1
|
Elenbaas JS, Lee PC, Patel V, Stitziel NO. Decoding the Therapeutic Target SVEP1: Harnessing Molecular Trait GWASs to Unravel Mechanisms of Human Disease. Annu Rev Pharmacol Toxicol 2025; 65:131-148. [PMID: 39847464 DOI: 10.1146/annurev-pharmtox-061724-080905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Although human genetics has substantial potential to illuminate novel disease pathways and facilitate drug development, identifying causal variants and deciphering their mechanisms remain challenging. We believe these challenges can be addressed, in part, by creatively repurposing the results of molecular trait genome-wide association studies (GWASs). In this review, we introduce techniques related to molecular GWASs and unconventionally apply them to understanding SVEP1, a human coronary artery disease risk locus. Our analyses highlight SVEP1's causal link to cardiometabolic disease and glaucoma, as well as the surprising discovery of SVEP1 as the first known physiologic ligand for PEAR1, a critical receptor governing platelet reactivity. We further employ these techniques to dissect the interactions between SVEP1, PEAR1, and the Ang/Tie pathway, with therapeutic implications for a constellation of diseases. This review underscores the potential of molecular GWASs to guide drug discovery and unravel the complexities of human health and disease by demonstrating an integrative approach that grounds mechanistic research in human biology.
Collapse
Affiliation(s)
- Jared S Elenbaas
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA;
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Paul C Lee
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA;
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ved Patel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA;
| | - Nathan O Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA;
- Department of Genetics, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
2
|
Baidildinova G, ten Cate V, Panova-Noeva M, Dahlen B, Gieswinkel A, von Ungern-Sternberg S, Rapp S, Strauch K, Beutel ME, Pfeiffer N, Lackner KJ, Münzel T, ten Cate H, Wild PS, Jurk K. Cardiovascular and genetic determinants of platelet high responsiveness: results from the Gutenberg Health Study. Blood Adv 2024; 8:3870-3874. [PMID: 38776438 PMCID: PMC11321285 DOI: 10.1182/bloodadvances.2023012538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Affiliation(s)
- Gaukhar Baidildinova
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Vincent ten Cate
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Cardiology, Preventive Cardiology and Preventive Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany
| | - Marina Panova-Noeva
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Cardiology, Preventive Cardiology and Preventive Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany
| | - Bianca Dahlen
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Cardiology, Preventive Cardiology and Preventive Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexander Gieswinkel
- Department of Cardiology, Preventive Cardiology and Preventive Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Saskia von Ungern-Sternberg
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Steffen Rapp
- Department of Cardiology, Preventive Cardiology and Preventive Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Manfred E. Beutel
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Karl J. Lackner
- German Center for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Thomas Münzel
- German Center for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany
- Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Philipp S. Wild
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Cardiology, Preventive Cardiology and Preventive Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany
- Institute of Molecular Biology GmbH, Mainz, Germany
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Cardiology, Preventive Cardiology and Preventive Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research, Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
3
|
Li C, Malloy M, Ture SK, Nieves-Lopez B, Thibord F, Johnson AD, Morrell CN. G protein-coupled receptor kinase 5 regulates thrombin signaling in platelets. Res Pract Thromb Haemost 2024; 8:102556. [PMID: 39309233 PMCID: PMC11415800 DOI: 10.1016/j.rpth.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024] Open
Abstract
Background Our prior genome-wide association study of thrombin-induced platelet aggregation identified a G protein-coupled receptor kinase 5 (GRK5) noncoding variant (rs10886430-G) that is strongly associated with increased platelet reactivity to thrombin. This variant predisposes to increased risk of stroke, pulmonary embolism, and venous thromboembolism. Objectives To determine role of platelet specific GRK5 in platelet responses to agonists and injury. Methods Platelets from GRK5 mutant mice have been shown to have increased thrombin sensitivity, indicating that GRK5 may be a negative regulator of platelet activation. However, this has not been studied in a platelet-specific manner. We therefore used platelet-specific GRK5 mutant mice and models of thrombosis and pulmonary embolism. Results We now demonstrate that mice lacking GRK5 specifically in platelets had a mild increase in thrombin responses in vitro and a shortened time to arterial thrombosis in vivo. In addition, platelet GRK5 mutant mice had increased thrombin but not collagen-induced thrombus burden in a mouse model of pulmonary embolism. Conclusion These data indicate that platelet GRK5 has a significant role in limiting platelet responses to thrombin.
Collapse
Affiliation(s)
- Chen Li
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Michael Malloy
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sara K. Ture
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Benjamin Nieves-Lopez
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
| | - Florian Thibord
- Population Sciences Branch, National Heart, Lung and Blood Institute, Framingham, Massachusetts, USA
| | - Andrew D. Johnson
- Population Sciences Branch, National Heart, Lung and Blood Institute, Framingham, Massachusetts, USA
| | - Craig N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
4
|
Thomas S, Kelliher S, Krishnan A. Heterogeneity of platelets and their responses. Res Pract Thromb Haemost 2024; 8:102356. [PMID: 38666061 PMCID: PMC11043642 DOI: 10.1016/j.rpth.2024.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 04/28/2024] Open
Abstract
There has been increasing recognition of heterogeneity in blood platelets and their responses, particularly in recent years, where next-generation technologies and advanced bioinformatic tools that interrogate "big data" have enabled large-scale studies of RNA and protein expression across a growing list of disease states. However, pioneering platelet biologists and clinicians were already hypothesizing upon and investigating heterogeneity in platelet (and megakaryocyte) activity and platelet metabolism and aggregation over half a century ago. Building on their foundational hypotheses, in particular Professor Marian A. Packham's pioneering work and a State of the Art lecture in her memoriam at the 2023 International Society on Thrombosis and Haemostasis Congress by Anandi Krishnan, this review outlines the key features that contribute to the heterogeneity of platelets between and within individuals. Starting with important epidemiologic factors, we move stepwise through successively smaller scales down to heterogeneity revealed by single-cell technologies in health and disease. We hope that this overview will urge future scientific and clinical studies to recognize and account for heterogeneity of platelets and aim to apply methods that capture that heterogeneity. Finally, we summarize other exciting new data presented on this topic at the 2023 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
- Sally Thomas
- Sheffield Teaching Hospitals, National Health Services, Sheffield, UK
| | - Sarah Kelliher
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Anandi Krishnan
- Stanford University School of Medicine, Stanford University, Stanford, California, USA
- Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
5
|
Elenbaas JS, Pudupakkam U, Ashworth KJ, Kang CJ, Patel V, Santana K, Jung IH, Lee PC, Burks KH, Amrute JM, Mecham RP, Halabi CM, Alisio A, Di Paola J, Stitziel NO. SVEP1 is an endogenous ligand for the orphan receptor PEAR1. Nat Commun 2023; 14:850. [PMID: 36792666 PMCID: PMC9932102 DOI: 10.1038/s41467-023-36486-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Sushi, von Willebrand factor type A, EGF and pentraxin domain containing 1 (SVEP1) is an extracellular matrix protein that causally promotes vascular disease and associates with platelet reactivity in humans. Here, using a human genomic and proteomic approach, we identify a high affinity, disease-relevant, and potentially targetable interaction between SVEP1 and the orphan receptor Platelet and Endothelial Aggregation Receptor 1 (PEAR1). This interaction promotes PEAR1 phosphorylation and disease associated AKT/mTOR signaling in vascular cells and platelets. Mice lacking SVEP1 have reduced platelet activation, and exogenous SVEP1 induces PEAR1-dependent activation of platelets. SVEP1 and PEAR1 causally and concordantly relate to platelet phenotypes and cardiovascular disease in humans, as determined by Mendelian Randomization. Targeting this receptor-ligand interaction may be a viable therapeutic strategy to treat or prevent cardiovascular and thrombotic disease.
Collapse
Affiliation(s)
- Jared S Elenbaas
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| | - Upasana Pudupakkam
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Katrina J Ashworth
- Division of Pediatric Hematology Oncology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Chul Joo Kang
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, 63108, USA
| | - Ved Patel
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Katherine Santana
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - In-Hyuk Jung
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Paul C Lee
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Kendall H Burks
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Junedh M Amrute
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Carmen M Halabi
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
- Department of Pediatrics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Arturo Alisio
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jorge Di Paola
- Division of Pediatric Hematology Oncology, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Nathan O Stitziel
- Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, 63108, USA.
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Kardeby C, Evans A, Campos J, Al-Wahaibi AM, Smith CW, Slater A, Martin EM, Severin S, Brill A, Pejler G, Sun Y, Watson SP. Heparin and heparin proteoglycan-mimetics activate platelets via PEAR1 and PI3Kβ. J Thromb Haemost 2023; 21:101-116. [PMID: 36695374 DOI: 10.1016/j.jtha.2022.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/04/2022] [Accepted: 10/25/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Platelet endothelial aggregation receptor 1 (PEAR1) is a single-transmembrane orphan receptor primarily expressed on platelets and endothelial cells. Genetic variants of PEAR1 have repeatedly and independently been identified to be associated with cardiovascular diseases, including coronary artery disease. OBJECTIVES We have identified sulfated fucoidans and their mimetics as ligands for PEAR1 and proposed that its endogenous ligand is a sulfated proteoglycan. The aim of this study was to test this hypothesis. METHODS A heparin proteoglycan-mimetic (HPGM) was created by linking unfractionated heparin (UFH) to albumin. The ability of the HPGM, UFH and selectively desulfated heparins to stimulate platelet aggregation and protein phosphorylation was investigated. Nanobodies against the 12th to 13th epidermal growth factor-like repeat of PEAR1 and phosphoinositide 3-kinase (PI3K) isoform-selective inhibitors were tested for the inhibition of platelet activation. RESULTS We show that HPGM, heparin conjugated to an albumin protein core, stimulates aggregation and phosphorylation of PEAR1 in washed platelets. Platelet aggregation was abolished by an anti-PEAR1 nanobody, Nb138. UFH stimulated platelet aggregation in washed platelets, but desulfated UFH did not. Furthermore, HPGM, but not UFH, stimulated maximal aggregation in platelet-rich plasma. However, both HPGM and UFH increased integrin αIIbβ3 activation in whole blood. By using PI3K isoform-selective inhibitors, we show that PEAR1 activates PI3Kβ, leading to Akt phosphorylation. CONCLUSION Our findings reveal that PEAR1 is a receptor for heparin and HPGM and that PI3Kβ is a key signaling molecule downstream of PEAR1 in platelets. These findings may have important implications for our understanding of the role of PEAR1 in cardiovascular disease.
Collapse
Affiliation(s)
- Caroline Kardeby
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| | - Alice Evans
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Joana Campos
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Afraa Moosa Al-Wahaibi
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Christopher W Smith
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Eleyna M Martin
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sonia Severin
- INSERM U1297 and Paul Sabatier University, Institute of Cardiovascular and Metabolic Diseases, Toulouse, France
| | - Alexander Brill
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Yi Sun
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Midlands, UK
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Midlands, UK
| |
Collapse
|
7
|
Liu Z, Avila C, Malone LE, Gnatenko DV, Sheriff J, Zhu W, Bahou WF. Age-restricted functional and developmental differences of neonatal platelets. J Thromb Haemost 2022; 20:2632-2645. [PMID: 35962592 PMCID: PMC10953828 DOI: 10.1111/jth.15847] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Developmental ontogeny of neonatal thrombopoiesis retains characteristics that are distinct from adults although molecular mechanisms remain unestablished. METHODS We applied multiparameter quantitative platelet responses with integrated ribosome profiling/transcriptomic studies to better define gene/pathway perturbations regulating the neonatal-to-adult transition. A bioinformatics pipeline was developed to identify stable, neonatal-restricted platelet biomarkers for clinical application. RESULTS Cord blood (CB) platelets retained the capacity for linear agonist-receptor coupling linked to phosphatidylserine (PS) exposure and α-granule release, although a restricted block in cross-agonist activation pathways was evident. Functional immaturity of synergistic signaling pathways was due to younger ontogenetic age and singular underdevelopment of the protein secretory gene network, with reciprocal expansion of developmental pathways (E2F, G2M checkpoint, c-Myc) important for megakaryocytopoiesis. Genetic perturbations regulating vesicle transport and fusion (TOM1L1, VAMP3, SNAP23, and DNM1L) and PS exposure and procoagulant activity (CLCN3) were the most significant, providing a molecular explanation for globally attenuated responses. Integrated transcriptomic and ribosomal footprints identified highly abundant (ribosome-protected) DEFA3 (encoding human defensin neutrophil peptide 3) and HBG1 as stable biomarkers of neonatal thrombopoiesis. Studies comparing CB- or adult-derived megakaryocytopoiesis confirmed inducible and abundant DEFA3 antigenic expression in CB megakaryocytes, ~3.5-fold greater than in leukocytes (the most abundant source in humans). An initial feasibility cohort of at-risk pregnancies manifested by maternal/fetal hemorrhage (chimerism) were applied for detection and validation of platelet HBG1 and DEFA3 as neonatal thrombopoiesis markers, most consistent for HBG1, which displayed gestational age-dependent expression. CONCLUSIONS These studies establish an ontogenetically divergent stage of neonatal thrombopoiesis, and provide initial feasibility studies to track disordered fetal-to-adult megakaryocytopoiesis in vivo.
