1
|
Droubi A, Wallis C, Anderson KE, Rahman S, de Sa A, Rahman T, Stephens LR, Hawkins PT, Lowe M. The inositol 5-phosphatase INPP5B regulates B cell receptor clustering and signaling. J Cell Biol 2022; 221:e202112018. [PMID: 35878408 PMCID: PMC9351708 DOI: 10.1083/jcb.202112018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/27/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022] Open
Abstract
Upon antigen binding, the B cell receptor (BCR) undergoes clustering to form a signalosome that propagates downstream signaling required for normal B cell development and physiology. BCR clustering is dependent on remodeling of the cortical actin network, but the mechanisms that regulate actin remodeling in this context remain poorly defined. In this study, we identify the inositol 5-phosphatase INPP5B as a key regulator of actin remodeling, BCR clustering, and downstream signaling in antigen-stimulated B cells. INPP5B acts via dephosphorylation of the inositol lipid PI(4,5)P2 that in turn is necessary for actin disassembly, BCR mobilization, and cell spreading on immobilized surface antigen. These effects can be explained by increased actin severing by cofilin and loss of actin linking to the plasma membrane by ezrin, both of which are sensitive to INPP5B-dependent PI(4,5)P2 hydrolysis. INPP5B is therefore a new player in BCR signaling and may represent an attractive target for treatment of B cell malignancies caused by aberrant BCR signaling.
Collapse
Affiliation(s)
- Alaa Droubi
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Connor Wallis
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Saifur Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Aloka de Sa
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | | | - Martin Lowe
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Vadakumchery A, Faraidun H, Ayoubi OE, Outaleb I, Schmid V, Abdelrasoul H, Amendt T, Khadour A, Setz C, Göhring K, Lodd K, Hitzing C, Alkhatib A, Bilal M, Benckendorff J, Al Shugri AK, Brakebusch CH, Engels N, Datta M, Hobeika E, Alsadeq A, Jumaa H. The Small GTPase RHOA Links SLP65 Activation to PTEN Function in Pre B Cells and Is Essential for the Generation and Survival of Normal and Malignant B Cells. Front Immunol 2022; 13:842340. [PMID: 35371049 PMCID: PMC8965026 DOI: 10.3389/fimmu.2022.842340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
The generation, differentiation, survival and activation of B cells are coordinated by signals emerging from the B cell antigen receptor (BCR) or its precursor, the pre-BCR. The adaptor protein SLP65 (also known as BLNK) is an important signaling factor that controls pre-B cell differentiation by down-regulation of PI3K signaling. Here, we investigated the mechanism by which SLP65 interferes with PI3K signaling. We found that SLP65 induces the activity of the small GTPase RHOA, which activates PTEN, a negative regulator of PI3K signaling, by enabling its translocation to the plasma membrane. The essential role of RHOA is confirmed by the complete block in early B cell development in conditional RhoA-deficient mice. The RhoA-deficient progenitor B cells showed defects in activation of immunoglobulin gene rearrangement and fail to survive both in vitro and in vivo. Reconstituting the RhoA-deficient cells with RhoA or Foxo1, a transcription factor repressed by PI3K signaling and activated by PTEN, completely restores the survival defect. However, the defect in differentiation can only be restored by RhoA suggesting a unique role for RHOA in B cell generation and selection. In full agreement, conditional RhoA-deficient mice develop increased amounts of autoreactive antibodies with age. RHOA function is also required at later stage, as inactivation of RhoA in peripheral B cells or in a transformed mature B cell line resulted in cell loss. Together, these data show that RHOA is the key signaling factor for B cell development and function by providing a crucial SLP65-activated link between BCR signaling and activation of PTEN. Moreover, the identified essential role of RHOA for the survival of transformed B cells offers the opportunity for targeting B cell malignancies by blocking RHOA function.
Collapse
Affiliation(s)
| | - Hemin Faraidun
- Department of Molecular Immunology, Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Omar El Ayoubi
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Issame Outaleb
- Department of Molecular Immunology, Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Vera Schmid
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Hend Abdelrasoul
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Timm Amendt
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Ahmad Khadour
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Corinna Setz
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Katharina Göhring
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Karoline Lodd
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Christoffer Hitzing
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Alabbas Alkhatib
- Department of Molecular Immunology, Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Mayas Bilal
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | | | | | - Cord Herbert Brakebusch
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Niklas Engels
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Moumita Datta
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Elias Hobeika
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Ameera Alsadeq
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany
| | - Hassan Jumaa
- Institute of Immunology, Ulm University Medical Center, Ulm, Germany.,Department of Molecular Immunology, Faculty of Biology, Albert Ludwigs University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Santoro C, Gaudino G, Torella A, Piluso G, Perrotta S, Miraglia Del Giudice E, Nigro V, Grandone A. Intermittent macrothrombocytopenia in a novel patient with Takenouchi-Kosaki syndrome and review of literature. Eur J Med Genet 2021; 64:104358. [PMID: 34624555 DOI: 10.1016/j.ejmg.2021.104358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/07/2021] [Accepted: 10/03/2021] [Indexed: 11/28/2022]
Abstract
Takenouchi-Kosaki syndrome (TKS) is a recently delineated syndromic form of thrombocytopenia strictly related to an hot-spot missense variant, p.Tyr64Cys, in CDC42 (Cell Division Control protein 42). Herein we report an additional patient with the p.Tyr64Cys aminoacidic substitution who showed the well-defined phenotypical TKS features and an intermittent, very mild, macrothrombocytopenia at 10.7 years of age (93,000/mL), that was only retrospectively valorized. Outside of this value the PLT count had always been higher than 100,000/mL. We also review literature data from patients carrying this recurrent variant. Our female patient presented with prenatal onset of short stature and microcephaly, camptodactyly, heart defects, typical facial gestalt, developmental delay, and not specific brain abnormalities. After several genetic investigations (karyotype, CGH-Array, targeted NGS analysis for short stature genes), by whole exome sequencing we identified the p.Tyr64Cys in CDC42, occurring de novo. The case presented here provides further evidence that macrothrombocytopenia can be intermittent and thus it might escape attention of clinicians. Without this key feature, TKS clinical presentation can overlap other syndromic forms of short stature. Immunodeficiency, autoimmunity, and malignancies were recently reported in patients with the p.Tyr64Cys substitution, making imperative an early diagnosis of Takenouchi-Kosaki syndrome to organize the most proper follow-up of these pediatric patients. The whole exome sequencing can be a solving tool in the challenge to the rare diseases.
Collapse
Affiliation(s)
- Claudia Santoro
- Department of Women, Child, and General and Specialist Surgery, Naples, Italy; Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, Naples, Italy.
| | - Giuseppina Gaudino
- Department of Women, Child, and General and Specialist Surgery, Naples, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Giulio Piluso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silverio Perrotta
- Department of Women, Child, and General and Specialist Surgery, Naples, Italy
| | | | | | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples, Italy
| | - Anna Grandone
- Department of Women, Child, and General and Specialist Surgery, Naples, Italy
| |
Collapse
|
4
|
Hashim IF, Ahmad Mokhtar AM. Small Rho GTPases and their associated RhoGEFs mutations promote immunological defects in primary immunodeficiencies. Int J Biochem Cell Biol 2021; 137:106034. [PMID: 34216756 DOI: 10.1016/j.biocel.2021.106034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/14/2021] [Accepted: 06/28/2021] [Indexed: 01/10/2023]
Abstract
Primary immunodeficiencies (PIDs) are associated with deleterious mutations of genes that encode proteins involved in actin cytoskeleton reorganisation. This deficiency affects haematopoietic cells. PID results in the defective function of immune cells, such as impaired chemokine-induced motility, receptor signalling, development and maturation. Some of the genes mutated in PIDs are related to small Ras homologous (Rho) guanosine triphosphatase (GTPase), one of the families of the Ras superfamily. Most of these genes act as molecular switches by cycling between active guanosine triphosphate-bound and inactive guanosine diphosphate-bound forms to control multiple cellular functions. They are best studied for their role in promoting cytoskeleton reorganisation, cell adhesion and motility. Currently, only three small Rho GTPases, namely, Rac2, Cdc42 and RhoH, have been identified in PIDs. However, several other Rho small G proteins might also contribute to the deregulation and phenotype observed in PIDs. Their contribution in PIDs may involve their main regulator, Rho guanine nucleotide exchange factors such as DOCK2 and DOCK8, wherein mutations may result in the impairment of small Rho GTPase activation. Thus, this review outlines the potential contribution of several small Rho GTPases to the promotion of PIDs.
Collapse
Affiliation(s)
- Ilie Fadzilah Hashim
- Primary Immunodeficiency Diseases Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, 13200, Malaysia.
| | - Ana Masara Ahmad Mokhtar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia.
| |
Collapse
|
5
|
Nikolopoulou PA, Koufaki MA, Kostourou V. The Adhesome Network: Key Components Shaping the Tumour Stroma. Cancers (Basel) 2021; 13:525. [PMID: 33573141 PMCID: PMC7866493 DOI: 10.3390/cancers13030525] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Beyond the conventional perception of solid tumours as mere masses of cancer cells, advanced cancer research focuses on the complex contributions of tumour-associated host cells that are known as "tumour microenvironment" (TME). It has been long appreciated that the tumour stroma, composed mainly of blood vessels, cancer-associated fibroblasts and immune cells, together with the extracellular matrix (ECM), define the tumour architecture and influence cancer cell properties. Besides soluble cues, that mediate the crosstalk between tumour and stroma cells, cell adhesion to ECM arises as a crucial determinant in cancer progression. In this review, we discuss how adhesome, the intracellular protein network formed at cell adhesions, regulate the TME and control malignancy. The role of adhesome extends beyond the physical attachment of cells to ECM and the regulation of cytoskeletal remodelling and acts as a signalling and mechanosensing hub, orchestrating cellular responses that shape the tumour milieu.
Collapse
Affiliation(s)
| | | | - Vassiliki Kostourou
- Biomedical Sciences Research Centre “Alexander Fleming”, Institute of Bioinnovation, 34 Fleming Str., 16672 Vari-Athens, Greece; (P.A.N.); (M.A.K.)
| |
Collapse
|
6
|
Aihara R, Kunimura K, Watanabe M, Uruno T, Yamane N, Sakurai T, Sakata D, Nishimura F, Fukui Y. DOCK8 controls survival of group 3 innate lymphoid cells in the gut through Cdc42 activation. Int Immunol 2020; 33:149-160. [PMID: 32986079 DOI: 10.1093/intimm/dxaa066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Innate lymphoid cells (ILCs) are a family of developmentally related leukocytes that rapidly secrete polarized sets of cytokines to combat infection and promote tissue repair at mucosal barriers. Among them, group 3 ILCs (ILC3s) play an important role in maintenance of the gut homeostasis by producing IL-22, and their development and function critically depend on the transcription factor RORγt. Although recent evidence indicates that RORγt+ ILC3s are reduced in the gut in the absence of the Cdc42 activator DOCK8 (dedicator of cytokinesis 8), the underlying mechanism remains unclear. We found that genetic deletion of Dock8 in RORγt+-lineage cells markedly reduced ILC3s in the lamina propria of the small intestine. By analyzing BrdU incorporation, it was revealed that DOCK8 deficiency did not affect the cell proliferation. Furthermore, when lineage marker-negative (Lin-) α4β7+ CD127+ RORγt- fetal liver cells were cultured with OP9 stromal cells in the presence of stem cell factor (SCF) and IL-7 in vitro, RORγt+ ILC3s normally developed irrespective of DOCK8 expression. However, DOCK8-deficient ILC3s exhibited a severe defect in survival of ILC3s under the condition with or without IL-7. Similar defects were observed when we analyzed Dock8VAGR mice having mutations in the catalytic center of DOCK8, thereby failing to activate Cdc42. Thus, DOCK8 acts in cell-autonomous manner to control survival of ILC3s in the gut through Cdc42 activation.
