1
|
Shao X, Dang Y, Zhang T, Bai N, Huang J, Guo M, Sun L, Li M, Sun X, Zhang X, Han F, Zhang N, Zhuang H, Li Y. LINC00869 Promotes Hepatocellular Carcinoma Metastasis via Protrusion Formation. Mol Cancer Res 2024; 22:282-294. [PMID: 37934195 DOI: 10.1158/1541-7786.mcr-23-0414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/05/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Coordination of filament assembly and membrane remodeling is required for the directional migration of cancer cells. The Wiskott-Aldrich syndrome protein (WASP) recruits the actin-related protein (ARP) 2/3 complex to assemble branched actin networks. The goal of our study was to assess the potential regulatory role exerted by the novel long noncoding RNA (lncRNA) LINC00869 on hepatocellular carcinoma (HCC) cells. We used HCC cells to overexpress or knockdown LINC00869, analyzed patient data from publicly available databases and Cancer Hospital Affiliated with Zhengzhou University, and used a xenograft mouse model of HCC to study the molecular mechanism associated with LINC00869 expression. We found that high levels of LINC00869 expression were associated with poor prognosis in patients with HCC. Next, we detected an interaction between LINC00869 and both WASP and ARP2 in HCC cells, and observed a modulatory effect of LINC00869 on the phosphorylation of WASP at Y291 and the activity of cell division control protein 42 (CDC42). These modulatory roles were required for WASP/CDC42 activity on F-actin polymerization to enhance membrane protrusion formation and maintain persistent cell polarization. This, in turn, promoted the migration and invasion abilities of HCC cells. Finally, we confirmed the role of LINC00869in vivo, using the tumor xenograft mouse model; and identified a positive correlation between LINC00869 expression levels and the phosphorylation levels of WASP in HCC samples. Overall, our findings suggest a unique mechanism by which LINC00869 orchestrates membrane protrusion during migration and invasion of HCC cells. IMPLICATIONS LncRNA LINC00869 regulates the activity of CDC42-WASP pathway and positively affects protrusion formation in HCC cells, which expands the current understanding of lncRNA functions as well as gives a better understanding of carcinogenesis.
Collapse
Affiliation(s)
- Xiaowen Shao
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yamei Dang
- Department of Microbiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tingting Zhang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Nan Bai
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jianing Huang
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mengya Guo
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Li Sun
- Department of Gynaecology and Obstetrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Minghe Li
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xiao Sun
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinran Zhang
- Department of Pharmacy, Tianjin First Central Hospital, Tianjin, China
| | - Feng Han
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Ning Zhang
- Translational Cancer Research Center, Peking University First Hospital, Beijing, China
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Tianjin, China
| | - Hao Zhuang
- Department of Hepatic Biliary Pancreatic Surgery, Cancer Hospital Affiliated to Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Yongmei Li
- Department of Pathogen Biology and Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Teegala LR, Elshoweikh Y, Gudneppanavar R, Thodeti S, Pokhrel S, Southard E, Thodeti CK, Paruchuri S. Protein Kinase C α and β compensate for each other to promote stem cell factor-mediated KIT phosphorylation, mast cell viability and proliferation. FASEB J 2022; 36:e22273. [PMID: 35349200 PMCID: PMC9298465 DOI: 10.1096/fj.202101838rrr] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022]
Abstract
Mast cells (MCs) develop from hematopoietic progenitors and differentiate into mature MCs that reside within connective or mucosal tissues. Though the number of MCs in tissues usually remains constant, inflammation and asthma disturb this homeostasis, leading to proliferation of MCs. Understanding the signaling events behind this proliferative response could lead to the development of novel strategies for better management of allergic diseases. MC survival, proliferation, differentiation, and migration are all maintained by a MC growth factor, stem cell factor (SCF) via its receptor, KIT. Here, we explored how protein kinase C (PKC) redundancy influences MC proliferation in bone marrow‐derived MC (BMMC). We found that SCF activates PKCα and PKCβ isoforms, which in turn modulates KIT phosphorylation and internalization. Further, PKCα and PKCβ activate p38 mitogen activated protein kinase (MAPK), and this axis subsequently regulates SCF‐induced MC cell proliferation. To ascertain the individual roles of PKCα and PKCβ, we knocked down either PKCα or PKCβ or both via short hairpin RNA (shRNA) and analyzed KIT phosphorylation, p38 MAPK phosphorylation, and MC viability and proliferation. To our surprise, downregulation of neither PKCα nor PKCβ affected MC viability and proliferation. In contrast, blocking both PKCα and PKCβ significantly attenuated SCF‐induced cell viability and proliferation, suggesting that PKCα and PKCβ compensate for each other downstream of SCF signaling to enhance MC viability and proliferation. Our results not only suggest that PKC classical isoforms are novel therapeutic targets for SCF/MC‐mediated inflammatory and allergic diseases, but they also emphasize the importance of inhibiting both PKCα and β isoforms simultaneously to prevent MC proliferation.
