1
|
Du L, Oksenych V, Wan H, Ye X, Dong J, Ye AY, Abolhassani H, Vlachiotis S, Zhang X, de la Rosa K, Hammarström L, van der Burg M, Alt FW, Pan-Hammarström Q. Orientation Regulation of Class-switch Recombination in Human B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1093-1104. [PMID: 39248600 PMCID: PMC11457721 DOI: 10.4049/jimmunol.2300842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
We developed a linear amplification-mediated high-throughput genome-wide translocation sequencing method to profile Ig class-switch recombination (CSR) in human B cells in an unbiased and quantitative manner. This enables us to characterize CSR junctions resulting from either deletional recombination or inversion for each Ig class/subclass. Our data showed that more than 90% of CSR junctions detected in peripheral blood in healthy control subjects were due to deletional recombination. We further identified two major CSR junction signatures/patterns in human B cells. Signature 1 consists of recombination junctions resulting from both IgG and IgA switching, with a dominance of Sµ-Sγ junctions (72%) and deletional recombination (87%). Signature 2 is contributed mainly by Sµ-Sα junctions (96%), and these junctions were almost all due to deletional recombination (99%) and were characterized by longer microhomologies. CSR junctions identified in healthy individuals can be assigned to both signatures but with a dominance of signature 1, whereas almost all CSR junctions found in patients with defects in DNA-PKcs or Artemis, two classical nonhomologous end joining (c-NHEJ) factors, align with signature 2. Thus, signature 1 may represent c-NHEJ activity during CSR, whereas signature 2 is associated with microhomology-mediated alternative end joining in the absence of the studied c-NHEJ factors. Our findings suggest that in human B cells, the efficiency of the c-NHEJ machinery and the features of switch regions are crucial for the regulation of CSR orientation. Finally, our high-throughput method can also be applied to study the mechanism of rare types of recombination, such as switching to IgD and locus suicide switching.
Collapse
Affiliation(s)
- Likun Du
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Valentyn Oksenych
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hui Wan
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xiaofei Ye
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Adam Yongxin Ye
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stelios Vlachiotis
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Xuefei Zhang
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Kathrin de la Rosa
- Department of Cancer and Immunology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lennart Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Mirjam van der Burg
- Department of Pediatrics, Laboratory for Pediatric Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Frederick W. Alt
- Department of Genetics, Harvard Medical School, Boston, MA
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA
- Howard Hughes Medical Institute, Boston, MA
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Sepahi A, Ho HE, Vyas P, Umiker B, Kis-Toth K, Wiederschain D, Radigan L, Cunningham-Rundles C. ICOS agonist vopratelimab modulates follicular helper T cells and improves B cell function in common variable immunodeficiency. Clin Immunol 2024; 264:110217. [PMID: 38621471 DOI: 10.1016/j.clim.2024.110217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/15/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Common variable immunodeficiency (CVID) is an immune defect characterized by hypogammaglobulinemia and impaired development of B cells into plasma cells. As follicular helper T cells (TFH) play a central role in humoral immunity, we examined TFH cells in CVID, and investigated whether an inducible T cell co-stimulator (ICOS) agonist, vopratelimab, could modulate TFH, B cell interactions and enhance immunoglobulin production. CVID subjects had decreased TFH17 and increased TFH1 subsets; this was associated with increased transitional B cells and decreased IgG+ B and IgD-IgM-CD27+ memory B cells. ICOS expression on CVID CD4+ T cells was also decreased. However, ICOS activation of CD4+ T cells by vopratelimab significantly increased total CVID TFH, TFH2, cell numbers, as well as IL-4, IL-10 and IL-21 secretion in vitro. Vopratelimab treatment also increased plasma cells, IgG+ B cells, reduced naïve & transitional B cells and significantly increased IgG1 secretion by CVID B cells. Interestingly, vopratelimab treatment also restored IgA secretion in PBMCs from several CVID patients who had a complete lack of endogenous serum IgA. Our data demonstrate the potential of TFH modulation in restoring TFH and enhancing B cell maturation in CVID. The effects of an ICOS agonist in antibody defects warrants further investigation. This biologic may also be of therapeutic interest in other clinical settings of antibody deficiency.
Collapse
Affiliation(s)
- Ali Sepahi
- PharmaEssentia Innovation Research Center, Bedford, MA, United States; Concentra Biosciences, LLC, Cambridge, MA, United States
| | - Hsi-En Ho
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Prapti Vyas
- ReNAgade Therapeutics, Cambridge, MA, United States; Concentra Biosciences, LLC, Cambridge, MA, United States
| | - Benjamin Umiker
- AstraZeneca, Cambridge, MA, United States; Concentra Biosciences, LLC, Cambridge, MA, United States
| | - Katalin Kis-Toth
- NextPoint Therapeutics, Inc., Cambridge, MA, United States; Concentra Biosciences, LLC, Cambridge, MA, United States
| | - Dmitri Wiederschain
- Crossbow Therapeutics, Cambridge, MA, United States; Concentra Biosciences, LLC, Cambridge, MA, United States
| | - Lin Radigan
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Charlotte Cunningham-Rundles
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
3
|
Xie Y, Huang Y, Li ZY, Jiang W, Shi NX, Lu Y, Cao G, Yin Z, Lin XJ. Interleukin-21 receptor signaling promotes metabolic dysfunction-associated steatohepatitis-driven hepatocellular carcinoma by inducing immunosuppressive IgA + B cells. Mol Cancer 2024; 23:95. [PMID: 38720319 PMCID: PMC11077880 DOI: 10.1186/s12943-024-02001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/13/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Dysregulation of immune surveillance is tightly linked to the development of metabolic dysfunction-associated steatohepatitis (MASH)-driven hepatocellular carcinoma (HCC); however, its underlying mechanisms remain unclear. Herein, we aimed to determine the role of interleukin-21 receptor (IL-21R) in MASH-driven HCC. METHODS The clinical significance of IL-21R was assessed in human HCC specimens using immunohistochemistry staining. Furthermore, the expression of IL-21R in mice was assessed in the STAM model. Thereafter, two different MASH-driven HCC mouse models were applied between IL-21R-deficient mice and wild type controls to explore the role of IL-21R in MASH-driven HCC. To further elucidate the potential mechanisms by which IL-21R affected MASH-driven HCC, whole transcriptome sequencing, flow cytometry and adoptive lymphocyte transfer were performed. Finally, flow cytometry, enzyme-linked immunosorbent assay, immunofluorescent staining, chromatin immunoprecipitation assay and western blotting were conducted to explore the mechanism by which IL-21R induced IgA+ B cells. RESULTS HCC patients with high IL-21R expression exhibited poor relapse-free survival, advanced TNM stage and severe steatosis. Additionally, IL-21R was demonstrated to be upregulated in mouse liver tumors. Particularly, ablation of IL-21R impeded MASH-driven hepatocarcinogenesis with dramatically reduction of lipid accumulation. Moreover, cytotoxic CD8+ T lymphocyte activation was enhanced in the absence of IL-21R due to the reduction of immunosuppressive IgA+ B cells. Mechanistically, the IL-21R-STAT1-c-Jun/c-Fos regulatory axis was activated in MASH-driven HCC and thus promoted the transcription of Igha, resulting in the induction of IgA+ B cells. CONCLUSIONS IL-21R plays a cancer-promoting role by inducing IgA+ B cells in MASH-driven hepatocarcinogenesis. Targeting IL-21R signaling represents a potential therapeutic strategy for cancer therapy.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- B-Lymphocytes/metabolism
- B-Lymphocytes/immunology
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/etiology
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/genetics
- Cell Line, Tumor
- Disease Models, Animal
- Fatty Liver/metabolism
- Fatty Liver/pathology
- Fatty Liver/etiology
- Gene Expression Regulation, Neoplastic
- Immunoglobulin A/metabolism
- Interleukin-21 Receptor alpha Subunit/metabolism
- Interleukin-21 Receptor alpha Subunit/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/etiology
- Liver Neoplasms/immunology
- Liver Neoplasms/genetics
- Receptors, Interleukin-21/metabolism
- Receptors, Interleukin-21/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Ying Xie
- The Biomedical Translational Research Institute, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, China
| | - Yu Huang
- The Biomedical Translational Research Institute, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, China
| | - Zhi-Yong Li
- The Biomedical Translational Research Institute, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, China
| | - Weihua Jiang
- The Biomedical Translational Research Institute, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, China
| | - Nan-Xi Shi
- The Biomedical Translational Research Institute, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, China
| | - Yuanzhi Lu
- Department of Pathology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, 510632, China
| | - Guangchao Cao
- The Biomedical Translational Research Institute, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, China
| | - Zhinan Yin
- The Biomedical Translational Research Institute, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, China.
| | - Xue-Jia Lin
- The Biomedical Translational Research Institute, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital Affiliated With Jinan University, Jinan University, Zhuhai, 519000, China.
| |
Collapse
|
4
|
Bagheri Y, Moeini Shad T, Namazi S, Tofighi Zavareh F, Azizi G, Salami F, Sadani S, Hosseini A, Saeidi M, Pashangzadeh S, Delavari S, Mirminachi B, Rezaei N, Abolhassani H, Aghamohammadi A, Yazdani R. B cells and T cells abnormalities in patients with selective IgA deficiency. Allergy Asthma Clin Immunol 2023; 19:23. [PMID: 36941677 PMCID: PMC10029301 DOI: 10.1186/s13223-023-00775-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 02/20/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Selective IgA deficiency (SIgAD) is the most prevalent inborn errors of immunity with almost unknown etiology. This study aimed to investigate the clinical diagnostic and prognostic values of lymphocyte subsets and function in symptomatic SIgAD patients. METHODS A total of 30 available SIgAD patients from the Iranian registry and 30 age-sex-matched healthy controls were included in the present study. We analyzed B and T cell peripheral subsets and T cell proliferation assay by flow cytometry in SIgAD patients with mild and severe clinical phenotypes. RESULTS Our results indicated a significant increase in naïve and transitional B cells and a strong decrease in marginal zone-like and switched memory B-cells in SIgAD patients. We found that naïve and central memory CD4+ T cell subsets, as well as Th1, Th2 and regulatory T cells, have significantly decreased. On the other hand, there was a significant reduction in central and effector memory CD8+ T cell subsets, whereas proportions of both (CD4+ and CD8+) terminally differentiated effector memory T cells (TEMRA) were significantly elevated in our patients. Although some T cell subsets in severe SIgAD were similar, a decrease in marginal-zone and switched memory B cells and an increase in CD21low B cell of severe SIgAD patients were slightly prominent. Moreover, the proliferation activity of CD4+ T cells was strongly impaired in SIgAD patients with a severe phenotype. CONCLUSION SIgAD patients have varied cellular and humoral deficiencies. Therefore, T cell and B cell assessment might help in better understanding the heterogeneous pathogenesis and prognosis estimation of the disease.
Collapse
Affiliation(s)
- Yasser Bagheri
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Tannaz Moeini Shad
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shideh Namazi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Tofighi Zavareh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Fereshteh Salami
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Somayeh Sadani
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Hosseini
- Clinical Research Development Unit (CRDU), Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Saeidi
- Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Salar Pashangzadeh
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Babak Mirminachi
- Division of Gastroenterology, Department of Medicine, Duke University, Durham, NC, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Science, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center Hospital, Tehran University of Medical Sciences, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden.
