A 37-year-old man with HIV/acquired immunodeficiency syndrome (AIDS) was transferred to our hospital for evaluation of a mediastinal mass with associated clinically diagnosed hemophagocytic lymphohistiocytosis (HLH), fever, pancytopenia, hepatosplenomegaly, retroperitoneal lymphadenopathy, and wasting syndrome. Contrast-enhanced computed tomography showed a large soft tissue mass extending along the middle/posterior mediastinum into the left hilum and a large left pleural effusion. Endoscopic fine-needle biopsy of the lesion showed sheets of large pleomorphic lymphoma cells with prominent nucleoli and abundant cytoplasm. These cells were also seen on the cytospin smear of pleural fluid. Immunohistochemical stains showed lymphoma cells positive for CD3 (small subset), CD45, CD138, MUM-1, and HHV8 and negative for CD5, CD20, CD30, ALK1, AE1/3, and PAX-5. The lymphoma cells were also positive for Epstein-Barr virus-encoded RNA (EBER) (in situ hybridization). Solid masses in extracavitary PEL have been shown to involve lymph nodes and/or solid organs such as the gastrointestinal tract, lung, liver, spleen, and skin, with a similar phenotype as classic PEL except that they may express B-cell markers with lower expression of CD45 and/or aberrant coexpression of T-cell antigens. This case illustrates the unusual manifestation of PEL as a mediastinal mass with associated HLH.
Collapse
Affiliation(s)
- Chika Iguh
- Department of Pathology and Laboratory Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Julie Kim
- Department of Pathology and Laboratory Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Akudo Akaraonye
- Department of Pathology and Laboratory Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Amani Minja
- Department of Pathology and Laboratory Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Xin Qing
- Department of Pathology and Laboratory Medicine, Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| |
Collapse
|
3
|
Jiang J, Zhu X, Li S, Yan Q, Ma J. Building a Bridge Between the Mechanism of EBV Reactivation and the Treatment of EBV-Associated Cancers. J Med Virol 2025; 97:e70192. [PMID: 39868897 DOI: 10.1002/jmv.70192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/15/2024] [Accepted: 01/13/2025] [Indexed: 01/28/2025]
Abstract
Epstein-Barr virus (EBV) infection is closely associated with the development of various tumors such as lymphomas and epithelial cancers. EBV has a discrete life cycle with latency and lytic phases. In recent years, significant progress has been made in the understanding of the mechanism underlying the transition of EBV from latency to lytic replication. Multiple new lytic activation factors have been emerged and promoted our understanding of this field. In addition, we have comprehensively presented the existing therapeutic strategies and their relationship to the mechanism underlying the transition of EBV from latency to lytic replication in this review, such as lytic induction therapy and drugs to prevent EBV from entering the lytic phase fully utilize the EBV reactivation mechanisms. This year marks the 60th anniversary of the discovery of EBV, and building a bridge between the mechanism of EBV reactivation and the treatment may help us to design new approaches for treating EBV-associated diseases.
Collapse
Affiliation(s)
- Jialin Jiang
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, and Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Xinlei Zhu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, and Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Shukun Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, and Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
- Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, and Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| |
Collapse
|
4
|
Hybel TE, Sørensen EF, Enemark MH, Hemmingsen JK, Simonsen AT, Lauridsen KL, Møller MB, Pedersen C, Pedersen G, Obel N, Larsen CS, d'Amore F, Hamilton-Dutoit S, Stougaard M, Vase MØ, Ludvigsen M. Characterization of the genomic landscape of HIV-associated lymphoma reveals heterogeneity across histological subtypes. AIDS 2024; 38:1897-1906. [PMID: 39178160 DOI: 10.1097/qad.0000000000003996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/18/2024] [Indexed: 08/25/2024]
Abstract
OBJECTIVE Individuals with HIV experience an increased risk of lymphoma, making this an important cause of death among people with HIV. Nevertheless, little is known regarding the underlying genetic aberrations, which we therefore set out to characterize. DESIGN We conducted next-generation panel sequencing to explore the mutational status of diagnostic lymphoma biopsies from 18 patients diagnosed with lymphoma secondary to HIV infection. METHODS Ion Torrent next-generation sequencing was performed with an AmpliSeq panel on diagnostic lymphoma biopsies from HIV-associated B-cell lymphomas ( n = 18), comprising diffuse large B-cell lymphoma ( n = 9), classic Hodgkin lymphoma ( n = 6), Burkitt lymphoma ( n = 2), follicular lymphoma ( n = 1), and marginal zone lymphoma ( n = 1). The panel comprised 69 lymphoid and/or myeloid-relevant genes, in which either the entire coding sequence or a hotspot region was sequenced. RESULTS Among the 18 lymphomas, we detected 213 variants. The number of detected mutations ranged from 4 to 41 per tumor distributed among 42 genes, including both exonic and intronic regions. The most frequently mutated genes included KMT2D (67%), TNFAIP3 (50%), and TP53 (61%). Notably, no gene was found to harbor variants across all the HIV-associated lymphomas, nor did we find subtype-specific variants. While some variants were shared among patients, most were unique to the individual patient and were often not reported as malignant genetic variants in databases. CONCLUSION Our findings demonstrate genetic heterogeneity across histological subtypes of HIV-associated lymphomas and thus help elucidate the genetics and pathophysiological mechanisms underlying the disease.
Collapse
Affiliation(s)
- Trine Engelbrecht Hybel
- Department of Hematology, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University
| | | | - Marie Hairing Enemark
- Department of Hematology, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University
| | | | | | | | | | - Court Pedersen
- Department of Infectious Diseases, Odense University Hospital, Odense
| | - Gitte Pedersen
- Department of Infectious Diseases, Aalborg University Hospital, Aalborg
| | - Niels Obel
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen
| | | | | | | | - Magnus Stougaard
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | | | - Maja Ludvigsen
- Department of Hematology, Aarhus University Hospital
- Department of Clinical Medicine, Aarhus University
| |
Collapse
|
5
|
S SS, Moorthy S. Double-Hit Diffuse Large B-Cell Lymphoma in AIDS. Cureus 2024; 16:e73190. [PMID: 39651017 PMCID: PMC11624958 DOI: 10.7759/cureus.73190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 12/11/2024] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of immunoblastic lymphoma associated with AIDS, with the stomach being the most frequent extranodal site of involvement. Despite the widespread use of combined antiretroviral therapy (cART), the incidence of systemic lymphomas remains relatively high. These lymphomas often present in the early stages of AIDS as high-grade malignancies. We report the case of a man in his early 30s who initially presented with chronic cough and weight loss, diagnosed with pulmonary tuberculosis and found to be HIV-positive. Within a few months, he returned with persistent abdominal pain and progressive weight loss. Imaging revealed a gastric ulcer, and biopsy confirmed the diagnosis of DLBCL. Although cART is now available and started early upon an HIV diagnosis, vigilant surveillance, early diagnosis, and prompt initiation of chemotherapy are critical for achieving an adequate response and remission.
Collapse
Affiliation(s)
- Subha Sree S
- General Medicine, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| | - Swathy Moorthy
- Internal Medicine, Sri Ramachandra Medical College, Sri Ramachandra Institute of Higher Education and Research, Chennai, IND
| |
Collapse
|
6
|
Fachko DN, Goff B, Chen Y, Skalsky RL. Functional Targets for Epstein-Barr Virus BART MicroRNAs in B Cell Lymphomas. Cancers (Basel) 2024; 16:3537. [PMID: 39456631 PMCID: PMC11506495 DOI: 10.3390/cancers16203537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
MicroRNAs are key post-transcriptional regulators of gene expression and their dysregulation is often linked to cancer. Epstein-Barr virus encodes 22 BamHI A Rightward Transcript (BART) miRNAs, which are expressed in nearly all EBV-associated cancers and implicated in viral pathogenesis. To investigate biological targets for BART miRNAs in B cell lymphomas, we performed a meta-analysis of publicly available Ago-CLIP datasets from EBV-positive Burkitt lymphomas (BLs), primary effusion lymphomas (PELs), AIDS-associated diffuse large B cell lymphomas (DLBCLs), and lymphoblastoid cell lines (LCLs). Our analysis focused on comparing targets of EBV BART miRNAs across the different types of transformed B cells. Using reporter assays, we then experimentally validated over 50 functional interactions between BART miRNAs and cellular protein-coding transcripts involved in activities such as B cell differentiation (PRDM1, IRF4, and MYC), cell cycle regulation (UHMK1, CDKN1A, MDM2, and NPAT), apoptosis (MCL1), signaling and intracellular trafficking (GAB1, SOS1, MAPK1, RAB11A, CAV1, and RANBP9), and tumor suppression (CCDC6). Moreover, ectopic BART miRNA expression in several EBV-negative BL cells induced transcriptional changes that may influence molecular signatures of EBV-associated BLs. Collectively, our findings reveal novel, functional interactions for BART miRNAs in lymphomas and provide insights into their roles in these B cell cancers.
Collapse
Affiliation(s)
| | | | | | - Rebecca L. Skalsky
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
7
|
Miranda D, He B, Sanchez JC, Sennatti A, Bontemps JR, Tran JT, Tang WS, Sanchez DJ. A Viral-Encoded Homologue of IPS-1 Modulates Innate Immune Signaling During KSHV Lytic Replication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604690. [PMID: 39211267 PMCID: PMC11360917 DOI: 10.1101/2024.07.24.604690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Modulation of innate immunity is critical for virus persistence in a host. In particular, viral-encoded disruption of type I interferon, a major antiviral cytokine induced to fight viral infection, is a key component in the repertoire of viral pathogenicity genes. We have identified a previously undescribed open reading frame within the Kaposi's sarcoma-associated herpesvirus (KSHV) genome that encodes a homologue of the human IPS-1 (also referred to as MAVS) protein that we have termed viral-IPS-1 (v-IPS-1). This protein is expressed during the lytic replication program of KSHV, and expression of v-IPS-1 blocks induction of type I interferon upstream of the TRAF3 signaling node including signaling initiated via both the RLR and TLR3/4 signaling axes. This disruption of signaling coincides with destabilization of the cellular innate signaling adaptors IPS-1 and TRIF along with a concatenate stabilization of the TRAF3 protein. Additionally, expression of v-IPS-1 leads to decreased antiviral responses indicating a blot to type I interferon induction during viral infection. Taken together, v-IPS-1 is the first described viral homologue of IPS-1 and this viral protein leads to reprogramming of innate immunity through modulation of type I interferon signaling during KSHV lytic replication.
Collapse
|
8
|
Wu H, Zhou HY, Zheng H, Wu A. Towards Understanding and Identification of Human Viral Co-Infections. Viruses 2024; 16:673. [PMID: 38793555 PMCID: PMC11126107 DOI: 10.3390/v16050673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Viral co-infections, in which a host is infected with multiple viruses simultaneously, are common in the human population. Human viral co-infections can lead to complex interactions between the viruses and the host immune system, affecting the clinical outcome and posing challenges for treatment. Understanding the types, mechanisms, impacts, and identification methods of human viral co-infections is crucial for the prevention and control of viral diseases. In this review, we first introduce the significance of studying human viral co-infections and summarize the current research progress and gaps in this field. We then classify human viral co-infections into four types based on the pathogenic properties and species of the viruses involved. Next, we discuss the molecular mechanisms of viral co-infections, focusing on virus-virus interactions, host immune responses, and clinical manifestations. We also summarize the experimental and computational methods for the identification of viral co-infections, emphasizing the latest advances in high-throughput sequencing and bioinformatics approaches. Finally, we highlight the challenges and future directions in human viral co-infection research, aiming to provide new insights and strategies for the prevention, control, diagnosis, and treatment of viral diseases. This review provides a comprehensive overview of the current knowledge and future perspectives on human viral co-infections and underscores the need for interdisciplinary collaboration to address this complex and important topic.
