1
|
Kashani B, Zandi Z, Pourbagheri-Sigaroodi A, Yousefi AM, Ghaffari SH, Bashash D. The PI3K signaling pathway; from normal lymphopoiesis to lymphoid malignancies. Expert Rev Anticancer Ther 2024; 24:493-512. [PMID: 38690706 DOI: 10.1080/14737140.2024.2350629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION As a vital mechanism of survival, lymphopoiesis requires the collaboration of different signaling molecules to orchestrate each step of cell development and maturation. The PI3K pathway is considerably involved in the maturation of lymphatic cells and therefore, its dysregulation can immensely affect human well-being and cause some of the most prevalent malignancies. As a result, studies that investigate this pathway could pave the way for a better understanding of the lymphopoiesis mechanisms, the undesired changes that lead to cancer progression, and how to design drugs to solve this issue. AREAS COVERED The present review addresses the aforementioned aspects of the PI3K pathway and helps pave the way for future therapeutic approaches. In order to access the articles, databases such as Medicine Medline/PubMed, Scopus, Google Scholar, and Science Direct were utilized. The search formula was established by identifying main keywords including PI3K/Akt/mTOR pathway, Lymphopoiesis, Lymphoid malignancies, and inhibitors. EXPERT OPINION The PI3K pathway is crucial for lymphocyte development and differentiation, making it a potential target for therapeutic intervention in lymphoid cancers. Studies are focused on developing PI3K inhibitors to impede the progression of hematologic malignancies, highlighting the pathway's significance in lymphoma and lymphoid leukemia.
Collapse
Affiliation(s)
- Bahareh Kashani
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Zandi
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Pourbagheri-Sigaroodi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, School of Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Cigler M, Imrichova H, Frommelt F, Caramelle L, Depta L, Rukavina A, Kagiou C, Hannich JT, Mayor-Ruiz C, Superti-Furga G, Sievers S, Forrester A, Laraia L, Waldmann H, Winter GE. Orpinolide disrupts a leukemic dependency on cholesterol transport by inhibiting OSBP. Nat Chem Biol 2024:10.1038/s41589-024-01614-4. [PMID: 38907113 DOI: 10.1038/s41589-024-01614-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 04/10/2024] [Indexed: 06/23/2024]
Abstract
Metabolic alterations in cancer precipitate in associated dependencies that can be therapeutically exploited. To meet this goal, natural product-inspired small molecules can provide a resource of invaluable chemotypes. Here, we identify orpinolide, a synthetic withanolide analog with pronounced antileukemic properties, via orthogonal chemical screening. Through multiomics profiling and genome-scale CRISPR-Cas9 screens, we identify that orpinolide disrupts Golgi homeostasis via a mechanism that requires active phosphatidylinositol 4-phosphate signaling at the endoplasmic reticulum-Golgi membrane interface. Thermal proteome profiling and genetic validation studies reveal the oxysterol-binding protein OSBP as the direct and phenotypically relevant target of orpinolide. Collectively, these data reaffirm sterol transport as a therapeutically actionable dependency in leukemia and motivate ensuing translational investigation via the probe-like compound orpinolide.
Collapse
Affiliation(s)
- Marko Cigler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Hana Imrichova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Fabian Frommelt
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Lucie Caramelle
- Unit of Research of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Laura Depta
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Andrea Rukavina
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Chrysanthi Kagiou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - J Thomas Hannich
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Cristina Mayor-Ruiz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- IRB Barcelona-Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sonja Sievers
- Department of Chemical Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Alison Forrester
- Unit of Research of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Lyngby, Denmark
| | - Herbert Waldmann
- Department of Chemical Biology, Max-Planck Institute of Molecular Physiology, Dortmund, Germany.
| | - Georg E Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.
| |
Collapse
|
3
|
Pagliaro L, Chen SJ, Herranz D, Mecucci C, Harrison CJ, Mullighan CG, Zhang M, Chen Z, Boissel N, Winter SS, Roti G. Acute lymphoblastic leukaemia. Nat Rev Dis Primers 2024; 10:41. [PMID: 38871740 DOI: 10.1038/s41572-024-00525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 06/15/2024]
Abstract
Acute lymphoblastic leukaemia (ALL) is a haematological malignancy characterized by the uncontrolled proliferation of immature lymphoid cells. Over past decades, significant progress has been made in understanding the biology of ALL, resulting in remarkable improvements in its diagnosis, treatment and monitoring. Since the advent of chemotherapy, ALL has been the platform to test for innovative approaches applicable to cancer in general. For example, the advent of omics medicine has led to a deeper understanding of the molecular and genetic features that underpin ALL. Innovations in genomic profiling techniques have identified specific genetic alterations and mutations that drive ALL, inspiring new therapies. Targeted agents, such as tyrosine kinase inhibitors and immunotherapies, have shown promising results in subgroups of patients while minimizing adverse effects. Furthermore, the development of chimeric antigen receptor T cell therapy represents a breakthrough in ALL treatment, resulting in remarkable responses and potential long-term remissions. Advances are not limited to treatment modalities alone. Measurable residual disease monitoring and ex vivo drug response profiling screening have provided earlier detection of disease relapse and identification of exceptional responders, enabling clinicians to adjust treatment strategies for individual patients. Decades of supportive and prophylactic care have improved the management of treatment-related complications, enhancing the quality of life for patients with ALL.
Collapse
Affiliation(s)
- Luca Pagliaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Cristina Mecucci
- Department of Medicine, Hematology and Clinical Immunology, University of Perugia, Perugia, Italy
| | - Christine J Harrison
- Leukaemia Research Cytogenetics Group, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ming Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nicolas Boissel
- Hôpital Saint-Louis, APHP, Institut de Recherche Saint-Louis, Université Paris Cité, Paris, France
| | - Stuart S Winter
- Children's Minnesota Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Giovanni Roti
- Department of Medicine and Surgery, University of Parma, Parma, Italy.
- Translational Hematology and Chemogenomics (THEC), University of Parma, Parma, Italy.
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
4
|
Cardoso BA, Duque M, Gírio A, Fragoso R, Oliveira ML, Allen JR, Martins LR, Correia NC, Silveira AB, Veloso A, Kimura S, Demoen L, Matthijssens F, Jeha S, Cheng C, Pui CH, Grosso AR, Neto JL, De Almeida SF, Van Vlieberghe P, Mullighan CG, Yunes JA, Langenau DM, Pflumio F, Barata JT. CASZ1 upregulates PI3K-AKT-mTOR signaling and promotes T-cell acute lymphoblastic leukemia. Haematologica 2024; 109:1713-1725. [PMID: 38058200 PMCID: PMC11141679 DOI: 10.3324/haematol.2023.282854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 11/27/2023] [Indexed: 12/08/2023] Open
Abstract
CASZ1 is a conserved transcription factor involved in neural development, blood vessel assembly and heart morphogenesis. CASZ1 has been implicated in cancer, either suppressing or promoting tumor development depending on the tissue. However, the impact of CASZ1 on hematological tumors remains unknown. Here, we show that the T-cell oncogenic transcription factor TAL1 is a direct positive regulator of CASZ1, that T-cell acute lymphoblastic leukemia (T-ALL) samples at diagnosis overexpress CASZ1b isoform, and that CASZ1b expression in patient samples correlates with PI3K-AKT-mTOR signaling pathway activation. In agreement, overexpression of CASZ1b in both Ba/F3 and T-ALL cells leads to the activation of PI3K signaling pathway, which is required for CASZ1b-mediated transformation of Ba/F3 cells in vitro and malignant expansion in vivo. We further demonstrate that CASZ1b cooperates with activated NOTCH1 to promote T-ALL development in zebrafish, and that CASZ1b protects human T-ALL cells from serum deprivation and treatment with chemotherapeutic drugs. Taken together, our studies indicate that CASZ1b is a TAL1-regulated gene that promotes T-ALL development and resistance to chemotherapy.
Collapse
Affiliation(s)
- Bruno A Cardoso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - Mafalda Duque
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - Ana Gírio
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - Rita Fragoso
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - Mariana L Oliveira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - James R Allen
- MGH Pathology and Harvard Medical School, Charlestown MA 02129
| | - Leila R Martins
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - Nádia C Correia
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | | | | | - Shunsuke Kimura
- Department of Pathology, Center of Excellence for Leukemia Studies, and Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis TN
| | - Lisa Demoen
- Department of Biomolecular Medicine, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Filip Matthijssens
- Department of Biomolecular Medicine, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital and the University of Tennessee Health Science Center, Memphis TN, US; Department of Global Pediatric Medicine, St. Jude Children's Research Hospital and the University of Tennessee Health Science Center, Memphis TN
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital and the University of Tennessee Health Science Center, Memphis TN
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital and the University of Tennessee Health Science Center, Memphis TN, US; Department of Global Pediatric Medicine, St. Jude Children's Research Hospital and the University of Tennessee Health Science Center, Memphis TN, US; Department of Pathology, St. Jude Children's Research Hospital and the University of Tennessee Health Science Center, Memphis TN
| | - Ana R Grosso
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica
| | - João L Neto
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - Sérgio F De Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon
| | - Pieter Van Vlieberghe
- Department of Biomolecular Medicine, Ghent University, and Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Charles G Mullighan
- Department of Pathology, Center of Excellence for Leukemia Studies, and Hematological Malignancies Program, St. Jude Children's Research Hospital, Memphis TN
| | - J Andres Yunes
- Laboratório de Biologia Molecular, Centro Infantil Boldrini, Campinas, SP
| | | | - Françoise Pflumio
- Université Paris-Saclay, INSERM, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265, Fontenay-aux-Roses, France; OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Saint-Louis Hospital, 75010 Paris
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon.
| |
Collapse
|
5
|
Saluja S, Bansal I, Bhardwaj R, Beg MS, Palanichamy JK. Inflammation as a driver of hematological malignancies. Front Oncol 2024; 14:1347402. [PMID: 38571491 PMCID: PMC10987768 DOI: 10.3389/fonc.2024.1347402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Hematopoiesis is a tightly regulated process that produces all adult blood cells and immune cells from multipotent hematopoietic stem cells (HSCs). HSCs usually remain quiescent, and in the presence of external stimuli like infection or inflammation, they undergo division and differentiation as a compensatory mechanism. Normal hematopoiesis is impacted by systemic inflammation, which causes HSCs to transition from quiescence to emergency myelopoiesis. At the molecular level, inflammatory cytokine signaling molecules such as tumor necrosis factor (TNF), interferons, interleukins, and toll-like receptors can all cause HSCs to multiply directly. These cytokines actively encourage HSC activation, proliferation, and differentiation during inflammation, which results in the generation and activation of immune cells required to combat acute injury. The bone marrow niche provides numerous soluble and stromal cell signals, which are essential for maintaining normal homeostasis and output of the bone marrow cells. Inflammatory signals also impact this bone marrow microenvironment called the HSC niche to regulate the inflammatory-induced hematopoiesis. Continuous pro-inflammatory cytokine and chemokine activation can have detrimental effects on the hematopoietic system, which can lead to cancer development, HSC depletion, and bone marrow failure. Reactive oxygen species (ROS), which damage DNA and ultimately lead to the transformation of HSCs into cancerous cells, are produced due to chronic inflammation. The biological elements of the HSC niche produce pro-inflammatory cytokines that cause clonal growth and the development of leukemic stem cells (LSCs) in hematological malignancies. The processes underlying how inflammation affects hematological malignancies are still not fully understood. In this review, we emphasize the effects of inflammation on normal hematopoiesis, the part it plays in the development and progression of hematological malignancies, and potential therapeutic applications for targeting these pathways for therapy in hematological malignancies.
Collapse
|
6
|
Adrados I, García-López L, Aguilar-Aragon M, Maranillo E, Domínguez M. Modeling childhood cancer in Drosophila melanogaster. Methods Cell Biol 2024; 185:35-48. [PMID: 38556450 DOI: 10.1016/bs.mcb.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Childhood cancer is a major cause of death in developed countries, and while treatments and survival rates have improved, long-term side effects remain a challenge. The genetic component of pediatric tumors and their aggressive progression, makes the study of childhood cancer a complex area of research. Here, we introduce the fruit fly Drosophila melanogaster as study model. We emphasize its numerous advantages, including binary gene expression systems that enable precise control over the timing and location of gene expression manipulation, the capacity to combine multiple genes associated with cancer or the testing of human cancer variants within a live, intact animal. As an illustrative example, we focus on the Drosophila cancer paradigm which involves medically relevant genes, the Notch and PI3K/Akt signaling pathways. We describe how this cancer paradigm allows assessing two critical aspects of tumorigenesis during juvenile stages: (1) viability (do animals with particular cancer mutations survive into adulthood?), and (2) tumor burden (what percentage of animals bearing the cancer mutations actually develop cancer and what is the extent of the tumor?). We highlight the potential of Drosophila as a molecular therapeutic tool for drug screening and drug repurposing of medicines already approved to treat other diseases in children, thereby accelerating the potential translation of results into humans. This preclinical animal model sustains huge potential and is cost-effective. It allows screening of thousands of compounds and genes at a relatively low cost and human efforts, opening innovative venues to explore more effective and safer treatments of childhood cancer.