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Kermode W, De Santis D, Truong L, Della Mina E, Salman S, Thompson G, Nolan D, Loh R, Mallon D, Mclean-Tooke A, John M, Tangye SG, O'Sullivan M, D'Orsogna LJ. A Novel Targeted Amplicon Next-Generation Sequencing Gene Panel for the Diagnosis of Common Variable Immunodeficiency Has a High Diagnostic Yield: Results from the Perth CVID Cohort Study. J Mol Diagn 2022; 24:586-599. [PMID: 35570134 DOI: 10.1016/j.jmoldx.2022.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 12/23/2021] [Accepted: 02/09/2022] [Indexed: 11/18/2022] Open
Abstract
With the advent of next-generation sequencing (NGS), monogenic forms of common variable immunodeficiency (CVID) have been increasingly described. Our study aimed to identify disease-causing variants in a Western Australian CVID cohort using a novel targeted NGS panel. Targeted amplicon NGS was performed on 22 unrelated subjects who met the formal European Society for Immunodeficiencies-Pan-American Group for Immunodeficiency diagnostic criteria for CVID and had at least one of the following additional criteria: disease onset at age <18 years, autoimmunity, low memory B lymphocytes, family history, and/or history of lymphoproliferation. Candidate variants were assessed by in silico predictions of deleteriousness, comparison to the literature, and classified according to the American College of Medical Genetics and Genomics-Association for Molecular Pathology criteria. All detected genetic variants were verified independently by an external laboratory, and additional functional studies were performed if required. Pathogenic or likely pathogenic variants were detected in 6 of 22 (27%) patients. Monoallelic variants of uncertain significance were also identified in a further 4 of 22 patients (18%). Pathogenic variants, likely pathogenic variants, or variants of uncertain significance were found in TNFRSF13B, TNFRSF13C, ICOS, AICDA, IL21R, NFKB2, and CD40LG, including novel variants and variants with unexpected inheritance pattern. Targeted amplicon NGS is an effective tool to identify monogenic disease-causing variants in CVID, and is comparable or superior to other NGS methods. Moreover, targeted amplicon NGS identified patients who may benefit from targeted therapeutic strategies and had important implications for family members.
Collapse
Affiliation(s)
- William Kermode
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Dianne De Santis
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Linh Truong
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Erika Della Mina
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Sam Salman
- Department of Clinical Immunology and PathWest, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia
| | - Grace Thompson
- Department of Clinical Immunology and PathWest, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia
| | - David Nolan
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Richard Loh
- Department of Immunology, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Dominic Mallon
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia
| | - Andrew Mclean-Tooke
- Department of Clinical Immunology and PathWest, Queen Elizabeth II Medical Centre, Perth, Western Australia, Australia
| | - Mina John
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia; Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Stuart G Tangye
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales Sydney, Kensington, New South Wales, Australia
| | - Michael O'Sullivan
- Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia; Department of Immunology, Perth Children's Hospital, Perth, Western Australia, Australia
| | - Lloyd J D'Orsogna
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia; Department of Clinical Immunology and PathWest, Fiona Stanley Hospital, Perth, Western Australia, Australia.
| |
Collapse
|
6
|
Gupta S, Demirdag Y, Gupta AA. Members of the Regulatory Lymphocyte Club in Common Variable Immunodeficiency. Front Immunol 2022; 13:864307. [PMID: 35669770 PMCID: PMC9164302 DOI: 10.3389/fimmu.2022.864307] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022] Open
Abstract
The role of CD4 T regulatory cells is well established in peripheral tolerance and the pathogenesis of the murine model and human autoimmune diseases. CD4 T regulatory cells (CD4 Tregs) have been investigated in common variable immunodeficiency (CVID). Recently, additional members have been added to the club of regulatory lymphocytes. These include CD8 T regulatory (CD8 Tregs), B regulatory (Bregs), and T follicular helper regulatory (TFR) cells. There are accumulating data to suggest their roles in both human and experimental models of autoimmune disease. Their phenotypic characterization and mechanisms of immunoregulation are evolving. Patients with CVID may present or are associated with an increased frequency of autoimmunity and autoimmune diseases. In this review, we have primarily focused on the characteristics of CD4 Tregs and new players of the regulatory club and their changes in patients with CVID in relation to autoimmunity and emphasized the complexity of interplay among various regulatory lymphocytes. We suggest future careful investigations of phenotypic and functional regulatory lymphocytes in a large cohort of phenotypic and genotypically defined CVID patients to define their role in the pathogenesis of CVID and autoimmunity associated with CVID.
Collapse
|
7
|
Cinicola BL, Pulvirenti F, Capponi M, Bonetti M, Brindisi G, Gori A, De Castro G, Anania C, Duse M, Zicari AM. Selective IgA Deficiency and Allergy: A Fresh Look to an Old Story. Medicina (B Aires) 2022; 58:medicina58010129. [PMID: 35056437 PMCID: PMC8781177 DOI: 10.3390/medicina58010129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 01/23/2023] Open
Abstract
Selective IgA deficiency (SIgAD) is the most common human primary immune deficiency (PID). It is classified as a humoral PID characterized by isolated deficiency of IgA (less than 7 mg/dL but normal serum IgG and IgM) in subjects greater than 4 years of age. Intrinsic defects in the maturation of B cells and a perturbation of Th cells and/or cytokine signals have been hypothesized to contribute to SIgAD pathogenesis. The genetic basis of IgA deficiency remains to be clarified. Patients with SIgAD can be either asymptomatic or symptomatic with clinical manifestations including allergy, autoimmunity and recurrent infections mainly of the respiratory and gastrointestinal tract. Studies analyzing allergy on SIgAD patients showed prevalence up to 84%, supporting in most cases the relationship between sIgAD and allergic disease. However, the prevalence of allergic disorders may be influenced by various factors. Thus, the question of whether allergy is more common in SIgAD patients compared to healthy subjects remains to be defined. Different hypotheses support an increased susceptibility to allergy in subjects with SIgAD. Recurrent infections due to loss of secretory IgA might have a role in the pathogenesis of allergy, and vice versa. Perturbation of microbiota also plays a role. The aim of this review is to examine the association between SIgAD and atopic disease and to update readers on advances over time at this important interface between allergy and SIgAD.
Collapse
Affiliation(s)
- Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| | - Federica Pulvirenti
- Primary Immune Deficiencies Unit, Department of Internal Medicine and Infectious Diseases, Azienda Ospedaliera Universitaria Policlinico Umberto I, 00185 Rome, Italy;
| | - Martina Capponi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
| | - Marta Bonetti
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
| | - Giulia Brindisi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandra Gori
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
| | - Giovanna De Castro
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
| | - Caterina Anania
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
| | - Marzia Duse
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
| | - Anna Maria Zicari
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.C.); (M.B.); (G.B.); (A.G.); (G.D.C.); (C.A.); (M.D.); (A.M.Z.)
| |
Collapse
|
8
|
Morawska I, Kurkowska S, Bębnowska D, Hrynkiewicz R, Becht R, Michalski A, Piwowarska-Bilska H, Birkenfeld B, Załuska-Ogryzek K, Grywalska E, Roliński J, Niedźwiedzka-Rystwej P. The Epidemiology and Clinical Presentations of Atopic Diseases in Selective IgA Deficiency. J Clin Med 2021; 10:3809. [PMID: 34501259 PMCID: PMC8432128 DOI: 10.3390/jcm10173809] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Selective IgA deficiency (sIgAD) is the most common primary immunodeficiency disease (PID), with an estimated occurrence from about 1:3000 to even 1:150, depending on population. sIgAD is diagnosed in adults and children after the 4th year of age, with immunoglobulin A level below 0.07 g/L and normal levels of IgM and IgG. Usually, the disease remains undiagnosed throughout the patient's life, due to its frequent asymptomatic course. If symptomatic, sIgAD is connected to more frequent viral and bacterial infections of upper respiratory, urinary, and gastrointestinal tracts, as well as autoimmune and allergic diseases. Interestingly, it may also be associated with other PIDs, such as IgG subclasses deficiency or specific antibodies deficiency. Rarely sIgAD can evolve to common variable immunodeficiency disease (CVID). It should also be remembered that IgA deficiency may occur in the course of other conditions or result from their treatment. It is hypothesized that allergic diseases (e.g., eczema, rhinitis, asthma) are more common in patients diagnosed with this particular PID. Selective IgA deficiency, although usually mildly symptomatic, can be difficult for clinicians. The aim of the study is to summarize the connection between selective IgA deficiency and atopic diseases.
Collapse
Affiliation(s)
- Izabela Morawska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | - Sara Kurkowska
- Department of Nuclear Medicine, Pomeranian Medical University, Unii Lubelskiej 1 St., 71-252 Szczecin, Poland; (S.K.); (H.P.-B.); (B.B.)
| | - Dominika Bębnowska
- Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland; (D.B.); (R.H.)
| | - Rafał Hrynkiewicz
- Institute of Biology, University of Szczecin, Felczaka 3c St., 71-412 Szczecin, Poland; (D.B.); (R.H.)
| | - Rafał Becht
- Clinical Department of Oncology, Chemotherapy and Cancer Immunotherapy, Pomeranian Medical University of Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Adam Michalski
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | - Hanna Piwowarska-Bilska
- Department of Nuclear Medicine, Pomeranian Medical University, Unii Lubelskiej 1 St., 71-252 Szczecin, Poland; (S.K.); (H.P.-B.); (B.B.)
| | - Bożena Birkenfeld
- Department of Nuclear Medicine, Pomeranian Medical University, Unii Lubelskiej 1 St., 71-252 Szczecin, Poland; (S.K.); (H.P.-B.); (B.B.)
| | - Katarzyna Załuska-Ogryzek
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b St., 20-090 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Chodźki 4a St., 20-093 Lublin, Poland; (I.M.); (A.M.); (E.G.); (J.R.)
| | | |
Collapse
|
9
|
Luca L, Beuvon C, Puyade M, Roblot P, Martin M. [Selective IgA deficiency]. Rev Med Interne 2021; 42:764-771. [PMID: 34364731 DOI: 10.1016/j.revmed.2021.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 06/14/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
Selective IgA deficiency (SIgAD) is defined by the European Society for Immunodeficiencies (ESID) as a serum IgA of less than 0.07g/L in patients greater than 4 years old with normal levels of IgG and IgM, normal vaccine responses, and with the exclusion of secondary causes of hypogammaglobulinemia. When serum IgA level is higher than 0.07g/L but two standard deviations below normal for age, the condition may be referred to as partial IgA deficiency, which is quite common. SIgAD is the most common primary immunodeficiency in Europe (1/600 in France) and most patients with SIgAD are asymptomatic (75-90%). The clinical complications associated with SIgAD include recurrent respiratory infections (in particular involving Haemophilus influenza and Streptococcus pneumoniae) and gastrointestinal (mainly due to Giardialamblia), autoimmune and allergic manifestations (anaphylaxis if blood products with IgA are administrated), inflammatory gastrointestinal disease. There is no specific treatment for SIgAD and each patient must be managed individually. While asymptomatic subjects do not need any treatment, it is still necessary for them to be up-to-date with vaccinations. If the patient experiences recurrent infections, prophylactic antibiotics may be beneficial. Immunoglobulin replacement therapy should be considered in patients with SIgAD and concomitant IgG subclass deficiency. Treatment for autoimmune and allergic manifestations is based on current standards of care for specific disease entities. To improve quality of life and reduce morbidity, an interdisciplinary team approach is essential.