Collapse
Affiliation(s)
- Ryosuke Aihara
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation.,Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Kazufumi Kunimura
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Mayuki Watanabe
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Takehito Uruno
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Nana Yamane
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Tetsuya Sakurai
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Daiji Sakata
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Fusanori Nishimura
- Section of Periodontology, Division of Oral Rehabilitation, Faculty of Dental Science, Kyushu University, Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yoshinori Fukui
- Division of Immunogenetics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| |
Collapse
|
7
|
Lindner SE, Egelston CA, Huard SM, Lee PP, Wang LD. Arhgap25 Deficiency Leads to Decreased Numbers of Peripheral Blood B Cells and Defective Germinal Center Reactions. Immunohorizons 2020; 4:274-281. [PMID: 32434881 DOI: 10.4049/immunohorizons.2000021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/05/2020] [Indexed: 02/03/2023] Open
Abstract
Rho family GTPases are critical for normal B cell development and function, and their activity is regulated by a large and complex network of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). However, the role of GAPs in B cell development is poorly understood. In this study, we show that the novel Rac-GAP ARHGAP25 is important for B cell development in mice in a CXCR4-dependent manner. We show that Arhgap25 deficiency in mice leads to a significant decrease in peripheral blood B cell numbers as well as defects in mature B cell differentiation. Arhgap25-/- B cells respond to Ag stimulation in vitro and in vivo but have impaired germinal center formation and decreased IgG1 class switching. Additionally, Arhgap25-/- B cells show evidence of increased baseline motility and augmented chemotaxis to CXCL12. Taken together, these studies demonstrate an important role for Arhgap25 in peripheral B cell development and Ag response.
Collapse
Affiliation(s)
- Silke E Lindner
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010; and
| | - Colt A Egelston
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010; and
| | - Stephanie M Huard
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010; and
| | - Peter P Lee
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010; and
| | - Leo D Wang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010; and .,Department of Pediatrics, City of Hope National Medical Center, Duarte, CA 91010
| |
Collapse
|
8
|
He T, Huang Y, Ling J, Yang J. A New Patient with NOCARH Syndrome Due to CDC42 Defect. J Clin Immunol 2020; 40:571-575. [DOI: 10.1007/s10875-020-00786-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/29/2020] [Indexed: 01/23/2023]
|
9
|
Nguyen P, Chakrabarti J, Li Y, Kalim KW, Zhang M, Zhang L, Zheng Y, Guo F. Rational Targeting of Cdc42 Overcomes Drug Resistance of Multiple Myeloma. Front Oncol 2019; 9:958. [PMID: 31632904 PMCID: PMC6779689 DOI: 10.3389/fonc.2019.00958] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/10/2019] [Indexed: 12/03/2022] Open
Abstract
Multiple myeloma (MM) drug resistance highlights a need for alternative therapeutic strategies. In this study, we show that CASIN, a selective inhibitor of cell division cycle 42 (Cdc42) GTPase, inhibited proliferation and survival of melphalan/bortezomib-resistant MM cells more profoundly than that of the sensitive cells. Furthermore, CASIN was more potent than melphalan/bortezomib in inhibiting melphalan/bortezomib-resistant cells. In addition, CASIN sensitized melphalan/bortezomib-resistant cells to this drug combination. Mechanistically, Cdc42 activity was higher in melphalan/bortezomib-resistant cells than that in the sensitive cells. CASIN inhibited mono-ubiquitination of Fanconi anemia (FA) complementation group D2 (FANCD2) of the FA DNA damage repair pathway in melphalan-resistant but not melphalan-sensitive cells, thereby sensitizing melphalan-resistant cells to DNA damage. CASIN suppressed epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), and extracellular signal-regulated kinase (ERK) activities to a larger extent in bortezomib-resistant than in melphalan-sensitive cells. Reconstitution of ERK activity partially protected CASIN-treated bortezomib-resistant cells from death, suggesting that CASIN-induced killing is attributable to suppression of ERK. Importantly, CASIN extended the lifespan of mouse xenografts of bortezomib-resistant cells and caused apoptosis of myeloma cells from bortezomib-resistant MM patients. Finally, CASIN had negligible side effects on peripheral blood mononuclear cells (PBMC) from healthy human subjects and normal B cells. Our data provide a proof of concept demonstration that rational targeting of Cdc42 represents a promising approach to overcome MM drug resistance.
Collapse
Affiliation(s)
- Phuong Nguyen
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jayati Chakrabarti
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Yuan Li
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Khalid W Kalim
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Mengnan Zhang
- Huiqiao Medical Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Zhang
- Key Laboratory of Construction and Detection in Tissue Engineering of Guangdong Province, Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
10
|
He M, Westerberg LS. Congenital Defects in Actin Dynamics of Germinal Center B Cells. Front Immunol 2019; 10:296. [PMID: 30894852 PMCID: PMC6414452 DOI: 10.3389/fimmu.2019.00296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/05/2019] [Indexed: 01/02/2023] Open
Abstract
The germinal center (GC) is a transient anatomical structure formed during the adaptive immune response that leads to antibody affinity maturation and serological memory. Recent works using two-photon microscopy reveals that the GC is a highly dynamic structure and GC B cells are highly motile. An efficient selection of high affinity B cells clones within the GC crucially relies on the interplay of proliferation, genome editing, cell-cell interaction, and migration. All these processes require actin cytoskeleton rearrangement to be well-coordinated. Dysregulated actin dynamics may impede on multiple stages during B cell affinity maturation, which could lead to aberrant GC response and result in autoimmunity and B cell malignancy. This review mainly focuses on the recent works that investigate the role of actin regulators during the GC response.
Collapse
Affiliation(s)
- Minghui He
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lisa S. Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Ueyama T. Rho-Family Small GTPases: From Highly Polarized Sensory Neurons to Cancer Cells. Cells 2019; 8:cells8020092. [PMID: 30696065 PMCID: PMC6406560 DOI: 10.3390/cells8020092] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases of the Rho-family (Rho-family GTPases) have various physiological functions, including cytoskeletal regulation, cell polarity establishment, cell proliferation and motility, transcription, reactive oxygen species (ROS) production, and tumorigenesis. A relatively large number of downstream targets of Rho-family GTPases have been reported for in vitro studies. However, only a small number of signal pathways have been established at the in vivo level. Cumulative evidence for the functions of Rho-family GTPases has been reported for in vivo studies using genetically engineered mouse models. It was based on different cell- and tissue-specific conditional genes targeting mice. In this review, we introduce recent advances in in vivo studies, including human patient trials on Rho-family GTPases, focusing on highly polarized sensory organs, such as the cochlea, which is the primary hearing organ, host defenses involving reactive oxygen species (ROS) production, and tumorigenesis (especially associated with RAC, novel RAC1-GSPT1 signaling, RHOA, and RHOBTB2).
Collapse
Affiliation(s)
- Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan.
| |
Collapse
|
12
|
Epithelial to Mesenchymal transition, eIF2α phosphorylation and Hsp70 expression enable greater tolerance in A549 cells to TiO 2 over ZnO nanoparticles. Sci Rep 2019; 9:436. [PMID: 30679528 PMCID: PMC6346025 DOI: 10.1038/s41598-018-36716-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/03/2018] [Indexed: 12/15/2022] Open
Abstract
Type II alveolar cells are highly robust in nature, yet susceptible to aerosolized nanoparticles (NPs). Dysfunction in these specialized cells, can often lead to emphysema, edema, and pulmonary inflammation. Long-time exposure can also lead to dangerous epigenetic modifications and cancer. Among the manufactured nanomaterials, metal oxide nanoparticles are widely encountered owing to their wide range of applications. Scores of published literatures affirm ZnO NPs are more toxic to human alveolar cells than TiO2. However, signalling cascades deducing differences in human alveolar responses to their exposure is not well documented. With A549 cells, we have demonstrated that epithelial to mesenchymal transition and an increased duration of phosphorylation of eIF2α are crucial mechanisms routing better tolerance to TiO2 NP treatment over exposure to ZnO. The increased migratory capacity may help cells escape away from the zone of stress. Further, expression of chaperone such as Hsp70 is also enhanced during the same dose-time investigations. This is the first report of its kind. These novel findings could be successfully developed in the future to design relief strategies to alleviate metal oxide nanoparticle mediated stress.
Collapse
|
13
|
Burbage M, Keppler SJ. Shaping the humoral immune response: Actin regulators modulate antigen presentation and influence B-T interactions. Mol Immunol 2018; 101:370-376. [DOI: 10.1016/j.molimm.2018.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/18/2018] [Accepted: 07/21/2018] [Indexed: 12/22/2022]
|
14
|
Sakamoto A, Matsuda T, Kawaguchi K, Takaoka A, Maruyama M. Involvement of Zizimin2/3 in the age-related defect of peritoneal B-1a cells as a source of anti-bacterial IgM. Int Immunol 2018; 29:431-438. [PMID: 29099971 DOI: 10.1093/intimm/dxx054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 10/05/2017] [Indexed: 12/18/2022] Open
Abstract
Zizimin2 (Ziz2), also known as dedicator of cytokinesis 11 (DOCK11), is a guanine nucleotide exchange factor that is predominantly expressed in lymphoid tissues. Recent findings demonstrated that Ziz2 is involved in the development of B cells, including germinal centre B cells and marginal zone B cells. However, limited information is currently available on the roles of Ziz2 in B-1 cells, a B-cell subset that resides in body cavities and contributes to protection against foreign pathogens in a T-cell-independent manner. We herein show that Ziz2 and its widely expressed isoform Ziz3 (also known as DOCK10) may be involved in defective production of anti-bacterial IgM by aged B-1a cells, a CD5+ subset of B-1 cells. Natural IgM against typical bacterial epitopes was defectively produced by peritoneal B-1a cells from aged mice. The down-regulation of Ziz2/3 in B-1a cells appeared to be responsible for this defective IgM production, as demonstrated by Ziz2/3 double-knockout mice. Mechanistically, lower levels of basal AKT phosphorylation did not allow for the differentiation of Ziz2/3-deficient B-1a cells into plasma cells. Defective production of anti-bacterial IgM was not fully rescued by immunization, resulting in slightly weaker protection in Ziz2/3-deficient mice. Thus, the down-regulation of Ziz2/3 in B-1a cells may at least partly account for defective protection in aged mice.
