1
|
El-Awady SMM, El Afifi AM, Afifi R, Sabri NA, Ahmed MA. Evaluation of the Clinical Outcomes of Cyclosporine Short Infusion Versus Continuous Infusion Postallogenic Stem Cell Transplantation. Eur J Drug Metab Pharmacokinet 2024:10.1007/s13318-024-00927-y. [PMID: 39601981 DOI: 10.1007/s13318-024-00927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND AND OBJECTIVE Cyclosporin A (CsA) exhibits a narrow therapeutic index and large inter-individual variation in pharmacokinetics. Two intermittent and 24-h continuous infusions (CI) are both commonly used regimens in hematopoietic stem cell transplantation (HSCT), with no universal consensus. The objective of this study was to assess whether CsA as a 2-h, twice-daily intravenous infusion (2 h/12 h) is non-inferior to 22 h CI every 24 h (22 h-CI/24 h) in terms of acute graft-versus-host disease (aGVHD) incidence and adverse events in allogeneic HSCT adult patients. METHODS An open-label randomized trial recruited 31 allogeneic HSCT patients to receive the 2 h/12 h or 22 h-CI/24 h regimen. The primary outcomes were the incidence of aGVHD and CsA-related adverse events. The secondary outcomes included the correlation between the time concentration and area under the concentration-time curve (AUC) of 2 h/12 h versus 22 h-CI/24 h regimens. RESULTS Six (19.4%) patients developed aGVHD. There was no statistically significant difference between the two groups concerning the incidence of aGVHD (13.3% in 2 h/12 h vs. 25% in 22 h-CI/24 h; p = 0.359). The distribution of different aGVHD types (p = 0.20) and mortality (p = 0.9) were not significantly different between the two groups. The two groups did not differ at any time with respect to AUCs, nephrotoxicity, hepatotoxicity, or electrolyte disturbance. CONCLUSION The study suggested that the 2 h/12 h regimen is non-inferior to the conventional regimen (22 h CI/24 h) in terms of aGVHD incidence and adverse events. Further research is necessary to validate these findings and to guide practice, considering the small sample size of this study. TRIAL REGISTRATION ClinicalTrials.gov identifier NCT04575779 with initial release on 19 September 2020-Retrospectively registered, https://clinicaltrials.gov/study/NCT04575779 .
Collapse
Affiliation(s)
- Shaymaa M M El-Awady
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt.
| | - Amal M El Afifi
- Clinical Hematology and Bone Marrow Transplantation Unit, Department of Internal Medicine, Faculty of Medicine, Ain Shams University Hospitals, Ain Shams University, Cairo, Egypt
| | - Rania Afifi
- Internal Medicine-Hematology Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Nagwa A Sabri
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Marwa Adel Ahmed
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Ghazouani E, Sellami MH, Aissa W, Ben Abdeljelil N, Chaabane M, Kaabi H, Ben Othman T, Hmida S. The CD28 IVS3 + 17 T/C polymorphism and the GVHD occurrence in Tunisian patients receiving an HLA-identical sibling HSCs transplant. Hum Immunol 2024; 85:111082. [PMID: 39084099 DOI: 10.1016/j.humimm.2024.111082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Graft-versus-host disease (GVHD) is a potentially serious complication ofallogeneic hematopoietic stem cell transplantation (HSCT). Graft-contaminating T cells (donor T cells) arecrucial for the development ofGVHD since they are able to react against the recipient's antigens. In this study we aim toevaluatethepotentialassociation between the IVS3 + 17 T/C gene variation in the CD28 molecule, a T cells costimulatory factor, and the GVHD occurrence in a Tunisian group of recipients of allo-HSCTs. Results show that there is an association between the presence of this polymorphism and the occurrence of grades II-IV acute GVHD (OR: 2.470, I.C: 1.027-5.938, p = 0.043). As for the chronic GVHD, it seems that the studied gene variation has no impact on the occurrence of this complication, which appeared likely to be affected by the HSCT graft source (PBSC: peripheral blood stem cells) (OR: 5.141, I.C: 1.590-16.620, p = 0.006). Based on these data, we believe that the CD28 IVS3 + 17 T/C polymorphism is a significant factor in the pathogenesis of acute GVHD.
Collapse
Affiliation(s)
- Eya Ghazouani
- "Immunogenetics, cell therapy and blood transfusion" research laboratory (LR20SP05), National Blood Transfusion Centre of Tunis, University of Tunis El Manar. Tunisia
| | - Mohamed Hichem Sellami
- "Immunogenetics, cell therapy and blood transfusion" research laboratory (LR20SP05), National Blood Transfusion Centre of Tunis, University of Tunis El Manar. Tunisia.
| | - Wafa Aissa
- "Immunogenetics, cell therapy and blood transfusion" research laboratory (LR20SP05), National Blood Transfusion Centre of Tunis, University of Tunis El Manar. Tunisia
| | - Nour Ben Abdeljelil
- Department of Hematology, National Bone Marrow Transplantation Centre of Tunis, Tunis, Tunisia
| | - Manel Chaabane
- "Immunogenetics, cell therapy and blood transfusion" research laboratory (LR20SP05), National Blood Transfusion Centre of Tunis, University of Tunis El Manar. Tunisia
| | - Houda Kaabi
- "Immunogenetics, cell therapy and blood transfusion" research laboratory (LR20SP05), National Blood Transfusion Centre of Tunis, University of Tunis El Manar. Tunisia
| | - Tarek Ben Othman
- Department of Hematology, National Bone Marrow Transplantation Centre of Tunis, Tunis, Tunisia
| | - Slama Hmida
- "Immunogenetics, cell therapy and blood transfusion" research laboratory (LR20SP05), National Blood Transfusion Centre of Tunis, University of Tunis El Manar. Tunisia
| |
Collapse
|
3
|
Poirier N, Paquin V, Leclerc S, Lisi V, Marmolejo C, Affia H, Cordeiro P, Théorêt Y, Haddad E, Andelfinger G, Lavallée VP, Duval M, Herblot S. Therapeutic Inducers of Natural Killer cell Killing (ThINKK): preclinical assessment of safety and efficacy in allogeneic hematopoietic stem cell transplant settings. J Immunother Cancer 2024; 12:e008435. [PMID: 38754915 PMCID: PMC11097815 DOI: 10.1136/jitc-2023-008435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (HSCT) remains the standard of care for chemotherapy-refractory leukemia patients, but cure rates are still dismal. To prevent leukemia relapse following HSCT, we aim to improve the early graft-versus-leukemia effect mediated by natural killer (NK) cells. Our approach is based on the adoptive transfer of Therapeutic Inducers of Natural Killer cell Killing (ThINKK). ThINKK are expanded and differentiated from HSC, and exhibit blood plasmacytoid dendritic cell (pDC) features. We previously demonstrated that ThINKK stimulate NK cells and control acute lymphoblastic leukemia (ALL) development in a preclinical mouse model of HSCT for ALL. Here, we assessed the cellular identity of ThINKK and investigated their potential to activate allogeneic T cells. We finally evaluated the effect of immunosuppressive drugs on ThINKK-NK cell interaction. METHODS ThINKK cellular identity was explored using single-cell RNA sequencing and flow cytometry. Their T-cell activating potential was investigated by coculture of allogeneic T cells and antigen-presenting cells in the presence or the absence of ThINKK. A preclinical human-to-mouse xenograft model was used to evaluate the impact of ThINKK injections on graft-versus-host disease (GvHD). Finally, the effect of immunosuppressive drugs on ThINKK-induced NK cell cytotoxicity against ALL cells was tested. RESULTS The large majority of ThINKK shared the key characteristics of canonical blood pDC, including potent type-I interferon (IFN) production following Toll-like receptor stimulation. A minor subset expressed some, although not all, markers of other dendritic cell populations. Importantly, while ThINKK were not killed by allogeneic T or NK cells, they did not increase T cell proliferation induced by antigen-presenting cells nor worsened GvHD in vivo. Finally, tacrolimus, sirolimus or mycophenolate did not decrease ThINKK-induced NK cell activation and cytotoxicity. CONCLUSION Our results indicate that ThINKK are type I IFN producing cells with low T cell activation capacity. Therefore, ThINKK adoptive immunotherapy is not expected to increase the risk of GvHD after allogeneic HSCT. Furthermore, our data predict that the use of tacrolimus, sirolimus or mycophenolate as anti-GvHD prophylaxis regimen will not decrease ThINKK therapeutic efficacy. Collectively, these preclinical data support the testing of ThINKK immunotherapy in a phase I clinical trial.
Collapse
Affiliation(s)
- Nicolas Poirier
- Department of Microbiology, University of Montreal, Montreal, Quebec, Canada
- Centre de recherche, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Valérie Paquin
- Department of Microbiology, University of Montreal, Montreal, Quebec, Canada
- Centre de recherche, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Séverine Leclerc
- Centre de recherche, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Véronique Lisi
- Centre de recherche, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Carolina Marmolejo
- Centre de recherche, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Hicham Affia
- Centre de recherche, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Paulo Cordeiro
- Centre de recherche, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
| | - Yves Théorêt
- Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Department of Pharmacology, University of Montreal, Montreal, Quebec, Canada
| | - Elie Haddad
- Centre de recherche, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Gregor Andelfinger
- Centre de recherche, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Vincent Philippe Lavallée
- Centre de recherche, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Michel Duval
- Centre de recherche, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| | - Sabine Herblot
- Centre de recherche, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Huang Z, Zhang R, Teng Y, Guo J, Zhang H, Wang L, Tang LV, Shi W, Wu Q, Xia L. Nuclear Matrix-associated Protein SMAR1 Attenuated Acute Graft-versus-host Disease by Targeting JAK-STAT Signaling in CD4 + T Cells. Transplantation 2024; 108:e23-e35. [PMID: 37817309 DOI: 10.1097/tp.0000000000004818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
BACKGROUND Acute graft-versus-host disease (aGVHD) mediated by alloreactive T cells remains a serious and life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT). The contribution of the different CD4 + T helper cell subtypes to the pathogenesis and regulation of aGVHD is a central point in current research. The specialized effector subsets of T cells that differentiate from naive T cells into mature cells are closely related to scaffold/matrix-associated region-1-binding protein (SMAR1). However, the role of SMAR1 in aGVHD is unclear. METHODS Peripheral blood was collected from the patients with or without aGVHD after allo-HCT. The differences in CD4 + T cells transduced with the SMAR1 lentivirus vector and empty vector were analyzed. A humanized aGVHD mouse model was constructed to evaluate the function of SMAR1 in aGVHD. RESULTS The expression of SMAR1 was significantly reduced in the CD4 + T cells from aGVHD patients and related to the occurrence of aGVHD. SMAR1 overexpression in human CD4 + T cells regulated CD4 + T-cell subsets differentiation and inflammatory cytokines secretion and inhibited the Janus kinase/signal transducer and activator of transcription pathway. Moreover, SMAR1 changed chromatin accessibility landscapes and affected the binding motifs of key transcription factors regulating T cells. Additionally, upregulation of SMAR1 expression in CD4 + T cells improved the survival and pathology in a humanized aGVHD mouse model. CONCLUSIONS Our results showed that upregulation of SMAR1 regulated the CD4 + T-cell subpopulation and cytokines secretion and improved survival in a humanized aGVHD mouse model by alleviating inflammation. This study provides a promising therapeutic target for aGVHD.
Collapse
Affiliation(s)
- Zhenli Huang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Teng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Guo
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyong Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang V Tang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuling Wu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linghui Xia
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Giannakopoulou E, Lehander M, Virding Culleton S, Yang W, Li Y, Karpanen T, Yoshizato T, Rustad EH, Nielsen MM, Bollineni RC, Tran TT, Delic-Sarac M, Gjerdingen TJ, Douvlataniotis K, Laos M, Ali M, Hillen A, Mazzi S, Chin DWL, Mehta A, Holm JS, Bentzen AK, Bill M, Griffioen M, Gedde-Dahl T, Lehmann S, Jacobsen SEW, Woll PS, Olweus J. A T cell receptor targeting a recurrent driver mutation in FLT3 mediates elimination of primary human acute myeloid leukemia in vivo. NATURE CANCER 2023; 4:1474-1490. [PMID: 37783807 PMCID: PMC10597840 DOI: 10.1038/s43018-023-00642-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 08/28/2023] [Indexed: 10/04/2023]
Abstract
Acute myeloid leukemia (AML), the most frequent leukemia in adults, is driven by recurrent somatically acquired genetic lesions in a restricted number of genes. Treatment with tyrosine kinase inhibitors has demonstrated that targeting of prevalent FMS-related receptor tyrosine kinase 3 (FLT3) gain-of-function mutations can provide significant survival benefits for patients, although the efficacy of FLT3 inhibitors in eliminating FLT3-mutated clones is variable. We identified a T cell receptor (TCR) reactive to the recurrent D835Y driver mutation in the FLT3 tyrosine kinase domain (TCRFLT3D/Y). TCRFLT3D/Y-redirected T cells selectively eliminated primary human AML cells harboring the FLT3D835Y mutation in vitro and in vivo. TCRFLT3D/Y cells rejected both CD34+ and CD34- AML in mice engrafted with primary leukemia from patients, reaching minimal residual disease-negative levels, and eliminated primary CD34+ AML leukemia-propagating cells in vivo. Thus, T cells targeting a single shared mutation can provide efficient immunotherapy toward selective elimination of clonally involved primary AML cells in vivo.