Collapse
Affiliation(s)
- Hui Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211100, China;
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Hang-Yu Zhou
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211100, China;
| | - Aiping Wu
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
- State Key Laboratory of Common Mechanism Research for Major Diseases, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China
| |
Collapse
|
9
|
Zhao H, Cai S, Xiao Y, Xia M, Chen H, Xie Z, Tang X, He H, Peng J, Chen J. Expression and prognostic significance of the PD-1/PD-L1 pathway in AIDS-related non-Hodgkin lymphoma. Cancer Med 2024; 13:e7195. [PMID: 38613207 PMCID: PMC11015146 DOI: 10.1002/cam4.7195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
OBJECTIVE Immune tolerance and evasion play a critical role in virus-driven malignancies. However, the phenotype and clinical significance of programmed cell death 1 (PD-1) and its ligands, PD-L1 and PD-L2, in aggressive acquired immunodeficiency syndrome (AIDS)-related non-Hodgkin lymphoma (AR-NHL) remain poorly understood, particularly in the Epstein-Barr virus (EBV)-positive subset. METHODS We used in situ hybridization with EBV-encoded RNA (EBER) to assess the EBV status. We performed immunohistochemistry and flow cytometry analysis to evaluate components of the PD-1/PD-L1/L2 pathway in a multi-institutional cohort of 58 patients with AR-NHL and compared EBV-positive and EBV-negative cases. RESULTS The prevalence of EBV+ in AR-NHL was 56.9% and was associated with a marked increase in the expression of PD-1/PD-L1/PD-L2 in malignant cells. Patients with AR-NHLs who tested positive for both EBER and PD-1 exhibited lower survival rates compared to those negative for these markers (47.4% vs. 93.8%, p = 0.004). Similarly, patients positive for both EBER and PD-L1 also demonstrated poorer survival (56.5% vs. 93.8%, p = 0.043). Importantly, PD-1 tissue-expression demonstrated independent prognostic significance for overall survival in multivariate analysis and was correlated to elevated levels of LDH (r = 0.313, p = 0.031), increased PD-1+ Tregs (p = 0.006), and robust expression of EBER (r = 0.541, p < 0.001) and PD-L1 (r = 0.354, p = 0.014) expression. CONCLUSIONS These data emphasize the importance of PD-1-mediated immune evasion in the complex landscape of immune oncology in AR-NHL co-infected with EBV, and contribute to the diagnostic classification and possible definition of immunotherapeutic strategies for this unique subgroup.
Collapse
Affiliation(s)
- Han Zhao
- Department of Infectious Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
- Infectious Diseases Center, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Shaohang Cai
- Department of Infectious Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yanhua Xiao
- Pathology department, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Muye Xia
- Department of Infectious Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Hongjie Chen
- Department of Infectious Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zhiman Xie
- Guangxi AIDS Clinical Treatment Center, the Fourth People's Hospital of NanningNanningChina
| | - Xiaoping Tang
- Infectious Diseases Center, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Haolan He
- Infectious Diseases Center, Guangzhou Eighth People's HospitalGuangzhou Medical UniversityGuangzhouChina
| | - Jie Peng
- Department of Infectious Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Juanjuan Chen
- Department of Infectious Diseases, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
10
|
Carbone A, Chadburn A, Gloghini A, Vaccher E, Bower M. Immune deficiency/dysregulation -associated lymphoproliferative disorders. Revised classification and management. Blood Rev 2024; 64:101167. [PMID: 38195294 DOI: 10.1016/j.blre.2023.101167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/13/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Significant advances in the field of lymphoma have resulted in two recent classification proposals, the International Consensus Classification (ICC) and the 5th edition WHO. A few entities are categorized differently in the ICC compared to the WHO. Nowhere is this more apparent than the immunodeficiency lymphoproliferative disorders. The three previous versions of the WHO classification (3rd, 4th and revised 4th editions) and the ICC focused on four clinical settings in which these lesions arise for primary categorization. In contrast the 2023 WHO 5th edition includes pathologic characteristics including morphology and viral status, in addition to clinical setting, as important information for lesion classification. In addition, the 2023 WHO recognizes a broader number of clinical scenarios in which these lesions arise, including not only traditional types of immune deficiency but also immune dysregulation. With this classification it is hoped that new treatment strategies will be developed leading to better patient outcomes.
Collapse
Affiliation(s)
- Antonino Carbone
- Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, National Cancer Institute, Aviano, Italy.
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States of America.
| | - Annunziata Gloghini
- Department of Advanced Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Emanuela Vaccher
- Infectious Diseases and Tumors Unit, Department of Medical Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, National Cancer Institute, Aviano, Italy.
| | - Mark Bower
- Department of Oncology and National Centre for HIV Malignancy, Chelsea & Westminster Hospital, London SW109NH, UK.
| |
Collapse
|
11
|
Zhang Y, Guo W, Zhan Z, Bai O. Carcinogenic mechanisms of virus-associated lymphoma. Front Immunol 2024; 15:1361009. [PMID: 38482011 PMCID: PMC10932979 DOI: 10.3389/fimmu.2024.1361009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/12/2024] [Indexed: 04/17/2024] Open
Abstract
The development of lymphoma is a complex multistep process that integrates numerous experimental findings and clinical data that have not yet yielded a definitive explanation. Studies of oncogenic viruses can help to deepen insight into the pathogenesis of lymphoma, and identifying associations between lymphoma and viruses that are established and unidentified should lead to cellular and pharmacologically targeted antiviral strategies for treating malignant lymphoma. This review focuses on the pathogenesis of lymphomas associated with hepatitis B and C, Epstein-Barr, and human immunodeficiency viruses as well as Kaposi sarcoma-associated herpesvirus to clarify the current status of basic information and recent advances in the development of virus-associated lymphomas.
Collapse
Affiliation(s)
| | | | | | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
12
|
Kolijn PM, Langerak AW. Immune dysregulation as a leading principle for lymphoma development in diverse immunological backgrounds. Immunol Lett 2023; 263:46-59. [PMID: 37774986 DOI: 10.1016/j.imlet.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 10/01/2023]
Abstract
Lymphoma is a heterogeneous group of malignancies arising from lymphocytes, which poses a significant challenge in terms of diagnosis and treatment due to its diverse subtypes and underlying mechanisms. This review aims to explore the shared and distinct features of various forms of lymphoma predisposing conditions, with a focus on genetic, immunological and molecular aspects. While diseases such as autoimmune disorders, inborn errors of immunity and iatrogenic immunodeficiencies are biologically and immunologically distinct, each of these diseases results in profound immune dysregulation and a predisposition to lymphoma development. Interestingly, the increased risk is often skewed towards a particular subtype of lymphoma. Patients with inborn errors of immunity in particular present with extreme forms of lymphoma predisposition, providing a unique opportunity to study the underlying mechanisms. External factors such as chronic infections and environmental exposures further modulate the risk of lymphoma development. Common features of conditions predisposing to lymphoma include: persistent inflammation, recurrent DNA damage or malfunctioning DNA repair, impaired tumor surveillance and viral clearance, and dysregulation of fundamental cellular processes such as activation, proliferation and apoptosis. Our growing understanding of the underlying mechanisms of lymphomagenesis provides opportunities for early detection, prevention and tailored treatment of lymphoma development.
Collapse
Affiliation(s)
- P Martijn Kolijn
- Laboratory Medical Immunology, Department of Immunology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Anton W Langerak
- Laboratory Medical Immunology, Department of Immunology, Erasmus Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
13
|
Chinna P, Bratl K, Lambarey H, Blumenthal MJ, Schäfer G. The Impact of Co-Infections for Human Gammaherpesvirus Infection and Associated Pathologies. Int J Mol Sci 2023; 24:13066. [PMID: 37685871 PMCID: PMC10487760 DOI: 10.3390/ijms241713066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The two oncogenic human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) cause significant disease burden, particularly in immunosuppressed individuals. Both viruses display latent and lytic phases of their life cycle with different outcomes for their associated pathologies. The high prevalence of infectious diseases in Sub-Saharan Africa (SSA), particularly HIV/AIDS, tuberculosis, malaria, and more recently, COVID-19, as well as their associated inflammatory responses, could potentially impact either virus' infectious course. However, acute or lytically active EBV and/or KSHV infections often present with symptoms mimicking these predominant diseases leading to misdiagnosis or underdiagnosis of oncogenic herpesvirus-associated pathologies. EBV and/or KSHV infections are generally acquired early in life and remain latent until lytic reactivation is triggered by various stimuli. This review summarizes known associations between infectious agents prevalent in SSA and underlying EBV and/or KSHV infection. While presenting an overview of both viruses' biphasic life cycles, this review aims to highlight the importance of co-infections in the correct identification of risk factors for and diagnoses of EBV- and/or KSHV-associated pathologies, particularly in SSA, where both oncogenic herpesviruses as well as other infectious agents are highly pervasive and can lead to substantial morbidity and mortality.
Collapse
Affiliation(s)
- Prishanta Chinna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Katrin Bratl
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Humaira Lambarey
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Melissa J. Blumenthal
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Georgia Schäfer
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa; (P.C.); (K.B.); (H.L.); (M.J.B.)
- Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| |
Collapse
|
14
|
Parisi F, Fonti N, Millanta F, Freer G, Pistello M, Poli A. Exploring the link between viruses and cancer in companion animals: a comprehensive and comparative analysis. Infect Agent Cancer 2023; 18:40. [PMID: 37386451 DOI: 10.1186/s13027-023-00518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Currently, it is estimated that 15% of human neoplasms globally are caused by infectious agents, with new evidence emerging continuously. Multiple agents have been implicated in various forms of neoplasia, with viruses as the most frequent. In recent years, investigation on viral mechanisms underlying tumoral transformation in cancer development and progression are in the spotlight, both in human and veterinary oncology. Oncogenic viruses in veterinary medicine are of primary importance not only as original pathogens of pets, but also in the view of pets as models of human malignancies. Hence, this work will provide an overview of the main oncogenic viruses of companion animals, with brief notes of comparative medicine.
Collapse
Affiliation(s)
- Francesca Parisi
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy.
| | - Niccolò Fonti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Francesca Millanta
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| | - Giulia Freer
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Risorgimento, 36, 56126, Pisa, Italy
| | - Mauro Pistello
- Dipartimento di Ricerca Traslazionale e delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Via Risorgimento, 36, 56126, Pisa, Italy
| | - Alessandro Poli
- Dipartimento di Scienze Veterinarie, Università di Pisa, Viale delle Piagge, 2, 56124, Pisa, Italy
| |
Collapse
|
15
|
Huguet M, Navarro JT, Moltó J, Ribera JM, Tapia G. Diffuse Large B-Cell Lymphoma in the HIV Setting. Cancers (Basel) 2023; 15:3191. [PMID: 37370801 DOI: 10.3390/cancers15123191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the widespread use of combined antiretroviral therapy (cART) and the subsequent decrease in AIDS-defining cancers, HIV-related lymphomas remain a leading cause of morbidity and mortality in people with HIV (PWH). Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma (NHL) subtype in PWH. This lymphoma is a heterogeneous disease including morphological variants and molecular subtypes according to the cell of origin or the mutation profile. In the pre-cART era, treatment with standard-dose chemotherapy induced high rates of toxicity and outcomes were very poor. The introduction of cART and the incorporation of infection prophylaxis allowed the use of conventional intensive chemotherapy regimens used in the general population, such as R-CHOP or R-EPOCH. The use of cART during chemotherapy treatment was initially controversial due to the potential risk of adverse drug-drug interactions. However, the availability of current cART regimens with less potential to cause drug interactions and evidence that cART improves survival rates in NHL strongly support the use of cART in PWH with DLBCL. Consequently, interdisciplinary collaboration between HIV specialists and hemato-oncologists for the management of potential interactions and overlapping toxicities between antiretroviral and antineoplastic drugs is crucial for the optimal treatment of PWH with NHL.
