1
|
Martini S, Drzeniek NM, Stark R, Kollert MR, Du W, Reinke S, Ort M, Hardt S, Kotko I, Kath J, Schlickeiser S, Geißler S, Wagner DL, Krebs AC, Volk HD. Long-term in vitromaintenance of plasma cells in a hydrogel-enclosed human bone marrow microphysiological 3D model system. Biofabrication 2024; 16:045005. [PMID: 38955197 DOI: 10.1088/1758-5090/ad5dfe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Plasma cells (PCs) in bone marrow (BM) play an important role in both protective and pathogenic humoral immune responses, e.g. in various malignant and non-malignant diseases such as multiple myeloma, primary and secondary immunodeficiencies and autoimmune diseases. Dedicated microenvironmental niches in the BM provide PCs with biomechanical and soluble factors that support their long-term survival. There is a high need for appropriate and robust model systems to better understand PCs biology, to develop new therapeutic strategies for PCs-related diseases and perform targeted preclinical studies with high predictive value. Most preclinical data have been derived fromin vivostudies in mice, asin vitrostudies of human PCs are limited due to restricted survival and functionality in conventional 2D cultures that do not reflect the unique niche architecture of the BM. We have developed a microphysiological, dynamic 3D BM culture system (BM-MPS) based on human primary tissue (femoral biopsies), mechanically supported by a hydrogel scaffold casing. While a bioinert agarose casing did not support PCs survival, a photo-crosslinked collagen-hyaluronic acid (Col-HA) hydrogel preserved the native BM niche architecture and allowed PCs survivalin vitrofor up to 2 weeks. Further, the Col-HA hydrogel was permissive to lymphocyte migration into the microphysiological system´s circulation. Long-term PCs survival was related to the stable presence in the culture of soluble factors, as APRIL, BAFF, and IL-6. Increasing immunoglobulins concentrations in the medium confirm their functionality over culture time. To the best of our knowledge, this study is the first report of successful long-term maintenance of primary-derived non-malignant PCsin vitro. Our innovative model system is suitable for in-depthin vitrostudies of human PCs regulation and exploration of targeted therapeutic approaches such as CAR-T cell therapy or biologics.
Collapse
Affiliation(s)
- Stefania Martini
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Norman Michael Drzeniek
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Regina Stark
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Reiner Kollert
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Julius Wolff Institute, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Weijie Du
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Simon Reinke
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Melanie Ort
- Julius Wolff Institute, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Hardt
- Center for Musculoskeletal Surgery Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Iuliia Kotko
- Institute of Medical Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Jonas Kath
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- CheckImmune GmbH, Berlin, Germany
| | - Sven Geißler
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Julius Wolff Institute, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Dimitrios Laurin Wagner
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Anna-Catharina Krebs
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
2
|
Labeur-Iurman L, Harker JA. Mechanisms of antibody mediated immunity - Distinct in early life. Int J Biochem Cell Biol 2024; 172:106588. [PMID: 38768890 DOI: 10.1016/j.biocel.2024.106588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Immune responses in early life are characterized by a failure to robustly generate long-lasting protective responses against many common pathogens or upon vaccination. This is associated with a reduced ability to generate T-cell dependent high affinity antibodies. This review highlights the differences in T-cell dependent antibody responses observed between infants and adults, in particular focussing on the alterations in immune cell function that lead to reduced T follicular helper cell-B cell crosstalk within germinal centres in early life. Understanding the distinct functional characteristics of early life humoral immunity, and how these are regulated, will be critical in guiding age-appropriate immunological interventions in the very young.
Collapse
Affiliation(s)
- Lucia Labeur-Iurman
- National Heart & Lung Institute, Imperial College London, London, United Kingdom.
| | - James A Harker
- National Heart & Lung Institute, Imperial College London, London, United Kingdom; Centre for Paediatrics and Child Health, Imperial College London, London, United Kingdom.
| |
Collapse
|
3
|
Caravaca-Fontán F, Yandian F, Fervenza FC. Future landscape for the management of membranous nephropathy. Clin Kidney J 2023; 16:1228-1238. [PMID: 37529655 PMCID: PMC10387398 DOI: 10.1093/ckj/sfad041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Indexed: 08/03/2023] Open
Abstract
Among all glomerular diseases, membranous nephropathy (MN) is perhaps the one in which major progress has been made in recent decades, in both the understanding of the pathogenesis and treatment. Despite the overall significant response rates to these therapies-particularly rituximab and cyclical regimen based on corticosteroids and cyclophosphamide-cumulative experience over the years has shown, however, that 20%-30% of cases may confront resistant disease. Thus, these unmet challenges in the treatment of resistant forms of MN require newer approaches. Several emerging new agents-developed primarily for the treatment of hematological malignancies or rheumatoid diseases-are currently being evaluated in MN. Herein we conducted a narrative review on future therapeutic strategies in the disease. Among the different novel therapies, newer anti-CD20 agents (e.g. obinutuzumab), anti-CD38 (e.g. daratumumab, felzartamab), immunoadsorption or anti-complement therapies (e.g. iptacopan) have gained special attention. In addition, several technologies and innovations developed primarily for cancer (e.g. chimeric antigen receptor T-cell therapy, sweeping antibodies) seem particularly promising. In summary, the future therapeutic landscape in MN seems encouraging and will definitely move the management of this disease towards a more precision-based approach.