Collapse
Affiliation(s)
- Lakshminarayan Reddy Teegala
- Department of Chemistry, University of Akron, Akron, Ohio, USA.,Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, USA
| | | | | | | | - Sabita Pokhrel
- Department of Chemistry, University of Akron, Akron, Ohio, USA
| | - Erik Southard
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, USA
| | - Charles K Thodeti
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, USA.,Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Sailaja Paruchuri
- Department of Chemistry, University of Akron, Akron, Ohio, USA.,Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, USA
| |
Collapse
|
3
|
Gutierrez-Guerrero A, Abrey Recalde MJ, Mangeot PE, Costa C, Bernadin O, Périan S, Fusil F, Froment G, Martinez-Turtos A, Krug A, Martin F, Benabdellah K, Ricci EP, Giovannozzi S, Gijsbers R, Ayuso E, Cosset FL, Verhoeyen E. Baboon Envelope Pseudotyped "Nanoblades" Carrying Cas9/gRNA Complexes Allow Efficient Genome Editing in Human T, B, and CD34 + Cells and Knock-in of AAV6-Encoded Donor DNA in CD34 + Cells. Front Genome Ed 2021; 3:604371. [PMID: 34713246 PMCID: PMC8525375 DOI: 10.3389/fgeed.2021.604371] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/18/2021] [Indexed: 12/26/2022] Open
Abstract
Programmable nucleases have enabled rapid and accessible genome engineering in eukaryotic cells and living organisms. However, their delivery into human blood cells can be challenging. Here, we have utilized "nanoblades," a new technology that delivers a genomic cleaving agent into cells. These are modified murine leukemia virus (MLV) or HIV-derived virus-like particle (VLP), in which the viral structural protein Gag has been fused to Cas9. These VLPs are thus loaded with Cas9 protein complexed with the guide RNAs. Highly efficient gene editing was obtained in cell lines, IPS and primary mouse and human cells. Here, we showed that nanoblades were remarkably efficient for entry into human T, B, and hematopoietic stem and progenitor cells (HSPCs) thanks to their surface co-pseudotyping with baboon retroviral and VSV-G envelope glycoproteins. A brief incubation of human T and B cells with nanoblades incorporating two gRNAs resulted in 40 and 15% edited deletion in the Wiskott-Aldrich syndrome (WAS) gene locus, respectively. CD34+ cells (HSPCs) treated with the same nanoblades allowed 30-40% exon 1 drop-out in the WAS gene locus. Importantly, no toxicity was detected upon nanoblade-mediated gene editing of these blood cells. Finally, we also treated HSPCs with nanoblades in combination with a donor-encoding rAAV6 vector resulting in up to 40% of stable expression cassette knock-in into the WAS gene locus. Summarizing, this new technology is simple to implement, shows high flexibility for different targets including primary immune cells of human and murine origin, is relatively inexpensive and therefore gives important prospects for basic and clinical translation in the area of gene therapy.