Collapse
|
7
|
Liao WT, Chiang YJ, Yang-Yen HF, Hsu LC, Chang ZF, Yen JJY. CBAP regulates the function of Akt-associated TSC protein complexes to modulate mTORC1 signaling. J Biol Chem 2023; 299:105455. [PMID: 37949232 PMCID: PMC10698277 DOI: 10.1016/j.jbc.2023.105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
The Akt-Rheb-mTORC1 pathway plays a crucial role in regulating cell growth, but the mechanisms underlying the activation of Rheb-mTORC1 by Akt remain unclear. In our previous study, we found that CBAP was highly expressed in human T-ALL cells and primary tumors, and its deficiency led to reduced phosphorylation of TSC2/S6K1 signaling proteins as well as impaired cell proliferation and leukemogenicity. We also demonstrated that CBAP was required for Akt-mediated TSC2 phosphorylation in vitro. In response to insulin, CBAP was also necessary for the phosphorylation of TSC2/S6K1 and the dissociation of TSC2 from the lysosomal membrane. Here we report that CBAP interacts with AKT and TSC2, and knockout of CBAP or serum starvation leads to an increase in TSC1 in the Akt/TSC2 immunoprecipitation complexes. Lysosomal-anchored CBAP was found to override serum starvation and promote S6K1 and 4EBP1 phosphorylation and c-Myc expression in a TSC2-dependent manner. Additionally, recombinant CBAP inhibited the GAP activity of TSC2 complexes in vitro, leading to increased Rheb-GTP loading, likely due to the competition between TSC1 and CBAP for binding to the HBD domain of TSC2. Overexpression of the N26 region of CBAP, which is crucial for binding to TSC2, resulted in a decrease in mTORC1 signaling and an increase in TSC1 association with the TSC2/AKT complex, ultimately leading to increased GAP activity toward Rheb and impaired cell proliferation. Thus, we propose that CBAP can modulate the stability of TSC1-TSC2 as well as promote the translocation of TSC1/TSC2 complexes away from lysosomes to regulate Rheb-mTORC1 signaling.
Collapse
Affiliation(s)
- Wei-Ting Liao
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yun-Jung Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | - Li-Chung Hsu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Zee-Fen Chang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Jeffrey J Y Yen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
8
|
Loureiro G, Bahia DM, Lee MLM, de Souza MP, Kimura EYS, Rezende DC, Silva MCDA, Chauffaille MDLLF, Yamamoto M. MAPK/ERK and PI3K/AKT signaling pathways are activated in adolescent and adult acute lymphoblastic leukemia. Cancer Rep (Hoboken) 2023; 6:e1912. [PMID: 37867416 PMCID: PMC10728523 DOI: 10.1002/cnr2.1912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/12/2023] [Accepted: 09/16/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND The mitogen-activated protein kinase (MAPK)/ERK signaling cascade and the phosphoinosytol-3 phosphate/Akt (PI3K/Akt) pathways are involved in proliferation and differentiation of hematopoietic cells. The frequency of PI3K/Akt and MAPK pathway activation in adult acute lymphoblastic leukemia (ALL) still need to be elucidated. AIMS To assess the activity and prognostic implications of MAPK/ERK and PI3K/Akt pathways in adult (ALL). METHODS We examined 28 precursor-B-cell ALL and 6 T-cell primary ALL samples. Flow cytometry was employed to analyze the expression levels of phosphorylated ERK and phosphorylated Akt. RESULTS Ten out of 15 (67%) ALL fresh samples (7 B-cell, 3 T-cell) showed constitutive p-ERK expression. The p-ERK mean fluorescent index ratio (MFI (R)) showed a tendency to be higher in ALL than in normal T lymphocytes (1.26 [0.74-3.10] vs. 1.08 [1.02-1.21], respectively [p = .069]) and was significantly lower than in leukemic cell lines (median MFI (R) 3.83 [3.71-5.97] [p < .001]). Expression of p-Akt was found in 35% (12/34) (10 B-cell, 2 T-cell). The median MFI (R) expression for p-Akt in primary blast cell was 1.13 (0.48-9.90) compared to 1.01 (1.00-1.20) in normal T lymphocytes (p = ns) and lower than in leukemic cell lines (median MFI (R) 2.10 [1.77-3.40] [p = .037]). Moreover, expression of p-ERK was negatively associated with the expression of CD34 (1.22 [0.74-1.33] vs. 1.52 [1.15-3.10] for CD34(+) and CD34(-) group, respectively, p = .009). CONCLUSION Our findings suggest that both MAPK/ERK and PI3K/Akt are constitutively activated in adult ALL, indicating a targeted therapy potential for ALL by using inhibitors of these pathways.
Collapse
Affiliation(s)
- Gustavo Loureiro
- Division of HematologyUniversidade Federal de São Paulo (EPM‐UNIFESP)São PauloSão PauloBrazil
| | - Daniella M. Bahia
- Division of HematologyUniversidade Federal de São Paulo (EPM‐UNIFESP)São PauloSão PauloBrazil
| | - Maria Lucia M. Lee
- Instituto de Oncologia PediátricaGrupo de Apoio ao Adolescente e a Criança com Câncer (GRAACC)São PauloSão PauloBrazil
| | | | - Eliza Y. S. Kimura
- Division of HematologyUniversidade Federal de São Paulo (EPM‐UNIFESP)São PauloSão PauloBrazil
| | - Denise Carvalho Rezende
- Division of HematologyUniversidade Federal de São Paulo (EPM‐UNIFESP)São PauloSão PauloBrazil
| | | | | | - Mihoko Yamamoto
- Division of HematologyUniversidade Federal de São Paulo (EPM‐UNIFESP)São PauloSão PauloBrazil
| |
Collapse
|
9
|
DuVall AS, Wesevich A, Larson RA. Developing Targeted Therapies for T Cell Acute Lymphoblastic Leukemia/Lymphoma. Curr Hematol Malig Rep 2023; 18:217-225. [PMID: 37490229 DOI: 10.1007/s11899-023-00706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE OF REVIEW Largely, treatment advances in relapsed and/or refractory acute lymphoblastic leukemia (ALL) have been made in B cell disease leaving T cell ALL reliant upon high-intensity chemotherapy. Recent advances in the understanding of the biology of T-ALL and the improvement in immunotherapies have led to new therapeutic pathways to target and exploit. Here, we review the more promising pathways that are able to be targeted and other therapeutic possibilities for T-ALL. RECENT FINDINGS Preclinical models and early-phase clinical trials have shown promising results in some case in the treatment of T-ALL. Targeting many different pathways could lead to the next advancement in the treatment of relapsed and/or refractory disease. Recent advances in cellular therapies have also shown promise in this space. When reviewing the literature as a whole, targeting important pathways and antigens likely will lead to the next advancement in T-ALL survival since intensifying chemotherapy.
Collapse
Affiliation(s)
- Adam S DuVall
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA.
| | - Austin Wesevich
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA
| | - Richard A Larson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, USA
| |
Collapse
|
10
|
Cao L, Ruiz Buendía GA, Fournier N, Liu Y, Armand F, Hamelin R, Pavlou M, Radtke F. Resistance mechanism to Notch inhibition and combination therapy in human T-cell acute lymphoblastic leukemia. Blood Adv 2023; 7:6240-6252. [PMID: 37358480 PMCID: PMC10589794 DOI: 10.1182/bloodadvances.2023010380] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/26/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023] Open
Abstract
Gain-of-function mutations in NOTCH1 are among the most frequent genetic alterations in T-cell acute lymphoblastic leukemia (T-ALL), highlighting the Notch signaling pathway as a promising therapeutic target for personalized medicine. Yet, a major limitation for long-term success of targeted therapy is relapse due to tumor heterogeneity or acquired resistance. Thus, we performed a genome-wide CRISPR-Cas9 screen to identify prospective resistance mechanisms to pharmacological NOTCH inhibitors and novel targeted combination therapies to efficiently combat T-ALL. Mutational loss of phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1) causes resistance to Notch inhibition. PIK3R1 deficiency leads to increased PI3K/AKT signaling, which regulates cell cycle and the spliceosome machinery, both at the transcriptional and posttranslational level. Moreover, several therapeutic combinations have been identified, in which simultaneous targeting of the cyclin-dependent kinases 4 and 6 (CDK4/6) and NOTCH proved to be the most efficacious in T-ALL xenotransplantation models.
Collapse
Affiliation(s)
- Linlin Cao
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Swiss Cancer Center Leman, Lausanne, Switzerland
| | - Gustavo A. Ruiz Buendía
- Translational Data Science, Swiss Institute of Bioinformatics, AGORA Cancer Research Center, Lausanne, Switzerland
| | - Nadine Fournier
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Swiss Cancer Center Leman, Lausanne, Switzerland
- Translational Data Science, Swiss Institute of Bioinformatics, AGORA Cancer Research Center, Lausanne, Switzerland
| | - Yuanlong Liu
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Cancer Center Leman, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Florence Armand
- Proteomics Core Facility, École Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne, Switzerland
| | - Romain Hamelin
- Proteomics Core Facility, École Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne, Switzerland
| | - Maria Pavlou
- Proteomics Core Facility, École Polytechnique Fédérale de Lausanne, School of Life Sciences, Lausanne, Switzerland
| | - Freddy Radtke
- Ecole Polytechnique Fédérale de Lausanne, School of Life Sciences, Swiss Institute for Experimental Cancer Research, Swiss Cancer Center Leman, Lausanne, Switzerland
| |
Collapse
|
11
|
Li H, Zhang D, Fu Q, Wang S, Zhang X, Lin Z, Wang Z, Song J, Su Z, Xue V, Liu S, Chen Y, Zhou L, Zhao N, Lu D. WDR54 exerts oncogenic roles in T-cell acute lymphoblastic leukemia. Cancer Sci 2023. [PMID: 37302808 PMCID: PMC10394158 DOI: 10.1111/cas.15872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
WDR54 has been recently identified as a novel oncogene in colorectal and bladder cancers. However, the expression and function of WDR54 in T-cell acute lymphoblastic leukemia (T-ALL) were not reported. In this study, we investigated the expression of WDR54 in T-ALL, as well as its function in T-ALL pathogenesis using cell lines and T-ALL xenograft. Bioinformatics analysis indicated high mRNA expression of WDR54 in T-ALL. We further confirmed that the expression of WDR54 was significantly elevated in T-ALL. Depletion of WDR54 dramatically inhibited cell viability and induced apoptosis and cell cycle arrest at S phase in T-ALL cells in vitro. Moreover, knockdown of WDR54 impeded the process of leukemogenesis in a Jurkat xenograft model in vivo. Mechanistically, the expression of PDPK1, phospho-AKT (p-AKT), total AKT, phospho-ERK (p-ERK), Bcl-2 and Bcl-xL were downregulated, while cleaved caspase-3 and cleaved caspase-9 were upregulated in T-ALL cells with WDR54 knockdown. Additionally, RNA-seq analysis indicated that WDR54 might regulate the expression of some oncogenic genes involved in multiple signaling pathways. Taken together, these findings suggest that WDR54 may be involved in the pathogenesis of T-ALL and serve as a potential therapeutic target for the treatment of T-ALL.
Collapse
Affiliation(s)
- Huan Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Danlan Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Qiuxia Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Shang Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
| | - Xin Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Zhixian Lin
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Zhongyuan Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Jiaxing Song
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Zijie Su
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - VivianWeiwen Xue
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Yun Chen
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Gusu School, Nanjing Medical University, Nanjing, China
| | - Liang Zhou
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| | - Na Zhao
- Department of Hematology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
12
|
Angot L, Schneider P, Vannier JP, Abdoul-Azize S. Beyond Corticoresistance, A Paradoxical Corticosensitivity Induced by Corticosteroid Therapy in Pediatric Acute Lymphoblastic Leukemias. Cancers (Basel) 2023; 15:2812. [PMID: 37345151 DOI: 10.3390/cancers15102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Known as a key effector in relapse of acute lymphoblastic leukemia (ALL), resistance to drug-induced apoptosis, is tightly considered one of the main prognostic factors for the disease. ALL cells are constantly developing cellular strategies to survive and resist therapeutic drugs. Glucocorticoids (GCs) are one of the most important agents used in the treatment of ALL due to their ability to induce cell death. The mechanisms of GC resistance of ALL cells are largely unknown and intense research is currently focused on this topic. Such resistance can involve different cellular and molecular mechanisms, including the modulation of signaling pathways involved in the regulation of proliferation, apoptosis, autophagy, metabolism, epigenetic modifications and tumor suppressors. Recently, several studies point to the paradoxical role of GCs in many survival processes that may lead to therapy-induced resistance in ALL cells, which we called "paradoxical corticosensitivity". In this review, we aim to summarize all findings on cell survival pathways paradoxically activated by GCs with an emphasis on previous and current knowledge on gene expression and signaling pathways.
Collapse
Affiliation(s)
- Laure Angot
- Normandie University, UNIROUEN, IRIB, Inserm, U1234, 76183 Rouen, France
| | - Pascale Schneider
- Normandie University, UNIROUEN, IRIB, Inserm, U1234, 76183 Rouen, France
- Department of Pediatric Immuno-Hemato-Oncology, Rouen University Hospital, 76038 Rouen, France
| | | | | |
Collapse
|
13
|
Fischer A, Lersch R, de Andrade Krätzig N, Strong A, Friedrich MJ, Weber J, Engleitner T, Öllinger R, Yen HY, Kohlhofer U, Gonzalez-Menendez I, Sailer D, Kogan L, Lahnalampi M, Laukkanen S, Kaltenbacher T, Klement C, Rezaei M, Ammon T, Montero JJ, Schneider G, Mayerle J, Heikenwälder M, Schmidt-Supprian M, Quintanilla-Martinez L, Steiger K, Liu P, Cadiñanos J, Vassiliou GS, Saur D, Lohi O, Heinäniemi M, Conte N, Bradley A, Rad L, Rad R. In vivo interrogation of regulatory genomes reveals extensive quasi-insufficiency in cancer evolution. CELL GENOMICS 2023; 3:100276. [PMID: 36950387 PMCID: PMC10025556 DOI: 10.1016/j.xgen.2023.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/05/2022] [Accepted: 02/08/2023] [Indexed: 03/10/2023]
Abstract
In contrast to mono- or biallelic loss of tumor-suppressor function, effects of discrete gene dysregulations, as caused by non-coding (epi)genome alterations, are poorly understood. Here, by perturbing the regulatory genome in mice, we uncover pervasive roles of subtle gene expression variation in cancer evolution. Genome-wide screens characterizing 1,450 tumors revealed that such quasi-insufficiency is extensive across entities and displays diverse context dependencies, such as distinct cell-of-origin associations in T-ALL subtypes. We compile catalogs of non-coding regions linked to quasi-insufficiency, show their enrichment with human cancer risk variants, and provide functional insights by engineering regulatory alterations in mice. As such, kilo-/megabase deletions in a Bcl11b-linked non-coding region triggered aggressive malignancies, with allele-specific tumor spectra reflecting gradual gene dysregulations through modular and cell-type-specific enhancer activities. Our study constitutes a first survey toward a systems-level understanding of quasi-insufficiency in cancer and gives multifaceted insights into tumor evolution and the tissue-specific effects of non-coding mutations.
