1
|
Lu KC, Tsai KW, Wang YK, Hu WC. Types of cell death and their relations to host immunological pathways. Aging (Albany NY) 2024; 16:11755-11768. [PMID: 39120579 PMCID: PMC11346778 DOI: 10.18632/aging.206035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Various immune pathways have been identified in the host, including TH1, TH2, TH3, TH9, TH17, TH22, TH1-like, and THαβ immune reactions. While TH2 and TH9 responses primarily target multicellular parasites, host immune pathways directed against viruses, intracellular microorganisms (such as bacteria, protozoa, and fungi), and extracellular microorganisms can employ programmed cell death mechanisms to initiate immune responses or execute effective strategies for pathogen elimination. The types of programmed cell death involved include apoptosis, autophagy, pyroptosis, ferroptosis, necroptosis, and NETosis. Specifically, apoptosis is associated with host anti-virus eradicable THαβ immunity, autophagy with host anti-virus tolerable TH3 immunity, pyroptosis with host anti-intracellular microorganism eradicable TH1 immunity, ferroptosis with host anti-intracellular microorganism tolerable TH1-like immunity, necroptosis with host anti-extracellular microorganism eradicable TH22 immunity, and NETosis with host anti-extracellular microorganism tolerable TH17 immunity.
Collapse
Affiliation(s)
- Kuo-Cheng Lu
- Department of Medicine, Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, ROC
- Department of Medicine, Division of Nephrology, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan, ROC
| | - Yu-Kuen Wang
- Department of Obstetrics and Gynecology, Taoyuan Armed Forced General Hospital, Taiwan, ROC
- Department of Obstetrics and Gynecology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Wan-Chung Hu
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan, ROC
- Department of Clinical pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan, ROC
- Department of Biotechnology, Ming Chuan University, Taoyuan City 333, Taiwan, ROC
| |
Collapse
|
2
|
Casey M, Lee C, Hoyte SM, Johnston RL, Kwok WY, Law SC, Gandhi MK, Harrison SJ, Nakamura K. Harnessing the cytotoxic granule exocytosis to augment the efficacy of T-cell-engaging bispecific antibody therapy. Haematologica 2024; 109:2131-2143. [PMID: 38268493 PMCID: PMC11215359 DOI: 10.3324/haematol.2023.284435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/12/2024] [Indexed: 01/26/2024] Open
Abstract
T-cell-engaging bispecific antibody (T-BsAb, also known as BiTE) therapy has emerged as a powerful therapeutic modality against multiple myeloma. Given that T-BsAb therapy redirects endogenous T cells to eliminate tumor cells, reinvigorating dysfunctional T cells may be a potential approach to improve the efficacy of T-BsAb. While various immunostimulatory cytokines can potentiate effector T-cell functions, the optimal cytokine treatment for T-BsAb therapy is yet to be established, partly due to a concern of cytokine release syndrome driven by aberrant interferon (IFN)-γ production. Here, we functionally screen immunostimulatory cytokines to determine an ideal combination partner for T-BsAb therapy. This approach reveals interleukin (IL)-21 as a potential immunostimulatory cytokine with the ability to augment T-BsAb-mediated release of granzyme B and perforin, without increasing IFN-γ release. Transcriptome profiling and functional characterization strongly support that IL-21 selectively targets the cytotoxic granule exocytosis pathway, but not pro-inflammatory responses. Notably, IL-21 modulates multiple steps of cytotoxic effector functions including upregulation of co-activating CD226 receptor, increasing cytotoxic granules, and promoting cytotoxic granule delivery at the immunological synapse. Indeed, T-BsAb-mediated myeloma killing is cytotoxic granule-dependent, and IL-21 priming significantly augments cytotoxic activities. Furthermore, in vivo IL-21 treatment induces cytotoxic effector reprogramming in bone marrow T cells, showing synergistic anti-myeloma effects in combination with T-BsAb therapy. Together, harnessing the cytotoxic granule exocytosis pathway by IL-21 may be a potential approach to achieve better responses by T-BsAb therapy.
Collapse
Affiliation(s)
- Mika Casey
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - Carol Lee
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - Sharon M Hoyte
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - Rebecca L Johnston
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - Wing Yu Kwok
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD
| | - Soi Cheng Law
- Mater Research, University of Queensland, Brisbane, QLD
| | | | - Simon J Harrison
- Clinical Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital Melbourne VIC Australia; Sir Peter MacCallum, Department of Oncology, University of Melbourne, Parkville
| | - Kyohei Nakamura
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD.
| |
Collapse
|
3
|
Wang JN, Zheng G, Wu W, Huang H. Follicular helper T cells: emerging roles in lymphomagenesis. J Leukoc Biol 2024; 116:54-63. [PMID: 37939814 DOI: 10.1093/jleuko/qiad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/11/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
Follicular helper T cells are a subset of CD4+ T cells that are fundamental to forming germinal centers, which are the primary sites of antibody affinity maturation and the proliferation of activated B cells. Follicular helper T cells have been extensively studied over the past 10 years, especially regarding their roles in cancer genesis. This review describes the characteristics of normal follicular helper T cells and focuses on the emerging link between follicular helper T cells and lymphomagenesis. Advances in lymphoma genetics have substantially expanded our understanding of the role of follicular helper T cells in lymphomagenesis. Moreover, we detail a range of agents and new therapies, with a major focus on chimeric antigen receptor T-cell therapy; these novel approaches may offer new treatment opportunities for patients with lymphomas.
Collapse
Affiliation(s)
- Ji-Nuo Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - Gaofeng Zheng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - Wenjun Wu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, No.79 Qingchun Road, Hangzhou, 311106, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, 311121, China
- Institute of Hematology, Zhejiang University, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
- Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, No.17 Old Zhejiang University Road, Hangzhou, 311112, China
| |
Collapse
|
4
|
Song LM, Yao DJ, Xia L, Wang XM, Liu T, Tang QQ, Zhou J. DSG2 and c-MYC Interact to Regulate the Expression of ADAM17 and Promote the Development of Cervical Cancer. Cancer Manag Res 2024; 16:703-710. [PMID: 38948682 PMCID: PMC11214561 DOI: 10.2147/cmar.s456548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose To explore the effect of DSG2 on the growth of cervical cancer cells and its possible regulatory mechanism. Methods The expression levels and survival prognosis of DSG2 and ADAM17 in cervical squamous cell carcinoma tissues and adjacent normal tissues were analyzed by bioinformatics. CCK-8 assay, colony formation assay and Transwell assay were used to detect the effects of DSG2 on the proliferative activity, colony formation ability and migration ability of SiHa and Hela cells. The effect of DSG 2 on the level of ADAM17 transcription and translation was detected by qPCR and Western blot experiments. The interaction between DSG2 and c-MYC was detected by immunocoprecipitation. c-MYC inhibitors were used in HeLa cells overexpressing DSG2 to analyze the effects of DSG2 and c-MYC on proliferation, colony formation and migration of Hela cells, as well as the regulation of ADAM17 expression. Results DSG2 was highly expressed in cervical squamous cell carcinoma compared with normal tissues (P<0.05), and high DSG2 expression suggested poor overall survival (P<0.05). After DSG2 knockdown, the proliferative activity, colony formation and migration ability of SiHa and Hela cells were significantly decreased (P<0.05). Compared with adjacent normal tissues, ADAM17 was highly expressed in cervical squamous cell carcinoma (P<0.05), and high ADAM17 expression suggested poor overall survival in cervical cancer patients (P<0.05). The results of immunocoprecipitation showed the interaction between DSG2 and c-MYC. Compared with DSG2 overexpression group, DSG2 overexpression combined with c-MYC inhibition group significantly decreased cell proliferation, migration and ADAM17 expression (P < 0.05). Conclusion DSG2 is highly expressed in cervical cancer, and inhibition of DSG2 expression can reduce the proliferation and migration ability of cervical cancer cells, which may be related to the regulation of ADAM17 expression through c-MYC interaction.
Collapse
Affiliation(s)
- Li-Mian Song
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Du-Juan Yao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Lin Xia
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Xu-Ming Wang
- Department of Pathology, Affiliated Hospital of Guilin Medical College, Guilin, People’s Republic of China
| | - Tian Liu
- Department of Pathology, Affiliated Hospital of Guilin Medical College, Guilin, People’s Republic of China
| | - Qian-Qian Tang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jun Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| |
Collapse
|
5
|
Li X, Wu M, Lu J, Yu J, Chen D. Interleukin-21 as an adjuvant in cancer immunotherapy: Current advances and future directions. Biochim Biophys Acta Rev Cancer 2024; 1879:189084. [PMID: 38354828 DOI: 10.1016/j.bbcan.2024.189084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Immunotherapy has revolutionized cancer treatment. However, it's well-recognized that a considerable proportion of patients fail to benefit from immunotherapy, and to improve immunotherapy response is clinically urgent. Insufficient immune infiltration and immunosuppressive tumor microenvironments (TME) are main contributors to immunotherapy resistance. Thus sustaining functional self-renewal capacity for immune cells and subverting immune-suppressive signals are potential strategies for boosting the efficacy of immunotherapy. Interleukin-21 (IL-21), a crucial cytokine, which could enhance cytotoxic function of immune cells and reduces immunosuppressive cells enrichment in TME, shows promising orientations as an immunoadjuvant in tumor immunotherapy. This review focuses on IL-21 in cancer treatment, including function and mechanisms of IL-21, preclinical and clinical studies, and future directions for IL-21-assisted therapies.
Collapse
Affiliation(s)
- Xinyang Li
- School of Clinical Medicine, Weifang Medical University, Weifang, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Lu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- School of Clinical Medicine, Weifang Medical University, Weifang, China; Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
6
|
Wang X, Yuan W, Kuang Y, Chen X, Wang X, Zhang X. Ratiometric electrochemical immunosensor for simultaneous detection of C-myc and Bcl-2 based on multi-role alloy composites. Mikrochim Acta 2024; 191:85. [PMID: 38195845 DOI: 10.1007/s00604-023-06161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/17/2023] [Indexed: 01/11/2024]
Abstract
A ratiometric electrochemical immunosensor is proposed for simultaneous detection of cellular-myelocytomatosis oncoprotein (C-myc) and B-cell lymphoma 2 (Bcl-2) via the potential-resolved strategy. It relied on multi-role co-loaded alloy composites (CLACs) and poly(3,4-ethylenedioxythiophene) (PEDOT)-graphene oxide (GO)-multiwalled carbon nanotubes (MWCNTs) (PGM) modified electrodes. CLACs with good catalytic and enzyme-like properties were synthesized in one step by loading tetramethylbenzidine (TMB) or methylene blue (MB) into Pt-Pd alloy and used as label materials. After immunological reactions, CLACs showed distinguishable dual differential pulse voltammetry signals at - 0.26 V and 0.38 V, corresponding to C-myc and Bcl-2, and the PGM had an electrochemical signal at 1.2 V, which could be used as a reference signal to construct a ratiometric sensor. CLACs had a satisfactory synergistic effect with the PGM, and eventually achieved quadruple signal amplification. Thus, benefiting from multiple magnification and ratiometric self-calibration functions, sensitive detections of C-myc and Bcl-2 were achieved, with detection limits as low as 0.5 and 2.5 pg mL-1, respectively. Additionally, when the designed method was applied to blood samples from lymphoma patients, results consistent with the ELISA kit were obtained. This will open avenues for constructing multiple protein detection sensors.