Collapse
Affiliation(s)
- Alejandra Gutierrez-Guerrero
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Maria Jimena Abrey Recalde
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Laboratory of Lentiviral Vectors and Gene Therapy, University Institute of Italian Hospital, National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Philippe E Mangeot
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Caroline Costa
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Ornellie Bernadin
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Séverine Périan
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Floriane Fusil
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Gisèle Froment
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | | | - Adrien Krug
- Université Côte d'Azur, INSERM, Nice, France
| | - Francisco Martin
- Centre for Genomics and Oncological Research (GENYO), Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Karim Benabdellah
- Centre for Genomics and Oncological Research (GENYO), Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Granada, Spain
| | - Emiliano P Ricci
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Laboratory of Biology and Modeling of the Cell (LBMC), Université de Lyon, Ecole Normale Supérieure de Lyon (ENS de Lyon), Université Claude Bernard, Inserm, U1210, CNRS, UMR5239, Lyon, France
| | - Simone Giovannozzi
- Laboratory for Viral Vector Technology & Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium.,KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Rik Gijsbers
- Laboratory for Viral Vector Technology & Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Eduard Ayuso
- INSERM UMR1089, University of Nantes, Centre Hospitalier Universitaire, Nantes, France
| | - François-Loïc Cosset
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Els Verhoeyen
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Université Côte d'Azur, INSERM, Nice, France
| |
Collapse
|
4
|
Chuyen A, Rulquin C, Daian F, Thomé V, Clément R, Kodjabachian L, Pasini A. The Scf/Kit pathway implements self-organized epithelial patterning. Dev Cell 2021; 56:795-810.e7. [PMID: 33756121 DOI: 10.1016/j.devcel.2021.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 01/11/2023]
Abstract
How global patterns emerge from individual cell behaviors is poorly understood. In the Xenopus embryonic epidermis, multiciliated cells (MCCs) are born in a random pattern within an inner mesenchymal layer and subsequently intercalate at regular intervals into an outer epithelial layer. Using video microscopy and mathematical modeling, we found that regular pattern emergence involves mutual repulsion among motile immature MCCs and affinity toward outer-layer intercellular junctions. Consistently, Arp2/3-mediated actin remodeling is required for MCC patterning. Mechanistically, we show that the Kit tyrosine kinase receptor, expressed in MCCs, and its ligand Scf, expressed in outer-layer cells, are both required for regular MCC distribution. Membrane-associated Scf behaves as a potent adhesive cue for MCCs, while its soluble form promotes their mutual repulsion. Finally, Kit expression is sufficient to confer order to a disordered heterologous cell population. This work reveals how a single signaling system can implement self-organized large-scale patterning.
Collapse
|
5
|
Sethumadhavan A, Mani M. Kit activates interleukin-4 receptor and effector signal transducer and activator of transcription 6 independent of its cognate ligand in mouse mast cells. Immunology 2020; 159:441-449. [PMID: 31957000 DOI: 10.1111/imm.13174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 11/30/2022] Open
Abstract
Signaling by Kit has been extensively studied in hematopoietic cells and is essential for the survival, proliferation and maintenance of hematopoietic stem and progenitor cells. In addition to the activation of intrinsic signaling pathways, Kit has been shown to interact with lineage-restricted type I cytokine receptors and produce cross signals, e.g. erythropoietin receptor, interleukin-7 receptor (IL-7R), IL-3R. Based on the earlier studies, we hypothesize that Kit activate other type I cytokine receptors in a cell-specific manner and execute cell-specific function. To investigate other Kit-activated receptors, we tested Kit and IL-4R cross-receptor activation in murine bone-marrow-derived mast cells, which express both Kit and IL-4R at the surface level. Kit upon activation by Kit ligand (KL), activated IL-4Rα, γC , and signal transducer and activator of transcription 6 independent of its cognate ligand IL-4. Though KL and IL-4 are individually mitogenic, combinations of KL and IL-4 synergistically promoted mast cell proliferation. Furthermore, inhibition of lipid raft formation by methyl-β-cyclodextrin resulted in loss of synergistic proliferation. Together the data suggest IL-4R as a novel Kit-activated receptor. Such cross-receptor activations are likely to be a universal mechanism of Kit signaling in hematopoiesis.
Collapse
Affiliation(s)
- Aiswarya Sethumadhavan
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Maheswaran Mani
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
6
|
Kim D, Uner A, Saglam A, Chadburn A, Crane GM. Peripheral eosinophilia in primary immunodeficiencies of actin dysregulation: A case series of Wiskott-Aldrich syndrome, CARMIL2 and DOCK8 deficiency and review of the literature. Ann Diagn Pathol 2019; 43:151413. [DOI: 10.1016/j.anndiagpath.2019.151413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/11/2019] [Indexed: 11/26/2022]
|
7
|
Gopala Krishnan GK, Sethumadhavan A, Vellaichamy P, Mani M. Pseudomonas aeruginosa infection stimulates mitogen-activated protein kinases signaling pathway in human megakaryocytes. Microbiol Immunol 2019; 63:229-237. [PMID: 31041998 DOI: 10.1111/1348-0421.12685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/07/2023]
Abstract
Pseudomonas aeruginosa is a major cause of nosocomial infections and contributes to higher mortality in hospitalized individuals. Infection by P. aeruginosa triggers host immune response through activation of pathogen recognition receptors, which are present in innate cells. Several studies have reported the mechanism of P. aeruginosa induced innate immunity in multiple cell types. But so far there is no reports on response of megakaryocytes to P. aeruginosa infection. Hence, our aim was to investigate the precise role and signaling mechanism of megakaryocytes during P. aeruginosa infection. In this study, we used Mo7e cells as representatives of human megakaryocyte and found that P. aeruginosa infection induces cytotoxicity in these cells. We further demonstrated that P. aeruginosa infection modulates p38 and extracellular signal regulated kinase pathways in Mo7e cells. Protein expression profiling in P. aeruginosa lipopolysaccharide-treated Mo7e cells revealed upregulation of importin subunit β and downregulation of metabolic enzymes. Our results suggest that P. aeruginosa infection regulates mitogen-activated protein kinases signaling pathway and importin in Mo7e cells and that this is a potential mechanism for nuclear translocation of nuclear factor binding near the κ light-chain gene in B cells and c-Jun N-terminal kinases to induce cell cytotoxicity.