Collapse
Affiliation(s)
- Zhaoyan Liu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
| | - Cecilia Avila
- Department of Obstetrics and Gynecology, Stony Brook University, Stony Brook, New York, USA
| | - Lisa E. Malone
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Dmitri V. Gnatenko
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Center for Scientific Review, National Institutes of Health, Bethesda, Maryland, USA
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Wei Zhu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
| | - Wadie F. Bahou
- Department of Obstetrics and Gynecology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
8
|
Cytokine pathway variants modulate platelet production: IFNA16 is a thrombocytosis susceptibility locus in humans. Blood Adv 2022; 6:4884-4900. [PMID: 35381074 PMCID: PMC9631663 DOI: 10.1182/bloodadvances.2021005648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 03/09/2022] [Indexed: 02/08/2023] Open
Abstract
Inflammatory stimuli have divergent effects on peripheral platelet counts, although the mechanisms of thrombocytopenic and thrombocytotic responses remain poorly understood. A candidate gene approach targeting 326 polymorphic genes enriched in thrombopoietic and cytokine signaling pathways was applied to identify single nucleotide variants (SNVs) implicated in enhanced platelet responses in cohorts with reactive thrombocytosis (RT) or essential (myeloproliferative neoplasm [MPN]) thrombocytosis (ET). Cytokine profiles incorporating a 15-member subset, pathway topology, and functional interactive networks were distinct between ET and RT, consistent with distinct regulatory pathways of exaggerated thrombopoiesis. Genetic studies using aggregate (ET + RT) or ET-restricted cohorts identified associations with 2 IFNA16 (interferon-α16) SNVs, and the ET associations were validated in a second independent cohort (P = .0002). Odds ratio of the combined ET cohort (n = 105) was 4.92, restricted to the JAK2V617F-negative subset (odds ratio, 5.01). ET substratification analysis by variant IFNA16 exhibited a statistically significant increase in IFN-α16 levels (P = .002) among 16 quantifiable cytokines. Recombinantly expressed variant IFN-α16 encompassing 3 linked non-synonymous SNVs (E65H95P133) retained comparable antiviral and pSTAT signaling profiles as native IFN-α16 (V65D95A133) or IFN-α2, although both native and variant IFN-α16 showed stage-restricted differences (compared with IFN-α2) of IFN-regulated genes in CD34+-stimulated megakaryocytes. These data implicate IFNA16 (IFN-α16 gene product) as a putative susceptibility locus (driver) within the broader disrupted cytokine network evident in MPNs, and they provide a framework for dissecting functional interactive networks regulating stress or MPN thrombopoiesis.
Collapse
|
9
|
Bottomly D, Long N, Schultz AR, Kurtz SE, Tognon CE, Johnson K, Abel M, Agarwal A, Avaylon S, Benton E, Blucher A, Borate U, Braun TP, Brown J, Bryant J, Burke R, Carlos A, Chang BH, Cho HJ, Christy S, Coblentz C, Cohen AM, d'Almeida A, Cook R, Danilov A, Dao KHT, Degnin M, Dibb J, Eide CA, English I, Hagler S, Harrelson H, Henson R, Ho H, Joshi SK, Junio B, Kaempf A, Kosaka Y, Laderas T, Lawhead M, Lee H, Leonard JT, Lin C, Lind EF, Liu SQ, Lo P, Loriaux MM, Luty S, Maxson JE, Macey T, Martinez J, Minnier J, Monteblanco A, Mori M, Morrow Q, Nelson D, Ramsdill J, Rofelty A, Rogers A, Romine KA, Ryabinin P, Saultz JN, Sampson DA, Savage SL, Schuff R, Searles R, Smith RL, Spurgeon SE, Sweeney T, Swords RT, Thapa A, Thiel-Klare K, Traer E, Wagner J, Wilmot B, Wolf J, Wu G, Yates A, Zhang H, Cogle CR, Collins RH, Deininger MW, Hourigan CS, Jordan CT, Lin TL, Martinez ME, Pallapati RR, Pollyea DA, Pomicter AD, Watts JM, Weir SJ, Druker BJ, McWeeney SK, Tyner JW. Integrative analysis of drug response and clinical outcome in acute myeloid leukemia. Cancer Cell 2022; 40:850-864.e9. [PMID: 35868306 PMCID: PMC9378589 DOI: 10.1016/j.ccell.2022.07.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia (AML) is a cancer of myeloid-lineage cells with limited therapeutic options. We previously combined ex vivo drug sensitivity with genomic, transcriptomic, and clinical annotations for a large cohort of AML patients, which facilitated discovery of functional genomic correlates. Here, we present a dataset that has been harmonized with our initial report to yield a cumulative cohort of 805 patients (942 specimens). We show strong cross-cohort concordance and identify features of drug response. Further, deconvoluting transcriptomic data shows that drug sensitivity is governed broadly by AML cell differentiation state, sometimes conditionally affecting other correlates of response. Finally, modeling of clinical outcome reveals a single gene, PEAR1, to be among the strongest predictors of patient survival, especially for young patients. Collectively, this report expands a large functional genomic resource, offers avenues for mechanistic exploration and drug development, and reveals tools for predicting outcome in AML.
Collapse
Affiliation(s)
- Daniel Bottomly
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Nicola Long
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Anna Reister Schultz
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stephen E Kurtz
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Cristina E Tognon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kara Johnson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa Abel
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Anupriya Agarwal
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular & Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA; Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sammantha Avaylon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Erik Benton
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Aurora Blucher
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Uma Borate
- Division of Hematology, Department of Internal Medicine, James Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Theodore P Braun
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jordana Brown
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jade Bryant
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Russell Burke
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy Carlos
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR 97239, USA
| | - Bill H Chang
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology and Oncology, Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hyun Jun Cho
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stephen Christy
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Cody Coblentz
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Aaron M Cohen
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amanda d'Almeida
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rachel Cook
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexey Danilov
- Department of Hematology and Hematopoietic Stem Cell Transplant, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | - Michie Degnin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - James Dibb
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher A Eide
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Isabel English
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stuart Hagler
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Heath Harrelson
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rachel Henson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hibery Ho
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sunil K Joshi
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brian Junio
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andy Kaempf
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Biostatistics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA
| | - Yoko Kosaka
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Matt Lawhead
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hyunjung Lee
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jessica T Leonard
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Chenwei Lin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR 97239, USA
| | - Evan F Lind
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Selina Qiuying Liu
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Pierrette Lo
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Marc M Loriaux
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Samuel Luty
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Julia E Maxson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tara Macey
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jacqueline Martinez
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jessica Minnier
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Biostatistics Shared Resource, Oregon Health & Science University, Portland, OR 97239, USA; OHSU-PSU School of Public Health, VA Portland Health Care System, Oregon Health & Science University, Portland, OR 97239, USA
| | - Andrea Monteblanco
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Motomi Mori
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Quinlan Morrow
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Dylan Nelson
- High-Throughput Screening Services Laboratory, Oregon State University, Corvallis, OR 97331, USA
| | - Justin Ramsdill
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Angela Rofelty
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alexandra Rogers
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kyle A Romine
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter Ryabinin
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jennifer N Saultz
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - David A Sampson
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Samantha L Savage
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | | | - Robert Searles
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Integrated Genomics Laboratory, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rebecca L Smith
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Stephen E Spurgeon
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Tyler Sweeney
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ronan T Swords
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Aashis Thapa
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Karina Thiel-Klare
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Elie Traer
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jake Wagner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Beth Wilmot
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joelle Wolf
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Guanming Wu
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amy Yates
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Haijiao Zhang
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Oncologic Sciences, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Christopher R Cogle
- Department of Medicine, Division of Hematology and Oncology, University of Florida, Gainesville, FL 32610, USA
| | - Robert H Collins
- Department of Internal Medicine/ Hematology Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390-8565, USA
| | - Michael W Deininger
- Division of Hematology & Hematologic Malignancies, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Christopher S Hourigan
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20814-1476, USA
| | - Craig T Jordan
- Division of Hematology, University of Colorado, Denver, CO 80045, USA
| | - Tara L Lin
- Division of Hematologic Malignancies & Cellular Therapeutics, University of Kansas, Kansas City, KS 66205, USA
| | - Micaela E Martinez
- Clinical Research Services, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Rachel R Pallapati
- Clinical Research Services, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Daniel A Pollyea
- Division of Hematology, University of Colorado, Denver, CO 80045, USA
| | - Anthony D Pomicter
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Justin M Watts
- Division of Hematology, Department of Medicine, University of Miami Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Scott J Weir
- Department of Cancer Biology, Division of Medical Oncology, Department of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Brian J Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Division of Hematology & Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Shannon K McWeeney
- Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Jeffrey W Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA; Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
10
|
GPVI expression is linked to platelet size, age, and reactivity. Blood Adv 2022; 6:4162-4173. [PMID: 35561312 PMCID: PMC9327529 DOI: 10.1182/bloodadvances.2021006904] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/03/2022] [Indexed: 01/19/2023] Open
Abstract
Juvenile platelets show increased GPVI expression. These platelets are highly responsive and more abundant among large platelets.
Platelets within one individual display heterogeneity in reactivity, size, age, and expression of surface receptors. To investigate the combined intraindividual contribution of platelet size, platelet age, and receptor expression levels on the reactivity of platelets, we studied fractions of large and small platelets from healthy donors separated by using differential centrifugation. Size-separated platelet fractions were perfused over a collagen-coated surface to assess thrombus formation. Multicolor flow cytometry was used to characterize resting and stimulated platelet subpopulations, and platelet age was determined based on RNA and HLA-I labeling. Signal transduction was analyzed by measuring consecutive phosphorylation of serine/threonine-protein kinase Akt. Compared with small platelets, large platelets adhered faster to collagen under flow and formed larger thrombi. Among the large platelets, a highly reactive juvenile platelet subpopulation was identified with high glycoprotein VI (GPVI) expression. Elevated GPVI expression correlated with high HLA-I expression, RNA content, and increased platelet reactivity. There was a stronger difference in Akt phosphorylation and activation upon collagen stimulation between juvenile and older platelets than between large and small platelets. GPVI expression and platelet reactivity decreased throughout platelet storage at 22°C and was better maintained throughout cold storage at 4°C. We further detected higher GPVI expression in platelets of patients with immune thrombocytopenia. Our findings show that high GPVI expression is a feature of highly reactive juvenile platelets, which are predominantly found among the large platelet population, explaining the better performance of large platelets during thrombus formation. These data are important for studies of thrombus formation, platelet storage, and immune thrombocytopenia.
Collapse
|
11
|
Downes K, Zhao X, Gleadall NS, McKinney H, Kempster C, Batista J, Thomas PL, Cooper M, Michael JV, Kreuzhuber R, Wedderburn K, Waller K, Varney B, Verdier H, Kriek N, Ashford SE, Stirrups KE, Dunster JL, McKenzie SE, Ouwehand WH, Gibbins JM, Yang J, Astle WJ, Ma P. G protein-coupled receptor kinase 5 regulates thrombin signaling in platelets via PAR-1. Blood Adv 2022; 6:2319-2330. [PMID: 34581777 PMCID: PMC9006276 DOI: 10.1182/bloodadvances.2021005453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/12/2021] [Indexed: 11/22/2022] Open
Abstract
The interindividual variation in the functional response of platelets to activation by agonists is heritable. Genome-wide association studies (GWASs) of quantitative measures of platelet function have identified fewer than 20 distinctly associated variants, some with unknown mechanisms. Here, we report GWASs of pathway-specific functional responses to agonism by adenosine 5'-diphosphate, a glycoprotein VI-specific collagen mimetic, and thrombin receptor-agonist peptides, each specific to 1 of the G protein-coupled receptors PAR-1 and PAR-4, in subsets of 1562 individuals. We identified an association (P = 2.75 × 10-40) between a common intronic variant, rs10886430, in the G protein-coupled receptor kinase 5 gene (GRK5) and the sensitivity of platelets to activate through PAR-1. The variant resides in a megakaryocyte-specific enhancer that is bound by the transcription factors GATA1 and MEIS1. The minor allele (G) is associated with fewer GRK5 transcripts in platelets and the greater sensitivity of platelets to activate through PAR-1. We show that thrombin-mediated activation of human platelets causes binding of GRK5 to PAR-1 and that deletion of the mouse homolog Grk5 enhances thrombin-induced platelet activation sensitivity and increases platelet accumulation at the site of vascular injury. This corroborates evidence that the human G allele of rs10886430 is associated with a greater risk for cardiovascular disease. In summary, by combining the results of pathway-specific GWASs and expression quantitative trait locus studies in humans with the results from platelet function studies in Grk5-/- mice, we obtain evidence that GRK5 regulates the human platelet response to thrombin via the PAR-1 pathway.
Collapse
Affiliation(s)
- Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- East Genomic Laboratory Hub, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Xuefei Zhao
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Nicholas S. Gleadall
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Harriet McKinney
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Carly Kempster
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Joana Batista
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Patrick L. Thomas
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Matthew Cooper
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - James V. Michael
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Roman Kreuzhuber
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- European Molecular Biology Laboratory European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Katherine Wedderburn
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kathryn Waller
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Bianca Varney
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Hippolyte Verdier
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Neline Kriek
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Sofie E. Ashford
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Institute for Health Research BioResource, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kathleen E. Stirrups
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Institute for Health Research BioResource, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Joanne L. Dunster
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Steven E. McKenzie
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Jonathan M. Gibbins
- School of Biological Sciences, University of Reading, Reading, Berkshire, United Kingdom
| | - Jing Yang
- Bristol Myers Squibb, Princeton, NJ; and
| | - William J. Astle
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Peisong Ma
- Cardeza Foundation for Hematologic Research, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
12
|
Vadaq N, Schirmer M, Tunjungputri RN, Vlamakis H, Chiriac C, Ardiansyah E, Gasem MH, Joosten LAB, de Groot PG, Xavier RJ, Netea MG, van der Ven AJ, de Mast Q. Untargeted Plasma Metabolomics and Gut Microbiome Profiling Provide Novel Insights into the Regulation of Platelet Reactivity in Healthy Individuals. Thromb Haemost 2022; 122:529-539. [PMID: 34192775 DOI: 10.1055/a-1541-3706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Considerable variation exists in platelet reactivity to stimulation among healthy individuals. Various metabolites and metabolic pathways influence platelet reactivity, but a comprehensive overview of these associations is missing. The gut microbiome has a strong influence on the plasma metabolome. Here, we investigated the association of platelet reactivity with results of untargeted plasma metabolomics and gut microbiome profiling. METHODS We used data from a cohort of 534 healthy adult Dutch volunteers (the 500 Functional Genomics study). Platelet activation and reactivity were measured by the expression of the alpha-granule protein P-selectin and the binding of fibrinogen to the activated integrin αIIbβ3, both in unstimulated blood and after ex vivo stimulation with platelet agonists. Plasma metabolome was measured using an untargeted metabolic profiling approach by quadrupole time-of-flight mass spectrometry. Gut microbiome data were measured by shotgun metagenomic sequencing from stool samples. RESULTS Untargeted metabolomics yielded 1,979 metabolites, of which 422 were identified to play a role in a human metabolic pathway. Overall, 92/422 (21.8%) metabolites were significantly associated with at least one readout of platelet reactivity. The majority of associations involved lipids, especially members of eicosanoids, including prostaglandins and leukotrienes. Dietary-derived polyphenols were also found to inhibit platelet reactivity. Validation of metabolic pathways with functional microbial profiles revealed two overlapping metabolic pathways ("alanine, aspartate, and glutamate metabolism" and "arginine biosynthesis") that were associated with platelet reactivity. CONCLUSION This comprehensive overview is an resource for understanding the regulation of platelet reactivity by the plasma metabolome and the possible contribution of the gut microbiota.