Collapse
Grants
- G0801073 Medical Research Council
- MC_UU_00016/5 Medical Research Council
- MC_UU_12009/5 Medical Research Council
- South-Eastern Regional Health Authority Norway, the Research Council of Norway, the Norwegian Cancer Society, the Norwegian Childhood Cancer Foundation, Stiftelsen Kristian Gerhard Jebsen, European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 865805), the University of Oslo and Oslo University Hospital and Novo Nordisk Foundation.
- Knut and Alice Wallenberg Foundation, The Swedish Research Council, Tobias Foundation, Torsten Söderberg Foundation, Center for Innovative Medicine (CIMED) at Karolinska Institutet, and The UK Medical Research Council
- Technical University of Denmark (DTU)
- Aarhus University Hospital
- Leiden University Medical Center
- Oslo University Hospital
- Karolinska University Hospital
- University of Oslo and Oslo University Hospital
Collapse
Affiliation(s)
- Eirini Giannakopoulou
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Madeleine Lehander
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Stina Virding Culleton
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Weiwen Yang
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Yingqian Li
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Terhi Karpanen
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Tetsuichi Yoshizato
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Even H Rustad
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Morten Milek Nielsen
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ravi Chand Bollineni
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trung T Tran
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Marina Delic-Sarac
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Thea Johanne Gjerdingen
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Karolos Douvlataniotis
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Maarja Laos
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Muhammad Ali
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Amy Hillen
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Stefania Mazzi
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Desmond Wai Loon Chin
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Adi Mehta
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jeppe Sejerø Holm
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Amalie Kai Bentzen
- Section for Experimental and Translational Immunology, Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marie Bill
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Marieke Griffioen
- Department of Hematology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tobias Gedde-Dahl
- Hematology Department, Section for Stem Cell Transplantation, Oslo University Hospital, Rikshospitalet, Clinic for Cancer Medicine, Oslo, Norway
| | - Sören Lehmann
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Sten Eirik W Jacobsen
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
- Karolinska University Hospital, Stockholm, Sweden.
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Petter S Woll
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Johanna Olweus
- Department of Cancer Immunology, Oslo University Hospital Radiumhospitalet, Oslo, Norway.
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
6
|
Choi HJ, Yu XZ. ER stress: an emerging regulator in GVHD development. Front Immunol 2023; 14:1212215. [PMID: 37744326 PMCID: PMC10511645 DOI: 10.3389/fimmu.2023.1212215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Allogeneic hematopoietic cell transplantation (allo-HCT) is a promising therapeutic option for hematologic malignancies. However, the clinical benefits of allo-HCT are limited by the development of complications including graft-versus-host disease (GVHD). Conditioning regimens, such as chemotherapy and irradiation, which are administered to the patients prior to allo-HCT, can disrupt the endoplasmic reticulum (ER) homeostasis, and induce ER stress in the recipient's cells. The conditioning regimen activates antigen-presenting cells (APCs), which, in turn, activate donor cells, leading to ER stress in the transplanted cells. The unfolded protein response (UPR) is an evolutionarily conserved signaling pathway that manages ER stress in response to cellular stress. UPR has been identified as a significant regulatory player that influences the function of various immune cells, including T cells, B cells, macrophages, and dendritic cells (DCs), in various disease progressions. Therefore, targeting the UPR pathway has garnered significant attention as a promising approach for the treatment of numerous diseases, such as cancer, neurodegeneration, diabetes, and inflammatory diseases. In this review, we summarize the current literature regarding the contribution of ER stress response to the development of GVHD in both hematopoietic and non-hematopoietic cells. Additionally, we explore the potential therapeutic implications of targeting UPR to enhance the effectiveness of allo-HCT for patients with hematopoietic malignancies.
Collapse
Affiliation(s)
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Department of Medicine, and the Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
7
|
Elmakki EE, Madkhali MA, Oraibi O, Alqassimi S, Saleh E. Transfusion-Associated Graft-Versus-Host Disease in Adults. Cureus 2023; 15:e44148. [PMID: 37753040 PMCID: PMC10518734 DOI: 10.7759/cureus.44148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Transfusion-associated graft-versus-host disease (TA-GVHD) is a rare but fatal complication of blood transfusion that usually develops two to 30 days following a blood transfusion giving rise to graft versus host disease (GVHD) clinical features that are consisting of fever, skin rash, jaundice, diarrhea, and pancytopenia. The disease is fulminant in most patients with a mortality rate of >90% of cases. The main aim of this review is to enhance awareness among medical practitioners about this fatal disease. Data were extracted manually from the main medical databases (Medline, Scopus, and Google Scholar) after the revision of selected articles and assessed for their contribution to the knowledge of TA-GVHD. TA-GVHD occurs when the viable donor T-cells in the blood or blood products attack the recipient's tissues which his/her immune system is incapable to destroy due to several reasons. The recipient's tissues that are usually involved in TA-GVHD include the liver, intestine, skin, lungs, and bone marrow. Any blood component either whole blood, packed red blood cells (RBCs), platelets, or fresh non-frozen plasma that contains viable T lymphocytes can cause TA-GVHD. Host immunodeficiency, transfusion of fresh blood, and partial human leukocyte antigen (HLA) matching between the donors and the recipients represent the major risk factors of TA-GVHD. Partial HLA matching includes immunocompetent recipients who receive blood from a first-degree relative also, seen in genetically homogenous populations because of high rates of consanguineous marriage. The diagnosis of TA-GVHD is mainly suspected based on clinical manifestations. However, a histopathological study of either skin or rectal biopsy is diagnostic. The treatment of TA-GVHD is generally not effective, unless the patient received emergency stem cell transplantation, while prevention via irradiation of blood or blood products represents the standard of care for this disease. In conclusion, medical practitioners should have a high index of suspicion for this disease. Moreover, future clinical trials targeting and comparing the outcomes of the different therapeutic options for TA-GVHD are required.
Collapse
Affiliation(s)
- Erwa Eltayib Elmakki
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, SAU
| | | | - Omar Oraibi
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, SAU
| | - Sameer Alqassimi
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, SAU
| | - Eman Saleh
- Department of Internal Medicine, Faculty of Medicine, Jazan University, Jazan, SAU
| |
Collapse
|
8
|
Shi H, Gao L, Zhang W, Jiang M. Long non-coding RNAs regulate treatment outcome in leukemia: What have we learnt recently? Cancer Med 2023. [PMID: 37148556 DOI: 10.1002/cam4.6027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/03/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023] Open
Abstract
Leukemia is a group of highly heterogeneous and life-threatening blood cancers that originate from abnormal hematopoietic stem cells. Multiple treatments are approved for leukemia, including chemotherapy, targeted therapy, hematopoietic stem cell transplantation, radiation therapy, and immunotherapy. Unfortunately, therapeutic resistance occurs in a substantial proportion of patients and greatly compromises the treatment efficacy of leukemia, resulting in relapse and mortality. The abnormal activity of receptor tyrosine kinases, cell membrane transporters, intracellular signal transducers, transcription factors, and anti-apoptotic proteins have been shown to contribute to the emergence of therapeutic resistance. Despite these findings, the exact mechanisms of treatment resistance are still not fully understood, which limits the development of effective measures to overcome it. Long non-coding RNAs (lncRNA) are a class of regulatory molecules that are gaining increasing attention, and lncRNA-mediated regulation of therapeutic resistance against multiple drugs for leukemia is being revealed. These dysregulated lncRNAs not only serve as potential targets to reduce resistance but also might improve treatment response prediction and individualized treatment decision. Here, we summarize the recent findings on lncRNA-mediated regulation of therapeutic resistance in leukemia and discuss future perspectives on how to make use of the dysregulated lncRNAs in leukemia to improve treatment outcome.
Collapse
Affiliation(s)
- Huiping Shi
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Liang Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Weili Zhang
- Department of Gastroenterology, Xiangcheng People's Hospital, Suzhou, Jiangsu, People's Republic of China
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Mohammadpour H, Tsuji T, MacDonald CR, Sarow JL, Rosenheck H, Daneshmandi S, Choi JE, Qiu J, Matsuzaki J, Witkiewicz AK, Attwood K, Blazar BR, Odunsi K, Repasky EA, McCarthy PL. Galectin-3 expression in donor T cells reduces GvHD severity and lethality after allogeneic hematopoietic cell transplantation. Cell Rep 2023; 42:112250. [PMID: 36924493 PMCID: PMC10116561 DOI: 10.1016/j.celrep.2023.112250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 01/05/2023] [Accepted: 02/25/2023] [Indexed: 03/17/2023] Open
Abstract
Abundant donor cytotoxic T cells that attack normal host organs remain a major problem for patients receiving allogeneic hematopoietic cell transplantation (allo-HCT). Despite an increase in our knowledge of the pathobiology of acute graft versus host disease (aGvHD), the mechanisms regulating the proliferation and function of donor T cells remain unclear. Here, we show that activated donor T cells express galectin-3 (Gal-3) after allo-HCT. In both major and minor histocompatibility-mismatched models of murine aGvHD, expression of Gal-3 is associated with decreased T cell activation and suppression of the secretion of effector cytokines, including IFN-γ and GM-CSF. Mechanistically, Gal-3 results in activation of NFAT signaling, which can induce T cell exhaustion. Gal-3 overexpression in human T cells prevents severe disease by suppressing cytotoxic T cells in xenogeneic aGvHD models. Together, these data identify the Gal-3-dependent regulatory pathway in donor T cells as a critical component of inflammation in aGvHD.
Collapse
Affiliation(s)
- Hemn Mohammadpour
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Takemasa Tsuji
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Cameron R MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Joseph L Sarow
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hanna Rosenheck
- Department of Medicine, Transplant and Cellular Therapy Program, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Saeed Daneshmandi
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jee Eun Choi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jingxin Qiu
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Junko Matsuzaki
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Agnieszka K Witkiewicz
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kunle Odunsi
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Elizabeth A Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Philip L McCarthy
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
10
|
Farshbafnadi M, Razi S, Rezaei N. Transplantation. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
The Potential Clinical Application of Induced Tolerogenic Macrophages. Transplantation 2023; 107:23-24. [PMID: 35876367 DOI: 10.1097/tp.0000000000004246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Munshi PN, Rowley SD, Korngold R. Hematopoietic Stem Cell Transplantation for Malignant Diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
13
|
Salah E. TEN mimics: Classification and practical approach to toxic epidermal necrolysis-like dermatoses. Indian J Dermatol Venereol Leprol 2022; 89:337-346. [PMID: 36688885 DOI: 10.25259/ijdvl_244_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
Toxic epidermal necrolysis (TEN) is an acute life-threatening dermatologic emergency. However, many dermatoses can present with a TEN-like eruption. Those "TEN-mimics" are a true diagnostic challenge and an alarming differential diagnosis to such a serious condition. Herein, we will expose and classify the landscape of TEN-mimics. Also, the key differentiating clinical and/or laboratory points will be highlighted to help an accurate diagnosis of either a TEN or a TEN-like presentation.
Collapse
Affiliation(s)
- Eman Salah
- Department of Dermatology, Venereology & Andrology, Faculty of Medicine, Zagazig University, Egypt
| |
Collapse
|
14
|
Tian L, Wu Y, Choi HJ, Sui X, Li X, Sofi MH, Kassir MF, Chen X, Mehrotra S, Ogretmen B, Yu XZ. S1P/S1PR1 signaling differentially regulates the allogeneic response of CD4 and CD8 T cells by modulating mitochondrial fission. Cell Mol Immunol 2022; 19:1235-1250. [PMID: 36071219 PMCID: PMC9622814 DOI: 10.1038/s41423-022-00921-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/15/2022] [Indexed: 01/27/2023] Open
Abstract
Graft-versus-host disease (GVHD) significantly contributes to patient morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HSCT). Sphingosine-1-phosphate (S1P) signaling is involved in the biogenetic processes of different immune cells. In the current study, we demonstrated that recipient sphingosine kinase 1 (Sphk1), but not Sphk2, was required for optimal S1PR1-dependent donor T-cell allogeneic responses by secreting S1P. Using genetic and pharmacologic approaches, we demonstrated that inhibition of Sphk1 or S1PR1 substantially attenuated acute GVHD (aGVHD) while retaining the graft-versus-leukemia (GVL) effect. At the cellular level, the Sphk1/S1P/S1PR1 pathway differentially modulated the alloreactivity of CD4+ and CD8+ T cells; it facilitated T-cell differentiation into Th1/Th17 cells but not Tregs and promoted CD4+ T-cell infiltration into GVHD target organs but was dispensable for the CTL activity of allogeneic CD8+ T cells. At the molecular level, the Sphk1/S1P/S1PR1 pathway augmented mitochondrial fission and increased mitochondrial mass in allogeneic CD4+ but not CD8+ T cells by activating the AMPK/AKT/mTOR/Drp1 pathway, providing a mechanistic basis for GVL maintenance when S1P signaling was inhibited. For translational purposes, we detected the regulatory efficacy of pharmacologic inhibitors of Sphk1 and S1PR1 in GVHD induced by human T cells in a xenograft model. Our study provides novel mechanistic insight into how the Sphk1/S1P/S1PR1 pathway modulates T-cell alloreactivity and validates Sphk1 or S1PR1 as a therapeutic target for the prevention of GVHD and leukemia relapse. This novel strategy may be readily translated into the clinic to benefit patients with hematologic malignancies and disorders.