Collapse
Affiliation(s)
- Akihiko Sakamoto
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan
| | - Takenori Matsuda
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan
| | - Koichiro Kawaguchi
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan
| | - Akinori Takaoka
- Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Mitsuo Maruyama
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka-cho, Obu 474-8511, Japan
| |
Collapse
|
15
|
Sun X, Wang J, Qin T, Zhang Y, Huang L, Niu L, Bai X, Jing Y, Xuan X, Miller H, Zhao Y, Song W, Tang X, Zhang Z, Zhao X, Liu C. Dock8 regulates BCR signaling and activation of memory B cells via WASP and CD19. Blood Adv 2018; 2:401-413. [PMID: 29472447 PMCID: PMC5858470 DOI: 10.1182/bloodadvances.2017007880] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 01/15/2018] [Indexed: 11/20/2022] Open
Abstract
Dock8 deficiency leads to immunodeficiency, and the role of Dock8 in B-cell development and function has been revealed; however, the role of DocK8 on B-cell receptor (BCR) signaling and function of memory B cells remains elusive. In this study, we generated a Dock8 knockout mouse model and collected peripheral blood mononuclear cells from Dock8 patients to study the effect of Dock8 deficiency on the BCR signaling and activation of memory B cells with confocal microscopy and total internal reflection fluorescence microscopy. The activation of key, positive upstream BCR signaling molecules, pCD19 and phosphorylated Brutons tyrosine kinase (pBtk), is reduced. Interestingly, the total protein and activated levels of Wiskott-Aldrich syndrome protein (WASP) are decreased in Dock8-deficient mouse B cells. Our previous research has shown that WASP positively regulates cd19 transcription; furthermore, we found that Dock8 regulates cd19 transcription. What we found in Dock8 patients can be a phenotype copied from Dock8 mice. The early activation of memory B cells from Dock8 patients is disrupted with reduced BCR clustering, B-cell spreading, and signalosome recruitment into the degree of naïve B cells, as well as the transition from naïve B cells to unswitched memory B cells. Overall, our study provides a novel mechanism for Dock8 regulation of BCR signaling by regulating cd19 transcription, as well as the underlying mechanism of noncompetence of memory B cells in Dock8 patients.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Chongqing Key Laboratory of Child Infection and Immunity
- Department of Pediatric Research Institute
- Ministry of Education Key Laboratory of Child Development and Disorders
- International Science and Technology Cooperation Base of Child Development and Critical Disorders
| | - Jinzhi Wang
- Chongqing Key Laboratory of Child Infection and Immunity
- Department of Pediatric Research Institute
- Ministry of Education Key Laboratory of Child Development and Disorders
- International Science and Technology Cooperation Base of Child Development and Critical Disorders
| | - Tao Qin
- Chongqing Key Laboratory of Child Infection and Immunity
- Department of Pediatric Research Institute
- Ministry of Education Key Laboratory of Child Development and Disorders
- International Science and Technology Cooperation Base of Child Development and Critical Disorders
| | | | - Lu Huang
- Chongqing Key Laboratory of Child Infection and Immunity
- Department of Pediatric Research Institute
- Ministry of Education Key Laboratory of Child Development and Disorders
- International Science and Technology Cooperation Base of Child Development and Critical Disorders
| | - Linlin Niu
- Chongqing Key Laboratory of Child Infection and Immunity
- Department of Pediatric Research Institute
- Ministry of Education Key Laboratory of Child Development and Disorders
- International Science and Technology Cooperation Base of Child Development and Critical Disorders
| | - Xiaoming Bai
- Department of Dermatology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yukai Jing
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Xingtian Xuan
- Chongqing Key Laboratory of Child Infection and Immunity
- Department of Pediatric Research Institute
- Ministry of Education Key Laboratory of Child Development and Disorders
- International Science and Technology Cooperation Base of Child Development and Critical Disorders
| | - Heather Miller
- Department of Intracellular Pathogens, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT; and
| | - Yao Zhao
- Chongqing Key Laboratory of Child Infection and Immunity
- Department of Pediatric Research Institute
- Ministry of Education Key Laboratory of Child Development and Disorders
- International Science and Technology Cooperation Base of Child Development and Critical Disorders
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD
| | - Xuemei Tang
- Chongqing Key Laboratory of Child Infection and Immunity
- Department of Pediatric Research Institute
- Ministry of Education Key Laboratory of Child Development and Disorders
- International Science and Technology Cooperation Base of Child Development and Critical Disorders
| | - Zhiyong Zhang
- Chongqing Key Laboratory of Child Infection and Immunity
- Department of Pediatric Research Institute
- Ministry of Education Key Laboratory of Child Development and Disorders
- International Science and Technology Cooperation Base of Child Development and Critical Disorders
| | - Xiaodong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity
- Department of Pediatric Research Institute
- Ministry of Education Key Laboratory of Child Development and Disorders
- International Science and Technology Cooperation Base of Child Development and Critical Disorders
| | - Chaohong Liu
- Chongqing Key Laboratory of Child Infection and Immunity
- Department of Pediatric Research Institute
- Ministry of Education Key Laboratory of Child Development and Disorders
- International Science and Technology Cooperation Base of Child Development and Critical Disorders
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Burbage M, Gasparrini F, Aggarwal S, Gaya M, Arnold J, Nair U, Way M, Bruckbauer A, Batista FD. Tuning of in vivo cognate B-T cell interactions by Intersectin 2 is required for effective anti-viral B cell immunity. eLife 2018; 7. [PMID: 29337666 PMCID: PMC5770159 DOI: 10.7554/elife.26556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
Wiskott-Aldrich syndrome (WAS) is an immune pathology associated with mutations in WAS protein (WASp) or in WASp interacting protein (WIP). Together with the small GTPase Cdc42 and other effectors, these proteins participate in the remodelling of the actin network downstream of BCR engagement. Here we show that mice lacking the adaptor protein ITSN2, a G-nucleotide exchange factor (GEF) for Cdc42 that also interacts with WASp and WIP, exhibited increased mortality during primary infection, incomplete protection after Flu vaccination, reduced germinal centre formation and impaired antibody responses to vaccination. These defects were found, at least in part, to be intrinsic to the B cell compartment. In vivo, ITSN2 deficient B cells show a reduction in the expression of SLAM, CD84 or ICOSL that correlates with a diminished ability to form long term conjugates with T cells, to proliferate in vivo, and to differentiate into germinal centre cells. In conclusion, our study not only revealed a key role for ITSN2 as an important regulator of adaptive immune-response during vaccination and viral infection but it is also likely to contribute to a better understanding of human immune pathologies.
Collapse
Affiliation(s)
- Marianne Burbage
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Francesca Gasparrini
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Shweta Aggarwal
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mauro Gaya
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom.,Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Johan Arnold
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Usha Nair
- Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Andreas Bruckbauer
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Facundo D Batista
- Lymphocyte Biology Laboratory, The Francis Crick Institute, London, United Kingdom.,Ragon Institute of MGH, MIT and Harvard, Cambridge, United States
| |
Collapse
|
17
|
A hot-spot mutation in CDC42 (p.Tyr64Cys) and novel phenotypes in the third patient with Takenouchi-Kosaki syndrome. J Hum Genet 2018; 63:387-390. [PMID: 29335451 DOI: 10.1038/s10038-017-0396-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 11/09/2022]
Abstract
Takenouchi-Kosaki syndrome (TKS) is a congenital malformation syndrome characterized by severe developmental delay, macrothrombocytopenia, camptodactyly, sensorineural hearing loss, and dysmorphic facial features. Recently, a heterozygous de novo mutation (p.Tyr64Cys) in the CDC42 gene, which encodes a key small GTP-binding protein of the Rho-subfamily, was identified in two unrelated patients with TKS. We herein report a third patient with TKS who had the same heterozygous CDC42 mutation. The phenotype of the patient was very similar to those of the two previously reported patients with TKS; however, she also demonstrated novel clinical manifestations, such as congenital hypothyroidism and immunological disturbance. Thus, despite the heterozygous mutation of CDC42 (p.Tyr64Cys) likely being a hot-spot mutation for TKS, its phenotype may be variable. Further studies and the accumulation of patients with CDC42 mutations are needed to clarify the phenotype in patients with TKS and the pathophysiological roles of the CDC42 mutation.
Collapse
|
18
|
Gerasimcik N, Westerberg LS, Severinson E. Methods to Study the Role of Cdc42, Rac1, and Rac2 in B-Cell Cytoskeletal Responses. Methods Mol Biol 2018; 1821:235-246. [PMID: 30062416 DOI: 10.1007/978-1-4939-8612-5_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
B-cell migration and adhesion are critical to form a germinal center response, the site for B-cell production of high-affinity antibodies. Here, we describe two assays that can be used to examine B-cell cytoskeletal responses needed during the germinal center response: B-cell spreading and homotypic adhesion. Spreading of B cells is dependent on Cdc42, while Rac1 and Rac2 are necessary for homotypic adhesion. These in vitro assays can be used to examine functional responses of B cells mediated by the cell cytoskeleton, for example when comparing B cells from different gene knockout animals.
Collapse
Affiliation(s)
- Natalija Gerasimcik
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Severinson
- Department of Molecular Biosciences, The Wenner Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
19
|
Chen X, Deng H, Churchill MJ, Luchsinger LL, Du X, Chu TH, Friedman RA, Middelhoff M, Ding H, Tailor YH, Wang ALE, Liu H, Niu Z, Wang H, Jiang Z, Renders S, Ho SH, Shah SV, Tishchenko P, Chang W, Swayne TC, Munteanu L, Califano A, Takahashi R, Nagar KK, Renz BW, Worthley DL, Westphalen CB, Hayakawa Y, Asfaha S, Borot F, Lin CS, Snoeck HW, Mukherjee S, Wang TC. Bone Marrow Myeloid Cells Regulate Myeloid-Biased Hematopoietic Stem Cells via a Histamine-Dependent Feedback Loop. Cell Stem Cell 2017; 21:747-760.e7. [PMID: 29198940 PMCID: PMC5975960 DOI: 10.1016/j.stem.2017.11.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/04/2017] [Accepted: 11/01/2017] [Indexed: 01/21/2023]
Abstract
Myeloid-biased hematopoietic stem cells (MB-HSCs) play critical roles in recovery from injury, but little is known about how they are regulated within the bone marrow niche. Here we describe an auto-/paracrine physiologic circuit that controls quiescence of MB-HSCs and hematopoietic progenitors marked by histidine decarboxylase (Hdc). Committed Hdc+ myeloid cells lie in close anatomical proximity to MB-HSCs and produce histamine, which activates the H2 receptor on MB-HSCs to promote their quiescence and self-renewal. Depleting histamine-producing cells enforces cell cycle entry, induces loss of serial transplant capacity, and sensitizes animals to chemotherapeutic injury. Increasing demand for myeloid cells via lipopolysaccharide (LPS) treatment specifically recruits MB-HSCs and progenitors into the cell cycle; cycling MB-HSCs fail to revert into quiescence in the absence of histamine feedback, leading to their depletion, while an H2 agonist protects MB-HSCs from depletion after sepsis. Thus, histamine couples lineage-specific physiological demands to intrinsically primed MB-HSCs to enforce homeostasis.
Collapse
Affiliation(s)
- Xiaowei Chen
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA
| | - Huan Deng
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA,Department of Pathology, and Molecular Medicine and Genetics Center, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330003, China
| | - Michael J. Churchill
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, New York, 10032, USA
| | - Larry L. Luchsinger
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, 10032, USA,Center for Human Development, Columbia University Medical Center, New York, New York 10032, USA
| | - Xing Du
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, New York, 10032, USA
| | - Timothy H. Chu
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA
| | - Richard A. Friedman
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA,Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, and Department of Biomedical Informatics, Columbia University Medical Center, New York, 10032, USA
| | - Moritz Middelhoff
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA
| | - Hongxu Ding
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, and Department of Biomedical Informatics, Columbia University Medical Center, New York, 10032, USA,Department of Systems Biology, Columbia University, New York, 10032, USA
| | - Yagnesh H. Tailor
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA
| | - Alexander L. E. Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA
| | - Haibo Liu
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA
| | - Zhengchuan Niu
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA,Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hongshan Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA,Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhenyu Jiang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA
| | - Simon Renders
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance and Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH) 69120 Heidelberg, Germany
| | - Siu-Hong Ho
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, 10032, USA
| | - Spandan V. Shah
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, 10032, USA
| | - Pavel Tishchenko
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, 10032, USA
| | - Wenju Chang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA,Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Theresa C. Swayne
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA
| | - Laura Munteanu
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA
| | - Andrea Califano
- Biomedical Informatics Shared Resource, Herbert Irving Comprehensive Cancer Center, and Department of Biomedical Informatics, Columbia University Medical Center, New York, 10032, USA,Department of Systems Biology, Columbia University, New York, 10032, USA
| | - Ryota Takahashi
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA
| | - Karan K. Nagar
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA
| | - Bernhard W. Renz
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA,Department of General, Visceral and Transplantation Surgery, Hospital of the University of Munich, D-81377, Munich, Germany
| | - Daniel L. Worthley
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA,School of Medicine, University of Adelaide, SA 5005, Australia,Cancer Theme, SAHMRI, Adelaide, SA 5005, Australia
| | - C. Benedikt Westphalen
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA,Department of Medicine III, University Hospital, LMU Munich, D-81377, Munich, Germany
| | - Yoku Hayakawa
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA,Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Samuel Asfaha
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA,Department of Medicine, University of Western Ontario, London, ON N6A 5W9, Canada
| | - Florence Borot
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, New York, 10032, USA
| | - Chyuan-Sheng Lin
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA,Department of Pathology and Cell Biology, Columbia University Medical Center, New York, 10032, USA
| | - Hans-Willem Snoeck
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, 10032, USA,Center for Human Development, Columbia University Medical Center, New York, New York 10032, USA,Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA,Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, USA
| | - Siddhartha Mukherjee
- Division of Hematology/Oncology, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Correspondence: (S.M.), (T.C.W.)
| | - Timothy C. Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, 10032, USA,Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, 10032, USA,Correspondence: (S.M.), (T.C.W.)