Collapse
Affiliation(s)
- Maria Huguet
- Department of Hematology, Institut Català d'Oncologia, Germans Trias i Pujol University Hospital, Universitat Autònoma de Barcelona, Ctra. de Canyet, S/N, 08916 Badalona, Spain
- Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - José-Tomás Navarro
- Department of Hematology, Institut Català d'Oncologia, Germans Trias i Pujol University Hospital, Universitat Autònoma de Barcelona, Ctra. de Canyet, S/N, 08916 Badalona, Spain
- Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - José Moltó
- Fundació Lluita Contra les Infeccions, Infectious Diseases Department, Germans Trias i Pujol University Hospital, Ctra. de Canyet, S/N, 08916 Badalona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), 28029 Madrid, Spain
| | - Josep-Maria Ribera
- Department of Hematology, Institut Català d'Oncologia, Germans Trias i Pujol University Hospital, Universitat Autònoma de Barcelona, Ctra. de Canyet, S/N, 08916 Badalona, Spain
- Josep Carreras Leukaemia Research Institute, 08916 Badalona, Spain
| | - Gustavo Tapia
- Department of Pathology, Germans Trias i Pujol University Hospital, Universitat Autònoma de Barcelona, Ctra. de Canyet, S/N, 08916 Badalona, Spain
| |
Collapse
|
16
|
Melnik BC, Stadler R, Weiskirchen R, Leitzmann C, Schmitz G. Potential Pathogenic Impact of Cow’s Milk Consumption and Bovine Milk-Derived Exosomal MicroRNAs in Diffuse Large B-Cell Lymphoma. Int J Mol Sci 2023; 24:ijms24076102. [PMID: 37047075 PMCID: PMC10094152 DOI: 10.3390/ijms24076102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
Epidemiological evidence supports an association between cow’s milk consumption and the risk of diffuse large B-cell lymphoma (DLBCL), the most common non-Hodgkin lymphoma worldwide. This narrative review intends to elucidate the potential impact of milk-related agents, predominantly milk-derived exosomes (MDEs) and their microRNAs (miRs) in lymphomagenesis. Upregulation of PI3K-AKT-mTORC1 signaling is a common feature of DLBCL. Increased expression of B cell lymphoma 6 (BCL6) and suppression of B lymphocyte-induced maturation protein 1 (BLIMP1)/PR domain-containing protein 1 (PRDM1) are crucial pathological deviations in DLBCL. Translational evidence indicates that during the breastfeeding period, human MDE miRs support B cell proliferation via epigenetic upregulation of BCL6 (via miR-148a-3p-mediated suppression of DNA methyltransferase 1 (DNMT1) and miR-155-5p/miR-29b-5p-mediated suppression of activation-induced cytidine deaminase (AICDA) and suppression of BLIMP1 (via MDE let-7-5p/miR-125b-5p-targeting of PRDM1). After weaning with the physiological termination of MDE miR signaling, the infant’s BCL6 expression and B cell proliferation declines, whereas BLIMP1-mediated B cell maturation for adequate own antibody production rises. Because human and bovine MDE miRs share identical nucleotide sequences, the consumption of pasteurized cow’s milk in adults with the continued transfer of bioactive bovine MDE miRs may de-differentiate B cells back to the neonatal “proliferation-dominated” B cell phenotype maintaining an increased BLC6/BLIMP1 ratio. Persistent milk-induced epigenetic dysregulation of BCL6 and BLIMP1 expression may thus represent a novel driving mechanism in B cell lymphomagenesis. Bovine MDEs and their miR cargo have to be considered potential pathogens that should be removed from the human food chain.
Collapse
|
17
|
Desimio MG, Covino DA, Rivalta B, Cancrini C, Doria M. The Role of NK Cells in EBV Infection and Related Diseases: Current Understanding and Hints for Novel Therapies. Cancers (Basel) 2023; 15:cancers15061914. [PMID: 36980798 PMCID: PMC10047181 DOI: 10.3390/cancers15061914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The Epstein-Barr virus (EBV) is a ubiquitous herpesvirus most often transmitted during infancy and infecting the vast majority of human beings. Usually, EBV infection is nearly asymptomatic and results in life-long persistency of the virus in a latent state under the control of the host immune system. Yet EBV can cause an acute infectious mononucleosis (IM), particularly in adolescents, and is associated with several malignancies and severe diseases that pose a serious threat to individuals with specific inborn error of immunity (IEI). While there is a general consensus on the requirement for functional CD8 T cells to control EBV infection, the role of the natural killer (NK) cells of the innate arm of immunity is more enigmatic. Here we provide an overview of the interaction between EBV and NK cells in the immunocompetent host as well as in the context of primary and secondary immunodeficiencies. Moreover, we report in vitro data on the mechanisms that regulate the capacity of NK cells to recognize and kill EBV-infected cell targets and discuss the potential of recently optimized NK cell-based immunotherapies for the treatment of EBV-associated diseases.
Collapse
Affiliation(s)
- Maria G Desimio
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Daniela A Covino
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| | - Beatrice Rivalta
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Caterina Cancrini
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Margherita Doria
- Primary Immunodeficiency Research Unit, Bambino Gesù Children's Hospital, IRCCS, 00165 Rome, Italy
| |
Collapse
|
18
|
SoRelle ED, Reinoso-Vizcaino NM, Horn GQ, Luftig MA. Epstein-Barr virus perpetuates B cell germinal center dynamics and generation of autoimmune-associated phenotypes in vitro. Front Immunol 2022; 13:1001145. [PMID: 36248899 PMCID: PMC9554744 DOI: 10.3389/fimmu.2022.1001145] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 02/03/2023] Open
Abstract
Human B cells encompass functionally diverse lineages and phenotypic states that contribute to protective as well as pathogenic responses. Epstein-Barr virus (EBV) provides a unique lens for studying heterogeneous B cell responses, given its adaptation to manipulate intrinsic cell programming. EBV promotes the activation, proliferation, and eventual outgrowth of host B cells as immortalized lymphoblastoid cell lines (LCLs) in vitro, which provide a foundational model of viral latency and lymphomagenesis. Although cellular responses and outcomes of infection can vary significantly within populations, investigations that capture genome-wide perspectives of this variation at single-cell resolution are in nascent stages. We have recently used single-cell approaches to identify EBV-mediated B cell heterogeneity in de novo infection and within LCLs, underscoring the dynamic and complex qualities of latent infection rather than a singular, static infection state. Here, we expand upon these findings with functional characterizations of EBV-induced dynamic phenotypes that mimic B cell immune responses. We found that distinct subpopulations isolated from LCLs could completely reconstitute the full phenotypic spectrum of their parental lines. In conjunction with conserved patterns of cell state diversity identified within scRNA-seq data, these data support a model in which EBV continuously drives recurrent B cell entry, progression through, and egress from the Germinal Center (GC) reaction. This "perpetual GC" also generates tangent cell fate trajectories including terminal plasmablast differentiation, which constitutes a replicative cul-de-sac for EBV from which lytic reactivation provides escape. Furthermore, we found that both established EBV latency and de novo infection support the development of cells with features of atypical memory B cells, which have been broadly associated with autoimmune disorders. Treatment of LCLs with TLR7 agonist or IL-21 was sufficient to generate an increased frequency of IgD-/CD27-/CD23-/CD38+/CD138+ plasmablasts. Separately, de novo EBV infection led to the development of CXCR3+/CD11c+/FCRL4+ B cells within days, providing evidence for possible T cell-independent origins of a recently described EBV-associated neuroinvasive CXCR3+ B cell subset in patients with multiple sclerosis. Collectively, this work reveals unexpected virus-driven complexity across infected cell populations and highlights potential roles of EBV in mediating or priming foundational aspects of virus-associated immune cell dysfunction in disease.
Collapse
Affiliation(s)
- Elliott D. SoRelle
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC, United States
| | | | - Gillian Q. Horn
- Department of Immunology, Duke University, Durham, NC, United States
| | - Micah A. Luftig
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC, United States
| |
Collapse
|
19
|
Wang C, Liu J, Lei H, Li Y, Wu J, Guo B, Hu R, Liu T, Wu J, Ding Y, Hu C, Liang S, Xiao C, Liang X, Huang D, Yang T, Zhang W, Yang Z, Li J, Nan Y, Li Q, Xiang Y, Li Z, Wu Y, Liu Y. Clinical characteristics and outcomes of newly diagnosed patients with
HIV
‐associated aggressive B‐cell
NHL
in China. J Cell Mol Med 2022; 26:5067-5077. [PMID: 36056692 PMCID: PMC9549495 DOI: 10.1111/jcmm.17534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
Little is known about the incidence, clinical characteristics and prognostic factors in HIV associated lymphoma as these are less common than HIV‐negative lymphoma in China. Currently, there are no standard guidelines for treatment of these patients. Therefore, we performed a study to analyse the clinical characteristics and outcomes of newly diagnosed HIV‐associated aggressive B‐cell non‐Hodgkin's lymphoma (NHL) patients in Chongqing University Cancer Hospital (CUCH). Totally 86 newly diagnosed HIV‐associated aggressive B‐cell NHL patients in CUCH, southwest China, from July 2008 to August 2021, were analysed. In the entire cohort, median age was 48 years (range, 23–87 years), and more patients were male (87.2%). Most patients had elevated lactate dehydrogenase (LDH) (82.6%), advanced ann arbor stage (80.2%) and high IPI score (IPI score, 3–5) (62.7%) at diagnosis. Median CD4+ T‐cell count at diagnosis was 191/μl (range, 4–1022), 84 patients (97.7%) were on combination antiretroviral therapy (cART) at lymphoma diagnosis. In DLBCL patients, cox multivariate analysis showed that age ≥ 60 (HR = 2.251, 95%CI 1.122–4.516; p = 0.012), elevated LDH (HR = 4.452, 95%CI 1.027–19.297; p = 0.041) and received less than two cycles of chemotherapy (HR = 0.629, 95%CI 0.589–1.071; p = 0.012) were independent risk factors for adverse prognosis based on PFS. Age ≥ 60 (HR = 3.162, 95%CI 1.500–6.665; p = 0.002) and received less than two cycles of chemotherapy (HR = 0.524, 95%CI 0.347–0.791; p = 0.002) were also independent risk factor for adverse prognosis based on OS. In BL patients, cox multivariate analysis showed that elevated LDH and received less than two cycles of chemotherapy were independent risk factors for adverse prognosis. In the DLBCL group, median PFS times in the received rituximab and no received rituximab groups were not reached and 12 months, respectively (p = 0.006). Median OS times were not reached and 36 months, respectively (p = 0.021). In the BL group, median PFS times in the received rituximab and no received rituximab groups were not reached and 4.8 months, respectively (p = 0.046). Median OS times were not reached and 10.1 months, respectively (p = 0.035). Overall, these data indicated that standardized anti‐lymphoma therapy and rituximab administration were significantly associated with improved outcomes in patients with HIV‐associated DLBCL and BL.
Collapse
Affiliation(s)
- Chaoyu Wang
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Jun Liu
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Haike Lei
- Chongqing Cancer Research and Control Office Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Yu Li
- Department of Pathology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Jian Wu
- Department of Head and Neck Cancer Center Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Bingling Guo
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Renzhi Hu
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Tingting Liu
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Jing Wu
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Yao Ding
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Chongling Hu
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Shunsi Liang
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Chunyan Xiao
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Xiping Liang
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Dehong Huang
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Tao Yang
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Wenjun Zhang
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Zailin Yang
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Jieping Li
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Yingyu Nan
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Qiying Li
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Ying Xiang
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Zhenhua Li
- Department of Head and Neck Cancer Center Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Yongzhong Wu
- Department of Radiation Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| | - Yao Liu
- Department of Hematology Oncology Chongqing University Cancer Hospital, Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment Chongqing China
| |
Collapse
|
20
|
Wang J, Zhang R, Ding X, Jin Y, Qin R, Xia B, Liao Q, Hu H, Song W, Wang Z, Zhang X, Xu J. Pathologically complete remission to combination of invariant NK T cells and anti-CD20 antibody in a refractory HIV+ diffuse large B-cell lymphoma patient. Immunotherapy 2022; 14:599-607. [PMID: 35443802 DOI: 10.2217/imt-2021-0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although there is a high curability rate with rituximab chemotherapy, approximately 40% of patients with diffuse large B-cell lymphoma (DLBCL) develop disease relapse or primary-refractory lymphoma. The prognosis of HIV+ DLBCL patients is even worse with limited therapeutic options. The case is presented of a 28-year-old man who was diagnosed with HIV-DLBCL, refractory to rituximab-based chemo-immunotherapies and radiotherapy before and maintained a pathologically complete regression with the infusion of haplotype-matched invariant NK T cells and anti-CD20 antibody. His abdominal mass kept shrinking during the period of follow-up without relapse to date. A combination of haplotype-matched invariant NK T cells was likely to reinvigorate the efficacy of anti-CD20 antibody and may offer a viable treatment option for refractory DLBCL patients.