Collapse
Affiliation(s)
- Anja Fischer
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Robert Lersch
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Niklas de Andrade Krätzig
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Alexander Strong
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
| | - Mathias J. Friedrich
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Julia Weber
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Thomas Engleitner
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Hsi-Yu Yen
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Comparative Experimental Pathology, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Ursula Kohlhofer
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - David Sailer
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Liz Kogan
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Mari Lahnalampi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Saara Laukkanen
- Faculty of Medicine and Health Technology, Tampere Center for Child, Adolescent and Maternal Health Research and Tays Cancer Center, Tampere University, Tampere, Finland
| | - Thorsten Kaltenbacher
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Christine Klement
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Majdaddin Rezaei
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Tim Ammon
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Institute of Experimental Hematology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Juan J. Montero
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Günter Schneider
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Julia Mayerle
- Medical Department II, University Hospital, LMU Munich, Munich, Germany
| | - Mathias Heikenwälder
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marc Schmidt-Supprian
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Experimental Hematology, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Comprehensive Cancer Center, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany
| | - Katja Steiger
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Comparative Experimental Pathology, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Pentao Liu
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
- Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Juan Cadiñanos
- Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), 33193 Oviedo, Spain
| | - George S. Vassiliou
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
- Wellcome Trust-MRC Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0XY, UK
- Department of Haematology, Cambridge University Hospitals NHS Trust, Cambridge CB2 0PT, UK
| | - Dieter Saur
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Institute for Experimental Cancer Therapy, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Olli Lohi
- Faculty of Medicine and Health Technology, Tampere Center for Child, Adolescent and Maternal Health Research and Tays Cancer Center, Tampere University, Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Nathalie Conte
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge, UK
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Lena Rad
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- Institute for Experimental Cancer Therapy, School of Medicine, Technische Universität München, 81675 Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, School of Medicine, Technische Universität München, 81675 Munich, Germany
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Technische Universität München, 81675 Munich, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Medicine II, Klinikum rechts der Isar, School of Medicine, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
14
|
Expression analysis of circulating miR-22, miR-122, miR-217 and miR-367 as promising biomarkers of acute lymphoblastic leukemia. Mol Biol Rep 2023; 50:255-265. [PMID: 36327023 DOI: 10.1007/s11033-022-08016-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The role of serum-based biomarkers such as microRNAs in cancer diagnosis has been extensively established. This study aimed to determine the expression levels of bioinformatically selected miRNAs and whether they can be used as biomarkers or a new therapeutic target in patients with acute lymphoblastic leukemia (ALL). MATERIALS AND METHODS The expression levels of serum miR-22, miR-122, miR-217, and miR-367 in 21 ALL patients and 21 healthy controls were measured using quantitative real-time PCR. The receiver operating characteristic (ROC) curve and the associated area under the curve (AUC) was used to assess candidate miRNAs' diagnostic value as a biomarker. RESULTS The results showed that miR-217 was markedly decreased in patients with ALL compared to controls. Moreover, miR-22, miR-122, and miR-367 were found to be upregulated. Furthermore, ROC analysis showed that serum miR-217 and miR-367 could differentiate ALL patients from healthy individuals, while miR-22 has approximate discriminatory power that requires further investigation. CONCLUSION These results provide promising preliminary evidence that circulating miR-217 and miR-367 could be considered potent diagnostic biomarkers and therapeutic goals in this disease.
Collapse
|
15
|
Graiqevci-Uka V, Behluli E, Spahiu L, Liehr T, Temaj G. Targeted Treatment and Immunotherapy in High-risk and Relapsed/ Refractory Pediatric Acute Lymphoblastic Leukemia. Curr Pediatr Rev 2023; 19:150-156. [PMID: 36056858 PMCID: PMC10009894 DOI: 10.2174/1573396318666220901165247] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/18/2022] [Accepted: 08/01/2022] [Indexed: 02/08/2023]
Abstract
Acute lymphoblastic leukemia is the most frequent pediatric malignancy in children, comprising 30% of all pediatric malignancies; adult ALL comprises 5% of all ALL cases, which have a 186.6 per 1 million incidence. In pediatric ALL (pALL), on which this review focuses, approximately 1 in 285 children are diagnosed with cancer before the age of 20, and approximately 1 in 530 young adults between the ages of 20 and 39 years old is a childhood cancer survivor. The survival probability in pALL is now very high, approximately 80-90%. Thus, the most important is to improve supportive care and treatment based on relapse risk, optimally being based on the genetic feature of malignant cells. Improvements made by now are mainly the classifying of subgroups based on genetic characteristics such as aneuploidy or translocation and aligning them with treatment response. Relevant genetic changes in ALL pathogenesis are transcription regulators of lymphoid development (PAX5, IKZF1, EBF1, and LEF1) and/or coactivators (TBL1XR1 and ERG), lymphoid signaling (BTLA, and CD200 TOX), and tumor suppressor genes (CDKN2A, CDKN2B, RB1, and TP53). This review aims to summarize treatment strategies inhibiting tyrosine kinases, influencing different signaling pathways, BCL inhibitors, and anti-CD therapy (anti-cluster differentiation therapy) in pALL. CAR T-cell therapy (chimeric antigen receptors T-cell therapy) is under research and requires further development.
Collapse
Affiliation(s)
| | - Emir Behluli
- Department of Pediatrics, University Clinical Center, Prishtina, Kosovo
| | - Lidvana Spahiu
- Department of Pediatrics, University Clinical Center, Prishtina, Kosovo
| | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Jena, Germany
| | | |
Collapse
|
16
|
Cao X, Elsayed AH, Pounds SB. Statistical Methods Inspired by Challenges in Pediatric Cancer Multi-omics. Methods Mol Biol 2023; 2629:349-373. [PMID: 36929085 DOI: 10.1007/978-1-0716-2986-4_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Pediatric cancer multi-omics is a uniquely rewarding and challenging domain of biomedical research. Public generosity bestows an abundance of resources for the study of extremely rare diseases; this unique dynamic creates a research environment in which problems with high-dimension and low sample size are commonplace. Here, we present a few statistical methods that we have developed for our research setting and believe will prove valuable in other biomedical research settings as well. The genomic random interval (GRIN) method evaluates the loci and frequency of genomic abnormalities in the DNA of tumors to identify genes that may drive the development of malignancies. The association of lesions with expression (ALEX) method evaluates the impact of genomic abnormalities on the RNA transcription of nearby genes to inform the formulation of biological hypotheses on molecular mechanisms. The projection onto the most interesting statistical evidence (PROMISE) method identifies omic features that consistently associate with better prognosis or consistently associate with worse prognosis across multiple measures of clinical outcome. We have shown that these methods are statistically robust and powerful in the statistical bioinformatic literature and successfully used these methods to make fundamental biological discoveries that have formed the scientific rationale for ongoing clinical trials. We describe these methods and illustrate their application on a publicly available T-cell acute lymphoblastic leukemia (T-ALL) data set. A companion github site ( https://github.com/stjude/TALL-example ) provides the R code and data necessary to recapitulate the example data analyses of this chapter.
Collapse
Affiliation(s)
- Xueyuan Cao
- College of Nursing, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Abdelrahman H Elsayed
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley B Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
17
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
18
|
Zhang Z, Yang K, Zhang H. Targeting Leukemia-Initiating Cells and Leukemic Niches: The Next Therapy Station for T-Cell Acute Lymphoblastic Leukemia? Cancers (Basel) 2022; 14:cancers14225655. [PMID: 36428753 PMCID: PMC9688677 DOI: 10.3390/cancers14225655] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive subtype of hematological malignancy characterized by its high heterogeneity and potentially life-threatening clinical features. Despite the advances in risk stratification and therapeutic management of T-ALL, patients often suffer from treatment failure and chemotherapy-induced toxicity, calling for greater efforts to improve therapeutic efficacy and safety in the treatment of T-ALL. During the past decades, increasing evidence has shown the indispensable effects of leukemia-initiating cells (LICs) and leukemic niches on T-ALL initiation and progression. These milestones greatly facilitate precision medicine by interfering with the pathways that are associated with LICs and leukemic niches or by targeting themselves directly. Most of these novel agents, either alone or in combination with conventional chemotherapy, have shown promising preclinical results, facilitating them to be further evaluated under clinical trials. In this review, we summarize the latest discoveries in LICs and leukemic niches in terms of T-ALL, with a particular highlight on the current precision medicine. The challenges and future prospects are also discussed.
Collapse
Affiliation(s)
- Ziting Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
| | - Kun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China
- Correspondence: ; Tel.: +86-158-7796-3252
| |
Collapse
|
19
|
Salmerón-Villalobos J, Ramis-Zaldivar JE, Balagué O, Verdú-Amorós J, Celis V, Sábado C, Garrido M, Mato S, Uriz J, Ortega MJ, Gutierrez-Camino A, Sinnett D, Illarregi U, Carron M, Regueiro A, Galera A, Gonzalez-Farré B, Campo E, Garcia N, Colomer D, Astigarraga I, Andrés M, Llavador M, Martin-Guerrero I, Salaverria I. Diverse mutations and structural variations contribute to Notch signaling deregulation in paediatric T-cell lymphoblastic lymphoma. Pediatr Blood Cancer 2022; 69:e29926. [PMID: 36000950 DOI: 10.1002/pbc.29926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND T-cell lymphoblastic lymphoma (T-LBL) is an aggressive neoplasm closely related to T-cell acute lymphoblastic leukaemia (T-ALL). Despite their similarities, and contrary to T-ALL, studies on paediatric T-LBL are scarce and, therefore, its molecular landscape has not yet been fully elucidated. Thus, the aims of this study were to characterize the genetic and molecular heterogeneity of paediatric T-LBL and to evaluate novel molecular markers differentiating this entity from T-ALL. PROCEDURE Thirty-three paediatric T-LBL patients were analyzed using an integrated approach, including targeted next-generation sequencing, RNA-sequencing transcriptome analysis and copy-number arrays. RESULTS Copy number and mutational analyses allowed the detection of recurrent homozygous deletions of 9p/CDKN2A (78%), trisomy 20 (19%) and gains of 17q24-q25 (16%), as well as frequent mutations of NOTCH1 (62%), followed by the BCL11B (23%), WT1 (19%) and FBXW7, PHF6 and RPL10 genes (15%, respectively). This genetic profile did not differ from that described in T-ALL in terms of mutation incidence and global genomic complexity level, but unveiled virtually exclusive 17q25 gains and trisomy 20 in T-LBL. Additionally, we identified novel gene fusions in paediatric T-LBL, including NOTCH1-IKZF2, RNGTT-SNAP91 and DDX3X-MLLT10, the last being the only one previously described in T-ALL. Moreover, clinical correlations highlighted the presence of Notch pathway alterations as a factor related to favourable outcome. CONCLUSIONS In summary, the genomic landscape of paediatric T-LBL is similar to that observed in T-ALL, and Notch signaling pathway deregulation remains the cornerstone in its pathogenesis, including not only mutations but fusion genes targeting NOTCH1.