Collapse
Affiliation(s)
- Xiaoying Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Wei Yuan
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yijing Kuang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xuyuan Chen
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Xiaoning Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoyu Zhang
- R&D Center, Nanjing Sanhome Pharmaceutical Co. Ltd., Nanjing, 211135, China
| |
Collapse
|
7
|
Goldufsky JW, Daniels P, Williams MD, Gupta K, Lyday B, Chen T, Singh G, Kaufman HL, Zloza A, Marzo AL. Attenuated Dengue virus PV001-DV induces oncolytic tumor cell death and potent immune responses. J Transl Med 2023; 21:483. [PMID: 37468934 PMCID: PMC10357599 DOI: 10.1186/s12967-023-04344-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Viral therapies developed for cancer treatment have classically prioritized direct oncolytic effects over their immune activating properties. However, recent clinical insights have challenged this longstanding prioritization and have shifted the focus to more immune-based mechanisms. Through the potential utilization of novel, inherently immune-stimulating, oncotropic viruses there is a therapeutic opportunity to improve anti-tumor outcomes through virus-mediated immune activation. PV001-DV is an attenuated strain of Dengue virus (DEN-1 #45AZ5) with a favorable clinical safety profile that also maintains the potent immune stimulatory properties characterstic of Dengue virus infection. METHODS In this study, we utilized in vitro tumor killing and immune multiplex assays to examine the anti-tumor effects of PV001-DV as a potential novel cancer immunotherapy. RESULTS In vitro assays demonstrated that PV001-DV possesses the ability to directly kill human melanoma cells lines as well as patient melanoma tissue ex vivo. Importantly, further work demonstrated that, when patient peripheral blood mononuclear cells (PBMCs) were exposed to PV001-DV, a substantial induction in the production of apoptotic factors and immunostimulatory cytokines was detected. When tumor cells were cultured with the resulting soluble mediators from these PBMCs, rapid cell death of melanoma and breast cancer cell lines was observed. These soluble mediators also increased dengue virus binding ligands and immune checkpoint receptor, PD-L1 expression. CONCLUSIONS The direct in vitro tumor-killing and immune-mediated tumor cytotoxicity facilitated by PV001-DV contributes support of its upcoming clinical evaluation in patients with advanced melanoma who have failed prior therapy.
Collapse
Affiliation(s)
- Josef W Goldufsky
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Preston Daniels
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Michael D Williams
- Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Kajal Gupta
- Department of Surgery, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Bruce Lyday
- Primevax Immuno-Oncology, Inc, Orange, CA, 92868, USA
| | - Tony Chen
- Primevax Immuno-Oncology, Inc, Orange, CA, 92868, USA
| | - Geeta Singh
- Primevax Immuno-Oncology, Inc, Orange, CA, 92868, USA
| | - Howard L Kaufman
- Department of Surgery, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Andrew Zloza
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Amanda L Marzo
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, 60612, USA.
| |
Collapse
|
8
|
Williams MV, Mena-Palomo I, Cox B, Ariza ME. EBV dUTPase: A Novel Modulator of Inflammation and the Tumor Microenvironment in EBV-Associated Malignancies. Cancers (Basel) 2023; 15:855. [PMID: 36765813 PMCID: PMC9913121 DOI: 10.3390/cancers15030855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
There is increasing evidence that put into question the classical dogma that the Epstein-Barr virus (EBV) exists in cells as either a lytic virus in which new progeny is produced or in a latent state in which no progeny is produced. Notably, a third state has now been described, known as the abortive-lytic phase, which is characterized by the expression of some immediate early (IE) and early (E) genes, but no new virus progeny is produced. While the function of these IE and E gene products is not well understood, several recent studies support the concept they may contribute to tumor promotion by altering the tumor microenvironment (TME). The mechanisms by which these viral gene products may contribute to tumorigenesis remain unclear; however, it has been proposed that some of them promote cellular growth, immune evasion, and/or inhibit apoptosis. One of these EBV early gene products is the deoxyuridine triphosphate nucleotidohydrolase (dUTPase) encoded by BLLF3, which not only contributes to the establishment of latency through the production of activin A and IL-21, but it may also alter the TME, thus promoting oncogenesis.
Collapse
Affiliation(s)
- Marshall V. Williams
- Department of Cancer Biology and Genetics (CBG), The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Institute for Behavioral Medicine Research (IBMR), The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Irene Mena-Palomo
- Institute for Behavioral Medicine Research (IBMR), The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Brandon Cox
- Institute for Behavioral Medicine Research (IBMR), The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Maria Eugenia Ariza
- Department of Cancer Biology and Genetics (CBG), The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Institute for Behavioral Medicine Research (IBMR), The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Atallah-Yunes SA, Robertson MJ. Cytokine Based Immunotherapy for Cancer and Lymphoma: Biology, Challenges and Future Perspectives. Front Immunol 2022; 13:872010. [PMID: 35529882 PMCID: PMC9067561 DOI: 10.3389/fimmu.2022.872010] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/22/2022] [Indexed: 11/15/2022] Open
Abstract
Cytokines regulate both the innate and adaptive immune responses to cancer. Although antitumor activity has been seen for several cytokines in preclinical models, they have had limited success as single therapeutic agents in clinical trials of cancer immunotherapy. However, the possible combinations of cytokines with other immune therapeutics and the advancement in genetic engineering, synthetic biology and cellular and immune therapy has led to the revival of interest in cytokines as anticancer agents. This article will review several immunostimulatory cytokines with anticancer activity, focusing on the those that have been studied in treatment of lymphoma and highlighting recent advances of potential clinical relevance.
Collapse
Affiliation(s)
- Suheil Albert Atallah-Yunes
- Department of Hematology and Medical Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Michael J Robertson
- Department of Hematology and Medical Oncology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
10
|
Grinshpun A, Cohen Y, Zick A, Kadouri L, Hamburger T, Nisman B, Allweis TM, Oprea G, Peretz T, Uziely B, Sonnenblick A. Potential Refinement of Recurrence Score by pSTAT3 Status. Genes (Basel) 2022; 13:genes13030438. [PMID: 35327992 PMCID: PMC8949499 DOI: 10.3390/genes13030438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The likelihood of recurrence in breast cancer patients with hormone receptor-positive (HR-positive) tumors is influenced by clinical, histopathological, and molecular features. Recent studies suggested that activated STAT3 (pSTAT3) might serve as a biomarker of outcome in breast cancer patients. In the present work, we have analyzed the added value of pSTAT3 to OncotypeDx Recurrence Score (RS) in patient prognostication. We have found that patients with low RS (<26) and low pSTAT3 might represent a population at a higher risk for cancer recurrence. Furthermore, we have observed that a positive pSTAT3 score alone can be a favorable marker for patients with HR-positive breast cancer under the age of 50. In an era of personalized medicine, these findings warrant further appraisal of chemotherapy benefit in this population.
Collapse
Affiliation(s)
- Albert Grinshpun
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (A.G.); (Y.C.); (A.Z.); (L.K.); (T.H.); (B.N.); (T.P.); (B.U.)
- Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
| | - Yogev Cohen
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (A.G.); (Y.C.); (A.Z.); (L.K.); (T.H.); (B.N.); (T.P.); (B.U.)
- Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
| | - Aviad Zick
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (A.G.); (Y.C.); (A.Z.); (L.K.); (T.H.); (B.N.); (T.P.); (B.U.)
- Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
| | - Luna Kadouri
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (A.G.); (Y.C.); (A.Z.); (L.K.); (T.H.); (B.N.); (T.P.); (B.U.)
- Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
| | - Tamar Hamburger
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (A.G.); (Y.C.); (A.Z.); (L.K.); (T.H.); (B.N.); (T.P.); (B.U.)
| | - Benjamin Nisman
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (A.G.); (Y.C.); (A.Z.); (L.K.); (T.H.); (B.N.); (T.P.); (B.U.)
| | - Tanir M. Allweis
- Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
- Department of Surgery, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Gabriela Oprea
- Department of pathology, Emory University, Atlanta, GA 30322, USA;
| | - Tamar Peretz
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (A.G.); (Y.C.); (A.Z.); (L.K.); (T.H.); (B.N.); (T.P.); (B.U.)
- Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
| | - Beatrice Uziely
- Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; (A.G.); (Y.C.); (A.Z.); (L.K.); (T.H.); (B.N.); (T.P.); (B.U.)
- Faculty of Medicine, The Hebrew University, Jerusalem 9112102, Israel;
| | - Amir Sonnenblick
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
- Correspondence: ; Tel.: +972-3-6972061; Fax: +972-3-6974789
| |
Collapse
|
11
|
Di Pietro A, Polmear J, Cooper L, Damelang T, Hussain T, Hailes L, O'Donnell K, Udupa V, Mi T, Preston S, Shtewe A, Hershberg U, Turner SJ, La Gruta NL, Chung AW, Tarlinton DM, Scharer CD, Good-Jacobson KL. Targeting BMI-1 in B cells restores effective humoral immune responses and controls chronic viral infection. Nat Immunol 2022; 23:86-98. [PMID: 34845392 DOI: 10.1038/s41590-021-01077-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 10/20/2021] [Indexed: 01/12/2023]
Abstract
Ineffective antibody-mediated responses are a key characteristic of chronic viral infection. However, our understanding of the intrinsic mechanisms that drive this dysregulation are unclear. Here, we identify that targeting the epigenetic modifier BMI-1 in mice improves humoral responses to chronic lymphocytic choriomeningitis virus. BMI-1 was upregulated by germinal center B cells in chronic viral infection, correlating with changes to the accessible chromatin landscape, compared to acute infection. B cell-intrinsic deletion of Bmi1 accelerated viral clearance, reduced splenomegaly and restored splenic architecture. Deletion of Bmi1 restored c-Myc expression in B cells, concomitant with improved quality of antibody and coupled with reduced antibody-secreting cell numbers. Specifically, BMI-1-deficiency induced antibody with increased neutralizing capacity and enhanced antibody-dependent effector function. Using a small molecule inhibitor to murine BMI-1, we could deplete antibody-secreting cells and prohibit detrimental immune complex formation in vivo. This study defines BMI-1 as a crucial immune modifier that controls antibody-mediated responses in chronic infection.
Collapse
Affiliation(s)
- Andrea Di Pietro
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jack Polmear
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Lucy Cooper
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Timon Damelang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Tabinda Hussain
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Lauren Hailes
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kristy O'Donnell
- Department of Immunology & Pathology, Alfred Research Alliance, Monash University, Melbourne, Victoria, Australia
| | - Vibha Udupa
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia.,Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Tian Mi
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Simon Preston
- Divisions of Immunology and Molecular Immunology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Areen Shtewe
- Department of Human Biology, Faculty of Science, University of Haifa, Haifa, Israel
| | - Uri Hershberg
- Department of Human Biology, Faculty of Science, University of Haifa, Haifa, Israel
| | - Stephen J Turner
- Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.,Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Nicole L La Gruta
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia.,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - David M Tarlinton
- Department of Immunology & Pathology, Alfred Research Alliance, Monash University, Melbourne, Victoria, Australia
| | - Christopher D Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kim L Good-Jacobson
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia. .,Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
12
|
Garcia-Lacarte M, Grijalba SC, Melchor J, Arnaiz-Leché A, Roa S. The PD-1/PD-L1 Checkpoint in Normal Germinal Centers and Diffuse Large B-Cell Lymphomas. Cancers (Basel) 2021; 13:4683. [PMID: 34572910 PMCID: PMC8471895 DOI: 10.3390/cancers13184683] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Besides a recognized role of PD-1/PD-L1 checkpoint in anti-tumour immune evasion, there is accumulating evidence that PD-1/PD-L1 interactions between B and T cells also play an important role in normal germinal center (GC) reactions. Even when smaller in number, T follicular helper cells (TFH) and regulatory T (TFR) or B (Breg) cells are involved in positive selection of GC B cells and may result critical in the lymphoma microenvironment. Here, we discuss a role of PD-1/PD-L1 during tumour evolution in diffuse large B cell lymphoma (DLBCL), a paradigm of GC-derived lymphomagenesis. We depict a progression model, in two phases, where malignant B cells take advantage of positive selection signals derived from correct antigen-presentation and PD-1/PD-L1 inter-cellular crosstalks to survive and initiate tumour expansion. Later, a constant pressure for the accumulation of genetic/epigenetic alterations facilitates that DLBCL cells exhibit higher PD-L1 levels and capacity to secrete IL-10, resembling Breg-like features. As a result, a complex immunosuppressive microenvironment is established where DLBCL cells sustain proliferation and survival by impairing regulatory control of TFR cells and limiting IL-21-mediated anti-tumour functions of TFH cells and maximize the use of PD-1/PD-L1 signaling to escape from CD8+ cytotoxic activity. Integration of these molecular and cellular addictions into a framework may contribute to the better understanding of the lymphoma microenvironment and contribute to the rationale for novel PD-1/PD-L1-based combinational immunotherapies in DLBCL.