Collapse
Affiliation(s)
- L Luca
- Service de médecine interne, maladies infectieuses et tropicales, centre hospitalier universitaire de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France.
| | - C Beuvon
- Service de médecine interne, maladies infectieuses et tropicales, centre hospitalier universitaire de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Université de Poitiers, 6, rue de la Milétrie, TSA 51115, 86073 Poitiers cedex 9, France
| | - M Puyade
- Service de médecine interne, maladies infectieuses et tropicales, centre hospitalier universitaire de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - P Roblot
- Service de médecine interne, maladies infectieuses et tropicales, centre hospitalier universitaire de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Université de Poitiers, 6, rue de la Milétrie, TSA 51115, 86073 Poitiers cedex 9, France
| | - M Martin
- Service de médecine interne, maladies infectieuses et tropicales, centre hospitalier universitaire de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Université de Poitiers, 6, rue de la Milétrie, TSA 51115, 86073 Poitiers cedex 9, France
| |
Collapse
|
10
|
Risk factors of partial IgA deficiency among low serum IgA patients: a retrospective observational study. Cent Eur J Immunol 2021; 45:189-194. [PMID: 33456330 PMCID: PMC7792431 DOI: 10.5114/ceji.2020.97908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 09/21/2018] [Indexed: 11/29/2022] Open
Abstract
Introduction Partial IgA deficiency (pIgAD), including selective IgA deficiency, is one of the most common types of immunodeficiency. Early detection is crucial to prevent complications, such as recurrent infections and anaphylactic reactions to blood derivatives. Material and methods Useful screening methods have not yet been established. We conducted a single-center retrospective observational study, with low serum IgA patients to clarify the risk factors of pIgAD among patients with low serum levels of IgA. All patients with low serum IgA levels treated in our outpatient clinic from April 2010 to March 2016 were retrospectively reviewed using electronic medical records. We performed c2 tests and Student’s t-tests for the univariate analysis, logistic regression analysis using the multiple imputation method for the multivariate analysis, and receiver operating characteristic (ROC) curve analysis. Results The univariate analysis showed statistically significant differences between the pIgAD group and the non-pIgAD group in age, gender, blood cell counts, serum protein levels, and renal function tests. The multivariate analysis revealed that female gender, a white blood cell counts lower than 10,000/µl, and a hemoglobin level of 10.0-15.0 g/dl are predictive factors of pIgAD. Conclusions After estimating any missing data using the multiple imputation method, age younger than 60 years old was also statistically significant. ROC curve analysis confirmed the validity of the model used in our multivariate analysis. When clinicians encounter low serum IgA patients who are female, of younger age, and have normal blood cell counts, and hemoglobin levels, they should suspect the existence of pIgAD.
Collapse
|
11
|
Del Pino Molina L, Torres Canizales JM, Pernía O, Rodríguez Pena R, Ibanez de Caceres I, López Granados E. Defective Bcl-2 expression in memory B cells from common variable immunodeficiency patients. Clin Exp Immunol 2020; 203:341-350. [PMID: 32961586 DOI: 10.1111/cei.13522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/12/2020] [Accepted: 09/09/2020] [Indexed: 12/27/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by hypogammaglobulinemia and different degrees of B cell compartment alteration. Memory B cell differentiation requires the orchestrated activation of several intracellular signaling pathways that lead to the activation of a number of factors, such as nuclear factor kappa B (NF-κB) which, in turn, promote transcriptional programs required for long-term survival. The aim of this study was to determine if disrupted B cell differentiation, survival and activation in B cells in CVID patients could be related to defects in intracellular signaling pathways. For this purpose, we selected intracellular readouts that reflected the strength of homeostatic signaling pathways in resting cells, as the protein expression levels of the Bcl-2 family which transcription is promoted by NF-κB. We found reduced Bcl-2 protein levels in memory B cells from CVID patients. We further explored the possible alteration of this crucial prosurvival signaling pathway in CVID patients by analysing the expression levels of mRNAs from anti-apoptotic proteins in naive B cells, mimicking T cell-dependent activation in vitro with CD40L and interleukin (IL)-21. BCL-XL mRNA levels were decreased, together with reduced levels of AICDA, after naive B-cell activation in CVID patients. The data suggested a molecular mechanism for this tendency towards apoptosis in B cells from CVID patients. Lower Bcl-2 protein levels in memory B cells could compromise their long-term survival, and a possible less activity of NF-κB in naive B cells, may condition an inabilityto increase BCL-XL mRNA levels, thus not promoting survival in the germinal centers.
Collapse
Affiliation(s)
- L Del Pino Molina
- Clinical Immunology Department, La Paz University Hospital, Lymphocyte Pathophysiology in Immunodeficiencies Group La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
| | - J M Torres Canizales
- Clinical Immunology Department, La Paz University Hospital, Lymphocyte Pathophysiology in Immunodeficiencies Group La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
| | - O Pernía
- Cancer Epigenetics Laboratory, INGEMM, Biomarkers and Experimental Therapeutics in Cancer Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - R Rodríguez Pena
- Clinical Immunology Department, La Paz University Hospital, Lymphocyte Pathophysiology in Immunodeficiencies Group La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
| | - I Ibanez de Caceres
- Cancer Epigenetics Laboratory, INGEMM, Biomarkers and Experimental Therapeutics in Cancer Group, La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - E López Granados
- Clinical Immunology Department, La Paz University Hospital, Lymphocyte Pathophysiology in Immunodeficiencies Group La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767), Madrid, Spain
| |
Collapse
|
12
|
Odineal DD, Gershwin ME. The Epidemiology and Clinical Manifestations of Autoimmunity in Selective IgA Deficiency. Clin Rev Allergy Immunol 2020; 58:107-133. [PMID: 31267472 DOI: 10.1007/s12016-019-08756-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selective immunoglobulin A deficiency (SIgAD) is the most common primary immunodeficiency, defined as an isolated deficiency of IgA (less than 0.07 g/L). Although the majority of people born with IgA deficiency lead normal lives without significant pathology, there is nonetheless a significant association of IgA deficiency with mucosal infection, increased risks of atopic disease, and a higher prevalence of autoimmune disease. To explain these phenomena, we have performed an extensive literature review to define the geoepidemiology of IgA deficiency and particularly the relative risks for developing systemic lupus erythematosus, hyperthyroidism, hypothyroidism, type 1 diabetes mellitus, Crohn's disease, ulcerative colitis, rheumatoid arthritis, juvenile idiopathic arthritis, ankylosing spondylitis, and vitiligo; these diseases have strong data to support an association. We also note weaker associations with scleroderma, celiac disease, autoimmune hepatitis, immune thrombocytopenic purpura, and autoimmune hemolytic anemia. Minimal if any associations are noted with myasthenia gravis, lichen planus, and multiple sclerosis. Finally, more recent data provide clues on the possible immunologic mechanisms that lead to the association of IgA deficiency and autoimmunity; these lessons are important for understanding the etiology of autoimmune disease.
Collapse
Affiliation(s)
- David D Odineal
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA.
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| |
Collapse
|
13
|
del Pino‐Molina L, Torres Canizales JM, Rodríguez‐Pena R, López‐Granados E. Evaluation of B‐cell intracellular signaling by monitoring the
PI3K‐Akt
axis in patients with common variable immunodeficiency and activated phosphoinositide 3‐kinase delta syndrome. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 100:460-466. [DOI: 10.1002/cyto.b.21956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/13/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Lucía del Pino‐Molina
- Clinical Immunology Department La Paz University Hospital and Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767) Madrid Spain
| | - Juan M. Torres Canizales
- Clinical Immunology Department La Paz University Hospital and Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767) Madrid Spain
| | - Rebeca Rodríguez‐Pena
- Clinical Immunology Department La Paz University Hospital and Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767) Madrid Spain
| | - Eduardo López‐Granados
- Clinical Immunology Department La Paz University Hospital and Lymphocyte Pathophysiology in Immunodeficiencies Group, La Paz Institute for Health Research (IdiPAZ) and Center for Biomedical Network Research on Rare Diseases (CIBERER U767) Madrid Spain
| |
Collapse
|
14
|
Yesillik S, Gupta S. Phenotypically defined subpopulations of circulating follicular helper T cells in common variable immunodeficiency. Immun Inflamm Dis 2020; 8:441-446. [PMID: 32618135 PMCID: PMC7416056 DOI: 10.1002/iid3.326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Common variable immunodeficiency (CVID) is characterized by low immunoglobulin G and IgA/IgM, decreased switched memory B cells, impaired response to vaccine, and an increased susceptibility to infections and autoimmunity. TFH cells play an important role in germinal center reaction where it supports isotype switching, somatic hypermutation, generation of memory B cells, and differentiation of B cells to plasma cells. The objective was to study the distribution of three subsets of TFH cells and their relationship with autoimmune diseases associated with CVID. METHODS TFH cells have been divided into TFH 1 (interleukin 21 [IL-21] and interferon γ), TFH 2 (IL-21 and IL-4), and TFH 17 (IL-21 and IL-17) cells. Mononuclear cells from 25 patients with CVID and age and gender-matched controls were stained with various monoclonal antibodies (anti-CD4 APC, anti-CXCR5 FITC, anti-CCR6 PerCP, and anti-CXCR3 PE) and isotype controls and analyzed for TFH 1 (CD4+ CXCR5+ CXCR3+ CCR6- ), TFH 2 (CD4+ CXCR5+ CXCR3- CCR6- ), and TFH 17 (CD4+ CXCR5+ CXCR3- CCR6+ ) cells by multicolor flow cytometry. Twenty thousand cells were acquired and analyzed by FlowJo software. Statistical analysis of comparison of patients and healthy controls was performed by paired t test using PRISM 7 software. RESULTS TFH 2 and TFH 17 cells subpopulations of TFH cells were significantly decreased (P < .003 and P < .006, respectively) in CVID as compared with controls. No significant difference was observed in any of TFH cell subpopulations between CVID with and those without autoimmunity group. CONCLUSION Alterations in TFH cell subpopulation may play a role in defects in B cell compartment in CVID.
Collapse
Affiliation(s)
- Sait Yesillik
- Division of Basic and Clinical ImmunologyUniversity of CaliforniaIrvineCalifornia
| | - Sudhir Gupta
- Division of Basic and Clinical ImmunologyUniversity of CaliforniaIrvineCalifornia
| |
Collapse
|
15
|
Primary Humoral Immune Deficiencies: Overlooked Mimickers of Chronic Immune-Mediated Gastrointestinal Diseases in Adults. Int J Mol Sci 2020; 21:ijms21155223. [PMID: 32718006 PMCID: PMC7432083 DOI: 10.3390/ijms21155223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years, the incidence of immune-mediated gastrointestinal disorders, including celiac disease (CeD) and inflammatory bowel disease (IBD), is increasingly growing worldwide. This generates a need to elucidate the conditions that may compromise the diagnosis and treatment of such gastrointestinal disorders. It is well established that primary immunodeficiencies (PIDs) exhibit gastrointestinal manifestations and mimic other diseases, including CeD and IBD. PIDs are often considered pediatric ailments, whereas between 25 and 45% of PIDs are diagnosed in adults. The most common PIDs in adults are the selective immunoglobulin A deficiency (SIgAD) and the common variable immunodeficiency (CVID). A trend to autoimmunity occurs, while gastrointestinal disorders are common in both diseases. Besides, the occurrence of CeD and IBD in SIgAD/CVID patients is significantly higher than in the general population. However, some differences concerning diagnostics and management between enteropathy/colitis in PIDs, as compared to idiopathic forms of CeD/IBD, have been described. There is an ongoing discussion whether CeD and IBD in CVID patients should be considered a true CeD and IBD or just CeD-like and IBD-like diseases. This review addresses the current state of the art of the most common primary immunodeficiencies in adults and co-occurring CeD and IBD.
Collapse
|
16
|
Liu G, Wang B, Chen Q, Li Y, Li B, Yang N, Yang S, Geng S, Liu G. Interleukin (IL)-21 Promotes the Differentiation of IgA-Producing Plasma Cells in Porcine Peyer's Patches via the JAK-STAT Signaling Pathway. Front Immunol 2020; 11:1303. [PMID: 32655571 PMCID: PMC7324671 DOI: 10.3389/fimmu.2020.01303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/22/2020] [Indexed: 12/28/2022] Open
Abstract
Secretory IgA is critical to prevent the invasion of pathogens via mucosa. However, the key factors and the mechanisms of IgA generation in the porcine gut are not well-understood. In this study, a panel of factors, including BAFF, APRIL, CD40L, TGF-β1, IL-6, IL-10, IL-17A, and IL-21, were employed to stimulate IgM+ B lymphocytes from porcine ileum Peyer's patches. The results showed that IL-21 significantly upregulated IgA production of B cells and facilitated cell proliferation and differentiation of antibody-secreting cells. In addition, three transcripts in porcine IgA class switch recombination (CSR), germ-line transcript α, post-switch transcript α, and circle transcript α, were first amplified by (nest-)PCR and sequenced. All these key indicators of IgA CSR were upregulated by IL-21 treatment. Furthermore, we found that IL-21 predominantly activated JAK1, STAT1, and STAT3 proteins and confirmed that the JAK-STAT signaling pathway was involved in porcine IgA CSR. Thus, IL-21 plays an important role in the proliferation and differentiation of IgA-secreting cells in porcine Peyer's patches through the JAK-STAT signaling pathway. These findings provide insights into the mucosal vaccine design by regulation of IL-21 for the prevention and control of enteric pathogens in the pig industry.