Collapse
Affiliation(s)
- Julia Salmerón-Villalobos
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Joan Enric Ramis-Zaldivar
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Olga Balagué
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.,Haematopathology Unit, Hospital Clínic, Barcelona, Spain
| | | | - Verónica Celis
- Paediatric Oncology Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Constantino Sábado
- Paediatric Oncology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Marta Garrido
- Anatomic Pathology Department, Hospital Vall d'Hebron, Barcelona, Spain
| | - Sara Mato
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| | - Javier Uriz
- Paediatric Oncohaematology Department, Donostia University Hospital, Biodonostia Health Research Institute, San Sebastian, Spain
| | - M José Ortega
- Paediatric Oncology Department, Hospital Universitario Virgen de la Nieves, Granada, Spain
| | | | - Daniel Sinnett
- Division of Haematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Canada.,Department of Paediatrics, Faculty of Medicine, University of Montreal, Montreal, Canada
| | - Unai Illarregi
- Genetics, Physics Anthropology and Animal Physiology, Faculty of Science and Technology, UPV/EHU, Leioa, Spain
| | - Máxime Carron
- Division of Haematology-Oncology, CHU Sainte-Justine Research Center, Montreal, Canada
| | - Alexandra Regueiro
- Paediatric Haematology and Oncology Department, Hospital Clínico Universitario de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Galera
- Paediatric Oncohaematology Department, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Blanca Gonzalez-Farré
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.,Haematopathology Unit, Hospital Clínic, Barcelona, Spain
| | - Elias Campo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.,Haematopathology Unit, Hospital Clínic, Barcelona, Spain
| | - Noelia Garcia
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain.,Haematopathology Unit, Hospital Clínic, Barcelona, Spain
| | - Itziar Astigarraga
- Paediatric Department, Osakidetza, Biocruces Bizkaia Health Research Institute, Hospital Universitario Cruces, Barakaldo, Spain.,Paediatric Department, Universidad del Pais Vasco UPV/EHU, Leioa, Spain
| | - Mara Andrés
- Paediatric Oncology Department, Hospital La Fe, Valencia, Spain
| | | | - Idoia Martin-Guerrero
- Biocruces Bizkaia Health Research Institute, Department of Genetics, Physical Anthropology & Animal Physiology, Science and Technology Faculty, University of the Basque Country, UPV/EHU, Leioa, Spain
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Madrid, Spain
| |
Collapse
|
20
|
Laukkanen S, Veloso A, Yan C, Oksa L, Alpert EJ, Do D, Hyvärinen N, McCarthy K, Adhikari A, Yang Q, Iyer S, Garcia SP, Pello A, Ruokoranta T, Moisio S, Adhikari S, Yoder JA, Gallagher K, Whelton L, Allen JR, Jin AH, Loontiens S, Heinäniemi M, Kelliher M, Heckman CA, Lohi O, Langenau DM. Therapeutic targeting of LCK tyrosine kinase and mTOR signaling in T-cell acute lymphoblastic leukemia. Blood 2022; 140:1891-1906. [PMID: 35544598 PMCID: PMC10082361 DOI: 10.1182/blood.2021015106] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Relapse and refractory T-cell acute lymphoblastic leukemia (T-ALL) has a poor prognosis, and new combination therapies are sorely needed. Here, we used an ex vivo high-throughput screening platform to identify drug combinations that kill zebrafish T-ALL and then validated top drug combinations for preclinical efficacy in human disease. This work uncovered potent drug synergies between AKT/mTORC1 (mammalian target of rapamycin complex 1) inhibitors and the general tyrosine kinase inhibitor dasatinib. Importantly, these same drug combinations effectively killed a subset of relapse and dexamethasone-resistant zebrafish T-ALL. Clinical trials are currently underway using the combination of mTORC1 inhibitor temsirolimus and dasatinib in other pediatric cancer indications, leading us to prioritize this therapy for preclinical testing. This combination effectively curbed T-ALL growth in human cell lines and primary human T-ALL and was well tolerated and effective in suppressing leukemia growth in patient-derived xenografts (PDX) grown in mice. Mechanistically, dasatinib inhibited phosphorylation and activation of the lymphocyte-specific protein tyrosine kinase (LCK) to blunt the T-cell receptor (TCR) signaling pathway, and when complexed with mTORC1 inhibition, induced potent T-ALL cell killing through reducing MCL-1 protein expression. In total, our work uncovered unexpected roles for the LCK kinase and its regulation of downstream TCR signaling in suppressing apoptosis and driving continued leukemia growth. Analysis of a wide array of primary human T-ALLs and PDXs grown in mice suggest that combination of temsirolimus and dasatinib treatment will be efficacious for a large fraction of human T-ALLs.
Collapse
Affiliation(s)
- Saara Laukkanen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alexandra Veloso
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Chuan Yan
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Laura Oksa
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Eric J. Alpert
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Daniel Do
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Noora Hyvärinen
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Karin McCarthy
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Abhinav Adhikari
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Qiqi Yang
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Sowmya Iyer
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Sara P. Garcia
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Annukka Pello
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Tanja Ruokoranta
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Sanni Moisio
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Sadiksha Adhikari
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, Comparative Medicine Institute, and Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| | - Kayleigh Gallagher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Lauren Whelton
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - James R. Allen
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Alex H. Jin
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Siebe Loontiens
- Cancer Research Institute Ghent and Center for Medical Genetics, Ghent, Belgium
| | - Merja Heinäniemi
- The Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Michelle Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA
| | - Caroline A. Heckman
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Science, iCAN Digital Precision Cancer Medicine Flagship, Helsinki, Finland
| | - Olli Lohi
- Tampere Center for Child, Adolescent, and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Tampere University Hospital, Tays Cancer Center, Tampere, Finland
| | - David M. Langenau
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA
- Harvard Stem Cell Institute, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| |
Collapse
|
21
|
Lim FQ, Chan ASY, Yokomori R, Huang XZ, Theardy MS, Yeoh AEJ, Tan SH, Sanda T. Targeting dual oncogenic machineries driven by TAL1 and PI3K-AKT pathways in T-cell acute lymphoblastic leukemia. Haematologica 2022; 108:367-381. [PMID: 36073513 PMCID: PMC9890034 DOI: 10.3324/haematol.2022.280761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 02/03/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is a malignancy of thymic T-cell precursors. Overexpression of oncogenic transcription factor TAL1 is observed in 40-60% of human T-ALL cases, frequently together with activation of the NOTCH1 and PI3K-AKT pathways. In this study, we performed chemical screening to identify small molecules that can inhibit the enhancer activity driven by TAL1 using the GIMAP enhancer reporter system. Among approximately 3,000 compounds, PIK- 75, a known inhibitor of PI3K and CDK, was found to strongly inhibit the enhancer activity. Mechanistic analysis demonstrated that PIK-75 blocks transcriptional activity, which primarily affects TAL1 target genes as well as AKT activity. TAL1-positive, AKT-activated T-ALL cells were very sensitive to PIK-75, as evidenced by growth inhibition and apoptosis induction, while T-ALL cells that exhibited activation of the JAK-STAT pathway were insensitive to this drug. Together, our study demonstrates a strategy targeting two types of core machineries mediated by oncogenic transcription factors and signaling pathways in T-ALL.
Collapse
Affiliation(s)
- Fang Qi Lim
- Cancer Science Institute of Singapore, National University of Singapore
| | | | - Rui Yokomori
- Cancer Science Institute of Singapore, National University of Singapore
| | - Xiao Zi Huang
- Cancer Science Institute of Singapore, National University of Singapore
| | | | - Allen Eng Juh Yeoh
- Cancer Science Institute of Singapore, National University of Singapore,VIVA-NUS CenTRAL, Department of Pediatrics, National University of Singapore
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599.
| |
Collapse
|
22
|
Brady SW, Roberts KG, Gu Z, Shi L, Pounds S, Pei D, Cheng C, Dai Y, Devidas M, Qu C, Hill AN, Payne-Turner D, Ma X, Iacobucci I, Baviskar P, Wei L, Arunachalam S, Hagiwara K, Liu Y, Flasch DA, Liu Y, Parker M, Chen X, Elsayed AH, Pathak O, Li Y, Fan Y, Michael JR, Rusch M, Wilkinson MR, Foy S, Hedges DJ, Newman S, Zhou X, Wang J, Reilly C, Sioson E, Rice SV, Pastor Loyola V, Wu G, Rampersaud E, Reshmi SC, Gastier-Foster J, Guidry Auvil JM, Gesuwan P, Smith MA, Winick N, Carroll AJ, Heerema NA, Harvey RC, Willman CL, Larsen E, Raetz EA, Borowitz MJ, Wood BL, Carroll WL, Zweidler-McKay PA, Rabin KR, Mattano LA, Maloney KW, Winter SS, Burke MJ, Salzer W, Dunsmore KP, Angiolillo AL, Crews KR, Downing JR, Jeha S, Pui CH, Evans WE, Yang JJ, Relling MV, Gerhard DS, Loh ML, Hunger SP, Zhang J, Mullighan CG. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat Genet 2022; 54:1376-1389. [PMID: 36050548 PMCID: PMC9700506 DOI: 10.1038/s41588-022-01159-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 07/13/2022] [Indexed: 12/13/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common childhood cancer. Here, using whole-genome, exome and transcriptome sequencing of 2,754 childhood patients with ALL, we find that, despite a generally low mutation burden, ALL cases harbor a median of four putative somatic driver alterations per sample, with 376 putative driver genes identified varying in prevalence across ALL subtypes. Most samples harbor at least one rare gene alteration, including 70 putative cancer driver genes associated with ubiquitination, SUMOylation, noncoding transcripts and other functions. In hyperdiploid B-ALL, chromosomal gains are acquired early and synchronously before ultraviolet-induced mutation. By contrast, ultraviolet-induced mutations precede chromosomal gains in B-ALL cases with intrachromosomal amplification of chromosome 21. We also demonstrate the prognostic significance of genetic alterations within subtypes. Intriguingly, DUX4- and KMT2A-rearranged subtypes separate into CEBPA/FLT3- or NFATC4-expressing subgroups with potential clinical implications. Together, these results deepen understanding of the ALL genomic landscape and associated outcomes.
Collapse
Affiliation(s)
- Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kathryn G Roberts
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhaohui Gu
- Department of Computational and Quantitative Medicine & Systems Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Lei Shi
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Deqing Pei
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheng Cheng
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yunfeng Dai
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Chunxu Qu
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ashley N Hill
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Debbie Payne-Turner
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaotu Ma
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ilaria Iacobucci
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pradyuamna Baviskar
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lei Wei
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sasi Arunachalam
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yanling Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Diane A Flasch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Liu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Matthew Parker
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xiaolong Chen
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Abdelrahman H Elsayed
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Omkar Pathak
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yongjin Li
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yiping Fan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Robert Michael
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mark R Wilkinson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Foy
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dale J Hedges
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Scott Newman
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xin Zhou
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jian Wang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Colleen Reilly
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Edgar Sioson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stephen V Rice
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Victor Pastor Loyola
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Evadnie Rampersaud
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shalini C Reshmi
- Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Jaime M Guidry Auvil
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Office of Data Sharing, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patee Gesuwan
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Malcolm A Smith
- Cancer Therapeutics Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Naomi Winick
- Department of Pediatric Hematology Oncology and Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew J Carroll
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Richard C Harvey
- Department of Pathology, University of New Mexico Cancer Center, Albuquerque, NM, USA
| | | | - Eric Larsen
- Department of Pediatrics, Maine Children's Cancer Program, Scarborough, ME, USA
| | - Elizabeth A Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Michael J Borowitz
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Brent L Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, USA
| | - William L Carroll
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | | | - Karen R Rabin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | - Kelly W Maloney
- Department of Pediatrics and Children's Hospital Colorado, University of Colorado, Aurora, CO, USA
| | - Stuart S Winter
- Children's Minnesota Research Institute and Cancer and Blood Disorders Program, Minneapolis, MN, USA
| | - Michael J Burke
- Division of Pediatric Hematology-Oncology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Wanda Salzer
- Uniformed Services University, School of Medicine, Bethesda, MD, USA
| | | | | | - Kristine R Crews
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - James R Downing
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sima Jeha
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniela S Gerhard
- Office of Cancer Genomics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mignon L Loh
- Department of Pediatrics, Benioff Children's Hospital and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Stephen P Hunger
- Department of Pediatrics and the Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
23
|
Bontoux C, Simonin M, Garnier N, Lhermitte L, Touzart A, Andrieu G, Bruneau J, Lengliné E, Plesa A, Boissel N, Baruchel A, Bertrand Y, Molina TJ, Macintyre E, Asnafi V. Oncogenetic landscape of T-cell lymphoblastic lymphomas compared to T-cell acute lymphoblastic leukemia. Mod Pathol 2022; 35:1227-1235. [PMID: 35562412 DOI: 10.1038/s41379-022-01085-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/09/2022]
Abstract
In the latest 2016 World Health Organization classification of hematological malignancies, T-cell lymphoblastic lymphoma (T-LBL) and lymphoblastic leukemia (T-ALL) are grouped together into one entity called T-cell lymphoblastic leukemia/lymphoma (T-LBLL). However, the question of whether these entities represent one or two diseases remains. Multiple studies on driver alterations in T-ALL have led to a better understanding of the disease while, so far, little data on genetic profiles in T-LBL is available. We sought to define recurrent genetic alterations in T-LBL and provide a comprehensive comparison with T-ALL. Targeted whole-exome next-generation sequencing of 105 genes, multiplex ligation-dependent probe amplification, and quantitative PCR allowed comprehensive genotype assessment in 818, consecutive, unselected, newly diagnosed patients (342 T-LBL vs. 476 T-ALL). The median age at diagnosis was similar in T-LBL and T-ALL (17 vs. 15 years old, respectively; p = 0.2). Although we found commonly altered signaling pathways and co-occurring mutations, we identified recurrent dissimilarities in actionable gene alterations in T-LBL as compared to T-ALL. HOX abnormalities (TLX1 and TLX3 overexpression) were more frequent in T-ALL (5% of T-LBL vs 13% of T-ALL had TLX1 overexpression; p = 0.04 and 6% of T-LBL vs 17% of T-ALL had TLX3 overexpression; p = 0.006). The PI3K signaling pathway was significantly more frequently altered in T-LBL as compared to T-ALL (33% vs 19%; p < 0.001), especially through PIK3CA alterations (9% vs 2%; p < 0.001) with PIK3CAH1047 as the most common hotspot. Similarly, T-LBL genotypes were significantly enriched in alterations in genes coding for the EZH2 epigenetic regulator and in TP53 mutations (respectively, 13% vs 8%; p = 0.016 and 7% vs 2%; p < 0.001). This genetic landscape of T-LBLL identifies differential involvement of recurrent alterations in T-LBL as compared to T-ALL, thus contributing to better understanding and management of this rare disease.