Collapse
Affiliation(s)
- Gopi Krishnan Gopala Krishnan
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Aiswarya Sethumadhavan
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Pavithra Vellaichamy
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Maheswaran Mani
- Cell Signaling Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
8
|
Murata A, Hikosaka M, Yoshino M, Zhou L, Hayashi SI. Kit-independent mast cell adhesion mediated by Notch. Int Immunol 2019; 31:69-79. [PMID: 30299470 DOI: 10.1093/intimm/dxy067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 10/05/2018] [Indexed: 11/13/2022] Open
Abstract
Kit/CD117 plays a crucial role in the cell-cell and cell-matrix adhesion of mammalian mast cells (MCs); however, it is unclear whether other adhesion molecule(s) perform important roles in the adhesion of MCs. In the present study, we show a novel Kit-independent adhesion mechanism of mouse cultured MCs mediated by Notch family members. On stromal cells transduced with each Notch ligand gene, Kit and its signaling become dispensable for the entire adhesion process of MCs from tethering to spreading. The Notch-mediated spreading of adherent MCs involves the activation of signaling via phosphatidylinositol 3-kinases and mitogen-activated protein kinases, similar to Kit-mediated spreading. Despite the activation of the same signaling pathways, while Kit supports the adhesion and survival of MCs, Notch only supports adhesion. Thus, Notch family members are specialized adhesion molecules for MCs that effectively replace the adhesion function of Kit in order to support the interaction of MCs with the surrounding cellular microenvironments.
Collapse
Affiliation(s)
- Akihiko Murata
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mari Hikosaka
- Department of Stem Cell and Developmental Biology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Miya Yoshino
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Shin-Ichi Hayashi
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
9
|
Zhang L, Jin Y, Zheng K, Wang H, Yang S, Lv C, Han W, Yu Y, Yang Y, Geng D, Yang H, Shi T, Guo Y, Ni X. Whole-Genome Sequencing Identifies a Novel Variation of WAS Gene Coordinating With Heterozygous Germline Mutation of APC to Enhance Hepatoblastoma Oncogenesis. Front Genet 2018; 9:668. [PMID: 30619485 PMCID: PMC6305990 DOI: 10.3389/fgene.2018.00668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 12/04/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatoblastoma (HB), a leading primary hepatic malignancy in children, originates from primitive hepatic stem cells. This study aimed to uncover the genetic variants that are responsible for HB oncogenesis. One family, which includes the healthy parents, and two brothers affected by HB, was recruited. Whole-genome sequencing (WGS) of germline DNA from all the family members identified two maternal variants, located within APC gene and X-linked WAS gene, which were harbored by the two brothers. The mutation of APC (rs137854573, c.C1606T, p.R536X) could result in HB carcinogenesis by activating Wnt signaling. The WAS variant (c.G3T, p.M1-P5del) could promote HB cell proliferation and inhibit T-cell-based immunity by activating PLK1 signaling and inactivating TCR signaling. Further analysis reflected that WAS deficiency might affect the antitumor activity of natural killer and dendritic cells. In summary, the obtained results imply that an APC mutant together with an X-linked WAS mutant, could lead to HB tumorigenesis by activating Wnt and PLK1 signaling, inhibiting TCR signaling, and reducing the antitumor activity of natural killer and dendritic cells.