Collapse
Affiliation(s)
| | - Federico Yandian
- Department of Nephrology, Hospital de Clínicas “Dr Manuel Quintela”, Montevideo, Uruguay
| | | |
Collapse
|
4
|
Burnet AM, Brunetti T, Rochford R. Hemin treatment drives viral reactivation and plasma cell differentiation of EBV latently infected B cells. PLoS Pathog 2023; 19:e1011561. [PMID: 37639483 PMCID: PMC10491393 DOI: 10.1371/journal.ppat.1011561] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/08/2023] [Accepted: 07/16/2023] [Indexed: 08/31/2023] Open
Abstract
Epstein-Barr virus (EBV) and Plasmodium falciparum have a well described role in the development of endemic Burkitt lymphoma (BL), yet the mechanisms involved remain unknown. A major hallmark of malarial disease is hemolysis and bystander eryptosis of red blood cells, which causes release of free heme in large quantities into peripheral blood. We hypothesized that heme released during malaria infection drives differentiation of latently infected EBV-positive B cells, resulting in viral reactivation and release of infectious virus. To test this hypothesis, we used the EBV-positive Mutu I B-cell line and treated with hemin (the oxidized form of heme) and evaluated evidence of EBV reactivation. Hemin treatment resulted in the expression of EBV immediate early, early and late lytic gene transcripts. In addition, expression of CD138, a marker of plasma cells was co-expressed with the late lytic protein gp350 on hemin treated Mutu I cells. Finally, DNase-resistant EBV DNA indicative of virion production was detected in supernatant. To assess the transcriptional changes induced by hemin treatment, RNA sequencing was performed on mock- and hemin-treated Mutu I cells, and a shift from mature B cell transcripts to plasma cell transcripts was identified. To identify the mechanism of hemin-induced B cell differentiation, we measured levels of the plasma cell transcriptional repressor, BACH2, that contains specific heme binding sites. Hemin treatment caused significant degradation of BACH2 by 24 hours post-treatment in four BL cell lines (two EBV positive, two EBV negative). Knockdown of BACH2 in Mutu I cells using siRNAs significantly increased CD138+gp350+ cells to levels similar to treatment with hemin. This suggested that hemin induced BACH2 degradation was responsible for plasma cell differentiation and viral reactivation. Together, these data support a model where EBV reactivation can occur during malaria infection via heme modulation, providing a mechanistic link between malaria and EBV.
Collapse
Affiliation(s)
- Anna M. Burnet
- Department of Immunology and Microbiology, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
| | - Tonya Brunetti
- Department of Immunology and Microbiology, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
5
|
Zhao X, Zhang H, Han Y, Fang C, Liu J. Navigating the immunometabolic heterogeneity of B cells in murine hepatocellular carcinoma at single cell resolution. Int Immunopharmacol 2023; 120:110257. [PMID: 37182447 DOI: 10.1016/j.intimp.2023.110257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
Induction of antitumor immunity is critical for the therapeutic efficacy of hepatocellular carcinoma (HCC) immunotherapy. The cellular metabolic state underpins the effector function of immune cells, yet our understanding of the phenotypic and metabolic heterogeneity of B cells within HCC microenvironment is poorly developed. Herein, we investigated the composition, distribution, phenotype, function and metabolic profiles of B-cell subsets in HCC and adjacent liver tissues from an orthotopic HCC mouse model using single-cell RNA sequencing (scRNA-seq). Our results identified six B-cell clusters, which can be classified into plasma cells and activated and exhausted B cells according to marker expression, functional and temporal distribution. Exhausted B cells exhibited low metabolic activities and impaired effector functions. Activated B and plasma cells showed higher metabolic activity than exhausted B cells, but there were clear differences in their metabolic profiles. In addition, we found that the effector function of exhausted B cells was further diminished in HCC tissues compared with adjacent liver tissues, but their metabolic activity was significantly enhanced. Collectively, we comprehensively characterized the metabolic profile and alterations in B-cell subsets in HCC, which contributes to the understanding of B-cell immunology in HCC and lays the foundation for exploring novel targets in HCC immunotherapy.