Collapse
Affiliation(s)
- Christophe Bontoux
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Centre Hospitalier Universitaire de Nice, Université Côte d'Azur, 06000, Nice, France.,Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, Paris, France
| | - Mathieu Simonin
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, Paris, France.,Department of Pediatric Hematology and Oncology, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Nathalie Garnier
- Institute of Pediatric Hematology and Oncology, Hospices Civils de Lyon, Claude Bernard Lyon 1 University, Lyon, France
| | - Ludovic Lhermitte
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, Paris, France
| | - Aurore Touzart
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, Paris, France
| | - Guillaume Andrieu
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, Paris, France
| | - Julie Bruneau
- Department of Pathology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Etienne Lengliné
- Hematology Department, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Adriana Plesa
- Laboratory of Hematology and Flow Cytometry, CHU Lyon-Sud Hospital, Hospices Civils de Lyon, Lyon, France
| | - Nicolas Boissel
- Adolescent and Young Adult Hematology Unit, Assistance Publique-Hôpitaux de Paris (AP-HP), Saint-Louis Hospital, Paris, France
| | - André Baruchel
- Pediatric Hematology and Immunology Department, Robert Debré Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Yves Bertrand
- Institute of Pediatric Haematology and Oncology, Hospices Civils de Lyon, Lyon, France
| | - Thierry Jo Molina
- Department of Pathology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Paris, France
| | - Elizabeth Macintyre
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, Paris, France
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, Hôpital Necker Enfants-Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Université de Paris, Institut Necker-Enfants Malades (INEM), Institut National de recherche Médicale (INSERM) U1151, Paris, France.
| |
Collapse
|
24
|
Toson B, Fortes IS, Roesler R, Andrade SF. Targeting Akt/PKB in pediatric tumors: A review from preclinical to clinical trials. Pharmacol Res 2022; 183:106403. [PMID: 35987481 DOI: 10.1016/j.phrs.2022.106403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
The serine/threonine kinase Akt is a major player in the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, and its modulation impacts multiple cellular processes such as growth, proliferation, and survival. Several abnormalities in this pathway have been documented over the years, and these alterations were shown to have great implications in tumorigenesis and resistance to chemotherapy. Thus, multiple Akt inhibitors have been developed and tested in adult tumors, and some of them are currently undergoing phase I, II, and III clinical trials for distinct cancers that arise during adulthood. Despite that, the impact of these inhibitors is still not fully understood in pediatric tumors, and Akt-specific targeting seems to be a promising approach to treat children affected by cancers. This review summarizes recent available evidence of Akt inhibitors in pediatric cancers, from both preclinical and clinical studies. In short, we demonstrate the impact that Akt inhibition provides in tumorigenesis, and we suggest targeting the PI3K/Akt/mTOR signaling pathway, alone or in combination with other inhibitors, is a feasible tool to achieve better outcomes in pediatric tumors.
Collapse
Affiliation(s)
- Bruno Toson
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Isadora S Fortes
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Saulo F Andrade
- Pharmaceutical Synthesis Group (PHARSG), College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Pharmaceutical Sciences Graduate Program, Federal University of Rio Grande do Sul (UFRGS), Av. Ipiranga, 2752, Porto Alegre, RS 90610-000, Brazil.
| |
Collapse
|
25
|
Novel Targeted Therapies for T-Cell Malignancies. Cancers (Basel) 2022; 14:cancers14163955. [PMID: 36010948 PMCID: PMC9406054 DOI: 10.3390/cancers14163955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/22/2022] Open
|
26
|
Arnovitz S, Mathur P, Tracy M, Mohsin A, Mondal S, Quandt J, Hernandez KM, Khazaie K, Dose M, Emmanuel AO, Gounari F. Tcf-1 promotes genomic instability and T cell transformation in response to aberrant β-catenin activation. Proc Natl Acad Sci U S A 2022; 119:e2201493119. [PMID: 35921443 PMCID: PMC9371646 DOI: 10.1073/pnas.2201493119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Understanding the mechanisms promoting chromosomal translocations of the rearranging receptor loci in leukemia and lymphoma remains incomplete. Here we show that leukemias induced by aberrant activation of β-catenin in thymocytes, which bear recurrent Tcra/Myc-Pvt1 translocations, depend on Tcf-1. The DNA double strand breaks (DSBs) in the Tcra site of the translocation are Rag-generated, whereas the Myc-Pvt1 DSBs are not. Aberrantly activated β-catenin redirects Tcf-1 binding to novel DNA sites to alter chromatin accessibility and down-regulate genome-stability pathways. Impaired homologous recombination (HR) DNA repair and replication checkpoints lead to retention of DSBs that promote translocations and transformation of double-positive (DP) thymocytes. The resulting lymphomas, which resemble human T cell acute lymphoblastic leukemia (T-ALL), are sensitive to PARP inhibitors (PARPis). Our findings indicate that aberrant β-catenin signaling contributes to translocations in thymocytes by guiding Tcf-1 to promote the generation and retention of replication-induced DSBs allowing their coexistence with Rag-generated DSBs. Thus, PARPis could offer therapeutic options in hematologic malignancies with active Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Stephen Arnovitz
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Priya Mathur
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Melissa Tracy
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Azam Mohsin
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Soumi Mondal
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Jasmin Quandt
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | | | | | - Marei Dose
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | | | - Fotini Gounari
- Department of Medicine, University of Chicago, Chicago, IL 60637
- Department of Immunology, Mayo Clinic, Scottsdale, AZ 85259
| |
Collapse
|
27
|
Perbellini O, Cavallini C, Chignola R, Galasso M, Scupoli MT. Phospho-Specific Flow Cytometry Reveals Signaling Heterogeneity in T-Cell Acute Lymphoblastic Leukemia Cell Lines. Cells 2022; 11:cells11132072. [PMID: 35805156 PMCID: PMC9266179 DOI: 10.3390/cells11132072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/10/2022] Open
Abstract
Several signaling pathways are aberrantly activated in T-ALL due to genetic alterations of their components and in response to external microenvironmental cues. To functionally characterize elements of the signaling network in T-ALL, here we analyzed ten signaling proteins that are frequently altered in T-ALL -namely Akt, Erk1/2, JNK, Lck, NF-κB p65, p38, STAT3, STAT5, ZAP70, Rb- in Jurkat, CEM and MOLT4 cell lines, using phospho-specific flow cytometry. Phosphorylation statuses of signaling proteins were measured in the basal condition or under modulation with H2O2, PMA, CXCL12 or IL7. Signaling profiles are characterized by a high variability across the analyzed T-ALL cell lines. Hierarchical clustering analysis documents that higher intrinsic phosphorylation of Erk1/2, Lck, ZAP70, and Akt, together with ZAP70 phosphorylation induced by H2O2, identifies Jurkat cells. In contrast, CEM are characterized by higher intrinsic phosphorylation of JNK and Rb and higher responsiveness of Akt to external stimuli. MOLT4 cells are characterized by higher basal STAT3 phosphorylation. These data document that phospho-specific flow cytometry reveals a high variability in intrinsic as well as modulated signaling networks across different T-ALL cell lines. Characterizing signaling network profiles across individual leukemia could provide the basis to identify molecular targets for personalized T-ALL therapy.
Collapse
Affiliation(s)
- Omar Perbellini
- Department of Cell Therapy and Hematology, San Bortolo Hospital, Viale Ferdinando Rodolfi, 37, 36100 Vicenza, Italy;
| | - Chiara Cavallini
- Research Center LURM, Interdepartmental Laboratory of Medical Research, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy;
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy;
| | - Marilisa Galasso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy;
| | - Maria T. Scupoli
- Research Center LURM, Interdepartmental Laboratory of Medical Research, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy;
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro, 10, 37134 Verona, Italy;
- Correspondence: ; Tel.: +39-045-8128-425
| |
Collapse
|
28
|
Canté-Barrett K, Meijer MT, Cordo' V, Hagelaar R, Yang W, Yu J, Smits WK, Nulle ME, Jansen JP, Pieters R, Yang JJ, Haigh JJ, Goossens S, Meijerink JP. MEF2C opposes Notch in lymphoid lineage decision and drives leukemia in the thymus. JCI Insight 2022; 7:150363. [PMID: 35536646 PMCID: PMC9310523 DOI: 10.1172/jci.insight.150363] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/04/2022] [Indexed: 11/25/2022] Open
Abstract
Rearrangements that drive ectopic MEF2C expression have recurrently been found in patients with human early thymocyte progenitor acute lymphoblastic leukemia (ETP-ALL). Here, we show high levels of MEF2C expression in patients with ETP-ALL. Using both in vivo and in vitro models of ETP-ALL, we demonstrate that elevated MEF2C expression blocks NOTCH-induced T cell differentiation while promoting a B-lineage program. MEF2C activates a B cell transcriptional program in addition to RUNX1, GATA3, and LMO2; upregulates the IL-7R; and boosts cell survival by upregulation of BCL2. MEF2C and the Notch pathway, therefore, demarcate opposite regulators of B- or T-lineage choices, respectively. Enforced MEF2C expression in mouse or human progenitor cells effectively blocks early T cell differentiation and promotes the development of biphenotypic lymphoid tumors that coexpress CD3 and CD19, resembling human mixed phenotype acute leukemia. Salt-inducible kinase (SIK) inhibitors impair MEF2C activity and alleviate the T cell developmental block. Importantly, this sensitizes cells to prednisolone treatment. Therefore, SIK-inhibiting compounds such as dasatinib are potentially valuable additions to standard chemotherapy for human ETP-ALL.
Collapse
Affiliation(s)
| | - Mariska T Meijer
- Princess Máxima Center for pediatric oncology, Utrecht, Netherlands
| | - Valentina Cordo'
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Wentao Yang
- Department of Pharmaceutical Sciences, St. Jude Childen's Research Hospital, Memphis, United States of America
| | - Jiyang Yu
- Computational Biology Department, St. Jude Childen's Research Hospital, Memphis, United States of America
| | - Willem K Smits
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Marloes E Nulle
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Joris P Jansen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Rob Pieters
- Pieters Group, Princess Máxima Center for pediatric oncology, Utrecht, Netherlands
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, United States of America
| | - Jody J Haigh
- Research Institute of Oncology and Hematology, University of Manitoba, Manitoba, Canada
| | - Steven Goossens
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jules Pp Meijerink
- Meijerink Group, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| |
Collapse
|
29
|
Asquith CRM, Temme L, East MP, Laitinen T, Pickett J, Kwarcinski FE, Sinha P, Wells CI, Johnson GL, Zutshi R, Drewry DH. Identification of 4-anilino-quin(az)oline as a cell active Protein Kinase Novel 3 (PKN3) inhibitor chemotype. ChemMedChem 2022; 17:e202200161. [PMID: 35403825 DOI: 10.1002/cmdc.202200161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Indexed: 11/08/2022]
Abstract
Deep annotation of a library of 4-anilinoquinolines led to the identification of 7-iodo- N -(3,4,5-trimethoxyphenyl)quinolin-4-amine 16 as a potent inhibitor (IC 50 = 14 nM) of Protein Kinase Novel 3 (PKN3) with micromolar activity in cells. Compound 16 is a potential tool compound to study the cell biology of PKN3 and its role in pancreatic and prostate cancer and T-cell acute lymphoblastic leukemia. These 4-anilinoquinolines may also be useful tools to uncover the therapeutic potential of PKN3 inhibition in a broad range of diseases.
Collapse
Affiliation(s)
| | - Louisa Temme
- University of North Carolina at Chapel Hill, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, UNITED STATES
| | - Michael P East
- University of North Carolina at Chapel Hill, Department of Pharmacology, School of Medicine, UNITED STATES
| | - Tuomo Laitinen
- University of Eastern Finland Faculty of Health Sciences: Ita-Suomen yliopisto Terveystieteiden tiedekunta, School of Pharmacy, FINLAND
| | - Julie Pickett
- University of North Carolina at Chapel Hill, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, UNITED STATES
| | - Frank E Kwarcinski
- Luceome Biotechnologies, LLC, Luceome Biotechnologies, LLC, UNITED STATES
| | - Parvathi Sinha
- Luceome Biotechnologies, LLC, Luceome Biotechnologies, LLC, UNITED STATES
| | - Carrow I Wells
- University of North Carolina at Chapel Hill, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, UNITED STATES
| | - Gary L Johnson
- University of North Carolina at Chapel Hill, Department of Pharmacology, School of Medicine,, UNITED STATES
| | - Reena Zutshi
- Luceome Biotechnologies, LLC, Luceome Biotechnologies, LLC,, UNITED STATES
| | - David H Drewry
- University of North Carolina at Chapel Hill, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, UNITED STATES
| |
Collapse
|
30
|
A hotspot mutation targeting the R-RAS2 GTPase acts as a potent oncogenic driver in a wide spectrum of tumors. Cell Rep 2022; 38:110522. [PMID: 35294890 DOI: 10.1016/j.celrep.2022.110522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/22/2021] [Accepted: 02/20/2022] [Indexed: 12/20/2022] Open
Abstract
A missense change in RRAS2 (Gln72 to Leu), analogous to the Gln61-to-Leu mutation of RAS oncoproteins, has been identified as a long-tail hotspot mutation in cancer and Noonan syndrome. However, the relevance of this mutation for in vivo tumorigenesis remains understudied. Here we show, using an inducible knockin mouse model, that R-Ras2Q72L triggers rapid development of a wide spectrum of tumors when somatically expressed in adult tissues. These tumors show limited overlap with those originated by classical Ras oncogenes. R-Ras2Q72L-driven tumors can be classified into different subtypes according to therapeutic susceptibility. Importantly, the most relevant R-Ras2Q72L-driven tumors are dependent on mTORC1 but independent of phosphatidylinositol 3-kinase-, MEK-, and Ral guanosine diphosphate (GDP) dissociation stimulator. This pharmacological vulnerability is due to the extensive rewiring by R-Ras2Q72L of pathways that orthogonally stimulate mTORC1 signaling. These findings demonstrate that RRAS2Q72L is a bona fide oncogenic driver and unveil therapeutic strategies for patients with cancer and Noonan syndrome bearing RRAS2 mutations.