Collapse
Affiliation(s)
- Marcos Garcia-Lacarte
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
- Hemato-Oncology Program, Cima University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Sara C. Grijalba
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
| | - Javier Melchor
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
- Hemato-Oncology Program, Cima University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Adrián Arnaiz-Leché
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
| | - Sergio Roa
- Department of Biochemistry and Genetics, University of Navarra, 31008 Pamplona, Spain; (M.G.-L.); (S.C.G.); (J.M.); (A.A.-L.)
- Hemato-Oncology Program, Cima University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Network Center for Biomedical Research in Cancer—Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
13
|
Garcia-Reyero J, Martinez Magunacelaya N, Gonzalez de Villambrosia S, Loghavi S, Gomez Mediavilla A, Tonda R, Beltran S, Gut M, Pereña Gonzalez A, d'Ámore E, Visco C, Khoury JD, Montes-Moreno S. Genetic lesions in MYC and STAT3 drive oncogenic transcription factor overexpression in plasmablastic lymphoma. Haematologica 2021; 106:1120-1128. [PMID: 32273478 PMCID: PMC8018103 DOI: 10.3324/haematol.2020.251579] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/22/2022] Open
Abstract
The mutational profile of plasmablastic lymphoma has not been described. We performed a targeted, exonic next-generation sequencing analysis of 30 plasmablastic lymphoma cases with a Bcell lymphoma-dedicated panel and fluorescence in situ hybridization for the detection of MYC rearrangements. Complete phenotyping of the neoplastic and microenvironmental cell populations was also performed. We identified an enrichment in recurrent genetic events in MYC (69% with MYC translocation or amplification and three cases with missense point mutations), PRDM1/Blimp1 and STAT3 mutations. These gene mutations were more frequent in Epstein-Barr virus (EBV)-positive disease. Other genetic events included mutations in BRAF, EP300, BCR (CD79A and CD79B), NOTCH pathway (NOTCH2, NOTCH1 and SGK1) and MYD88pL265P. Immunohistochemical analysis showed consistent MYC expression, which was higher in cases with MYC rearrangements, together with phospho-STAT3 (Tyr705) overexpression in cases with STAT3 SH2 domain mutations. Microenvironmental cell populations were heterogeneous and unrelated to EBV, with enrichment of tumor-associated macrophages (TAM) and PD1-positive T cells. PD-L1 was expressed in all cases in the TAM population but only in the neoplastic cells in five cases (4 of 14 EBV-positive cases). HLA expression was absent in the majority of cases of plasmablastic lymphoma. In summary, the mutational profile of plasmablastic lymphoma is heterogeneous and related to EBV infection. Genetic events in MYC, STAT3 and PRDM1/Blimp1 are more frequent in EBV-positive disease. An enrichment in TAM and PD1 reactive T lymphocytes is found in the microenvironment of plasmablastic lymphoma and a fraction of the neoplastic cells express PD-L1.
Collapse
Affiliation(s)
- Julia Garcia-Reyero
- Anatomic Pathology Service, Hospital Universitario Marqués de Valdecilla/IDIVAL, Santander, Spain
| | | | | | - Sanam Loghavi
- Hematopathology Department, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Raul Tonda
- CNAG-CRG, Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sergi Beltran
- CNAG-CRG, Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Barcelona Institute of Science and Technology, Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Emanuele d'Ámore
- Departments of Pathology and Hematology, San Bortolo Hospital, Vicenza, Italy
| | - Carlo Visco
- Department of Medicine, Section of Hematology, University of Verona, San Bortolo Hospital, Italy
| | - Joseph D Khoury
- Hematopathology Department, MD Anderson Cancer Center, Houston, TX, USA
| | - Santiago Montes-Moreno
- Anatomic Pathology Service, Hospital Universitario Marqués de Valdecilla/IDIVAL, Santander, Spain
| |
Collapse
|
14
|
Leeman-Neill RJ, Soderquist CR, Montanari F, Raciti P, Park D, Radeski D, Mansukhani MM, Murty VV, Hsiao S, Alobeid B, Bhagat G. Phenogenomic heterogeneity of post-transplant plasmablastic lymphomas. Haematologica 2020; 107:201-210. [PMID: 33297669 PMCID: PMC8719101 DOI: 10.3324/haematol.2020.267294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 11/14/2022] Open
Abstract
Plasmablastic lymphoma (PBL) is a rare and clinically aggressive neoplasm that typically occurs in immunocompromised individuals, including those infected with human immunodeficiency virus (HIV) and solid organ allograft recipients. Most prior studies have focused on delineating the clinico-pathological features and genetic attributes of HIVrelated PBL, in which MYC deregulation, Epstein-Barr virus (EBV) infection and, more recently, mutations in JAK/STAT, MAP kinase, and NOTCH pathway genes have been implicated in disease pathogenesis. The phenotypic spectrum of post-transplant (PT)-PBL is not well characterized and data on underlying genetic alterations are limited. This led us to perform comprehensive histopathological and immunophenotypic evaluation and targeted sequencing of 18 samples from 11 patients (8 males, 3 females; age range, 12-76 years) with PT-PBL; eight de novo and three preceded by other types of post-transplant lymphoproliferative disorders. Post-transplant PBL displayed morphological and immunophenotypic heterogeneity and some features overlapped those of plasmablastic myeloma. Six (55%) cases were EBV positive and five (45%) showed MYC rearrangement by fluorescence in situ hybridization. Recurrent mutations in epigenetic regulators (KMT2/MLL family, TET2) and DNA damage repair and response (TP53, mismatch repair genes, FANCA, ATRX), MAP kinase (KRAS, NRAS, HRAS, BRAF), JAK/STAT (STAT3, STAT6, SOCS1), NOTCH (NOTCH1, NOTCH3, SPEN), and immune surveillance (FAS, CD58) pathway genes were observed, with the mutational profiles of EBV+ and EBV– cases exhibiting both similarities and differences. Clinical outcomes also varied, with survival ranging from 0-15.9 years after diagnosis. Besides uncovering the biological heterogeneity of PT-PBL, our study highlights similarities and distinctions between PT-PBL and PBL occurring in other settings and reveals potentially targetable oncogenic pathways in subsets of the disease.
Collapse
Affiliation(s)
| | | | - Francesca Montanari
- Division of Hematology/Oncology, Columbia University Irving Medical Center, NY Presbyterian Hospital, New York, NY
| | | | | | - Dejan Radeski
- Department of Haematology, Sir Charles Gairdner Hospital, Perth
| | | | - Vundavalli V Murty
- Department of Medicine, Division of Cytogenetics, Columbia University Irving Medical Center, NY Presbyterian Hospital, New York, NY
| | | | | | | |
Collapse
|
15
|
Wang Y, Wang C, Cai X, Mou C, Cui X, Zhang Y, Ge F, Dong H, Hao Y, Cai L, Wu S, Feng C, Chen J, Li J, Xu W, Fan L, Xie W, Tong Y, Gu HF, Wu L. IL-21 Stimulates the expression and activation of cell cycle regulators and promotes cell proliferation in EBV-positive diffuse large B cell lymphoma. Sci Rep 2020; 10:12326. [PMID: 32704112 PMCID: PMC7378064 DOI: 10.1038/s41598-020-69227-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
The clinical features of EBV-positive diffuse large B cell lymphoma (DLBCL) indicate a poorer prognosis than EBV-negative DLBCL. Currently, there is no efficacious drug for EBV-positive DLBCL. The cytokine interleukin-21 (IL-21) has been reported to be pro-apoptotic in DLBCL cell lines and is being explored as a new therapeutic strategy for this type of lymphomas. However, our previous studies showed that IL-21 stimulation of EBV-positive DLBCL cell lines leads to increased proliferation. Here, analysis of a rare clinical sample of EBV-positive DLBCL, in combination with a NOD/SCID mouse xenograft model, confirmed the effect of IL-21 on the proliferation of EBV-positive DLBCL cells. Using RNA-sequencing, we identified the pattern of differentially-expressed genes following IL-21 treatment and verified the expression of key genes at the protein level using western blotting. We found that IL-21 upregulates expression of the host MYC and AP-1 (composed of related Jun and Fos family proteins) and STAT3 phosphorylation, as well as expression of the viral LMP-1 protein. These proteins are known to promote the G1/S phase transition to accelerate cell cycle progression. Furthermore, in NOD/SCID mouse xenograft model experiments, we found that IL-21 treatment increases glucose uptake and angiogenesis in EBV-positive DLBCL tumours. Although more samples are needed to validate these observations, our study reconfirms the adverse effects of IL-21 on EBV-positive DLBCL, which has implications for the drug development of DLBCL.
Collapse
Affiliation(s)
- Yuxuan Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Chengcheng Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiyunyi Cai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Chang Mou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Xueting Cui
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Yingying Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Ge
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Dong
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanyuan Hao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Cai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuting Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Chenjie Feng
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiamin Chen
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Lei Fan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| | - Weijia Xie
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Yue Tong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Harvest Feng Gu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liang Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
16
|
Ma X, Zha J, He J, Chen L, Huang J, Wu W, Tian P, Qian BH, Yu L, Jiang Y, Xu B. T follicular helper cell-mediated IL-21 production suppresses FOXP3 expression of T follicular regulatory-like cells in diffuse large B cell lymphoma patients. Hum Immunol 2020; 81:452-459. [PMID: 32534760 DOI: 10.1016/j.humimm.2020.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 11/18/2022]
Abstract
Based on CD25 expression, T follicular helper cells (Tfh) could be divided into T follicular regulatory (Tfr)-like subset (CD25+CD4+CXCR5+) and CD25- Tfh subset (CD25-CD4+CXCR5+). Patients with diffuse large B cell lymphoma (DLBCL) display high level of Tfr-like cells in blood and tumor. This Tfr-like subset could suppress CD8 T cell response while promote tumor cell proliferation. In this study, we investigated the transcription factors and regulatory elements associated with Tfr-like cells in DLBCL patients. Both circulating and tumor-infiltrating Tfr-like cells presented slightly higher Blimp-1 expression and significantly higher Foxp3 expression than the CD25- Tfh subset. As the IL-2 receptor, CD25 could be moderately upregulated in stimulated CD25- Tfh cells. However, stimulated CD25- Tfh cells could not upregulate Foxp3, indicating that the distinction between Foxp3-low CD25-CXCR5+CD4+ T cells and Foxp3-high CD25+CXCR5+CD4+ T cells was not due to differences in stimulation status. Regarding cytokine production, while both Tfr-like and CD25- Tfh cells upregulated IL-21 and IL-10 during stimulation, the CD25- Tfh cells presented significantly higher IL-21 and lower IL-10 expression than the Tfr-like cells, and the TGF-β expression was only increased in Tfr-like cells. Interestingly, IL-21 secreted from CD25- Tfh cells negatively regulated the expression of Foxp3 and IL-10 of autologous Tfr-like cells. Together, these results demonstrated that the Tfr-like and CD25- Tfh subsets of circulating Tfh cells presented different functions and should be investigated separately.
Collapse
Affiliation(s)
- Xiaomei Ma
- Department of Hematology and Rheumatology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, Medical College of Xiamen University, Xiamen, Fujian, China
| | - Jixiang He
- Department of Hematology, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Longtian Chen
- Department of Hematology and Rheumatology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian, China
| | - Jianqing Huang
- Department of Hematology and Rheumatology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian, China
| | - Weihao Wu
- Department of Hematology and Rheumatology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian, China
| | - Pan Tian
- Department of Hematology and Rheumatology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian, China
| | - Bao-Hua Qian
- Department of Transfusion Medicine, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Lian Yu
- Department of Hematology and Rheumatology, Longyan First Hospital Affiliated to Fujian Medical University, Longyan, Fujian, China.
| | - Yirong Jiang
- Department of Hematology, Affiliated Dongguan People's Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, China.