Collapse
Affiliation(s)
- Guo Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bin Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qingbo Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yang Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Baoyu Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ning Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shanshan Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Shuxian Geng
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guangliang Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
17
|
Kasahara TDM, Bento CADM, Gupta S. Phenotypic and Functional Analysis of T Follicular Cells in Common Variable Immunodeficiency. Int Arch Allergy Immunol 2020; 181:635-647. [PMID: 32492690 DOI: 10.1159/000507995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION One of the most frequent abnormalities of B cells in common variable immunodeficiency (CVID) is reduced number of class-switched memory B cells, suggesting an impaired germinal center response. Therefore, due to its pivotal role in regulating the development of humoral immunity, the objective of this study was to evaluate the role of circulating T follicular helper (cTFH) and circulating T follicular regulatory (cTFR) cells in the pathogenesis of CVID. METHODS cTFH and cTFR cells from CVID patients and healthy subjects were phenotypically characterized by flow cytometry. cTFH and memory B cells from CVID patients and healthy subjects were isolated and cocultured. RESULTS Our results showed a reduced proportion of cTFH17 cells in patients with CVID and an increased ratio of cTFH/cTFR cells in CVID patients with autoimmune diseases. Furthermore, the proportion of IL-21-producing cTFH cells was directly related to the proportion of CD27+ IgD- B cells. Interestingly, coculture assay showed that CVID-derived cTFH cells are able to help memory B cells from healthy controls to produce immunoglobulins. CONCLUSIONS The proportions of cTFH17 and cTFR cells are altered in CVID patients; however, the cTFH function in assisting B cells to produce antibodies in vitro is preserved.
Collapse
Affiliation(s)
- Taissa de Matos Kasahara
- Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil, .,Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, California, USA,
| | - Cleonice Alves de Melo Bento
- Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Microbiology and Parasitology, Federal University of the State of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sudhir Gupta
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
18
|
Grosserichter-Wagener C, Franco-Gallego A, Ahmadi F, Moncada-Vélez M, Dalm VA, Rojas JL, Orrego JC, Correa Vargas N, Hammarström L, Schreurs MW, Dik WA, van Hagen PM, Boon L, van Dongen JJ, van der Burg M, Pan-Hammarström Q, Franco JL, van Zelm MC. Defective formation of IgA memory B cells, Th1 and Th17 cells in symptomatic patients with selective IgA deficiency. Clin Transl Immunology 2020; 9:e1130. [PMID: 32355559 PMCID: PMC7190975 DOI: 10.1002/cti2.1130] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022] Open
Abstract
Objective Selective IgA deficiency (sIgAD) is the most common primary immunodeficiency in Western countries. Patients can suffer from recurrent infections and autoimmune diseases because of a largely unknown aetiology. To increase insights into the pathophysiology of the disease, we studied memory B and T cells and cytokine concentrations in peripheral blood. Methods We analysed 30 sIgAD patients (12 children, 18 adults) through detailed phenotyping of peripheral B‐cell, CD8+ T‐cell and CD4+ T‐cell subsets, sequence analysis of IGA and IGG transcripts, in vitro B‐cell activation and blood cytokine measurements. Results All patients had significantly decreased numbers of T‐cell‐dependent (TD; CD27+) and T‐cell‐independent (TI; CD27−) IgA memory B cells and increased CD21low B‐cell numbers. IgM+IgD− memory B cells were decreased in children and normal in adult patients. IGA and IGG transcripts contained normal SHM levels. In sIgAD children, IGA transcripts more frequently used IGA2 than controls (58.5% vs. 25.1%), but not in adult patients. B‐cell activation after in vitro stimulation was normal. However, adult sIgAD patients exhibited increased blood levels of TGF‐β1, BAFF and APRIL, whereas they had decreased Th1 and Th17 cell numbers. Conclusion Impaired IgA memory formation in sIgAD patients is not due to a B‐cell activation defect. Instead, decreased Th1 and Th17 cell numbers and high blood levels of BAFF, APRIL and TGF‐β1 might reflect disturbed regulation of IgA responses in vivo. These insights into B‐cell extrinsic immune defects suggest the need for a broader immunological focus on genomics and functional analyses to unravel the pathogenesis of sIgAD.
Collapse
Affiliation(s)
| | | | - Fatemeh Ahmadi
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands
| | - Marcela Moncada-Vélez
- Grupo de Inmunodeficiencias Primarias Universidad de Antioquia UdeA Medellín Colombia
| | - Virgil Ash Dalm
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands.,Department of Internal Medicine Erasmus MC University Medical Center Rotterdam The Netherlands
| | - Jessica Lineth Rojas
- Grupo de Inmunodeficiencias Primarias Universidad de Antioquia UdeA Medellín Colombia
| | - Julio César Orrego
- Grupo de Inmunodeficiencias Primarias Universidad de Antioquia UdeA Medellín Colombia
| | - Natalia Correa Vargas
- Grupo de Inmunodeficiencias Primarias Universidad de Antioquia UdeA Medellín Colombia
| | - Lennart Hammarström
- Clinical Immunology Department of Laboratory Medicine Karolinska Institutet at Karolinska University Hospital Huddinge Sweden
| | - Marco Wj Schreurs
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands
| | - Willem A Dik
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands
| | - P Martin van Hagen
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands.,Department of Internal Medicine Erasmus MC University Medical Center Rotterdam The Netherlands
| | | | - Jacques Jm van Dongen
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands.,Department of Immunohematology and Blood Transfusion Leiden University Medical Center Leiden The Netherlands
| | - Mirjam van der Burg
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands.,Laboratory for Immunology Department of Pediatrics Leiden University Medical Center Leiden The Netherlands
| | - Qiang Pan-Hammarström
- Clinical Immunology Department of Laboratory Medicine Karolinska Institutet at Karolinska University Hospital Huddinge Sweden
| | - José L Franco
- Grupo de Inmunodeficiencias Primarias Universidad de Antioquia UdeA Medellín Colombia
| | - Menno C van Zelm
- Department of Immunology Erasmus MC University Medical Center Rotterdam The Netherlands.,Department of Immunology and Pathology Central Clinical School Monash University and The Alfred Hospital Melbourne VIC Australia.,The Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies in Melbourne Melbourne VIC Australia
| |
Collapse
|
19
|
Le Saos-Patrinos C, Loizon S, Blanco P, Viallard JF, Duluc D. Functions of Tfh Cells in Common Variable Immunodeficiency. Front Immunol 2020; 11:6. [PMID: 32082308 PMCID: PMC7002358 DOI: 10.3389/fimmu.2020.00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/03/2020] [Indexed: 12/28/2022] Open
Abstract
Common variable immunodeficiency is the most common clinical primary immunodeficiency in adults. Its hallmarks are hypogammaglobulinemia and compromised B-cell differentiation into memory or antibody-secreting cells leading to recurrent infections. This disease is heterogeneous, with some patients harboring multiple complications such as lymphoproliferative disorders, autoimmune manifestations, or granulomatous inflammation. The mechanisms leading to these complications remain elusive despite numerous associations found in the literature. For instance, although described as a B cell intrinsic disease, numerous abnormalities have been reported in other immune cell compartments. Here, we tuned our attention to follicular helper T cells, a CD4+ T cell population specialized in B cell help, considering the recent publications showing an involvement of these cells in CVID pathogenesis.
Collapse
Affiliation(s)
| | - Séverine Loizon
- ImmunoConcEpT, CNRS-UMR 5164 and Université de Bordeaux, Bordeaux, France
| | - Patrick Blanco
- ImmunoConcEpT, CNRS-UMR 5164 and Université de Bordeaux, Bordeaux, France.,Centre Hospitalier Universitaire de Bordeaux, Service d'Immunologie et Immunogénétique, Bordeaux, France
| | - Jean-François Viallard
- Centre Hospitalier Universitaire de Bordeaux, Service de Médecine Interne, Hôpital du Haut-Lévêque, Pessac, France
| | - Dorothée Duluc
- ImmunoConcEpT, CNRS-UMR 5164 and Université de Bordeaux, Bordeaux, France
| |
Collapse
|
20
|
Swain S, Selmi C, Gershwin ME, Teuber SS. The clinical implications of selective IgA deficiency. J Transl Autoimmun 2019; 2:100025. [PMID: 32743511 PMCID: PMC7388344 DOI: 10.1016/j.jtauto.2019.100025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 01/06/2023] Open
Abstract
Selective IgA deficiency (SIgAD) is the most common primary immunodeficiency but does not always result in clinical disease. This may in part be due to the definition based on serum IgA, while most IgA is secreted at mucosal surfaces, not amenable to measurement. Clinical complications include increased risk of sinopulmonary infections with bacteria and viruses, gastrointestinal infections with a predilection for Giardia lamblia, a myriad of autoimmune diseases including systemic lupus erythematosus, hyper- and hypo-thyroidism, Type 1 diabetes, celiac disease, and rarely, malignancy. SIgAD must be differentiated from IgA deficiency that may be seen with IgG2 or IgG4 deficiency, specific antibody deficiency, or as an early manifestation prior to a diagnosis of common variable immunodeficiency. Secondary IgA deficiency is increasingly recognized and may be due to medications such as anti-epileptics, or antibiotics with disruption of the microbiome which can influence IgA levels, infections or malignancies. Patients with SIgAD should be monitored at regular intervals and educated to be aware of particular complications. There is a rare chance of development of anti-IgA IgE antibodies in patients with complete deficiency, which can result in anaphylaxis if blood products with IgA are administered. Prophylactic antibiotics may be indicated in some cases, and very rarely, supplemental IgG infusions.
Collapse
Affiliation(s)
- Samantha Swain
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
- Veterans Affairs Northern California Healthcare System, Mather, CA, USA
| | - Carlo Selmi
- Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Milan, Italy
- BIOMETRA Department, University of Milan, Milan, Italy
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
| | - Suzanne S. Teuber
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, CA, USA
- Veterans Affairs Northern California Healthcare System, Mather, CA, USA
| |
Collapse
|
21
|
IgA-deficient humans exhibit gut microbiota dysbiosis despite secretion of compensatory IgM. Sci Rep 2019; 9:13574. [PMID: 31537840 PMCID: PMC6753154 DOI: 10.1038/s41598-019-49923-2] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Immunoglobulin A is the dominant antibody isotype found in mucosal secretions and enforces host-microbiota symbiosis in mice, yet selective IgA-deficiency (sIgAd) in humans is often described as asymptomatic. Here, we determined the effects of IgA deficiency on human gut microbiota composition and evaluated the possibility that mucosal secretion of IgM can compensate for a lack of secretory IgA. We used 16S rRNA gene sequencing and bacterial cell sorting to evaluate gut microbiota composition and taxa-specific antibody coating of the gut microbiota in 15 sIgAd subjects and matched controls. Despite the secretion of compensatory IgM into the gut lumen, sIgAd subjects displayed an altered gut microbiota composition as compared to healthy controls. These alterations were characterized by a trend towards decreased overall microbial diversity as well as significant shifts in the relative abundances of specific microbial taxa. While secretory IgA in healthy controls targeted a defined subset of the microbiota via high-level coating, compensatory IgM in sIgAd subjects showed less specificity than IgA and bound a broader subset of the microbiota. We conclude that IgA plays a critical and non-redundant role in controlling gut microbiota composition in humans and that secretory IgA has evolved to maintain a diverse and stable gut microbial community.