Collapse
Affiliation(s)
- Jing Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Renfang Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Xiangqing Ding
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yanling Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Ran Qin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Bili Xia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Qibin Liao
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Huiliang Hu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Wei Song
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Zhenyan Wang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Xiaoyan Zhang
- Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201508, China
| | - Jianqing Xu
- Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 201508, China
| |
Collapse
|
21
|
Chakravorty S, Afzali B, Kazemian M. EBV-associated diseases: Current therapeutics and emerging technologies. Front Immunol 2022; 13:1059133. [PMID: 36389670 PMCID: PMC9647127 DOI: 10.3389/fimmu.2022.1059133] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
EBV is a prevalent virus, infecting >90% of the world's population. This is an oncogenic virus that causes ~200,000 cancer-related deaths annually. It is, in addition, a significant contributor to the burden of autoimmune diseases. Thus, EBV represents a significant public health burden. Upon infection, EBV remains dormant in host cells for long periods of time. However, the presence or episodic reactivation of the virus increases the risk of transforming healthy cells to malignant cells that routinely escape host immune surveillance or of producing pathogenic autoantibodies. Cancers caused by EBV display distinct molecular behaviors compared to those of the same tissue type that are not caused by EBV, presenting opportunities for targeted treatments. Despite some encouraging results from exploration of vaccines, antiviral agents and immune- and cell-based treatments, the efficacy and safety of most therapeutics remain unclear. Here, we provide an up-to-date review focusing on underlying immune and environmental mechanisms, current therapeutics and vaccines, animal models and emerging technologies to study EBV-associated diseases that may help provide insights for the development of novel effective treatments.
Collapse
Affiliation(s)
- Srishti Chakravorty
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Department of Computer Science, Purdue University, West Lafayette IN, United States
| |
Collapse
|
22
|
Wong Y, Meehan MT, Burrows SR, Doolan DL, Miles JJ. Estimating the global burden of Epstein-Barr virus-related cancers. J Cancer Res Clin Oncol 2022; 148:31-46. [PMID: 34705104 PMCID: PMC8752571 DOI: 10.1007/s00432-021-03824-y] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/28/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND More than 90% of the adult population globally is chronically infected by the Epstein-Barr virus (EBV). It is well established that EBV is associated with a number of malignancies, and advances in knowledge of EBV-related malignancies are being made every year. Several studies have analysed the global epidemiology and geographic distribution of EBV-related cancers. However, most have only described a single cancer type or subtype in isolation or limited their study to the three or four most common EBV-related cancers. This review will present an overview on the spectrum of cancers linked to EBV based on observations of associations and proportions in the published literature while also using these observations to estimate the incidence and mortality burden of some of these cancers. METHOD We have reviewed the literature on defining features, distribution and outcomes across six cancers with a relatively large EBV-related case burden: Nasopharyngeal carcinoma (NPC), Gastric carcinoma (GC), Hodgkin lymphoma (HL), Burkitt lymphoma (BL), Diffuse large B-cell lymphoma (DLBCL) and Extranodal NK/T-cell lymphoma, Nasal type (ENKTL-NT). We retrieved published region-specific EBV-related case proportions for NPC, GC, HL and BL and performed meta-analyses on pooled region-specific studies of EBV-related case proportions for DLBCL and ENKTL-NT. We match these pooled proportions with their respective regional incidence and mortality numbers retrieved from a publicly available cancer database. Additionally, we also reviewed the literature on several other less common EBV-related cancers to summarize their key characteristics herein. CONCLUSION We estimated that EBV-related cases from these six cancers accounted for 239,700-357,900 new cases and 137,900-208,700 deaths in 2020. This review highlights the significant global impact of EBV-related cancers and extends the spectrum of disease that could benefit from an EBV-specific therapeutic.
Collapse
Affiliation(s)
- Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia.
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, 4870, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, 4878, Australia.
| | - Michael T Meehan
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD, 4811, Australia
| | - Scott R Burrows
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4006, Australia
| | - Denise L Doolan
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, 4870, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, 4878, Australia
| | - John J Miles
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, 4878, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, 4870, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, 4878, Australia
| |
Collapse
|
23
|
Carbone A, Borok M, Damania B, Gloghini A, Polizzotto MN, Jayanthan RK, Fajgenbaum DC, Bower M. Castleman disease. Nat Rev Dis Primers 2021; 7:84. [PMID: 34824298 PMCID: PMC9584164 DOI: 10.1038/s41572-021-00317-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 01/02/2023]
Abstract
Castleman disease (CD), a heterogeneous group of disorders that share morphological features, is divided into unicentric CD and multicentric CD (MCD) according to the clinical presentation and disease course. Unicentric CD involves a solitary enlarged lymph node and mild symptoms and excision surgery is often curative. MCD includes a form associated with Kaposi sarcoma herpesvirus (KSHV) (also known as human herpesvirus 8) and a KSHV-negative idiopathic form (iMCD). iMCD can present in association with severe syndromes such as TAFRO (thrombocytopenia, ascites, fever, reticulin fibrosis and organomegaly) or POEMS (polyneuropathy, organomegaly, endocrinopathy, monoclonal plasma cell disorder and skin changes). KSHV-MCD often occurs in the setting of HIV infection or another cause of immune deficiency. The interplay between KSHV and HIV elevates the risk for the development of KSHV-induced disorders, including KSHV-MCD, KSHV-lymphoproliferation, KSHV inflammatory cytokine syndrome, primary effusion lymphoma and Kaposi sarcoma. A CD diagnosis requires a multidimensional approach, including clinical presentation and imaging, pathological features, and molecular virology. B cell-directed monoclonal antibody therapy is the standard of care in KSHV-MCD, and anti-IL-6 therapy is the recommended first-line therapy and only treatment of iMCD approved by the US FDA and EMA.
Collapse
Affiliation(s)
- Antonino Carbone
- Centro di Riferimento Oncologico (CRO), IRCCS, National Cancer Institute, Aviano, Italy.
- S. Maria degli Angeli Hospital, Pordenone, Italy.
| | - Margaret Borok
- Unit of Internal Medicine, University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | - Blossom Damania
- Department of Microbiology and Immunology and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Annunziata Gloghini
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Mark N Polizzotto
- Clinical Hub for Interventional Research, John Curtin School of Medical Research, The Australian National University, Canberra, NSW, Australia
| | - Raj K Jayanthan
- Castleman Disease Collaborative Network, Philadelphia, PA, USA
| | - David C Fajgenbaum
- Center for Cytokine Storm Treatment & Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark Bower
- National Centre for HIV Malignancy, Chelsea & Westminster Hospital, London, UK
| |
Collapse
|
24
|
Cui X, Snapper CM. Epstein Barr Virus: Development of Vaccines and Immune Cell Therapy for EBV-Associated Diseases. Front Immunol 2021; 12:734471. [PMID: 34691042 PMCID: PMC8532523 DOI: 10.3389/fimmu.2021.734471] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/15/2021] [Indexed: 11/13/2022] Open
Abstract
Epstein-Barr virus (EBV) is the first human tumor virus discovered and is strongly implicated in the etiology of multiple lymphoid and epithelial cancers. Each year EBV associated cancers account for over 200,000 new cases of cancer and cause 150,000 deaths world-wide. EBV is also the primary cause of infectious mononucleosis, and up to 70% of adolescents and young adults in developed countries suffer from infectious mononucleosis. In addition, EBV has been shown to play a critical role in the pathogenesis of multiple sclerosis. An EBV prophylactic vaccine that induces neutralizing antibodies holds great promise for prevention of EBV associated diseases. EBV envelope proteins including gH/gL, gB and gp350 play key roles in EBV entry and infection of target cells, and neutralizing antibodies elicited by each of these proteins have shown to prevent EBV infection of target cells and markedly decrease EBV titers in the peripheral blood of humanized mice challenged with lethal dose EBV. Recent studies demonstrated that immunization with the combination of gH/gL, gB and/or gp350 induced markedly increased synergistic EBV neutralizing activity compared to immunization with individual proteins. As previous clinical trials focused on gp350 alone were partially successful, the inclusion of gH/gL and gB in a vaccine formulation with gp350 represents a promising approach of EBV prophylactic vaccine development. Therapeutic EBV vaccines have also been tested clinically with encouraging results. Immunization with various vaccine platforms expressing the EBV latent proteins EBNA1, LMP1, and/or LMP2 promoted specific CD4+ and CD8+ cytotoxic responses with anti-tumor activity. The addition of EBV envelope proteins gH/gL, gB and gp350 has the potential to increase the efficacy of a therapeutic EBV vaccine. The immune system plays a critical role in the control of tumors, and immune cell therapy has emerged as a promising treatment of cancers. Adoptive T-cell therapy has been successfully used in the prevention and treatment of post-transplant lymphoproliferative disorder. Chimeric antigen receptor T cell therapy and T cell receptor engineered T cell therapy targeting EBV latent proteins LMP1, LMP2 and/or EBNA1 have been in development, with the goal to increase the specificity and efficacy of treatment of EBV associated cancers.
Collapse
Affiliation(s)
- Xinle Cui
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Clifford M Snapper
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.,Citranvi Biosciences LLC, Chapel Hill, NC, United States
| |
Collapse
|
25
|
Chemotherapy-Induced Hepatotoxicity in HIV Patients. Cells 2021; 10:cells10112871. [PMID: 34831094 PMCID: PMC8616372 DOI: 10.3390/cells10112871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) affects more than 37 million people globally, and in 2020, more than 680,000 people died from HIV-related causes. Recently, these numbers have decrease substantially and continue to reduce thanks to the use of antiretroviral therapy (ART), thus making HIV a chronic disease state for those dependent on lifelong use of ART. However, patients with HIV have an increased risk of developing some type of cancer compared to patients without HIV. Therefore, treatment of patients who are diagnosed with both HIV and cancer represents a complicated scenario because of the risk associated with drug-drug interaction (DDIs) and related toxicity. Selection of an alternative chemotherapy or ART or temporarily discontinuation of ART constitute a strategy to manage the risk of DDIs. Temporarily withholding ART is the less desirable clinical plan but risks and benefits must be considered in each scenario. In this review we focus on the hepatotoxicity associated with a simultaneous treatment with ART and chemotherapeutic drugs and mechanisms behind. Moreover, we also discuss the effect on the liver caused by the association of immunotherapeutic drugs, which have recently been used in clinical trials and also in HIV patients.