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, Medical College of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
17
|
Shahid A, Bharadwaj M. The connection between the Th17 cell related cytokines and cancer stem cells in cancer: Novel therapeutic targets. Immunol Lett 2019; 213:9-20. [PMID: 31278971 DOI: 10.1016/j.imlet.2019.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 02/08/2023]
Abstract
Cancer Stem Cells (CSCs) are the subpopulation of cells present in the different types of cancers with capabilities of self-renewal, differentiation, and tumorigenicity when transplanted into an animal host. The research work on the CSC has been providing a promising approach for the improvement of cancer therapies in the future. The CSCs have a close connection with the cytokines related with the T helper 17 (Th17) cell and other factors present in the tumor microenvironment, and these play a pivotal role in tumor progression and metastasis. The properties of CSCs are well defined in various type of tumor which is mainly developed by chemically and spontaneously in murine cancer model but in human defined primarily on acute myeloid leukemia, glioma, and breast cancer. The role of Th1, Th2, Natural Killer cells are well described in the cancer biology, but the Th17 cells are the subset which is recently exploited, and lots of research are going on. In this Review, we summarize current findings of the characteristics and functions of the Th17 cell and its signature cytokines in different cancers and their interconnections with cancer stem cells and with their markers. We have also discussed the functional properties of CSCs and how the CSCs markers can be distinguished from normal stem cells markers. We have also talked about the strategies that are efficiently targeting of CSCs and Th17 cells in different cancers.
Collapse
Affiliation(s)
- Ayaz Shahid
- Molecular Biology Group, National Institute of Cancer Prevention and Research, Indian Council of Medical Research (ICMR), Department of Health Research, Noida, 201301, India
| | - Mausumi Bharadwaj
- Molecular Biology Group, National Institute of Cancer Prevention and Research, Indian Council of Medical Research (ICMR), Department of Health Research, Noida, 201301, India.
| |
Collapse
|
18
|
Singh R, Letai A, Sarosiek K. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat Rev Mol Cell Biol 2019; 20:175-193. [PMID: 30655609 PMCID: PMC7325303 DOI: 10.1038/s41580-018-0089-8] [Citation(s) in RCA: 1179] [Impact Index Per Article: 235.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The loss of vital cells within healthy tissues contributes to the development, progression and treatment outcomes of many human disorders, including neurological and infectious diseases as well as environmental and medical toxicities. Conversely, the abnormal survival and accumulation of damaged or superfluous cells drive prominent human pathologies such as cancers and autoimmune diseases. Apoptosis is an evolutionarily conserved cell death pathway that is responsible for the programmed culling of cells during normal eukaryotic development and maintenance of organismal homeostasis. This pathway is controlled by the BCL-2 family of proteins, which contains both pro-apoptotic and pro-survival members that balance the decision between cellular life and death. Recent insights into the dynamic interactions between BCL-2 family proteins and how they control apoptotic cell death in healthy and diseased cells have uncovered novel opportunities for therapeutic intervention. Importantly, the development of both positive and negative small-molecule modulators of apoptosis is now enabling researchers to translate the discoveries that have been made in the laboratory into clinical practice to positively impact human health.
Collapse
Affiliation(s)
- Rumani Singh
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Lab for Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Anthony Letai
- Lab for Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Kristopher Sarosiek
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Lab for Systems Pharmacology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
19
|
Zheng X, Zhou Y, Yi X, Chen C, Wen C, Ye G, Li X, Tang L, Zhang X, Yang F, Liu G, Li Y, Hou J. IL-21 receptor signaling is essential for control of hepatocellular carcinoma growth and immunological memory for tumor challenge. Oncoimmunology 2018; 7:e1500673. [PMID: 30524894 DOI: 10.1080/2162402x.2018.1500673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/25/2018] [Accepted: 07/10/2018] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a typical inflammation-associated cancer. IL-21 regulates both innate and adaptive immune responses and has key roles in antitumor and antiviral responses. However, the role of IL-21 in HCC development is poorly defined. In the current study, we explored the role of IL-21R signaling in HCC growth by using IL-21R knockout mice and HCC mouse models. We discovered that IL-21R signaling deficiency promoted HCC growth in tumor-bearing mice. We showed that IL-21R deletion reduced T cells infiltration and activation as well as their function but increased the accumulation of myeloid-derived suppressor cells in tumor tissues to enhance HCC growth. Furthermore, loss of IL-21R signaling in tumor-bearing mice resulted in an imbalance of the systemic immune system characterized by decreased antitumor immune cells and increased immunosuppressive cells in the spleen and lymph nodes. In addition, we revealed that IL-21R signaling is critical for the expansion of antitumor immune cells in the memory immune response to tumor rechallenge. Finally, we showed that the transcriptional levels of IL-21 in the peritumoral region and IL-21R within the tumor are associated with survival and recurrence of HCC patients. In conclusion, our study demonstrates that IL-21R signaling is essential for controlling the development of HCC and immunological memory response to tumor challenge.
Collapse
Affiliation(s)
- Xinchun Zheng
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Yi
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengcong Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guofu Ye
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyi Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyong Zhang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fuqiang Yang
- Liver Disease Research Center, The 458th Hospital of PLA, Guangzhou, China
| | - Guangze Liu
- Liver Disease Research Center, The 458th Hospital of PLA, Guangzhou, China
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Hepatology Unit and Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Christofides A, Karantanos T, Bardhan K, Boussiotis VA. Epigenetic regulation of cancer biology and anti-tumor immunity by EZH2. Oncotarget 2018; 7:85624-85640. [PMID: 27793053 PMCID: PMC5356764 DOI: 10.18632/oncotarget.12928] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022] Open
Abstract
Polycomb group proteins regulate chromatin structure and have an important regulatory role on gene expression in various cell types. Two polycomb group complexes (Polycomb repressive complex 1 (PRC1) and 2 (PRC2)) have been identified in mammalian cells. Both PRC1 and PRC2 compact chromatin, and also catalyze histone modifications. PRC1 mediates monoubiquitination of histone H2A, whereas PRC2 catalyzes methylation of histone H3 on lysine 27. These alterations of histones can lead to altered gene expression patterns by regulating chromatin structure. Numerous studies have highlighted the role of the PRC2 catalytic component enhancer of zeste homolog 2 (EZH2) in neoplastic development and progression, and EZH2 mutations have been identified in various malignancies. Through modulating the expression of critical genes, EZH2 is actively involved in fundamental cellular processes such as cell cycle progression, cell proliferation, differentiation and apoptosis. In addition to cancer cells, EZH2 also has a decisive role in the differentiation and function of T effector and T regulatory cells. In this review we summarize the recent progress regarding the role of EZH2 in human malignancies, highlight the molecular mechanisms by which EZH2 aberrations promote the pathogenesis of cancer, and discuss the anti-tumor effects of EZH2 targeting via activating direct anti-cancer mechanisms and anti-tumor immunity.
Collapse
Affiliation(s)
- Anthos Christofides
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Theodoros Karantanos
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.,General Internal Medicine Section, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Kankana Bardhan
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Wu L, Ehlin-Henriksson B, Zhou X, Zhu H, Ernberg I, Kis LL, Klein G. Epstein-Barr virus (EBV) provides survival factors to EBV + diffuse large B-cell lymphoma (DLBCL) lines and modulates cytokine induced specific chemotaxis in EBV + DLBCL. Immunology 2017; 152:562-573. [PMID: 28699226 DOI: 10.1111/imm.12792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 06/05/2017] [Accepted: 06/19/2017] [Indexed: 12/17/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL), the most common type of malignant lymphoma, accounts for 30% of adult non-Hodgkin lymphomas. Epstein-Barr virus (EBV) -positive DLBCL of the elderly is a newly recognized subtype that accounts for 8-10% of DLBCLs in Asian countries, but is less common in Western populations. Five DLBCL-derived cell lines were employed to characterize patterns of EBV latent gene expression, as well as response to cytokines and chemotaxis. Interleukin-4 and interleukin-21 modified LMP1, EBNA1 and EBNA2 expression depending on cell phenotype and type of EBV latent programme (type I, II or III). These cytokines also affected CXCR4- or CCR7-mediated chemotaxis in two of the cell lines, Farage (type III) and Val (type II). Further, we investigated the effect of EBV by using dominant-negative EBV nuclear antigen 1(dnEBNA1) to eliminate EBV genomes. This resulted in decreased chemotaxis. By employing an alternative way to eliminate EBV genomes, Roscovitine, we show an increase of apoptosis in the EBV-positive lines. These results show that EBV plays an important role in EBV-positive DLBCL lines with regard to survival and chemotactic response. Our findings provide evidence for the impact of microenvironment on EBV-carrying DLBCL cells and might have therapeutic implications.
Collapse
Affiliation(s)
- Liang Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China.,Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Barbro Ehlin-Henriksson
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoying Zhou
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hong Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ingemar Ernberg
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lorand L Kis
- Department of Pathology and Cytology, Karolinska University Hospital, Stockholm, Sweden
| | - George Klein
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Tang J, Zha J, Guo X, Shi P, Xu B. CXCR5 +CD8 + T cells present elevated capacity in mediating cytotoxicity toward autologous tumor cells through interleukin 10 in diffuse large B-cell lymphoma. Int Immunopharmacol 2017; 50:146-151. [PMID: 28662433 DOI: 10.1016/j.intimp.2017.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 12/25/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a common and aggressive subtype of non-Hodgkin's lymphomas, with limited treatment options in refractory and relapsed patients. Growing evidence supports the notion that CD8+ T cell immunity could be utilized to eliminate B cell lymphomas. CXCR5+CD8+ T cell is a novel cell subtype and share CXCR5 expression with CD19+ tumor cells. In this study, we investigated the frequency and function of existing CXCR5+CD8+ T cells in DLBCL patients. We found that DLBCL patients as a group demonstrated significantly higher level of CXCR5+CD8+ T cells than healthy individuals, with huge variability in each patient. Using anti-CD3/CD28-stimulated CD8+ T cells as effector (E) cells and autologous CD19+ tumor cells as target (T) cells, at high E:T ratio, no difference between the intensities of CXCR5+CD8+ T cell- and CXCR5-CD8+ T cell-mediated cytotoxicity were observed. However, at intermediate and low E:T ratios, the CXCR5+CD8+ T cells presented stronger cytotoxicity than CXCR5-CD8+ T cells. The expressions of granzyme A, granzyme B, and perforin were significantly higher in CXCR5+CD8+ T cells than in CXCR5-CD8+ T cells, with no significant difference in the level of degranulation. Tumor cells in DLBCL were known to secrete high level of interleukin 10 (IL-10). We therefore blocked the IL-10/IL-10R pathway, and found that the expressions of granzyme A, granzyme B, and perforin by CXCR5+CD8+ T cells were significantly elevated. Together, these results suggest that CXCR5+CD8+ T cells are potential candidates of CD8+ T cell-based immunotherapies, could mediate elimination of autologous tumor cells in DLBCL patients, but are also susceptible to IL-10-mediated suppression.
Collapse
Affiliation(s)
- Jiahong Tang
- Department of Hematology, Nanfang Hospital, Southern medical University, Guangzhou 510515, China
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China
| | - Xutao Guo
- Department of Hematology, Nanfang Hospital, Southern medical University, Guangzhou 510515, China
| | - Pengcheng Shi
- Department of Hematology, Nanfang Hospital, Southern medical University, Guangzhou 510515, China
| | - Bing Xu
- Department of Hematology, Nanfang Hospital, Southern medical University, Guangzhou 510515, China; Department of Hematology, The First Affiliated Hospital of Xiamen University, Xiamen 361003, China.
| |
Collapse
|
23
|
Tormo A, Khodayarian F, Cui Y, Al-Chami E, Kanjarawi R, Noé B, Wang H, Rafei M. Interleukin-21 promotes thymopoiesis recovery following hematopoietic stem cell transplantation. J Hematol Oncol 2017; 10:120. [PMID: 28615039 PMCID: PMC5471903 DOI: 10.1186/s13045-017-0490-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/06/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Impaired T cell reconstitution remains a major deterrent in the field of bone marrow (BM) transplantation (BMT) due to pre-conditioning-induced damages inflicted to the thymi of recipient hosts. Given the previously reported thymo-stimulatory property of interleukin (IL)-21, we reasoned that its use post-BMT could have a profound effect on de novo T cell development. METHODS To evaluate the effect of IL-21 on de novo T cell development in vivo, BM derived from RAG2p-GFP mice was transplanted into LP/J mice. Lymphocyte reconstitution was first assessed using a hematological analyzer and a flow cytometer on collected blood samples. Detailed flow cytometry analysis was then performed on the BM, thymus, and spleen of transplanted animals. Finally, the effect of human IL-21 on thymopoiesis was validated in humanized mice. RESULTS Using a major histocompatibility complex (MHC)-matched allogeneic BMT model, we found that IL-21 administration improves immune reconstitution by triggering the proliferation of BM Lin-Sca1+c-kit+ (LSK) subsets. The pharmacological effect of IL-21 also culminates in the recovery of both hematopoietic (thymocytes) and non-hematopoietic (stromal) cells within the thymi of IL-21-treated recipient animals. Although T cells derived from all transplanted groups proliferate, secrete various cytokines, and express granzyme B similarly in response to T cell receptor (TCR) stimulation, full regeneration of peripheral naïve CD4+ and CD8+ T cells and normal TCRvβ distribution could only be detected in IL-21-treated recipient mice. Astonishingly, none of the recipient mice who underwent IL-21 treatment developed graft-versus-host disease (GVHD) in the MHC-matched allogeneic setting while the graft-versus-tumor (GVT) effect was strongly retained. Inhibition of GVHD onset could also be attributed to the enhanced generation of regulatory B cells (B10) observed in the IL-21, but not PBS, recipient mice. We also tested the thymopoiesis-stimulating property of human IL-21 in NSG mice transplanted with cord blood (CB) and found significant improvement in de novo human CD3+ T cell development. CONCLUSIONS In sum, our study indicates that IL-21 represents a new class of unforeseen thymopoietin capable of restoring thymic function following BMT.