Collapse
Affiliation(s)
- Xindong Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310003, China
| | - Huanran Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310003, China; The Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, Hangzhou City, Zhejiang Province 310003, China
| | - Yiru Han
- Department of Health Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310003, China
| | - Chengyu Fang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310003, China
| | - Jingqi Liu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310003, China.
| |
Collapse
|
6
|
Danciu OC, Holdhoff M, Peterson RA, Fischer JH, Liu LC, Wang H, Venepalli NK, Chowdhery R, Nicholas MK, Russell MJ, Fan TM, Hergenrother PJ, Tarasow TM, Dudek AZ. Phase I study of procaspase-activating compound-1 (PAC-1) in the treatment of advanced malignancies. Br J Cancer 2023; 128:783-792. [PMID: 36470974 PMCID: PMC9977881 DOI: 10.1038/s41416-022-02089-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Procaspase-3 (PC-3) is overexpressed in multiple tumour types and procaspase-activating compound 1 (PAC-1) directly activates PC-3 and induces apoptosis in cancer cells. This report describes the first-in-human, phase I study of PAC-1 assessing maximum tolerated dose, safety, and pharmacokinetics. METHODS Modified-Fibonacci dose-escalation 3 + 3 design was used. PAC-1 was administered orally at 7 dose levels (DL) on days 1-21 of a 28-day cycle. Dose-limiting toxicity (DLT) was assessed during the first two cycles of therapy, and pharmacokinetics analysis was conducted on days 1 and 21 of the first cycle. Neurologic and neurocognitive function (NNCF) tests were performed throughout the study. RESULTS Forty-eight patients were enrolled with 33 completing ≥2 cycles of therapy and evaluable for DLT. DL 7 (750 mg/day) was established as the recommended phase 2 dose, with grade 1 and 2 neurological adverse events noted, while NNCF testing showed stable neurologic and cognitive evaluations. PAC-1's t1/2 was 28.5 h after multi-dosing, and systemic drug exposures achieved predicted therapeutic concentrations. PAC-1 clinical activity was observed in patients with neuroendocrine tumour (NET) with 2/5 patients achieving durable partial response. CONCLUSIONS PAC-1 dose at 750 mg/day was recommended for phase 2 studies. Activity of PAC-1 in treatment-refractory NET warrants further investigation. CLINICAL TRIAL REGISTRATION Clinical Trials.gov: NCT02355535.
Collapse
Affiliation(s)
- Oana C Danciu
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
- Clinical Trials Office, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA.
| | - Matthias Holdhoff
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | | | - James H Fischer
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Li C Liu
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Heng Wang
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Neeta K Venepalli
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rozina Chowdhery
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - M Kelly Nicholas
- Division of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Meredith J Russell
- Clinical Trials Office, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Timothy M Fan
- Vanquish Oncology, Inc., Champaign, IL, USA
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign, IL, USA
- Cancer Center at Illinois, Urbana-Champaign, IL, USA
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, USA
| | - Paul J Hergenrother
- Vanquish Oncology, Inc., Champaign, IL, USA
- Cancer Center at Illinois, Urbana-Champaign, IL, USA
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, USA
- Department of Chemistry, University of Illinois, Urbana-Champaign, IL, USA
| | | | - Arkadiusz Z Dudek
- HealthPartners Institute, Regions Cancer Care Center, St. Paul, MN, USA
- Vanquish Oncology, Inc., Champaign, IL, USA
| |
Collapse
|
7
|
The deubiquitinase OTUD1 regulates immunoglobulin production and proteasome inhibitor sensitivity in multiple myeloma. Nat Commun 2022; 13:6820. [PMID: 36357400 PMCID: PMC9649770 DOI: 10.1038/s41467-022-34654-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
Serum monoclonal immunoglobulin (Ig) is the main diagnostic factor for patients with multiple myeloma (MM), however its prognostic potential remains unclear. On a large MM patient cohort (n = 4146), we observe no correlation between serum Ig levels and patient survival, while amount of intracellular Ig has a strong predictive effect. Focused CRISPR screen, transcriptional and proteomic analysis identify deubiquitinase OTUD1 as a critical mediator of Ig synthesis, proteasome inhibitor sensitivity and tumor burden in MM. Mechanistically, OTUD1 deubiquitinates peroxiredoxin 4 (PRDX4), protecting it from endoplasmic reticulum (ER)-associated degradation. In turn, PRDX4 facilitates Ig production which coincides with the accumulation of unfolded proteins and higher ER stress. The elevated load on proteasome ultimately potentiates myeloma response to proteasome inhibitors providing a window for a rational therapy. Collectively, our findings support the significance of the Ig production machinery as a biomarker and target in the combinatory treatment of MM patients.