Collapse
Affiliation(s)
- Linlu Tian
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yongxia Wu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hee-Jin Choi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaohui Sui
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Xinlei Li
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Hanief Sofi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiao Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
15
|
Tian L, Wu Y, Choi HJ, Sui X, Li X, Sofi MH, Kassir MF, Chen X, Mehrotra S, Ogretmen B, Yu XZ. S1P/S1PR1 signaling differentially regulates the allogeneic response of CD4 and CD8 T cells by modulating mitochondrial fission. Cell Mol Immunol 2022. [PMID: 36071219 DOI: 10.1038/s41423-022-00921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2023] Open
Abstract
Graft-versus-host disease (GVHD) significantly contributes to patient morbidity and mortality after allogeneic hematopoietic cell transplantation (allo-HSCT). Sphingosine-1-phosphate (S1P) signaling is involved in the biogenetic processes of different immune cells. In the current study, we demonstrated that recipient sphingosine kinase 1 (Sphk1), but not Sphk2, was required for optimal S1PR1-dependent donor T-cell allogeneic responses by secreting S1P. Using genetic and pharmacologic approaches, we demonstrated that inhibition of Sphk1 or S1PR1 substantially attenuated acute GVHD (aGVHD) while retaining the graft-versus-leukemia (GVL) effect. At the cellular level, the Sphk1/S1P/S1PR1 pathway differentially modulated the alloreactivity of CD4+ and CD8+ T cells; it facilitated T-cell differentiation into Th1/Th17 cells but not Tregs and promoted CD4+ T-cell infiltration into GVHD target organs but was dispensable for the CTL activity of allogeneic CD8+ T cells. At the molecular level, the Sphk1/S1P/S1PR1 pathway augmented mitochondrial fission and increased mitochondrial mass in allogeneic CD4+ but not CD8+ T cells by activating the AMPK/AKT/mTOR/Drp1 pathway, providing a mechanistic basis for GVL maintenance when S1P signaling was inhibited. For translational purposes, we detected the regulatory efficacy of pharmacologic inhibitors of Sphk1 and S1PR1 in GVHD induced by human T cells in a xenograft model. Our study provides novel mechanistic insight into how the Sphk1/S1P/S1PR1 pathway modulates T-cell alloreactivity and validates Sphk1 or S1PR1 as a therapeutic target for the prevention of GVHD and leukemia relapse. This novel strategy may be readily translated into the clinic to benefit patients with hematologic malignancies and disorders.
Collapse
Affiliation(s)
- Linlu Tian
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yongxia Wu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hee-Jin Choi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Xiaohui Sui
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Xinlei Li
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Hanief Sofi
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Mohamed Faisal Kassir
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Xiao Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shikhar Mehrotra
- Department of Surgery, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Besim Ogretmen
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Xue-Zhong Yu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA.
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA.
- The Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
16
|
Trofimov A, Brouillard P, Larouche JD, Séguin J, Laverdure JP, Brasey A, Ehx G, Roy DC, Busque L, Lachance S, Lemieux S, Perreault C. Two types of human TCR differentially regulate reactivity to self and non-self antigens. iScience 2022; 25:104968. [PMID: 36111255 PMCID: PMC9468382 DOI: 10.1016/j.isci.2022.104968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Based on analyses of TCR sequences from over 1,000 individuals, we report that the TCR repertoire is composed of two ontogenically and functionally distinct types of TCRs. Their production is regulated by variations in thymic output and terminal deoxynucleotidyl transferase (TDT) activity. Neonatal TCRs derived from TDT-negative progenitors persist throughout life, are highly shared among subjects, and are reported as disease-associated. Thus, 10%–30% of most frequent cord blood TCRs are associated with common pathogens and autoantigens. TDT-dependent TCRs present distinct structural features and are less shared among subjects. TDT-dependent TCRs are produced in maximal numbers during infancy when thymic output and TDT activity reach a summit, are more abundant in subjects with AIRE mutations, and seem to play a dominant role in graft-versus-host disease. Factors decreasing thymic output (age, male sex) negatively impact TCR diversity. Males compensate for their lower repertoire diversity via hyperexpansion of selected TCR clonotypes. Over 108 TCR CDR3 sequences from ∼103 individuals and 7 cohorts were analyzed The TCR repertoire is composed of two layers: neonatal and TDT-dependent layer ∼70% of frequent cord blood TCRs are associated with common pathogens Acute graft-vs-host disease correlates with a high proportion of TDT-dependent TCRs
Collapse
Affiliation(s)
- Assya Trofimov
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Quebec Institute for Learning Algorithms (Mila), Montreal, Quebec H2S 3H1, Canada
- Currently Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Currently Department of Physics, University of Washington, Seattle, WA 98195-1560, USA
| | - Philippe Brouillard
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Quebec Institute for Learning Algorithms (Mila), Montreal, Quebec H2S 3H1, Canada
| | - Jean-David Larouche
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jonathan Séguin
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Jean-Philippe Laverdure
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Ann Brasey
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Gregory Ehx
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Currently Interdisciplinary Cluster for Applied Geno-Proteomics (GIGA-I3), University of Liege, Liege 4000, Belgium
| | | | - Lambert Busque
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Silvy Lachance
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Sébastien Lemieux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Computer Science and Research Operations, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Biochemistry at University of Montreal, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Corresponding author
| | - Claude Perreault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
- Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
- Corresponding author
| |
Collapse
|
17
|
Al Salmi I, Mohammed E, Al Kindi S, Al Musalhi M, Al Ghonaim M, Shaheen F, Hannawi S. Transplant Associated Graft versus Host Disease. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2022; 33:586-592. [PMID: 37929553 DOI: 10.4103/1319-2442.388194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023] Open
Abstract
Graft versus host disease (GVHD) occurs quite often after hematopoietic cell transplantation. However, it is a rare complication after solid organ transplantation and consists of a reaction of donor-derived immune cells directed against host tissues, which is mostly seen in liver, small intestine, and pancreas transplantation. We are presenting a 54-year-old man with a long-standing history of hypertension, hypertensive nephrosclerosis, and stage V terminal chronic kidney disease, who was on a regular hemodialysis thrice weekly. He had a living kidney transplantation done abroad. On returning, he had a normal kidney function with no obvious complications. Three years later, he presented with jaundice, anorexia, diarrhea, and abdominal pain. Laboratory evaluation showed marked elevated liver enzymes, and severe pancytopenia with evidence of hepatosplenomegaly. Liver biopsy was compatible with graft-versus-host-disease and toxic hepatitis. The patient was not cooperative with the management and he traveled abroad for the 2nd opinion. Based on the clinical presentations, laboratory, radiological, and pathological findings, transplant-associated GVHD (ta-GVHD) was confirmed. Unfortunately, this patient was complicated by severe sepsis, and confounded by a lack of cooperation with the management plan, which resulted in his demise. In the presence of a highly immunocompromised state, patients presenting with transaminitis/hyperbilirubinemia, and when drug-induced liver injury is excluded, the diagnosis of ta-GVHD needs to be highly considered.
Collapse
Affiliation(s)
- Issa Al Salmi
- Department of Renal Medicine, The Royal Hospital; Department of Medicine, Oman Medical Specialty Board, Aziabah, Muscat, Oman
| | - Ehab Mohammed
- Department of Renal Medicine, The Royal Hospital, Muscat, Oman
| | - Salam Al Kindi
- The Department of Hematology, Sultan Qaboos University Hospital, Muscat, Oman
| | | | - Mohammed Al Ghonaim
- Department of Medicine, College of Medicine, King Saud University; King Saud University Medical City, Riyadh, Saudi Arabia
| | - Faisal Shaheen
- Department of Nephrology, Dr. Soliman Fakeeh Hospital, Jeddah, Saudi Arabia
| | - Suad Hannawi
- Department of Medicine, MOHAP, Dubai, United Arab Emirates
| |
Collapse
|
18
|
Scheurer J, Leithäuser F, Debatin KM, Strauss G. Modeling acute graft-versus-host disease (aGVHD) in murine bone marrow transplantation (BMT) models with MHC disparity. Methods Cell Biol 2022; 168:19-39. [PMID: 35366982 DOI: 10.1016/bs.mcb.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For more than 50years, hematopoietic stem cell transplantation (HSCT) has been the major curative therapy for hematological malignancies and genetic disorders, but its success is limited by the development of graft-versus-host disease (GVHD). GVHD represents a post-transplantation disorder representing the immune-mediated attack of transplant-derived T cells against recipient tissue finally leading to increased morbidity and mortality of the recipient. GVHD develops if donor and recipient are disparate in major or minor histocompatibility antigens (MHC, miHA). Most of the initial knowledge about the biology of GVHD is derived from murine bone marrow transplantation (BMT) models. Of course, GVHD mouse models do not reflect one to one the human situation, but they contribute significantly to our understanding how conditioning and danger signals activate the immune system, enlighten the role of individual molecules, e.g., cytokines, chemokines, death-inducing ligands, define the function of lymphocytes subpopulations for GVHD development and have significant impact on establishing new treatment and prevention strategies used in clinical HSCT. This chapter describes in detail the procedure of allogeneic BMT and the development of GVHD in two commonly used allogeneic murine BMT models (B6→B6.bm1, B6→B6D2F1) with different MHC disparities, which can be used as a basis for advanced studies of GVHD pathology or the development of new treatment strategies.
Collapse
Affiliation(s)
- Jasmin Scheurer
- University Medical Center Ulm, Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | | | - Klaus-Michael Debatin
- University Medical Center Ulm, Department of Pediatrics and Adolescent Medicine, Ulm, Germany
| | - Gudrun Strauss
- University Medical Center Ulm, Department of Pediatrics and Adolescent Medicine, Ulm, Germany.
| |
Collapse
|
19
|
Song Q, Nasri U, Zeng D. Steroid-Refractory Gut Graft-Versus-Host Disease: What We Have Learned From Basic Immunology and Experimental Mouse Model. Front Immunol 2022; 13:844271. [PMID: 35251043 PMCID: PMC8894323 DOI: 10.3389/fimmu.2022.844271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/26/2022] [Indexed: 11/23/2022] Open
Abstract
Intestinal graft-versus-host disease (Gut-GVHD) is one of the major causes of mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). While systemic glucocorticoids (GCs) comprise the first-line treatment option, the response rate for GCs varies from 30% to 50%. The prognosis for patients with steroid-refractory acute Gut-GVHD (SR-Gut-aGVHD) remains dismal. The mechanisms underlying steroid resistance are unclear, and apart from ruxolitinib, there are no approved treatments for SR-Gut-aGVHD. In this review, we provide an overview of the current biological understanding of experimental SR-Gut-aGVHD pathogenesis, the advanced technology that can be applied to the human SR-Gut-aGVHD studies, and the potential novel therapeutic options for patients with SR-Gut-aGVHD.
Collapse
Affiliation(s)
- Qingxiao Song
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
- Fujian Medical University Center of Translational Hematology, Fujian Institute of Hematology, and Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Qingxiao Song,
| | - Ubaydah Nasri
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Defu Zeng
- Arthur D. Riggs Diabetes and Metabolism Research Institute, The Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
20
|
Tilmont R, Yakoub-Agha I, Ramdane N, Srour M, Coiteux V, Magro L, Odou P, Simon N, Beauvais D. Impact of Defibrotide in the Prevention of Acute Graft-Versus-Host Disease Following Allogeneic Hematopoietic Cell Transplantation. Ann Pharmacother 2022; 56:1007-1015. [PMID: 35016532 DOI: 10.1177/10600280211068177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Defibrotide is indicated for patients who develop severe sinusoidal obstructive syndrome following allogeneic hematopoietic cell transplantation (allo-HCT). Preclinical data suggested that defibrotide carries a prophylactic effect against acute graft-versus-host disease (aGVHD). OBJECTIVE The purpose of this study was to investigate the effect of defibrotide on the incidence and severity of aGVHD. METHODS This single-center retrospective study included all consecutive transplanted patients between January 2014 and December 2018. A propensity score based on 10 predefined confounders was used to estimate the effect of defibrotide on aGVHD via inverse probability of treatment weighting (IPTW). RESULTS Of the 482 included patients, 64 received defibrotide (defibrotide group) and 418 did not (control group). Regarding main patient characteristics and transplantation modalities, the two groups were comparable, except for a predominance of men in the defibrotide group. The median age was 55 years (interquartile range [IQR]: 40-62). Patients received allo-HCT from HLA-matched related donor (28.6%), HLA-matched unrelated donor (50.8%), haplo-identical donor (13.4%), or mismatched unrelated donor (7.0%). Stem cell source was either bone marrow (49.6%) or peripheral blood (50.4%). After using IPTW, exposure to defibrotide was not significantly associated with occurrence of aGVHD (HR = 0.97; 95% CI 0.62-1.52; P = .9) or occurrence of severe aGVHD (HR = 1.89, 95% CI: 0.98-3.66; P = .058). CONCLUSION AND RELEVANCE Defibrotide does not seem to have a protective effect on aGVHD in patients undergoing allo-HCT. Based on what has been reported to date and on these results, defibrotide should not be considered for the prevention of aGVHD outside clinical trials.