Collapse
Affiliation(s)
- Aurélie Tormo
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Fatemeh Khodayarian
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Yun Cui
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Edouard Al-Chami
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Reem Kanjarawi
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Beatriz Noé
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Huijie Wang
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada
| | - Moutih Rafei
- The Department of Pharmacology and Physiology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada. .,The Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, 2900 Edouard-Montpetit BLVD, Montréal, Québec, H3T 1J4, Canada. .,The Department of Microbiology and Immunology, McGill University, 3775 University Street, Montréal, Québec, H3A 2B4, Canada.
| |
Collapse
|
24
|
Anti-CD20-interleukin-21 fusokine targets malignant B cells via direct apoptosis and NK-cell–dependent cytotoxicity. Blood 2017; 129:2246-2256. [DOI: 10.1182/blood-2016-09-738211] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022] Open
Abstract
Key Points
Delivering IL-21 to tumor B cells by fusion with anti-CD20 antibody (αCD20-IL-21 fusokine) is a potent antilymphoma therapeutic strategy. αCD20-IL-21 fusokine demonstrated superior antilymphoma activity compared with its individual components.
Collapse
|
25
|
Tabanelli V, Santiago-Pacheco V, Corbellino M, Calleri A, Agostinelli C, Parravicini C, Pileri SA. Cytotoxic Epstein-Barr virus-positive large B cell lymphoma: a regulatory B cell-derived neoplasia? Histopathology 2016; 70:650-656. [PMID: 27782313 DOI: 10.1111/his.13109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/24/2016] [Indexed: 12/01/2022]
Abstract
AIMS A new subtype of granzyme B (GrB)-producing regulatory B cells (Bregs ) has been described recently; these peculiar cytotoxic B cells are increased significantly in interleukin (IL)-21-rich settings, and in particular during HIV and Epstein-Barr virus (EBV) infection. Our aim is to report a unique case of an EBV-positive diffuse large B cell lymphoma (DLBCL) with cytotoxic features arisen in an HIV+ patient, and to understand if this lesion may represent a proliferation of neoplastic cytotoxic Bregs . METHODS AND RESULTS We describe a 66-year-old male patient who presented with cervical lymph node enlargement and B symptoms; subsequently, HIV infection was diagnosed. Histopathological, immunohistochemical and molecular studies were performed, and revealed an EBV-positive DLBCL with cytotoxic features. Considering the immunological setting and unconventional phenotype observed, we tried to evaluate further the expression of GrB and IL-21 in another 150 aggressive B cell lymphomas (17 of 150 EBV+ , two of 150 EBV+ /HIV+ ). Minimal dot-like expression of GrB was found in seven lymphomas (in fewer than 1% of tumour cells), three of which were EBV-positive. CONCLUSIONS Breg origin has never been reported in B cell lymphomas. We describe an exceptional case of EBV-positive DLBCL with aberrant expression of cytotoxic markers in a patient with a previously unknown HIV infection. We propose cytotoxic Bregs as a possible normal counterpart for this unusual tumour.
Collapse
Affiliation(s)
| | | | - Mario Corbellino
- III Division of Infectious Diseases, Luigi Sacco Hospital, Milan, Italy
| | - Angelica Calleri
- Unit of Haematopathology, European Institute of Oncology, Milan, Italy
| | - Claudio Agostinelli
- Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Carlo Parravicini
- Section of Infectious Diseases and Immunopathology, Luigi Sacco Hospital, Milan, Italy
| | - Stefano A Pileri
- Unit of Haematopathology, European Institute of Oncology, Milan, Italy.,Bologna University School of Medicine, Bologna, Italy
| |
Collapse
|
26
|
Anantharaju PG, Gowda PC, Vimalambike MG, Madhunapantula SV. An overview on the role of dietary phenolics for the treatment of cancers. Nutr J 2016; 15:99. [PMID: 27903278 PMCID: PMC5131407 DOI: 10.1186/s12937-016-0217-2] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023] Open
Abstract
Plant derived phenolic compounds have been shown to inhibit the initiation and progression of cancers by modulating genes regulating key processes such as: (a) oncogenic transformation of normal cells; (b) growth and development of tumors; and (c) angiogenesis and metastasis. Recent studies focusing on identifying the molecular basis of plant phenolics-induced cancer cell death have demonstrated down-regulation of: (a) oncogenic survival kinases such as PI3K and Akt; (b) cell proliferation regulators that include Erk1/2, D-type Cyclins, and Cyclin Dependent Kinases (CDKs); (c) transcription factors such as NF-kβ, NRF2 and STATs; (d) histone deacetylases HDAC1 and HDAC2; and (e) angiogenic factors VEGF, FGFR1 and MIC-1. Furthermore, while inhibiting oncogenic proteins, the phenolic compounds elevate the expression of tumor suppressor proteins p53, PTEN, p21, and p27. In addition, plant phenolic compounds and the herbal extracts rich in phenolic compounds modulate the levels of reactive oxygen species (ROS) in cells thereby regulate cell proliferation, survival and apoptosis. Furthermore, recent studies have demonstrated that phenolic compounds undergo transformation in gut microbiota thereby acquire additional properties that promote their biological activities. In vitro observations, preclinical and epidemiological studies have shown the involvement of plant phenolic acids in retarding the cancer growth. However, to date, there is no clinical trial as such testing the role of plant phenolic compounds for inhibiting tumor growth in humans. More over, several variations in response to phenolic acid rich diets-mediated treatment among individuals have also been reported, raising concerns about whether phenolic acids could be used for treating cancers. Therefore, we have made an attempt to (a) address the key structural features of phenolic acids required for exhibiting potent anti-cancer activity; (b) review the reported findings about the mechanisms of action of phenolic compounds and their transformation by gut microbiota; and (c) update the toxicological aspects and anti-tumor properties of phenolic compounds and extracts containing phenolic compounds in animals.
Collapse
Affiliation(s)
- Preethi G Anantharaju
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS University, Mysore, 570 015, Karnataka, India
| | - Prathima C Gowda
- Department of Pharmacology, JSS Medical College, JSS University, Mysore, 570 015, Karnataka, India
| | | | - SubbaRao V Madhunapantula
- Department of Biochemistry, Center of Excellence in Molecular Biology and Regenerative Medicine, JSS Medical College, JSS University, Mysore, 570 015, Karnataka, India.
| |
Collapse
|
27
|
Bhatt S, Sarosiek KA, Lossos IS. Interleukin 21 - its potential role in the therapy of B-cell lymphomas. Leuk Lymphoma 2016; 58:17-29. [PMID: 27405876 DOI: 10.1080/10428194.2016.1201568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Interleukin-21 (IL-21), a member of IL-2 cytokine family, has pleotropic biological effects on lymphoid and myeloid cells. During the past 15 years, since the discovery of IL-21, great advances have been made regarding its biological activity and the mechanisms controlling IL-21-mediated cellular responses, especially in hematological malignancies. Preclinical studies have shown that IL-21R is expressed on healthy and neoplastic B-cells and exogenous IL-21 can induce direct apoptosis of IL-21R expressing B-cell non-Hodgkin lymphomas (NHL), making it a potentially attractive anti-lymphoma therapy. However, in some hematological malignancies such as multiple myeloma, Hodgkin lymphoma and Burkitt lymphoma, IL-21 can induce proliferation of neoplastic B-cells. In NHL, the underlying mechanism of cell death was found to be different between the various subtypes, including activation of different JAK/STAT signal transduction pathways or other factors. Immunomodulatory effects of IL-21 have also been reported to contribute to its anti-tumor effects as described by earlier studies in solid tumors and B-cell associated malignancies. These effects are predominantly mediated by IL-21's ability to activate cytolytic activities by NK-cells and CD4+/CD8+ T-cells. In this review, we provide an overview of IL-21's effects in NHL, results from clinical trials utilizing IL-21, and propose how IL-21 can be therapeutically exploited for treating these lymphomas.
Collapse
Affiliation(s)
- Shruti Bhatt
- a Dana-Farber Cancer Institute/Harvard Medical School , Boston , MA , USA
| | | | - Izidore S Lossos
- b Department of Molecular and Cellular Pharmacology , University of Miami Miller School of Medicine , Miami , FL , USA.,c Department of Medicine, Division of Hematology-Oncology , Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine , Miami , FL , USA
| |
Collapse
|
28
|
Bi L, Wu J, Ye A, Wu J, Yu K, Zhang S, Han Y. Increased Th17 cells and IL-17A exist in patients with B cell acute lymphoblastic leukemia and promote proliferation and resistance to daunorubicin through activation of Akt signaling. J Transl Med 2016; 14:132. [PMID: 27176825 PMCID: PMC4866013 DOI: 10.1186/s12967-016-0894-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Immune regulation is crucial for the pathogenesis of B-cell acute lymphoblastic leukemia (B-ALL). It has been reported that Th17 cells as a newly identified subset of CD4(+) T cells are involved in the pathogenesis of several hematological disorders. However, the role of Th17 cells in the pathophysiology of B-ALL is still unclear. METHODS The frequencies of T cells were determined by flow cytometry in the peripheral blood and bone marrow of 44 newly diagnosed B-ALL patients and 25 age-matched healthy donors. The cell viability and apoptosis were determined by CCK-8 assay and Annexin V staining, respectively. Western blot was applied to identify the level of Akt and Stat3 phosphorylation. RESULTS We assessed and observed a significantly increased frequency of Th17 cells and a drastically decreased frequency of Th1 cells in peripheral blood mononuclear cells and bone marrow mononuclear cells from newly diagnosed B-ALL patients compared with healthy donors. Furthermore, increased levels of Th17-related cytokines including IL-17, IL-21, IL-23, IL-1β, and IL-6 were presented in between blood and marrow in B-ALL patients. Both IL-17A and IL-21, two Th17-secreted cytokines, induced the proliferation of B-ALL cell line Nalm-6 and patient B-ALL cells isolated from B-ALL patients, herein either cytokine led to the phosphorylation of Akt and Stat3. Additionally, IL-17A promoted resistance to daunorubicin via activation of Akt signaling and the PI3K/Akt inhibitor LY294002 or perifosine almost completely rescued daunorubicin-induced cell death in B-ALL cells. CONCLUSIONS Our findings suggest that elevated Th17 cells secrete IL-17A by which promotes the proliferation and resistance to daunorubicin in B-ALL cells through activation of Akt signaling. Th17 cells may represent a novel target to improve B-ALL immunotherapy.