| |
Collapse
|
20
|
Gerasimčik N, He M, Dahlberg CIM, Kuznetsov NV, Severinson E, Westerberg LS. The Small Rho GTPases Rac1 and Rac2 Are Important for T-Cell Independent Antigen Responses and for Suppressing Switching to IgG2b in Mice. Front Immunol 2017; 8:1264. [PMID: 29056938 PMCID: PMC5635268 DOI: 10.3389/fimmu.2017.01264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/22/2017] [Indexed: 01/18/2023] Open
Abstract
The Rho GTPases Cdc42, Rac1, and Rac2 coordinate receptor signaling to cell adhesion, migration, and proliferation. Deletion of Rac1 and Rac2 early during B cell development leads to failure in B cell entry into the splenic white pulp. Here, we sought to understand the role of Rac1 and Rac2 in B cell functionality and during the humoral antibody response. To circumvent the migratory deficiency of B cells lacking both Rac1 and Rac2, we took the approach to inducibly delete Rac1 in Rac2−/− B cells in the spleen (Rac1BRac2−/− B cells). Rac1BRac2−/− mice had normal differentiation of splenic B cell populations, except for a reduction in marginal zone B cells. Rac1BRac2−/− B cells showed normal spreading response on antibody-coated layers, while both Rac2−/− and Rac1BRac2−/− B cells had reduced homotypic adhesion and decreased proliferative response when compared to wild-type B cells. Upon challenge with the T-cell-independent antigen TNP-conjugated lipopolysaccharide, Rac1BRac2−/− mice showed reduced antibody response. In contrast, in response to the T-cell-dependent antigen sheep red blood cells, Rac1BRac2−/− mice had increased serum titers of IgG1 and IgG2b. During in vitro Ig class switching, Rac1BRac2−/− B cells had elevated germline γ2b transcripts leading to increased Ig class switching to IgG2b. Our data suggest that Rac1 and Rac2 serve an important role in regulation of the B cell humoral immune response and in suppressing Ig class switching to IgG2b.
Collapse
Affiliation(s)
- Natalija Gerasimčik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Minghui He
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Carin I M Dahlberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Nikolai V Kuznetsov
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eva Severinson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
21
|
Burbage M, Keppler SJ, Montaner B, Mattila PK, Batista FD. The Small Rho GTPase TC10 Modulates B Cell Immune Responses. THE JOURNAL OF IMMUNOLOGY 2017; 199:1682-1695. [PMID: 28747344 PMCID: PMC5563166 DOI: 10.4049/jimmunol.1602167] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 06/27/2017] [Indexed: 11/28/2022]
Abstract
Rho family GTPases regulate diverse cellular events, such as cell motility, polarity, and vesicle traffic. Although a wealth of data exists on the canonical Rho GTPases RhoA, Rac1, and Cdc42, several other family members remain poorly studied. In B cells, we recently demonstrated a critical role for Cdc42 in plasma cell differentiation. In this study, we focus on a close homolog of Cdc42, TC10 (also known as RhoQ), and investigate its physiological role in B cells. By generating a TC10-deficient mouse model, we show that despite reduced total B cell numbers, B cell development in these mice occurs normally through distinct developmental stages. Upon immunization, IgM levels were reduced and, upon viral infection, germinal center responses were defective in TC10-deficient mice. BCR signaling was mildly affected, whereas cell migration remained normal in TC10-deficient B cells. Furthermore, by generating a TC10/Cdc42 double knockout mouse model, we found that TC10 can compensate for the lack of Cdc42 in TLR-induced cell activation and proliferation, so the two proteins play partly redundant roles. Taken together, by combining in vivo and in vitro analysis using TC10-deficient mice, we define the poorly studied Rho GTPase TC10 as an immunomodulatory molecule playing a role in physiological B cell responses.
Collapse
Affiliation(s)
- Marianne Burbage
- Lymphocyte Interaction Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Selina J Keppler
- Lymphocyte Interaction Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Beatriz Montaner
- Lymphocyte Interaction Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Pieta K Mattila
- Lymphocyte Interaction Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom; .,Institute of Biomedicine, Unit of Pathology and MediCity Research Laboratories, University of Turku, BioCity, 20520 Turku, Finland; and
| | - Facundo D Batista
- Lymphocyte Interaction Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| |
Collapse
|
22
|
Gerasimčik N, He M, Baptista MAP, Severinson E, Westerberg LS. Deletion of Dock10 in B Cells Results in Normal Development but a Mild Deficiency upon In Vivo and In Vitro Stimulations. Front Immunol 2017; 8:491. [PMID: 28507547 PMCID: PMC5410582 DOI: 10.3389/fimmu.2017.00491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/10/2017] [Indexed: 11/25/2022] Open
Abstract
We sought to identify genes necessary to induce cytoskeletal change in B cells. Using gene expression microarray, we compared B cells stimulated with interleukin-4 (IL-4) and anti-CD40 antibodies that induce B cell spreading, cell motility, tight aggregates, and extensive microvilli with B cells stimulated with lipopolysaccharide that lack these cytoskeletal changes. We identified 84 genes with 10-fold or greater expression in anti-CD40 + IL-4 stimulated B cells, one of these encoded the guanine nucleotide exchange factor (GEF) dedicator of cytokinesis 10 (Dock10). IL-4 selectively induced Dock10 expression in B cells. Using lacZ expression to monitor Dock10 promoter activity, we found that Dock10 was expressed at all stages during B cell development. However, specific deletion of Dock10 in B cells was associated with a mild phenotype with normal B cell development and normal B cell spreading, polarization, motility, chemotaxis, aggregation, and Ig class switching. Dock10-deficient B cells showed lower proliferation in response to anti-CD40 and IL-4 stimulation. Moreover, the IgG response to soluble antigen in vivo was lower when Dock10 was specifically deleted in B cells. Together, we found that most B cell responses were intact in the absence of Dock10. However, specific deletion of Dock10 in B cells was associated with a mild reduction in B cell activation in vitro and in vivo.
Collapse
Affiliation(s)
- Natalija Gerasimčik
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Department of Rheumatology and Inflammation Research, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Minghui He
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Marisa A P Baptista
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Eva Severinson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Lim VY, Zehentmeier S, Fistonich C, Pereira JP. A Chemoattractant-Guided Walk Through Lymphopoiesis: From Hematopoietic Stem Cells to Mature B Lymphocytes. Adv Immunol 2017; 134:47-88. [PMID: 28413023 DOI: 10.1016/bs.ai.2017.02.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
B lymphocytes develop from hematopoietic stem cells (HSCs) in specialized bone marrow niches composed of rare mesenchymal lineage stem/progenitor cells (MSPCs) and sinusoidal endothelial cells. These niches are defined by function and location: MSPCs are mostly perisinusoidal cells that together with a small subset of sinusoidal endothelial cells express stem cell factor, interleukin-7 (IL-7), IL-15, and the highest amounts of CXCL12 in bone marrow. Though rare, MSPCs are morphologically heterogeneous, highly reticular, and form a vast cellular network in the bone marrow parenchyma capable of interacting with large numbers of hematopoietic cells. HSCs, downstream multipotent progenitor cells, and common lymphoid progenitor cells utilize CXCR4 to fine-tune access to critical short-range growth factors provided by MSPCs for their long-term maintenance and/or multilineage differentiation. In later stages, developing B lymphocytes use CXCR4 to navigate the bone marrow parenchyma, and predominantly cannabinoid receptor-2 for positioning within bone marrow sinusoids, prior to being released into peripheral blood circulation. In the final stages of differentiation, transitional B cells migrate to the spleen where they preferentially undergo further rounds of differentiation until selection into the mature B cell pool occurs. This bottleneck purges up to 97% of all developing B cells in a peripheral selection process that is heavily controlled not only by the intensity of BCR signaling and access to BAFF but also by the proper functioning of the B cell motility machinery.
Collapse
Affiliation(s)
- Vivian Y Lim
- Yale University School of Medicine, New Haven, CT, United States
| | | | - Chris Fistonich
- Yale University School of Medicine, New Haven, CT, United States
| | - João P Pereira
- Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
24
|
Schreck C, Istvánffy R, Ziegenhain C, Sippenauer T, Ruf F, Henkel L, Gärtner F, Vieth B, Florian MC, Mende N, Taubenberger A, Prendergast Á, Wagner A, Pagel C, Grziwok S, Götze KS, Guck J, Dean DC, Massberg S, Essers M, Waskow C, Geiger H, Schiemann M, Peschel C, Enard W, Oostendorp RAJ. Niche WNT5A regulates the actin cytoskeleton during regeneration of hematopoietic stem cells. J Exp Med 2016; 214:165-181. [PMID: 27998927 PMCID: PMC5206491 DOI: 10.1084/jem.20151414] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 08/25/2016] [Accepted: 11/17/2016] [Indexed: 01/04/2023] Open
Abstract
Schreck et al. show that environmental Wnt5a regulates the transcriptome of HSCs during regeneration, particularly the expression of actin-regulatory mediators. In this manner, the niche affects engraftment through regulation of adhesion, migration, and homing of both normal and malignant cells. Here, we show that the Wnt5a-haploinsufficient niche regenerates dysfunctional HSCs, which do not successfully engraft in secondary recipients. RNA sequencing of the regenerated donor Lin− SCA-1+ KIT+ (LSK) cells shows dysregulated expression of ZEB1-associated genes involved in the small GTPase-dependent actin polymerization pathway. Misexpression of DOCK2, WAVE2, and activation of CDC42 results in apolar F-actin localization, leading to defects in adhesion, migration and homing of HSCs regenerated in a Wnt5a-haploinsufficient microenvironment. Moreover, these cells show increased differentiation in vitro, with rapid loss of HSC-enriched LSK cells. Our study further shows that the Wnt5a-haploinsufficient environment similarly affects BCR-ABLp185 leukemia-initiating cells, which fail to generate leukemia in 42% of the studied recipients, or to transfer leukemia to secondary hosts. Thus, we show that WNT5A in the bone marrow niche is required to regenerate HSCs and leukemic cells with functional ability to rearrange the actin cytoskeleton and engraft successfully.
Collapse
Affiliation(s)
- Christina Schreck
- Third Department of Internal Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Rouzanna Istvánffy
- Third Department of Internal Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Christoph Ziegenhain
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilian-Universität, 81377 Munich, Germany
| | - Theresa Sippenauer
- Third Department of Internal Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Franziska Ruf
- Third Department of Internal Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Lynette Henkel
- Department of Medical Microbiology, Immunology, and Hygiene, Technische Universität München, 81675 Munich, Germany
| | - Florian Gärtner
- Department of Internal Medicine I, Ludwig-Maximilian-Universität, 81377 Munich, Germany
| | - Beate Vieth
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilian-Universität, 81377 Munich, Germany
| | | | - Nicole Mende
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, TU Dresden, 01309 Dresden, Germany
| | | | - Áine Prendergast
- German Cancer Research Center (DKFZ) and Heidelberg Institute for Stem Cell Technology and Experimental Medicine, 69120 Heidelberg, Germany
| | - Alina Wagner
- Third Department of Internal Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Charlotta Pagel
- Third Department of Internal Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Sandra Grziwok
- Third Department of Internal Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Katharina S Götze
- Third Department of Internal Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.,German Cancer Consortium, DKFZ, 69120 Heidelberg, Germany
| | - Jochen Guck
- Biotechnology Center TU Dresden, 01307 Dresden, Germany
| | - Douglas C Dean
- Molecular Targets Program, James Brown Cancer Center, University of Louisville Health Sciences Center, Louisville, KY 40202
| | - Steffen Massberg
- Department of Internal Medicine I, Ludwig-Maximilian-Universität, 81377 Munich, Germany
| | - Marieke Essers
- German Cancer Research Center (DKFZ) and Heidelberg Institute for Stem Cell Technology and Experimental Medicine, 69120 Heidelberg, Germany
| | - Claudia Waskow
- Regeneration in Hematopoiesis and Animal Models in Hematopoiesis, Institute for Immunology, TU Dresden, 01309 Dresden, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, University of Ulm, 89081 Ulm, Germany
| | - Mathias Schiemann
- Department of Medical Microbiology, Immunology, and Hygiene, Technische Universität München, 81675 Munich, Germany
| | - Christian Peschel
- Third Department of Internal Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.,German Cancer Consortium, DKFZ, 69120 Heidelberg, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Department of Biology II, Ludwig-Maximilian-Universität, 81377 Munich, Germany
| | - Robert A J Oostendorp
- Third Department of Internal Medicine, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
25
|
Abstract
Autoimmune diseases are characterized by adaptive immune responses against self-antigens, including humoral responses resulting in the production of autoantibodies. Autoantibodies generate inflammation by activating complement and engaging Fcγ receptors (FcγRs). The inhibitory receptor FcγRIIB plays a central role in regulating the generation of autoantibodies and their effector functions, which include activation of innate immune cells and the cellular arm of the adaptive immune system, via effects on antigen presentation to CD4 T cells. Polymorphisms in FcγRIIB have been associated with susceptibility to autoimmunity but protection against infections in humans and mice. In the last few years, new mechanisms by which FcγRIIB controls the adaptive immune response have been described. Notably, FcγRIIB has been shown to regulate germinal center B cells and dendritic cell migration, with potential impact on the development of autoimmune diseases. Recent work has also highlighted the implication of FcγRIIB on the regulation of the innate immune system, via inhibition of Toll-like receptor- and complement receptor-mediated activation. This review will provide an update on the role of FcγRIIB in adaptive immune responses in autoimmunity, and then focus on their emerging function in innate immunity.