Collapse
Affiliation(s)
- Rémi Tilmont
- Service des Maladies du Sang, Hôpital Huriez, CHU Lille, Lille, France
| | | | - Nassima Ramdane
- ULR 2694-METRICS: Évaluation des technologies de santé et des pratiques médicales, CHU Lille, University of Lille, Lille, France
| | - Micha Srour
- Service des Maladies du Sang, Hôpital Huriez, CHU Lille, Lille, France
| | - Valérie Coiteux
- Service des Maladies du Sang, Hôpital Huriez, CHU Lille, Lille, France
| | - Léonardo Magro
- Service des Maladies du Sang, Hôpital Huriez, CHU Lille, Lille, France
| | - Pascal Odou
- Institut de Pharmacie, CHU Lille, Lille, France.,ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, University of Lille, Lille, France
| | - Nicolas Simon
- Institut de Pharmacie, CHU Lille, Lille, France.,ULR 7365-GRITA-Groupe de Recherche sur les formes Injectables et les Technologies Associées, University of Lille, Lille, France
| | - David Beauvais
- CHU de Lille, Université de Lille, INSERM Infinite U1285, Lille, France
| |
Collapse
|
21
|
Snyder KJ, Choe HK, Gao Y, Sell NE, Braunreiter KM, Zitzer NC, Neidemire-Colley L, Kalyan S, Dorrance AM, Keller A, Mihaylova MM, Singh S, Sehgal L, Bollag G, Ma Y, Powell B, Devine SM, Ranganathan P. Inhibition of Bromodomain and Extra Terminal (BET) Domain Activity Modulates the IL-23R/IL-17 Axis and Suppresses Acute Graft- Versus-Host Disease. Front Oncol 2021; 11:760789. [PMID: 34722316 PMCID: PMC8554203 DOI: 10.3389/fonc.2021.760789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Acute graft-versus-host disease (GVHD) is the leading cause of non-relapse mortality following allogeneic hematopoietic cell transplantation. The majority of patients non-responsive to front line treatment with steroids have an estimated overall 2-year survival rate of only 10%. Bromodomain and extra-terminal domain (BET) proteins influence inflammatory gene transcription, and therefore represent a potential target to mitigate inflammation central to acute GVHD pathogenesis. Using potent and selective BET inhibitors Plexxikon-51107 and -2853 (PLX51107 and PLX2853), we show that BET inhibition significantly improves survival and reduces disease progression in murine models of acute GVHD without sacrificing the beneficial graft-versus-leukemia response. BET inhibition reduces T cell alloreactive proliferation, decreases inflammatory cytokine production, and impairs dendritic cell maturation both in vitro and in vivo. RNA sequencing studies in human T cells revealed that BET inhibition impacts inflammatory IL-17 and IL-12 gene expression signatures, and Chromatin Immunoprecipitation (ChIP)-sequencing revealed that BRD4 binds directly to the IL-23R gene locus. BET inhibition results in decreased IL-23R expression and function as demonstrated by decreased phosphorylation of STAT3 in response to IL-23 stimulation in human T cells in vitro as well as in mouse donor T cells in vivo. Furthermore, PLX2853 significantly reduced IL-23R+ and pathogenic CD4+ IFNγ+ IL-17+ double positive T cell infiltration in gastrointestinal tissues in an acute GVHD murine model. Our findings identify a role for BET proteins in regulating the IL-23R/STAT3/IL-17 pathway. Based on our preclinical data presented here, PLX51107 will enter clinical trial for refractory acute GVHD in a Phase 1 safety, biological efficacy trial.
Collapse
Affiliation(s)
- Katiri J Snyder
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Hannah K Choe
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Yandi Gao
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Natalie E Sell
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Kara M Braunreiter
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Nina C Zitzer
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Lotus Neidemire-Colley
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Sonu Kalyan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Adrienne M Dorrance
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Andrea Keller
- Department of Biological Chemistry and Pharmacology, Comprehensive Cancer Center, The Ohio State University Columbus, Columbus, OH, United States
| | - Maria M Mihaylova
- Department of Biological Chemistry and Pharmacology, Comprehensive Cancer Center, The Ohio State University Columbus, Columbus, OH, United States
| | - Satishkumar Singh
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Lalit Sehgal
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Gideon Bollag
- Plexxikon Inc, South San Francisco, CA, United States
| | - Yan Ma
- Plexxikon Inc, South San Francisco, CA, United States
| | - Ben Powell
- Plexxikon Inc, South San Francisco, CA, United States
| | - Steven M Devine
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Parvathi Ranganathan
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
22
|
Kreft A, Hippe K, Wagner-Drouet EM, Ries I, Kandulski A, Büttner-Herold M, Neumann H, Weber D, Holler E, Schindeldecker M. An investigation of the diagnostic, predictive, and prognostic impacts of three colonic biopsy grading systems for acute graft versus host disease. PLoS One 2021; 16:e0256543. [PMID: 34437603 PMCID: PMC8389423 DOI: 10.1371/journal.pone.0256543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/09/2021] [Indexed: 11/19/2022] Open
Abstract
Acute graft versus host disease (aGvHD) is an important, life-threatening complication after allogeneic hematopoietic stem cell transplantation (alloHSCT). To investigate the value of multiple simultaneous colon biopsies in improving diagnostic accuracy in patients with aGvHD, we retrospectively analyzed 157 patients after alloHSCT. The biopsies were evaluated individually using three established histological grading systems (Lerner, Sale, and Melson). The maximum, minimum, median, and mean histological aGvHD grades were calculated for each patient, and the results were correlated with the Glucksberg grade of clinical manifestation of GvHD, steroid therapy status, and outcome. We found that multiple colon biopsies enhanced diagnostic sensitivity. Moreover, higher histological grades correlated with steroid therapy initiation and refractoriness; the latter particularly occurred when advanced damage was present in all samples and healthy colon mucosa was reduced or absent. On multivariate analysis, the minimal Lerner and Glucksberg grades for intestinal aGvHD were significantly associated with steroid treatment failure. Ninety-nine patients died. The median survival was 285 days after the biopsies were taken. Fifteen patients died from relapse of their underling disorder and 84 from other causes, mostly infection (53 patients) and GvHD (14 patients). Multivariate analysis revealed a significant association between none-relapse mortality and the mean Lerner grade, minimum Melson grade, Glucksberg organ stage, and platelet counts. Thus, we found the Lerner system to be superior to the other grading methods in most instances and histologic evaluation of multiple simultaneously obtained biopsies from the colon to result in a higher diagnostic yield, which helps plan systemic steroid treatment while predicting treatment response and outcome.
Collapse
Affiliation(s)
- Andreas Kreft
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
- * E-mail:
| | - Katrin Hippe
- Institute of Pathology, University Hospital Regensburg, Regensburg, Germany
| | - Eva Maria Wagner-Drouet
- 3 Medical Department, Hematology, Oncology and Pneumology, University Medical Center Mainz, Mainz, Germany
| | - Isabelle Ries
- 3 Medical Department, Hematology, Oncology and Pneumology, University Medical Center Mainz, Mainz, Germany
| | - Arne Kandulski
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Helmut Neumann
- 1 Medical Department, University Medical Center Mainz, Mainz, Germany
| | - Daniela Weber
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Ernst Holler
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany
| | - Mario Schindeldecker
- Institute of Pathology, University Medical Center Mainz, Mainz, Germany
- Tissue Biobank, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
23
|
Pereira M, Lee NT, Noonan J, Willcox AEH, Calvello I, Georgy SR, Selan C, Chia JS, Hauw W, Wang X, Peter K, Robson SC, Nandurkar HH, Sashindranath M. Early Endothelial Activation in a Mouse Model of Graft vs Host Disease Following Chemotherapy. Front Immunol 2021; 12:708554. [PMID: 34421913 PMCID: PMC8374081 DOI: 10.3389/fimmu.2021.708554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022] Open
Abstract
Allogenic hematopoietic stem cell transplant (allo-HSCT) can lead to sinusoidal obstruction syndrome (SOS) and graft-versus-host disease (GvHD) in some individuals. GvHD is characterised by an immune triggered response that arises due to donor T cells recognizing the recipient tissue as “foreign”. SOS results in impaired liver function due to microvascular thrombosis and consequent obstruction of liver sinusoids. Endothelial damage occurs following chemotherapy and allo-HSCT and is strongly associated with GvHD onset as well as hepatic SOS. Animal models of GvHD are rarely clinically relevant, and endothelial dysfunction remains uncharacterised. Here we established and characterised a clinically relevant model of GvHD wherein Balb/C mice were subjected to myeloablative chemotherapy followed by transplantation of bone marrow (BM) cells± splenic T-cells from C57Bl6 mice, resulting in a mismatch of major histocompatibility complexes (MHC). Onset of disease indicated by weight loss and apoptosis in the liver and intestine was discovered at day 6 post-transplant in mice receiving BM+T-cells, with established GvHD detectable by histology of the liver within 3 weeks. Together with significant increases in pro-inflammatory cytokine gene expression in the liver and intestine, histopathological signs of GvHD and a significant increase in CD4+ and CD8+ effector and memory T-cells were seen. Endothelial activation including upregulation of vascular cell adhesion molecule (VCAM)- 1 and downregulation of endothelial nitric oxide synthase (eNOS) as well as thrombosis in the liver indicated concomitant hepatic SOS. Our findings confirm that endothelial activation is an early sign of acute GvHD and SOS in a clinically relevant mouse model of GvHD based on myeloablative chemotherapy. Preventing endothelial activation may be a viable therapeutic strategy to prevent GvHD.
Collapse
Affiliation(s)
- Melrine Pereira
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Alfred Hospital, Melbourne VIC, Australia
| | - Natasha Ting Lee
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Alfred Hospital, Melbourne VIC, Australia
| | - Jonathan Noonan
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia.,Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Abbey E H Willcox
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Alfred Hospital, Melbourne VIC, Australia
| | - Ilaria Calvello
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Alfred Hospital, Melbourne VIC, Australia
| | - Smitha Rose Georgy
- Department of Anatomic Pathology, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, VIC, Australia
| | - Carly Selan
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Alfred Hospital, Melbourne VIC, Australia
| | - Joanne S Chia
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Alfred Hospital, Melbourne VIC, Australia
| | - Wayne Hauw
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Alfred Hospital, Melbourne VIC, Australia
| | - Xiaowei Wang
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Simon C Robson
- Harvard Medical School, Department of Medicine, Division of Gastroenterology, Boston, MA, United States
| | - Harshal H Nandurkar
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Alfred Hospital, Melbourne VIC, Australia
| | - Maithili Sashindranath
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Alfred Hospital, Melbourne VIC, Australia
| |
Collapse
|
24
|
Consonni M, Garavaglia C, Grilli A, de Lalla C, Mancino A, Mori L, De Libero G, Montagna D, Casucci M, Serafini M, Bonini C, Häussinger D, Ciceri F, Bernardi M, Mastaglio S, Bicciato S, Dellabona P, Casorati G. Human T cells engineered with a leukemia lipid-specific TCR enables donor-unrestricted recognition of CD1c-expressing leukemia. Nat Commun 2021; 12:4844. [PMID: 34381053 PMCID: PMC8358059 DOI: 10.1038/s41467-021-25223-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Acute leukemia relapsing after chemotherapy plus allogeneic hematopoietic stem cell transplantation can be treated with donor-derived T cells, but this is hampered by the need for donor/recipient MHC-matching and often results in graft-versus-host disease, prompting the search for new donor-unrestricted strategies targeting malignant cells. Leukemia blasts express CD1c antigen-presenting molecules, which are identical in all individuals and expressed only by mature leukocytes, and are recognized by T cell clones specific for the CD1c-restricted leukemia-associated methyl-lysophosphatidic acid (mLPA) lipid antigen. Here, we show that human T cells engineered to express an mLPA-specific TCR, target diverse CD1c-expressing leukemia blasts in vitro and significantly delay the progression of three models of leukemia xenograft in NSG mice, an effect that is boosted by mLPA-cellular immunization. These results highlight a strategy to redirect T cells against leukemia via transfer of a lipid-specific TCR that could be used across MHC barriers with reduced risk of graft-versus-host disease. Leukaemia therapy may benefit from the use of antigens that are less restricted to individual donors. Here the authors engineered T cells with a TCR specific for a CD1c restricted lipid leukaemia antigen and show that they can protect against disease progression in mouse leukaemia xenograft models.
Collapse
Affiliation(s)
- Michela Consonni
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Claudio Garavaglia
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Andrea Grilli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudia de Lalla
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Alessandra Mancino
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy
| | - Lucia Mori
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital, Basel, Switzerland
| | - Gennaro De Libero
- Experimental Immunology, Department of Biomedicine, University of Basel and University Hospital, Basel, Switzerland
| | - Daniela Montagna
- Foundation IRCCS Policlinico San Matteo; Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, Pavia, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Serafini
- M. Tettamanti Research Center, University of Milano-Bicocca, Monza, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniel Häussinger
- NMR-Laboratory, Department of Chemistry, University of Basel, Basel, Switzerland
| | - Fabio Ciceri
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Bernardi
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Mastaglio
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy.