Collapse
Affiliation(s)
- Laixi Bi
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Junqing Wu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Aifang Ye
- Laboratory of Internal Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Jianbo Wu
- Laboratory of Internal Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Kang Yu
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China
| | - Shenghui Zhang
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China.
| | - Yixiang Han
- Laboratory of Internal Medicine, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325015, China.
| |
Collapse
|
29
|
miR-181a negatively regulates NF-κB signaling and affects activated B-cell-like diffuse large B-cell lymphoma pathogenesis. Blood 2016; 127:2856-66. [PMID: 26941399 DOI: 10.1182/blood-2015-11-680462] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/18/2016] [Indexed: 01/10/2023] Open
Abstract
Distinct subgroups of diffuse large B-cell lymphoma (DLBCL) genetically resemble specific mature B-cell populations that are blocked at different stages of the immune response in germinal centers (GCs). The activated B-cell (ABC)-like subgroup resembles post-GC plasmablasts undergoing constitutive survival signaling, yet knowledge of the mechanisms that negatively regulate this oncogenic signaling remains incomplete. In this study, we report that microRNA (miR)-181a is a negative regulator of nuclear factor κ-light-chain enhancer of activated B-cells (NF-κB) signaling. miR-181a overexpression significantly decreases the expression and activity of key NF-κB signaling components. Moreover, miR-181a decreases DLBCL tumor cell proliferation and survival, and anti-miR-181a abrogates these effects. Remarkably, these effects are augmented in the NF-κB dependent ABC-like subgroup compared with the GC B-cell (GCB)-like DLBCL subgroup. Concordantly, in vivo analyses of miR-181a induction in xenografts results in slower tumor growth rate and prolonged survival in the ABC-like DLBCL xenografts compared with the GCB-like DLBCL. We link these outcomes to relatively lower endogenous miR-181a expression and to NF-κB signaling dependency in the ABC-like DLBCL subgroup. Our findings indicate that miR-181a inhibits NF-κB activity, and that manipulation of miR-181a expression in the ABC-like DLBCL genetic background may result in a significant change in the proliferation and survival phenotype of this malignancy.
Collapse
|
30
|
Abstract
IL-21 is a type I cytokine produced by T cells and natural killer T cells that has pleiotropic actions on a wide range of immune and non-immune cell types. Since its discovery in 2000, extensive studies on the biological actions of IL-21 have been performed in vitro and in vivo. Recent reports describing patients with primary immunodeficiency caused by mutations of IL21 or IL21R have further deepened our knowledge of the role of this cytokine in host defense. Elucidation of the molecular mechanisms that mediate IL-21's actions has provided the rationale for targeting IL-21 and IL-21 downstream mediators for therapeutic purposes. The use of next-generation sequencing technology has provided further insights into the complexity of IL-21 signaling and has identified transcription factors and co-factors involved in mediating the actions of this cytokine. In this review, we discuss recent advances in the biology and signaling of IL-21 and how this knowledge can be potentially translated into clinical settings.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethseda, Maryland, 20892, USA
| | - Chi-Keung Wan
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethseda, Maryland, 20892, USA
| |
Collapse
|
31
|
Goh TS, Hong C. New insights of common gamma chain in hematological malignancies. Cytokine 2015; 89:179-184. [PMID: 26748725 DOI: 10.1016/j.cyto.2015.12.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/02/2015] [Accepted: 12/10/2015] [Indexed: 01/07/2023]
Abstract
The common gamma chain (γc) receptor family of cytokines including interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21 has the common feature of sharing γc signaling subunit of their receptors. The γc cytokines have unique biological effects that regulate differentiation, survival and activation of multiple lymphocyte lineages and control proliferation of malignant cell by influencing tumor environment. It has been also described that different types of lymphoid leukemia and lymphoma exhibit expression of divergent γc cytokines and their receptors, as they may promote malignant transformation of lymphoid cells or on the contrary lead to tumor regression by inducing cell-cycle arrest. Therefore, cytokine-based or cytokine-directed blockade in cancer immunotherapy has currently revolutionized the development of cancer treatment. In this review, we will discuss about the role of γc cytokines and their signaling pathways in hematological malignancies and also propose a novel alternative approach that regulates γc cytokine responsiveness by γc in hematological malignancies.
Collapse
Affiliation(s)
- Tae Sik Goh
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Republic of Korea; Department of Orthopaedic Surgery, Medical Research Institute, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Changwan Hong
- Department of Anatomy, Pusan National University School of Medicine, Yangsan, Republic of Korea.
| |
Collapse
|
32
|
A two-pronged attack against mantle cell lymphoma. Blood 2015; 126:1521-3. [PMID: 26405213 DOI: 10.1182/blood-2015-08-662106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this issue of Blood, Bhatt et al describe direct cytotoxic and indirect immune cell-mediated effects of interleukin-21 (IL-21) in mantle cell lymphoma (MCL), providing a preclinical rationale for IL-21 therapy in this aggressive disease.
Collapse
|
33
|
Increased STAT3 phosphorylation on CD27 + B-cells from common variable immunodeficiency disease patients. Clin Immunol 2015; 161:77-88. [DOI: 10.1016/j.clim.2015.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 06/19/2015] [Accepted: 09/04/2015] [Indexed: 01/03/2023]
|
34
|
Kim N, Nam YS, Im KI, Lim JY, Lee ES, Jeon YW, Cho SG. IL-21-Expressing Mesenchymal Stem Cells Prevent Lethal B-Cell Lymphoma Through Efficient Delivery of IL-21, Which Redirects the Immune System to Target the Tumor. Stem Cells Dev 2015; 24:2808-21. [PMID: 26415081 DOI: 10.1089/scd.2015.0103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Interleukin (IL)-21, a proinflammatory cytokine, has been developed as an immunotherapeutic approach due to its effects on various lymphocytes, including natural killer (NK) cells and T cells; however, the clinical success in cancer patients has been limited. Recently, mesenchymal stem cells (MSCs) have emerged as vehicles for cancer gene therapy due to their inherent migratory abilities toward tumors. In the present study, we hypothesized that MSCs, genetically modified to express high levels of IL-21 (IL-21/MSCs), can enhance antitumor responses through localized delivery of IL-21. For tumor induction, BALB/c mice were injected intravenously with syngeneic A20 B-cell lymphoma cells to develop a disseminated B-cell lymphoma model. Then, 6 days following tumor induction, the tumor-bearing mice were treated with IL-21/MSCs weekly, four times. Systemic infusion of A20 cells led to hind-leg paralysis as well as severe liver metastasis in the control group. The IL-21/MSC-treated group showed delayed tumor incidence as well as improved survival, whereas the MSC- and recombinant adenovirus-expressing IL-21 (rAD/IL-21)-treated groups did not show significant differences from the untreated mice. These therapeutic effects were associated with high levels of IL-21 delivered to the liver, which prevented the formation of tumor nodules. Furthermore, the infusion of IL-21/MSCs led to induction of effector T and NK cells, while potently inhibiting immune suppressor cells. Our findings demonstrate that IL-21-expressing MSCs have the therapeutic potential to induce potent antitumor effects against disseminated B-cell lymphoma through localized IL-21 delivery and induction of systemic antitumor immunity.
Collapse
Affiliation(s)
- Nayoun Kim
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea
| | - Young-Sun Nam
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea
| | - Keon-Il Im
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea
| | - Jung-Yeon Lim
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea
| | - Eun-Sol Lee
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea
| | - Young-Woo Jeon
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,3 Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine , Seoul, Korea
| | - Seok-Goo Cho
- 1 Institute for Translational Research and Molecular Imaging, The Catholic University of Korea College of Medicine , Seoul, Korea.,2 Laboratory of Immune Regulation, Convergent Research Consortium for Immunologic Disease , Seoul, Korea.,3 Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary's Hospital, The Catholic University of Korea College of Medicine , Seoul, Korea
| |
Collapse
|
35
|
De Cecco L, Capaia M, Zupo S, Cutrona G, Matis S, Brizzolara A, Orengo AM, Croce M, Marchesi E, Ferrarini M, Canevari S, Ferrini S. Interleukin 21 Controls mRNA and MicroRNA Expression in CD40-Activated Chronic Lymphocytic Leukemia Cells. PLoS One 2015; 10:e0134706. [PMID: 26305332 PMCID: PMC4549109 DOI: 10.1371/journal.pone.0134706] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/13/2015] [Indexed: 12/22/2022] Open
Abstract
Several factors support CLL cell survival in the microenvironment. Under different experimental conditions, IL21 can either induce apoptosis or promote CLL cell survival. To investigate mechanisms involved in the effects of IL21, we studied the ability of IL21 to modulate gene and miRNA expressions in CD40-activated CLL cells. IL21 was a major regulator of chemokine production in CLL cells and it modulated the expression of genes involved in cell movement, metabolism, survival and apoptosis. In particular, IL21 down-regulated the expression of the chemokine genes CCL4, CCL3, CCL3L1, CCL17, and CCL2, while it up-regulated the Th1-related CXCL9 and CXCL10. In addition, IL21 down-regulated the expression of genes encoding signaling molecules, such as CD40, DDR1 and PIK3CD. IL21 modulated a similar set of genes in CLL and normal B-cells (e.g. chemokine genes), whereas other genes, including MYC, TNF, E2F1, EGR2 and GAS-6, were regulated only in CLL cells. An integrated analysis of the miRNome and gene expression indicated that several miRNAs were under IL21 control and these could, in turn, influence the expression of potential target genes. We focused on hsa-miR-663b predicted to down-regulate several relevant genes. Transfection of hsa-miR-663b or its specific antagonist showed that this miRNA regulated CCL17, DDR1, PIK3CD and CD40 gene expression. Our data indicated that IL21 modulates the expression of genes mediating the crosstalk between CLL cells and their microenvironment and miRNAs may take part in this process.
Collapse
Affiliation(s)
- Loris De Cecco
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Capaia
- Laboratory of Biotherapy, IRCCS-AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Simona Zupo
- Laboratory of Molecular Diagnostics, IRCCS-AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Giovanna Cutrona
- Laboratory of Molecular Diagnostics, IRCCS-AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Serena Matis
- Scientific Direction, IRCCS-AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Antonella Brizzolara
- Laboratory of Biotherapy, IRCCS-AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Anna Maria Orengo
- Laboratory of Biotherapy, IRCCS-AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Michela Croce
- Laboratory of Biotherapy, IRCCS-AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Edoardo Marchesi
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Manlio Ferrarini
- Scientific Direction, IRCCS-AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Silvana Canevari
- Functional Genomics and Bioinformatics, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- * E-mail: (SF); (SC)
| | - Silvano Ferrini
- Laboratory of Biotherapy, IRCCS-AOU San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
- * E-mail: (SF); (SC)
| |
Collapse
|
36
|
Direct and immune-mediated cytotoxicity of interleukin-21 contributes to antitumor effects in mantle cell lymphoma. Blood 2015; 126:1555-64. [PMID: 26194763 DOI: 10.1182/blood-2015-01-624585] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 07/06/2015] [Indexed: 12/18/2022] Open
Abstract
Mantle cell lymphoma (MCL) is a distinct subtype of non-Hodgkin lymphoma characterized by overexpression of cyclin D1 in 95% of patients. MCL patients experience frequent relapses resulting in median survival of 3 to 5 years, requiring more efficient therapeutic regimens. Interleukin (IL)-21, a member of the IL-2 cytokine family, possesses potent antitumor activity against a variety of cancers not expressing the IL-21 receptor (IL-21R) through immune activation. Previously, we established that IL-21 exerts direct cytotoxicity on IL-21R-expressing diffuse large B-cell lymphoma cells. Herein, we demonstrate that IL-21 possesses potent cytotoxicity against MCL cell lines and primary tumors. We identify that IL-21-induced direct cytotoxicity is mediated through signal transducer and activator of transcription 3-dependent cMyc upregulation, resulting in activation of Bax and inhibition of Bcl-2 and Bcl-XL. IL-21-mediated cMyc upregulation is only observed in IL-21-sensitive cells. Further, we demonstrate that IL-21 leads to natural killer (NK)-cell-dependent lysis of MCL cell lines that were resistant to direct cytotoxicity. In vivo treatment with IL-21 results in complete FC-muMCL1 tumor regression in syngeneic mice via NK- and T-cell-dependent mechanisms. Together, these data indicate that IL-21 has potent antitumor activity against MCL cells via direct cytotoxic and indirect, immune-mediated effects.