Collapse
|
26
|
Hematological cancers in individuals infected by HIV. Blood 2021; 139:995-1012. [PMID: 34469512 DOI: 10.1182/blood.2020005469] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022] Open
Abstract
HIV infection increases cancer risk and is linked to cancers associated to infectious agents classified as carcinogenic to humans by the International Agency for Research on Cancer. Lymphomas represent one of the most frequent malignancies among individuals infected by HIV. Diffuse large B-cell lymphoma remains a leading cancer after the introduction of combined antiretroviral therapy (cART). The incidence of other lymphomas including Burkitt lymphoma, primary effusion lymphomas, and plasmablastic lymphoma of the oral cavity remain stable, while the incidence of Hodgkin lymphoma and Kaposi sarcoma-associated herpesvirus (KSHV)-associated Multicentric Castleman Disease has increased. The heterogeneity of lymphomas in individuals infected by HIV likely depends on the complexity of involved pathogenetic mechanisms, i.e. HIV-induced immunosuppression, genetic abnormalities, cytokine dysregulation, co-infection with the gamma-herpesviruses, Epstein Barr virus and KSHV, and the dysregulation of the immune responses controlling these viruses. In the modern cART era, standard treatments for HIV-associated lymphoma including stem cell transplantation in relapsed/refractory disease, mirrors that of the general population. The combination of cART and anti neoplastic treatments has resulted in remarkable prolongation of long-term survival. However, oncolytic and immunotherapic strategies, and therapies targeting specific viral oncogenes will need to be developed primarily.
Collapse
|
27
|
Tazi I, Lahlimi FZ. [Human immunodeficiency virus and lymphoma]. Bull Cancer 2021; 108:953-962. [PMID: 34246454 DOI: 10.1016/j.bulcan.2021.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/13/2021] [Accepted: 03/20/2021] [Indexed: 12/14/2022]
Abstract
Lymphomas remain a leading cause of morbidity and mortality for HIV-positive patients. The most common lymphomas include diffuse large B-cell lymphoma, Burkitt lymphoma, primary effusion lymphoma, plasmablastic lymphoma and Hodgkin lymphoma. Appropriate approach is determined by lymphoma stage, performans status, comorbidities, histological subtype, status of the HIV disease and immunosuppression. Treatment outcomes have improved due to chemotherapy modalities and effective antiretroviral therapy. This review summarizes epidemiology, pathogenesis, pathology, and current treatment landscape in HIV associated lymphoma.
Collapse
Affiliation(s)
- Illias Tazi
- CHU Mohamed VI, Université Cadi Ayyad, Faculté de Médecine, Service d'Hématologie Clinique, Marrakech, Maroc.
| | - Fatima Zahra Lahlimi
- CHU Mohamed VI, Université Cadi Ayyad, Faculté de Médecine, Service d'Hématologie Clinique, Marrakech, Maroc
| |
Collapse
|
28
|
Abstract
Despite widely available antiretroviral therapy, lymphoma remains the leading cause of death for human immunodeficiency virus (HIV)-infected persons in economically developed countries. Even a few months of drug interruptions can lead to drops in the CD4 cell count, HIV viremia, and an increased risk of lymphoma. Currently, good HIV control facilitates intensive therapies appropriate to the lymphoma, including autologous and even allogeneic hematopoietic stem cell transplantation. Nonetheless, HIV-related lymphomas have unique aspects, including pathogenetic differences driven by the presence of HIV and often coinfection with oncogenic viruses. Future therapies might exploit these differences. Lymphoma subtypes also differ in the HIV-infected population, and the disease has a higher propensity for advanced-stage, aggressive presentation and extranodal disease. Other unique aspects include the need to avoid potential interactions between antiretroviral therapy and chemotherapeutic agents and the need for HIV-specific supportive care such as infection prophylaxis. Overall, the care of these patients has progressed sufficiently that recent guidelines from the American Society of Clinical Oncology advocate the inclusion of HIV-infected patients alongside HIV-negative patients in cancer clinical trials when appropriate. This article examines HIV lymphoma and includes Burkitt lymphoma in the general population.
Collapse
|
29
|
de Carvalho PS, Leal FE, Soares MA. Clinical and Molecular Properties of Human Immunodeficiency Virus-Related Diffuse Large B-Cell Lymphoma. Front Oncol 2021; 11:675353. [PMID: 33996608 PMCID: PMC8117347 DOI: 10.3389/fonc.2021.675353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
Non-Hodgkin lymphoma is the most common malignancy affecting people living with HIV (PLWH). Among its several subtypes, diffuse large B-cell lymphoma (DLBCL) is an important manifestation within the HIV-infected compartment of the population. Since HIV is able to modulate B cells and promote lymphomagenesis through direct and indirect mechanisms, HIV-related DLBCL has specific characteristics. In this review, we address the clinical and molecular properties of DLBCL disease in the context of HIV infection, as well as the mechanisms by which HIV is able to modulate B lymphocytes and induce their transformation into lymphoma.
Collapse
Affiliation(s)
- Pedro S de Carvalho
- Programa de Oncovirologia, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| | - Fabio E Leal
- Programa de Oncovirologia, Instituto Nacional do Câncer, Rio de Janeiro, Brazil
| | - Marcelo A Soares
- Programa de Oncovirologia, Instituto Nacional do Câncer, Rio de Janeiro, Brazil.,Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Azariadis K, Ioannou M, Zachou K, Dalekos GN. An Immunocompetent HIV-Negative Elderly Patient with Low-Grade Fever, Generalized Lymphadenopathy, Splenomegaly, and Acute Phase Response: Do Not Forget Castleman Disease. Case Rep Infect Dis 2021; 2021:6614208. [PMID: 33777463 PMCID: PMC7979292 DOI: 10.1155/2021/6614208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022] Open
Abstract
Multicentric Castleman disease (MCD) is a rare lymphoproliferative disorder that mainly affects middle-aged patients with human immunodeficiency virus (HIV) infection. However, HIV-negative patients can also be affected representing a small proportion of the total MCD cases. Of note, recent studies from China in HIV-negative patients with MCD have suggested that the onset of the disease can be observed in younger age than previously thought. If undiagnosed and untreated, the MCD has a poor prognosis and may progress to lymphoma. We present an 82-year-old immunocompetent male patient who was admitted to our department because of low-grade fever, cachexia, anasarca, hepatosplenomegaly, and generalized lymphadenopathy. Laboratory findings showed anemia and increased markers of inflammation including hyperferritinemia and polyclonal hyperglobulinemia. Infectious causes including HIV were ruled out. Histological examination of a cervical lymph-node revealed lesions supportive of MCD diagnosis. Of note, the outer-zone plasmablasts' nuclei stained positive for human herpesvirus-8 (HHV8). The patient received 4 cycles of cyclophosphamide, vincristine, and dexamethasone with regression of all symptoms. This case underlines that HHV8-associated MCD should be considered as a rare cause of generalized lymphadenopathy even in HIV-negative immunocompetent patients when other causes have been appropriately excluded because a timely diagnosis can be life-saving.
Collapse
Affiliation(s)
- Kalliopi Azariadis
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, 41110 Larissa, Greece
| | - Maria Ioannou
- Department of Pathology, Medical School, University of Thessaly, 41110 Larissa, Greece
| | - Kalliopi Zachou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, 41110 Larissa, Greece
| | - George N. Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, 41110 Larissa, Greece
| |
Collapse
|
31
|
Yoon S, Ryu KH, Baek HJ, An HJ, Joo YH. Epstein-Barr virus-positive diffuse large B-cell lymphoma with human immunodeficiency virus mimicking complicated frontal sinusitis: A case report. World J Clin Cases 2021; 9:1654-1660. [PMID: 33728309 PMCID: PMC7942051 DOI: 10.12998/wjcc.v9.i7.1654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/14/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Primary non-Hodgkin’s lymphoma of the frontal sinus is extremely rare. In addition, Epstein-Barr virus (EBV) has been reported to play a role in the development of human immunodeficiency virus (HIV)-related malignant lymphomas. To the best of our knowledge, there is no report for the HIV-associated, EBV-positive primary diffuse large B-cell lymphoma (DLBCL) in the frontal sinus.
CASE SUMMARY We present a unique case of HIV-associated, EBV-positive DLBCL in the frontal sinus in a 46-year-old man. Computed tomography of paranasal sinuses revealed dense opacification of the right frontal sinus with combined soft tissue swelling. Based on the clinical and radiological findings, the initial diagnosis was complicated frontal sinusitis, presenting Pott’s puffy tumor. Unexpectedly, HIV testing was positive on preoperative laboratory test, and the frontal sinus lesion was confirmed as EBV-positive DLBCL on biopsy.
CONCLUSION Through this article, we suggest that EBV-positive DLBCL should be considered as possible diagnosis for patients with nonspecific space-occupying lesion of the paranasal sinuses. We also highlight an importance of clinical suspicion in diagnosing HIV infection because HIV serology is not routinely tested in patients with paranasal sinus problem.
Collapse
Affiliation(s)
- Seokho Yoon
- Department of Nuclear Medicine and Molecular Imaging, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, South Korea
| | - Kyeong Hwa Ryu
- Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, South Korea
| | - Hye Jin Baek
- Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, South Korea
- Department of Radiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, South Korea
| | - Hyo Jung An
- Department of Pathology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, South Korea
| | - Yeon-Hee Joo
- Department of Otorhinolaryngology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, Changwon 51472, South Korea
| |
Collapse
|
32
|
Lurain K, Ramaswami R, Mangusan R, Widell A, Ekwede I, George J, Ambinder R, Cheever M, Gulley JL, Goncalves PH, Wang HW, Uldrick TS, Yarchoan R. Use of pembrolizumab with or without pomalidomide in HIV-associated non-Hodgkin's lymphoma. J Immunother Cancer 2021; 9:e002097. [PMID: 33608378 PMCID: PMC7898875 DOI: 10.1136/jitc-2020-002097] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Non-Hodgkin's lymphoma (NHL) is currently the most common malignancy among people living with HIV (PLWH) in the USA. NHL in PLWH is more frequently associated with oncogenic viruses than NHL in immunocompetent individuals and is generally associated with increased PD-1 expression and T cell exhaustion. An effective immune-based second-line approach that is less immunosuppressive than chemotherapy may decrease infection risk, improve immune control of oncogenic viruses, and ultimately allow for better lymphoma control. METHODS We conducted a retrospective study of patients with HIV-associated lymphomas treated with pembrolizumab±pomalidomide in the HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute. RESULTS We identified 10 patients with stage IV relapsed and/or primary refractory HIV-associated NHL who were treated with pembrolizumab, an immune checkpoint inihibitor, with or without pomalidomide. Five patients had primary effusion lymphoma (PEL): one had germinal center B cell-like (GCB) diffuse large B cell lymphoma (DLBCL); two had non-GCB DLBCL; one had aggressive B cell lymphoma, not otherwise specified; and one had plasmablastic lymphoma. Six patients received pembrolizumab alone at 200 mg intravenously every 3 weeks, three received pembrolizumab 200 mg intravenously every 4 weeks plus pomalidomide 4 mg orally every day for days 1-21 of a 28-day cycle; and one sequentially received pembrolizumab alone and then pomalidomide alone. The response rate was 50% with particular benefit in gammaherpesvirus-associated tumors. The progression-free survival was 4.1 months (95% CI: 1.3 to 12.4) and overall survival was 14.7 months (95% CI: 2.96 to not reached). Three patients with PEL had leptomeningeal disease: one had a complete response and the other two had long-term disease control. There were four immune-related adverse events (irAEs), all CTCAEv5 grade 2-3; three of the four patients were able to continue receiving pembrolizumab. No irAEs occurred in patients receiving the combination of pembrolizumab and pomalidomide. CONCLUSIONS Treatment of HIV-associated NHL with pembrolizumab with or without pomalidomide elicited responses in several subtypes of HIV-associated NHL. This approach is worth further study in PLWH and NHL.