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, 20132, Italy.
| |
Collapse
|
25
|
Mammadli M, Harris R, Mahmudlu S, Verma A, May A, Dhawan R, Waickman AT, Sen JM, August A, Karimi M. Human Wnt/β-Catenin Regulates Alloimmune Signaling during Allogeneic Transplantation. Cancers (Basel) 2021; 13:cancers13153798. [PMID: 34359702 PMCID: PMC8345079 DOI: 10.3390/cancers13153798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is one of the most widely applied forms of adoptive immunotherapy for the treatment of hematological malignancies. Detrimental graft-versus-host disease (GVHD), but also beneficial graft-versus-leukemia (GVL) effects occurring after allo-HSCT are largely mediated by alloantigen-reactive donor T cells in the graft. Separating GVHD from GVL effects is a formidable challenge, and a greater understanding of donor T cell biology is required to accomplish the uncoupling of GVHD from GVL. Here, we evaluated the role of β-catenin in this process. Using a unique mouse model of transgenic overexpression of human β-catenin (Cat-Tg) in an allo-HSCT model, we show here that T cells from Cat-Tg mice did not cause GVHD, and surprisingly, Cat-Tg T cells maintained the GVL effect. Donor T cells from Cat-Tg mice exhibited significantly lower inflammatory cytokine production and reduced donor T cell proliferation, while upregulating cytotoxic mediators that resulted in enhanced cytotoxicity. RNA sequencing revealed changes in the expression of 1169 genes for CD4, and 1006 genes for CD8+ T cells involved in essential aspects of immune response and GVHD pathophysiology. Altogether, our data suggest that β-catenin is a druggable target for developing therapeutic strategies to reduce GVHD while preserving the beneficial GVL effects following allo-HSCT treatment.
Collapse
Affiliation(s)
- Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.M.); (R.H.); (S.M.); (A.M.); (R.D.); (A.T.W.)
| | - Rebecca Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.M.); (R.H.); (S.M.); (A.M.); (R.D.); (A.T.W.)
| | - Sara Mahmudlu
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.M.); (R.H.); (S.M.); (A.M.); (R.D.); (A.T.W.)
| | - Anjali Verma
- Biomedical Research Center, National Institute on Aging-National Institutes of Health, 08C218, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA; (A.V.); (J.M.S.)
| | - Adriana May
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.M.); (R.H.); (S.M.); (A.M.); (R.D.); (A.T.W.)
| | - Rohan Dhawan
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.M.); (R.H.); (S.M.); (A.M.); (R.D.); (A.T.W.)
| | - Adam T. Waickman
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.M.); (R.H.); (S.M.); (A.M.); (R.D.); (A.T.W.)
| | - Jyoti Misra Sen
- Biomedical Research Center, National Institute on Aging-National Institutes of Health, 08C218, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA; (A.V.); (J.M.S.)
- Immunology Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21224, USA
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA;
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; (M.M.); (R.H.); (S.M.); (A.M.); (R.D.); (A.T.W.)
- Correspondence: ; Tel.: +315-464-2344 or +315-464-7652
| |
Collapse
|
26
|
Repurposing a novel anti-cancer RXR agonist to attenuate murine acute GVHD and maintain graft-versus-leukemia responses. Blood 2021; 137:1090-1103. [PMID: 32976550 PMCID: PMC7907720 DOI: 10.1182/blood.2020005628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
The nuclear receptor (NR) subclass, retinoid X receptors (RXRs), exert immunomodulatory functions that control inflammation and metabolism via homodimers and heterodimers, with several other NRs, including retinoic acid receptors. IRX4204 is a novel, highly specific RXR agonist in clinical trials that potently and selectively activates RXR homodimers, but not heterodimers. In this study, in vivo IRX4204 compared favorably with FK506 in abrogating acute graft-versus-host disease (GVHD), which was associated with inhibiting allogeneic donor T-cell proliferation, reducing T-helper 1 differentiation, and promoting regulatory T-cell (Treg) generation. Recipient IRX4204 treatment reduced intestinal injury and decreased IFN-γ and TNF-α serum levels. Transcriptional analysis of donor T cells isolated from intestines of GVHD mice treated with IRX4204 revealed significant decreases in transcripts regulating proinflammatory pathways. In vitro, inducible Treg differentiation from naive CD4+ T cells was enhanced by IRX4204. In vivo, IRX4204 increased the conversion of donor Foxp3- T cells into peripheral Foxp3+ Tregs in GVHD mice. Using Foxp3 lineage-tracer mice in which both the origin and current FoxP3 expression of Tregs can be tracked, we demonstrated that IRX4204 supports Treg stability. Despite favoring Tregs and reducing Th1 differentiation, IRX4204-treated recipients maintained graft-versus-leukemia responses against both leukemia and lymphoma cells. Notably, IRX4204 reduced in vitro human T-cell proliferation and enhanced Treg generation in mixed lymphocyte reaction cultures. Collectively, these beneficial effects indicate that targeting RXRs with IRX4204 could be a novel approach to preventing acute GVHD in the clinic.
Collapse
|
27
|
Wang Q, Su X, He Y, Wang M, Yang D, Zhang R, Wei J, Ma Q, Zhai W, Pang A, Huang Y, Feng S, Ballantyne CM, Wu H, Pei X, Feng X, Han M, Jiang E. CD11c participates in triggering acute graft-versus-host disease during bone marrow transplantation. Immunology 2021; 164:148-160. [PMID: 33934334 PMCID: PMC8358721 DOI: 10.1111/imm.13350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 04/15/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022] Open
Abstract
CD11c is a canonical dendritic cell (DC) marker with poorly defined functions in the immune system. Here, we found that blocking CD11c on human peripheral blood mononuclear cell‐derived DCs (MoDCs) inhibited the proliferation of CD4+ T cells and the differentiation into IFN‐γ‐producing T helper 1 (Th1) cells, which were critical in acute graft‐versus‐host disease (aGVHD) pathogenesis. Using allogeneic bone marrow transplantation (allo‐BMT) murine models, we consistently found that CD11c‐deficient recipient mice had alleviated aGVHD symptoms for the decreased IFN‐γ‐expressing CD4+ Th1 cells and CD8+ T cells. Transcriptional analysis showed that CD11c participated in several immune regulation functions including maintaining antigen presentation of APCs. CD11c‐deficient bone marrow‐derived DCs (BMDCs) impaired the antigen presentation function in coculture assay. Mechanistically, CD11c interacted with MHCII and Hsp90 and participated in the phosphorylation of Akt and Erk1/2 in DCs after multiple inflammatory stimulations. Therefore, CD11c played crucial roles in triggering aGVHD and might serve as a potential target for the prevention and treatment of aGVHD.
Collapse
Affiliation(s)
- Qianqian Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiuhua Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Donglin Yang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Rongli Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jialin Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Qiaoling Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Aiming Pang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yong Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | | | - Huaizhu Wu
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Xiaolei Pei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| |
Collapse
|
28
|
Cellular and molecular profiling of T-cell subsets at the onset of human acute GVHD. Blood Adv 2021; 4:3927-3942. [PMID: 32818226 DOI: 10.1182/bloodadvances.2019001032] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
The cellular and molecular processes involved in acute graft-versus-host disease (aGVHD) development early after allogeneic hematopoietic cell transplantation (HCT) in humans remain largely unknown. We have performed multiparameter immunophenotyping and molecular profiling of CD4+ and CD8+ T cells in 2 independent cohorts of patients undergoing HCT, as well as in their HLA-identical sibling donors. Cellular profiling using spectral flow cytometry showed an incomplete reconstitution of the T-cell compartment in recipients without aGVHD early after transplantation, as well as a shift toward an effector memory phenotype, paralleled by depletion of the naive T-cell pool. Molecular profiling of T-cell populations in donors vs recipients without aGVHD revealed increased pathway activity of >40 gene modules in recipients. These pathways were associated in particular with T-cell activation, adhesion, migration, and effector functions. Cellular profiles from recipients developing aGVHD displayed an enrichment of cells with a T memory stem cell-like phenotype compared with recipients without aGVHD. Comparison of gene profiles from these recipients revealed that transforming growth factor-β (TGF-β) signaling was most significantly downregulated, whereas the pathway activity of NF-κB-associated transcription factors and signaling pathways were increased, at aGVHD onset. This study suggests that the integration of cellular and molecular profiles provides new insights into the development of aGVHD in humans.
Collapse
|
29
|
Stokes J, Molina MS, Hoffman EA, Simpson RJ, Katsanis E. Immunomodulatory Effects of Bendamustine in Hematopoietic Cell Transplantation. Cancers (Basel) 2021; 13:1702. [PMID: 33916711 PMCID: PMC8038415 DOI: 10.3390/cancers13071702] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
Bendamustine (BEN) is a unique alkylating agent with efficacy against a broad range of hematological malignancies, although investigations have only recently started to delve into its immunomodulatory effects. These immunomodulatory properties of BEN in the context of hematopoietic cell transplantation (HCT) are reviewed here. Pre- and post-transplant use of BEN in multiple murine models have consistently resulted in reduced GvHD and enhanced GvL, with significant changes to key immunological cell populations, including T-cells, myeloid derived suppressor cells (MDSCs), and dendritic cells (DCs). Further, in vitro studies find that BEN enhances the suppressive function of MDSCs, skews DCs toward cDC1s, enhances Flt3 expression on DCs, increases B-cell production of IL-10, inhibits STAT3 activation, and suppresses proliferation of T- and B-cells. Overall, BEN has a broad range of immunomodulatory effects that, as they are further elucidated, may be exploited to improve clinical outcomes. As such, clinical trials are currently underway investigating new potential applications of BEN in the setting of allogeneic HCT.
Collapse
Affiliation(s)
- Jessica Stokes
- Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA; (J.S.); (M.S.M.); (E.A.H.); (R.J.S.)
| | - Megan S. Molina
- Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA; (J.S.); (M.S.M.); (E.A.H.); (R.J.S.)
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA
| | - Emely A. Hoffman
- Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA; (J.S.); (M.S.M.); (E.A.H.); (R.J.S.)
| | - Richard J. Simpson
- Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA; (J.S.); (M.S.M.); (E.A.H.); (R.J.S.)
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ 85721, USA
- The University of Arizona Cancer Center, Tucson, AZ 85721, USA
| | - Emmanuel Katsanis
- Department of Pediatrics, University of Arizona, Tucson, AZ 85721, USA; (J.S.); (M.S.M.); (E.A.H.); (R.J.S.)
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA
- The University of Arizona Cancer Center, Tucson, AZ 85721, USA
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA
- Department of Pathology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
30
|
Exploiting CD1-restricted T cells for clinical benefit. Mol Immunol 2021; 132:126-131. [PMID: 33582549 DOI: 10.1016/j.molimm.2020.12.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/07/2020] [Indexed: 01/11/2023]
Abstract
CD1-restricted T cells were first described over 30 years ago along with the cloning of the CD1 family. Around the same time, invariant Natural Killer cells (iNKT) were identified based on invariant TCR-alpha chains with additional expression of natural killer (NK) cell markers. About 5 years later, iNKT were shown to react with CD1d. Since then, iNKT have been shown to be a major population of CD1d-restricted T cells in humans and many animals. Like NK cells, iNKT are innate lymphocytes with rapid and wide-ranging effector potential. These activities include cytotoxicity and an unusually broad and high-level cytokine production. The development of highly-specific methods of isolating, stimulating, expanding or depleting these relatively rare cells and controlling their potent activities has stimulated considerable interest in therapeutic targeting of iNKT cells. Potential applications include cancers, inflammatory, infectious and autoimmune among other diseases. To date, most trials have targeted various cancers, there are 2 published trials in viral hepatitis and one in sickle cell lung disease. Uniform safety, evidence of immunologic activity and increasingly clinical efficacy have been seen. Approaches to targeting iNKT cells in clinical development include highly specific natural glycolipid ligands presented by CD1d and chemical analogues thereof and monoclonal antibody-based targeting of iNKT cells. In the case of iNKT cell-based therapies, novel approaches include arming them with Chimeric Antigen Receptors (CARs) and recombinant TCRs (rTCR), gene editing and allogeneic use. Controlling the iTCR:CD1d molecular interaction and consequences is a unique and promising therapeutic technology.
Collapse
|
31
|
Sofi MH, Wu Y, Ticer T, Schutt S, Bastian D, Choi HJ, Tian L, Mealer C, Liu C, Westwater C, Armeson KE, Alekseyenko AV, Yu XZ. A single strain of Bacteroides fragilis protects gut integrity and reduces GVHD. JCI Insight 2021; 6:136841. [PMID: 33554953 PMCID: PMC7934839 DOI: 10.1172/jci.insight.136841] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 12/16/2020] [Indexed: 12/20/2022] Open
Abstract
Graft-versus-host disease (GVHD) is a pathological process caused by an exaggerated donor lymphocyte response to host antigens after allogeneic hematopoietic cell transplantation (allo-HCT). Donor T cells undergo extensive clonal expansion and differentiation, which culminate in damage to recipient target organs. Damage to the gastrointestinal tract is a main contributor to morbidity and mortality. The loss of diversity among intestinal bacteria caused by pretransplant conditioning regimens leads to an outgrowth of opportunistic pathogens and exacerbated GVHD after allo-HCT. Using murine models of allo-HCT, we found that an increase of Bacteroides in the intestinal microbiota of the recipients was associated with reduced GVHD in mice given fecal microbial transplantation. Administration of Bacteroides fragilis through oral gavage increased gut microbiota diversity and beneficial commensal bacteria and significantly ameliorated acute and chronic GVHD development. Preservation of gut integrity following B. fragilis exposure was likely attributed to increased short chain fatty acids, IL-22, and regulatory T cells, which in turn improved gut tight junction integrity and reduced inflammatory cytokine production of pathogenic T cells. The current study provides a proof of concept that a single strain of commensal bacteria can be a safe and effective means to protect gut integrity and ameliorate GVHD after allo-HCT.