Collapse
|
22
|
Wong GK, Barmettler S, Heather JM, Millar D, Penny SA, Huissoon A, Richter A, Cobbold M. Aberrant X chromosome skewing and acquired clonal hematopoiesis in adult-onset common variable immunodeficiency. JCI Insight 2019; 4:127614. [PMID: 31341110 PMCID: PMC6675553 DOI: 10.1172/jci.insight.127614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022] Open
Abstract
Advances in genomic medicine have elucidated an increasing number of genetic etiologies for patients with common variable immunodeficiency (CVID). However, there is heterogeneity in clinical and immunophenotypic presentations and a limited understanding of the underlying pathophysiology of many cases. The primary defects in CVID may extend beyond the adaptive immune system, and the combined defect in both the myeloid and lymphoid compartments suggests the mechanism may involve bone marrow output and earlier progenitors. Using the methylation profile of the human androgen receptor (AR) gene as a surrogate epigenetic marker for bone marrow clonality, we examined the hematopoietic compartments of patients with CVID. Our data show that clonal hematopoiesis is common among patients with adult-onset CVID who do not have associated noninfectious complications. Nonblood tissues did not show a skewed AR methylation status, supporting a model of an acquired clonal hematopoietic event. Attenuation of memory B cell differentiation into long-lived plasma cells (CD20–CD27+CD38+CD138+) was associated with marked changes in the postdifferentiation methylation profile, demonstrating the functional consequence of clonal hematopoiesis on humoral immunity in these patients. This study sheds light on a potential etiology of a subset of patients with CVID, and the findings suggest that it is a stage of an acquired lymphocyte maturation disorder. Clonal hematopoiesis is common among a subset of patients with common variable immunodeficiency (CVID), suggesting that CVID may be a stage of lymphoid dysplasia.
Collapse
Affiliation(s)
- Gabriel K Wong
- Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Edgbaston, United Kingdom
| | - Sara Barmettler
- Allergy and Clinical Immunology Unit, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James M Heather
- Massachusetts General Hospital, Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - David Millar
- Massachusetts General Hospital, Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah A Penny
- Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Edgbaston, United Kingdom
| | - Aarnoud Huissoon
- Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Edgbaston, United Kingdom.,West Midlands Immunodeficiency Centre, Birmingham Heartlands Hospital, Birmingham, United Kingdom
| | - Alex Richter
- Institute of Immunology and Immunotherapy, Medical School, University of Birmingham, Edgbaston, United Kingdom
| | - Mark Cobbold
- Massachusetts General Hospital, Cancer Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
23
|
Bagheri Y, Sanaei R, Yazdani R, Shekarabi M, Falak R, Mohammadi J, Abolhassani H, Aghamohammadi A. The Heterogeneous Pathogenesis of Selective Immunoglobulin A Deficiency. Int Arch Allergy Immunol 2019; 179:231-246. [DOI: 10.1159/000499044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/18/2019] [Indexed: 11/19/2022] Open
|
24
|
Lemarquis AL, Theodors F, Einarsdottir HK, Ludviksson BR. Mapping of Signaling Pathways Linked to sIgAD Reveals Impaired IL-21 Driven STAT3 B-Cell Activation. Front Immunol 2019; 10:403. [PMID: 30936864 PMCID: PMC6431630 DOI: 10.3389/fimmu.2019.00403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/15/2019] [Indexed: 11/13/2022] Open
Abstract
Objectives: It has recently been shown that individuals with selective IgA deficiency (sIgAD) have defective B cell responses both to T cell dependent and independent mimicking stimulations. The complex intracellular signaling pathways from different stimuli leading to IgA isotype switching have not been fully elucidated. Thus, the main objective of this study was to delineate these pathways and their potential role in the immunopathology linked to sIgAD. Materials and Methods: PBMCs from 10 individuals with sIgAD and 10 healthy controls (HC) were activated in vitro via either a T cell dependent or independent mimicking stimulation. Intracellular phosphorylation of pSTAT3, pSTAT5, pSTAT6, and as pERK1/2 was evaluated in T and B cells using phosphoflow cytometry. Results: By evaluating T cell dependent cytokine driven pathways linked to IgA isotype induction we identified a defect involving an IL-21 driven STAT3 activation isolated to B cells in sIgAD individuals. However, all other signaling pathways studied were found to be normal compared to HC. In T cell dependent cytokine driven stimulations linked to IgA isotype induction the following patterns emerged: (i) IL-10 led to significant STAT3 activation in both T- and B cells; (ii) IL-4 stimulation was predominantly confined to STAT6 activation in both T- and B cells, with some effects on STAT3 activation in T-cells; (iii) as expected, of tested stimuli, IL-2 alone activated STAT5 and some STAT3 activation though in both cases only in T-cells; (iv) IL-21 induced significant activation of STAT3 in both T- and B cells, with some effects on STAT5 activation in T-cells; and finally (v) synergistic effects were noted of IL-4+IL-10 on STAT5 activation in T-cells, and possibly STAT6 in both T- and B cells. On the other hand, CPG induced T cell independent activation was confined to ERK1/2 activation in B cells. Conclusion: Our results indicate a diminished STAT3 phosphorylation following IL-21 stimulation solely in B cells from sIgAD individuals. This can represent aberrant germinal center reactions or developmental halt. Thus, our work provides further insight into the unraveling of the previously hypothesized role of IL-21 to reconstitute immunoglobulin production in primary antibody deficiencies.
Collapse
Affiliation(s)
- Andri L Lemarquis
- Department of Immunology, Landspítali-The National University Hospital of Iceland, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Fannar Theodors
- Department of Immunology, Landspítali-The National University Hospital of Iceland, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Helga K Einarsdottir
- Department of Immunology, Landspítali-The National University Hospital of Iceland, Reykjavík, Iceland
| | - Bjorn R Ludviksson
- Department of Immunology, Landspítali-The National University Hospital of Iceland, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
25
|
Gardulf A, Abolhassani H, Gustafson R, Eriksson LE, Hammarström L. Predictive markers for humoral influenza vaccine response in patients with common variable immunodeficiency. J Allergy Clin Immunol 2018; 142:1922-1931.e2. [DOI: 10.1016/j.jaci.2018.02.052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/17/2018] [Accepted: 02/12/2018] [Indexed: 10/17/2022]
|
26
|
IL-21 and anti-CD40 restore Bcl-2 family protein imbalance in vitro in low-survival CD27 + B cells from CVID patients. Cell Death Dis 2018; 9:1156. [PMID: 30464201 PMCID: PMC6249202 DOI: 10.1038/s41419-018-1191-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022]
Abstract
Common variable immunodeficiency (CVID) is characterized by an abnormal B cell differentiation to memory and antibody-secreting B cells. The defective functionality of CVID patients’ B cells could be the consequence of alterations in apoptosis regulation. We studied the balance of Bcl-2 family anti-/pro-apoptotic proteins to identify molecular mechanisms that could underlie B cell survival defects in CVID. We used flow cytometry to investigate Bcl-2, Bcl-XL, Bax, and Bim expression in B cells ex vivo and after anti-CD40 or anti-BCR activation with or without IL-21, besides to spontaneous and stimulation-induced Caspase-3 activation and viable/apoptotic B cell subpopulations. We found increased basal levels of Bax and Bim in CVID B cells that correlated with low viability and high Caspase-3 activation only in CD27+ B cells, particularly in a subgroup of apoptosis-prone CVID (AP-CVID) patients with low peripheral B cell counts and high autoimmunity prevalence (mostly cytopenias). We detected a broad B cell defect in CVID regarding Bcl-2 and Bcl-XL induction, irrespective of the stimulus used. Therefore, peripheral CVID memory B cells are prompted to die from apoptosis due to a constitutive Bcl-2 family protein imbalance and defective protection from activation-induced apoptosis. Interestingly, anti-CD40 and IL-21 induced normal and even higher levels of Bcl-XL, respectively, in CD27+ B cells from AP-CVID, which was accompanied by cell viability increase. Thus low-survival memory B cells from AP-CVID can overcome their cell death regulation defects through pro-survival signals provided by T cells. In conclusion, we identify apoptosis regulation defects as disease-contributing factors in CVID. B cell counts and case history of cytopenias might be useful to predict positive responses to therapeutic approaches targeting T-dependent signaling pathways.
Collapse
|
27
|
Interleukin 21 (IL-21)/microRNA-29 (miR-29) axis is associated with natural resistance to HIV-1 infection. AIDS 2018; 32:2453-2461. [PMID: 30005016 DOI: 10.1097/qad.0000000000001938] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Interleukin-21 (IL-21) modulates HIV-1 infection through the elicitation of different antiviral mechanisms, including Th17 lineage commitment and induction of microRNA (miR)-29, a miRNA endowed with anti-HIV activity. As miR-29 expression is significantly increased in HIV-1-exposed seronegative individuals (HESN), we investigated the role of miR-29/IL21 axis in the natural control of HIV-1 infection. METHODS Peripheral blood mononuclear cells (PBMCs) isolated from 15 Italian sexually exposed HESN and 15 HIV-unexposed healthy controls were in-vitro infected with an R5-tropic HIV-1Ba-L strain. Seven days post HIV-1 infection we evaluated: 1) p24 production (ELISA); 2) CD4/IL-21 and CD4/IL-17 T lymphocytes (FACS); 3) IL-17 concentration in supernatants (ELISA); and 4) IL-6, IL-17, IL-21, and miR-29a,b,c expression by CD4 T lymphocytes as well as perforin and granzyme by peripheral blood mononuclear cells (qPCR). The same analyses were performed on the 15 HIV-positive partners. RESULTS At baseline IL-6 expression alone was increased in HESN compared to healthy controls. Seven days after in-vitro HIV-1 infection, nevertheless, differences emerged. Thus, CD4/IL21 and CD4/IL17 T lymphocytes, as well as IL-21 and IL-17 expression and production were significantly augmented in HESN compared to healthy controls. Interestingly, IL-21 upregulation correlated with a significantly increased expression of miR-29a,b,c and a reduced susceptibility to in-vitro HIV-1 infection in HESN alone. No differences were observed in perforin and granzyme expression. CONCLUSION The IL-21/miR-29 axis is upregulated by HIV-1 infection in HESN suggesting its involvement in the natural resistance to HIV-1 infection in HESN. Approaches that exogenously increase IL-21 production or prompt preexisting cellular IL-21 reservoir could confine the magnitude of the initial HIV-1 infection.
Collapse
|
28
|
Borzutzky A, Rauter I, Fried A, Rachid R, McDonald DR, Hammarstrom L, Grimbacher B, Abraham RS, Geha RS. Defective TLR9-driven STAT3 activation in B cells of patients with CVID. Clin Immunol 2018; 197:40-44. [PMID: 30145329 DOI: 10.1016/j.clim.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 12/24/2022]
Abstract
B cell activation by Toll-like receptor 9 (TLR9) ligands is dependent on STAT3 and is important for optimal antibody responses to microbial antigens. B cells from patients with common variable immune deficiency (CVID) have impaired proliferation and differentiation in response to the TLR9 ligand CpG, despite normal levels of TLR9 expression. We demonstrate that CpG-driven STAT3 phosphorylation, but not activation of NFκB and p38, is selectively impaired in B cells from CVID patients. These results suggest that defective STAT3 activation contributes to the defective TLR9 and antibody response of B cells in CVID.