Collapse
Affiliation(s)
- Marion Espéli
- Inserm UMR_S996, LabEx LERMIT, Université Paris-Sud, Paris, France
| | - Kenneth G C Smith
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Menna R Clatworthy
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, UK
| |
Collapse
|
26
|
García-Serna AM, Alcaraz-García MJ, Ruiz-Lafuente N, Sebastián-Ruiz S, Martínez CM, Moya-Quiles MR, Minguela A, García-Alonso AM, Martín-Orozco E, Parrado A. Dock10 regulates CD23 expression and sustains B-cell lymphopoiesis in secondary lymphoid tissue. Immunobiology 2016; 221:1343-1350. [PMID: 27502165 DOI: 10.1016/j.imbio.2016.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/27/2016] [Accepted: 07/31/2016] [Indexed: 12/12/2022]
Abstract
Dock10, a guanine nucleotide exchange factor for the Rho GTPases Rac1 and Cdc42, affects cell morphology, membrane protrusive activity, and cell movement. Dock10 is prominently expressed in lymphoid tissue and upregulated by IL-4 in B cells. To investigate the physiological role of Dock10, WT mice and Dock10 KO mice were used. KO mice showed decreased numbers of B cells in spleen, both follicular B cells and marginal zone B cells, and in peripheral blood, but not in bone marrow. The antiapoptotic effect of IL-4 in vitro, the migratory response to CXCL13 or CCL21 in vitro, and the whole genome expression profile were intact in spleen B cells from KO mice. CD23, the low-affinity receptor for immunoglobulin E, was overexpressed on follicular B cells from KO mice, suggesting that Dock10 negatively regulates membrane CD23 expression. Negative regulation of CD23 expression by Dock10 could play a role in B cell maturation and function.
Collapse
Affiliation(s)
- Azahara-María García-Serna
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain; Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - María-José Alcaraz-García
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain; Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Natalia Ruiz-Lafuente
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain; Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Silvia Sebastián-Ruiz
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain; Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Carlos-Manuel Martínez
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain; Grupo de Cirugía Experimental, Centro de Investigación Biomédica en Red de enfermedades hepáticas y digestivas (CIBERedh), Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - María-Rosa Moya-Quiles
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain; Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Alfredo Minguela
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain; Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Ana-María García-Alonso
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain; Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Elena Martín-Orozco
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain; Departamento de Bioquímica y Biología Molecular B e Inmunología, Universidad de Murcia, Murcia, Spain
| | - Antonio Parrado
- Instituto Murciano de Investigación Biosanitaria Virgen de la Arrixaca (IMIB-Arrixaca), Murcia, Spain; Servicio de Inmunología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.
| |
Collapse
|
27
|
Ferreira ACDS, de-Freitas-Junior JCM, Morgado-Díaz JA, Ridley AJ, Klumb CE. Dual inhibition of histone deacetylases and phosphoinositide 3-kinases: effects on Burkitt lymphoma cell growth and migration. J Leukoc Biol 2016; 99:569-78. [PMID: 26561567 DOI: 10.1189/jlb.2a0415-162r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 10/19/2015] [Indexed: 02/04/2023] Open
Abstract
Burkitt lymphoma is a highly aggressive non-Hodgkin lymphoma that is characterized by MYC deregulation. Recently, the PI3K pathway has emerged as a cooperative prosurvival mechanism in Burkitt lymphoma. Despite the highly successful results of treatment that use high-dose chemotherapy regimens in pediatric Burkitt lymphoma patients, the survival rate of pediatric patients with progressive or recurrent disease is low. PI3Ks are also known to regulate cell migration, and abnormal cell migration may contribute to cancer progression and dissemination in Burkitt lymphoma. Little is known about Burkitt lymphoma cell migration, but the cooperation between MYC and PI3K in Burkitt lymphoma pathogenesis suggests that a drug combination could be used to target the different steps involved in Burkitt lymphoma cell dissemination and disease progression. The aim of this study was to investigate the effects of the histone deacetylase inhibitor suberoylanilide hydroxamic acid combined with the PI3K inhibitor LY294002 on Burkitt lymphoma cell growth and migration. The combination enhanced the cell growth inhibition and cell-cycle arrest induced by the PI3K inhibitor or histone deacetylase inhibitor individually. Moreover, histone deacetylase inhibitor/PI3K inhibitor cotreatment suppressed Burkitt lymphoma cell migration and decreased cell polarization, Akt and ERK1/2 phosphorylation, and leads to RhoB induction. In summary, the histone deacetylase inhibitor/PI3Ki combination inhibits cell proliferation and migration via alterations in PI3K signaling and histone deacetylase activity, which is involved in the acetylation of α-tubulin and the regulation of RhoB expression.
Collapse
Affiliation(s)
- Ana Carolina dos Santos Ferreira
- *Programa de Pesquisa em Hemato-Oncologia Molecular, Laboratório de Hemato-oncologia Celular e Molecular, and Programa de Biologia Celular, Laboratório de Biologia Estrutural-Instituto Nacional de Câncer, Rio de Janeiro, Brazil; and Randall Division of Cell and Molecular Biophysics, King's College London, United Kingdom
| | - Julio Cesar Madureira de-Freitas-Junior
- *Programa de Pesquisa em Hemato-Oncologia Molecular, Laboratório de Hemato-oncologia Celular e Molecular, and Programa de Biologia Celular, Laboratório de Biologia Estrutural-Instituto Nacional de Câncer, Rio de Janeiro, Brazil; and Randall Division of Cell and Molecular Biophysics, King's College London, United Kingdom
| | - Jose Andres Morgado-Díaz
- *Programa de Pesquisa em Hemato-Oncologia Molecular, Laboratório de Hemato-oncologia Celular e Molecular, and Programa de Biologia Celular, Laboratório de Biologia Estrutural-Instituto Nacional de Câncer, Rio de Janeiro, Brazil; and Randall Division of Cell and Molecular Biophysics, King's College London, United Kingdom
| | - Anne J Ridley
- *Programa de Pesquisa em Hemato-Oncologia Molecular, Laboratório de Hemato-oncologia Celular e Molecular, and Programa de Biologia Celular, Laboratório de Biologia Estrutural-Instituto Nacional de Câncer, Rio de Janeiro, Brazil; and Randall Division of Cell and Molecular Biophysics, King's College London, United Kingdom
| | - Claudete Esteves Klumb
- *Programa de Pesquisa em Hemato-Oncologia Molecular, Laboratório de Hemato-oncologia Celular e Molecular, and Programa de Biologia Celular, Laboratório de Biologia Estrutural-Instituto Nacional de Câncer, Rio de Janeiro, Brazil; and Randall Division of Cell and Molecular Biophysics, King's College London, United Kingdom
| |
Collapse
|
28
|
Schulz AM, Stutte S, Hogl S, Luckashenak N, Dudziak D, Leroy C, Forné I, Imhof A, Müller SA, Brakebusch CH, Lichtenthaler SF, Brocker T. Cdc42-dependent actin dynamics controls maturation and secretory activity of dendritic cells. J Cell Biol 2016; 211:553-67. [PMID: 26553928 PMCID: PMC4639873 DOI: 10.1083/jcb.201503128] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cdc42 control of actin dynamics keeps DCs in an immature state, and loss of Cdc42 activity facilitates secretion and rapid up-regulation of intracellular molecules to the cell surface, which shows that Cdc42 contributes to DC immunogenicity by regulating the DC actin cytoskeleton. Cell division cycle 42 (Cdc42) is a member of the Rho guanosine triphosphatase family and has pivotal functions in actin organization, cell migration, and proliferation. To further study the molecular mechanisms of dendritic cell (DC) regulation by Cdc42, we used Cdc42-deficient DCs. Cdc42 deficiency renders DCs phenotypically mature as they up-regulate the co-stimulatory molecule CD86 from intracellular storages to the cell surface. Cdc42 knockout DCs also accumulate high amounts of invariant chain–major histocompatibility complex (MHC) class II complexes at the cell surface, which cannot efficiently present peptide antigens (Ag’s) for priming of Ag-specific CD4 T cells. Proteome analyses showed a significant reduction in lysosomal MHC class II–processing proteins, such as cathepsins, which are lost from DCs by enhanced secretion. As these effects on DCs can be mimicked by chemical actin disruption, our results propose that Cdc42 control of actin dynamics keeps DCs in an immature state, and cessation of Cdc42 activity during DC maturation facilitates secretion as well as rapid up-regulation of intracellular molecules to the cell surface.
Collapse
Affiliation(s)
- Anna M Schulz
- Institute for Immunology, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Susanne Stutte
- Institute for Immunology, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Sebastian Hogl
- Deutsches Zentrum für Neurodegenerative Erkrankungen, 81377 Munich, Germany
| | - Nancy Luckashenak
- Institute for Immunology, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Diana Dudziak
- Department of Dermatology, University Hospital of Erlangen, 91052 Erlangen, Germany
| | - Céline Leroy
- Institute for Immunology, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Ignasi Forné
- Adolf Butenandt Institute, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Axel Imhof
- Adolf Butenandt Institute, Ludwig Maximilians University Munich, 80336 Munich, Germany
| | - Stephan A Müller
- Deutsches Zentrum für Neurodegenerative Erkrankungen, 81377 Munich, Germany
| | - Cord H Brakebusch
- Molecular Pathology Section, Biotech Research and Innovation Center, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stefan F Lichtenthaler
- Munich Cluster for Systems Neurology, Ludwig Maximilians University Munich, 80336 Munich, Germany Deutsches Zentrum für Neurodegenerative Erkrankungen, 81377 Munich, Germany Neuroproteomics, Klinikum rechts der Isar, Institute for Advanced Study, Technische Universität München, 80333 Munich, Germany
| | - Thomas Brocker
- Institute for Immunology, Ludwig Maximilians University Munich, 80336 Munich, Germany
| |
Collapse
|
29
|
Yuseff MI, Lennon-Duménil AM. B Cells use Conserved Polarity Cues to Regulate Their Antigen Processing and Presentation Functions. Front Immunol 2015; 6:251. [PMID: 26074919 PMCID: PMC4445385 DOI: 10.3389/fimmu.2015.00251] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/07/2015] [Indexed: 11/13/2022] Open
Abstract
The ability of B cells to produce high-affinity antibodies and to establish immunological memory in response to a wide range of pathogenic antigens is an essential part of the adaptive immune response. The initial step that triggers a humoral immune response involves the acquisition of antigens by B cells via their surface immunoglobulin, the B cell receptor (BCR). BCR-engaged antigens are transported into specialized lysosomal compartments where proteolysis and production of MHC class II-peptide complexes occur, a process referred to as antigen processing. Expression of MHC class II complexes at the B cell surface allows them to interact with T cells and to receive their help to become fully activated. In this review, we describe how B cells rely on conserved cell polarity mechanisms to coordinate local proteolytic secretion and mechanical forces at the B cell synapse enabling them to efficiently acquire and present extracellular antigens. We foresee that the mechanisms that dictate B cell activation can be used to tune B cell responses in the context of autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Maria-Isabel Yuseff
- Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile , Santiago , Chile
| | | |
Collapse
|
30
|
Gerasimcik N, Dahlberg CIM, Baptista MAP, Massaad MJ, Geha RS, Westerberg LS, Severinson E. The Rho GTPase Cdc42 Is Essential for the Activation and Function of Mature B Cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:4750-8. [PMID: 25870239 DOI: 10.4049/jimmunol.1401634] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
The Rho GTPase Cdc42 coordinates regulation of the actin and the microtubule cytoskeleton by binding and activating the Wiskott-Aldrich syndrome protein. We sought to define the role of intrinsic expression of Cdc42 by mature B cells in their activation and function. Mice with inducible deletion of Cdc42 in mature B cells formed smaller germinal centers and had a reduced Ab response, mostly of low affinity to T cell-dependent Ag, compared with wild-type (WT) controls. Spreading formation of long protrusions that contain F-actin, microtubules, and Cdc42-interacting protein 4, and assumption of a dendritic cell morphology in response to anti-CD40 plus IL-4 were impaired in Cdc42-deficient B cells compared with WT B cells. Cdc42-deficient B cells had an intact migratory response to chemokine in vitro, but their homing to the B cell follicles in the spleen in vivo was significantly impaired. Cdc42-deficient B cells induced a skewed cytokine response in CD4(+) T cells, compared with WT B cells. Our results demonstrate a critical role for Cdc42 in the motility of mature B cells, their cognate interaction with T cells, and their differentiation into Ab-producing cells.