Collapse
|
31
|
Tasian SK, Silverman LB, Whitlock JA, Sposto R, Loftus JP, Schafer ES, Schultz KR, Hutchinson RJ, Gaynon PS, Orgel E, Bateman CM, Cooper TM, Laetsch TW, Sulis ML, Chi YY, Malvar J, Wayne AS, Rheingold SR. Temsirolimus combined with cyclophosphamide and etoposide for pediatric patients with relapsed/refractory acute lymphoblastic leukemia: a Therapeutic Advances in Childhood Leukemia Consortium trial (TACL 2014-001). Haematologica 2022; 107:2295-2303. [PMID: 35112552 PMCID: PMC9521241 DOI: 10.3324/haematol.2021.279520] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Indexed: 01/26/2023] Open
Abstract
Phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling is commonly dysregulated in acute lymphoblastic leukemia (ALL). The TACL2014-001 phase I trial of the mTOR inhibitor temsirolimus in combination with cyclophosphamide and etoposide was performed in children and adolescents with relapsed/refractory ALL. Temsirolimus was administered intravenously (IV) on days 1 and 8 with cyclophosphamide 440 mg/m2 and etoposide 100 mg/m2 IV daily on days 1-5. The starting dose of temsirolimus was 7.5 mg/m2 (DL1) with escalation to 10 mg/m2 (DL2), 15 mg/m2 (DL3), and 25 mg/m2 (DL4). PI3K/mTOR pathway inhibition was measured by phosphoflow cytometry analysis of peripheral blood specimens from treated patients. Sixteen heavily-pretreated patients were enrolled with 15 evaluable for toxicity. One dose-limiting toxicity of grade 4 pleural and pericardial effusions occurred in a patient treated at DL3. Additional dose-limiting toxicities were not seen in the DL3 expansion or DL4 cohort. Grade 3/4 non-hematologic toxicities occurring in three or more patients included febrile neutropenia, elevated alanine aminotransferase, hypokalemia, mucositis, and tumor lysis syndrome and occurred across all doses. Response and complete were observed at all dose levels with a 47% overall response rate and 27% complete response rate. Pharmacodynamic correlative studies demonstrated dose-dependent inhibition of PI3K/mTOR pathway phosphoproteins in all studied patients. Temsirolimus at doses up to 25 mg/m2 with cyclophosphamide and etoposide had an acceptable safety profile in children with relapsed/refractory ALL. Pharmacodynamic mTOR target inhibition was achieved and appeared to correlate with temsirolimus dose. Future testing of next-generation PI3K/mTOR pathway inhibitors with chemotherapy may be warranted to increase response rates in children with relapsed/refractory ALL.
Collapse
Affiliation(s)
- Sarah K. Tasian
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lewis B. Silverman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Division of Pediatric Hematology-Oncology, Boston Children’s Hospital, Boston, MA, USA
| | - James A. Whitlock
- Division of Haematology/Oncology, Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Richard Sposto
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joseph P. Loftus
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric S. Schafer
- Dan L. Duncan Institute for Clinical and Translational Research, Baylor College of Medicine and Texas Children’s Cancer Center, Houston, TX, USA
| | - Kirk R. Schultz
- Division of Hematology/Oncology/Bone Marrow Transplant, British Columbia Children's Hospital, Vancouver, British Columbia, Canada
| | | | - Paul S. Gaynon
- Division of Hematology/Oncology, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Etan Orgel
- Division of Hematology/Oncology, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Caroline M. Bateman
- Cancer Centre for Children, The Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Todd M. Cooper
- Division of Hematology/Oncology, Seattle Children's Hospital Cancer and Blood Disorders Center, Seattle, WA, USA
| | - Theodore W. Laetsch
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Maria Luisa Sulis
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yueh-Yun Chi
- Division of Hematology/Oncology, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jemily Malvar
- Division of Hematology/Oncology, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alan S. Wayne
- Division of Hematology/Oncology, Children’s Hospital Los Angeles, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Susan R. Rheingold
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA,S. R. Rheingold
| |
Collapse
|
32
|
Silic-Benussi M, Sharova E, Ciccarese F, Cavallari I, Raimondi V, Urso L, Corradin A, Kotler H, Scattolin G, Buldini B, Francescato S, Basso G, Minuzzo SA, Indraccolo S, D'Agostino DM, Ciminale V. mTOR inhibition downregulates glucose-6-phosphate dehydrogenase and induces ROS-dependent death in T-cell acute lymphoblastic leukemia cells. Redox Biol 2022; 51:102268. [PMID: 35248829 PMCID: PMC8899410 DOI: 10.1016/j.redox.2022.102268] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | | | | | - Vittoria Raimondi
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Loredana Urso
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy; Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Alberto Corradin
- Istituto Tecnico Industriale Statale "Alessandro Rossi", Vicenza, Italy
| | - Harel Kotler
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Gloria Scattolin
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Barbara Buldini
- Pediatric Hemato Oncology, Maternal and Child Health Department, University of Padova, Padova, Italy
| | - Samuela Francescato
- Pediatric Hemato Oncology, Maternal and Child Health Department, University of Padova, Padova, Italy
| | - Giuseppe Basso
- Pediatric Hemato Oncology, Maternal and Child Health Department, University of Padova, Padova, Italy; Italian Institute for Genomic Medicine, Turin, Italy
| | - Sonia A Minuzzo
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Stefano Indraccolo
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy; Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | - Donna M D'Agostino
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy; Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy; Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy.
| |
Collapse
|
33
|
Shiri Heris R, Pourbagheri-Sigaroodi A, Yousefi AM, Bashash D. The Superior Cytotoxicity of Dual Targeting of BCR/ABL and PI3K in K562 Cells: Proposing a Novel Therapeutic Potential for the Treatment of CML. Indian J Hematol Blood Transfus 2022; 38:51-60. [PMID: 35125711 PMCID: PMC8804072 DOI: 10.1007/s12288-021-01434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/27/2021] [Indexed: 01/03/2023] Open
Abstract
Apart from BCR/ABL which is the main player in the pathogenesis of chronic myeloid leukemia (CML), the role of other signaling cascades should not be underestimated especially for the maintenance of leukemic cells survival. The results of the present study indicate that either an isoform-specific or a pan-PI3K inhibitor could potently reduce the survival of CML-derived K562 cells, shedding more light on the involvement of the PI3K axis in the pathogenesis of CML. Of particular interest, the importance of the PI3K pathway in this disease became more evident when we found that there was a more remarkable reduction in the viability of K562 cells when BKM120 was used in combination with imatinib. Moreover, BKM120 robustly enhanced the growth-suppressive effect of imatinib through p21-mediated induction of G2/M cell cycle arrest and induction of apoptotic cell death. Despite the favorable anti-survival effects of the drug combination, these agents failed to induce inhibitory effects on the expression of c-Myc and NF-κB anti-apoptotic target genes. However, the ability of combinational therapy in diminishing K562 cell survival was potentiated either in the presence of 10058-F4 (c-Myc inhibitor) or Bortezomib (proteasome inhibitor), suggestive of the role of both NF-κB and c-Myc in overshadowing the therapeutic value of drugs combination. Taken together, the results of this study showed that inhibition of the PI3K pathway is a suitable approach to enhance the therapeutic value of imatinib in the treatment of CML.
Collapse
Affiliation(s)
- Reza Shiri Heris
- grid.411600.2Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.449862.50000 0004 0518 4224Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Atieh Pourbagheri-Sigaroodi
- grid.411600.2Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir-Mohammad Yousefi
- grid.411600.2Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Davood Bashash
- grid.411600.2Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
34
|
Karra L, Roose JP. Investigating increased hematopoietic stem cell fitness in a novel mouse model. Small GTPases 2022; 13:7-13. [PMID: 33517841 PMCID: PMC9707538 DOI: 10.1080/21541248.2021.1882832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
T-cell acute lymphoblastic leukaemia (T-ALL) is a bone marrow (BM) malignancy affecting children and adults. Typically treated with chemotherapy, leukaemia remains a major death cause in people under 20 years old. Understanding molecularly altered pathways in T-ALL may lead to new therapeutic avenues in the future. Ras pathway dysregulation is common in T-ALL. We have shown elevated expression levels of the Ras guanine nucleotide exchange factor RasGRP1 in T-ALL patients, which results in constant production of active Ras (RasGTP). When leukaemia cell lines are exposed to cytokines, RasGTP levels further increase in a RasGRP1-dependent manner. How overexpressed RasGRP1 may impact primary BM cells has remained unknown. We recently published a new RoLoRiG mouse model that allows for pIpC-induced overexpression of RasGRP1 in haematopoietic cells, which can be traced with an ires-EGFP cassette. This novel model revealed that RasGRP1 overexpression bestows a fitness advantage to haematopoietic stem cells (HSCs) over wild-type cells. Intriguingly, this increased fitness only manifests in native Hematopoiesis, and not in BM transplantation (BMT) assays. In this commentary, we summarize key features of our RoLoRiG model, elaborate on BM niche importance, and discuss differences between native Hematopoiesis and BMT in the context of stem cell metabolism.
Collapse
Affiliation(s)
| | - Jeroen P. Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CaliforniaUSA,CONTACT Jeroen P. Roose Department of Anatomy, University of California San Francisco (UCSF) 513 Parnassus Avenue, Room HSW-1326, San Francisco, California94143-0452, USA
| |
Collapse
|
35
|
Taj MM, Moorman AV, Hamadeh L, Petit A, Asnafi V, Alby-Laurent F, Vora A, Mansour MR, Gale R, Chevret S, Moppett J, Baruchel A, Macintyre E. Prognostic value of Oncogenetic mutations in pediatric T Acute Lymphoblastic Leukemia: a comparison of UKALL2003 and FRALLE2000T protocols. Leukemia 2022; 36:263-266. [PMID: 34183766 DOI: 10.1038/s41375-021-01334-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/10/2021] [Accepted: 06/16/2021] [Indexed: 11/09/2022]
Affiliation(s)
- Mary M Taj
- Royal Marsden Hospital, NHS Foundation Trust, London, UK
| | - Anthony V Moorman
- Leukaemia Research Cytogenetics Group, Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Lina Hamadeh
- Leukaemia Research Cytogenetics Group, Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Arnaud Petit
- Department of Pediatric Hematology and Oncology, AP-HP Hôpital Armand Trousseau, Sorbonne Université, UMRS_938, CDR Saint-Antoine, Paris, France
| | - Vahid Asnafi
- Laboratory of Onco-Hematology, AP-HP Hôpital Necker-Enfants Malades, Université de Paris and Institut Necker-Enfants Malades, Paris, France
| | - Fanny Alby-Laurent
- Department of Pediatric Hematology and Oncology, AP-HP Hôpital Armand Trousseau, Sorbonne Université, UMRS_938, CDR Saint-Antoine, Paris, France
| | - Ajay Vora
- Great Ormond Street Hospital, London, UK
| | | | - Rosemary Gale
- University College London Cancer Institute, London, UK
| | | | - John Moppett
- University Hospitals Bristol and Weston, Bristol, UK
| | - André Baruchel
- Department of Pediatric Hematology, AP-HP, Hôpital Universitaire Robert Debré, EA 3518, Université de Paris, Paris, France
| | - Elizabeth Macintyre
- Laboratory of Onco-Hematology, AP-HP Hôpital Necker-Enfants Malades, Université de Paris and Institut Necker-Enfants Malades, Paris, France.
| |
Collapse
|
36
|
Papa A, Pandolfi PP. PTEN in Immunity. Curr Top Microbiol Immunol 2022; 436:95-115. [DOI: 10.1007/978-3-031-06566-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
37
|
Abstract
Despite the therapeutic progress, relapse remains a major problem in the treatment of acute lymphoblastic leukemia (ALL). Most leukemia cells that survive chemotherapy are found in the bone marrow (BM), thus resistance to chemotherapy and other treatments may be partially attributed to pro-survival signaling to leukemic cells mediated by leukemia cell-microenvironment interactions. Adhesion of leukemia cells to BM stromal cells may lead to cell adhesion-mediated drug resistance (CAM-DR) mediating intracellular signaling changes that support survival of leukemia cells. In ALL and chronic lymphocytic leukemia (CLL), adhesion-mediated activation of the PI3K/AKT signaling pathway has been shown to be critical in CAM-DR. PI3K targeting inhibitors have been approved for CLL and have been evaluated preclinically in ALL. However, PI3K inhibition has yet to be approved for clinical use in ALL. Here, we review the role of PI3K signaling for normal hematopoietic and leukemia cells and summarize preclinical inhibitors of PI3K in ALL.