Collapse
Affiliation(s)
- Nadira Vadaq
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Center for Tropical and Infectious Diseases, Faculty of Medicine, Diponegoro University-Dr. Kariadi Hospital, Semarang, Indonesia
| | - Melanie Schirmer
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States
| | - Rahajeng N Tunjungputri
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Center for Tropical and Infectious Diseases, Faculty of Medicine, Diponegoro University-Dr. Kariadi Hospital, Semarang, Indonesia
| | - Hera Vlamakis
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States.,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, Massachusetts, United States
| | - Cecilia Chiriac
- National Institute of Research and Development for Biological Sciences, Institute of Biological Research, Cluj-Napoca, Romania.,Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Edwin Ardiansyah
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M Hussein Gasem
- Center for Tropical and Infectious Diseases, Faculty of Medicine, Diponegoro University-Dr. Kariadi Hospital, Semarang, Indonesia.,Department of Internal Medicine, Faculty of Medicine Diponegoro University-Dr. Kariadi Hospital, Semarang, Indonesia
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Philip G de Groot
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States.,Center for Microbiome Informatics and Therapeutics, MIT, Cambridge, Massachusetts, United States
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.,Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Andre J van der Ven
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Kempster C, Butler G, Kuznecova E, Taylor KA, Kriek N, Little G, Sowa MA, Sage T, Johnson LJ, Gibbins JM, Pollitt AY. Fully automated platelet differential interference contrast image analysis via deep learning. Sci Rep 2022; 12:4614. [PMID: 35301400 PMCID: PMC8931011 DOI: 10.1038/s41598-022-08613-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/08/2022] [Indexed: 11/12/2022] Open
Abstract
Platelets mediate arterial thrombosis, a leading cause of myocardial infarction and stroke. During injury, platelets adhere and spread over exposed subendothelial matrix substrates of the damaged blood vessel wall. The mechanisms which govern platelet activation and their interaction with a range of substrates are therefore regularly investigated using platelet spreading assays. These assays often use differential interference contrast (DIC) microscopy to assess platelet morphology and analysis performed using manual annotation. Here, a convolutional neural network (CNN) allowed fully automated analysis of platelet spreading assays captured by DIC microscopy. The CNN was trained using 120 generalised training images. Increasing the number of training images increases the mean average precision of the CNN. The CNN performance was compared to six manual annotators. Significant variation was observed between annotators, highlighting bias when manual analysis is performed. The CNN effectively analysed platelet morphology when platelets spread over a range of substrates (CRP-XL, vWF and fibrinogen), in the presence and absence of inhibitors (dasatinib, ibrutinib and PRT-060318) and agonist (thrombin), with results consistent in quantifying spread platelet area which is comparable to published literature. The application of a CNN enables, for the first time, automated analysis of platelet spreading assays captured by DIC microscopy.
Collapse
Affiliation(s)
- Carly Kempster
- School of Biological Sciences, University of Reading, Reading, UK
| | - George Butler
- School of Biological Sciences, University of Reading, Reading, UK.,The Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, USA
| | - Elina Kuznecova
- School of Biological Sciences, University of Reading, Reading, UK
| | - Kirk A Taylor
- School of Biological Sciences, University of Reading, Reading, UK
| | - Neline Kriek
- School of Biological Sciences, University of Reading, Reading, UK
| | - Gemma Little
- School of Biological Sciences, University of Reading, Reading, UK
| | - Marcin A Sowa
- School of Biological Sciences, University of Reading, Reading, UK
| | - Tanya Sage
- School of Biological Sciences, University of Reading, Reading, UK
| | - Louise J Johnson
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Alice Y Pollitt
- School of Biological Sciences, University of Reading, Reading, UK.
| |
Collapse
|
14
|
Screening Analysis of Platelet miRNA Profile Revealed miR-142-3p as a Potential Biomarker in Modeling the Risk of Acute Coronary Syndrome. Cells 2021; 10:cells10123526. [PMID: 34944034 PMCID: PMC8700136 DOI: 10.3390/cells10123526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/04/2021] [Accepted: 12/11/2021] [Indexed: 12/18/2022] Open
Abstract
Transcriptome analysis constitutes one of the major methods of elucidation of the genetic basis underlying the pathogenesis of various diseases. The post-transcriptional regulation of gene expression is mainly provided by microRNAs. Their remarkable stability in biological fluids and their high sensitivity to disease alteration indicates their potential role as biomarkers. Given the high mortality and morbidity of cardiovascular diseases, novel predictive biomarkers are sorely needed. Our study focuses for the first time on assessing potential biomarkers of acute coronary syndrome (ACS) based on the microRNA profiles of platelets. The study showed the overexpression of eight platelet microRNAs in ACS (miR-142-3p; miR-107; miR-338-3p, miR-223-3p, miR-21-5p, miR-130b-3p, miR-301a-3p, miR-221-3p) associated with platelet reactivity and functionality. Our results show that the combined model based on miR-142-3p and aspartate transaminase reached 82% sensitivity and 88% specificity in the differentiation of the studied groups. Furthermore, the analyzed miRNAs were shown to cluster into two orthogonal groups, regulated by two different biological factors. Bioinformatic analysis demonstrated that one group of microRNAs may be associated with the physiological processes of platelets, whereas the other group may be linked to platelet-vascular environment interactions. This analysis paves the way towards a better understanding of the role of platelet microRNAs in ACS pathophysiology and better modeling of the risk of ACS.
Collapse
|
15
|
Multiparameter phenotyping of platelet reactivity for stratification of human cohorts. Blood Adv 2021; 5:4017-4030. [PMID: 34474473 PMCID: PMC8945618 DOI: 10.1182/bloodadvances.2020003261] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/12/2021] [Indexed: 12/30/2022] Open
Abstract
Accurate and comprehensive assessment of platelet function across cohorts of donors may be key to understanding the risk of thrombotic events associated with cardiovascular disease, and, hence, to help personalize the application of antiplatelet drugs. However, platelet function tests can be difficult to perform and analyze; they also can be unreliable or uninformative and poorly standardized across studies. The Platelet Phenomic Analysis (PPAnalysis) assay and associated open-source software platform were developed in response to these challenges. PPAnalysis utilizes preprepared freeze-dried microtiter plates to provide a detailed characterization of platelet function. The automated analysis of the high-dimensional data enables the identification of subpopulations of donors with distinct platelet function phenotypes. Using this approach, we identified that the sensitivity of a donor's platelets to an agonist and their capacity to generate a functional response are distinct independent metrics of platelet reactivity. Hierarchical clustering of these metrics identified 6 subgroups with distinct platelet phenotypes within healthy cohorts, indicating that platelet reactivity does not fit into the traditional simple categories of "high" and "low" responders. These platelet phenotypes were found to exist in 2 independent cohorts of healthy donors and were stable on recall. PPAnalysis is a powerful tool for stratification of cohorts on the basis of platelet reactivity that will enable investigation of the causes and consequences of differences in platelet function and drive progress toward precision medicine.
Collapse
|
16
|
Current Understanding of the Relationship between Blood Donor Variability and Blood Component Quality. Int J Mol Sci 2021; 22:ijms22083943. [PMID: 33920459 PMCID: PMC8069744 DOI: 10.3390/ijms22083943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
While differences among donors has long challenged meeting quality standards for the production of blood components for transfusion, only recently has the molecular basis for many of these differences become understood. This review article will examine our current understanding of the molecular differences that impact the quality of red blood cells (RBC), platelets, and plasma components. Factors affecting RBC quality include cytoskeletal elements and membrane proteins associated with the oxidative response as well as known enzyme polymorphisms and hemoglobin variants. Donor age and health status may also be important. Platelet quality is impacted by variables that are less well understood, but that include platelet storage sensitive metabolic parameters, responsiveness to agonists accumulating in storage containers and factors affecting the maintenance of pH. An increased understanding of these variables can be used to improve the quality of blood components for transfusion by using donor management algorithms based on a donors individual molecular and genetic profile.
Collapse
|
17
|
Phosphoinositide 3-kinases in platelets, thrombosis and therapeutics. Biochem J 2021; 477:4327-4342. [PMID: 33242335 DOI: 10.1042/bcj20190402] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022]
Abstract
Our knowledge on the expression, regulation and roles of the different phosphoinositide 3-kinases (PI3Ks) in platelet signaling and functions has greatly expanded these last twenty years. Much progress has been made in understanding the roles and regulations of class I PI3Ks which produce the lipid second messenger phosphatidylinositol 3,4,5 trisphosphate (PtdIns(3,4,5)P3). Selective pharmacological inhibitors and genetic approaches have allowed researchers to generate an impressive amount of data on the role of class I PI3Kα, β, δ and γ in platelet activation and in thrombosis. Furthermore, platelets do also express two class II PI3Ks (PI3KC2α and PI3KC2β), thought to generate PtdIns(3,4)P2 and PtdIns3P, and the sole class III PI3K (Vps34), known to synthesize PtdIns3P. Recent studies have started to reveal the importance of PI3KC2α and Vps34 in megakaryocytes and platelets, opening new perspective in our comprehension of platelet biology and thrombosis. In this review, we will summarize previous and recent advances on platelet PI3Ks isoforms. The implication of these kinases and their lipid products in fundamental platelet biological processes and thrombosis will be discussed. Finally, the relevance of developing potential antithrombotic strategies by targeting PI3Ks will be examined.
Collapse
|
18
|
Kardeby C, Damaskinaki FN, Sun Y, Watson SP. Is the endogenous ligand for PEAR1 a proteoglycan: clues from the sea. Platelets 2020; 32:779-785. [PMID: 33356751 DOI: 10.1080/09537104.2020.1863938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Platelet Endothelial Aggregation Receptor 1 (PEAR1) is an orphan receptor of unknown function which mediates powerful activation of platelets and endothelial cells in response to crosslinking by antibodies and sulfated polysaccharides belonging to the dextran and fucoidan families. PEAR1 is a single transmembrane protein composed of 15 epidermal growth factor-like repeat sequences and with a conserved binding motif, YXXM, which when phosphorylated binds to phosphoinositide 3-kinase (PI3K). The 13th of the repeats has a heparin-binding sequence that is the site of interaction with the sulfated fucoidans and the only known endogenous ligand FcεRIα. Crosslinking of PEAR1 drives Src family kinase phosphorylation of the cytosolic tail leading to binding and activation of PI3K. In this Opinion Article, we summarize the literature on PEAR1 expression, structure and signaling, and the search for further endogenous ligands. We highlight one article in which phosphorylation of a 150 kDa platelet protein by heparin-containing ligands has been reported and propose that PEAR1 is a receptor for one or more glycosaminoglycan-conjugated proteins (proteoglycans). The up-regulation of PEAR1 at sites of inflammation in the vasculature and its role in angiogenesis suggests a role in the interplay of inflammation, platelets, coagulation, and thromboinflammation. We speculate that this may explain the link between single nucleotide variants in PEAR1 and cardiovascular disease.
Collapse
Affiliation(s)
- Caroline Kardeby
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, UK
| | - Foteini-Nafsika Damaskinaki
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, UK.,Biodiscovery Institute, University of Nottingham, University Park, Nottingham, East Midlands, UK.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK
| | - Yi Sun
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, UK.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK
| | - Stephen P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, West Midlands, UK.,Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, UK
| |
Collapse
|
19
|
K. Poddar M, Banerjee S. Molecular Aspects of Pathophysiology of Platelet Receptors. Platelets 2020. [DOI: 10.5772/intechopen.92856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Receptor is a dynamic instrumental surface protein that helps to interact with specific molecules to respond accordingly. Platelet is the smallest in size among the blood components, but it plays many pivotal roles to maintain hemostasis involving its surface receptors. It (platelet) has cell adhesion receptors (e.g., integrins and glycoproteins), leucine-rich repeats receptors (e.g., TLRs, glycoprotein complex, and MMPs), selectins (e.g., CLEC, P-selectin, and CD), tetraspanins (e.g., CD and LAMP), transmembrane receptors (e.g., purinergic—P2Y and P2X1), prostaglandin receptors (e.g., TxA2, PGH2, and PGI2), immunoglobulin superfamily receptors (e.g., FcRγ and FcεR), etc. on its surface. The platelet receptors (e.g., glycoproteins, protease-activated receptors, and GPCRs) during platelet activation are over expressed and their granule contents are secreted (including neurotransmitters, cytokines, and chemokines) into circulation, which are found to be correlated with different physiological conditions. Interestingly, platelets promote metastasis through circulation protecting from cytolysis and endogenous immune surveillance involving several platelets receptors. The updated knowledge about different types of platelet receptors in all probable aspects, including their inter- and intra-signaling mechanisms, are discussed with respect to not only its (platelets) receptor type but also under different pathophysiological conditions.