Collapse
|
37
|
Upadhyay R, Hammerich L, Peng P, Brown B, Merad M, Brody JD. Lymphoma: immune evasion strategies. Cancers (Basel) 2015; 7:736-62. [PMID: 25941795 PMCID: PMC4491682 DOI: 10.3390/cancers7020736] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 01/21/2023] Open
Abstract
While the cellular origin of lymphoma is often characterized by chromosomal translocations and other genetic aberrations, its growth and development into a malignant neoplasm is highly dependent upon its ability to escape natural host defenses. Neoplastic cells interact with a variety of non-malignant cells in the tumor milieu to create an immunosuppressive microenvironment. The resulting functional impairment and dysregulation of tumor-associated immune cells not only allows for passive growth of the malignancy but may even provide active growth signals upon which the tumor subsequently becomes dependent. In the past decade, the success of immune checkpoint blockade and adoptive cell transfer for relapsed or refractory lymphomas has validated immunotherapy as a possible treatment cornerstone. Here, we review the mechanisms by which lymphomas have been found to evade and even reprogram the immune system, including alterations in surface molecules, recruitment of immunosuppressive subpopulations, and secretion of anti-inflammatory factors. A fundamental understanding of the immune evasion strategies utilized by lymphomas may lead to better prognostic markers and guide the development of targeted interventions that are both safer and more effective than current standards of care.
Collapse
Affiliation(s)
- Ranjan Upadhyay
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Linda Hammerich
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Paul Peng
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Brian Brown
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Miriam Merad
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Joshua D Brody
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
38
|
Gene expression analysis of plasmablastic lymphoma identifies downregulation of B-cell receptor signaling and additional unique transcriptional programs. Leukemia 2015; 29:2270-3. [PMID: 25921246 DOI: 10.1038/leu.2015.109] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
IL-21: a pleiotropic cytokine with potential applications in oncology. J Immunol Res 2015; 2015:696578. [PMID: 25961061 PMCID: PMC4413888 DOI: 10.1155/2015/696578] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 03/19/2015] [Accepted: 03/25/2015] [Indexed: 12/29/2022] Open
Abstract
Interleukin- (IL-) 21 is a pleiotropic cytokine that regulates the activity of both innate and specific immunity. Indeed, it costimulates T and natural killer (NK) cell proliferation and function and regulates B cell survival and differentiation and the function of dendritic cells. In addition, IL-21 exerts divergent effects on different lymphoid cell leukemia and lymphomas, as it may support cell proliferation or on the contrary induce growth arrest or apoptosis of the neoplastic lymphoid cells. Several preclinical studies showed that IL-21 has antitumor activity in different tumor models, through mechanism involving the activation of NK and T or B cell responses. Moreover, IL-21's antitumor activity can be potentiated by its combination with other immune-enhancing molecules, monoclonal antibodies recognizing tumor antigens, chemotherapy, or molecular targeted agents. Clinical phase I-II studies of IL-21 in cancer patients showed immune stimulatory properties, acceptable toxicity profile, and antitumor effects in a fraction of patients. In view of its tolerability, IL-21 is also suitable for combinational therapeutic regimens with other agents. This review will summarize the biological functions of IL-21, and address its role in lymphoid malignancies and preclinical and clinical studies of cancer immunotherapy.
Collapse
|
40
|
Wu XN, Ye YX, Niu JW, Li Y, Li X, You X, Chen H, Zhao LD, Zeng XF, Zhang FC, Tang FL, He W, Cao XT, Zhang X, Lipsky PE. Defective PTEN regulation contributes to B cell hyperresponsiveness in systemic lupus erythematosus. Sci Transl Med 2015; 6:246ra99. [PMID: 25101889 DOI: 10.1126/scitranslmed.3009131] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
PTEN regulates normal signaling through the B cell receptor (BCR). In systemic lupus erythematosus (SLE), enhanced BCR signaling contributes to increased B cell activity, but the role of PTEN in human SLE has remained unclear. We performed fluorescence-activated cell sorting analysis in B cells from SLE patients and found that all SLE B cell subsets, except for memory B cells, showed decreased expression of PTEN compared with B cells from healthy controls. Moreover, the level of PTEN expression was inversely correlated with disease activity. We then explored the mechanisms governing PTEN regulation in SLE B cells. Notably, in normal but not SLE B cells, interleukin-21 (IL-21) induced PTEN expression and suppressed Akt phosphorylation induced by anti-immunoglobulin M and CD40L stimulation. However, this deficit was not primarily at the signaling or the transcriptional level, because IL-21-induced STAT3 (signal transducer and activator of transcription 3) phosphorylation was intact and IL-21 up-regulated PTEN mRNA in SLE B cells. Therefore, we examined the expression of candidate microRNAs (miRs) that could regulate PTEN: SLE B cells were found to express increased levels of miR-7, miR-21, and miR-22. These miRs down-regulated the expression of PTEN, and IL-21 stimulation increased the expression of miR-7 and miR-22 in both normal and SLE B cells. Indeed, a miR-7 antagomir corrected PTEN-related abnormalities in SLE B cells in a manner dependent on PTEN. Therefore, defective miR-7 regulation of PTEN contributes to B cell hyperresponsiveness in SLE and could be a new target of therapeutic intervention.
Collapse
Affiliation(s)
- Xiang-ni Wu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yan-xia Ye
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jing-wen Niu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yang Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li-dan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao-feng Zeng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Feng-chun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fu-lin Tang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei He
- Department of Immunology, School of Basic Medicine, Peking Union Medical College, and Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xue-tao Cao
- Department of Immunology, School of Basic Medicine, Peking Union Medical College, and Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing 100005, China
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | - Peter E Lipsky
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China. Formerly National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
41
|
Ramachandiran S, Adon A, Guo X, Wang Y, Wang H, Chen Z, Kowalski J, Sunay UR, Young AN, Brown T, Mar JC, Du Y, Fu H, Mann KP, Natkunam Y, Boise LH, Saavedra HI, Lossos IS, Bernal-Mizrachi L. Chromosome instability in diffuse large B cell lymphomas is suppressed by activation of the noncanonical NF-κB pathway. Int J Cancer 2014; 136:2341-51. [PMID: 25359525 DOI: 10.1002/ijc.29301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/16/2014] [Indexed: 12/12/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common form of lymphoma in the United States. DLBCL comprises biologically distinct subtypes including germinal center-like (GCB) and activated-B-cell-like DLBCL (ABC). The most aggressive type, ABC-DLBCL, displays dysregulation of both canonical and noncanonical NF-κB pathway as well as genomic instability. Although, much is known about the tumorigenic roles of the canonical NF-kB pathway, the precise role of the noncanonical NF-kB pathway remains unknown. Here we show that activation of the noncanonical NF-κB pathway regulates chromosome stability, DNA damage response and centrosome duplication in DLBCL. Analysis of 92 DLBCL samples revealed that activation of the noncanonical NF-κB pathway is associated with low levels of DNA damage and centrosome amplification. Inhibiting the noncanonical pathway in lymphoma cells uncovered baseline DNA damage and prevented doxorubicin-induced DNA damage repair. In addition, it triggered centrosome amplification and chromosome instability, indicated by anaphase bridges, multipolar spindles and chromosome missegregation. We determined that the noncanonical NF-κB pathway execute these functions through the regulation of GADD45α and REDD1 in a p53-independent manner, while it collaborates with p53 to regulate cyclin G2 expression. Furthermore, this pathway regulates GADD45α, REDD1 and cyclin G2 through direct binding of NF-κB sites to their promoter region. Overall, these results indicate that the noncanonical NF-κB pathway plays a central role in maintaining genome integrity in DLBCL. Our data suggests that inhibition of the noncanonical NF-kB pathway should be considered as an important component in DLBCL therapeutic approach.
Collapse
Affiliation(s)
- Sampath Ramachandiran
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li J, Mai J. Polymorphism in interleukin 21 gene is associated with decreased susceptibility to diffuse large B cell lymphoma. Tumour Biol 2014; 35:11295-300. [PMID: 25117075 DOI: 10.1007/s13277-014-2440-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/04/2014] [Indexed: 01/10/2023] Open
Abstract
Interleukin 21 (IL-21) plays a key role in innate and adaptive immunity. Polymorphisms in IL-21 gene may be greatly involved in various diseases. The aim of the study was to investigate the association between IL-21 genetic polymorphisms and the susceptibility to diffuse large B cell lymphoma (DLBCL). IL-21 -2498G/A and +78A/G polymorphisms were examined in 221 DLBCL patients and 243 healthy controls. We found that distributions of -2498GA genotype and -2498AA genotype were clearly decreased in DLBCL cases compared to healthy donors (odds ratio [OR] = 0.71, 95% confidence interval [CI] = 0.43-0.92, P = 0.021; OR = 0.36, 95 % CI = 0.15-0.48, P < 0.001; data were adjusted for age and sex). Stratification analyses revealed that patients with advanced Ann Arbor stages (III+IV) had further decreased percentage of -2498AA genotype than those with primary stages (OR = 0.31, 95% CI = 0.13-0.87, P = 0.023; data were adjusted for age and sex). In addition, we evaluated the possible effect of IL-21 polymorphisms on gene expression by examining serum level of IL-21 in patients and controls. Data revealed that subjects carrying -2498AA genotype had significantly higher serum level of IL-21 than those with GG genotype or GA genotype. These data suggest that IL-21 -2498G/A polymorphism is associated with decreased susceptibility to DLBCL and may increase serum level of IL-21.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, No.305 East Zhongshandong Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China,
| | | |
Collapse
|
43
|
Young PA, Morrison SL, Timmerman JM. Antibody-cytokine fusion proteins for treatment of cancer: engineering cytokines for improved efficacy and safety. Semin Oncol 2014; 41:623-36. [PMID: 25440607 DOI: 10.1053/j.seminoncol.2014.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The true potential of cytokine therapies in cancer treatment is limited by the inability to deliver optimal concentrations into tumor sites due to dose-limiting systemic toxicities. To maximize the efficacy of cytokine therapy, recombinant antibody-cytokine fusion proteins have been constructed by a number of groups to harness the tumor-targeting ability of monoclonal antibodies. The aim is to guide cytokines specifically to tumor sites where they might stimulate more optimal anti-tumor immune responses while avoiding the systemic toxicities of free cytokine therapy. Antibody-cytokine fusion proteins containing interleukin (IL)-2, IL-12, IL-21, tumor necrosis factor (TNF)α, and interferons (IFNs) α, β, and γ have been constructed and have shown anti-tumor activity in preclinical and early-phase clinical studies. Future priorities for development of this technology include optimization of tumor targeting, bioactivity of the fused cytokine, and choice of appropriate agents for combination therapies. This review is intended to serve as a framework for engineering an ideal antibody-cytokine fusion protein, focusing on previously developed constructs and their clinical trial results.
Collapse
Affiliation(s)
- Patricia A Young
- Division of Hematology & Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Sherie L Morrison
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA
| | - John M Timmerman
- Division of Hematology & Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA.
| |
Collapse
|
44
|
Spolski R, Leonard WJ. Interleukin-21: a double-edged sword with therapeutic potential. Nat Rev Drug Discov 2014; 13:379-95. [PMID: 24751819 DOI: 10.1038/nrd4296] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interleukin-21 is a cytokine with broad pleiotropic actions that affect the differentiation and function of lymphoid and myeloid cells. Since its discovery in 2000, a tremendous amount has been learned about its biological actions and the molecular mechanisms controlling IL-21-mediated cellular responses. IL-21 regulates both innate and adaptive immune responses, and it not only has key roles in antitumour and antiviral responses but also exerts major effects on inflammatory responses that promote the development of autoimmune diseases and inflammatory disorders. Numerous studies have shown that enhancing or inhibiting the action of IL-21 has therapeutic effects in animal models of a wide range of diseases, and various clinical trials are underway. The current challenge is to understand how to specifically modulate the actions of IL-21 in the context of each specific immune response or pathological situation. In this Review, we provide an overview of the basic biology of IL-21 and discuss how this information has been - and can be - exploited therapeutically.