Collapse
Affiliation(s)
- Li Zhang
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Biobank for Clinical Data and Samples in Pediatrics, Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Kai Zheng
- Department of General Surgery, Wuhan Children's Hospital, Wuhan, China
| | - Huanmin Wang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shen Yang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Chenkai Lv
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wei Han
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Biobank for Clinical Data and Samples in Pediatrics, Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Yeran Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Biobank for Clinical Data and Samples in Pediatrics, Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Di Geng
- Biobank for Clinical Data and Samples in Pediatrics, Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Hui Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Biobank for Clinical Data and Samples in Pediatrics, Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, China
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Biobank for Clinical Data and Samples in Pediatrics, Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Biobank for Clinical Data and Samples in Pediatrics, Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.,Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| |
Collapse
|
10
|
Shao L, Chang J, Feng W, Wang X, Williamson EA, Li Y, Schajnovitz A, Scadden D, Mortensen LJ, Lin CP, Li L, Paulson A, Downing J, Zhou D, Hromas RA. The Wave2 scaffold Hem-1 is required for transition of fetal liver hematopoiesis to bone marrow. Nat Commun 2018; 9:2377. [PMID: 29915352 PMCID: PMC6006146 DOI: 10.1038/s41467-018-04716-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 05/16/2018] [Indexed: 01/08/2023] Open
Abstract
The transition of hematopoiesis from the fetal liver (FL) to the bone marrow (BM) is incompletely characterized. We demonstrate that the Wiskott–Aldrich syndrome verprolin-homologous protein (WAVE) complex 2 is required for this transition, as complex degradation via deletion of its scaffold Hem-1 causes the premature exhaustion of neonatal BM hematopoietic stem cells (HSCs). This exhaustion of BM HSC is due to the failure of BM engraftment of Hem-1−/− FL HSCs, causing early death. The Hem-1−/− FL HSC engraftment defect is not due to the lack of the canonical function of the WAVE2 complex, the regulation of actin polymerization, because FL HSCs from Hem-1−/− mice exhibit no defects in chemotaxis, BM homing, or adhesion. Rather, the failure of Hem-1−/− FL HSC engraftment in the marrow is due to the loss of c-Abl survival signaling from degradation of the WAVE2 complex. However, c-Abl activity is dispensable for the engraftment of adult BM HSCs into the BM. These findings reveal a novel function of the WAVE2 complex and define a mechanism for FL HSC fitness in the embryonic BM niche. Hematopoietic stem cells (HSCs) migrate from the fetal liver to the bone marrow (BM) during embryogenesis. Here the authors show that the WAVE2 complex scaffold Hem1 is required for engraftment of HSCs in BM, not through its canonical role regulating actin polymerization, but through c-Abl survival signaling.
Collapse
Affiliation(s)
- Lijian Shao
- Department of Pharmacology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Jianhui Chang
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Wei Feng
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Xiaoyan Wang
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Elizabeth A Williamson
- Department of Medicine and Pathology, University of Florida, Gainesville, FL, 32610, USA
| | - Ying Li
- Department of Medicine and Pathology, University of Florida, Gainesville, FL, 32610, USA
| | - Amir Schajnovitz
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, 02138, MA, USA.,Center for Regenerative Medicine, Massachusetts General Hospital, Boston, 02114, MA, USA.,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - David Scadden
- Stem Cell and Regenerative Biology Department, Harvard University, Cambridge, 02138, MA, USA
| | - Luke J Mortensen
- Regenerative Medicine Center, University of Georgia, Athens, GA, 30602, USA
| | - Charles P Lin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Linheng Li
- Department of Pathology and Laboratory, Medicine University of Kansas, Kansas City, 66160, KA, USA
| | - Ariel Paulson
- Department of Pathology and Laboratory, Medicine University of Kansas, Kansas City, 66160, KA, USA.,Stowers Institute for Medical Research, Kansas City, MO, 66160, USA
| | - James Downing
- Department of Pathology and Laboratory Medicine, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Daohong Zhou
- Department of Pharmaceutical Sciences and Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA. .,Department of Pharmacodynamics, University of Florida, Gainesville, FL, 32610, USA.
| | - Robert A Hromas
- Office of the Dean and the Cancer Center, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX, 78229, USA.