Collapse
|
20
|
Alarabi AB, Karim ZA, Hinojos V, Lozano PA, Hernandez KR, Montes Ramirez JE, Ali HEA, Khasawneh FT, Alshbool FZ. The G-protein βγ subunits regulate platelet function. Life Sci 2020; 262:118481. [PMID: 32971104 DOI: 10.1016/j.lfs.2020.118481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
AIMS G-protein coupled receptors (GPCRs) tightly regulate platelet function by interacting with various physiological agonists. An essential mediator of GPCR signaling is the G protein αβγ heterotrimers, in which the βγ subunits are central players in downstream signaling. Herein, we investigated the role of Gβγ subunits in platelet function, hemostasis and thrombogenesis. METHODS To achieve this goal, platelets from both mice and humans were employed in the context of a small molecule inhibitor of Gβγ, namely gallein. We used an aggregometer to examine aggregation and dense granules secretion. We also used flow cytometry for P-selectin and PAC1 to determine the impact of inhibiting Gβγ on α -granule secretion and αIIbβ3 activation. Clot retraction and the platelet spreading assay were used to examine Gβγ role in outside-in platelet signaling, whereas Western blot was employed to examine its role in Akt activation. Finally, we used the bleeding time assay and the FeCl3-induced carotid-artery injury thrombosis model to determine Gβγ contribution to in vivo platelet function. RESULTS We observed that gallein inhibits platelet aggregation and secretion in response to agonist stimulation, in both mouse and human platelets. Furthermore, gallein also exerted inhibitory effects on integrin αIIbβ3 activation, clot retraction, platelet spreading and Akt activation/phosphorylation. Finally, gallein's inhibitory effects manifested in vivo, as documented by its ability to modulate physiological hemostasis and delay thrombus formation. CONCLUSION Our findings demonstrate, for the first time, that Gβγ subunits directly regulate GPCR-dependent platelet function, in vitro and in vivo. Moreover, these data highlight Gβγ as a novel therapeutic target for managing thrombotic disorders.
Collapse
Affiliation(s)
- Ahmed B Alarabi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Zubair A Karim
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA
| | - Victoria Hinojos
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA
| | - Patricia A Lozano
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Keziah R Hernandez
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA
| | - Jean E Montes Ramirez
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA
| | - Hamdy E A Ali
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Fadi T Khasawneh
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Fatima Z Alshbool
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA.
| |
Collapse
|
21
|
Abstract
Platelet Endothelial Aggregation Receptor (PEAR1), as a platelet receptor, plays a vital role in hemostasis. This receptor, by its extracellular part, causes platelet adhesion and consequently initiates platelet aggregation. Dysfunction of PEAR1 can disrupt platelet aggregation in patients with cardiovascular diseases (CVDs). The content used in this paper has been taken from English language articles (2005-2020) retrieved from Pubmed database and Google scholar search engine using "Cardiovascular Disease", "PEAR1", "Polymorphism", and "Platelet Aggregation" keywords. Some PEAR1 polymorphisms can disrupt homeostasis and interfere with the function mechanism of cardiac drugs. Since polymorphisms in this gene affect platelet function and the platelet aggregation process, PEAR1 could be further studied in the future as an essential factor in controlling the treatment process of patients with cardiovascular diseases. PEAR1 polymorphisms through disruption of the platelet aggregation process can be a risk factor in patients with CVDs. Therefore, controlling patients through genetic testing and the evaluation of PEAR1 polymorphisms can help improve the treatment process of patients. According to the studies on the PEAR1 gene and the effect of different polymorphisms on some crucial issues in CVDs patients (changes in platelet activity), it is clear that if there is a significant relationship between polymorphisms and CVDs, they can be used as prognostic and diagnostic markers. This study aims to evaluate the prognosis and drug treatment of the PEAR1 gene in CVDs patients.
Collapse
|
22
|
Izzi B, Gianfagna F, Yang WY, Cludts K, De Curtis A, Verhamme P, Di Castelnuovo A, Cerletti C, Donati MB, de Gaetano G, Staessen JA, Hoylaerts MF, Iacoviello L. Variation of PEAR1 DNA methylation influences platelet and leukocyte function. Clin Epigenetics 2019; 11:151. [PMID: 31665082 PMCID: PMC6820903 DOI: 10.1186/s13148-019-0744-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Platelet-endothelial aggregation receptor 1 (PEAR-1) is a transmembrane receptor involved in platelet activation and megakaryopoiesis whose expression is driven by DNA methylation. PEAR1 variants were associated with differential platelet response to activation and cardiovascular outcomes. We aimed at investigating the link between PEAR1 methylation and platelet and leukocyte function markers in a family-based population. RESULTS We measured PEAR1 methylation in 605 Moli-family participants with available blood counts, plasma P-selectin and C-reactive protein, whole blood platelet P-selectin, and platelet-leukocyte mixed conjugate measurements. We performed principal component analysis (PCA) to identify groups of highly correlated CpG sites. We used linear mixed regression models (using age, gender, BMI, smoking, alcohol drinking, being a proband for family recruitment, being a member of myocardial infarction (MI) family as fixed effects, and family as a random effect) to evaluate associations between PEAR1 methylation and phenotypes. PEAR1 methylation Factor2, characterized by the previously identified megakaryocyte-specific CpG sites, was inversely associated with platelet-monocyte conjugates, P-selectin, and WBC counts, while positively associated with the platelet distribution width (PDW) and with leukocyte CD11b and L-selectin. Moreover, PEAR1 Factor2 methylation was negatively associated with INFLAscore, a low-grade inflammation score. The latter was partially mediated by the PEAR1 methylation effect on platelet variables. PEAR1 methylation association with WBC measurements and INFLAscore was confirmed in the independent cohort FLEMENGHO. CONCLUSIONS We report a significant link between epigenetic signatures in a platelet functional gene and inflammation-dependent platelet function variability measured in two independent cohorts.
Collapse
Affiliation(s)
- Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy.
| | - Francesco Gianfagna
- Mediterranea Cardiocentro, Naples, Italy.,Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Wen-Yi Yang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Katrien Cludts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Peter Verhamme
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | | | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Maria Benedetta Donati
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Jan A Staessen
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Marc F Hoylaerts
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy.,Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | |
Collapse
|
23
|
Janicki PK, Eyileten C, Ruiz-Velasco V, Pordzik J, Czlonkowska A, Kurkowska-Jastrzebska I, Sugino S, Imamura Kawasawa Y, Mirowska-Guzel D, Postula M. Increased burden of rare deleterious variants of the KCNQ1 gene in patients with large‑vessel ischemic stroke. Mol Med Rep 2019; 19:3263-3272. [PMID: 30816480 DOI: 10.3892/mmr.2019.9987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/30/2019] [Indexed: 11/06/2022] Open
Abstract
The impact of rare and damaging variants in genes associated with platelet function in large‑vessel ischemic stroke (LVIS) remains unknown. The aim of this study was to investigate the contribution of some of these variants to the genetic susceptibility to LVIS in Polish patients using a deep re‑sequencing of 54 selected genes, coding for proteins associated with altered platelet function. Targeted pooled re‑sequencing (Illumina HiSeq 2500) was performed on genomic DNA of 500 cases (patients with history of clinically proven diagnosis of LVIS) and 500 age‑, smoking status‑, and sex‑matched controls (no history of any type of stroke), and from the same population as patients with LVIS. After quality control and prioritization based on allele frequency and damaging probability, individual genotyping of all deleterious rare variants was performed in patients from the original cohort, and stratified to concomitant cardiac conditions differing between the study and stroke groups. We demonstrated a statistically significant increase in the number of rare and potentially damaging variants in some of the investigated genes in the LVIS pool (an increase in the genomic variants burden). Furthermore, we identified an association between LVIS and 6 rare functional and damaging variants in the Kv7.1 potassium channel gene (KCNQ1). The predicted functional properties (partial loss‑of function) for the three most damaging variants in KCNQ1 coding locus were further confirmed in vitro by analyzing the membrane potential changes in cell lines co‑transfected heterogeneously with human muscarinic type 1 receptor and wild‑type or mutated KCNQ1 cDNA constructs using fluorescence imaging plate reader. The study demonstrated an increased rare variants burden for 54 genes associated with platelet function, and identified a putative role for rare damaging variants in the KCNQ1 gene on LVIS susceptibility in the Polish population.
Collapse
Affiliation(s)
- Piotr K Janicki
- Perioperative Genomics Laboratory, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02‑097, Poland
| | - Victor Ruiz-Velasco
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Justyna Pordzik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02‑097, Poland
| | - Anna Czlonkowska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02‑097, Poland
| | | | - Shigekazu Sugino
- Perioperative Genomics Laboratory, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw 02‑097, Poland
| | - Marek Postula
- Perioperative Genomics Laboratory, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
24
|
Kardeby C, Fälker K, Haining EJ, Criel M, Lindkvist M, Barroso R, Påhlsson P, Ljungberg LU, Tengdelius M, Rainger GE, Watson S, Eble JA, Hoylaerts MF, Emsley J, Konradsson P, Watson SP, Sun Y, Grenegård M. Synthetic glycopolymers and natural fucoidans cause human platelet aggregation via PEAR1 and GPIbα. Blood Adv 2019; 3:275-287. [PMID: 30700416 PMCID: PMC6373755 DOI: 10.1182/bloodadvances.2018024950] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/27/2018] [Indexed: 12/14/2022] Open
Abstract
Fucoidans are sulfated fucose-based polysaccharides that activate platelets and have pro- and anticoagulant effects; thus, they may have therapeutic value. In the present study, we show that 2 synthetic sulfated α-l-fucoside-pendant glycopolymers (with average monomeric units of 13 and 329) and natural fucoidans activate human platelets through a Src- and phosphatidylinositol 3-kinase (PI3K)-dependent and Syk-independent signaling cascade downstream of the platelet endothelial aggregation receptor 1 (PEAR1). Synthetic glycopolymers and natural fucoidan stimulate marked phosphorylation of PEAR1 and Akt, but not Syk. Platelet aggregation and Akt phosphorylation induced by natural fucoidan and synthetic glycopolymers are blocked by a monoclonal antibody to PEAR1. Direct binding of sulfated glycopolymers to epidermal like growth factor (EGF)-like repeat 13 of PEAR1 was shown by avidity-based extracellular protein interaction screen technology. In contrast, synthetic glycopolymers and natural fucoidans activate mouse platelets through a Src- and Syk-dependent pathway regulated by C-type lectin-like receptor 2 (CLEC-2) with only a minor role for PEAR1. Mouse platelets lacking the extracellular domain of GPIbα and human platelets treated with GPIbα-blocking antibodies display a reduced aggregation response to synthetic glycopolymers. We found that synthetic sulfated glycopolymers bind directly to GPIbα, substantiating that GPIbα facilitates the interaction of synthetic glycopolymers with CLEC-2 or PEAR1. Our results establish PEAR1 as the major signaling receptor for natural fucose-based polysaccharides and synthetic glycopolymers in human, but not in mouse, platelets. Sulfated α-l-fucoside-pendant glycopolymers are unique tools for further investigation of the physiological role of PEAR1 in platelets and beyond.
Collapse
Affiliation(s)
- Caroline Kardeby
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Knut Fälker
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Elizabeth J Haining
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maarten Criel
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Madelene Lindkvist
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Ruben Barroso
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Peter Påhlsson
- Division of Cell Biology, Department of Clinical and Experimental Medicine, and
| | - Liza U Ljungberg
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| | | | - G Ed Rainger
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Stephanie Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany; and
| | - Marc F Hoylaerts
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Jonas Emsley
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
- Division of Biomolecular Science and Medicinal Chemistry, Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Peter Konradsson
- Division of Organic Chemistry, Linköping University, Linköping, Sweden
| | - Steve P Watson
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Yi Sun
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Magnus Grenegård
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
25
|
Flow cytometry for near-patient testing in premature neonates reveals variation in platelet function: a novel approach to guide platelet transfusion. Pediatr Res 2019; 85:874-884. [PMID: 30742030 PMCID: PMC6760564 DOI: 10.1038/s41390-019-0316-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 11/09/2022]
Abstract
BACKGROUND Neonatal haemorrhaging is often co-observed with thrombocytopenia; however, no evidence of a causal relationship with low platelet count has been reported. Regardless, the administration of a platelet transfusion is often based upon this parameter. Accurate measurement of platelet function in small volumes of adult blood samples by flow cytometry is well established and we propose that the use of the same technology could provide complementary information to guide the administration of platelet transfusions in premature neonates. METHODS In 28 neonates born at 27-41 weeks gestation, platelet function after stimulation agonists was measured using fibrinogen binding and P-selectin expression (a marker of degranulation). RESULTS Platelets of neonates with gestation of ≤36 weeks (n = 20) showed reduced fibrinogen binding and degranulation with ADP, and reduced degranulation with CRP-XL. Degranulation Scores of 7837 ± 5548, 22,408 ± 5301 and 53,131 ± 12,102 (mean ± SEM) identified significant differences between three groups: <29, 29-36 and >36 weeks gestation). Fibrinogen binding and degranulation responses to ADP were significantly reduced in suspected septic neonates (n = 6) and the Fibrinogen Binding scores clearly separated the septic and healthy group (88.2 ± 10.3 vs 38.6 ± 12.2, P = 0.03). CONCLUSIONS Flow cytometric measurement of platelet function identified clinically different neonatal groups and may eventually contribute to assessment of neonates requiring platelet transfusion.