Collapse
Affiliation(s)
- Rosanne Spolski
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute (NHLBI), US National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute (NHLBI), US National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
45
|
Gordon LI, Bernstein SH, Jares P, Kahl BS, Witzig TE, Dreyling M. Recent advances in mantle cell lymphoma: report of the 2013 Mantle Cell Lymphoma Consortium Workshop. Leuk Lymphoma 2014; 55:2262-70. [DOI: 10.3109/10428194.2013.876634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Cha Z, Gu H, Guo H, Tu X, Zang Y, Zhao C, Hua M, Rechlic JR, Olasnova LM, Song H, Qian B. Effect of interleukin 21 and its receptor on CD8 + T cells in the pathogenesis of diffuse large B-cell lymphoma. Oncol Lett 2014; 8:421-425. [PMID: 24959288 PMCID: PMC4063596 DOI: 10.3892/ol.2014.2062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 03/27/2014] [Indexed: 11/06/2022] Open
Abstract
Interleukin 21 (IL-21) and its receptor, IL-21R, play a key role in innate and adaptive immunity. In the present study, the effect of IL-21 and IL-21R on the pathogenesis of diffuse large B-cell lymphoma (DLBCL) was investigated. The serum levels of IL-21 were detected by enzyme-linked immunosorbent assay, and the expression of IL-21R on CD8+ T cells was examined through flow cytometry. The data showed that the serum level of IL-21 was significantly decreased in the patients with DLBCL compared with the healthy controls (P<0.001), whereas the expression of IL-21R was clearly elevated on the CD8+ T cells in the patients with DLBCL. Further analyses revealed that the downregulation of the IL-21 serum level was correlated with an increased tumor stage of DLBCL, while the expression of IL-21R on the CD8+ T cells was positively correlated with the tumor stage. Also, the serum level of IL-21 and the proportion of IL-21R on the CD8+ T cells were negatively correlated in the patients. Notably, it was identified that the proportion of IL-21R on the CD8+ T cells, but not the serum level of IL-21, was significantly upregulated in the patients with bone-marrow involvement and B symptoms. These results indicate that IL-21 and IL-21R may be involved in the pathogenesis of DLBCL, in which IL-21R may reflect the progression of the disease more accurately than the serum level of IL-21.
Collapse
Affiliation(s)
- Zhanshan Cha
- Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Haihui Gu
- Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Huijun Guo
- Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xiaohua Tu
- Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yan Zang
- Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Chunyan Zhao
- Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Meixian Hua
- Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - James R Rechlic
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lindsay M Olasnova
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haihan Song
- Department of Internal Medicine, Emergency Center, East Hospital, Tongji University School of Medicine, Shanghai 200120, P.R. China
| | - Baohua Qian
- Department of Transfusion, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
47
|
Attridge K, Kenefeck R, Wardzinski L, Qureshi OS, Wang CJ, Manzotti C, Okkenhaug K, Walker LSK. IL-21 promotes CD4 T cell responses by phosphatidylinositol 3-kinase-dependent upregulation of CD86 on B cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:2195-201. [PMID: 24470500 PMCID: PMC3932810 DOI: 10.4049/jimmunol.1302082] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/28/2013] [Indexed: 12/21/2022]
Abstract
The cytokine IL-21 is a potent immune modulator with diverse mechanisms of action on multiple cell types. IL-21 is in clinical use to promote tumor rejection and is an emerging target for neutralization in the setting of autoimmunity. Despite its clinical potential, the biological actions of IL-21 are not yet fully understood and the full range of effects of this pleiotropic cytokine are still being uncovered. In this study, we identify a novel role for IL-21 as an inducer of the costimulatory ligand CD86 on B lymphocytes. CD86 provides critical signals through T cell-expressed CD28 that promote T cell activation in response to Ag engagement. Expression levels of CD86 are tightly regulated in vivo, being actively decreased by regulatory T cells and increased in response to pathogen-derived signals. In this study, we demonstrate that IL-21 can trigger potent and sustained CD86 upregulation through a STAT3 and PI3K-dependent mechanism. We show that elevated CD86 expression has functional consequences for the magnitude of CD4 T cell responses both in vitro and in vivo. These data pinpoint CD86 upregulation as an additional mechanism by which IL-21 can elicit immunomodulatory effects.
Collapse
Affiliation(s)
- Kesley Attridge
- Medical Research Council Centre for Immune Regulation, University of Birmingham Medical School, Birmingham B15 2TT, United Kingdom
| | - Rupert Kenefeck
- Institute of Immunity and Transplantation, University College London Medical School, London NW3 2PF, United Kingdom; and
| | - Lukasz Wardzinski
- Medical Research Council Centre for Immune Regulation, University of Birmingham Medical School, Birmingham B15 2TT, United Kingdom
- Institute of Immunity and Transplantation, University College London Medical School, London NW3 2PF, United Kingdom; and
| | - Omar S. Qureshi
- Medical Research Council Centre for Immune Regulation, University of Birmingham Medical School, Birmingham B15 2TT, United Kingdom
| | - Chun Jing Wang
- Institute of Immunity and Transplantation, University College London Medical School, London NW3 2PF, United Kingdom; and
| | - Claire Manzotti
- Medical Research Council Centre for Immune Regulation, University of Birmingham Medical School, Birmingham B15 2TT, United Kingdom
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Lucy S. K. Walker
- Medical Research Council Centre for Immune Regulation, University of Birmingham Medical School, Birmingham B15 2TT, United Kingdom
- Institute of Immunity and Transplantation, University College London Medical School, London NW3 2PF, United Kingdom; and
| |
Collapse
|
48
|
BID preferentially activates BAK while BIM preferentially activates BAX, affecting chemotherapy response. Mol Cell 2013; 51:751-65. [PMID: 24074954 DOI: 10.1016/j.molcel.2013.08.048] [Citation(s) in RCA: 183] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/06/2013] [Accepted: 08/22/2013] [Indexed: 12/22/2022]
Abstract
Apoptosis is a highly regulated form of cell death that controls normal homeostasis as well as the antitumor activity of many chemotherapeutic agents. Commitment to death via the mitochondrial apoptotic pathway requires activation of the mitochondrial pore-forming proteins BAK or BAX. Activation can be effected by the activator BH3-only proteins BID or BIM, which have been considered to be functionally redundant in this role. Herein, we show that significant activation preferences exist between these proteins: BID preferentially activates BAK while BIM preferentially activates BAX. Furthermore, we find that cells lacking BAK are relatively resistant to agents that require BID activation for maximal induction of apoptosis, including topoisomerase inhibitors and TRAIL. Consequently, patients with tumors that harbor a loss of BAK1 exhibit an inferior response to topoisomerase inhibitor treatment in the clinic. Therefore, BID and BIM have nonoverlapping roles in the induction of apoptosis via BAK and BAX, affecting chemotherapy response.
Collapse
|
49
|
Caganova M, Carrisi C, Varano G, Mainoldi F, Zanardi F, Germain PL, George L, Alberghini F, Ferrarini L, Talukder AK, Ponzoni M, Testa G, Nojima T, Doglioni C, Kitamura D, Toellner KM, Su IH, Casola S. Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J Clin Invest 2013; 123:5009-22. [PMID: 24200695 PMCID: PMC3859423 DOI: 10.1172/jci70626] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 09/03/2013] [Indexed: 01/13/2023] Open
Abstract
Protection against deadly pathogens requires the production of high-affinity antibodies by B cells, which are generated in germinal centers (GCs). Alteration of the GC developmental program is common in many B cell malignancies. Identification of regulators of the GC response is crucial to develop targeted therapies for GC B cell dysfunctions, including lymphomas. The histone H3 lysine 27 methyltransferase enhancer of zeste homolog 2 (EZH2) is highly expressed in GC B cells and is often constitutively activated in GC-derived non-Hodgkin lymphomas (NHLs). The function of EZH2 in GC B cells remains largely unknown. Herein, we show that Ezh2 inactivation in mouse GC B cells caused profound impairment of GC responses, memory B cell formation, and humoral immunity. EZH2 protected GC B cells against activation-induced cytidine deaminase (AID) mutagenesis, facilitated cell cycle progression, and silenced plasma cell determinant and tumor suppressor B-lymphocyte-induced maturation protein 1 (BLIMP1). EZH2 inhibition in NHL cells induced BLIMP1, which impaired tumor growth. In conclusion, EZH2 sustains AID function and prevents terminal differentiation of GC B cells, which allows antibody diversification and affinity maturation. Dysregulation of the GC reaction by constitutively active EZH2 facilitates lymphomagenesis and identifies EZH2 as a possible therapeutic target in NHL and other GC-derived B cell diseases.
Collapse
MESH Headings
- Animals
- Apoptosis
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- Cell Cycle
- Cytidine Deaminase/deficiency
- Cytidine Deaminase/genetics
- Cytidine Deaminase/physiology
- DNA Damage
- Enhancer of Zeste Homolog 2 Protein
- Enzyme Activation
- Gene Expression Regulation, Neoplastic
- Gene Rearrangement, B-Lymphocyte, Heavy Chain
- Gene Silencing
- Germinal Center/enzymology
- Germinal Center/immunology
- Germinal Center/pathology
- Immunity, Humoral
- Immunologic Memory
- Lymphoma, Non-Hodgkin/enzymology
- Lymphoma, Non-Hodgkin/etiology
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/pathology
- Lymphopoiesis
- Methylation
- Mice
- Mice, Transgenic
- Polycomb Repressive Complex 2/deficiency
- Polycomb Repressive Complex 2/genetics
- Polycomb Repressive Complex 2/physiology
- Positive Regulatory Domain I-Binding Factor 1
- Protein Processing, Post-Translational
- Transcription Factors/physiology
Collapse
Affiliation(s)
- Marieta Caganova
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Chiara Carrisi
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Gabriele Varano
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Federica Mainoldi
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Federica Zanardi
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Pierre-Luc Germain
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Laura George
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Federica Alberghini
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Luca Ferrarini
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Asoke K. Talukder
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Maurilio Ponzoni
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Giuseppe Testa
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Takuya Nojima
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Claudio Doglioni
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Daisuke Kitamura
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kai-M. Toellner
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - I-hsin Su
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Stefano Casola
- The Institute of Molecular Oncology (IFOM) of the Italian Foundation for Cancer Research (FIRC), Milan, Italy.
European Institute of Oncology, Milan, Italy.
Medical Research Council Centre for Immune Regulation, School of Immunity and Infection, University of Birmingham, Birmingham, United Kingdom.
InterpretOmics India, Bangalore, India.
Unit of Lymphoid Malignancies, Department of Onco-Haematology, San Raffaele Scientific Institute, Milan, Italy.
Division of Molecular Biology, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan.
Division of Molecular Genetics and Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
50
|
ALK-positive large B-cell lymphomas express a terminal B-cell differentiation program and activated STAT3 but lack MYC rearrangements. Mod Pathol 2013; 26:1329-37. [PMID: 23599149 PMCID: PMC6368829 DOI: 10.1038/modpathol.2013.73] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 02/08/2023]
Abstract
ALK-positive large B-cell lymphoma is an aggressive lymphoid neoplasm characterized by a monomorphic proliferation of immunoblast-like cells expressing a plasmablastic phenotype and carrying ALK rearrangements. MYC rearrangements are frequent in plasmablastic lymphomas, advanced plasma cell myelomas and a subgroup of diffuse large B-cell lymphomas, but their presence in ALK-positive large B-cell lymphomas is unknown. MYC expression is downregulated by BLIMP1, a master modulator of plasma cell differentiation. BLIMP1 and MYC are upregulated by STAT3, a signal transducer activated by ALK. To determine the role of BLIMP1, MYC and STAT3 in the pathogenesis of ALK-positive large B-cell lymphomas, we investigated MYC rearrangement and the expression of MYC, phosphorylated STAT3, BLIMP1, PAX5 and XBP1 in 12 ALK-positive large B-cell lymphomas. All cases expressed ALK with a granular cytoplasmic pattern. Nine cases had a split signal consistent with an ALK rearrangement. Three additional cases showed a deletion of the 5' or 3' end of the ALK probe consistent with cryptic translocation. PAX5 was virtually negative in all cases tested, whereas BLIMP1 was expressed in all tumors and XBP1 in 11 of 12. Phosphorylated STAT3 was observed in all cases with a strong and diffuse nuclear pattern. MYC rearrangements were not identified in any tumor, but MYC gains and amplification were detected in six cases and one case, respectively. MYC protein was expressed in all tumors independently of MYC gene alterations. These results indicate that ALK-positive large B-cell lymphomas express a complete plasmablastic differentiation program but, contrary to plasmablastic lymphomas, do not have MYC rearrangements. STAT3 is constantly activated and may be an alternative mechanism to promote MYC expression in these tumors. The relevance of the ALK/STAT3 pathway in the pathogenesis of ALK-positive large B-cell lymphomas may offer an attractive target for new therapies.
Collapse
|