Collapse
MESH Headings
- Adult
- Aged
- Angiogenesis Inhibitors/adverse effects
- Angiogenesis Inhibitors/therapeutic use
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Disease Progression
- Female
- HIV Infections/complications
- HIV Infections/mortality
- HIV Infections/virology
- Humans
- Immune Checkpoint Inhibitors/adverse effects
- Immune Checkpoint Inhibitors/therapeutic use
- Lymphoma, AIDS-Related/drug therapy
- Lymphoma, AIDS-Related/immunology
- Lymphoma, AIDS-Related/mortality
- Lymphoma, AIDS-Related/virology
- Lymphoma, Non-Hodgkin/drug therapy
- Lymphoma, Non-Hodgkin/immunology
- Lymphoma, Non-Hodgkin/mortality
- Lymphoma, Non-Hodgkin/virology
- Male
- Middle Aged
- Progression-Free Survival
- Retrospective Studies
- Thalidomide/adverse effects
- Thalidomide/analogs & derivatives
- Thalidomide/therapeutic use
- Time Factors
Collapse
Affiliation(s)
- Kathryn Lurain
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ramya Ramaswami
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ralph Mangusan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Anaida Widell
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Irene Ekwede
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jomy George
- Clinical Pharmacokinetics Research Lab, Clinical Center Pharmacy, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard Ambinder
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Martin Cheever
- Cancer Immunotherapy Trials Network, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - James L Gulley
- Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Priscila H Goncalves
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hao-Wei Wang
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas S Uldrick
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Division of Global Oncology, Department of Medicine, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Robert Yarchoan
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Long W, Zhao G, Wu Y, Liu Y. Gallic acid inhibits Kaposi's Sarcoma-associated herpesvirus lytic reactivation by suppressing RTA transcriptional activities. Food Sci Nutr 2021; 9:847-854. [PMID: 33598168 PMCID: PMC7866607 DOI: 10.1002/fsn3.2048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/12/2020] [Accepted: 11/21/2020] [Indexed: 12/17/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic virus, has two life cycle modes: the latent and lytic phases. KSHV lytic reactivation is known to be important both for viral propagation and for KSHV-induced tumorigenesis. The KSHV replication and transcription activator (RTA) protein is essential for lytic reactivation. Gallic acid (GA), one of the most abundant phenolic acids in the plant kingdom, has been shown potential chemotherapeutic efficacy against microbial and cancer. However, the effects of GA on KSHV replication and KSHV-induced tumorigenesis have not yet been reported. Here, we report that GA induces apoptotic cell death in BCBL-1 cells in a dose-dependent manner. GA inhibits KSHV reactivation and reduces the production of progeny virus from KSHV-harboring cells. GA inhibits RTA transcriptional activities by suppressing its binding to target gene promoters. These results suggest that GA may represent a novel strategy for the treatment of KSHV infection and KSHV-associated lymphomas.
Collapse
Affiliation(s)
- Wen‐Ying Long
- Central LaboratoryThe Fourth Affiliated HospitalZhejiang University School of MedicineN1 Shangcheng AvenueYiwu322000China
| | - Guo‐hua Zhao
- Department of NeurologyThe Fourth Affiliated HospitalZhejiang University School of MedicineN1 Shangcheng AvenueYiwu322000China
| | - Yao Wu
- Central LaboratoryThe Fourth Affiliated HospitalZhejiang University School of MedicineN1 Shangcheng AvenueYiwu322000China
| | - Ying Liu
- Central LaboratoryThe Fourth Affiliated HospitalZhejiang University School of MedicineN1 Shangcheng AvenueYiwu322000China
| |
Collapse
|
34
|
Baadani AM, Ballool S, Alhemyadi S, Sallam L, ALsufyani E, Alghamdi A, Alfahad W. The clinical outcome of HIV infection at a tertiary care center in Riyadh, Saudi Arabia. Saudi Med J 2021; 41:965-970. [PMID: 32893278 PMCID: PMC7557546 DOI: 10.15537/smj.2020.9.25274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objectives: To investigate clinical characteristics and the outcome of people living with HIV (PLWHIV) at tertiary care center in Riyadh, Saudi Arabia. Methods: The present retrospective, observational study was carried between 2000-2019 at Prince Sultan Military Medical City (PSMMC), Riyadh, Saudi Arabia. The demographic and clinical characteristics of 137 PLWHIV patients were collected by reviewing the medical data record. Results: Of the total 137 PLWHIV, 78.8% were male and 21.2% were female. At care entry, the most opportunistic infections found were the cytomegalovirus infections. cytomegalovirus (CMV) infections in 13.8% of patients, tuberculosis (8%), AIDS associated malignancy (10.9%), hepatitis B (5.8%), NTM (3.6%), hepatitis C (2.2%). In the present study, more than half of the patients received integrase based combination therapy. The highest number (n=20) of patients were diagnosed in 2018. Conclusions: Our findings describe the clinical characteristics and outcomes of PLWHIV at a major tertiary referral hospital in Saudi Arabia. The non AIDS related disease is the major cause of death in HIV infected patients. Early diagnosis and initiation of antiretroviral therapy resulted in a significant decrease in morbidity and mortality.
Collapse
Affiliation(s)
- Abeer M Baadani
- Division of Infectious Diseases, Department of Medicine, Prince Sultan Military Medical City, Riyadh, Kingdom of Saudi Arabia. E-mail.
| | | | | | | | | | | | | |
Collapse
|
35
|
Contreras-Chavez P, Sanchez-Nadales A, Babets I, Sajjad-Hassan R, Lansigan F. Primary cutaneous B-cell lymphoma-leg type in a young adult with HIV: a case report. Oxf Med Case Reports 2020; 2020:omaa110. [PMID: 33269089 PMCID: PMC7685021 DOI: 10.1093/omcr/omaa110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/09/2020] [Accepted: 10/09/2020] [Indexed: 11/15/2022] Open
Abstract
Primary cutaneous B-cell lymphoma is a very rare entity. Skin lesions mainly occur on the lower extremities. Sheets of immunoblasts and centroblasts are characteristic findings at histologic examination. This case report highlights diagnostic and therapeutic strategies for primary cutaneous B-Cell lymphoma-leg type.
Collapse
Affiliation(s)
| | | | - Igor Babets
- Department of Medicine, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
| | - Romesa Sajjad-Hassan
- Department of Medicine, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
| | - Frederick Lansigan
- Department of Hematology-Oncology, Dartmouth-Hitchcock Medical Center, Norris Cotton Cancer Center, Lebanon, NH 03766, USA
| |
Collapse
|
36
|
Gwiti P, Jenkins M, Sutak J, Melegh Z. Two cases of rare HHV8-driven intravascular lymphoma with synchronous Kaposi sarcoma, both diagnosed at autopsy in renal transplant recipients. AUTOPSY AND CASE REPORTS 2020; 10:e2020206. [PMID: 33344322 PMCID: PMC7707703 DOI: 10.4322/acr.2020.206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We present the first report of two rare yet remarkably similar autopsy cases of Kaposi sarcoma (KS) and intravascular human herpesvirus 8 (HHV8) positive lymphoproliferative disorder in renal transplant patients. It is well established that HHV8 infection causes Kaposi sarcoma (KS). More recently, it is recognized that HHV8 is also related to several lymphoproliferative conditions. These are poorly characterized and often difficult to diagnose. In both cases described herein, the diagnoses of multifocal hepatic KS and intravascular HHV8 positive (EBV negative) systemic diffuse large B-cell lymphoma, NOS were made at autopsy. Given the findings we describe in cases with fatal outcomes, we discuss the implications of HHV8 screening in solid allograft recipients.
Collapse
Affiliation(s)
- Paida Gwiti
- Peterborough City Hospital, Department of Cellular Pathology, Peterborough, UK
| | - Megan Jenkins
- Royal Liverpool University Hospital, Forensic Pathology Unit, Liverpool, UK
| | - Judit Sutak
- Department of Cellular Pathology, North Bristol NHS Trust, Bristol, UK
| | - Zsombor Melegh
- Department of Cellular Pathology, North Bristol NHS Trust, Bristol, UK
| |
Collapse
|
37
|
Ramos JC, Sparano JA, Chadburn A, Reid EG, Ambinder RF, Siegel ER, Moore PC, Rubinstein PG, Durand CM, Cesarman E, Aboulafia D, Baiocchi R, Ratner L, Kaplan L, Capoferri AA, Lee JY, Mitsuyasu R, Noy A. Impact of Myc in HIV-associated non-Hodgkin lymphomas treated with EPOCH and outcomes with vorinostat (AMC-075 trial). Blood 2020; 136:1284-1297. [PMID: 32430507 PMCID: PMC7483436 DOI: 10.1182/blood.2019003959] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
EPOCH (etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin) is a preferred regimen for HIV-non-Hodgkin lymphomas (HIV-NHLs), which are frequently Epstein-Barr virus (EBV) positive or human herpesvirus type-8 (HHV-8) positive. The histone deacetylase (HDAC) inhibitor vorinostat disrupts EBV/HHV-8 latency, enhances chemotherapy-induced cell death, and may clear HIV reservoirs. We performed a randomized phase 2 study in 90 patients (45 per study arm) with aggressive HIV-NHLs, using dose-adjusted EPOCH (plus rituximab if CD20+), alone or with 300 mg vorinostat, administered on days 1 to 5 of each cycle. Up to 1 prior cycle of systemic chemotherapy was allowed. The primary end point was complete response (CR). In 86 evaluable patients with diffuse large B-cell lymphoma (DLBCL; n = 61), plasmablastic lymphoma (n = 15), primary effusion lymphoma (n = 7), unclassifiable B-cell NHL (n = 2), and Burkitt lymphoma (n = 1), CR rates were 74% vs 68% for EPOCH vs EPOCH-vorinostat (P = .72). Patients with a CD4+ count <200 cells/mm3 had a lower CR rate. EPOCH-vorinostat did not eliminate HIV reservoirs, resulted in more frequent grade 4 neutropenia and thrombocytopenia, and did not affect survival. Overall, patients with Myc+ DLBCL had a significantly lower EFS. A low diagnosis-to-treatment interval (DTI) was also associated with inferior outcomes, whereas preprotocol therapy had no negative impact. In summary, EPOCH had broad efficacy against highly aggressive HIV-NHLs, whereas vorinostat had no benefit; patients with Myc-driven DLBCL, low CD4, and low DTI had less favorable outcomes. Permitting preprotocol therapy facilitated accruals without compromising outcomes. This trial was registered at www.clinicaltrials.gov as #NCT0119384.
Collapse
MESH Headings
- Adult
- Aged
- Anti-HIV Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- CD4 Lymphocyte Count
- Cyclophosphamide/administration & dosage
- Cyclophosphamide/adverse effects
- DNA, Viral/blood
- Doxorubicin/administration & dosage
- Doxorubicin/adverse effects
- Drug Administration Schedule
- Etoposide/administration & dosage
- Etoposide/adverse effects
- Female
- Genes, myc
- HIV Infections/drug therapy
- HIV-1/drug effects
- Herpesviridae Infections/complications
- Herpesviridae Infections/virology
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/isolation & purification
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/isolation & purification
- Histone Deacetylase Inhibitors/administration & dosage
- Histone Deacetylase Inhibitors/adverse effects
- Humans
- Kaplan-Meier Estimate
- Lymphoma, AIDS-Related/complications
- Lymphoma, AIDS-Related/drug therapy
- Lymphoma, AIDS-Related/genetics
- Lymphoma, AIDS-Related/virology
- Lymphoma, Non-Hodgkin/complications
- Lymphoma, Non-Hodgkin/drug therapy
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/virology
- Male
- Middle Aged
- Neutropenia/chemically induced
- Prednisone/administration & dosage
- Prednisone/adverse effects
- Progression-Free Survival
- Prospective Studies
- Rituximab/administration & dosage
- Rituximab/adverse effects
- Thrombocytopenia/chemically induced
- Treatment Outcome
- Vincristine/administration & dosage
- Vincristine/adverse effects
- Viral Load/drug effects
- Vorinostat/administration & dosage
- Vorinostat/adverse effects
Collapse
Affiliation(s)
- Juan C Ramos
- Department of Medicine, University of Miami School of Medicine, Miami, FL
| | - Joseph A Sparano
- Department of Oncology, Albert Einstein Comprehensive Cancer Center, Bronx, NY
| | - Amy Chadburn
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY
| | - Erin G Reid
- Department of Medicine, University of California, San Diego, San Diego, CA
| | | | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Page C Moore
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Paul G Rubinstein
- Section of Hematology/Oncology, John H. Stroger Jr Hospital of Cook County, Chicago, IL
| | | | - Ethel Cesarman
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY
| | - David Aboulafia
- Division of Hematology and Oncology, Virginia Mason Medical Center, Seattle, WA
| | - Robert Baiocchi
- Department of Internal Medicine, Ohio State University, Columbus, OH
| | - Lee Ratner
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Lawrence Kaplan
- Department of Medicine, University of California, San Francisco, San Francisco, CA
| | | | - Jeannette Y Lee
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Ronald Mitsuyasu
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Ariela Noy
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; and
- Department of Medicine, Weill Medical College of Cornell University, New York, NY
| |
Collapse
|
38
|
Kimani SM, Painschab MS, Horner MJ, Muchengeti M, Fedoriw Y, Shiels MS, Gopal S. Epidemiology of haematological malignancies in people living with HIV. Lancet HIV 2020; 7:e641-e651. [PMID: 32791045 PMCID: PMC10199168 DOI: 10.1016/s2352-3018(20)30118-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/19/2022]
Abstract
People living with HIV or AIDS are at increased risk of Hodgkin and non-Hodgkin lymphoma compared with HIV-negative individuals. Data on the risk of multiple myeloma or leukaemia are inconsistent and of low quality but the risk does not seem to be increased. Specific haematological malignancies occur in different contexts of age, CD4 cell count, HIV control, viral co-infections, or chronic inflammation, and the expansion of combination antiretroviral therapy has led to varied demographic and epidemiological shifts among people with HIV. Increased use of combination antiretroviral therapy has substantially reduced the risks of diffuse large B-cell lymphoma, Burkitt lymphoma, and primary CNS lymphoma, and to a lesser extent, Hodgkin lymphoma. There is no effect of combination antiretroviral therapy use on multiple myeloma or leukaemia. Although many cases of HIV are in low-income and middle-income countries, high-quality epidemiological data for haematological malignancies from these regions are scarce. Closing this gap is an essential first step in decreasing mortality from HIV-associated haematological malignancies worldwide. Finally, although multicentric Castleman disease is not a neoplastic condition, it is an emerging precursor to neoplastic high-grade B-cell lymphoproliferation among people with HIV, especially for individuals on long-term combination antiretroviral therapy with well controlled HIV.