Collapse
|
26
|
Reiner AP, Johnson AD. Platelet Genomics. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
27
|
Coller BS. Foreword: A Brief History of Ideas About Platelets in Health and Disease. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.09988-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
van Geffen JP, Brouns SLN, Batista J, McKinney H, Kempster C, Nagy M, Sivapalaratnam S, Baaten CCFMJ, Bourry N, Frontini M, Jurk K, Krause M, Pillitteri D, Swieringa F, Verdoold R, Cavill R, Kuijpers MJE, Ouwehand WH, Downes K, Heemskerk JWM. High-throughput elucidation of thrombus formation reveals sources of platelet function variability. Haematologica 2018; 104:1256-1267. [PMID: 30545925 PMCID: PMC6545858 DOI: 10.3324/haematol.2018.198853] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 12/05/2018] [Indexed: 01/25/2023] Open
Abstract
In combination with microspotting, whole-blood microfluidics can provide high-throughput information on multiple platelet functions in thrombus formation. Based on assessment of the inter- and intra-subject variability in parameters of microspot-based thrombus formation, we aimed to determine the platelet factors contributing to this variation. Blood samples from 94 genotyped healthy subjects were analyzed for conventional platelet phenotyping: i.e. hematologic parameters, platelet glycoprotein (GP) expression levels and activation markers (24 parameters). Furthermore, platelets were activated by ADP, CRP-XL or TRAP. Parallel samples were investigated for whole-blood thrombus formation (6 microspots, providing 48 parameters of adhesion, aggregation and activation). Microspots triggered platelet activation through GP Ib-V-IX, GPVI, CLEC-2 and integrins. For most thrombus parameters, inter-subject variation was 2-4 times higher than the intra-subject variation. Principal component analyses indicated coherence between the majority of parameters for the GPVI-dependent microspots, partly linked to hematologic parameters, and glycoprotein expression levels. Prediction models identified parameters per microspot that were linked to variation in agonist-induced αIIbβ3 activation and secretion. Common sequence variation of GP6 and FCER1G, associated with GPVI-induced αIIbβ3 activation and secretion, affected parameters of GPVI-and CLEC-2-dependent thrombus formation. Subsequent analysis of blood samples from patients with Glanzmann thrombasthenia or storage pool disease revealed thrombus signatures of aggregation-dependent parameters that were subject-dependent, but not linked to GPVI activity. Taken together, this high-throughput elucidation of thrombus formation revealed patterns of inter-subject differences in platelet function, which were partly related to GPVI-induced activation and common genetic variance linked to GPVI, but also included a distinct platelet aggregation component.
Collapse
Affiliation(s)
- Johanna P van Geffen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Sanne L N Brouns
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Joana Batista
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK
| | - Harriet McKinney
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK
| | - Carly Kempster
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK
| | - Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Suthesh Sivapalaratnam
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,The Royal London Haemophilia Centre, London, UK
| | - Constance C F M J Baaten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Nikki Bourry
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK.,BHF Centre of Excellence, Division of Cardiovascular Medicine, Cambridge University Hospitals, Cambridge Biomedical Campus, UK
| | - Kerstin Jurk
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Germany
| | | | | | - Frauke Swieringa
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Remco Verdoold
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Rachel Cavill
- Department of Data Science & Knowledge Engineering, Faculty of Humanities and Sciences, Maastricht University, the Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK.,BHF Centre of Excellence, Division of Cardiovascular Medicine, Cambridge University Hospitals, Cambridge Biomedical Campus, UK.,NIHR BioResource, University of Cambridge, Cambridge Biomedical Campus, UK.,Department of Human Genetics, The Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, UK .,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, UK.,NIHR BioResource, University of Cambridge, Cambridge Biomedical Campus, UK
| | - Johan W M Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, the Netherlands
| |
Collapse
|
29
|
Candidate gene and pathway analyses identifying genetic variations associated with prasugrel pharmacokinetics and pharmacodynamics. Thromb Res 2018; 173:27-34. [PMID: 30458339 DOI: 10.1016/j.thromres.2018.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/16/2018] [Accepted: 11/14/2018] [Indexed: 01/29/2023]
Abstract
AIM We aimed to investigate the genetic polymorphisms and pharmacogenetic variability associated with the pharmacodynamics (PD) and pharmacokinetics (PK) of prasugrel, in healthy Han Chinese subjects. PATIENTS & METHODS Healthy, native, Han Chinese subjects (n = 36) aged 18 to 45 years with unknown genotypes were included. All subjects received a loading dose (LD) on day 1 and a maintenance dose (MD) from day 2 until day 11. Candidate gene association and gene-set analysis of biological pathways related to prasugrel and platelet activity were analyzed. RESULTS 28 SNPs of 17 candidate genes previously associated with prasugrel or platelet activity were selected after a literature search. In the 30 mg LD groups (n = 24), ITGA2-rs28095 was found to be significantly associated with the P2Y12 reaction unit (PRU) value at 24 h after the LD (p = 0.015). 165 study genes related to platelet activation-related processes and prasugrel activity were selected from the MSigDB database, including curated gene sets from KEGG, Bio Carta, and Gene Cards. 14 SNPs of 9 genes were found to be significantly correlated both at 24 h and 12 days after LD: ADAMTSL1, PRKCA, ITPR2, P2RY12, P2RY14, PLCB4, PRKG1, ADCY1, and LYN. Seven SNPs of 6 protein-coding genes associated with area under the concentration-time curve (AUC0-tlast) were significantly identified among the 47 selected genes, including ADAMTSL1, CD36, P2RY1, PCSK9, PON1, and SCD. CONCLUSION These results show that genetic variation affects the PK and PD of prasugrel in normal individuals. Further studies with larger sample sizes are required to explore whether the SNPs are associated only with prasugrel activity or also with cardiovascular events and all-cause mortality.
Collapse
|
30
|
Stimpfle F, Bauer M, Rath D, Schaeffeler E, Schwab M, Gawaz M, Winter S, Geisler T. Variants of PEAR1 Are Associated With Outcome in Patients With ACS and Stable CAD Undergoing PCI. Front Pharmacol 2018; 9:490. [PMID: 29867494 PMCID: PMC5962768 DOI: 10.3389/fphar.2018.00490] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/25/2018] [Indexed: 12/19/2022] Open
Abstract
Introduction: Platelet endothelial aggregation receptor 1 (PEAR1) triggers platelet aggregation and is expressed in platelets and endothelial cells. Genome-wide association studies (GWAS) showed an association between platelet function and single-nucleotide polymorphisms (SNPs) in PEAR1. Methods: In 582 consecutive patients with stable coronary artery disease (CAD) or acute coronary syndrome (ACS) scheduled for PCI and treated with ASA and Clopidogrel, Prasugrel, or Ticagrelor, SNP analysis for rs12566888, rs2768759, rs41273215, rs3737224, and rs822442 was performed. During a follow-up period of 365 days after initial PCI, all patients were tracked for a primary endpoint, defined as a combined endpoint consisting of either time to death, myocardial infarction (MI) or ischemic stroke. All cause mortality, MI and ischemic stroke were defined as secondary endpoints. Results: Multivariable Cox model analysis for the primary endpoint revealed a significantly increased risk in homozygous PEAR1 rs2768759 minor allele carriers (hazard ratio, 3.16; 95% confidence interval, 1.4–7.13, p = 0.006). Moreover, PEAR1 rs12566888 minor allele carriers also showed an increased risk in all patients (hazard ratio, 1.69; 95% confidence interval, 0.87–3.27, p = 0.122), which was marginally significant in male patients (hazard ratio, 2.12; 95% confidence interval, 1.02–4.43, p = 0.045; n = 425). Conclusions: To the best of our knowledge, this is the first study showing that distinct genetic variants of PEAR1 are associated with cardiovascular prognosis in high risk patients undergoing PCI and treated with dual anti platelet therapy.
Collapse
Affiliation(s)
- Fabian Stimpfle
- Department of Cardiology and Cardiovascular Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Maike Bauer
- Department of Cardiology and Cardiovascular Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Dominik Rath
- Department of Cardiology and Cardiovascular Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany.,Department of Clinical Pharmacology, University Hospital Tübingen, Tübingen, Germany.,Department of Pharmacy and Biochemistry, University Hospital Tübingen, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology and Cardiovascular Medicine, University Hospital of Tübingen, Tübingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,University of Tübingen, Tübingen, Germany
| | - Tobias Geisler
- Department of Cardiology and Cardiovascular Medicine, University Hospital of Tübingen, Tübingen, Germany
| |
Collapse
|
31
|
Grinshtein YI, Kosinova AA, Grinshtein IY, Subbotina TN, Savchenko AA. The Prognostic Value of Combinations of Genetic Polymorphisms in the ITGB3, ITGA2, and CYP2C19*2 Genes in Predicting Cardiovascular Outcomes After Coronary Bypass Grafting. Genet Test Mol Biomarkers 2018; 22:259-265. [PMID: 29461866 DOI: 10.1089/gtmb.2017.0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AIM To determine if there are any associations between the single nucleotide polymorphisms (SNPs): rs2046934, rs1126643, rs5918, rs6065, rs4244285; rs4986893 and the occurrence of cardiovascular events (CVE) in patients following coronary artery bypass grafting (CABG) surgery. MATERIALS AND METHODS The study included 130 CABG patients with stable angina grades II-IV. After CABG 69 of the patients were treated with acetylsalicylic acid (ASA) alone, and 61 received dual antiplatelet therapy (ASA+clopidogrel). Platelet function was assessed by light transmission aggregometry with adenosinediphosphate and arachidonic acid. The SNPs were identified by real-time polymerase chain reaction (PCR) with electrophoretic detection. The mean follow-up period was equal to 10.9 ± 5.2 months. The primary end point included the composite of all-cause mortality, myocardial infarction (MI), and ischemic stroke. RESULTS During the follow-up period 12 CVE were registered: 3 deaths, 6 MI, 3 strokes. Patients with composite mutant alleles of ITGB3+CYP2C19*2 or CYP2C19*2 + ITGA2, and with the mutant allele (*2) of CYP2C19, met end points more often than patients with other gene combinations (wild-type homozygotes, presence of one mutant allele of ITGB3 or ITGA2, the composite of mutant alleles of ITGB3+ITGA2 or ITGB3+ITGA2+CYP2C19*2; hazard ratio = 4, 95% confidence interval: 2.19-7.29, p = 0.008). CONCLUSION Carriage of a combination of mutant alleles in multiple genes including ITGB3+CYP2C19*2 or CYP2C19*2 + ITGA2 or CYP2C19*2 are possible predictors of CVE in patients after CABG.
Collapse
Affiliation(s)
- Yuriy I Grinshtein
- 1 Therapeutic Department of Institute of Postgraduate Education, Krasnoyarsk State Medical University named after prof.V.F.Voyno-Yaseneckiy, Krasnoyarsk, Russian Federation
| | - Aleksandra A Kosinova
- 1 Therapeutic Department of Institute of Postgraduate Education, Krasnoyarsk State Medical University named after prof.V.F.Voyno-Yaseneckiy, Krasnoyarsk, Russian Federation
| | - Igor Y Grinshtein
- 2 Department of Polyclinic Therapy, Family Medicine and Healthy Way of Life, Krasnoyarsk State Medical University named after prof.V.F.Voyno-Yaseneckiy, Krasnoyarsk, Russian Federation
| | - Tatyana N Subbotina
- 3 Scientific and Practical Laboratory of Molecular and Genetic Methods of Research, Siberian Federal University , Krasnoyarsk, Russian Federation
| | - Andrey A Savchenko
- 4 Research Institute of Medical Problems of the North , Siberian Division of the Russian Academy of Medical Sciences, Krasnoyarsk, Russian Federation
| |
Collapse
|
32
|
Genetic mutations in PEAR1 associated with cardiovascular outcomes in Chinese patients with acute coronary syndrome. Thromb Res 2018; 163:77-82. [PMID: 29407631 DOI: 10.1016/j.thromres.2018.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/23/2017] [Accepted: 01/14/2018] [Indexed: 11/22/2022]
Abstract
OBJECTIVE To investigate the association between PEAR1 (platelet endothelial aggregation receptor-1) polymorphisms and cardiovascular outcomes in acute coronary syndrome (ACS) in patients treated with aspirin and clopidogrel. METHODS We genotyped eight common PEAR1 SNPs (rs2768759, rs12566888, rs12041331, rs11264579, rs2644592, rs822441, rs822442, and rs4661012), also CYP2C19*2 (rs4244285) and CYP2C19*3 (rs4986893) in 196 Chinese patients with ACS. We assessed the association between PEAR1 polymorphisms and platelet inhibition rate (PIR) measured by thromboelastography (TEG). The ischemic events over 12 months were recorded, and the relationship between PEAR1 polymorphisms and ischemic events was analyzed. RESULTS Genetic mutations in rs822441, rs822442, and CYP2C19⁎2/⁎3 alleles were significantly associated with a decrease in PIR induced by adenosine diphosphate (ADP). Carriers of the T allele in rs11264579 were less likely to have ischemic events compared with non-carriers (HR: 0.53, 95% CI: 0.30-0.94, P = .031). By contrast, carriers of the A allele in rs822442 had increased risk of ischemic events (HR: 1.82, 95% CI: 1.02-3.24, P = .043). However, these significant associations disappeared after controlling family-wise error rate. CONCLUSIONS For Chinese patients with ACS treated with aspirin and clopidogrel, genetic mutations in rs822441/rs822442 in PEAR1 correlated significantly with platelet activity after adjusting for CYP2C19 *2/*3 alleles. The rs11264579 T allele might be a protective factor for ischemic events; rs11264579, rs822441, and rs822442 might be genetic markers worthy of further research.
Collapse
|
33
|
Wu C, Li G, Wang L. The interaction effect of rs4077515 and rs17019602 increases the susceptibility to IgA nephropathy. Oncotarget 2017; 8:76492-76497. [PMID: 29100328 PMCID: PMC5652722 DOI: 10.18632/oncotarget.20401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022] Open
Abstract
Background Immunoglobulin A nephropathy (IgAN), the most common form of primary glomerular diseases worldwide, is a complex multifactorial disease. Previous genome wide association studies (GWAS) reported that variants CARD9 and VAV3 genes were associated with immunoregulation and susceptibility to IgAN. In this study, we further validated the associations and explored the interaction effect of rs4077515 and rs17019602 in IgAN patients. Results There was no significant correlation between the two variants and IgAN (P > 0.05). The gene-gene analysis showed that rs4077515 and rs17019602 had interaction effect on the susceptibility to IgAN. For additive interaction, the CT or TT of rs4077515 and GG of 17019602 genotype combination conferred a 2.56-fold risk of IgAN reference to CC of 4077515 and AA of 17019602 (OR = 2.56, 95% CI: 0.98–6.69, P = 0.049). In our study, clinical data was available for 543 patients. In comparison, neither rs4077515 nor rs17019602 showed significant association between genotype distribution and clinical parameters in IgAN patients (P > 0.05). Materials and Methods The case-control study included 586 patients with IgAN and 606 healthy controls. Variant rs4077515 of CARD9 gene and rs17019602 of VAV3 gene were genotyped by the ABI TaqMan probe assay. Conclusions The interaction effect of the variants of CARD9 and VAV3 genes increases the susceptibility to IgAN.