Collapse
Affiliation(s)
- Arturo Borzutzky
- Division of Immunology, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Ingrid Rauter
- Division of Immunology, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Ari Fried
- Division of Immunology, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Rima Rachid
- Division of Immunology, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Douglas R McDonald
- Division of Immunology, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | | | - Bodo Grimbacher
- Center of Chronic Immunodeficiency, Freiburg University Medical Center, Freiburg, Germany
| | - Roshini S Abraham
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, United States; Department of Pathology, Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, United States
| | - Raif S Geha
- Division of Immunology, Children's Hospital, Department of Pediatrics, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
29
|
Lemarquis AL, Einarsdottir HK, Kristjansdottir RN, Jonsdottir I, Ludviksson BR. Transitional B Cells and TLR9 Responses Are Defective in Selective IgA Deficiency. Front Immunol 2018; 9:909. [PMID: 29755476 PMCID: PMC5934527 DOI: 10.3389/fimmu.2018.00909] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/11/2018] [Indexed: 12/28/2022] Open
Abstract
Selective IgA deficiency (IgAD) is the most common primary antibody deficiency in the western world with affected individuals suffering from an increased burden of autoimmunity, atopic diseases and infections. It has been shown that IgAD B cells can be induced with germinal center mimicking reactions to produce IgA. However, IgA is the most prevalent antibody in mucosal sites, where antigen-independent responses are important. Much interest has recently focused on the role of TLR9 in both naïve and mature B cell differentiation into IgA secreting plasma cells. Here, we analyze the phenotype and function of T and B cells in individuals with IgAD following IgA-inducing CpG-TLR9 stimulations. The IgAD individuals had significantly lower numbers of transitional B cells (CD19+CD24hiCD38hi) and class-switched memory B cells (CD20+CD27+IgD−) ex vivo. However, proportions of T cell populations ex vivo as well as in vitro induced T effector cells and T regulatory cells were comparable to healthy controls. After CpG stimulation, the transitional B cell defect was further enhanced, especially within its B regulatory subset expressing IL-10. Finally, CpG stimulation failed to induce IgA production in IgAD individuals. Collectively, our results demonstrate a defect of the TLR9 responses in IgAD that leads to B cell dysregulation and decreased IgA production.
Collapse
Affiliation(s)
- Andri L Lemarquis
- Department of Immunology, Landspítali-University Hospital, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | | | - Rakel N Kristjansdottir
- Department of Immunology, Landspítali-University Hospital, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Ingileif Jonsdottir
- Department of Immunology, Landspítali-University Hospital, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland.,Division of Infectious and Inflammatory Diseases, deCODE Genetics, Reykjavík, Iceland
| | - Bjorn R Ludviksson
- Department of Immunology, Landspítali-University Hospital, Reykjavík, Iceland.,Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| |
Collapse
|
30
|
Modulation of the Interleukin-21 Pathway with Interleukin-4 Distinguishes Common Variable Immunodeficiency Patients with More Non-infectious Clinical Complications. J Clin Immunol 2017; 38:45-55. [DOI: 10.1007/s10875-017-0452-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 10/12/2017] [Indexed: 12/11/2022]
|
31
|
Pott MC, Frede N, Wanders J, Hammarström L, Glocker EO, Glocker C, Tahami F, Grimbacher B. Autoantibodies against BAFF, APRIL or IL21 - an alternative pathogenesis for antibody-deficiencies? BMC Immunol 2017. [PMID: 28651547 PMCID: PMC5485583 DOI: 10.1186/s12865-017-0217-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The ability of anti-cytokine antibodies to play a disease-causing role in the pathogenesis of immunodeficiencies is widely accepted. The aim of this study was to investigate whether autoantibodies against BAFF (important B cell survival signal), APRIL (important plasma cell survival signal), or Interleukin-21 (important cytokine for immunoglobulin class switch) present an alternative mechanism for the development of the following primary antibody deficiencies (PADs): common variable immune deficiency (CVID) or selective IgA deficiency (sIgAD). RESULTS Two hundred thirty-two sera from patients with PADs were screened for autoantibodies against cytokines by ELISA. Statistical data analysis yielded a significant difference (p < 0.01) between the healthy donor sera and both PAD cohorts. The analysis was deepened by subdividing the patient collective into groups with distinct B cell phenotypes but no significant differences were found. For selected sera with notable high ELISA-read outs functional analysis ensued. Anti-BAFF and anti-APRIL antibodies were further examined by a B cell survival assay, whilst the functional relevance of putative anti-IL-21 autoantibodies was investigated by means of a STAT3 phosphorylation assay. However, the results of these experiments revealed no discernible functional effect. CONCLUSION Whilst statistical analysis of ELISA results showed significant differences between patients and healthy controls, in our set of patients functional tests yielded no evidence for an involvement of autoantibodies against BAFF, APRIL, or IL-21 in the pathogenesis of CVID or sIgAD.
Collapse
Affiliation(s)
- Marian-Christopher Pott
- Centre for Chronic Immunodeficiency, Medical Centre University Hospital, Medical Faculty of Freiburg, Freiburg, Germany
| | - Natalie Frede
- Centre for Chronic Immunodeficiency, Medical Centre University Hospital, Medical Faculty of Freiburg, Freiburg, Germany
| | - Jennifer Wanders
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | | | - Erik-Oliver Glocker
- Institute of Medical Microbiology and Hygiene, University Medical Center Freiburg, Freiburg, Germany.,Institute of Laboratory Medicine, Brandenburg Hospital, Brandenburg Medical School, Brandenburg, Germany
| | - Cristina Glocker
- Centre for Chronic Immunodeficiency, Medical Centre University Hospital, Medical Faculty of Freiburg, Freiburg, Germany
| | - Fariba Tahami
- Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK
| | - Bodo Grimbacher
- Centre for Chronic Immunodeficiency, Medical Centre University Hospital, Medical Faculty of Freiburg, Freiburg, Germany. .,Institute of Immunity and Transplantation, Royal Free Hospital, University College London, London, UK.
| |
Collapse
|
32
|
Yazdani R, Azizi G, Abolhassani H, Aghamohammadi A. Selective IgA Deficiency: Epidemiology, Pathogenesis, Clinical Phenotype, Diagnosis, Prognosis and Management. Scand J Immunol 2017; 85:3-12. [PMID: 27763681 DOI: 10.1111/sji.12499] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 12/30/2022]
Abstract
Selective immunoglobulin A deficiency (SIgAD) is the most common primary antibody deficiency. Although more patients with SIgAD are asymptomatic, selected patients suffer from different clinical complications such as pulmonary infections, allergies, autoimmune diseases, gastrointestinal disorders and malignancy. Pathogenesis of SIgAD is still unknown; however, a defective terminal differentiation of B cells and defect in switching to IgA-producing plasma cells are presumed to be responsible. Furthermore, some cytogenic defects and monogenic mutations are associated with SIgAD. There is no specific treatment for patients with symptomatic IgA deficiency, although prophylactic antibiotic therapy along with circumstantial immunoglobulin replacement with justification and supportive care (using a product that contains minimal IgA) could be helpful for patients with a severe phenotype. The epidemiology, pathogenesis, clinical phenotype, diagnosis, prognosis, management and treatment in patients with SIgAD have been reviewed.
Collapse
Affiliation(s)
- R Yazdani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Molecular Immunology Interest Group (MIIG), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| | - G Azizi
- Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - H Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - A Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Urbonas V, Sadauskaite J, Cerkauskiene R, Kaminskas A, Mäki M, Kurppa K. Population-Based Screening for Selective Immunoglobulin A (IgA) Deficiency in Lithuanian Children Using a Rapid Antibody-Based Fingertip Test. Med Sci Monit 2016; 22:4773-4778. [PMID: 27920422 PMCID: PMC5144930 DOI: 10.12659/msm.898269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 04/24/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Selective immunoglobulin A (IgA) deficiency is the most common inherited immunodeficiency disorder worldwide. An early diagnosis is advocated because of the increased risk of infections, autoimmune diseases, and allergic reactions. We investigated the usefulness of a rapid point-of-care test in detecting for IgA deficiency in a population with a previously unknown prevalence. MATERIAL AND METHODS Altogether, 1000 children aged 11-13 years from randomly selected Lithuanian schools were enrolled. A point-of-care test with a fingertip sample was used to screen for the presence of IgA deficiency in children whose parents gave consent. Those with suspected IgA deficiency were referred to hospital for further clinical examination and confirmation of the diagnosis. In addition, their medical histories were compared with those of 30 age- and sex-matched healthy controls. RESULTS IgA deficiency was suspected in one girl and in three boys on the basis of the rapid test, and the diagnosis was confirmed for all four cases (prevalence 0.4%, 95% confidence interval 0.16-1.02%). There was no difference in disease history or complications between IgA-deficient children and healthy controls. CONCLUSIONS The rapid antibody test is a practical and accurate method to diagnose selective IgA deficiency in children. The prevalence of IgA deficiency among Lithuanian schoolchildren is 1:250.
Collapse
Affiliation(s)
- Vaidotas Urbonas
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Children’s Hospital, Vilnius University Hospital, Vilnius, Lithuania
| | | | - Rimante Cerkauskiene
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- Children’s Hospital, Vilnius University Hospital, Vilnius, Lithuania
| | | | - Markku Mäki
- Tampere Centre for Child Health Research, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Kalle Kurppa
- Tampere Centre for Child Health Research, University of Tampere and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
34
|
Taraldsrud E, Aukrust P, Jørgensen S, Lingjærde OC, Olweus J, Myklebust JH, Fevang B. Patterns of constitutively phosphorylated kinases in B cells are associated with disease severity in common variable immunodeficiency. Clin Immunol 2016; 175:69-74. [PMID: 27919819 DOI: 10.1016/j.clim.2016.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 12/14/2022]
Abstract
Patients with common variable immunodeficiency (CVID) constitute a clinically and immunologically heterogeneous group characterized by B-cell dysfunction with hypogammaglobulinemia and defective immunoglobulin class switch of unknown etiology. Current classification systems are insufficient to achieve precise disease management. Characterization of signaling pathways essential for B-cell differentiation and class switch could provide new means to stratify patients. We evaluated constitutive and induced signaling by phospho-specific flow cytometry in 26 CVID patients and 18 healthy blood donors. Strong responses were induced both in CVID and healthy donor B cells upon activation. In contrast, constitutive phosphorylation levels of STAT3,-5,-6, Erk, PLC-γ and Syk were significantly increased in CVID B cells only. Hierarchical clustering revealed a subgroup of CVID patients with elevated constitutive phosphorylation of Syk and PLC-γ. All these patients had non-infectious complications, indicating that a distinct phosphorylation pattern of kinases in B cells identifies a clinically important subgroup of CVID patients.
Collapse
Affiliation(s)
- Eli Taraldsrud
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway; K.G. Jebsen Centre for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- K.G. Jebsen Centre for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Silje Jørgensen
- K.G. Jebsen Centre for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Ole Christian Lingjærde
- Department of Computer Science, University of Oslo, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Johanna Olweus
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway; K.G. Jebsen Centre for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - June H Myklebust
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway; Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Børre Fevang
- K.G. Jebsen Centre for Cancer Immunotherapy, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| |
Collapse
|
35
|
Bronson PG, Chang D, Bhangale T, Seldin MF, Ortmann W, Ferreira RC, Urcelay E, Pereira LF, Martin J, Plebani A, Lougaris V, Friman V, Freiberger T, Litzman J, Thon V, Pan-Hammarström Q, Hammarström L, Graham RR, Behrens TW. Common variants at PVT1, ATG13-AMBRA1, AHI1 and CLEC16A are associated with selective IgA deficiency. Nat Genet 2016; 48:1425-1429. [PMID: 27723758 PMCID: PMC5086090 DOI: 10.1038/ng.3675] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/24/2016] [Indexed: 12/18/2022]
Abstract
Selective immunoglobulin A deficiency (IgAD) is the most common primary immunodeficiency in Europeans. Our genome-wide association study (GWAS) meta-analysis of 1,635 patients with IgAD and 4,852 controls identified four new significant (P < 5 × 10-8) loci and association with a rare IFIH1 variant (p.Ile923Val). Peak new variants (PVT1, P = 4.3 × 10-11; ATG13-AMBRA1, P = 6.7 × 10-10; AHI1, P = 8.4 × 10-10; CLEC16A, P = 1.4 × 10-9) overlapped with autoimmune markers (3/4) and correlated with 21 putative regulatory variants, including expression quantitative trait loci (eQTLs) for AHI1 and DEXI and DNase hypersensitivity sites in FOXP3+ regulatory T cells. Pathway analysis of the meta-analysis results showed striking association with the KEGG pathway for IgA production (pathway P < 0.0001), with 22 of the 30 annotated pathway genes containing at least one variant with P ≤ 0.05 in the IgAD meta-analysis. These data suggest that a complex network of genetic effects, including genes known to influence the biology of IgA production, contributes to IgAD.