Collapse
Affiliation(s)
- Natalija Gerasimcik
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Carin I M Dahlberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Marisa A P Baptista
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Michel J Massaad
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115; and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital, Boston, MA 02115; and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Eva Severinson
- Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden;
| |
Collapse
|
31
|
Matsuda T, Yanase S, Takaoka A, Maruyama M. The immunosenescence-related gene Zizimin2 is associated with early bone marrow B cell development and marginal zone B cell formation. Immun Ageing 2015; 12:1. [PMID: 25729399 PMCID: PMC4343071 DOI: 10.1186/s12979-015-0028-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/24/2015] [Indexed: 12/24/2022]
Abstract
We originally cloned and identified murine Zizimin2 (Ziz2, Dock11) as a guanine nucleotide exchange factor (GEF) for Cdc42 and demonstrated that it activated the formation of filopodia. Since its expression pattern is restricted in immune tissues and Rho GTPases such as Cdc42 function in B cell development and immune responses, we expected Ziz2 to also be associated with B cell development and immune responses. However, the function of Ziz2 has not yet been fully examined in vivo. We also recently discovered that Ziz2 expression levels in immune tissues were reduced with aging in the mouse, suggesting that its expression is also associated with the mechanisms of immuno-senescence. To gain insights into the mechanisms underlying immuno-senescence, we generated Ziz2 knock out (KO) mice and examined the functions of Ziz2 in B cell development and immune responses. We also obtained Zizimin3 (Ziz3; Dock10) KO mice and examined the functions of Ziz3. The results revealed that Ziz2 KO mice had a higher percentage of early bone marrow B cells (Fraction A), but a reduced fraction of marginal zone (MZ) B cells. In addition, an examination of B cell-specific Ziz2 KO mice revealed that Ziz2 was intrinsically required for MZ B cell development, but not for mature follicular B cells. However, immune responses against NP-CGG (T cell-dependent), TNP-LPS (T cell-independent, TI, type I), and TNP-Ficoll (TI, type II) were not altered in KO mice. We finally demonstrated that CD1d-positive MZ B cell region outside CD169-positive marginal metallophilic macrophages (MMM) was narrowed in Ziz2 KO mice. Furthermore, MMM morphology appeared to be altered in Ziz2 KO mice. In conclusion, we herein showed that Ziz2 was associated with early bone marrow B cell development, MZ B cell formation, MZ B number/localization around MZ, and MMM morphology which may explain in part the mechanism underlying immuno-senescence.
Collapse
Affiliation(s)
- Takenori Matsuda
- />Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi 474-8511 Japan
| | - Shougo Yanase
- />Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi 474-8511 Japan
| | - Akinori Takaoka
- />Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita15 Nishi7, Kita-ku, Sapporo 060-0815 Japan
| | - Mitsuo Maruyama
- />Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi 474-8511 Japan
| |
Collapse
|
32
|
Burbage M, Keppler SJ, Gasparrini F, Martínez-Martín N, Gaya M, Feest C, Domart MC, Brakebusch C, Collinson L, Bruckbauer A, Batista FD. Cdc42 is a key regulator of B cell differentiation and is required for antiviral humoral immunity. J Exp Med 2015; 212:53-72. [PMID: 25547673 PMCID: PMC4291523 DOI: 10.1084/jem.20141143] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022] Open
Abstract
The small Rho GTPase Cdc42, known to interact with Wiskott-Aldrich syndrome (WAS) protein, is an important regulator of actin remodeling. Here, we show that genetic ablation of Cdc42 exclusively in the B cell lineage is sufficient to render mice unable to mount antibody responses. Indeed Cdc42-deficient mice are incapable of forming germinal centers or generating plasma B cells upon either viral infection or immunization. Such severe immune deficiency is caused by multiple and profound B cell abnormalities, including early blocks during B cell development; impaired antigen-driven BCR signaling and actin remodeling; defective antigen presentation and in vivo interaction with T cells; and a severe B cell-intrinsic block in plasma cell differentiation. Thus, our study presents a new perspective on Cdc42 as key regulator of B cell physiology.
Collapse
Affiliation(s)
- Marianne Burbage
- Lymphocyte Interaction Laboratory, Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY, England, UK
| | - Selina J Keppler
- Lymphocyte Interaction Laboratory, Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY, England, UK
| | - Francesca Gasparrini
- Lymphocyte Interaction Laboratory, Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY, England, UK
| | - Nuria Martínez-Martín
- Lymphocyte Interaction Laboratory, Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY, England, UK
| | - Mauro Gaya
- Lymphocyte Interaction Laboratory, Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY, England, UK
| | - Christoph Feest
- Lymphocyte Interaction Laboratory, Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY, England, UK
| | - Marie-Charlotte Domart
- Lymphocyte Interaction Laboratory, Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY, England, UK
| | - Cord Brakebusch
- Biomedical Institute, Biotech Research and Innovation Centre, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lucy Collinson
- Lymphocyte Interaction Laboratory, Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY, England, UK
| | - Andreas Bruckbauer
- Lymphocyte Interaction Laboratory, Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY, England, UK
| | - Facundo D Batista
- Lymphocyte Interaction Laboratory, Electron Microscopy Unit, London Research Institute, Cancer Research UK, London WC2A 3LY, England, UK
| |
Collapse
|
33
|
Song Y, Jiang J, Vermeren S, Tong W. ARAP3 functions in hematopoietic stem cells. PLoS One 2014; 9:e116107. [PMID: 25542002 PMCID: PMC4277471 DOI: 10.1371/journal.pone.0116107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 12/05/2014] [Indexed: 11/25/2022] Open
Abstract
ARAP3 is a GTPase-activating protein (GAP) that inactivates Arf6 and RhoA small GTPases. ARAP3 deficiency in mice causes a sprouting angiogenic defect resulting in embryonic lethality by E11. Mice with an ARAP3 R302,303A mutation (Arap3KI/KI) that prevents activation by phosphoinositide-3-kinase (PI3K) have a similar angiogenic phenotype, although some animals survive to adulthood. Here, we report that hematopoietic stem cells (HSCs) from rare adult Arap3KI/KI bone marrow are compromised in their ability to reconstitute recipient mice and to self-renew. To elucidate the potential cell-autonomous and non-cell-autonomous roles of ARAP3 in hematopoiesis, we conditionally deleted Arap3 in hematopoietic cells and in several cell types within the HSC niche. Excision of Arap3 in hematopoietic cells using Vav1-Cre does not alter the ability of ARAP3-deficient progenitor cells to proliferate and differentiate in vitro or ARAP3-deficient HSCs to provide multi-lineage reconstitution and to undergo self-renewal in vivo. Thus, our data suggest that ARAP3 does not play a cell-autonomous role in HSPCs. Deletion of Arap3 in osteoblasts and mesenchymal stromal cells using Prx1-Cre resulted in no discernable phenotypes in hematopoietic development or HSC homeostasis in adult mice. In contrast, deletion of Arap3 using vascular endothelial cadherin (VEC or Cdh5)-driven Cre resulted in embryonic lethality, however HSCs from surviving adult mice were largely normal. Reverse transplantations into VEC-driven Arap3 conditional knockout mice revealed no discernable difference in HSC frequencies or function in comparison to control mice. Taken together, our investigation suggests that despite a critical role for ARAP3 in embryonic vascular development, its loss in endothelial cells minimally impacts HSCs in adult bone marrow.
Collapse
Affiliation(s)
- Yiwen Song
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Jing Jiang
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Sonja Vermeren
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, The University of Edinburgh, United Kingdom
| | - Wei Tong
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
34
|
KISHIMOTO MAYUKO, MATSUDA TAKENORI, YANASE SHOUGO, KATSUMI AKIRA, SUZUKI NOBUAKI, IKEJIRI MAKOTO, TAKAGI AKIRA, IKAWA MASAHITO, KOJIMA TETSUHITO, KUNISHIMA SHINJI, KIYOI HITOSHI, NAOE TOMOKI, MATSUSHITA TADASHI, MARUYAMA MITSUO. Rhof promotes murine marginal zone B cell development. NAGOYA JOURNAL OF MEDICAL SCIENCE 2014; 76:293-305. [PMID: 25741038 PMCID: PMC4345693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/12/2014] [Indexed: 11/03/2022]
Abstract
RhoF is a member of the Rho GTPase family that has been implicated in various cell functions including long filopodia formation, adhesion, and migration of cells. Although RhoF is expressed in lymphoid tissues, the roles of RhoF in B cell development remain largely unclear. On the other hand, other members of the Rho GTPase family, such as Cdc42, RhoA, and Rac, have been intensively studied and are known to be required for B cell development in the bone marrow and spleen. We hypothesized that RhoF is also involved in B cell development. To examine our hypothesis, we analyzed B cell development in RhoF knockout (KO) mice and found a significant reduction in marginal zone (MZ) B cells in the spleen, although T cell development in the thymus and spleen was not affected. Consistent with these results, the width of the MZ B cell region in the spleen was significantly reduced in the RhoF KO mice. However, the antigen-specific antibody titer of IgM and IgG3 after MZ B cell-specific antigen (T cell-independent antigen, type I) stimulation was not affected by RhoF deletion. Furthermore, we demonstrated that RhoF was dispensable for stromal cell-derived factor-1α- and B lymphocyte chemoattractant-induced B cell migration. These results suggest that RhoF promotes MZ B cell development in the spleen.