Collapse
Affiliation(s)
- Changwei Wu
- Renal Department and Nephrology Institute, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Guisen Li
- Renal Department and Nephrology Institute, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Li Wang
- Renal Department and Nephrology Institute, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
34
|
Petersen R, Lambourne JJ, Javierre BM, Grassi L, Kreuzhuber R, Ruklisa D, Rosa IM, Tomé AR, Elding H, van Geffen JP, Jiang T, Farrow S, Cairns J, Al-Subaie AM, Ashford S, Attwood A, Batista J, Bouman H, Burden F, Choudry FA, Clarke L, Flicek P, Garner SF, Haimel M, Kempster C, Ladopoulos V, Lenaerts AS, Materek PM, McKinney H, Meacham S, Mead D, Nagy M, Penkett CJ, Rendon A, Seyres D, Sun B, Tuna S, van der Weide ME, Wingett SW, Martens JH, Stegle O, Richardson S, Vallier L, Roberts DJ, Freson K, Wernisch L, Stunnenberg HG, Danesh J, Fraser P, Soranzo N, Butterworth AS, Heemskerk JW, Turro E, Spivakov M, Ouwehand WH, Astle WJ, Downes K, Kostadima M, Frontini M. Platelet function is modified by common sequence variation in megakaryocyte super enhancers. Nat Commun 2017; 8:16058. [PMID: 28703137 PMCID: PMC5511350 DOI: 10.1038/ncomms16058] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/19/2017] [Indexed: 12/26/2022] Open
Abstract
Linking non-coding genetic variants associated with the risk of diseases or disease-relevant traits to target genes is a crucial step to realize GWAS potential in the introduction of precision medicine. Here we set out to determine the mechanisms underpinning variant association with platelet quantitative traits using cell type-matched epigenomic data and promoter long-range interactions. We identify potential regulatory functions for 423 of 565 (75%) non-coding variants associated with platelet traits and we demonstrate, through ex vivo and proof of principle genome editing validation, that variants in super enhancers play an important role in controlling archetypical platelet functions. Numerous genetic variants, including those located in the non-coding regions of the genome, are known to be associated with blood cells traits. Here, Frontini and colleagues investigate their potential regulatory functions using epigenomic data and promoter long-range interactions.
Collapse
Affiliation(s)
- Romina Petersen
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - John J Lambourne
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Biola M Javierre
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Luigi Grassi
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Roman Kreuzhuber
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Dace Ruklisa
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,Medical Research Council Biostatistics Unit, University of Cambridge, Forvie Site, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK
| | - Isabel M Rosa
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Ana R Tomé
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Heather Elding
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Strangeways Research Laboratory, The National Institute for Health Research (NIHR) Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Cambridge CB1 8RN, UK
| | - Johanna P van Geffen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Tao Jiang
- Strangeways Research Laboratory, MRC/British Heart Foundation (BHF) Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Samantha Farrow
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Jonathan Cairns
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Abeer M Al-Subaie
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Dammam, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sofie Ashford
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Antony Attwood
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Joana Batista
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Heleen Bouman
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Frances Burden
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Fizzah A Choudry
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Stephen F Garner
- National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Matthias Haimel
- NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.,Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Carly Kempster
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Vasileios Ladopoulos
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - An-Sofie Lenaerts
- NIHR Cambridge Biomedical Research Centre hIPSC Core Facility, Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SZ, UK.,Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SZ, UK
| | - Paulina M Materek
- NIHR Cambridge Biomedical Research Centre hIPSC Core Facility, Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SZ, UK.,Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SZ, UK
| | - Harriet McKinney
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Stuart Meacham
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Daniel Mead
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Magdolna Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Christopher J Penkett
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Augusto Rendon
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,Genomics England Limited, Queen Mary University of London, Dawson Hall, London EC1M 6BQ, UK
| | - Denis Seyres
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Benjamin Sun
- Strangeways Research Laboratory, MRC/British Heart Foundation (BHF) Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK
| | - Salih Tuna
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Marie-Elise van der Weide
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Steven W Wingett
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Joost H Martens
- Faculty of Science, Department of Molecular Biology, Radboud University, 6525GA Nijmegen, The Netherlands
| | - Oliver Stegle
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sylvia Richardson
- Medical Research Council Biostatistics Unit, University of Cambridge, Forvie Site, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK
| | - Ludovic Vallier
- Wellcome Trust and MRC Cambridge Stem Cell Institute, Department of Surgery, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0SZ, UK.,The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David J Roberts
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Headington, Oxford OX9 3DU, UK.,Department of Haematology, Churchill Hospital, Headington, Oxford OX3 7LE, UK.,NHSBT, John Radcliffe Hospital, Headington, Oxford OX3 9BQ, UK
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, University of Leuven, Leuven 3000, Belgium
| | - Lorenz Wernisch
- Medical Research Council Biostatistics Unit, University of Cambridge, Forvie Site, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK
| | - Hendrik G Stunnenberg
- Faculty of Science, Department of Molecular Biology, Radboud University, 6525GA Nijmegen, The Netherlands
| | - John Danesh
- Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Strangeways Research Laboratory, The National Institute for Health Research (NIHR) Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Cambridge CB1 8RN, UK.,Strangeways Research Laboratory, MRC/British Heart Foundation (BHF) Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK.,BHF Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Peter Fraser
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.,Department of Biological Science, Florida State University, Tallahassee, Florida 32303, USA
| | - Nicole Soranzo
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Strangeways Research Laboratory, The National Institute for Health Research (NIHR) Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Cambridge CB1 8RN, UK.,BHF Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Adam S Butterworth
- Strangeways Research Laboratory, The National Institute for Health Research (NIHR) Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Cambridge CB1 8RN, UK.,Strangeways Research Laboratory, MRC/British Heart Foundation (BHF) Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK.,BHF Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Johan W Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,NIHR BioResource-Rare Diseases, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.,Medical Research Council Biostatistics Unit, University of Cambridge, Forvie Site, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK
| | - Mikhail Spivakov
- Nuclear Dynamics Programme, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Willem H Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,Department of Human Genetics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.,Strangeways Research Laboratory, The National Institute for Health Research (NIHR) Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, University of Cambridge, Cambridge CB1 8RN, UK.,BHF Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - William J Astle
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,Medical Research Council Biostatistics Unit, University of Cambridge, Forvie Site, Cambridge Biomedical Campus, Cambridge CB2 0SR, UK.,Strangeways Research Laboratory, MRC/British Heart Foundation (BHF) Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8RN, UK.,BHF Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Kate Downes
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK
| | - Myrto Kostadima
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mattia Frontini
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,National Health Service Blood and Transplant (NHSBT), Cambridge Biomedical Campus, Cambridge CB2 0PT, UK.,BHF Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| |
Collapse
|
35
|
SNP in human ARHGEF3 promoter is associated with DNase hypersensitivity, transcript level and platelet function, and Arhgef3 KO mice have increased mean platelet volume. PLoS One 2017; 12:e0178095. [PMID: 28542600 PMCID: PMC5441597 DOI: 10.1371/journal.pone.0178095] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 05/07/2017] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies have identified a genetic variant at 3p14.3 (SNP rs1354034) that strongly associates with platelet number and mean platelet volume in humans. While originally proposed to be intronic, analysis of mRNA expression in primary human hematopoietic subpopulations reveals that this SNP is located directly upstream of the predominantly expressed ARHGEF3 isoform in megakaryocytes (MK). We found that ARHGEF3, which encodes a Rho guanine exchange factor, is dramatically upregulated during both human and murine MK maturation. We show that the SNP (rs1354034) is located in a DNase I hypersensitive region in human MKs and is an expression quantitative locus (eQTL) associated with ARHGEF3 expression level in human platelets, suggesting that it may be the causal SNP that accounts for the variations observed in human platelet traits and ARHGEF3 expression. In vitro human platelet activation assays revealed that rs1354034 is highly correlated with human platelet activation by ADP. In order to test whether ARHGEF3 plays a role in MK development and/or platelet function, we developed an Arhgef3 KO/LacZ reporter mouse model. Reflecting changes in gene expression, LacZ expression increases during MK maturation in these mice. Although Arhgef3 KO mice have significantly larger platelets, loss of Arhgef3 does not affect baseline MK or platelets nor does it affect platelet function or platelet recovery in response to antibody-mediated platelet depletion compared to littermate controls. In summary, our data suggest that modulation of ARHGEF3 gene expression in humans with a promoter-localized SNP plays a role in human MKs and human platelet function—a finding resulting from the biological follow-up of human genetic studies. Arhgef3 KO mice partially recapitulate the human phenotype.
Collapse
|
36
|
Yang WY, Petit T, Cauwenberghs N, Zhang ZY, Sheng CS, Thijs L, Salvi E, Izzi B, Vandenbriele C, Wei FF, Gu YM, Jacobs L, Citterio L, Delli Carpini S, Barlassina C, Cusi D, Hoylaerts MF, Verhamme P, Kuznetsova T, Staessen JA. PEAR1 is not a major susceptibility gene for cardiovascular disease in a Flemish population. BMC MEDICAL GENETICS 2017; 18:45. [PMID: 28449647 PMCID: PMC5408434 DOI: 10.1186/s12881-017-0411-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/20/2017] [Indexed: 12/19/2022]
Abstract
Background Platelet Endothelial Aggregation Receptor 1 (PEAR1), a membrane protein highly expressed in platelets and endothelial cells, plays a role in platelet contact-induced activation, sustained platelet aggregation and endothelial function. Previous reports implicate PEAR1 rs12041331 as a variant influencing risk in patients with coronary heart disease. We investigated whether genetic variation in PEAR1 predicts cardiovascular outcome in a white population. Methods In 1938 participants enrolled in the Flemish Study on Environment, Genes and Health Outcomes (51.3% women; mean age 43.6 years), we genotyped 9 tagging SNPs in PEAR1, measured baseline cardiovascular risk factors, and recorded Cardiovascular disease incidence. For SNPs, we contrasted cardiovascular disease incidence of minor-allele heterozygotes and homozygotes (variant) vs. major-allele homozygotes (reference) and for haplotypes carriers vs. non-carriers. In adjusted analyses, we accounted for family clusters and baseline covariables, including sex, age, body mass index, mean arterial pressure, the total-to-HDL cholesterol ratio, smoking and drinking, antihypertensive drug treatment, and history of cardiovascular disease and diabetes mellitus. Results Over a median follow-up of 15.3 years, 238 died and 181 experienced a major cardiovascular endpoint. The multivariable-adjusted hazard ratios of eight PEAR1 SNPs, including rs12566888, ranged from 0.87 to 1.07 (P ≥0.35) and from 0.78 to 1.30 (P ≥0.15), respectively. The hazard ratios of three haplotypes with frequency ≥10% ranged from 0.93 to 1.11 (P ≥0.49) for mortality and from 0.84 to 1.03 (P ≥0.29) for a cardiovascular complications. These results were not influenced by intake of antiplatelet drugs, nonsteroidal anti-inflammatory drugs, or both (P-values for interaction ≥ 0.056). Conclusions In a White population, we could not replicate previous reports from experimental studies or obtained in patients suggesting that PEAR1 might be a susceptibility gene for cardiovascular complications. Electronic supplementary material The online version of this article (doi:10.1186/s12881-017-0411-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Yi Yang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences,, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, BE-3000, Leuven, Belgium
| | - Thibault Petit
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences,, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, BE-3000, Leuven, Belgium.,Cardiology, Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Nicholas Cauwenberghs
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences,, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, BE-3000, Leuven, Belgium
| | - Zhen-Yu Zhang
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences,, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, BE-3000, Leuven, Belgium
| | - Chang-Sheng Sheng
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences,, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, BE-3000, Leuven, Belgium
| | - Lutgarde Thijs
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences,, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, BE-3000, Leuven, Belgium
| | - Erika Salvi
- Genomics and Bioinformatics Platform at Filarete Foundation, Department of Health Sciences and Graduate School of Nephrology, Division of Nephrology, San Paolo Hospital, University of Milan, Milan, Italy
| | - Benedetta Izzi
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Christophe Vandenbriele
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Fang-Fei Wei
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences,, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, BE-3000, Leuven, Belgium
| | - Yu-Mei Gu
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences,, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, BE-3000, Leuven, Belgium
| | - Lotte Jacobs
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences,, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, BE-3000, Leuven, Belgium
| | - Lorena Citterio
- Division of Nephrology and Dialysis, IRCCS San Raffaele Scientific Institute, University Vita-Salute San Raffaele, Milan, Italy
| | - Simona Delli Carpini
- Division of Nephrology and Dialysis, IRCCS San Raffaele Scientific Institute, University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Barlassina
- Genomics and Bioinformatics Platform at Filarete Foundation, Department of Health Sciences and Graduate School of Nephrology, Division of Nephrology, San Paolo Hospital, University of Milan, Milan, Italy
| | - Daniele Cusi
- Genomics and Bioinformatics Platform at Filarete Foundation, Department of Health Sciences and Graduate School of Nephrology, Division of Nephrology, San Paolo Hospital, University of Milan, Milan, Italy
| | - Marc F Hoylaerts
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Peter Verhamme
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, University of Leuven, Leuven, Belgium
| | - Tatiana Kuznetsova
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences,, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, BE-3000, Leuven, Belgium
| | - Jan A Staessen
- Studies Coordinating Centre, Research Unit Hypertension and Cardiovascular Epidemiology, KU Leuven Department of Cardiovascular Sciences,, University of Leuven, Campus Sint Rafaël, Kapucijnenvoer 35, Box 7001, BE-3000, Leuven, Belgium. .,R&D Group VitaK, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
37
|
Salehe BR, Jones CI, Di Fatta G, McGuffin LJ. RAPIDSNPs: A new computational pipeline for rapidly identifying key genetic variants reveals previously unidentified SNPs that are significantly associated with individual platelet responses. PLoS One 2017; 12:e0175957. [PMID: 28441463 PMCID: PMC5404774 DOI: 10.1371/journal.pone.0175957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 04/03/2017] [Indexed: 01/14/2023] Open
Abstract
Advances in omics technologies have led to the discovery of genetic markers, or single nucleotide polymorphisms (SNPs), that are associated with particular diseases or complex traits. Although there have been significant improvements in the approaches used to analyse associations of SNPs with disease, further optimised and rapid techniques are needed to keep up with the rate of SNP discovery, which has exacerbated the 'missing heritability' problem. Here, we have devised a novel, integrated, heuristic-based, hybrid analytical computational pipeline, for rapidly detecting novel or key genetic variants that are associated with diseases or complex traits. Our pipeline is particularly useful in genetic association studies where the genotyped SNP data are highly dimensional, and the complex trait phenotype involved is continuous. In particular, the pipeline is more efficient for investigating small sets of genotyped SNPs defined in high dimensional spaces that may be associated with continuous phenotypes, rather than for the investigation of whole genome variants. The pipeline, which employs a consensus approach based on the random forest, was able to rapidly identify previously unseen key SNPs, that are significantly associated with the platelet response phenotype, which was used as our complex trait case study. Several of these SNPs, such as rs6141803 of COMMD7 and rs41316468 in PKT2B, have independently confirmed associations with cardiovascular diseases (CVDs) according to other unrelated studies, suggesting that our pipeline is robust in identifying key genetic variants. Our new pipeline provides an important step towards addressing the problem of 'missing heritability' through enhanced detection of key genetic variants (SNPs) that are associated with continuous complex traits/disease phenotypes.