Collapse
Affiliation(s)
- M Hanief Sofi
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yongxia Wu
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Taylor Ticer
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Steven Schutt
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David Bastian
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Hee-Jin Choi
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Linlu Tian
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Corey Mealer
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Caroline Westwater
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Kent E Armeson
- Biomedical Informatics Center and Department of Public Health Sciences, College of Medicine, and Department of Healthcare Leadership & Management, College of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Alexander V Alekseyenko
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA.,Biomedical Informatics Center and Department of Public Health Sciences, College of Medicine, and Department of Healthcare Leadership & Management, College of Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Hollings Cancer Center, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
32
|
Khuat LT, Dave M, Murphy WJ. The emerging roles of the gut microbiome in allogeneic hematopoietic stem cell transplantation. Gut Microbes 2021; 13:1966262. [PMID: 34455917 PMCID: PMC8436969 DOI: 10.1080/19490976.2021.1966262] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/12/2021] [Indexed: 02/04/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is used for the treatment of hematologic cancers and disorders. However, graft-versus-host disease (GVHD) in which the donor immune cells attack the genetically-disparate recipient is a significant cause of morbidity. Acute GVHD is an inflammatory condition and the gastrointestinal system is a major organ affected but is also tied to beneficial graft-versus-tumor (GVT) effects. There is increasing interest on the role of the microbiome on immune function as well as on cancer progression and immunotherapy outcomes. However, there are still significant unanswered questions on the role the microbiome plays in GVHD progression or how to exploit the microbiome in GVHD prevention or treatment. In this review, concepts of HSCT with the focus on GVHD pathogenesis as well as issues in preclinical models used to study GVHD will be discussed with an emphasis on the impact of the microbiome. Factors affecting the microbiome and GVHD outcome such as obesity are also examined. The bridging of preclinical models and clinical outcomes in relation to the role of the microbiome will also be discussed along with possibilities for therapeutic exploitation.
Collapse
Affiliation(s)
- Lam T. Khuat
- Department of Dermatology, School of Medicine, University of California, Davis, CA, USA
| | - Maneesh Dave
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, University of California, Davis, CA, USA
| | - William J. Murphy
- Department of Dermatology, School of Medicine, University of California, Davis, CA, USA
- Department of Internal Medicine, School of Medicine, University of California, Davis, CA, USAs
| |
Collapse
|
33
|
Luo L, Chen Y, Chen X, Zheng Y, Zhou V, Yu M, Burns R, Zhu W, Fu G, Felix JC, Hartley C, Damnernsawad A, Zhang J, Wen R, Drobyski WR, Gao C, Wang D. Kras-Deficient T Cells Attenuate Graft-versus-Host Disease but Retain Graft-versus-Leukemia Activity. THE JOURNAL OF IMMUNOLOGY 2020; 205:3480-3490. [PMID: 33158956 DOI: 10.4049/jimmunol.2000006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is one major serious complication that is induced by alloreactive donor T cells recognizing host Ags and limits the success of allogeneic hematopoietic stem cell transplantation. In the current studies, we identified a critical role of Kras in regulating alloreactive T cell function during aGVHD. Kras deletion in donor T cells dramatically reduced aGVHD mortality and severity in an MHC-mismatched allogeneic hematopoietic stem cell transplantation mouse model but largely maintained the antitumor capacity. Kras-deficient CD4 and CD8 T cells exhibited impaired TCR-induced activation of the ERK pathway. Kras deficiency altered TCR-induced gene expression profiles, including the reduced expression of various inflammatory cytokines and chemokines. Moreover, Kras deficiency inhibited IL-6-mediated Th17 cell differentiation and impaired IL-6-induced ERK activation and gene expression in CD4 T cells. These findings support Kras as a novel and effective therapeutic target for aGVHD.
Collapse
Affiliation(s)
- Lan Luo
- Blood Research Institute, Versiti, Milwaukee, WI 53226.,Department of Hematology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yuhong Chen
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Xiao Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Yongwei Zheng
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Vivian Zhou
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Mei Yu
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Robert Burns
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Wen Zhu
- Blood Research Institute, Versiti, Milwaukee, WI 53226.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Guoping Fu
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Juan C Felix
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Christopher Hartley
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Alisa Damnernsawad
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Renren Wen
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | | | - Chunji Gao
- Department of Hematology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Demin Wang
- Blood Research Institute, Versiti, Milwaukee, WI 53226; .,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
34
|
Berger M, Pessolano R, Carraro F, Saglio F, Vassallo E, Fagioli F. Steroid-refractory acute graft-versus-host disease graded III-IV in pediatric patients. A mono-institutional experience with a long-term follow-up. Pediatr Transplant 2020; 24:e13806. [PMID: 32844519 DOI: 10.1111/petr.13806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/28/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022]
Abstract
aGvHD remains a major obstacle to successful HSCT. We report our experience on steroid-refractory aGvHD III and IV from 1989 to 2017. Ninety patients with aGvHD III or IV were stratified according to the HSCT year: 1989-1998, 1999-2007, and 2008-2017 and to aGvHD extension (GvHD III vs IV) and finally the probability of OS, RI, and TRM was calculated accordingly. aGvHD III patients had a substantial improvement over time: day 100 OS raised from 64% (95% CI 39-89) in the first cohort to 100% in the latest (P = .022), and it was mainly due to a reduction of TRM (it was 28% [95% CI 12-65] in the first cohort to 0% in the latest (P = .01). The aGvHD IV patients did not present a significant improvement. Day 100 OS was 42% (95% CI 16-68) in the first group and 54% (95% CI 25-83) in the year 2008-2017 (P = NS), and the day-100 TRM was very similar (it was 57% [95% CI 36-90] in the first cohort and 45% [95% CI 23-89] in the latest (P = NS). We report significant improvements in OS and TRM in patients diagnosed with grade III aGvHD. Patients with the most severe aGvHD appear to have no or fewer benefits on long-term outcomes.
Collapse
Affiliation(s)
- Massimo Berger
- Pediatric Onco-Hematology, City of Health and Science, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Rosanna Pessolano
- Pediatric Onco-Hematology, City of Health and Science, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Francesca Carraro
- Pediatric Onco-Hematology, City of Health and Science, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Francesco Saglio
- Pediatric Onco-Hematology, City of Health and Science, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Elena Vassallo
- Pediatric Onco-Hematology, City of Health and Science, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| | - Franca Fagioli
- Pediatric Onco-Hematology, City of Health and Science, Regina Margherita Children Hospital, University of Turin, Turin, Italy
| |
Collapse
|
35
|
Saidu NEB, Bonini C, Dickinson A, Grce M, Inngjerdingen M, Koehl U, Toubert A, Zeiser R, Galimberti S. New Approaches for the Treatment of Chronic Graft-Versus-Host Disease: Current Status and Future Directions. Front Immunol 2020; 11:578314. [PMID: 33162993 PMCID: PMC7583636 DOI: 10.3389/fimmu.2020.578314] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
Chronic graft-versus-host disease (cGvHD) is a severe complication of allogeneic hematopoietic stem cell transplantation that affects various organs leading to a reduced quality of life. The condition often requires enduring immunosuppressive therapy, which can also lead to the development of severe side effects. Several approaches including small molecule inhibitors, antibodies, cytokines, and cellular therapies are now being developed for the treatment of cGvHD, and some of these therapies have been or are currently tested in clinical trials. In this review, we discuss these emerging therapies with particular emphasis on tyrosine kinase inhibitors (TKIs). TKIs are a class of compounds that inhibits tyrosine kinases, thereby preventing the dissemination of growth signals and activation of key cellular proteins that are involved in cell growth and division. Because they have been shown to inhibit key kinases in both B cells and T cells that are involved in the pathophysiology of cGvHD, TKIs present new promising therapeutic approaches. Ibrutinib, a Bruton tyrosine kinase (Btk) inhibitor, has recently been approved by the Food and Drug Administration (FDA) in the United States for the treatment of adult patients with cGvHD after failure of first-line of systemic therapy. Also, Janus Associated Kinases (JAK1 and JAK2) inhibitors, such as itacitinib (JAK1) and ruxolitinib (JAK1 and 2), are promising in the treatment of cGvHD. Herein, we present the current status and future directions of the use of these new drugs with particular spotlight on their targeting of specific intracellular signal transduction cascades important for cGvHD, in order to shed some light on their possible mode of actions.
Collapse
Affiliation(s)
- Nathaniel Edward Bennett Saidu
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Chiara Bonini
- Experimental Hematology Unit, San Raffaele Scientific Institute, Milano, Italy
| | - Anne Dickinson
- Haematological Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Magdalena Grce
- Division of Molecular Medicine, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marit Inngjerdingen
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ulrike Koehl
- Faculty of Medicine, Institute of Clinical Immunology, University Leipzig and Fraunhofer IZI, Leipzig, Germany
| | - Antoine Toubert
- Université de Paris, Institut de Recherche Saint Louis, EMiLy, Inserm U1160, Paris, France
- Laboratoire d'Immunologie et d`Histocompatibilité, AP-HP, Hopital Saint-Louis, Paris, France
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, Freiburg University Medical Center, Faculty of Medicine, Freiburg, Germany
| | - Sara Galimberti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
36
|
Zhou Y, Cao L, Guo H, Hong Y, Wang M, Wang K, Huang X, Chang Y. Th2 polarization in target organs is involved in the alleviation of pathological damage mediated by transplanting granulocyte colony-stimulating factor-primed donor T cells. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1087-1096. [PMID: 32880861 DOI: 10.1007/s11427-020-1754-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/09/2020] [Indexed: 11/24/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is caused by allo-activated donor T cells infiltrating target organs. As a regulator of immune function, granulocyte colony-stimulating factor (G-CSF) has been demonstrated to relieve the aGVHD reaction. However, the role of G-CSF-primed donor T cells in specific target organs is still unknown. In this study, we employed a classical MHC-mismatched transplantation mouse model (C57BL/6 into BALB/c) and found that recipient mice transplanted with G-CSF-primed T cells exhibited prolonged survival compared with that of the PBS-treated group. This protective function against GVHD mediated by G-CSF-primed donor T cells was further confirmed by decreased clinical and pathological scores in this aGVHD mouse model, especially in the lung and gut. Moreover, we found that T cells polarized towards Th2 cells and regulatory T cells were increased in specific target organs. In addition, G-CSF treatment inhibited inducible co-stimulator (ICOS) expression and increased the expression of tolerance-related genes in recipient mice. Our study provides new insight into the immune regulatory effects of G-CSF on T cell-mediated aGVHD, especially for its precise regulation in GVHD target organs.
Collapse
Affiliation(s)
- Yang Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Leqing Cao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Huidong Guo
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Yan Hong
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Ming Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Ke Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100044, China.
| | - Yingjun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of HSCT, Peking University, Beijing, 100044, China.
| |
Collapse
|
37
|
Hill GR, Koyama M. Cytokines and costimulation in acute graft-versus-host disease. Blood 2020; 136:418-428. [PMID: 32526028 PMCID: PMC7378458 DOI: 10.1182/blood.2019000952] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/18/2020] [Indexed: 12/11/2022] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (alloSCT) is an important curative therapy for high-risk hematological malignancies, but the development of severe and/or steroid-refractory acute graft-versus-host disease (aGVHD) remains a significant limitation to optimal outcomes. New approaches to prevent and treat aGVHD remain an unmet need that can be best addressed by understanding the complex disease pathophysiology. It is now clear that chemoradiotherapy used prior to alloSCT induces the release of endogenous alarmins (eg, HMGB-1, ATP, IL-1α, IL-33) from recipient tissue. Exogenous pathogen-derived molecules (eg, lipopolysaccharide, nucleic acids) also translocate from the gastrointestinal tract lumen. Together, these danger signals activate antigen-presenting cells (APCs) to efficiently present alloantigen to donor T cells while releasing cytokines (eg, interleukin-12 [IL-12], IL-23, IL-6, IL-27, IL-10, transforming growth factor-β) that expand and differentiate both pathogenic and regulatory donor T cells. Concurrent costimulatory signals at the APC-T-cell interface (eg, CD80/CD86-CD28, CD40-CD40L, OX40L-OX40, CD155/CD112-DNAM-1) and subsequent coinhibitory signals (eg, CD80/CD86-CTLA4, PDL1/2-PD1, CD155/CD112-TIGIT) are critical to the acquisition of effector T-cell function and ensuing secretion of pathogenic cytokines (eg, IL-17, interferon-γ, tissue necrosis factor, granulocyte-macrophage colony-stimulating factor) and cytolytic degranulation pathway effectors (eg, perforin/granzyme). This review focuses on the combination of cytokine and costimulatory networks at the T-cell surface that culminates in effector function and subsequent aGVHD in target tissue. Together, these pathways now represent robust and clinically tractable targets for preventing the initiation of deleterious immunity after alloSCT.