Collapse
Affiliation(s)
- Hye Na Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Heather Ogana
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Vanessa Sanchez
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Cydney Nichols
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Yong-Mi Kim
- Department of Pediatrics, Division of Hematology and Oncology, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
38
|
Yuan T, Wang J, Shi C, Wang Y, Xia B, Xu W, Yang H, Yang Y, Ye MT, Khalid S, Liang Y, Tian C, You MJ, Wang Y. Downregulation of FAPP2 gene induces cell autophagy and inhibits PI3K/AKT/mTOR pathway in T-cell acute lymphoblastic leukemia. Hematol Oncol 2021; 40:249-257. [PMID: 34796518 DOI: 10.1002/hon.2948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/16/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022]
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy. Most patients with T-ALL are treated with high-dose multi-agent chemotherapy due to limited targeted therapeutic options. To further investigate its pathogenesis and establish new therapeutic targets, we studied the role of FAPP2, a Golgi protein, that is, highly expressed in T-ALL, in the growth and function of T-ALL. We found that T-ALL cells underwent reduced cell proliferation and sub-G1 accumulation after knocking down of FAPP2 gene using shRNA systems. Instead, FAPP2 downregulation promoted cell autophagy. The level of autophagy markers, LC3Ⅱ/Ⅰ, Beclin1, and ATG5, was markedly increased, whereas that of P62 decreased after FAPP2 knocking down in T-ALL cells. FAPP2 knocking down led to the accumulation of LC3 in the cytoplasm of T-ALL cells as shown by fluorescence microscopy. In addition, the level of PI(4)P and PI(3,4,5)P decreased and phosphorylation of P-AKT and P-mTOR were downregulated in FAPP2 knock-down cells. In summary, our results show that decreased expression of FAPP2 inhibited cell proliferation, resulted in the sub-G1 phase accumulation of T-ALL cells, and enhanced autophagy of T-ALL cells, likely mediated by PI(4)P, PI(3,4,5)P, and PI3K/AKT/mTOR pathway. Our results provide a new insight into the pathogenesis and development of potential targeted therapy of T-ALL.
Collapse
Affiliation(s)
- Tian Yuan
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinhuan Wang
- Department of Oncology, Second Hospital of Tianjin Medical University, Institute of Urology, Tianjin, China
| | - Ce Shi
- NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yi Wang
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Bing Xia
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wen Xu
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Hongliang Yang
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yaling Yang
- NHC Key Laboratory of Cell Transplantation, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Matthew T Ye
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Samah Khalid
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yong Liang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Clinical Medicine, Taizhou University School of Medicine, Taizhou, Zhejiang Province, China
| | - Chen Tian
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yafei Wang
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
39
|
Shiraz P, Jehangir W, Agrawal V. T-Cell Acute Lymphoblastic Leukemia-Current Concepts in Molecular Biology and Management. Biomedicines 2021; 9:1621. [PMID: 34829849 PMCID: PMC8615775 DOI: 10.3390/biomedicines9111621] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 01/13/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) is an uncommon, yet aggressive leukemia that accounts for approximately one-fourth of acute lymphoblastic leukemia (ALL) cases. CDKN2A/CDKN2B and NOTCH1 are the most common mutated genes in T-ALL. Children and young adults are treated with pediatric intensive regimens and have superior outcomes compared to older adults. In children and young adults, Nelarabine added to frontline chemotherapy improves outcomes and end of consolidation measurable residual disease has emerged as the most valuable prognostic marker. While outcomes for de-novo disease are steadily improving, patients with relapsed and refractory T-ALL fare poorly. Newer targeted therapies are being studied in large clinical trials and have the potential to further improve outcomes. The role of allogeneic stem cell transplant (HSCT) is evolving due to the increased use of pediatric-inspired regimens and MRD monitoring. In this review we will discuss the biology, treatment, and outcomes in pediatric and adult T-ALL.
Collapse
Affiliation(s)
- Parveen Shiraz
- Blood and Marrow Transplantation/Cell Therapy, Stanford University, Stanford, CA 94305, USA
| | - Waqas Jehangir
- Avera Medical Group Hematology, Transplant & Cellular Therapy, Sioux Falls, SD 57105, USA;
| | - Vaibhav Agrawal
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA;
| |
Collapse
|
40
|
Silva A, Almeida ARM, Cachucho A, Neto JL, Demeyer S, de Matos M, Hogan T, Li Y, Meijerink J, Cools J, Grosso AR, Seddon B, Barata JT. Overexpression of wild-type IL-7Rα promotes T-cell acute lymphoblastic leukemia/lymphoma. Blood 2021; 138:1040-1052. [PMID: 33970999 PMCID: PMC8462360 DOI: 10.1182/blood.2019000553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/15/2021] [Indexed: 12/02/2022] Open
Abstract
Tight regulation of IL-7Rα expression is essential for normal T-cell development. IL-7Rα gain-of-function mutations are known drivers of T-cell acute lymphoblastic leukemia (T-ALL). Although a subset of patients with T-ALL display high IL7R messenger RNA levels and cases with IL7R gains have been reported, the impact of IL-7Rα overexpression, rather than mutational activation, during leukemogenesis remains unclear. In this study, overexpressed IL-7Rα in tetracycline-inducible Il7r transgenic and Rosa26 IL7R knockin mice drove potential thymocyte self-renewal, and thymus hyperplasia related to increased proliferation of T-cell precursors, which subsequently infiltrated lymph nodes, spleen, and bone marrow, ultimately leading to fatal leukemia. The tumors mimicked key features of human T-ALL, including heterogeneity in immunophenotype and genetic subtype between cases, frequent hyperactivation of the PI3K/Akt pathway paralleled by downregulation of p27Kip1 and upregulation of Bcl-2, and gene expression signatures evidencing activation of JAK/STAT, PI3K/Akt/mTOR and Notch signaling. Notably, we also found that established tumors may no longer require high levels of IL-7R expression upon secondary transplantation and progressed in the absence of IL-7, but remain sensitive to inhibitors of IL-7R-mediated signaling ruxolitinib (Jak1), AZD1208 (Pim), dactolisib (PI3K/mTOR), palbociclib (Cdk4/6), and venetoclax (Bcl-2). The relevance of these findings for human disease are highlighted by the fact that samples from patients with T-ALL with high wild-type IL7R expression display a transcriptional signature resembling that of IL-7-stimulated pro-T cells and, critically, of IL7R-mutant cases of T-ALL. Overall, our study demonstrates that high expression of IL-7Rα can promote T-cell tumorigenesis, even in the absence of IL-7Rα mutational activation.
Collapse
Affiliation(s)
- Ana Silva
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Afonso R M Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Cachucho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João L Neto
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Sofie Demeyer
- Vlaams Instituut voor Biotechnologie (VIB) Center for Cancer Biology
- Katholieke Universiteit (KU) Leuven Center for Human Genetics, Katholieke Universiteit (VIB-KU) Leuven, Leuven, Belgium
| | - Mafalda de Matos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Thea Hogan
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Yunlei Li
- Department of Pathology Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jules Meijerink
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.; and
| | - Jan Cools
- Vlaams Instituut voor Biotechnologie (VIB) Center for Cancer Biology
| | - Ana Rita Grosso
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Unidade de Ciências Biomoleculares Aplicadas (UCIBIO), Universidade NOVA de Lisboa, Caparica, Portugal
| | - Benedict Seddon
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | - João T Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
41
|
Cao L, Xia X, Kong Y, Jia F, Yuan B, Li R, Li Q, Wang Y, Cui M, Dai Z, Zheng H, Christensen J, Zhou Y, Wu X. Deregulation of tumor suppressive ASXL1-PTEN/AKT axis in myeloid malignancies. J Mol Cell Biol 2021; 12:688-699. [PMID: 32236560 PMCID: PMC7749738 DOI: 10.1093/jmcb/mjaa011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/18/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022] Open
Abstract
Mutations of epigenetic regulators are pervasive in human tumors. ASXL1 is frequently mutated in myeloid malignancies. We previously found that ASXL1 forms together with BAP1 a complex that can deubiquitinylate mono-ubiquitinylated lysine 119 on histone H2A (H2AK119ub1), a Polycomb repressive mark. However, a complete mechanistic understanding of ASXL1 in transcriptional regulation and tumor suppression remains to be defined. Here, we find that depletion of Asxl1 confers murine 32D cells to IL3-independent growth at least partly due to sustained activation of PI3K/AKT signaling. Consistently, Asxl1 is critical for the transcriptional activation of Pten, a key negative regulator of AKT activity. Then we confirm that Asxl1 is specifically enriched and required for H2AK119 deubiquitylation at the Pten promoter. Interestingly, ASXL1 and PTEN expression levels are positively correlated in human blood cells and ASXL1 mutations are associated with lower expression levels of PTEN in human myeloid malignancies. Furthermore, malignant cells with ASXL1 downregulation or mutations exhibit higher sensitivity to the AKT inhibitor MK2206. Collectively, this study has linked the PTEN/AKT signaling axis to deregulated epigenetic changes in myeloid malignancies. It also provides a rationale for mechanism-based therapy for patients with ASXL1 mutations.
Collapse
Affiliation(s)
- Lei Cao
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Xianyou Xia
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yu Kong
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Fengqin Jia
- National Demonstration Center for Experimental Basic Medical Science Education, Tianjin Medical University, Tianjin 300070, China
| | - Bo Yuan
- National Demonstration Center for Experimental Basic Medical Science Education, Tianjin Medical University, Tianjin 300070, China
| | - Rui Li
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Qian Li
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Yuxin Wang
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Mingrui Cui
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Zhongye Dai
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China
| | - Huimin Zheng
- Department of Prosthodontics, School and Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Jesper Christensen
- Biotech Research and Innovation Centre and Centre for Epigenetics, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Xudong Wu
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Cell Biology, Tianjin Medical University, Tianjin 300070, China.,State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|
42
|
T-Cell Acute Lymphoblastic Leukemia: Biomarkers and Their Clinical Usefulness. Genes (Basel) 2021; 12:genes12081118. [PMID: 34440292 PMCID: PMC8394887 DOI: 10.3390/genes12081118] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/17/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
T-cell acute lymphoblastic leukemias (T-ALL) are immature lymphoid tumors localizing in the bone marrow, mediastinum, central nervous system, and lymphoid organs. They account for 10-15% of pediatric and about 25% of adult acute lymphoblastic leukemia (ALL) cases. It is a widely heterogeneous disease that is caused by the co-occurrence of multiple genetic abnormalities, which are acquired over time, and once accumulated, lead to full-blown leukemia. Recurrently affected genes deregulate pivotal cell processes, such as cycling (CDKN1B, RB1, TP53), signaling transduction (RAS pathway, IL7R/JAK/STAT, PI3K/AKT), epigenetics (PRC2 members, PHF6), and protein translation (RPL10, CNOT3). A remarkable role is played by NOTCH1 and CDKN2A, as they are altered in more than half of the cases. The activation of the NOTCH1 signaling affects thymocyte specification and development, while CDKN2A haploinsufficiency/inactivation, promotes cell cycle progression. Among recurrently involved oncogenes, a major role is exerted by T-cell-specific transcription factors, whose deregulated expression interferes with normal thymocyte development and causes a stage-specific differentiation arrest. Hence, TAL and/or LMO deregulation is typical of T-ALL with a mature phenotype (sCD3 positive) that of TLX1, NKX2-1, or TLX3, of cortical T-ALL (CD1a positive); HOXA and MEF2C are instead over-expressed in subsets of Early T-cell Precursor (ETP; immature phenotype) and early T-ALL. Among immature T-ALL, genomic alterations, that cause BCL11B transcriptional deregulation, identify a specific genetic subgroup. Although comprehensive cytogenetic and molecular studies have shed light on the genetic background of T-ALL, biomarkers are not currently adopted in the diagnostic workup of T-ALL, and only a limited number of studies have assessed their clinical implications. In this review, we will focus on recurrent T-ALL abnormalities that define specific leukemogenic pathways and on oncogenes/oncosuppressors that can serve as diagnostic biomarkers. Moreover, we will discuss how the complex genomic profile of T-ALL can be used to address and test innovative/targeted therapeutic options.
Collapse
|
43
|
Pocock R, Farah N, Richardson SE, Mansour MR. Current and emerging therapeutic approaches for T-cell acute lymphoblastic leukaemia. Br J Haematol 2021; 194:28-43. [PMID: 33942287 DOI: 10.1111/bjh.17310] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
T-cell ALL (T-ALL) is an aggressive malignancy of T-cell progenitors. Although survival outcomes in T-ALL have greatly improved over the past 50 years, relapsed and refractory cases remain extremely challenging to treat and those who cannot tolerate intensive treatment continue to have poor outcomes. Furthermore, T-ALL has proven a more challenging immunotherapeutic target than B-ALL. In this review we explore our expanding knowledge of the basic biology of T-ALL and how this is paving the way for repurposing established treatments and the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Rachael Pocock
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Nadine Farah
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| | - Simon E Richardson
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Marc R Mansour
- Department of Haematology, UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
44
|
Mansur MB, Furness CL, Nakjang S, Enshaei A, Alpar D, Colman SM, Minto L, Irving J, Poole BV, Noronha EP, Savola S, Iqbal S, Gribben J, Pombo-de-Oliveira MS, Ford TM, Greaves MF, van Delft FW. The genomic landscape of teenage and young adult T-cell acute lymphoblastic leukemia. Cancer Med 2021; 10:4864-4873. [PMID: 34080325 PMCID: PMC8290240 DOI: 10.1002/cam4.4024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/09/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Treatment on risk adapted intensive pediatric protocols has improved outcome for teenagers and young adults (TYA) with T-cell acute lymphoblastic leukemia (T-ALL). Understanding the biology of disease in this age group and the genetic basis of relapse is a key goal as patients with relapsed/refractory disease have poor outcomes with conventional chemotherapy and novel molecular targets are required. This study examines the question of whether TYA T-ALL has a specific biological-molecular profile distinct from pediatric or adult T-ALL. METHODS Genomic characterization was undertaken of a retrospective discovery cohort of 80 patients aged 15-26 years with primary or relapsed T-ALL, using a combination of Genome-Wide Human SNP Array 6.0, targeted gene mutation and promoter methylation analyses. Findings were confirmed by MLPA, real-time quantitative PCR, and FISH. Whole Exome Sequencing was performed in 4 patients with matched presentation and relapse to model clonal evolution. A prevalence analysis was performed on a final data set of 1,792 individual cases to identify genetic lesions with age specific frequency patterns, including 972 pediatric (1-14 years), 439 TYA (15-24 years) and 381 adult (≥25 years) cases. These cases were extracted from 19 publications with comparable genomic data identified through a PubMed search. RESULTS Genomic characterization of this large cohort of TYA T-ALL patients identified recurrent isochromosome 7q i(7q) in our discovery cohort (n = 3). Prevalence analysis did not identify any age specific genetic abnormalities. Genomic analysis of 6 pairs of matched presentation - relapsed T-ALL established that all relapses were clonally related to the initial leukemia. Whole exome sequencing analysis revealed recurrent, targetable, mutations disrupting NOTCH, PI3K/AKT/mTOR, FLT3, NRAS as well as drug metabolism pathways. CONCLUSIONS All genetic aberrations in TYA T-ALL occurred with an incidence similar or intermediate to that reported in the pediatric and adult literature, demonstrating that overall TYA T-ALL exhibits a transitional genomic profile. Analysis of matched presentation - relapse supported the hypothesis that relapse is driven by the Darwinian evolution of sub-clones associated with drug resistance (NT5C2 and TP53 mutations) and re-iterative mutation of known key T-ALL drivers, including NOTCH1.