| |
Collapse
|
11
|
Functional non-coding polymorphism in an EPHA2 promoter PAX2 binding site modifies expression and alters the MAPK and AKT pathways. Sci Rep 2017; 7:9992. [PMID: 28855599 PMCID: PMC5577203 DOI: 10.1038/s41598-017-10117-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/04/2017] [Indexed: 01/11/2023] Open
Abstract
To identify possible genetic variants influencing expression of EPHA2 (Ephrin-receptor Type-A2), a tyrosine kinase receptor that has been shown to be important for lens development and to contribute to both congenital and age related cataract when mutated, the extended promoter region of EPHA2 was screened for variants. SNP rs6603883 lies in a PAX2 binding site in the EPHA2 promoter region. The C (minor) allele decreased EPHA2 transcriptional activity relative to the T allele by reducing the binding affinity of PAX2. Knockdown of PAX2 in human lens epithelial (HLE) cells decreased endogenous expression of EPHA2. Whole RNA sequencing showed that extracellular matrix (ECM), MAPK-AKT signaling pathways and cytoskeleton related genes were dysregulated in EPHA2 knockdown HLE cells. Taken together, these results indicate a functional non-coding SNP in EPHA2 promoter affects PAX2 binding and reduces EPHA2 expression. They further suggest that decreasing EPHA2 levels alters MAPK, AKT signaling pathways and ECM and cytoskeletal genes in lens cells that could contribute to cataract. These results demonstrate a direct role for PAX2 in EPHA2 expression and help delineate the role of EPHA2 in development and homeostasis required for lens transparency.
Collapse
|
12
|
Toscano MG, Muñoz P, Sánchez-Gilabert A, Cobo M, Benabdellah K, Anderson P, Ramos-Mejía V, Real PJ, Neth O, Molinos-Quintana A, Gregory PD, Holmes MC, Martin F. Absence of WASp Enhances Hematopoietic and Megakaryocytic Differentiation in a Human Embryonic Stem Cell Model. Mol Ther 2015; 24:342-353. [PMID: 26502776 PMCID: PMC4817813 DOI: 10.1038/mt.2015.196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/14/2015] [Indexed: 12/15/2022] Open
Abstract
The Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency caused by mutations in the WAS gene and characterized by severe thrombocytopenia. Although the role of WASp in terminally differentiated lymphocytes and myeloid cells is well characterized, its role in early hematopoietic differentiation and in platelets (Plts) biology is poorly understood. In the present manuscript, we have used zinc finger nucleases targeted to the WAS locus for the development of two isogenic WAS knockout (WASKO) human embryonic stem cell lines (hESCs). Upon hematopoietic differentiation, hESCs-WASKO generated increased ratios of CD34+CD45+ progenitors with altered responses to stem cell factor compared to hESCs-WT. When differentiated toward the megakaryocytic linage, hESCs-WASKO produced increased numbers of CD34+CD41+ progenitors, megakaryocytes (MKs), and Plts. hESCs-WASKO-derived MKs and Plts showed altered phenotype as well as defective responses to agonist, mimicking WAS patients MKs and Plts defects. Interestingly, the defects were more evident in WASp-deficient MKs than in WASp-deficient Plts. Importantly, ectopic WAS expression using lentiviral vectors restored normal Plts development and MKs responses. These data validate the AND-1_WASKO cell lines as a human cellular model for basic research and for preclinical studies for WAS.
Collapse
Affiliation(s)
- Miguel G Toscano
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain; Current address: Amarna Therapeutics S.L., Instituto Cartuja, C/ Leonardo da Vinci 19ª, Seville, Spain
| | - Pilar Muñoz
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain; Current address: University College London-Institute of Child Health, London, UK
| | - Almudena Sánchez-Gilabert
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Marién Cobo
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Karim Benabdellah
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Per Anderson
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Verónica Ramos-Mejía
- Genomic Oncology Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Pedro J Real
- Genomic Oncology Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Olaf Neth
- Unidad de Enfermedades Infecciosas e Inmunopatologías Pediátricas, Hospitales Universitarios Virgen del Rocío, Instituto de Biomedicina de Sevilla, Sevilla, Spain
| | - Agueda Molinos-Quintana
- UGC Hematología y Hemoterapia, Hospital Infantil Virgen del Rocío, Instituto de Biomedicina de Sevilla (IBIS)/CSIC/Universidad de Sevilla, Seville, Spain
| | - Philip D Gregory
- Sangamo BioSciences, Inc., Pt. Richmond Tech Center, Richmond, California, USA
| | - Michael C Holmes
- Sangamo BioSciences, Inc., Pt. Richmond Tech Center, Richmond, California, USA
| | - Francisco Martin
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, Parque Tecnológico Ciencias de la Salud, Granada, Spain.