Collapse
Affiliation(s)
- MAYUKO KISHIMOTO
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan,Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan,Department of Clinical Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - TAKENORI MATSUDA
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - SHOUGO YANASE
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - AKIRA KATSUMI
- Department of Clinical Oncology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - NOBUAKI SUZUKI
- Department of Clinical Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - MAKOTO IKEJIRI
- Department of Molecular and Laboratory Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - AKIRA TAKAGI
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
| | - MASAHITO IKAWA
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - TETSUHITO KOJIMA
- Department of Medical Technology, Nagoya University School of Health Sciences, Nagoya, Japan
| | - SHINJI KUNISHIMA
- Department of Advanced Diagnosis, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - HITOSHI KIYOI
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - TOMOKI NAOE
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan,National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - TADASHI MATSUSHITA
- Department of Transfusion Medicine, Nagoya University Hospital, Nagoya, Japan
| | - MITSUO MARUYAMA
- Department of Mechanism of Aging, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan,Department of Aging Research, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
35
|
Bouma G, Carter NA, Recher M, Malinova D, Adriani M, Notarangelo LD, Burns SO, Mauri C, Thrasher AJ. Exacerbated experimental arthritis in Wiskott-Aldrich syndrome protein deficiency: modulatory role of regulatory B cells. Eur J Immunol 2014; 44:2692-702. [PMID: 24945741 PMCID: PMC4209796 DOI: 10.1002/eji.201344245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 04/27/2014] [Accepted: 06/11/2014] [Indexed: 12/19/2022]
Abstract
Patients deficient in the cytoskeletal regulator Wiskott–Aldrich syndrome protein (WASp) are predisposed to varied autoimmunity, suggesting it has an important controlling role in participating cells. IL-10-producing regulatory B (Breg) cells are emerging as important mediators of immunosuppressive activity. In experimental, antigen-induced arthritis WASp-deficient (WASp knockout [WAS KO]) mice developed exacerbated disease associated with decreased Breg cells and regulatory T (Treg) cells, but increased Th17 cells in knee-draining LNs. Arthritic WAS KO mice showed increased serum levels of B-cell-activating factor, while their B cells were unresponsive in terms of B-cell-activating factor induced survival and IL-10 production. Adoptive transfer of WT Breg cells ameliorated arthritis in WAS KO recipients and restored a normal balance of Treg and Th17 cells. Mice with B-cell-restricted WASp deficiency, however, did not develop exacerbated arthritis, despite exhibiting reduced Breg- and Treg-cell numbers during active disease, and Th17 cells were not increased over equivalent WT levels. These findings support a contributory role for defective Breg cells in the development of WAS-related autoimmunity, but demonstrate that functional competence in other regulatory populations can be compensatory. A properly regulated cytoskeleton is therefore important for normal Breg-cell activity and complementation of defects in this lineage is likely to have important therapeutic benefits.
Collapse
Affiliation(s)
- Gerben Bouma
- Molecular Immunology Unit, UCL Institute of Child Health, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li XW, Rees JS, Xue P, Zhang H, Hamaia SW, Sanderson B, Funk PE, Farndale RW, Lilley KS, Perrett S, Jackson AP. New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. J Biol Chem 2014; 289:14434-47. [PMID: 24706754 PMCID: PMC4031500 DOI: 10.1074/jbc.m113.529578] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the vertebrate immune system, each B-lymphocyte expresses a surface IgM-class B cell receptor (BCR). When cross-linked by antigen or anti-IgM antibody, the BCR accumulates with other proteins into distinct surface clusters that activate cell signaling, division, or apoptosis. However, the molecular composition of these clusters is not well defined. Here we describe a quantitative assay we call selective proteomic proximity labeling using tyramide (SPPLAT). It allows proteins in the immediate vicinity of a target to be selectively biotinylated, and hence isolated for mass spectrometry analysis. Using the chicken B cell line DT40 as a model, we use SPPLAT to provide the first proteomic analysis of any BCR cluster using proximity labeling. We detect known components of the BCR cluster, including integrins, together with proteins not previously thought to be BCR-associated. In particular, we identify the chicken B-lymphocyte allotypic marker chB6. We show that chB6 moves to within about 30–40 nm of the BCR following BCR cross-linking, and we show that cross-linking chB6 activates cell binding to integrin substrates laminin and gelatin. Our work provides new insights into the nature and composition of the BCR cluster, and confirms SPPLAT as a useful research tool in molecular and cellular proteomics.
Collapse
Affiliation(s)
- Xue-Wen Li
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China, the University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Johanna S Rees
- the Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, United Kingdom, the Cambridge Centre for Proteomics, Tennis Court Road, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Peng Xue
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Hong Zhang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Samir W Hamaia
- the Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Bailey Sanderson
- the Department of Biological Sciences, DePaul University, Chicago, Illinois 60604, and
| | - Phillip E Funk
- the Department of Biological Sciences, DePaul University, Chicago, Illinois 60604, and
| | - Richard W Farndale
- the Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Kathryn S Lilley
- the Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, United Kingdom, the Cambridge Centre for Proteomics, Tennis Court Road, University of Cambridge, Cambridge CB2 1QR, United Kingdom
| | - Sarah Perrett
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China,
| | - Antony P Jackson
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China, the Department of Biochemistry, Tennis Court Road, University of Cambridge, Cambridge CB2 1QW, United Kingdom,
| |
Collapse
|
37
|
Yuseff MI, Pierobon P, Reversat A, Lennon-Duménil AM. How B cells capture, process and present antigens: a crucial role for cell polarity. Nat Rev Immunol 2013; 13:475-86. [PMID: 23797063 DOI: 10.1038/nri3469] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
B cells are key components of the adaptive immune response. Their differentiation into either specific memory B cells or antibody-secreting plasma cells is a consequence of activation steps that involve the processing and presentation of antigens. The engagement of B cell receptors by surface-tethered antigens leads to the formation of an immunological synapse that coordinates cell signalling events and that promotes antigen uptake for presentation on MHC class II molecules. In this Review, we discuss membrane trafficking and the associated molecular mechanisms that are involved in antigen extraction and processing at the B cell synapse, and we highlight how B cells use cell polarity to coordinate the complex events that ultimately lead to efficient humoral responses.
Collapse
|
38
|
Abstract
INTRODUCTION The Rho GTPases are a family of proteins that control fundamental cellular processes in response to extracellular stimuli and internal programs. Rho GTPases function as molecular switches in which the GTP-bound proteins are active and GDP-bound proteins are inactive. This article will focus on one Rho family member, Cdc42, which is overexpressed in a number of human cancers, and which might provide new therapeutic targets in malignancies. AREAS COVERED In this article, the key regulators and effectors of Cdc42 and their molecular alterations are described. The complex interactions between the signaling cascades regulated by Cdc42 are also analyzed. EXPERT OPINION While mutations in Cdc42 have not been reported in human cancer, aberrant expression of Cdc42 has been reported in a variety of tumor types and in some instances has been correlated with poor prognosis. Recently, it has been shown that Cdc42 activation by oncogenic Ras is crucial for Ras-mediated tumorigenesis, suggesting that targeting Cdc42 or its effectors might be useful in tumors harboring activating Ras mutations.
Collapse
Affiliation(s)
- Luis E Arias-Romero
- Cancer Biology Program, Fox Chase Cancer Center , Philadelphia, PA , USA +1 215 728 5319 ; +1 215 728 3616 ;
| | | |
Collapse
|
39
|
Pothula S, Bazan HEP, Chandrasekher G. Regulation of Cdc42 expression and signaling is critical for promoting corneal epithelial wound healing. Invest Ophthalmol Vis Sci 2013; 54:5343-52. [PMID: 23833064 DOI: 10.1167/iovs.13-11955] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
PURPOSE Cdc42, a member of Rho GTPases (guanosine triphosphatases), participates in cytokine- and growth factor-controlled biological functions in mammalian tissues. Here, we examined Cdc42 role in corneal epithelial wound healing and the influence of hepatocyte, keratinocyte, and epidermal growth factor (HGF, KGF, and EGF)-mediated signaling on Cdc42. METHODS Epithelial wounds were created on the corneas of live rabbits by complete debridement and in rabbit corneal epithelial primary cultures through scratch injury. Cdc42 expression in cultures was suppressed using Cdc42 siRNA. Cdc42 activation was determined by pull-down assays with PAK-agarose beads. Cdc42 expression was analyzed by immunoblotting and immunofluorescence. Association of Cdc42 with cell-cycle proteins was identified by immunoprecipitation. RESULTS In rabbit corneas, significant increase in Cdc42 expression that occurred 2 to 4 days after the injury coincided with wound closure, and by 8 days the expression reached near basal levels. Silencing of Cdc42 expression in cultures caused inhibition of wound closure as a result of 60% to 75% decrease in epithelial migration and growth. HGF, KGF, and EGF increased Cdc2 expression, activation, and its phosphorylation on ser71. Inhibition of growth factor-mediated PI-3K signaling resulted in the downregulation of Cdc42 expression and its phosphorylation. Increased association of cell-cycle proteins p27(kip) and cyclin-dependent kinase 4 (CDK4) with Cdc42; and phosphorylated Cdc42 with plasma membrane leading edges was also observed in the presence of growth factors. CONCLUSIONS Cdc42 is an important regulator of corneal epithelial wound repair. To promote healing, Cdc42 may interact with receptor tyrosine kinase-activated signaling cascades that participate in cell migration and cell-cycle progression.
Collapse
Affiliation(s)
- Swetha Pothula
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota 57007, USA
| | | | | |
Collapse
|
40
|
Reedquist KA, Tak PP. Signal transduction pathways in chronic inflammatory autoimmune disease: small GTPases. Open Rheumatol J 2012; 6:259-72. [PMID: 23028410 PMCID: PMC3460313 DOI: 10.2174/1874312901206010259] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 01/28/2023] Open
Abstract
Ras superfamily small GTPases represent a wide and diverse class of intracellular signaling proteins that are highly conserved during evolution. These enzymes serve as key checkpoints in coupling antigen receptor, growth factor, cytokine and chemokine stimulation to cellular responses. Once activated, via their ability to regulate multiple downstream signaling pathways, small GTPases amplify and diversify signaling cascades which regulate cellular proliferation, survival, cytokine expression, trafficking and retention. Small GTPases, particularly members of the Ras, Rap, and Rho family, critically coordinate the function and interplay of immune and stromal cells during inflammatory respones, and increasing evidence indicates that alterations in small GTPase signaling contribute to the pathological behavior of these cell populations in human chronic inflammatory diseases such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Here, we review how Ras, Rap, and Rho family GTPases contribute to the biology of cell populations relevant to human chronic inflammatory disease, highlight recent advances in understanding how alterations in these pathways contribute to pathology in RA and SLE, and discuss new therapeutic strategies that may allow specific targeting of small GTPases in the clinic.
Collapse
Affiliation(s)
- Kris A Reedquist
- Division of Clinical Immunology and Rheumatology, Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | |
Collapse
|
41
|
Rho GTPase function in development: How in vivo models change our view. Exp Cell Res 2012; 318:1779-87. [DOI: 10.1016/j.yexcr.2012.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/07/2012] [Accepted: 05/10/2012] [Indexed: 12/16/2022]
|
42
|
Zhang S, Zhou X, Lang RA, Guo F. RhoA of the Rho family small GTPases is essential for B lymphocyte development. PLoS One 2012; 7:e33773. [PMID: 22438996 PMCID: PMC3306291 DOI: 10.1371/journal.pone.0033773] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 02/16/2012] [Indexed: 12/24/2022] Open
Abstract
RhoA is a member of the Rho family small GTPases that are implicated in various cell functions including proliferation and survival. However, the physiological role of RhoA in vivo remains largely unknown. Here, we deleted RhoA in the B cell and hematopoietic stem cell (HSC) populations in RhoAflox/flox mice with CD19 and Mx promoter-driven Cre expression, respectively. Deletion of RhoA by CD19Cre/+ significantly blocked B cell development in spleen, leading to a marked reduction in the number of transitional, marginal zone, and follicular B cells. Surprisingly, neither B cell proliferation in response to either LPS or B cell receptor (BCR) engagement nor B cell survival rate in vivo was affected by RhoA deletion. Furthermore, RhoA−/− B cells, like control cells, were rescued from apoptosis by BCR crosslinking in vitro. In contrast, RhoA deficiency led to a defect in B cell activating factor (BAFF)-mediated B cell survival that was associated with a dampened expression of BAFF receptor and a loss of BAFF-mediated Akt activation. Finally, HSC deletion of RhoA by Mx-Cre severely reduced proB/preB and immature B cell populations in bone marrow while common lymphoid progenitors were increased, indicating that RhoA is also required for B cell progenitor/precursor differentiation. Taken together, our results uncover an important role for RhoA at multiple stages of B cell development.