Collapse
|
8
|
Rutkauskaite J, Berger S, Stavrakis S, Dressler O, Heyman J, Casadevall I Solvas X, deMello A, Mazutis L. High-throughput single-cell antibody secretion quantification and enrichment using droplet microfluidics-based FRET assay. iScience 2022; 25:104515. [PMID: 35733793 PMCID: PMC9207670 DOI: 10.1016/j.isci.2022.104515] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/05/2021] [Accepted: 05/29/2022] [Indexed: 01/30/2023] Open
Abstract
High-throughput screening and enrichment of antibody-producing cells have many important applications. Herein, we present a droplet microfluidic approach for high-throughput screening and sorting of antibody-secreting cells using a Förster resonance electron transfer (FRET)-based assay. The FRET signal is mediated by the specific binding of the secreted antibody to two fluorescently labeled probes supplied within a droplet. Functional hybridoma cells expressing either membrane-bound or secreted monoclonal antibodies (mAbs), or both, were efficiently differentiated in less than 30 min. The antibody secretion rate by individual hybridoma cells was recorded in the range of 14,000 Abs/min, while the density of membrane-bound fraction was approximately 100 Abs/μm2. Combining the FRET assay with droplet-based single-cell sorting, an 800-fold enrichment of antigen-specific cells was achieved after one round of sorting. The presented system overcomes several key limitations observed in conventional FACS-based screening methods and should be applicable to assaying various other secreted proteins. FRET-based screening assay of antibody-secreting cells in microfluidic droplets Membrane-bound and secreted antibodies of the same cell are efficiently differentiated Using mouse hybridoma cells antibody secretion assay is completed in 30 min FRET-based droplet sorting enables over 800-fold enrichment in one round of sorting
Collapse
Affiliation(s)
- Justina Rutkauskaite
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, 7 Sauletekio ave., 10257 Vilnius, Lithuania.,Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Simon Berger
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Oliver Dressler
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - John Heyman
- Harvard University, SEAS, 9 Oxford St., Cambridge, MA 02139, USA
| | | | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Linas Mazutis
- Institute of Biotechnology, Life Sciences Centre, Vilnius University, 7 Sauletekio ave., 10257 Vilnius, Lithuania
| |
Collapse
|
9
|
Wang W, Qin X, Lin L, Wu J, Sun X, Zhao Y, Ju Y, Zhao Z, Ren L, Pang X, Guan Y, Zhang Y. Prostaglandin E 2-Induced AKT Activation Regulates the Life Span of Short-Lived Plasma Cells by Attenuating IRE1α Hyperactivation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1912-1923. [PMID: 35379745 DOI: 10.4049/jimmunol.2100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
The mechanism regulating the life span of short-lived plasma cells (SLPCs) remains poorly understood. Here we demonstrated that the EP4-mediated activation of AKT by PGE2 was required for the proper control of inositol-requiring transmembrane kinase endoribonuclease-1α (IRE1α) hyperactivation and hence the endoplasmic reticulum (ER) homeostasis in IgM-producing SLPCs. Disruption of the PGE2-EP4-AKT signaling pathway resulted in IRE1α-induced activation of JNK, leading to accelerated death of SLPCs. Consequently, Ptger4-deficient mice (C57BL/6) exhibited a markedly impaired IgM response to T-independent Ags and increased susceptibility to Streptococcus pneumoniae infection. This study reveals a highly selective impact of the PGE2-EP4 signal on the humoral immunity and provides a link between ER stress response and the life span of SLPCs.
Collapse
Affiliation(s)
- Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Xiaodan Qin
- Departments of Pharmacology and Medicine, Cancer Research Center, Section of Hematology and Medical Oncology, Boston University School of Medicine, Boston, MA
| | - Liang Lin
- Jerome Lipper Multiple Myeloma Center, LeBow Institute for Myeloma Therapeutics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jia Wu
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China
- Laboratory Medicine Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiuyuan Sun
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Ye Zhao
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Yurong Ju
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Ziheng Zhao
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Liwei Ren
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Xuewen Pang
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China; and
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University, National Health Commission Key Laboratory of Medical Immunology (Peking University), Beijing, China;
- Institute of Biological Sciences, Jinzhou Medical University, Jinzhou, Liaoning, China
| |
Collapse
|
10
|
Terreri S, Piano Mortari E, Vinci MR, Russo C, Alteri C, Albano C, Colavita F, Gramigna G, Agrati C, Linardos G, Coltella L, Colagrossi L, Deriu G, Ciofi Degli Atti M, Rizzo C, Scarsella M, Brugaletta R, Camisa V, Santoro A, Roscilli G, Pavoni E, Muzi A, Magnavita N, Scutari R, Villani A, Raponi M, Locatelli F, Perno CF, Zaffina S, Carsetti R. Persistent B cell memory after SARS-CoV-2 vaccination is functional during breakthrough infections. Cell Host Microbe 2022; 30:400-408.e4. [PMID: 35134333 PMCID: PMC8820949 DOI: 10.1016/j.chom.2022.01.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022]
Abstract
Breakthrough SARS-CoV-2 infections in fully vaccinated individuals are considered a consequence of waning immunity. Serum antibodies represent the most measurable outcome of vaccine-induced B cell memory. When antibodies decline, memory B cells are expected to persist and perform their function, preventing clinical disease. We investigated whether BNT162b2 mRNA vaccine induces durable and functional B cell memory in vivo against SARS-CoV-2 3, 6, and 9 months after the second dose in a cohort of health care workers (HCWs). While we observed physiological decline of SARS-CoV-2-specific antibodies, memory B cells persist and increase until 9 months after immunization. HCWs with breakthrough infections had no signs of waning immunity. In 3-4 days, memory B cells responded to SARS-CoV-2 infection by producing high levels of specific antibodies in the serum and anti-Spike IgA in the saliva. Antibodies to the viral nucleoprotein were produced with the slow kinetics typical of the response to a novel antigen.