Collapse
Affiliation(s)
- Paola G. Bronson
- Department of Human Genetics, Genentech, Inc., South San
Francisco, CA, USA
| | - Diana Chang
- Department of Human Genetics, Genentech, Inc., South San
Francisco, CA, USA
| | - Tushar Bhangale
- Department of Bioinformatics and Computational Biology,
Genentech, Inc., South San Francisco, CA, USA
| | - Michael F. Seldin
- Department of Biochemistry, School of Medicine, University
of California, Davis, CA, USA
| | - Ward Ortmann
- Department of Human Genetics, Genentech, Inc., South San
Francisco, CA, USA
| | - Ricardo C. Ferreira
- Juvenile Diabetes Research Foundation/Wellcome Trust
Diabetes and Inflammation Laboratory, Cambridge Institute for Medical Research,
Cambridge, UK
| | - Elena Urcelay
- Department of Immunology, Instituto de Investigación
Sanitaria del Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | | | - Javier Martin
- Instituto de Parasitología y Biomedicina
López-Neyra, CSIC, Granada, Spain
| | - Alessandro Plebani
- Pediatrics Clinic, Department of Clinical and Experimental
Sciences, University of Brescia, Spedali Civili di Brescia, Italy
- Institute for Molecular Medicine, A. Nocivelli, Department
of Clinical and Experimental Sciences, University of Brescia, Spedali Civili di
Brescia, Italy
| | - Vassilios Lougaris
- Pediatrics Clinic, Department of Clinical and Experimental
Sciences, University of Brescia, Spedali Civili di Brescia, Italy
- Institute for Molecular Medicine, A. Nocivelli, Department
of Clinical and Experimental Sciences, University of Brescia, Spedali Civili di
Brescia, Italy
| | - Vanda Friman
- Department of Infectious Diseases, University of
Gothenburg, Gothenburg, Sweden
| | - Tomáš Freiberger
- Molecular Genetics Laboratory, Centre for Cardiovascular
Surgery and Transplantation, Brno, Czech Republic
- Central European Institute of Technology, Masaryk
University, Brno, Czech Republic
| | - Jiri Litzman
- Department of Clinical Immunology and Allergy, Faculty of
Medicine, Masaryk University, St. Anne’s Univ. Hospital, Brno, Czech
Republic
| | - Vojtech Thon
- Department of Clinical Immunology and Allergy, Faculty of
Medicine, Masaryk University, St. Anne’s Univ. Hospital, Brno, Czech
Republic
- Research Centre for Toxic Compounds in the Environment,
Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Qiang Pan-Hammarström
- Division of Clinical Immunology & Transfusion
Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology & Transfusion
Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Robert R. Graham
- Department of Human Genetics, Genentech, Inc., South San
Francisco, CA, USA
| | - Timothy W. Behrens
- Department of Human Genetics, Genentech, Inc., South San
Francisco, CA, USA
| |
Collapse
|
36
|
Vo Ngoc DTL, Krist L, van Overveld FJ, Rijkers GT. The long and winding road to IgA deficiency: causes and consequences. Expert Rev Clin Immunol 2016; 13:371-382. [PMID: 27776452 DOI: 10.1080/1744666x.2017.1248410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The most common humoral immunodeficiency is IgA deficiency. One of the first papers addressing the cellular and molecular mechanisms underlying IgA deficiency indicated that immature IgA-positive B-lymphocytes are present in these patients. This suggests that the genetic background for IgA is still intact and that class switching can take place. At this moment, it cannot be ruled out that genetic as well as environmental factors are involved. Areas covered: A clinical presentation, the biological functions of IgA, and the management of IgA deficiency are reviewed. In some IgA deficient patients, a relationship with a loss-of-function mutation in the TACI (transmembrane activator and calcium-modulating cyclophilin ligand interaction) gene has been found. Many other genes also have been associated. Gut microbiota are an important environmental trigger for IgA synthesis. Expert commentary: Expression of IgA deficiency is due to both genetic and environmental factors and a role for gut microbiota cannot be excluded.
Collapse
Affiliation(s)
- D T Laura Vo Ngoc
- a Department of Science , University College Roosevelt , Middelburg , The Netherlands
| | - Lizette Krist
- a Department of Science , University College Roosevelt , Middelburg , The Netherlands
| | - Frans J van Overveld
- a Department of Science , University College Roosevelt , Middelburg , The Netherlands
| | - Ger T Rijkers
- a Department of Science , University College Roosevelt , Middelburg , The Netherlands
| |
Collapse
|
37
|
Abolhassani H, Aghamohammadi A, Hammarström L. Monogenic mutations associated with IgA deficiency. Expert Rev Clin Immunol 2016; 12:1321-1335. [DOI: 10.1080/1744666x.2016.1198696] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Yazdani R, Fatholahi M, Ganjalikhani-Hakemi M, Abolhassani H, Azizi G, Hamid KM, Rezaei N, Aghamohammadi A. Role of apoptosis in common variable immunodeficiency and selective immunoglobulin A deficiency. Mol Immunol 2016; 71:1-9. [PMID: 26795881 DOI: 10.1016/j.molimm.2015.12.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/21/2015] [Accepted: 12/31/2015] [Indexed: 02/07/2023]
|
39
|
Sharifi L, Mirshafiey A, Rezaei N, Azizi G, Magaji Hamid K, Amirzargar AA, Asgardoon MH, Aghamohammadi A. The role of toll-like receptors in B-cell development and immunopathogenesis of common variable immunodeficiency. Expert Rev Clin Immunol 2015; 12:195-207. [PMID: 26654573 DOI: 10.1586/1744666x.2016.1114885] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immune deficiency and is characterized by hypogammaglobulinemia, defect in specific antibody response and increased susceptibility to recurrent infections, malignancy and autoimmunity. Patients with CVID often have defects in post-antigenic B-cell differentiation, with fewer memory B cells and impaired isotype switching. Toll-like receptors (TLRs) are expressed on various immune cells as key elements of innate and adaptive immunity. TLR signaling in B cells plays multiple roles in cell differentiation and activation, class-switch recombination and cytokine and antibody production. Moreover, recent studies have shown functional alteration of TLRs responses in CVID patients including poor cell proliferation, impaired upregulation of co-stimulatory molecules and failure in cytokine and immunoglobulin production. The purpose of the present review is to discuss the role of TLRs in B-cell development and function as well as their role in the immunopathogenesis of CVID.
Collapse
Affiliation(s)
- Laleh Sharifi
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Abbas Mirshafiey
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Nima Rezaei
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,c Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Gholamreza Azizi
- d Imam Hassan Mojtaba Hospital , Alborz University of Medical Sciences , Karaj , Iran
| | - Kabir Magaji Hamid
- b Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran.,e Immunology Department, Faculty of Medical Laboratory Sciences , Usmanu Danfodiyo University , Sokoto , Nigeria
| | - Ali Akbar Amirzargar
- c Department of Immunology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Hossein Asgardoon
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Asghar Aghamohammadi
- a Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
40
|
Roskin KM, Simchoni N, Liu Y, Lee JY, Seo K, Hoh RA, Pham T, Park JH, Furman D, Dekker CL, Davis MM, James JA, Nadeau KC, Cunningham-Rundles C, Boyd SD. IgH sequences in common variable immune deficiency reveal altered B cell development and selection. Sci Transl Med 2015; 7:302ra135. [PMID: 26311730 PMCID: PMC4584259 DOI: 10.1126/scitranslmed.aab1216] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Common variable immune deficiency (CVID) is the most common symptomatic primary immune deficiency, affecting ~1 in 25,000 persons. These patients suffer from impaired antibody responses, autoimmunity, and susceptibility to lymphoid cancers. To explore the cellular basis for these clinical phenotypes, we conducted high-throughput DNA sequencing of immunoglobulin heavy chain gene rearrangements from 93 CVID patients and 105 control subjects and sorted naïve and memory B cells from 13 of the CVID patients and 10 of the control subjects. The CVID patients showed abnormal VDJ rearrangement and abnormal formation of complementarity-determining region 3 (CDR3). We observed a decreased selection against antibodies with long CDR3s in memory repertoires and decreased variable gene replacement, offering possible mechanisms for increased patient autoreactivity. Our data indicate that patient immunodeficiency might derive from both decreased diversity of the naïve B cell pool and decreased somatic hypermutation in memory repertoires. The CVID patients also exhibited an abnormal clonal expansion of unmutated B cells relative to the controls. Although impaired B cell germinal center activation is commonly viewed as causative in CVID, these data indicate that CVID B cells diverge from controls as early as the pro-B stage, cell and suggest possible explanations for the increased incidence of autoimmunity, immunodeficiency, and lymphoma CVID patients.
Collapse
Affiliation(s)
- Krishna M. Roskin
- Department of Pathology, Stanford University, Stanford, CA 94305, U.S.A
| | - Noa Simchoni
- Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, U.S.A
| | - Yi Liu
- Department of Pathology, Stanford University, Stanford, CA 94305, U.S.A
- Biomedical Informatics Training Program, Stanford University, Stanford, CA 94305, U.S.A
| | - Ji-Yeun Lee
- Department of Pathology, Stanford University, Stanford, CA 94305, U.S.A
| | - Katie Seo
- Department of Pathology, Stanford University, Stanford, CA 94305, U.S.A
| | - Ramona A. Hoh
- Department of Pathology, Stanford University, Stanford, CA 94305, U.S.A
| | - Tho Pham
- Department of Pathology, Stanford University, Stanford, CA 94305, U.S.A
| | - Joon H. Park
- Departments of Medicine and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, U.S.A
| | - David Furman
- Microbiology and Immunology, Stanford University, Stanford, CA 94305, U.S.A
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, U.S.A
| | - Cornelia L. Dekker
- Department of Pediatrics, Stanford University, Stanford, CA 94305, U.S.A
| | - Mark M. Davis
- Microbiology and Immunology, Stanford University, Stanford, CA 94305, U.S.A
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, U.S.A
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA 94305, U.S.A
| | - Judith A. James
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation and Oklahoma Clinical & Translational Science Institute and Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, U.S.A
| | - Kari C. Nadeau
- Department of Pediatrics, Stanford University, Stanford, CA 94305, U.S.A
| | | | - Scott D. Boyd
- Department of Pathology, Stanford University, Stanford, CA 94305, U.S.A
| |
Collapse
|
41
|
Yazdani R, Latif A, Tabassomi F, Abolhassani H, Azizi G, Rezaei N, Aghamohammadi A. Clinical phenotype classification for selective immunoglobulin A deficiency. Expert Rev Clin Immunol 2015; 11:1245-54. [DOI: 10.1586/1744666x.2015.1081565] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Nurkic J, Numanovic F, Arnautalic L, Tihic N, Halilovic D, Jahic M. Diagnostic Significance of Reduced IgA in Children. Med Arch 2015; 69:236-9. [PMID: 26543309 PMCID: PMC4610608 DOI: 10.5455/medarh.2015.69.236-239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 07/19/2015] [Indexed: 01/06/2023] Open
Abstract
Introduction: The finding of reduced value of immunoglobulin A (IgA) in children is frequent in daily medical practice. It is important to correctly interpret the findings as adequate further diagnostic evaluation of the patient in order to make the determination on the significance of such findings. In children younger than 4 years always consider the transient impairment of immunoglobulins, maturation of child and his immune system can lead to an improvement in the clinical picture. In older children decreased IgA may lead to serious illnesses that need to be recognize and acknowledge through the appropriate diagnostic methods. At the University Clinical Center Tuzla, children with suspected deficient immune response due to reduced values of IgA, goes through further diagnostic evaluation at the Polyclinic for Laboratory Medicine, Department of Immunology and Department of Microbiology, as well as the Clinic of Radiology. Material and methods: Our study followed 91 patients, for the year 2013, through their medical charts and made evaluation of diagnostic and screening tests. Conclusion: The significance of this paper is to draw attention to the importance of diagnostic approach to IgA deficient pediatric patient and relevance of knowledge of individual diagnostic methods as well as to the proper interpretation of the results thereof.