Collapse
Affiliation(s)
- Marcela B Mansur
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.,Paediatric Haematology-Oncology Program, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.,Division of Clinical Research, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Caroline L Furness
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Sirintra Nakjang
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK.,Bioinformatics Support Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Amir Enshaei
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Donat Alpar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.,HCEMM-SE Molecular Oncohematology Research Group, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Sue M Colman
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Lynne Minto
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Julie Irving
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Beth V Poole
- Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| | - Elda P Noronha
- Paediatric Haematology-Oncology Program, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Suvi Savola
- Oncogenetics, MRC-Holland, Amsterdam, The Netherlands
| | - Sameena Iqbal
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - John Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, London, UK
| | - Maria S Pombo-de-Oliveira
- Paediatric Haematology-Oncology Program, Research Centre, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Tony M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Mel F Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Frederik W van Delft
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.,Wolfson Childhood Cancer Research Centre, Newcastle University Centre for Cancer, Newcastle upon Tyne, UK
| |
Collapse
|
45
|
Zhang C, Amanda S, Wang C, King Tan T, Zulfaqar Ali M, Zhong Leong W, Moy Ng L, Kitajima S, Li Z, Eng Juh Yeoh A, Hao Tan S, Sanda T. Oncorequisite role of an aldehyde dehydrogenase in the pathogenesis of T-cell acute lymphoblastic leukemia. Haematologica 2021; 106:1545-1558. [PMID: 32414855 PMCID: PMC8168519 DOI: 10.3324/haematol.2019.245639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Aldehyde dehydrogenases (ALDH) are overexpressed in various types of cancers. One of the ALDH family genes, ALDH1A2, is aberrantly expressed in more than 50% of cases of T-cell acute lymphoblastic leukemia (T-ALL). However, its molecular function and role in the pathogenesis of T-ALL are largely unknown. Chromatin immunoprecipitation-sequencing and RNA-sequencing analyses showed that the oncogenic transcription factor TAL1 and its regulatory partners bind to the intronic regulatory element of the ALDH1A2 gene, directly inducing a T-ALL-specific isoform with enzymatic activity. ALDH1A2 was preferentially expressed in the TAL1-positive T-ALL subgroup. In TALL cell lines, depletion of ALDH1A2 inhibited cell viability and induced apoptosis. Interestingly, gene expression and metabolomic profiling revealed that ALDH1A2 supported glycolysis and the tricarboxylic acid cycle, accompanied by NADH production, by affecting multiple metabolic enzymes to promote ATP production. Depletion of ALDH1A2 increased the levels of reactive oxygen species, while the levels were reduced by ALDH1A2 overexpression both in vitro and in vivo. Overexpression of ALDH1A2 accelerated tumor onset and increased tumor penetrance in a zebrafish model of T-ALL. Taken together, our results indicate that ALDH1A2 protects against intracellular stress and promotes T-ALL cell metabolism and survival. ALDH1A2 overexpression enables leukemic clones to sustain a hyper-proliferative state driven by oncogenes.
Collapse
Affiliation(s)
- Chujing Zhang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Stella Amanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Cheng Wang
- Department of Anatomy, National University of Singapore, Singapore
| | - Tze King Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | - Wei Zhong Leong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ley Moy Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Shojiro Kitajima
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Zhenhua Li
- Department of Paediatrics, National University of Singapore, Singapore
| | - Allen Eng Juh Yeoh
- Dept of Paediatrics, National University of Singapore and Cancer Science Institute of Singapore
| | - Shi Hao Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Takaomi Sanda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| |
Collapse
|
46
|
The spleen as a sanctuary site for residual leukemic cells following ABT-199 monotherapy in ETP-ALL. Blood Adv 2021; 5:1963-1976. [PMID: 33830207 PMCID: PMC8045507 DOI: 10.1182/bloodadvances.2021004177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
B-cell lymphoma 2 (BCL-2) has recently emerged as a therapeutic target for early T-cell progenitor acute lymphoblastic leukemia (ETP-ALL), a high-risk subtype of human T-cell ALL. The major clinical challenge with targeted therapeutics, such as the BCL-2 inhibitor ABT-199, is the development of acquired resistance. We assessed the in vivo response of luciferase-positive LOUCY cells to ABT-199 monotherapy and observed specific residual disease in the splenic microenvironment. Of note, these results were confirmed by using a primary ETP-ALL patient-derived xenograft. Splenomegaly has previously been associated with poor prognosis in diverse types of leukemia. However, the exact mechanism by which the splenic microenvironment alters responses to specific targeted therapies remains largely unexplored. We show that residual LOUCY cells isolated from the spleen microenvironment displayed reduced BCL-2 dependence, which was accompanied by decreased BCL-2 expression levels. Notably, this phenotype of reduced BCL-2 dependence could be recapitulated by using human splenic fibroblast coculture experiments and was confirmed in an in vitro chronic ABT-199 resistance model of LOUCY. Finally, single-cell RNA-sequencing was used to show that ABT-199 triggers transcriptional changes in T-cell differentiation genes in leukemic cells obtained from the spleen microenvironment. Of note, increased expression of CD1a and sCD3 was also observed in ABT199-resistant LOUCY clones, further reinforcing the idea that a more differentiated leukemic population might display decreased sensitivity toward BCL-2 inhibition. Overall, our data reveal the spleen as a site of residual disease for ABT-199 treatment in ETP-ALL and provide evidence for plasticity in T-cell differentiation as a mechanism of therapy resistance.
Collapse
|
47
|
Inaba H, Pui CH. Advances in the Diagnosis and Treatment of Pediatric Acute Lymphoblastic Leukemia. J Clin Med 2021; 10:1926. [PMID: 33946897 PMCID: PMC8124693 DOI: 10.3390/jcm10091926] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
The outcomes of pediatric acute lymphoblastic leukemia (ALL) have improved remarkably during the last five decades. Such improvements were made possible by the incorporation of new diagnostic technologies, the effective administration of conventional chemotherapeutic agents, and the provision of better supportive care. With the 5-year survival rates now exceeding 90% in high-income countries, the goal for the next decade is to improve survival further toward 100% and to minimize treatment-related adverse effects. Based on genome-wide analyses, especially RNA-sequencing analyses, ALL can be classified into more than 20 B-lineage subtypes and more than 10 T-lineage subtypes with prognostic and therapeutic implications. Response to treatment is another critical prognostic factor, and detailed analysis of minimal residual disease can detect levels as low as one ALL cell among 1 million total cells. Such detailed analysis can facilitate the rational use of molecular targeted therapy and immunotherapy, which have emerged as new treatment strategies that can replace or reduce the use of conventional chemotherapy.
Collapse
Affiliation(s)
- Hiroto Inaba
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ching-Hon Pui
- Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
48
|
Fang-Fang Z, You Y, Wen-Jun L. Progress in research on childhood T-cell acute lymphocytic leukemia, Notch1 signaling pathway, and its inhibitors: A review. Bosn J Basic Med Sci 2021; 21:136-144. [PMID: 32415821 PMCID: PMC7982061 DOI: 10.17305/bjbms.2020.4687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023] Open
Abstract
Childhood leukemia is cancer that seriously threatens the life of children in China. Poor sensitivity to chemotherapy and susceptibility to drug resistance are the reasons for the treatment of T-cell acute lymphocytic leukemia (T-ALL) being extremely difficult. Moreover, traditional intensive chemotherapy regimens cause great damage to children. Therefore, it is highly important to search for targeted drugs and develop a precise individualized treatment for child patients. There are activating mutations in the NOTCH1 gene in more than 50% of human T-ALLs and the Notch signaling pathway is involved in the pathogenesis of T-ALL. In this review, we summarize the progress in research on T-ALL and Notch1 signaling pathway inhibitors to provide a theoretical basis for the clinical treatment of T-ALL.
Collapse
Affiliation(s)
- Zhong Fang-Fang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Yang You
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Liu Wen-Jun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China; Department of Pediatrics, Affiliated Hospital of Southwest Medical University, Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, China
| |
Collapse
|
49
|
Olivas-Aguirre M, Torres-López L, Pottosin I, Dobrovinskaya O. Overcoming Glucocorticoid Resistance in Acute Lymphoblastic Leukemia: Repurposed Drugs Can Improve the Protocol. Front Oncol 2021; 11:617937. [PMID: 33777761 PMCID: PMC7991804 DOI: 10.3389/fonc.2021.617937] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022] Open
Abstract
Glucocorticoids (GCs) are a central component of multi-drug treatment protocols against T and B acute lymphoblastic leukemia (ALL), which are used intensively during the remission induction to rapidly eliminate the leukemic blasts. The primary response to GCs predicts the overall response to treatment and clinical outcome. In this review, we have critically analyzed the available data on the effects of GCs on sensitive and resistant leukemic cells, in order to reveal the mechanisms of GC resistance and how these mechanisms may determine a poor outcome in ALL. Apart of the GC resistance, associated with a decreased expression of receptors to GCs, there are several additional mechanisms, triggered by alterations of different signaling pathways, which cause the metabolic reprogramming, with an enhanced level of glycolysis and oxidative phosphorylation, apoptosis resistance, and multidrug resistance. Due to all this, the GC-resistant ALL show a poor sensitivity to conventional chemotherapeutic protocols. We propose pharmacological strategies that can trigger alternative intracellular pathways to revert or overcome GC resistance. Specifically, we focused our search on drugs, which are already approved for treatment of other diseases and demonstrated anti-ALL effects in experimental pre-clinical models. Among them are some “truly” re-purposed drugs, which have different targets in ALL as compared to other diseases: cannabidiol, which targets mitochondria and causes the mitochondrial permeability transition-driven necrosis, tamoxifen, which induces autophagy and cell death, and reverts GC resistance through the mechanisms independent of nuclear estrogen receptors (“off-target effects”), antibiotic tigecycline, which inhibits mitochondrial respiration, causing energy crisis and cell death, and some anthelmintic drugs. Additionally, we have listed compounds that show a classical mechanism of action in ALL but are not used still in treatment protocols: the BH3 mimetic venetoclax, which inhibits the anti-apoptotic protein Bcl-2, the hypomethylating agent 5-azacytidine, which restores the expression of the pro-apoptotic BIM, and compounds targeting the PI3K-Akt-mTOR axis. Accordingly, these drugs may be considered for the inclusion into chemotherapeutic protocols for GC-resistant ALL treatments.
Collapse
Affiliation(s)
- Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Liliana Torres-López
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Colima, Mexico
| |
Collapse
|
50
|
Mroczek A, Zawitkowska J, Kowalczyk J, Lejman M. Comprehensive Overview of Gene Rearrangements in Childhood T-Cell Acute Lymphoblastic Leukaemia. Int J Mol Sci 2021; 22:E808. [PMID: 33467425 PMCID: PMC7829804 DOI: 10.3390/ijms22020808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
Acute lymphoblastic leukaemia (ALL) is a relevant form of childhood neoplasm, as it accounts for over 80% of all leukaemia cases. T-cell ALL constitutes a genetically heterogeneous cancer derived from T-lymphoid progenitors. The diagnosis of T-ALL is based on morphologic, immunophenotypic, cytogenetic, and molecular features, thus the results are used for patient stratification. Due to the expression of surface and intracellular antigens, several subtypes of T-ALL can be distinguished. Although the aetiology of T-ALL remains unclear, a wide spectrum of rearrangements and mutations affecting crucial signalling pathways has been described so far. Due to intensive chemotherapy regimens and supportive care, overall cure rates of more than 80% in paediatric T-ALL patients have been accomplished. However, improved knowledge of the mechanisms of relapse, drug resistance, and determination of risk factors are crucial for patients in the high-risk group. Even though some residual disease studies have allowed the optimization of therapy, the identification of novel diagnostic and prognostic markers is required to individualize therapy. The following review summarizes our current knowledge about genetic abnormalities in paediatric patients with T-ALL. As molecular biology techniques provide insights into the biology of cancer, our study focuses on new potential therapeutic targets and predictive factors which may improve the outcome of young patients with T-ALL.
Collapse
Affiliation(s)
- Anna Mroczek
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Joanna Zawitkowska
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Jerzy Kowalczyk
- Department of Paediatric Haematology, Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland; (A.M.); (J.Z.); (J.K.)
| | - Monika Lejman
- Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|