Collapse
Affiliation(s)
- Sara Terreri
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS; Viale di San Paolo, 15, 00146 Rome, Italy
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS; Viale di San Paolo, 15, 00146 Rome, Italy
| | - Maria Rosaria Vinci
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15, 00146 Rome, Italy
| | - Cristina Russo
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS; Piazza Sant'Onofrio, 4, 00165 Rome, Italy
| | - Claudia Alteri
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS; Piazza Sant'Onofrio, 4, 00165 Rome, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Via festa del Perdono, 7, 20122 Milan, Italy
| | - Christian Albano
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS; Viale di San Paolo, 15, 00146 Rome, Italy
| | - Francesca Colavita
- Laboratory of virology, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Giulia Gramigna
- Laboratory of virology, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology, National Institute for Infectious Diseases "L. Spallanzani" IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Giulia Linardos
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS; Piazza Sant'Onofrio, 4, 00165 Rome, Italy
| | - Luana Coltella
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS; Piazza Sant'Onofrio, 4, 00165 Rome, Italy
| | - Luna Colagrossi
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS; Piazza Sant'Onofrio, 4, 00165 Rome, Italy
| | - Gloria Deriu
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15, 00146 Rome, Italy
| | - Marta Ciofi Degli Atti
- Clinical Pathways and Epidemiology Function Area, Bambino Gesù Children's Hospital, IRCCS; Piazza Sant'Onofrio, 4, 00165 Rome, Italy
| | - Caterina Rizzo
- Clinical Pathways and Epidemiology Function Area, Bambino Gesù Children's Hospital, IRCCS; Piazza Sant'Onofrio, 4, 00165 Rome, Italy
| | - Marco Scarsella
- Flow Cytometry Core Facility, Research Centre, Bambino Gesù Children's Hospital, Viale di San Paolo, 15, 00146 Rome, Italy
| | - Rita Brugaletta
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15, 00146 Rome, Italy
| | - Vincenzo Camisa
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15, 00146 Rome, Italy
| | - Annapaola Santoro
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15, 00146 Rome, Italy
| | | | | | - Alessia Muzi
- Takis s.r.l., Via di Castel Romano, 100, 00128 Rome, Italy
| | - Nicola Magnavita
- Post-Graduate School of Occupational Health, Section of Occupational Medicine and Labor Law, University Cattolica del Sacro Cuore; Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Rossana Scutari
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS; Piazza Sant'Onofrio, 4, 00165 Rome, Italy
| | - Alberto Villani
- Department of Emergency Medicine and General Pediatrics, Bambino Gesù Children's Hospital, IRCCS; Piazza Sant'Onofrio, 4, 00165 Rome, Italy
| | - Massimiliano Raponi
- Medical Direction, Bambino Gesù Children's Hospital, IRCCS; Piazza Sant'Onofrio, 4, 00165 Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS; Piazza Sant'Onofrio, 4, 00165 Rome, Italy; Sapienza, University of Rome; Viale dell'Università, 37, 00185 Rome, Italy
| | - Carlo Federico Perno
- Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS; Piazza Sant'Onofrio, 4, 00165 Rome, Italy
| | - Salvatore Zaffina
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children's Hospital, IRCCS, Viale di San Paolo, 15, 00146 Rome, Italy
| | - Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children's Hospital, IRCCS; Viale di San Paolo, 15, 00146 Rome, Italy; Microbiology and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS; Piazza Sant'Onofrio, 4, 00165 Rome, Italy.
| |
Collapse
|
11
|
Pivotal role of PIM2 kinase in plasmablast generation and plasma cell survival, opening new treatment options in myeloma. Blood 2022; 139:2316-2337. [PMID: 35108359 DOI: 10.1182/blood.2021014011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/14/2022] [Indexed: 11/20/2022] Open
Abstract
The differentiation of B cells into plasmablasts (PBs) and then plasma cells (PCs) is associated with extensive cell reprogramming and new cell functions. By using specific inhibition strategies (including a novel morpholino RNA antisense approach), we found that early, sustained upregulation of the proviral integrations of Moloney virus 2 (PIM2) kinase is a pivotal event during human B cell in vitro differentiation and then continues in mature normal and malignant PCs in the bone marrow. In particular, PIM2 sustained the G1/S transition by acting on CDC25A and p27Kip1 and hindering caspase 3-driven apoptosis through BAD phosphorylation and cytoplasmic stabilization of p21Cip1. In PCs, interleukin-6 triggered PIM2 expression, resulting in anti-apoptotic effects on which malignant PCs were particularly dependent. In multiple myeloma, pan-PIM and MCL1 inhibitors displayed synergistic activity. Our results highlight a cell-autonomous function that links kinase activity to the PBs' newly acquired secretion ability and the adaptability observed in both normal and malignant PCs, and finally should prompt the reconsideration of PIM2 as a therapeutic target in multiple myeloma.