Collapse
Affiliation(s)
- Jasmina Nurkic
- Policlinic for laboratory diagnostic. University Clinical Centre Tuzla, Tuzla, Bosnia and Herzegovina
| | - Fatima Numanovic
- Policlinic for laboratory diagnostic. University Clinical Centre Tuzla, Tuzla, Bosnia and Herzegovina
| | - Lejla Arnautalic
- Clinic for Radiology. University Clinical Centre Tuzla, Tuzla, Bosnia and Herzegovina
| | - Nijaz Tihic
- Policlinic for laboratory diagnostic. University Clinical Centre Tuzla, Tuzla, Bosnia and Herzegovina
| | - Dzenan Halilovic
- Clinic for Pulmonary Disease. University Clinical Centre Tuzla, Tuzla, Bosnia and Herzegovina
| | - Mahira Jahic
- Policlinic for laboratory diagnostic. University Clinical Centre Tuzla, Tuzla, Bosnia and Herzegovina
| |
Collapse
|
43
|
Stavnezer J, Schrader CE. IgH chain class switch recombination: mechanism and regulation. THE JOURNAL OF IMMUNOLOGY 2015; 193:5370-8. [PMID: 25411432 DOI: 10.4049/jimmunol.1401849] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
IgH class switching occurs rapidly after activation of mature naive B cells, resulting in a switch from expression of IgM and IgD to expression of IgG, IgE, or IgA; this switch improves the ability of Abs to remove the pathogen that induces the humoral immune response. Class switching occurs by a deletional recombination between two switch regions, each of which is associated with a H chain constant region gene. Class switch recombination (CSR) is instigated by activation-induced cytidine deaminase, which converts cytosines in switch regions to uracils. The uracils are subsequently removed by two DNA-repair pathways, resulting in mutations, single-strand DNA breaks, and the double-strand breaks required for CSR. We discuss several aspects of CSR, including how CSR is induced, CSR in B cell progenitors, the roles of transcription and chromosomal looping in CSR, and the roles of certain DNA-repair enzymes in CSR.
Collapse
Affiliation(s)
- Janet Stavnezer
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| | - Carol E Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
44
|
Alkhairy O, Hammarström L. IgA Deficiency and Other Immunodeficiencies Causing Mucosal Immunity Dysfunction. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Nurkic J, Numanovic F, Arnautalic L, Tihic N, Halilovic D, Jahic M. Diagnostic significance of reduced IgA in children. Med Arch 2014; 68:381-3. [PMID: 25648982 PMCID: PMC4314178 DOI: 10.5455/medarh.2014.68.381-383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/10/2014] [Indexed: 11/17/2022] Open
Abstract
Introduction: The finding of reduced value of immunoglobulin A (IgA) in children is frequent in daily medical practice. It is important to correctly interpret the findings as adequate further diagnostic evaluation of the patient in order to make the determination on the significance of such findings. In children younger than 4 years always consider the transient impairment of immunoglobulins, maturation of child and his immune system can lead to an improvement in the clinical picture. In older children decreased IgA may lead to serious illnesses that need to be recognize and acknowledge through the appropriate diagnostic methods. Material and methods: Research was realized at the University Clinical Center Tuzla. Children with suspected deficient immune response due to reduced values of IgA observed and, goes through further diagnostic evaluation at the Polyclinic for Laboratory Medicine, Department of Immunology and Department of Microbiology, as well as the Clinic of Radiology. In the period of year 2013, there were a total of 91 patients with reduced values of IgA, age up to 13 years, of which 55 boys and 36 girls. Results: Our study followed 91 patients, for the year 2013, through their medical charts and made evaluation of diagnostic and screening tests. The significance of this paper is to draw attention to the importance of diagnostic approach to IgA deficient pediatric patient and relevance of knowledge of individual diagnostic methods as well as to the proper interpretation of the results thereof.
Collapse
Affiliation(s)
- Jasmina Nurkic
- Polyclinic for laboratory diagnostic. University Clinical Centre Tuzla, Bosnia and Herzegovina
| | - Fatima Numanovic
- Polyclinic for laboratory diagnostic. University Clinical Centre Tuzla, Bosnia and Herzegovina
| | - Lejla Arnautalic
- Clinic for Radiology. University Clinical Centre Tuzla, Bosnia and Herzegovina
| | - Nijaz Tihic
- Polyclinic for laboratory diagnostic. University Clinical Centre Tuzla, Bosnia and Herzegovina
| | - Dzenan Halilovic
- Clinic for Pulmonary Disease. University Clinical Centre Tuzla, Bosnia and Herzegovina
| | - Mahira Jahic
- Polyclinic for laboratory diagnostic. University Clinical Centre Tuzla, Bosnia and Herzegovina
| |
Collapse
|
46
|
Abstract
PURPOSE OF REVIEW This review highlights the recent identification of human interleukin-21 (IL-21) and interleukin-21 receptor (IL-21R) deficiencies as novel entities of primary immunodeficiency. RECENT FINDINGS We recently described the first patients with IL-21R deficiency who had cryptosporidial infections associated with chronic cholangitis and liver disease. All IL-21R-deficient patients suffered from recurrent respiratory tract infections. Immunological work-up revealed impaired B cell proliferation and immunoglobulin class-switch, reduced T cell effector functions, and variable natural killer cell dysfunctions. Recently, these findings have been extended by the discovery of one patient with a mutation in the IL21 gene. This patient predominantly manifested with very early onset inflammatory bowel disease and recurrent respiratory infections. Laboratory examination showed reduced circulating B cells and impaired B cell class-switch. SUMMARY Human IL-21 and IL-21R deficiencies cause severe, primary immunodeficiency reminiscent of common variable immunodeficiency. Early diagnosis is critical to prevent life-threatening complications, such as secondary liver failure. In view of the critical role of IL-21 in controlling immune homeostasis, early hematopoietic stem cell transplantation might be considered as therapeutic intervention in affected children.
Collapse
|
47
|
Varzaneh FN, Keller B, Unger S, Aghamohammadi A, Warnatz K, Rezaei N. Cytokines in common variable immunodeficiency as signs of immune dysregulation and potential therapeutic targets - a review of the current knowledge. J Clin Immunol 2014; 34:524-43. [PMID: 24827633 DOI: 10.1007/s10875-014-0053-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/05/2014] [Indexed: 01/19/2023]
Abstract
Common variable immunodeficiency (CVID) is characterized by low levels of circulating immunoglobulins and compromised specific antibody response leading to frequent infections. Cytokines play an important role in the orchestration of the antibody response. Several previous studies have attempted to identify distinct cytokines responsible for the inflammatory changes and different manifestations of CVID, but there are conflicting results regarding the cytokine profiles in CVID patients. In light of this, an extensive review regarding the level of various cytokines and their potential therapeutic role in CVID patients was performed. This review delineates the contribution of interleukin (IL)-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-10, IL-12, IL-21, interferons, tumor necrosis factor (TNF)-α, IL-17, APRIL (a proliferation inducing ligand) and BAFF (B cell activating factor) in CVID disease and outline their potential therapeutic implications in these patients.
Collapse
Affiliation(s)
- Farnaz Najmi Varzaneh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
48
|
Clemente A, Pons J, Lanio N, Matamoros N, Ferrer JM. CD27+ B cells from a subgroup of common variable immunodeficiency patients are less sensitive to apoptosis rescue regardless of interleukin-21 signalling. Clin Exp Immunol 2013; 174:97-108. [PMID: 23738704 DOI: 10.1111/cei.12150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2013] [Indexed: 12/22/2022] Open
Abstract
Common variable immunodeficiency (CVID) is a primary immunodeficiency characterized by hypogammaglobulinaemia and recurrent infections. Although the underlying cause is unknown, B cells from most CVID patients fail to differentiate to memory or plasma cells. We investigated if increased apoptosis could influence the fate of B cells. For this purpose we activated purified B lymphocytes of CVID patients with a surrogate T-dependent (anti-CD40) or T-independent [cytosine-phosphate-guanosine oligodeoxynucleotides (CpG-ODN) or anti-immunoglobulin (Ig)M)] stimulus with or without interleukin (IL)-21. We found that CD27(+) B cells were more sensitive than CD27(-) B cells to spontaneous apoptosis and less sensitive to rescue from apoptosis. The addition of IL-21 down-modulated the protective effect of all the stimuli on CD27(-) B cells and the protective effect of CpG-ODN and anti-IgM on CD27(+) B cells. In contrast, IL-21 rescued unstimulated CD27(-) B cells and improved the rescue of anti-CD40-stimulated CD27(+) B cells. When we compared patients and controls, mainly CD27(+) B cells from MB0 patients were less sensitive to rescue from apoptosis than those from MB1 patients and controls after activation, irrespective of the IL-21 effect. Increased apoptosis during an immune response could result in lower levels of immunoglobulin production in these patients.
Collapse
Affiliation(s)
- A Clemente
- Department of Immunology, Hospital Universitari Son Espases, Palma de Mallorca, Spain; Fundació d'Investigació Sanitària de les Illes Balears (FISIB), Palma de Mallorca, Spain
| | | | | | | | | |
Collapse
|
49
|
|
50
|
High-content cytometry and transcriptomic biomarker profiling of human B-cell activation. J Allergy Clin Immunol 2013; 133:172-80.e1-10. [PMID: 24012209 DOI: 10.1016/j.jaci.2013.06.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 05/31/2013] [Accepted: 06/24/2013] [Indexed: 12/27/2022]
Abstract
BACKGROUND Primary antibody deficiencies represent the most prevalent, although very heterogeneous, group of inborn immunodeficiencies, with a puzzling complexity of cellular and molecular processes involved in disease pathogenesis. OBJECTIVE We aimed to study in detail the kinetics of CD40 ligand/IL-21-induced B-cell differentiation to define new biomarker sets for further research into primary antibody deficiencies. METHODS We applied high-content screening methods to monitor B-cell activation on the cellular (chip cytometry) and transcriptomic (RNA microarray) levels. RESULTS The complete activation process, including stepwise changes in protein and RNA expression patterns, entry into the cell cycle, proliferation and expression of activation-induced cytidine deaminase (AID), DNA repair enzymes, and post-class-switch expression of IgA and IgG, was successfully monitored during in vitro differentiation. We identified a number of unknown pathways engaged during B-cell activation, such as CXCL9/CXCL10 secretion by B cells. Finally, we evaluated a deduced set of biomarkers on a group of 18 patients with putative or proved intrinsic B-cell defects recruited from the European Society for Immunodeficiencies database and successfully predicted 2 AID defects and 1 DNA repair defect. Complete absence of class-switched B cells was a sensitive predictor of AID deficiency and should be further evaluated as a diagnostic biomarker. CONCLUSION The biomarkers found in this study could be used to further study the complex process of B-cell activation and to understand conditions that lead to the development of primary antibody deficiencies.
Collapse
|