Collapse
Affiliation(s)
- Geoffrey R Hill
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA
| | - Motoko Koyama
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| |
Collapse
|
38
|
Zhu H, Lan L, Zhang Y, Chen Q, Zeng Y, Luo X, Ren J, Chen S, Xiao M, Lin K, Chen M, Li Q, Chen Y, Xu J, Zheng Z, Chen Z, Xie Y, Hu J, Yang T. Epidermal growth factor stimulates exosomal microRNA-21 derived from mesenchymal stem cells to ameliorate aGVHD by modulating regulatory T cells. FASEB J 2020; 34:7372-7386. [PMID: 32314840 DOI: 10.1096/fj.201900847rrrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 02/15/2020] [Accepted: 03/14/2020] [Indexed: 12/15/2022]
Abstract
Regulatory T cells (Tregs), a subset of CD4+ T cells, may exert inhibitory effects on alloimmune responses including acute graft-versus-host disease (aGVHD), and several microRNAs are implicated in the pathophysiological process of GVHD. Therefore, we aimed in the present study to characterize the functional relevance of epidermal growth factor (EGF)-stimulated microRNA-21 (miR-21) in regulating bone marrow-derived mesenchymal stem cells (BMSCs) in a mouse model of aGVHD. We first isolated and cultured BMSCs and Tregs. Then, we examined effects of miR-21 knockdown or overexpression and EGF on cell activities of BMSCs and the expression of PTEN, Foxp3, AKT phosphorylation, and extent of c-jun phosphorylation by gain- and loss-of-function approaches. The results showed that miR-21 promoted the proliferation, invasion, and migration of BMSCs. Furthermore, miR-21 in BMSCs-derived exosomes inhibited PTEN, but enhanced AKT phosphorylation and Foxp3 expression in Tregs. In addition, EGF enhanced c-jun phosphorylation to elevate the miR-21 expression. Furthermore, EGF significantly increased the efficacy of BMSCs in a mouse model of aGVHD, manifesting in reduced IFN-γ expression and lesser organ damage. Moreover, EGF treatment promoted the Foxp3 expression of Tregs in BMSCs-treated aGVHD mice. Taken together, EGF induced the BMSCs-derived exosomal miR-21 expression, which enhanced Foxp3 expression in Tregs, thereby improving the therapeutic effect of BMSCs on aGVHD.
Collapse
Affiliation(s)
- Haojie Zhu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Lingqiong Lan
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China.,Department of Hematology, The Second Hospital of Longyan, Longyan, P.R. China
| | - Yuxin Zhang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Qiuru Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Yanling Zeng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Xiaofeng Luo
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Jinhua Ren
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Shaozhen Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Min Xiao
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Kangni Lin
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Minmin Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Qian Li
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Yongquan Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Jingjing Xu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Zhihong Zheng
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Zhizhe Chen
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Yongxin Xie
- Department of Hematology, The Second Hospital of Longyan, Longyan, P.R. China
| | - Jianda Hu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| | - Ting Yang
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, P.R. China
| |
Collapse
|
39
|
Zhang A, Xiong Y, Xu F, Wang Z, Ma J, Zhao N, Hu T, Yi J, Zhou Y, Luan X. IL-1β enhances human placenta-derived mesenchymal stromal cells ability to mediate Th1/Th2 and Th1/CD4 +IL-10 + T cell balance and regulates its adhesion, proliferation and migration via PD-L1. Cell Immunol 2020; 352:104113. [PMID: 32331794 DOI: 10.1016/j.cellimm.2020.104113] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/11/2020] [Accepted: 04/11/2020] [Indexed: 12/17/2022]
Abstract
Human placenta-derived mesenchymal stromal cells (hPMSCs) are promising candidates for the treatment of graft-versus-host disease (GVHD), which is associated with high IL-1β levels. In this study, the effects of IL-1β and hPMSCs on each other were investigated by analyzing the proportion of Th1, Th2 and CD4+IL-10+ T cells and PD-L1 expression, as well as the adhesion, migration, and proliferation of hPMSCs. The results showed that hPMSCs decreased IL-1β levels and downregulated Th1/Th2 and Th1/CD4+IL-10+ T cells ratios in the GVHD model. The in vitro results revealed that IL-1β strengthened the hPMSCs capacity to reduce the Th1/Th2 and Th1/CD4+IL-10+ T cell ratios, inhibited the adhesion and proliferation of hPMSCs and increased PD-L1 expression on hPMSCs via the JAK and NF-κB pathways. Overall, these findings suggested that hPMSCs alleviate GVHD by decreasing IL-1β level and maintaining the balance among different T cell subsets. IL-1β enhanced the ability of hPMSCs to balance different T cell subsets and inhibited hPMSCs adhesion and proliferation by regulating PD-L1 expression via the JAK and NF-κB pathways.
Collapse
Affiliation(s)
- Aiping Zhang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Yanlian Xiong
- Department of Anatomy, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Fenghuang Xu
- The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan Province 570102, China
| | - Zhuoya Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Junjie Ma
- Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong Province 264000, China
| | - Nannan Zhao
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Tao Hu
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Junzhu Yi
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China
| | - Yuming Zhou
- Laboratory Department, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong Province 264100, China.
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, Shandong Province 264003, People's Republic of China.
| |
Collapse
|
40
|
Pichereau C, Lengliné E, Valade S, Michonneau D, Ghrenassia E, Lemiale V, Socié G, Azoulay E. Trajectories of acute graft-versus-host disease and mortality in critically ill allogeneic-hematopoietic stem cell recipients: the Allo-GRRR-OH score. Bone Marrow Transplant 2020; 55:1966-1974. [DOI: 10.1038/s41409-020-0857-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/12/2020] [Accepted: 03/02/2020] [Indexed: 11/09/2022]
|
41
|
Ghasemi K, Parkhideh S, Kazemi MH, Salimi M, Salari S, Nalini R, Hajifathali A. The role of serum uric acid in the prediction of graft-versus-host disease in allogeneic hematopoietic stem cell transplantation. J Clin Lab Anal 2020; 34:e23271. [PMID: 32118321 PMCID: PMC7370721 DOI: 10.1002/jcla.23271] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/21/2020] [Accepted: 02/12/2020] [Indexed: 01/11/2023] Open
Abstract
Background Uric acid (UA) level is of the valuable signs of inflammation. However, the role of UA in the outcomes of hematopoietic stem cell transplantation (HSCT) such as GVHD and patients’ overall survival is still a matter of debate. In this study, we aimed to evaluate the relationship between UA levels and GVHD incidence and overall survival in allogeneic HSCT patients. Methods A total of 201 patients who were admitted for allogeneic transplantation at Taleghani hospital, Tehran, Iran, were considered for retrospective analysis. Serum UA levels from 1 week before transplantation until 2 weeks after transplantation were used to determine thresholds and find out the association of serum UA levels with GVHD and overall survival. Results We showed that the determined thresholds using receiver operating characteristic curves have poor predictive value for GVHD and overall survival. The patients with serum UA higher than 3.4 mg/dL had 37% lower odds of GVHD incidence and 35% lower hazard of death than patients with UA lower than 3.4 mg/dL. Conclusion Our results indicated that serum UA levels lower than 3.4 mg/dL could significantly increase the incidence of GVHD and hazard of death. The antioxidant functions of UA could explain the lower incidence of GVHD in hyperuricemic patients. However, the inconsistencies of the previous studies require further investigation to elucidate the role of UA in the prediction of GVHD.
Collapse
Affiliation(s)
- Katayoon Ghasemi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayeh Parkhideh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Kazemi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sina Salari
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Nalini
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Xu Y, Zhang T, Chen Y, Shi Q, Li M, Qin T, Hu J, Lu H, Liu J, Chen C. Isolation and Characterization of Multipotent Canine Urine-Derived Stem Cells. Stem Cells Int 2020; 2020:8894449. [PMID: 33061993 PMCID: PMC7545436 DOI: 10.1155/2020/8894449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/20/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022] Open
Abstract
Current cell-based therapies on musculoskeletal tissue regeneration were mostly determined in rodent models. However, a direct translation of those promising cell-based therapies to humans exists a significant hurdle. For solving this problem, canine has been developed as a new large animal model to bridge the gap from rodents to humans. In this study, we reported the isolation and characterization of urine-derived stem cells (USCs) from mature healthy beagle dogs. The isolated cells showed fibroblast-like morphology and had good clonogenicity and proliferation. Meanwhile, these cells positively expressed multiple markers of MSCs (CD29, CD44, CD90, and CD73), but negatively expressed for hematopoietic antigens (CD11b, CD34, and CD45). Additionally, after induction culturing, the isolated cells can be differentiated into osteogenic, adipogenic, chondrogenic, and tenogenic lineages. The successful isolation and verification of USCs from canine were useful for studying cell-based therapies and developing new treatments for musculoskeletal injuries using the preclinical canine model.
Collapse
Affiliation(s)
- Yan Xu
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Tao Zhang
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Yang Chen
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Qiang Shi
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Muzhi Li
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Tian Qin
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 5Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Jianzhong Hu
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 5Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China 410008
| | - Hongbin Lu
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 4Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China 410008
| | - Jun Liu
- 6Department of Limbs (Foot and Hand) Microsurgery, Affiliated Chenzhou No.1 People's Hospital, Southern Medical University, Chenzhou, China 423000
| | - Can Chen
- 1Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China 410008
- 2Hunan Engineering Research Center of Sports and Health, Changsha, China 410008
- 3Xiangya Hospital-International Chinese Musculoskeletal Research Society Sports Medicine Research Centre, Changsha, China 410008
- 7Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, China 410008
| |
Collapse
|
43
|
Saha A, Taylor PA, Lees CJ, Panoskaltsis-Mortari A, Osborn MJ, Feser CJ, Thangavelu G, Melchinger W, Refaeli Y, Hill GR, Munn DH, Murphy WJ, Serody JS, Maillard I, Kreymborg K, van den Brink M, Dong C, Huang S, Zang X, Allison JP, Zeiser R, Blazar BR. Donor and host B7-H4 expression negatively regulates acute graft-versus-host disease lethality. JCI Insight 2019; 4:127716. [PMID: 31578305 DOI: 10.1172/jci.insight.127716] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 08/23/2019] [Indexed: 12/30/2022] Open
Abstract
B7-H4 is a negative regulatory B7 family member. We investigated the role of host and donor B7-H4 in regulating acute graft-versus-host disease (GVHD). Allogeneic donor T cells infused into B7-H4-/- versus WT recipients markedly accelerated GVHD-induced lethality. Chimera studies pointed toward B7-H4 expression on host hematopoietic cells as more critical than parenchymal cells in controlling GVHD. Rapid mortality in B7-H4-/- recipients was associated with increased donor T cell expansion, gut T cell homing and loss of intestinal epithelial integrity, increased T effector function (proliferation, proinflammatory cytokines, cytolytic molecules), and reduced apoptosis. Higher metabolic demands of rapidly proliferating donor T cells in B7-H4-/- versus WT recipients required multiple metabolic pathways, increased extracellular acidification rates (ECARs) and oxygen consumption rates (OCRs), and increased expression of fuel substrate transporters. During GVHD, B7-H4 expression was upregulated on allogeneic WT donor T cells. B7-H4-/- donor T cells given to WT recipients increased GVHD mortality and had function and biological properties similar to WT T cells from allogeneic B7-H4-/- recipients. Graft-versus-leukemia responses were intact regardless as to whether B7-H4-/- mice were used as hosts or donors. Taken together, these data provide new insights into the negative regulatory processes that control GVHD and provide support for developing therapeutic strategies directed toward the B7-H4 pathway.