Collapse
|
12
|
Al Qureshah F, Sagadiev S, Thouvenel CD, Liu S, Hua Z, Hou B, Acharya M, James RG, Rawlings DJ. Activated PI3Kδ signals compromise plasma cell survival via limiting autophagy and increasing ER stress. J Exp Med 2021; 218:e20211035. [PMID: 34586341 PMCID: PMC8485856 DOI: 10.1084/jem.20211035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/04/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022] Open
Abstract
While phosphatidylinositide 3-kinase delta (PI3Kδ) plays a critical role in humoral immunity, the requirement for PI3Kδ signaling in plasma cells remains poorly understood. Here, we used a conditional mouse model of activated PI3Kδ syndrome (APDS), to interrogate the function of PI3Kδ in plasma cell biology. Mice expressing a PIK3CD gain-of-function mutation (aPIK3CD) in B cells generated increased numbers of memory B cells and mounted an enhanced secondary response but exhibited a rapid decay of antibody levels over time. Consistent with these findings, aPIK3CD expression markedly impaired plasma cell generation, and expression of aPIK3CD intrinsically in plasma cells was sufficient to diminish humoral responses. Mechanistically, aPIK3CD disrupted ER proteostasis and autophagy, which led to increased plasma cell death. Notably, this defect was driven primarily by elevated mTORC1 signaling and modulated by treatment with PI3Kδ-specific inhibitors. Our findings establish an essential role for PI3Kδ in plasma cell homeostasis and suggest that modulating PI3Kδ activity may be useful for promoting and/or thwarting specific immune responses.
Collapse
Affiliation(s)
- Fahd Al Qureshah
- Center for Immunity and Immunotherapy, Seattle Children’s Research Institute, Seattle, WA
- Departments of Immunology, University of Washington, Seattle, WA
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Sara Sagadiev
- Center for Immunity and Immunotherapy, Seattle Children’s Research Institute, Seattle, WA
| | | | - Shuozhi Liu
- Center for Immunity and Immunotherapy, Seattle Children’s Research Institute, Seattle, WA
| | - Zhaolin Hua
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Baidong Hou
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Mridu Acharya
- Center for Immunity and Immunotherapy, Seattle Children’s Research Institute, Seattle, WA
| | - Richard G. James
- Center for Immunity and Immunotherapy, Seattle Children’s Research Institute, Seattle, WA
- Departments of Pediatrics, University of Washington, Seattle, WA
- Departments of Pharmacology, University of Washington, Seattle, WA
| | - David J. Rawlings
- Center for Immunity and Immunotherapy, Seattle Children’s Research Institute, Seattle, WA
- Departments of Immunology, University of Washington, Seattle, WA
- Departments of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
13
|
Nguyen DC, Duan M, Ali M, Ley A, Sanz I, Lee FEH. Plasma cell survival: The intrinsic drivers, migratory signals, and extrinsic regulators. Immunol Rev 2021; 303:138-153. [PMID: 34337772 PMCID: PMC8387437 DOI: 10.1111/imr.13013] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022]
Abstract
Antibody-secreting cells (ASC) are the effectors of protective humoral immunity and the only cell type that produces antibodies or immunoglobulins in mammals. In addition to their formidable capacity to secrete massive quantities of proteins, ASC are terminally differentiated and have unique features to become long-lived plasma cells (LLPC). Upon antigen encounter, B cells are activated through a complex multistep process to undergo fundamental morphological, subcellular, and molecular transformation to become an efficient protein factory with lifelong potential. The ASC survival potential is determined by factors at the time of induction, capacity to migration from induction to survival sites, and ability to mature in the specialized bone marrow microenvironments. In the past decade, considerable progress has been made in identifying factors regulating ASC longevity. Here, we review the intrinsic drivers, trafficking signals, and extrinsic regulators with particular focus on how they impact the survival potential to become a LLPC.
Collapse
Affiliation(s)
- Doan C. Nguyen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Meixue Duan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Mohammad Ali
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ariel Ley
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ignacio Sanz
- Division of Rheumatology, Department of Medicine, Emory University, Atlanta, GA, United States
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States
| | - F. Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA, United States
- Lowance Center for Human Immunology, Emory University, Atlanta, GA, United States
| |
Collapse
|
14
|
Abstract
B cells are central to the pathogenesis of multiple autoimmune diseases, through antigen presentation, cytokine secretion, and the production of autoantibodies. During development and differentiation, B cells undergo drastic changes in their physiology. It is emerging that these are accompanied by equally significant shifts in metabolic phenotype, which may themselves also drive and enforce the functional properties of the cell. The dysfunction of B cells during autoimmunity is characterised by the breaching of tolerogenic checkpoints, and there is developing evidence that the metabolic state of B cells may contribute to this. Determining the metabolic phenotype of B cells in autoimmunity is an area of active study, and is important because intervention by metabolism-altering therapeutic approaches may represent an attractive treatment target.