| |
Collapse
|
13
|
Al-Azzam N, Kondeti V, Duah E, Gombedza F, Thodeti CK, Paruchuri S. Modulation of mast cell proliferative and inflammatory responses by leukotriene d4 and stem cell factor signaling interactions. J Cell Physiol 2015; 230:595-602. [PMID: 25161061 DOI: 10.1002/jcp.24777] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 08/22/2014] [Indexed: 11/08/2022]
Abstract
Mast cells (MCs) are important effector cells in asthma and pulmonary inflammation, and their proliferation and maturation is maintained by stem cell factor (SCF) via its receptor, c-Kit. Cysteinyl leukotrienes (cys-LTs) are potent inflammatory mediators that signal through CysLT1 R and CysLT2 R located on the MC surface, and they enhance MC inflammatory responses. However, it is not known if SCF and cys-LTs cross-talk and influence MC hyperplasia and activation in inflammation. Here, we report the concerted effort of the growth factor SCF and the inflammatory mediator LTD4 in MC activation. Stimulation of MCs by LTD4 in the presence of SCF enhances c-Kit-mediated proliferative responses. Similarly, SCF synergistically enhances LTD4 -induced calcium, c-fos expression and phosphorylation, as well as MIP1β generation in MCs. These findings suggest that integration of SCF and LTD4 signals may contribute to MC hyperplasia and hyper-reactivity during airway hyper-response and inflammation.
Collapse
|
14
|
Murata A, Yoshino M, Hikosaka M, Okuyama K, Zhou L, Sakano S, Yagita H, Hayashi SI. An evolutionary-conserved function of mammalian notch family members as cell adhesion molecules. PLoS One 2014; 9:e108535. [PMID: 25255288 PMCID: PMC4177923 DOI: 10.1371/journal.pone.0108535] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/25/2014] [Indexed: 12/16/2022] Open
Abstract
Notch family members were first identified as cell adhesion molecules by cell aggregation assays in Drosophila studies. However, they are generally recognized as signaling molecules, and it was unclear if their adhesion function was restricted to Drosophila. We previously demonstrated that a mouse Notch ligand, Delta-like 1 (Dll1) functioned as a cell adhesion molecule. We here investigated whether this adhesion function was conserved in the diversified mammalian Notch ligands consisted of two families, Delta-like (Dll1, Dll3 and Dll4) and Jagged (Jag1 and Jag2). The forced expression of mouse Dll1, Dll4, Jag1, and Jag2, but not Dll3, on stromal cells induced the rapid and enhanced adhesion of cultured mast cells (MCs). This was attributed to the binding of Notch1 and Notch2 on MCs to each Notch ligand on the stromal cells themselves, and not the activation of Notch signaling. Notch receptor-ligand binding strongly supported the tethering of MCs to stromal cells, the first step of cell adhesion. However, the Jag2-mediated adhesion of MCs was weaker and unlike other ligands appeared to require additional factor(s) in addition to the receptor-ligand binding. Taken together, these results demonstrated that the function of cell adhesion was conserved in mammalian as well as Drosophila Notch family members. Since Notch receptor-ligand interaction plays important roles in a broad spectrum of biological processes ranging from embryogenesis to disorders, our finding will provide a new perspective on these issues from the aspect of cell adhesion.
Collapse
Affiliation(s)
- Akihiko Murata
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
- * E-mail:
| | - Miya Yoshino
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Mari Hikosaka
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| | - Kazuki Okuyama
- Department of Hematology and Oncology, Division of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Lan Zhou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Seiji Sakano
- Corporate R&D Laboratories, Asahi Kasei Corporation, Fuji, Shizuoka, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shin-Ichi Hayashi
- Division of Immunology, Department of Molecular and Cellular Biology, School of Life Science, Faculty of Medicine, Tottori University, Yonago, Tottori, Japan
| |
Collapse
|
15
|
Shamloo A, Manchandia M, Ferreira M, Mani M, Nguyen C, Jahn T, Weinberg K, Heilshorn S. Complex chemoattractive and chemorepellent Kit signals revealed by direct imaging of murine mast cells in microfluidic gradient chambers. Integr Biol (Camb) 2014; 5:1076-85. [PMID: 23835699 DOI: 10.1039/c3ib40025e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Besides its cooperating effects on stem cell proliferation and survival, Kit ligand (KL) is a potent chemotactic protein. While transwell assays permit studies of the frequency of migrating cells, the lack of direct visualization precludes dynamic chemotaxis studies. In response, we utilize microfluidic chambers that enable direct observation of murine bone marrow-derived mast cells (BMMC) within stable KL gradients. Using this system, individual Kit+ BMMC were quantitatively analyzed for migration speed and directionality during KL-induced chemotaxis. Our results indicated a minimum activating threshold of ~3 ng ml(-1) for chemoattraction. Analysis of cells at KL concentrations below 3 ng ml(-1) revealed a paradoxical chemorepulsion, which has not been described previously. Unlike chemoattraction, which occurred continuously after an initial time lag, chemorepulsion occurred only during the first 90 minutes of observation. Both chemoattraction and chemorepulsion required the action of G-protein coupled receptors (GPCR), as treatment with pertussis toxin abrogated directed migration. These results differ from previous studies of GPCR-mediated chemotaxis, where chemorepulsion occurred at high ligand concentrations. These data indicate that Kit-mediated chemotaxis is more complex than previously understood, with the involvement of GPCRs in addition to the Kit receptor tyrosine kinase and the presence of both chemoattractive and chemorepellent phases.