Collapse
Affiliation(s)
- Stephen M Kimani
- Division of Hematology and Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; University of North Carolina Project-Malawi, Lilongwe, Malawi
| | - Matthew S Painschab
- Division of Hematology and Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; University of North Carolina Project-Malawi, Lilongwe, Malawi
| | - Marie-Josèphe Horner
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Yuri Fedoriw
- Division of Hematology and Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; University of North Carolina Project-Malawi, Lilongwe, Malawi
| | - Meredith S Shiels
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Satish Gopal
- Division of Hematology and Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; University of North Carolina Project-Malawi, Lilongwe, Malawi.
| |
Collapse
|
39
|
Abstract
Purpose of Review Cancer remains a major cause of morbidity and mortality in HIV-infected individuals, with aggressive non-Hodgkin’s lymphoma as the most frequent one. However, the introduction of modern antiretroviral therapy (ART) drastically improved treatment options and prognosis in HIV-associated lymphomas. This review summarized the current treatment landscape and future challenges in HIV-positive patients with non-Hodgkin’s and Hodgkin’s lymphoma. Recent Findings Selecting the appropriate therapy for the individual patient, diffuse-large B cell lymphoma, Burkitt’s lymphoma, and Hodgkin’s disease may be curable diseases. In contrast, the prognosis of plasmablastic lymphoma and primary effusion lymphoma remain poor. New treatment approaches, as targeted therapies or CAR T cell therapy, may broaden the therapeutic armamentarium. Summary The continuous application of ART is mandatory for successful treatment. The choice of lymphoma therapy may follow the recommendations for HIV-negative patients, but prospective trials in HIV-lymphoma are needed.
Collapse
|
40
|
Latour S, Fischer A. Signaling pathways involved in the T-cell-mediated immunity against Epstein-Barr virus: Lessons from genetic diseases. Immunol Rev 2020; 291:174-189. [PMID: 31402499 DOI: 10.1111/imr.12791] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/10/2019] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiencies (PIDs) provide researchers with unique models to understand in vivo immune responses in general and immunity to infections in particular. In humans, impaired immune control of Epstein-Barr virus (EBV) infection is associated with the occurrence of several different immunopathologic conditions; these include non-malignant and malignant B-cell lymphoproliferative disorders, hemophagocytic lymphohistiocytosis (HLH), a severe inflammatory condition, and a chronic acute EBV infection of T cells. Studies of PIDs associated with a predisposition to develop severe, chronic EBV infections have led to the identification of key components of immunity to EBV - notably the central role of T-cell expansion and its regulation in the pathophysiology of EBV-associated diseases. On one hand, the defective expansion of EBV-specific CD8 T cells results from mutations in genes involved in T-cell activation (such as RASGRP1, MAGT1, and ITK), DNA metabolism (CTPS1) or co-stimulatory pathways (CD70, CD27, and TNFSFR9 (also known as CD137/4-1BB)) leads to impaired elimination of proliferating EBV-infected B cells and the occurrence of lymphoma. On the other hand, protracted T-cell expansion and activation after the defective killing of EBV-infected B cells is caused by genetic defects in the components of the lytic granule exocytosis pathway or in the small adapter protein SH2D1A (also known as SAP), a key activator of T- and NK cell-cytotoxicity. In this setting, the persistence of EBV-infected cells results in HLH, a condition characterized by unleashed T-cell and macrophage activation. Moreover, genetic defects causing selective vulnerability to EBV infection have highlighted the role of co-receptor molecules (CD27, CD137, and SLAM-R) selectively involved in immune responses against infected B cells via specific T-B cell interactions.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Paris, France.,University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France
| | - Alain Fischer
- University Paris Descartes Sorbonne Paris Cité, Imagine Institut, Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,Collège de France, Paris, France.,Inserm UMR 1163, Paris, France
| |
Collapse
|
41
|
Hellbacher E, Hjorton K, Backlin C, Enblad G, Sundström C, Baecklund E, Knight A. Malignant lymphoma in granulomatosis with polyangiitis: subtypes, clinical characteristics and prognosis. Acta Oncol 2019; 58:1655-1659. [PMID: 31407922 DOI: 10.1080/0284186x.2019.1634833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Erik Hellbacher
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
| | - Karin Hjorton
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
| | - Carin Backlin
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Christer Sundström
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Eva Baecklund
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
| | - Ann Knight
- Department of Medical Sciences, Section of Rheumatology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
42
|
Abstract
Cancer is the leading cause of death for HIV-infected persons in economically developed countries, even in the era of antiretroviral therapy (ART). Lymphomas remain a leading cause of cancer morbidity and mortality for HIV-infected patients and have increased incidence even in patients optimally treated with ART. Even limited interruptions of ART can lead to CD4 cell nadirs and HIV viremia, and increase the risk of lymphoma. The treatment of lymphoma is now similar for HIV-infected patients and the general population: patients with good HIV control can withstand intensive therapies appropriate to the lymphoma, including autologous and even allogeneic hematopoietic stem cell transplantation. Nonetheless, HIV-related lymphomas have unique aspects, including differences in lymphoma pathogenesis, driven by the presence of HIV, in addition to coinfection with oncogenic viruses. These differences might be exploited in the future to inform therapies. The relative incidences of lymphoma subtypes also differ in the HIV-infected population, and the propensity to advanced stage, aggressive presentation, and extranodal disease is higher. Other unique aspects include the need to avoid potential interactions between ART and chemotherapeutic agents, and the need for HIV-specific supportive care, such as infection prophylaxis. Despite these specific challenges for cancer treatment in the setting of HIV infection, the care of these patients has progressed sufficiently that recent guidelines from the American Society of Clinical Oncology advocate the inclusion of HIV-infected patients alongside HIV- patients in cancer clinical trials when appropriate.
Collapse
|
43
|
Prevalence and risk factors for Felis catus gammaherpesvirus 1 detection in domestic cats in Italy. Vet Microbiol 2019; 238:108426. [PMID: 31648722 DOI: 10.1016/j.vetmic.2019.108426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/15/2019] [Accepted: 09/20/2019] [Indexed: 11/24/2022]
Abstract
Felis catus gammaherpesvirus 1 (FcaGHV1), a novel gammaherpesvirus of domestic cats identified in 2014, has been detected in different countries demonstrating a worldwide distribution. The aim of this study was to establish the prevalence of FcaGHV1 in Italy using a molecular epidemiological approach. FcaGHV1 DNA was detected with virus-specific real-time PCR in ≃1% of 2659 feline blood samples tested. Analysis of risk factors showed that being male and coinfection with feline immunodeficiency virus (FIV) increase the likelihood of FcaGHV1 detection. One-third of FcaGHV1-positive cats also tested positive for FIV provirus, whereas coinfections with feline panleukopenia virus were not demonstrated. Further studies are necessary to confirm the risk factors for FcaGHV1 detection and the pathobiology of the virus.
Collapse
|
44
|
Shannon-Lowe C, Rickinson A. The Global Landscape of EBV-Associated Tumors. Front Oncol 2019; 9:713. [PMID: 31448229 PMCID: PMC6691157 DOI: 10.3389/fonc.2019.00713] [Citation(s) in RCA: 279] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV), a gamma-1 herpesvirus, is carried as a life-long asymptomatic infection by the great majority of individuals in all human populations. Yet this seemingly innocent virus is aetiologically linked to two pre-malignant lymphoproliferative diseases (LPDs) and up to nine distinct human tumors; collectively these have a huge global impact, being responsible for some 200,000 new cases of cancer arising worldwide each year. EBV replicates in oral epithelium but persists as a latent infection within the B cell system and several of its diseases are indeed of B cell origin; these include B-LPD of the immunocompromised, Hodgkin Lymphoma (HL), Burkitt Lymphoma (BL), Diffuse Large B cell Lymphoma (DLBCL) and two rarer tumors associated with profound immune impairment, plasmablastic lymphoma (PBL) and primary effusion lymphoma (PEL). Surprisingly, the virus is also linked to tumors arising in other cellular niches which, rather than being essential reservoirs of virus persistence in vivo, appear to represent rare cul-de-sacs of latent infection. These non-B cell tumors include LPDs and malignant lymphomas of T or NK cells, nasopharyngeal carcinoma (NPC) and gastric carcinoma of epithelial origin, and leiomyosarcoma, a rare smooth muscle cell tumor of the immunocompromised. Here we describe the main characteristics of these tumors, their distinct epidemiologies, histological features and degrees of EBV association, then consider how their different patterns of EBV latency may reflect the alternative latency programmes through which the virus first colonizes and then persists in immunocompetent host. For each tumor, we discuss current understanding of EBV's role in the oncogenic process, the identity (where known) of host genetic and environmental factors predisposing tumor development, and the recent evidence from cancer genomics identifying somatic changes that either complement or in some cases replace the contribution of the virus. Thereafter we look for possible connections between the pathogenesis of these apparently different malignancies and point to new research areas where insights may be gained.