Collapse
Affiliation(s)
- Iwan G. A. Raza
- Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | - Alexander J. Clarke
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Immunological memory in rheumatic inflammation - a roadblock to tolerance induction. Nat Rev Rheumatol 2021; 17:291-305. [PMID: 33824526 DOI: 10.1038/s41584-021-00601-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/20/2022]
Abstract
Why do we still have no cure for chronic inflammatory diseases? One reason could be that current therapies are based on the assumption that chronic inflammation is driven by persistent 'acute' immune reactions. Here we discuss a paradigm shift by suggesting that beyond these reactions, chronic inflammation is driven by imprinted, pathogenic 'memory' cells of the immune system. This rationale is based on the observation that in patients with chronic inflammatory rheumatic diseases refractory to conventional immunosuppressive therapies, therapy-free remission can be achieved by resetting the immune system; that is, by ablating immune cells and regenerating the immune system from stem cells. The success of this approach identifies antigen-experienced and imprinted immune cells as essential and sufficient drivers of inflammation. The 'dark side' of immunological memory primarily involves memory plasma cells secreting pathogenic antibodies and memory T lymphocytes secreting pathogenic cytokines and chemokines, but can also involve cells of innate immunity. New therapeutic strategies should address the persistence of these memory cells. Selective targeting of pathogenic immune memory cells could be based on their specificity, which is challenging, or on their lifestyle, which differs from that of protective immune memory cells, in particular for pathogenic T lymphocytes. The adaptations of such pathogenic memory cells to chronic inflammation offers entirely new therapeutic options for their selective ablation and the regeneration of immunological tolerance.
Collapse
|
16
|
Xiong S, Chng WJ, Zhou J. Crosstalk between endoplasmic reticulum stress and oxidative stress: a dynamic duo in multiple myeloma. Cell Mol Life Sci 2021; 78:3883-3906. [PMID: 33599798 PMCID: PMC8106603 DOI: 10.1007/s00018-021-03756-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/19/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023]
Abstract
Under physiological and pathological conditions, cells activate the unfolded protein response (UPR) to deal with the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum. Multiple myeloma (MM) is a hematological malignancy arising from immunoglobulin-secreting plasma cells. MM cells are subject to continual ER stress and highly dependent on the UPR signaling activation due to overproduction of paraproteins. Mounting evidence suggests the close linkage between ER stress and oxidative stress, demonstrated by overlapping signaling pathways and inter-organelle communication pivotal to cell fate decision. Imbalance of intracellular homeostasis can lead to deranged control of cellular functions and engage apoptosis due to mutual activation between ER stress and reactive oxygen species generation through a self-perpetuating cycle. Here, we present accumulating evidence showing the interactive roles of redox homeostasis and proteostasis in MM pathogenesis and drug resistance, which would be helpful in elucidating the still underdefined molecular pathways linking ER stress and oxidative stress in MM. Lastly, we highlight future research directions in the development of anti-myeloma therapy, focusing particularly on targeting redox signaling and ER stress responses.
Collapse
Affiliation(s)
- Sinan Xiong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
| | - Wee-Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore.
| | - Jianbiao Zhou
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
- Centre for Translational Medicine, Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Singapore, 117599, Republic of Singapore.
| |
Collapse
|
17
|
Bugya Z, Prechl J, Szénási T, Nemes É, Bácsi A, Koncz G. Multiple Levels of Immunological Memory and Their Association with Vaccination. Vaccines (Basel) 2021; 9:174. [PMID: 33669597 PMCID: PMC7922266 DOI: 10.3390/vaccines9020174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/25/2022] Open
Abstract
Immunological memory is divided into many levels to counteract the provocations of diverse and ever-changing infections. Fast functions of effector memory and the superposition of both quantitatively and qualitatively plastic anticipatory memory responses together form the walls of protection against pathogens. Here we provide an overview of the role of different B and T cell subsets and their interplay, the parallel and independent functions of the B1, marginal zone B cells, T-independent- and T-dependent B cell responses, as well as functions of central and effector memory T cells, tissue-resident and follicular helper T cells in the memory responses. Age-related limitations in the immunological memory of these cell types in neonates and the elderly are also discussed. We review how certain aspects of immunological memory and the interactions of components can affect the efficacy of vaccines, in order to link our knowledge of immunological memory with the practical application of vaccination.
Collapse
Affiliation(s)
- Zsófia Bugya
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - József Prechl
- R&D Laboratory, Diagnosticum Zrt, H-1047 Budapest, Hungary;
| | - Tibor Szénási
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - Éva Nemes
- Clinical Center, Department of Pediatrics, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Attila Bácsi
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| | - Gábor Koncz
- Department of Immunology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Z.B.); (T.S.); (A.B.)