Collapse
Affiliation(s)
- Amir Shamloo
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-4045, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ito T, Smrz D, Jung MY, Bandara G, Desai A, Smrzová S, Kuehn HS, Beaven MA, Metcalfe DD, Gilfillan AM. Stem cell factor programs the mast cell activation phenotype. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:5428-37. [PMID: 22529299 PMCID: PMC3358494 DOI: 10.4049/jimmunol.1103366] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mast cells, activated by Ag via FcεRI, release an array of proinflammatory mediators that contribute to allergic disorders, such as asthma and anaphylaxis. The KIT ligand, stem cell factor (SCF), is critical for mast cell expansion, differentiation, and survival, and under acute conditions, it enhances mast cell activation. However, extended SCF exposure in vivo conversely protects against fatal Ag-mediated anaphylaxis. In investigating this dichotomy, we identified a novel mode of regulation of the mast cell activation phenotype through SCF-mediated programming. We found that mouse bone marrow-derived mast cells chronically exposed to SCF displayed a marked attenuation of FcεRI-mediated degranulation and cytokine production. The hyporesponsive phenotype was not a consequence of altered signals regulating calcium flux or protein kinase C, but of ineffective cytoskeletal reorganization with evidence implicating a downregulation of expression of the Src kinase Hck. Collectively, these findings demonstrate a major role for SCF in the homeostatic control of mast cell activation with potential relevance to mast cell-driven disease and the development of novel approaches for the treatment of allergic disorders.
Collapse
Affiliation(s)
- Tomonobu Ito
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Daniel Smrz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Mi-Yeon Jung
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Geethani Bandara
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Avanti Desai
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Sárka Smrzová
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Hye Sun Kuehn
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Michael A. Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dean D. Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| | - Alasdair M. Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 10 Center Drive MSC 1881, Bethesda, MD 20892-1881, USA
| |
Collapse
|
17
|
Scaramuzza S, Biasco L, Ripamonti A, Castiello MC, Loperfido M, Draghici E, Hernandez RJ, Benedicenti F, Radrizzani M, Salomoni M, Ranzani M, Bartholomae CC, Vicenzi E, Finocchi A, Bredius R, Bosticardo M, Schmidt M, von Kalle C, Montini E, Biffi A, Roncarolo MG, Naldini L, Villa A, Aiuti A. Preclinical safety and efficacy of human CD34(+) cells transduced with lentiviral vector for the treatment of Wiskott-Aldrich syndrome. Mol Ther 2012; 21:175-84. [PMID: 22371846 PMCID: PMC3538318 DOI: 10.1038/mt.2012.23] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gene therapy with ex vivo-transduced hematopoietic stem/progenitor cells may represent a valid therapeutic option for monogenic immunohematological disorders such as Wiskott-Aldrich syndrome (WAS), a primary immunodeficiency associated with thrombocytopenia. We evaluated the preclinical safety and efficacy of human CD34+ cells transduced with lentiviral vectors (LV) encoding WAS protein (WASp). We first set up and validated a transduction protocol for CD34+ cells derived from bone marrow (BM) or mobilized peripheral blood (MPB) using a clinical grade, highly purified LV. Robust transduction of progenitor cells was obtained in normal donors and WAS patients' cells, without evidence of toxicity. To study biodistribution of human cells and exclude vector release in vivo, LV-transduced CD34+ cells were transplanted in immunodeficient mice, showing a normal engraftment and differentiation ability towards transduced lymphoid and myeloid cells in hematopoietic tissues. Vector mobilization to host cells and transmission to germline cells of the LV were excluded by different molecular assays. Analysis of vector integrations showed polyclonal integration patterns in vitro and in human engrafted cells in vivo. In summary, this work establishes the preclinical safety and efficacy of human CD34+ cells gene therapy for the treatment of WAS.
Collapse
|