Collapse
Affiliation(s)
- Claire Shannon-Lowe
- Institute for Immunology and Immunotherapy, The University of Birmingham, Birmingham, United Kingdom
| | - Alan Rickinson
- Institute for Immunology and Immunotherapy, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
45
|
Novacco M, Kohan NR, Stirn M, Meli ML, Díaz-Sánchez AA, Boretti FS, Hofmann-Lehmann R. Prevalence, Geographic Distribution, Risk Factors and Co-Infections of Feline Gammaherpesvirus Infections in Domestic Cats in Switzerland. Viruses 2019; 11:E721. [PMID: 31390829 PMCID: PMC6723517 DOI: 10.3390/v11080721] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/31/2019] [Accepted: 08/04/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, a gammaherpesvirus was described in domestic cats (FcaGHV1). The goal of the present study was to investigate the presence of FcaGHV1 in Swiss domestic cats and analyze potential risk factors. Blood samples from 881 cats presented to veterinarians in all Swiss cantons and from 91 stray cats and neoplastic tissue samples from 17 cats with lymphoma were evaluated. FcaGHV1 was detected by real-time PCR targeting the glycoprotein B gene, followed by sequencing. Blood samples were also tested for feline hemoplasmas, feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV). The molecular prevalence of FcaGHV1 was 6.0% (95% confidence interval (CI), 4.5-7.8%) in cats presented to veterinarians and 5.5% (95% CI, 1.8-12.4%) in stray cats. FcaGHV1 PCR-positive cats originated from 19/26 Swiss cantons. Factors significantly associated with FcaGHV1 detection included male sex, age >3 years, nonpedigree status and co-infection with FIV and hemoplasmas. Moreover, FeLV viremia tended to be associated with FcaGHV1 detection. High FcaGHV1 blood loads were found more frequently in FeLV-viremic cats and less frequently in hemoplasma-infected cats than in uninfected cats. Clinical information was unavailable for most of the 881 cats, but leukemia, carcinoma and cardiomyopathy were reported in FcaGHV1-positive cats. None of the tissue samples from the 17 cats with lymphoma tested positive for FcaGHV1. Sequence analyses revealed homogeneity among the Swiss isolates and >99.7% identity to published FcaGHV1 sequences. In conclusion, FcaGHV1 is present in Switzerland with a similar prevalence in cats presented to veterinarians and in stray cats. The pathogenic potential of FcaGHV1 needs further evaluation.
Collapse
Affiliation(s)
- Marilisa Novacco
- Clinical Laboratory, Department for Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland.
| | - Neda Ranjbar Kohan
- Clinical Laboratory, Department for Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Martina Stirn
- Clinical Laboratory, Department for Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Marina L Meli
- Clinical Laboratory, Department for Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Adrian Alberto Díaz-Sánchez
- Clinical Laboratory, Department for Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Centro Nacional de Sanidad Agropecuaria (CENSA), San José de las Lajas 32700, Mayabeque, Cuba
| | - Felicitas S Boretti
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department for Clinical Diagnostics and Services, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
- Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
46
|
Abstract
Although about 90% of the world's population is infected by EBV only a small subset of the related infections result in neoplastic transformation. EBV is a versatile oncogenic agent involved in a multitude of hematopoietic, epithelial, and mesenchymal neoplasms, but the precise role of EBV in the pathogenesis of many of the associated lymphoid/histiocytic proliferations remains hypothetical or not completely understood. Additional studies and use of evolving technologies such as high-throughput next-generation sequencing may help address this knowledge gap and may lead to enhanced diagnostic assessment and the development of potential therapeutic interventions.
Collapse
|
47
|
Shepherd L, Ryom L, Law M, Hatleberg CI, de Wit S, Monforte AD, Battegay M, Phillips A, Bonnet F, Reiss P, Pradier C, Grulich A, Sabin C, Lundgren J, Mocroft A. Differences in Virological and Immunological Risk Factors for Non-Hodgkin and Hodgkin Lymphoma. J Natl Cancer Inst 2019; 110:598-607. [PMID: 29267895 DOI: 10.1093/jnci/djx249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/27/2017] [Indexed: 12/18/2022] Open
Abstract
Background Non-Hodgkin lymphoma (NHL) and Hodgkin lymphoma (HL) are increased in populations with immune dysfunction, including people living with HIV; however, there is little evidence for to what degree immunological and virological factors differently affect NHL and HL risk. Methods Data from the Data Collection on Adverse events of Anti-HIV Drugs Study cohort were analyzed to identify independent risk factors for NHL and HL using hazard ratios (HRs), focusing on current and cumulative area under the curve (AUC) measures of immunological and virological status. Variables with different associations with NHL and HL were identified using marginal Cox models. All statistical tests were two-sided. Results Among 41 420 people followed for 337 020 person-years, 392 developed NHL (incidence rate = 1.17/1000 person-years of follow-up [PYFU], 95% confidence interval [CI] = 1.06 to 1.30) and 149 developed HL (incidence rate = 0.44/1000 PYFU, 95% CI = 0.38 to 0.52). Higher risk of both NHL and HL was associated with lower current CD4 cell count (adjusted HR [aHR] of NHL for CD4 <100 vs > 599 cells/mm3 = 8.08, 95% CI = 5.63 to 11.61; HL = 4.58, 95% CI = 2.22 to 9.45), whereas higher current HIV viral load (aHR of NHL for HIV-VL >1000 vs < 50 copies/mL = 1.97, 95% CI = 1.50 to 2.59) and higher AUC of HIV-VL (aHR of NHL for highest vs lowest quintile = 2.91, 95% CI = 1.92 to 4.41) were associated with NHL only. Both current and AUC of HIV-VL were factors that had different associations with NHL and HL, where the hazard ratio for NHL was progressively higher than for HL with increasing HIV-VL category. Lower current CD4 cell count had a strong but similar association with both NHL and HL. Conclusions CD4 depletion increased risk of both types of lymphomas while current and accumulated HIV-VL was associated with NHL only. This suggests that NHL development is related to both CD4 cell depletion and added immune dysfunction derived from ongoing HIV replication. This latter factor was not associated with HL risk.
Collapse
Affiliation(s)
- Leah Shepherd
- Research Department of Infection and Population Health, UCL, London, UK
| | - Lene Ryom
- CHIP, Department of Infectious Diseases, Section 2100, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Matthew Law
- The Kirby Institute, UNSW Australia, Sydney, Australia
| | - Camilla Ingrid Hatleberg
- CHIP, Department of Infectious Diseases, Section 2100, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stephane de Wit
- Division of Infectious Diseases, Saint Pierre University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Antonella d'Arminio Monforte
- Dipartimento di Scienze della Salute, Clinica di Malattie Infectitive e Tropicali, Azienda Ospedaliera-Polo Universitario San Paolo, Milan, Italy
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Andrew Phillips
- Research Department of Infection and Population Health, UCL, London, UK
| | - Fabrice Bonnet
- CHU de Bordeaux and INSERM U1219, Université de Bordeaux, Bordeaux, France
| | - Peter Reiss
- Academic Medical Center, Division of Infectious Diseases, Department of Global Health, University of Amsterdam, and HIV Monitoring Foundation, Amsterdam, the Netherlands
| | | | | | - Caroline Sabin
- Research Department of Infection and Population Health, UCL, London, UK
| | - Jens Lundgren
- CHIP, Department of Infectious Diseases, Section 2100, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Amanda Mocroft
- Research Department of Infection and Population Health, UCL, London, UK
| |
Collapse
|
48
|
Epstein-Barr virus biomarkers have no prognostic value in HIV-related Hodgkin lymphoma in the modern combined antiretroviral therapy era. AIDS 2019; 33:993-1000. [PMID: 30946153 DOI: 10.1097/qad.0000000000002129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Epstein-Barr virus (EBV) has been implicated in lymphomagenesis of HIV-related classical Hodgkin lymphoma (HIV-cHL). The utility of EBV molecular and serological biomarkers has scarcely been examined in HIV-cHL in the recent combined antiretroviral therapy (cART) era. DESIGN We evaluated EBV DNA load and a panel of EBV antibodies in HIV-cHL patients prospectively enrolled in the French ANRS-CO16 Lymphovir cohort between 2008 and 2015. METHODS Pretreatment whole blood, plasma EBV DNA load and serological profiles were analysed in 63 HIV-infected patients diagnosed with cHL. For the 42 patients with available material, comparisons were performed between values at diagnosis and 6 months after the initiation of chemotherapy. RESULTS Pretreatment whole blood and plasma EBV DNA loads were positive in 84 and 59% of HIV-cHL patients, respectively. Two-year progression-free survival estimates did not differ between the patients with pretreatment whole blood (n = 53) or plasma (n = 37) EBV DNA(+) and the patients with pretreatment whole blood (n = 10) or plasma (n = 26) EBV DNA(-) (92 vs. 80% or 89 vs. 92%, P = 0.36 and 0.47, respectively). At diagnosis, 47% of patients harboured an EBV reactivation serological profile. Following chemotherapy, whole blood and plasma EBV DNA levels significantly declined from medians of 1570 [interquartile range, 230-3760) and 73 (0-320) copies/ml to 690 (0-1830) and 0 (0-0) copies/ml, respectively (P = 0.02 and P < 0.0001, respectively]. Anti-EBV IgG antibody level significantly dropped at 6-month follow-up (P = 0.004). CONCLUSION Whole blood and plasma EBV DNA loads do not constitute prognostic markers in HIV-cHL patients in the modern cART era.
Collapse
|
49
|
Chronic CD30 signaling in B cells results in lymphomagenesis by driving the expansion of plasmablasts and B1 cells. Blood 2019; 133:2597-2609. [PMID: 30962205 DOI: 10.1182/blood.2018880138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/08/2019] [Indexed: 01/12/2023] Open
Abstract
CD30 is expressed on a variety of B-cell lymphomas, such as Hodgkin lymphoma, primary effusion lymphoma, and a diffuse large B-cell lymphoma subgroup. In normal tissues, CD30 is expressed on some activated B and T lymphocytes. However, the physiological function of CD30 signaling and its contribution to the generation of CD30+ lymphomas are still poorly understood. To gain a better understanding of CD30 signaling in B cells, we studied the expression of CD30 in different murine B-cell populations. We show that B1 cells expressed higher levels of CD30 than B2 cells and that CD30 was upregulated in IRF4+ plasmablasts (PBs). Furthermore, we generated and analyzed mice expressing a constitutively active CD30 receptor in B lymphocytes. These mice displayed an increase in B1 cells in the peritoneal cavity (PerC) and secondary lymphoid organs as well as increased numbers of plasma cells (PCs). TI-2 immunization resulted in a further expansion of B1 cells and PCs. We provide evidence that the expanded B1 population in the spleen included a fraction of PBs. CD30 signals seemed to enhance PC differentiation by increasing activation of NF-κB and promoting higher levels of phosphorylated STAT3 and STAT6 and nuclear IRF4. In addition, chronic CD30 signaling led to B-cell lymphomagenesis in aged mice. These lymphomas were localized in the spleen and PerC and had a B1-like/plasmablastic phenotype. We conclude that our mouse model mirrors chronic B-cell activation with increased numbers of CD30+ lymphocytes and provides experimental proof that chronic CD30 signaling increases the risk of B-cell lymphomagenesis.
Collapse
|
50
|
Chandrasekharan JA, Sharma-Walia N. Arachidonic Acid Derived Lipid Mediators Influence Kaposi's Sarcoma-Associated Herpesvirus Infection and Pathogenesis. Front Microbiol 2019; 10:358. [PMID: 30915039 PMCID: PMC6422901 DOI: 10.3389/fmicb.2019.00358] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/11/2019] [Indexed: 12/30/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) infection, particularly latent infection is often associated with inflammation. The arachidonic acid pathway, the home of several inflammation and resolution associated lipid mediators, is widely altered upon viral infections. Several in vitro studies show that these lipid mediators help in the progression of viral pathogenesis. This review summarizes the findings related to human herpesvirus KSHV infection and arachidonic acid pathway metabolites. KSHV infection has been shown to promote inflammation by upregulating cyclooxygenase-2 (COX-2), 5 lipoxygenase (5LO), and their respective metabolites prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) to promote latency and an inflammatory microenvironment. Interestingly, the anti-inflammatory lipid mediator lipoxin is downregulated during KSHV infection to facilitate infected cell survival. These studies aid in understanding the role of arachidonic acid pathway metabolites in the progression of viral infection, the host inflammatory response, and pathogenesis. With limited therapeutic options to treat KSHV infection, use of inhibitors to these inflammatory metabolites and their synthetic pathways or supplementing anti-inflammatory lipid mediators could be an effective alternative therapeutic.
Collapse
Affiliation(s)
- Jayashree A Chandrasekharan
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Neelam Sharma-Walia
- Department of Microbiology and Immunology, H.M. Bligh Cancer Research Laboratories, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|