Collapse
Affiliation(s)
- Shuangmin Zhang
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Xuan Zhou
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Richard A. Lang
- Division of Pediatric Ophthalmology, Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
43
|
Yung S, Ledran M, Moreno-Gimeno I, Conesa A, Montaner D, Dopazo J, Dimmick I, Slater NJ, Marenah L, Real PJ, Paraskevopoulou I, Bisbal V, Burks D, Santibanez-Koref M, Moreno R, Mountford J, Menendez P, Armstrong L, Lako M. Large-scale transcriptional profiling and functional assays reveal important roles for Rho-GTPase signalling and SCL during haematopoietic differentiation of human embryonic stem cells. Hum Mol Genet 2011; 20:4932-46. [PMID: 21937587 DOI: 10.1093/hmg/ddr431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Understanding the transcriptional cues that direct differentiation of human embryonic stem cells (hESCs) and human-induced pluripotent stem cells to defined and functional cell types is essential for future clinical applications. In this study, we have compared transcriptional profiles of haematopoietic progenitors derived from hESCs at various developmental stages of a feeder- and serum-free differentiation method and show that the largest transcriptional changes occur during the first 4 days of differentiation. Data mining on the basis of molecular function revealed Rho-GTPase signalling as a key regulator of differentiation. Inhibition of this pathway resulted in a significant reduction in the numbers of emerging haematopoietic progenitors throughout the differentiation window, thereby uncovering a previously unappreciated role for Rho-GTPase signalling during human haematopoietic development. Our analysis indicated that SCL was the 11th most upregulated transcript during the first 4 days of the hESC differentiation process. Overexpression of SCL in hESCs promoted differentiation to meso-endodermal lineages, the emergence of haematopoietic and erythro-megakaryocytic progenitors and accelerated erythroid differentiation. Importantly, intrasplenic transplantation of SCL-overexpressing hESC-derived haematopoietic cells enhanced recovery from induced acute anaemia without significant cell engraftment, suggesting a paracrine-mediated effect.
Collapse
Affiliation(s)
- Sun Yung
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Polarized Secretion of Lysosomes at the B Cell Synapse Couples Antigen Extraction to Processing and Presentation. Immunity 2011; 35:361-74. [DOI: 10.1016/j.immuni.2011.07.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/30/2011] [Accepted: 07/08/2011] [Indexed: 11/17/2022]
|
45
|
Moon EY, Lee JH, Lee JW, Song JH, Pyo S. ROS/Epac1-mediated Rap1/NF-kappaB activation is required for the expression of BAFF in Raw264.7 murine macrophages. Cell Signal 2011; 23:1479-88. [PMID: 21596132 DOI: 10.1016/j.cellsig.2011.05.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/27/2011] [Accepted: 05/02/2011] [Indexed: 11/26/2022]
Abstract
B-cell activating factor (BAFF) plays a role for the maturation and the maintenance of B cells. Lipopolysaccharide (LPS) activates toll-like receptor 4 (TLR4)-dependent signal transduction, which resulted in BAFF expression through nuclear factor kappa B (NF-κB) activation. Here, we investigated whether BAFF expression could be regulated by p65 phosphorylation through the production of reactive oxygen species (ROS) or cyclic AMP (cAMP) in Raw264.7 murine macrophages. mBAFF expression was reduced by ROS scavengers and it was increased by dibutyl-cAMP, a cAMP analogue. mBAFF expression and mBAFF promoter activity were increased by co-transfection of p65 but they were reduced by p65-small interference (si) RNA. Serine (Ser) 276 phosphorylation of p65 was increased by LPS-mediated PKA activation or by the treatment with forskolin, adenylate cyclase activator and dibutyl-cAMP. In contrast, p65 phosphorylation at Ser276 was decreased by ROS scavengers. H(2)O(2) increased intracellular cAMP concentration, significantly. While no increase in p65 phosphorylation at Ser276 was detected by the treatment with H(2)O(2), CREB and p65 phosphorylation at Ser133 and Ser536 was observed, respectively. It implicates that p65 phosphorylation at Ser276 is independent of ROS-induced cAMP production. As another cAMP effector protein was cAMP-responsive guanine nucleotide exchange factor (Epac), a Rap GDP exchange factor, NF-κB was activated by the treatment with 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (CPT) that is an activator to Epac. Epac1-mediated Rap1 was activated by the treatment with H(2)O(2) but it was inhibited by ROS scavengers. CPT induced p65 phosphorylation at both Ser276 and Ser536. CPT also increased not only mBAFF expression but mBAFF promoter activity. Data demonstrate that TLR4-mediated mBAFF expression was resulted from the crosstalk of p65 phosphorylation at Ser536 and Ser276 through ROS- and/or cAMP-mediated signal transduction. It suggests for the first time that ROS/Epac1-mediated Rap1/NF-κB pathway could be required for BAFF expression.
Collapse
Affiliation(s)
- Eun-Yi Moon
- Department of Bioscience and Biotechnology, Sejong University, Seoul 143-747, Republic of Korea.
| | | | | | | | | |
Collapse
|
46
|
Guo F, Zhang S, Tripathi P, Mattner J, Phelan J, Sproles A, Mo J, Wills-Karp M, Grimes HL, Hildeman D, Zheng Y. Distinct roles of Cdc42 in thymopoiesis and effector and memory T cell differentiation. PLoS One 2011; 6:e18002. [PMID: 21455314 PMCID: PMC3063799 DOI: 10.1371/journal.pone.0018002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 02/17/2011] [Indexed: 12/14/2022] Open
Abstract
Cdc42 of the Rho GTPase family has been implicated in cell actin organization, proliferation, survival, and migration but its physiological role is likely cell-type specific. By a T cell-specific deletion of Cdc42 in mouse, we have recently shown that Cdc42 maintains naïve T cell homeostasis through promoting cell survival and suppressing T cell activation. Here we have further investigated the involvement of Cdc42 in multiple stages of T cell differentiation. We found that in Cdc42−/− thymus, positive selection of CD4+CD8+ double-positive thymocytes was defective, CD4+ and CD8+ single-positive thymocytes were impaired in migration and showed an increase in cell apoptosis triggered by anti-CD3/-CD28 antibodies, and thymocytes were hyporesponsive to anti-CD3/-CD28-induced cell proliferation and hyperresponsive to anti-CD3/-CD28-stimulated MAP kinase activation. At the periphery, Cdc42-deficient naive T cells displayed an impaired actin polymerization and TCR clustering during the formation of mature immunological synapse, and showed an enhanced differentiation to Th1 and CD8+ effector and memory cells in vitro and in vivo. Finally, Cdc42−/− mice exhibited exacerbated liver damage in an induced autoimmune disease model. Collectively, these data establish that Cdc42 is critically involved in thymopoiesis and plays a restrictive role in effector and memory T cell differentiation and autoimmunity.
Collapse
Affiliation(s)
- Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, Ohio, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Melendez J, Grogg M, Zheng Y. Signaling role of Cdc42 in regulating mammalian physiology. J Biol Chem 2010; 286:2375-81. [PMID: 21115489 DOI: 10.1074/jbc.r110.200329] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cdc42 is a member of the Rho GTPase family of intracellular molecular switches regulating multiple signaling pathways involved in actomyosin organization and cell proliferation. Knowledge of its signaling function in mammalian cells came mostly from studies using the dominant-negative or constitutively active mutant overexpression approach in the past 2 decades. Such an approach imposes a number of experimental limitations related to specificity, dosage, and/or clonal variability. Recent studies by conditional gene targeting of cdc42 in mice have revealed its tissue- and cell type-specific role and provide definitive information of the physiological signaling functions of Cdc42 in vivo.
Collapse
Affiliation(s)
- Jaime Melendez
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, University of Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | |
Collapse
|
48
|
Guo F, Hildeman D, Tripathi P, Velu CS, Grimes HL, Zheng Y. Coordination of IL-7 receptor and T-cell receptor signaling by cell-division cycle 42 in T-cell homeostasis. Proc Natl Acad Sci U S A 2010; 107:18505-10. [PMID: 20937872 PMCID: PMC2972959 DOI: 10.1073/pnas.1010249107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T-cell homeostasis is essential for normal functioning of the immune system. IL-7 receptor (IL-7R) and T-cell receptor (TCR) signaling are pivotal for T-cell homeostatic regulation. The detailed mechanisms regulating T-cell homeostasis and how IL-7R and TCR signaling are coordinated are largely unknown. Here we demonstrate that T cell-specific deletion of cell-division cycle 42 (Cdc42) GTPase causes a profound loss of mature T cells. Deletion of Cdc42 leads to a markedly increased expression of growth factor independence-1 (Gfi-1) and represses expression of IL-7Rα. In the absence of Cdc42, aberrant ERK1/2 MAP kinase activity results in enhanced, TCR-mediated T-cell proliferation. In vivo reconstitution of effector-binding-defective Cdc42 mutants and the effector p21 protein-activated kinase 1 (PAK1) into Cdc42-deficient T cells showed that PAK1 is both necessary and sufficient for Cdc42-regulated T-cell homeostasis. Thus, T-cell homeostasis is maintained through a concerted regulation of Gfi-1-IL-7R-controlled cytokine responsiveness and ERK-mediated TCR signaling strength by the Cdc42-PAK1 signaling axis.
Collapse
Affiliation(s)
- Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Research Foundation, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Liu X, Invernizzi P, Lu Y, Kosoy R, Lu Y, Bianchi I, Podda M, Xu C, Xie G, Macciardi F, Selmi C, Lupoli S, Shigeta R, Ransom M, Lleo A, Lee AT, Mason AL, Myers RP, Peltekian KM, Ghent CN, Bernuzzi F, Zuin M, Rosina F, Borghesio E, Floreani A, Lazzari R, Niro G, Andriulli A, Muratori L, Muratori P, Almasio PL, Andreone P, Margotti M, Brunetto M, Coco B, Alvaro D, Bragazzi MC, Marra F, Pisano A, Rigamonti C, Colombo M, Marzioni M, Benedetti A, Fabris L, Strazzabosco M, Portincasa P, Palmieri VO, Tiribelli C, Croce L, Bruno S, Rossi S, Vinci M, Prisco C, Mattalia A, Toniutto P, Picciotto A, Galli A, Ferrari C, Colombo S, Casella G, Morini L, Caporaso N, Colli A, Spinzi G, Montanari R, Gregersen PK, Heathcote EJ, Hirschfield GM, Siminovitch KA, Amos CI, Gershwin ME, Seldin MF. Genome-wide meta-analyses identify three loci associated with primary biliary cirrhosis. Nat Genet 2010; 42:658-60. [PMID: 20639880 DOI: 10.1038/ng.627] [Citation(s) in RCA: 307] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 06/22/2010] [Indexed: 12/14/2022]
Abstract
A genome-wide association screen for primary biliary cirrhosis risk alleles was performed in an Italian cohort. The results from the Italian cohort replicated IL12A and IL12RB associations, and a combined meta-analysis using a Canadian dataset identified newly associated loci at SPIB (P = 7.9 x 10(-11), odds ratio (OR) = 1.46), IRF5-TNPO3 (P = 2.8 x 10(-10), OR = 1.63) and 17q12-21 (P = 1.7 x 10(-10), OR = 1.38).
Collapse
|
50
|
Abstract
Rho family GTPases are intracellular signaling proteins regulating multiple pathways involved in cell actomyosin organization, adhesion, and proliferation. Our knowledge of their cellular functions comes mostly from previous biochemical studies that used mutant overexpression approaches in various clonal cell lines. Recent progress in understanding Rho GTPase functions in blood cell development and regulation by gene targeting of individual Rho GTPases in mice has allowed a genetic understanding of their physiologic roles in hematopoietic progenitors and mature lineages. In particular, mouse gene-targeting studies have provided convincing evidence that individual members of the Rho GTPase family are essential regulators of cell type-specific functions and stimuli-specific pathways in regulating hematopoietic stem cell interaction with bone marrow niche, erythropoiesis, and red blood cell actin dynamics, phagocyte migration and killing, and T- and B-cell maturation. In addition, deregulation of Rho GTPase family members has been associated with multiple human hematologic diseases such as neutrophil dysfunction, leukemia, and Fanconi anemia, raising the possibility that Rho GTPases and downstream signaling pathways are of therapeutic value. In this review we discuss recent genetic studies of Rho GTPases in hematopoiesis and several blood lineages and the implications of Rho GTPase signaling in hematologic malignancies, immune pathology. and anemia.
Collapse
|