Collapse
Affiliation(s)
| | - Chris Ian Jones
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Giuseppe Di Fatta
- Department of Computer Science, University of Reading, Reading, United Kingdom
| | - Liam James McGuffin
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
38
|
Pharmacokinetic and Pharmacodynamic Responses to Clopidogrel: Evidences and Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14030301. [PMID: 28335443 PMCID: PMC5369137 DOI: 10.3390/ijerph14030301] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 12/15/2022]
Abstract
Clopidogrel has significantly reduced the incidence of recurrent atherothrombotic events in patients with acute coronary syndrome (ACS) and in those undergoing percutaneous coronary intervention (PCI). However, recurrence events still remain, which may be partly due to inadequate platelet inhibition by standard clopidogrel therapy. Genetic polymorphisms involved in clopidogrel’s absorption, metabolism, and the P2Y12 receptor may interfere with its antiplatelet activity. Recent evidence indicated that epigenetic modification may also affect clopidogrel response. In addition, non-genetic factors such as demographics, disease complications, and drug-drug interactions can impair the antiplatelet effect of clopidogrel. The identification of factors contributing to the variation in clopidogrel response is needed to improve platelet inhibition and to reduce risk for cardiovascular events. This review encompasses the most recent updates on factors influencing pharmacokinetic and pharmacodynamic responses to clopidogrel.
Collapse
|
39
|
Li M, Hu Y, Wen Z, Li H, Hu X, Zhang Y, Zhang Z, Xiao J, Tang J, Chen X. Association of PEAR1 rs12041331 polymorphism and pharmacodynamics of ticagrelor in healthy Chinese volunteers. Xenobiotica 2017; 47:1130-1138. [PMID: 27937053 DOI: 10.1080/00498254.2016.1271962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. Genetic polymorphisms in platelet endothelial aggregation receptor 1 (PEAR1) were associated with responsiveness to aspirin and P2Y12 receptor antagonists. This study aimed to investigate whether PEAR1 polymorphism is associated with ticagrelor pharmacodynamics in healthy Chinese subjects. 2. The in vitro inhibition of platelet aggregation (IPA) was evaluated before and after ticagrelor incubated with platelet-rich plasma from 196 healthy Chinese male subjects. Eight polymorphisms at PEAR1 locus were genotyped. Eighteen volunteers (six in each rs12041331 genotype group) were randomly selected. After a single oral 180 mg dose of ticagrelor, plasma levels of ticagrelor and the active metabolite AR-C124910XX were measured and pharmacodynamics parameters including IPA and VASP-platelet reactivity index (PRI) were assessed. 3. No significant difference in ticagrelor pharmacokinetics among rs12041331 genotype was observed. As compared with rs12041331 G allele carriers, AA homozygotes exhibited increased IPA after 15 μM ticagrelor incubation (p < 0.01), increased area under the time-effect curve of IPA and lower PRI at 2 h after ticagrelor administration (p < 0.05, respectively). Rs4661012 GG homozygotes showed increased IPA after 50 μM ticagrelor incubation as compared to T allele carriers (p < 0.01). 4. PEAR1 polymorphism may influence ticagrelor pharmacodynamics in healthy Chinese subjects.
Collapse
Affiliation(s)
- Mupeng Li
- a Department of Clinical Pharmacology , Xiangya Hospital, Central South University , Changsha , Hunan , China.,b Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University , Changsha , Hunan , China
| | - Yaodong Hu
- c Department of Cardiology , Heping Hospital Affiliated to Changzhi Medical College , Changzhi , Shanxi , China , and
| | - Zhipeng Wen
- a Department of Clinical Pharmacology , Xiangya Hospital, Central South University , Changsha , Hunan , China.,b Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University , Changsha , Hunan , China
| | - Huilan Li
- d Department of Pharmacy , Xiangya Hospital, Central South University , Changsha , Hunan , China
| | - Xiaolei Hu
- a Department of Clinical Pharmacology , Xiangya Hospital, Central South University , Changsha , Hunan , China.,b Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University , Changsha , Hunan , China
| | - Yanjiao Zhang
- a Department of Clinical Pharmacology , Xiangya Hospital, Central South University , Changsha , Hunan , China.,b Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University , Changsha , Hunan , China
| | - Zanling Zhang
- d Department of Pharmacy , Xiangya Hospital, Central South University , Changsha , Hunan , China
| | - Jian Xiao
- d Department of Pharmacy , Xiangya Hospital, Central South University , Changsha , Hunan , China
| | - Jie Tang
- a Department of Clinical Pharmacology , Xiangya Hospital, Central South University , Changsha , Hunan , China.,b Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University , Changsha , Hunan , China
| | - Xiaoping Chen
- a Department of Clinical Pharmacology , Xiangya Hospital, Central South University , Changsha , Hunan , China.,b Hunan Key Laboratory of Pharmacogenetics, Institute of Clinical Pharmacology, Central South University , Changsha , Hunan , China
| |
Collapse
|
40
|
Abstract
Taken together, there is ample evidence of the association of cardiovascular disease, cerebrovascular, and inflammatory disease with single nucleotide variants (SNV) due to their impact on platelet size, number, and function. With the use of electronic medical record (EMR) or other phenotypic-linked bioinformatics sources, the more important "functional" variants are emerging and provide valuable information on their specific role in promoting early onset of disease or poor response to therapeutic measures. This review will focus upon the recognized common polymorphisms or gene variants with small, but functional effects, as it is becoming clear that these contribute to hyper- or hypo-responsive platelet phenotypes. The impact of these gene variants is distinguishable among normal individuals, and they are suspected contributors to increased risk of adverse outcomes in patients with underlying disease. There are thousands of gene variants and environmental factors that may mitigate risk or amplify the potential for disease within each of us. When combined with the environment and epigenetic influences, it is clear that whole-genome sequencing and bioinformatics alone will not be enough to truly predict "risk" or probability, but awareness of their potential influence may be a starting point in selective screening and generating prevention strategies to promote a healthy lifestyle or fine-tune therapeutic choices in the future.
Collapse
Affiliation(s)
- Diane Nugent
- a Hematology Advanced Diagnostic Laboratory , CHOC Children's Hospital , Orange , CA , USA.,b Center for Inherited Blood Disorders , Orange , CA.,c UC Irvine Medical School , Irvine , CA , USA
| | - Thomas Kunicki
- a Hematology Advanced Diagnostic Laboratory , CHOC Children's Hospital , Orange , CA , USA.,b Center for Inherited Blood Disorders , Orange , CA.,c UC Irvine Medical School , Irvine , CA , USA
| |
Collapse
|
41
|
Garner SF, Furnell A, Kahan BC, Jones CI, Attwood A, Harrison P, Kelly AM, Goodall AH, Cardigan R, Ouwehand WH. Platelet responses to agonists in a cohort of highly characterised platelet donors are consistent over time. Vox Sang 2016; 112:18-24. [PMID: 28001309 PMCID: PMC5299478 DOI: 10.1111/vox.12468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND OBJECTIVES Platelet function shows significant inheritance that is at least partially genetically controlled. There is also evidence that the platelet response is stable over time, but there are few studies that have assessed consistency of platelet function over months and years. We aimed to measure platelet function in platelet donors over time in individuals selected from a cohort of 956 donors whose platelet function had been previously characterised. MATERIALS AND METHODS Platelet function was assessed by flow cytometry, measuring fibrinogen binding and P-selectin expression after stimulation with either cross-linked collagen-related peptide or adenosine 5'-diphosphate. Eighty-nine donors from the Cambridge Platelet Function Cohort whose platelet responses were initially within the lower or upper decile of reactivity were retested between 4 months and five and a half years later. RESULTS There was moderate-to-high correlation between the initial and repeat platelet function results for all assays (P ≤ 0·007, r2 0·2961-0·7625); furthermore, the range of results observed in the initial low and high responder groups remained significantly different at the time of the second test (P ≤ 0·0005). CONCLUSION Platelet function remains consistent over time. This implies that this potential influence on quality of donated platelet concentrates will remain essentially constant for a given donor.
Collapse
Affiliation(s)
- S F Garner
- NHS Blood and Transplant, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - A Furnell
- NHS Blood and Transplant, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - B C Kahan
- Pragmatic Clinical Trials Unit, Queen Mary University of London, London, UK
| | - C I Jones
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - A Attwood
- NHS Blood and Transplant, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - P Harrison
- Institute of Inflammation and Ageing, Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - A M Kelly
- NHS Blood and Transplant, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - A H Goodall
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - R Cardigan
- NHS Blood and Transplant, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - W H Ouwehand
- NHS Blood and Transplant, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK.,Wellcome Trust Sanger Institute, Cambridge, UK
| |
Collapse
|
42
|
Identification of ITGA2B and ITGB3 Single-Nucleotide Polymorphisms and Their Influences on the Platelet Function. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5675084. [PMID: 27965976 PMCID: PMC5124636 DOI: 10.1155/2016/5675084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
The aim of the study was to investigate ITGA2B and ITGB3 genetic polymorphisms and to evaluate the variability in the platelet function in healthy Chinese subjects. The genetic sequence of the entire coding region of the ITGA2B and ITGB3 genes was investigated. Adenosine diphosphate-induced platelet aggregation, glycoprotein IIb/IIIa content, bleeding time, and coagulation indexes were detected. Thirteen variants in the ITGA2B locus and 29 variants in the ITGB3 locus were identified in the Chinese population. The rs1009312 and rs2015049 were associated with the mean platelet volume. The rs70940817 was significantly correlated with the prothrombin time. The rs70940817 and rs112188890 were related with the activated partial thromboplastin time, and ITGB3 rs4642 was correlated with the thrombin time and fibrinogen. The minor alleles of rs56197296 and rs5919 were associated with decreased ADP-induced platelet aggregation, and rs55827077 was related with decreased GPIIb/IIIa per platelet. The rs1009312, rs2015049, rs3760364, rs567581451, rs7208170, and rs117052258 were related with bleeding time. Further studies are needed to explore the clinical importance of ITGA2B and ITGB3 SNPs in the platelet function.
Collapse
|
43
|
Eicher JD, Xue L, Ben-Shlomo Y, Beswick AD, Johnson AD. Replication and hematological characterization of human platelet reactivity genetic associations in men from the Caerphilly Prospective Study (CaPS). J Thromb Thrombolysis 2016; 41:343-50. [PMID: 26519038 DOI: 10.1007/s11239-015-1290-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Platelet reactivity, an important factor in hemostasis and chronic disease, has widespread inter-individual variability with a substantial genetic contribution. Previously, our group performed a genome-wide association study of platelet reactivity identifying single nucleotide polymorphisms (SNPs) associated with ADP- and epinephrine- induced aggregation, including SNPs in MRVI1, PIK3CG, JMJD1C, and PEAR1, among others. Here, we assessed the association of these previously identified SNPs with ADP-, thrombin-, and shear- induced platelet aggregation. Additionally, we sought to expand the association of these SNPs with blood cell counts and hemostatic factors. To accomplish this, we examined the association of 12 SNPs with seven platelet reactivity and various hematological measures in 1300 middle-aged men in the Caerphilly Prospective Study. Nine of the examined SNPs showed at least suggestive association with platelet reactivity. The strongest associations were with rs12566888 in PEAR1 to ADP-induced (p = 1.51 × 10(-7)) and thrombin-induced (p = 1.91 × 10(-6)) reactivity in platelet rich plasma. Our results indicate PEAR1 functions in a relatively agonist independent manner, possibly through subsequent intracellular propagation of platelet activation. rs10761741 in JMJD1C showed suggestive association with ADP-induced reactivity (p = 1.35 × 10(-3)), but its strongest associations were with platelet-related cell counts (p = 1.30 × 10(-9)). These associations indicate variation in JMJD1C influences pathways that modulate platelet development as well as those that affect reactivity. Associations with other blood cell counts and hemostatic factors were generally weaker among the tested SNPs, indicating a specificity of these SNPs' function to platelets. Future genome-wide analyses will further assess association of these genes and identify new genes important to platelet biology.