Collapse
Affiliation(s)
- Asim Saha
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Patricia A Taylor
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christopher J Lees
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Angela Panoskaltsis-Mortari
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark J Osborn
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Colby J Feser
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Govindarajan Thangavelu
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Wolfgang Melchinger
- Department of Hematology, Oncology, and Stem-Cell Transplantation, Freiburg University Medical Center, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Yosef Refaeli
- Department of Dermatology, University of Colorado, Aurora, Colorado, USA
| | - Geoffrey R Hill
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington, USA
| | - David H Munn
- Department of Pediatrics, Georgia Health Sciences University, Augusta, Georgia, USA
| | - William J Murphy
- Department of Dermatology, UC Davis School of Medicine, Sacramento, California, USA
| | - Jonathan S Serody
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Ivan Maillard
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katharina Kreymborg
- Department of Immunology and Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Marcel van den Brink
- Department of Immunology and Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, China
| | - Shuyu Huang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Xingxing Zang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - James P Allison
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Robert Zeiser
- Department of Hematology, Oncology, and Stem-Cell Transplantation, Freiburg University Medical Center, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Bruce R Blazar
- Masonic Cancer Center and Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
44
|
Rastogi S, Ricci A, Jin Z, Bhatia M, George D, Garvin JH, Hall M, Satwani P. Clinical and Economic Impact of Cytomegalovirus Infection among Children Undergoing Allogeneic Hematopoietic Cell Transplantation. Biol Blood Marrow Transplant 2019; 25:1253-1259. [DOI: 10.1016/j.bbmt.2018.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
|
45
|
Sofi MH, Wu Y, Schutt SD, Dai M, Daenthanasanmak A, Heinrichs Voss J, Nguyen H, Bastian D, Iamsawat S, Selvam SP, Liu C, Maulik N, Ogretmen B, Jin J, Mehrotra S, Yu XZ. Thioredoxin-1 confines T cell alloresponse and pathogenicity in graft-versus-host disease. J Clin Invest 2019; 129:2760-2774. [PMID: 31045571 DOI: 10.1172/jci122899] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Oxidative stress is elevated in the recipients of allogeneic hematopoietic transplantation (allo-HCT) and likely contributes to the development of graft-versus-host disease (GVHD). GVHD is characterized by activation, expansion, cytokine production and migration of alloreactive donor T cells, and remains a major cause of morbidity and mortality after allo-HCT. Hence, strategies to limit oxidative stress in GVHD are highly desirable. Thioredoxin1 (Trx1) counteracts oxidative stress by scavenging reactive oxygen species (ROS) and regulating other enzymes that metabolize H2O2. The present study sought to elucidate the role of Trx1 in the pathophysiology of GVHD. Using murine and xenograft models of allogeneic bone marrow transplantation (allo-BMT) and genetic (human Trx1-transgenic, Trx1-Tg) as well as pharmacologic (human recombinant Trx1, RTrx1) strategies; we found that Trx1-Tg donor T cells or administration of the recipients with RTrx1 significantly reduced GVHD severity. Mechanistically, we observed RTrx1 reduced ROS accumulation and cytokine production of mouse and human T cells in response to alloantigen stimulation in vitro. In allo-BMT settings, we found that Trx1-Tg or RTrx1 decreased downstream signaling molecules including NFκB activation and T-bet expression, and reduced proliferation, IFN-γ production and ROS accumulation in donor T cells within GVHD target organs. More importantly, administration of RTrx1 did not impair the graft-versus-leukemia (GVL) effect. Taken together, the current work provides a strong rationale and demonstrates feasibility to target the ROS pathway, which can be readily translated into clinic.
Collapse
Affiliation(s)
| | - Yongxia Wu
- Department of Microbiology and Immunology and
| | | | - Min Dai
- Department of Microbiology and Immunology and
| | | | | | - Hung Nguyen
- Department of Microbiology and Immunology and
| | | | | | - Shanmugam Panneer Selvam
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chen Liu
- Department of Pathology and Laboratory Medicine, Rutgers New Jersey Medical School and Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Nilanjana Maulik
- Department of Surgery, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Junfei Jin
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, China
| | | | - Xue-Zhong Yu
- Department of Microbiology and Immunology and.,Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
46
|
Munshi PN, Rowley SD, Korngold R. Hematopoietic Stem Cell Transplantation for Malignant Diseases. Clin Immunol 2019. [DOI: 10.1016/b978-0-7020-6896-6.00083-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
47
|
Groth C, van Groningen LFJ, Matos TR, Bremmers ME, Preijers FWMB, Dolstra H, Reicherts C, Schaap NPM, van Hooren EHG, IntHout J, Masereeuw R, Netea MG, Levine JE, Morales G, Ferrara JL, Blijlevens NMA, van Oosterhout YVJM, Stelljes M, van der Velden WJFM. Phase I/II Trial of a Combination of Anti-CD3/CD7 Immunotoxins for Steroid-Refractory Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant 2018; 25:712-719. [PMID: 30399420 DOI: 10.1016/j.bbmt.2018.10.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/25/2018] [Indexed: 01/01/2023]
Abstract
Effective therapies for treating patients with steroid-refractory acute graft-versus-host-disease (SR-aGVHD), particularly strategies that reduce the duration of immunosuppression following remission, are urgently needed. The investigated immunotoxin combination consists of a mixture of anti-CD3 and anti-CD7 antibodies separately conjugated to recombinant ricin A (CD3/CD7-IT), which induces in vivo depletion of T cells and natural killer (NK) cells and suppresses T cell receptor activation. We conducted a phase I/II trial to examine the safety and efficacy of CD3/CD7-IT in 20 patients with SR-aGVHD; 17 of these patients (85%) had severe SR-aGVHD, and all 20 patients had visceral organ involvement, including 18 (90%) with gastrointestinal (GI) involvement and 5 (25%) with liver involvement. A validated 2-biomarker algorithm classified the majority of patients (11 of 20) as high risk. On day 28 after the start of CD3/CD7-IT therapy, the overall response rate was 60% (12 of 20), with 10 patients (50%) achieving a complete response. The 6-month overall survival rate was 60% (12 of 20), including 64% (7 of 11) classified as high risk by biomarkers. The 1-week course of treatment with CD3/CD7-IT caused profound but transient depletion of T cells and NK cells, followed by rapid recovery of the immune system with a diverse TCR Vβ repertoire, and preservation of Epstein-Barr virus- and cytomegalovirus-specific T cell clones. Furthermore, our results indicate that CD3/CD7-IT appeared to be safe and well tolerated, with a relatively low prevalence of manageable and reversible adverse events, primarily worsening of hypoalbuminemia, microangiopathy, and thrombocytopenia. These encouraging results suggest that CD3/CD7-IT may improve patient outcomes in patients with SR-aGVHD.
Collapse
Affiliation(s)
- Christoph Groth
- Department of Medicine A/Hematology and Oncology, University Hospital of Muenster, Muenster, Germany
| | - Lenneke F J van Groningen
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tiago R Matos
- Department of Dermatology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Manita E Bremmers
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank W M B Preijers
- Department of Laboratory Medicine, Laboratory for Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Harry Dolstra
- Department of Laboratory Medicine, Laboratory for Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christian Reicherts
- Department of Medicine A/Hematology and Oncology, University Hospital of Muenster, Muenster, Germany
| | - Nicolaas P M Schaap
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Joanna IntHout
- Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands; Section of Biostatistics, Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rosalinde Masereeuw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John E Levine
- Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai Hospital, New York, NY
| | - George Morales
- Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai Hospital, New York, NY
| | - James L Ferrara
- Tisch Cancer Institute, The Icahn School of Medicine at Mount Sinai Hospital, New York, NY
| | - Nicole M A Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Matthias Stelljes
- Department of Medicine A/Hematology and Oncology, University Hospital of Muenster, Muenster, Germany
| | - Walter J F M van der Velden
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands; Radboud Institute of Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
48
|
Jones K, Bryant S, Luo J, Kiesler P, Koontz S, Warren J, Malech H, Kang E, Dveksler G. Recombinant Pregnancy-Specific Glycoprotein 1 Has a Protective Role in a Murine Model of Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant 2018; 25:193-203. [PMID: 30253241 DOI: 10.1016/j.bbmt.2018.09.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/13/2018] [Indexed: 12/23/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is an immune-mediated reaction that can occur after hematopoietic stem cell transplantation in which donor T cells recognize the host antigens as foreign, destroying host tissues. Establishment of a tolerogenic immune environment while preserving the immune response to infectious agents is required for successful bone marrow transplantation. Pregnancy-specific glycoprotein 1 (PSG1), which is secreted by the human placenta into the maternal circulation throughout pregnancy, likely plays a role in maintaining immunotolerance to prevent rejection of the fetus by the maternal immune system. We have previously shown that PSG1 activates the latent form of transforming growth factor β1 (TGF-β), a cytokine essential for the differentiation of tolerance-inducing CD4+FoxP3+ regulatory T cells (Tregs). Consistent with this observation, treatment of naïve murine T cells with PSG1 resulted in a significant increase in FoxP3+ cells that was blocked by a TGF-β receptor I inhibitor. We also show here that PSG1 can increase the availability of active TGF-β in vivo. As the role of CD4+FoxP3+ cells in the prevention of aGVHD is well established, we tested whether PSG1 has beneficial effects in a murine aGHVD transplantation model. PSG1-treated mice had reduced numbers of tissue-infiltrating inflammatory CD3+ T cells and had increased expression of FoxP3 in T cells compared with vehicle-treated mice. In addition, administration of PSG1 significantly inhibited aGVHD-associated weight loss and mortality. On the other hand, administration of PSG1 was less effective in managing aGVHD in the presence of an alloimmune reaction against a malignancy in a graft-versus-leukemia experimental model. Combined, this data strongly suggests that PSG1 could be a promising treatment option for patients with aGVHD following bone marrow transplantation for a nonmalignant condition, such as an autoimmune disorder or a genetic immunodeficiency.
Collapse
Affiliation(s)
- Karlie Jones
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sarah Bryant
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Jian Luo
- Palo Alto Veterans Institute for Research, VA Palo Alto Health Care System, Palo Alto, California
| | - Patricia Kiesler
- Mucosal Immunity Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Sherry Koontz
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - James Warren
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Harry Malech
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth Kang
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Gabriela Dveksler
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland.
| |
Collapse
|
49
|
Impaired bone marrow B-cell development in mice with a bronchiolitis obliterans model of cGVHD. Blood Adv 2018; 2:2307-2319. [PMID: 30228128 DOI: 10.1182/bloodadvances.2017014977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/23/2018] [Indexed: 01/24/2023] Open
Abstract
Chronic graft-versus-host disease (cGVHD) causes significant morbidity and mortality in patients after allogeneic bone marrow (BM) or stem cell transplantation (allo-SCT). Recent work has indicated that both T and B lymphocytes play an important role in the pathophysiology of cGVHD. Previously, our group showed a critical role for the germinal center response in the function of B cells using a bronchiolitis obliterans (BO) model of cGVHD. Here, we demonstrated for the first time that cGVHD is associated with severe defects in the generation of BM B lymphoid and uncommitted common lymphoid progenitor cells. We found an increase in the number of donor CD4+ T cells in the BM of mice with cGVHD that was negatively correlated with B-cell development and the frequency of osteoblasts and Prrx-1-expressing perivascular stromal cells, which are present in the B-cell niche. Use of anti-DR3 monoclonal antibodies to enhance the number of donor regulatory T cells (Tregs) in the donor T-cell inoculum ameliorated the pathology associated with BO in this model. This correlated with an increased number of endosteal osteoblastic cells and significantly improved the generation of B-cell precursors in the BM after allo-SCT. Our work indicates that donor Tregs play a critical role in preserving the generation of B-cell precursors in the BM after allo-SCT. Approaches to enhance the number and/or function of donor Tregs that do not enhance conventional T-cell activity may be important to decrease the incidence and severity of cGVHD in part through normal B-cell lymphopoiesis.
Collapse
|
50
|
Ehx G, Somja J, Warnatz HJ, Ritacco C, Hannon M, Delens L, Fransolet G, Delvenne P, Muller J, Beguin Y, Lehrach H, Belle L, Humblet-Baron S, Baron F. Xenogeneic Graft-Versus-Host Disease in Humanized NSG and NSG-HLA-A2/HHD Mice. Front Immunol 2018; 9:1943. [PMID: 30214443 PMCID: PMC6125392 DOI: 10.3389/fimmu.2018.01943] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Despite the increasing use of humanized mouse models to study new approaches of graft-versus-host disease (GVHD) prevention, the pathogenesis of xenogeneic GVHD (xGVHD) in these models remains misunderstood. The aim of this study is to describe this pathogenesis in NOD/LtSz-PrkdcscidIL2rγtm1Wjl (NSG) mice infused with human PBMCs and to assess the impact of the expression of HLA-A0201 by NSG mice cells (NSG-HLA-A2/HHD mice) on xGVHD and graft-versus-leukemia (GvL) effects, by taking advantage of next-generation technologies. We found that T cells recovered from NSG mice after transplantation had upregulated expression of genes involved in cell proliferation, as well as in TCR, co-stimulatory, IL-2/STAT5, mTOR and Aurora kinase A pathways. T cells had mainly an effector memory or an effector phenotype and exhibited a Th1/Tc1-skewed differentiation. TCRβ repertoire diversity was markedly lower both in the spleen and lungs (a xGVHD target organ) than at infusion. There was no correlation between the frequencies of specific clonotypes at baseline and in transplanted mice. Finally, expression of HLA-A0201 by NSG mice led to more severe xGVHD and enhanced GvL effects toward HLA-A2+ leukemic cells. Altogether our data demonstrate that the pathogenesis of xGVHD shares important features with human GVHD and that NSG-HLA-A2/HHD mice could serve as better model to study GVHD and GvL effects.
Collapse
Affiliation(s)
- Grégory Ehx
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Joan Somja
- Department of Pathology, CHU of Liège, Liège, Belgium
| | - Hans-Jörg Warnatz
- Otto Warburg Laboratory Gene Regulation and Systems Biology of Cancer, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Caroline Ritacco
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Muriel Hannon
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Loïc Delens
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Gilles Fransolet
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | | | - Joséphine Muller
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Yves Beguin
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium.,Department of Medicine, Division of Hematology, CHU of Liège, Liège, Belgium
| | | | - Ludovic Belle
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium
| | - Stéphanie Humblet-Baron
- Translational Immunology Laboratory, VIB, Leuven, Belgium.,Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
| | - Frédéric Baron
- Hematology Research Unit, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-I3, University of Liège, Liège, Belgium.,Department of Medicine, Division of Hematology, CHU of Liège, Liège, Belgium
| |
Collapse
|