Collapse
Affiliation(s)
- John D Eicher
- The Framingham Heart Study, 73 Mt. Wayte Ave. Suite #2, Framingham, MA, 01702, USA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Luting Xue
- The Framingham Heart Study, 73 Mt. Wayte Ave. Suite #2, Framingham, MA, 01702, USA.,Biostatistics Program, Boston University, Boston, MA, USA
| | - Yoav Ben-Shlomo
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | | | - Andrew D Johnson
- The Framingham Heart Study, 73 Mt. Wayte Ave. Suite #2, Framingham, MA, 01702, USA. .,Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
44
|
Criel M, Izzi B, Vandenbriele C, Liesenborghs L, Van kerckhoven S, Lox M, Cludts K, Jones EA, Vanassche T, Verhamme P, Hoylaerts M. Absence of Pear1 does not affect murine platelet function in vivo. Thromb Res 2016; 146:76-83. [DOI: 10.1016/j.thromres.2016.08.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 08/09/2016] [Accepted: 08/24/2016] [Indexed: 11/29/2022]
|
45
|
Sen NE, Drost J, Gispert S, Torres-Odio S, Damrath E, Klinkenberg M, Hamzeiy H, Akdal G, Güllüoğlu H, Başak AN, Auburger G. Search for SCA2 blood RNA biomarkers highlights Ataxin-2 as strong modifier of the mitochondrial factor PINK1 levels. Neurobiol Dis 2016; 96:115-126. [PMID: 27597528 DOI: 10.1016/j.nbd.2016.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022] Open
Abstract
Ataxin-2 (ATXN2) polyglutamine domain expansions of large size result in an autosomal dominantly inherited multi-system-atrophy of the nervous system named spinocerebellar ataxia type 2 (SCA2), while expansions of intermediate size act as polygenic risk factors for motor neuron disease (ALS and FTLD) and perhaps also for Levodopa-responsive Parkinson's disease (PD). In view of the established role of ATXN2 for RNA processing in periods of cell stress and the expression of ATXN2 in blood cells such as platelets, we investigated whether global deep RNA sequencing of whole blood from SCA2 patients identifies a molecular profile which might serve as diagnostic biomarker. The bioinformatic analysis of SCA2 blood global transcriptomics revealed various significant effects on RNA processing pathways, as well as the pathways of Huntington's disease and PD where mitochondrial dysfunction is crucial. Notably, an induction of PINK1 and PARK7 expression was observed. Conversely, expression of Pink1 was severely decreased upon global transcriptome profiling of Atxn2-knockout mouse cerebellum and liver, in parallel to strong effects on Opa1 and Ghitm, which encode known mitochondrial dynamics regulators. These results were validated by quantitative PCR and immunoblots. Starvation stress of human SH-SY5Y neuroblastoma cells led to a transcriptional phasic induction of ATXN2 in parallel to PINK1, and the knockdown of one enhanced the expression of the other during stress response. These findings suggest that ATXN2 may modify the known PINK1 roles for mitochondrial quality control and autophagy during cell stress. Given that PINK1 is responsible for autosomal recessive juvenile PD, this genetic interaction provides a concept how the degeneration of nigrostriatal dopaminergic neurons and the Parkinson phenotype may be triggered by ATXN2 mutations.
Collapse
Affiliation(s)
- Nesli Ece Sen
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany; Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey
| | - Jessica Drost
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Sylvia Torres-Odio
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Ewa Damrath
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Michael Klinkenberg
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Hamid Hamzeiy
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey
| | - Gülden Akdal
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Halil Güllüoğlu
- Department of Neurology, Faculty of Medicine, Izmir University, Izmir, Turkey
| | - A Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey.
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany.
| |
Collapse
|
46
|
Postula M, Janicki PK, Milanowski L, Pordzik J, Eyileten C, Karlinski M, Wylezol P, Solarska M, Czlonkowka A, Kurkowska-Jastrzebka I, Sugino S, Imamura Y, Mirowska-Guzel D. Association of frequent genetic variants in platelet activation pathway genes with large-vessel ischemic stroke in Polish population. Platelets 2016; 28:66-73. [DOI: 10.1080/09537104.2016.1203404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
- Perioperative Genomics Laboratory, Penn State University, College of Medicine, Hershey, PA, USA
| | - Piotr K. Janicki
- Perioperative Genomics Laboratory, Penn State University, College of Medicine, Hershey, PA, USA
| | - Lukasz Milanowski
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Justyna Pordzik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Ceren Eyileten
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Michal Karlinski
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Pawel Wylezol
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Marta Solarska
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Anna Czlonkowka
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Shigekazu Sugino
- Perioperative Genomics Laboratory, Penn State University, College of Medicine, Hershey, PA, USA
| | - Yuka Imamura
- Genome Sciences Facility, Penn State University, College of Medicine, Hershey, PA, USA
| | - Dagmara Mirowska-Guzel
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| |
Collapse
|
47
|
Allele-specific DNA methylation reinforces PEAR1 enhancer activity. Blood 2016; 128:1003-12. [PMID: 27313330 DOI: 10.1182/blood-2015-11-682153] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 06/13/2016] [Indexed: 01/07/2023] Open
Abstract
Genetic variation in the PEAR1 locus is linked to platelet reactivity and cardiovascular disease. The major G allele of rs12041331, an intronic cytosine guanine dinucleotide-single-nucleotide polymorphism (CpG-SNP), is associated with higher PEAR1 expression in platelets and endothelial cells than the minor A allele. The molecular mechanism underlying this difference remains elusive. We have characterized the histone modification profiles of the intronic region surrounding rs12041331 and identified H3K4Me1 enhancer-specific enrichment for the region that covers the CpG-SNP. Interestingly, methylation studies revealed that the CpG site is fully methylated in leukocytes of GG carriers. Nuclear protein extracts from megakaryocytes, endothelial cells, vs control HEK-293 cells show a 3-fold higher affinity for the methylated G allele compared with nonmethylated G or A alleles in a gel electrophoretic mobility shift assay. To understand the positive relationship between methylation and gene expression, we studied DNA methylation at 4 different loci of PEAR1 during in vitro megakaryopoiesis. During differentiation, the CpG-SNP remained fully methylated, while we observed rapid methylation increases at the CpG-island overlapping the first 5'-untranslated region exon, paralleling the increased PEAR1 expression. In the same region, A-allele carriers of rs12041331 showed significantly lower DNA methylation at CGI1 compared with GG homozygote. This CpG-island contains binding sites for the methylation-sensitive transcription factor CTCF, whose binding is known to play a role in enhancer activation and/or repression. In conclusion, we report the molecular characterization of the first platelet function-related CpG-SNP, a genetic predisposition that reinforces PEAR1 enhancer activity through allele-specific DNA methylation.
Collapse
|
48
|
Milanowski L, Pordzik J, Janicki PK, Postula M. Common genetic variants in platelet surface receptors and its association with ischemic stroke. Pharmacogenomics 2016; 17:953-71. [PMID: 27269246 DOI: 10.2217/pgs.16.21] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ischemic stroke has been named one of the leading causes of death worldwide. Whereas numerous biological mechanisms and molecules were found to be associated with stroke, platelets are particularly contributive to its pathogenesis. Recent data indicate considerable variability in platelet phenotype which accounts for differences in platelet surface receptor function, count and reactivity. These features collectively influence both the events leading to a disease and effectiveness of antiplatelet therapies. Consequently, genetic variants predisposing to cerebrovascular diseases can be sequenced using a wide array of techniques and become a useful tool in clinical setting. In this review, we provide an outline of common platelet polymorphisms that impose risk on ischemic stroke development and should be evaluated as targets to improve treatment. As study results are often inconsistent, partly due to differences in demographic characteristics between study populations and the fact that the functional impact of these variants has been relatively small, we conclude that both rare, low-frequency and common variants might account for genetic contribution on abnormal platelet response to antiplatelet drugs.
Collapse
Affiliation(s)
- Lukasz Milanowski
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Justyna Pordzik
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland
| | - Piotr K Janicki
- Perioperative Genomics Laboratory, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Marek Postula
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Center for Preclinical Research and Technology CEPT, Warsaw, Poland.,Perioperative Genomics Laboratory, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
49
|
Chittoor G, Kent JW, Almeida M, Puppala S, Farook VS, Cole SA, Haack K, Göring HHH, MacCluer JW, Curran JE, Carless MA, Johnson MP, Moses EK, Almasy L, Mahaney MC, Lehman DM, Duggirala R, Comuzzie AG, Blangero J, Voruganti VS. GWAS and transcriptional analysis prioritize ITPR1 and CNTN4 for a serum uric acid 3p26 QTL in Mexican Americans. BMC Genomics 2016; 17:276. [PMID: 27039371 PMCID: PMC4818944 DOI: 10.1186/s12864-016-2594-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 03/16/2016] [Indexed: 01/08/2023] Open
Abstract
Background The variation in serum uric acid concentrations is under significant genetic influence. Elevated SUA concentrations have been linked to increased risk for gout, kidney stones, chronic kidney disease, and cardiovascular disease whereas reduced serum uric acid concentrations have been linked to multiple sclerosis, Parkinson’s disease and Alzheimer’s disease. Previously, we identified a novel locus on chromosome 3p26 affecting serum uric acid concentrations in Mexican Americans from San Antonio Family Heart Study. As a follow up, we examined genome-wide single nucleotide polymorphism data in an extended cohort of 1281 Mexican Americans from multigenerational families of the San Antonio Family Heart Study and the San Antonio Family Diabetes/Gallbladder Study. We used a linear regression-based joint linkage/association test under an additive model of allelic effect, while accounting for non-independence among family members via a kinship variance component. Results Univariate genetic analysis indicated serum uric acid concentrations to be significant heritable (h2 = 0.50 ± 0.05, p < 4 × 10−35), and linkage analysis of serum uric acid concentrations confirmed our previous finding of a novel locus on 3p26 (LOD = 4.9, p < 1 × 10−5) in the extended sample. Additionally, we observed strong association of serum uric acid concentrations with variants in following candidate genes in the 3p26 region; inositol 1,4,5-trisphosphate receptor, type 1 (ITPR1), contactin 4 (CNTN4), decapping mRNA 1A (DCP1A); transglutaminase 4 (TGM4) and rho guanine nucleotide exchange factor (GEF) 26 (ARHGEF26) [p < 3 × 10−7; minor allele frequencies ranged between 0.003 and 0.42] and evidence of cis-regulation for ITPR1 transcripts. Conclusion Our results confirm the importance of the chromosome 3p26 locus and genetic variants in this region in the regulation of serum uric acid concentrations.
Collapse
Affiliation(s)
- Geetha Chittoor
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA
| | - Jack W Kent
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Marcio Almeida
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Sobha Puppala
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Vidya S Farook
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Shelley A Cole
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Karin Haack
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Harald H H Göring
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Jean W MacCluer
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Melanie A Carless
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Matthew P Johnson
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Eric K Moses
- Centre for Genetic Epidemiology and Biostatistics, The University of Western Australia, Perth, WA, Australia
| | - Laura Almasy
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Michael C Mahaney
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Donna M Lehman
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ravindranath Duggirala
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Anthony G Comuzzie
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, School of Medicine, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Venkata Saroja Voruganti
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. .,UNC Nutrition Research Institute, University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC, 28081, USA.
| |
Collapse
|
50
|
Yao Y, Tang XF, Zhang JH, He C, Ma YL, Xu JJ, Song Y, Liu R, Meng XM, Song L, Chen J, Wang M, Xu B, Gao RL, Yuan JQ. Association of PEAR1 genetic variants with platelet reactivity in response to dual antiplatelet therapy with aspirin and clopidogrel in the Chinese patient population after percutaneous coronary intervention. Thromb Res 2016; 141:28-34. [PMID: 26962983 DOI: 10.1016/j.thromres.2016.02.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/19/2016] [Accepted: 02/29/2016] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Platelet Endothelial Aggregation Receptor-1 (PEAR1) is a recently reported platelet transmembrane protein which plays an important role in platelet aggregation. The aim of this study was to investigate whether PEAR1 genetic variations were associated with platelet reactivity as assessed by adenosine diphosphate(ADP)-induced platelet aggregation in Chinese patients treated with aspirin and clopidogrel. METHODS Patients with coronary heart disease (CHD) who underwent percutaneous coronary intervention (PCI) were enrolled in the study. All patients were on dual antiplatelet therapy with aspirin and clopidogrel. ADP-induced platelet aggregation was measured by thromboelastography and defined as percent inhibition of platelet aggregation (IPA). Patients (n=204) with IPA <30% were identified as high on-treatment platelet reactivity (HPR). Patients (n=201) with IPA >70% were identified as low on-treatment platelet reactivity (LPR). Sixteen single nucleotide polymorphisms (SNPs) of PEAR1 were determined by a method of improved multiple ligase detection reaction. RESULTS Among the 16 SNPs examined by univariate analysis, 5 SNPs were significantly associated with ADP-induced platelet aggregation. Minor allele C at rs11264580 (p=0.033), minor allele G at rs2644592 (p=0.048), minor allele T at rs3737224 (p=0.033) and minor allele T at rs41273215 (p=0.025) were strongly associated with HPR, whereas homozygous TT genotype at rs57731889 (p=0.009) was associated with LPR. Multivariate logistic regression analysis further revealed that the minor allele T at rs41273215 (p=0.038) was an independent predictor of HPR and the homozygous TT genotype at rs57731889 (p=0.003) was an independent predictor of LPR. CONCLUSIONS PEAR1 genetic variations were strongly associated with ADP-induced platelet aggregation in Chinese patients with CHD treated with aspirin and clopidogrel. These genetic variations may contribute to the variability in platelet function. The utility of PEAR1 genetic variants in the assessment and prediction of cardiovascular risk warrants further investigation.
Collapse
Affiliation(s)
- Yi Yao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, People's Republic of China; Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Xiao-Fang Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, People's Republic of China; Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Jia-Hui Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, People's Republic of China; Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Chen He
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, People's Republic of China; Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Yuan-Liang Ma
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, People's Republic of China; Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Jing-Jing Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, People's Republic of China; Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Ying Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, People's Republic of China; Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Ru Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, People's Republic of China; Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Xian-Min Meng
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, People's Republic of China; Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Lei Song
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, People's Republic of China; Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Jue Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, People's Republic of China; Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, People's Republic of China; Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Bo Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, People's Republic of China; Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Run-Lin Gao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, People's Republic of China; Peking Union Medical College, Beijing 100037, People's Republic of China
| | - Jin-Qing Yuan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beilishi Road No. 167, Xicheng District, Beijing 100037, People's Republic of China; Peking Union Medical College, Beijing 100037, People's Republic of China.
| |
Collapse
|