| |
Collapse
|
18
|
Dogra P, Ruiz-Ramírez J, Sinha K, Butner JD, Peláez MJ, Rawat M, Yellepeddi VK, Pasqualini R, Arap W, Sostman HD, Cristini V, Wang Z. Innate Immunity Plays a Key Role in Controlling Viral Load in COVID-19: Mechanistic Insights from a Whole-Body Infection Dynamics Model. ACS Pharmacol Transl Sci 2021; 4:248-265. [PMID: 33615177 PMCID: PMC7805603 DOI: 10.1021/acsptsci.0c00183] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 12/18/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pathogen of immense public health concern. Efforts to control the disease have only proven mildly successful, and the disease will likely continue to cause excessive fatalities until effective preventative measures (such as a vaccine) are developed. To develop disease management strategies, a better understanding of SARS-CoV-2 pathogenesis and population susceptibility to infection are needed. To this end, mathematical modeling can provide a robust in silico tool to understand COVID-19 pathophysiology and the in vivo dynamics of SARS-CoV-2. Guided by ACE2-tropism (ACE2 receptor dependency for infection) of the virus and by incorporating cellular-scale viral dynamics and innate and adaptive immune responses, we have developed a multiscale mechanistic model for simulating the time-dependent evolution of viral load distribution in susceptible organs of the body (respiratory tract, gut, liver, spleen, heart, kidneys, and brain). Following parameter quantification with in vivo and clinical data, we used the model to simulate viral load progression in a virtual patient with varying degrees of compromised immune status. Further, we ranked model parameters through sensitivity analysis for their significance in governing clearance of viral load to understand the effects of physiological factors and underlying conditions on viral load dynamics. Antiviral drug therapy, interferon therapy, and their combination were simulated to study the effects on viral load kinetics of SARS-CoV-2. The model revealed the dominant role of innate immunity (specifically interferons and resident macrophages) in controlling viral load, and the importance of timing when initiating therapy after infection.
Collapse
Affiliation(s)
- Prashant Dogra
- Mathematics
in Medicine Program, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Javier Ruiz-Ramírez
- Mathematics
in Medicine Program, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Kavya Sinha
- DeBakey
Heart and Vascular Center, Houston Methodist
Hospital, Houston, Texas 77030, United States
| | - Joseph D. Butner
- Mathematics
in Medicine Program, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Maria J. Peláez
- Mathematics
in Medicine Program, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Manmeet Rawat
- Department
of Internal Medicine, University of New
Mexico School of Medicine, Albuquerque, New Mexico 87131, United States
| | - Venkata K. Yellepeddi
- Division
of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, Utah 84132, United States
- Department
of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah 84112, United States
| | - Renata Pasqualini
- Rutgers
Cancer Institute of New Jersey, Newark, New Jersey 07101, United States
- Department
of Radiation Oncology, Division of Cancer Biology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, United States
| | - Wadih Arap
- Rutgers
Cancer Institute of New Jersey, Newark, New Jersey 07101, United States
- Department
of Medicine, Division of Hematology/Oncology, Rutgers New Jersey Medical School, Newark, New Jersey 07103, United States
| | - H. Dirk Sostman
- Weill
Cornell Medicine, New York, New York 10065, United States
- Houston
Methodist Research Institute, Houston, Texas 77030, United States
- Houston
Methodist Academic Institute, Houston, Texas 77030, United States
| | - Vittorio Cristini
- Mathematics
in Medicine Program, Houston Methodist Research
Institute, Houston, Texas 77030, United States
- Weill
Cornell Medicine, New York, New York 10065, United States
| | - Zhihui Wang
- Mathematics
in Medicine Program, Houston Methodist Research
Institute, Houston, Texas 77030, United States
- Weill
Cornell Medicine, New York, New York 10065, United States
| |
Collapse
|
19
|
Ripperger TJ, Bhattacharya D. Transcriptional and Metabolic Control of Memory B Cells and Plasma Cells. Annu Rev Immunol 2021; 39:345-368. [PMID: 33556247 DOI: 10.1146/annurev-immunol-093019-125603] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
For many infections and almost all vaccines, neutralizing-antibody-mediated immunity is the primary basis and best functional correlate of immunological protection. Durable long-term humoral immunity is mediated by antibodies secreted by plasma cells that preexist subsequent exposures and by memory B cells that rapidly respond to infections once they have occurred. In the midst of the current pandemic of coronavirus disease 2019, it is important to define our current understanding of the unique roles of memory B cells and plasma cells in immunity and the factors that control the formation and persistence of these cell types. This fundamental knowledge is the basis to interpret findings from natural infections and vaccines. Here, we review transcriptional and metabolic programs that promote and support B cell fates and functions, suggesting points at which these pathways do and do not intersect.
Collapse
Affiliation(s)
- Tyler J Ripperger
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, Arizona 85724, USA; ,
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, Arizona 85724, USA; ,
| |
Collapse
|
20
|
Dogra P, Ruiz-Ramírez J, Sinha K, Butner JD, Peláez MJ, Rawat M, Yellepeddi VK, Pasqualini R, Arap W, Sostman HD, Cristini V, Wang Z. Innate immunity plays a key role in controlling viral load in COVID-19: mechanistic insights from a whole-body infection dynamics model. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.30.20215335. [PMID: 33173913 PMCID: PMC7654909 DOI: 10.1101/2020.10.30.20215335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a pathogen of immense public health concern. Efforts to control the disease have only proven mildly successful, and the disease will likely continue to cause excessive fatalities until effective preventative measures (such as a vaccine) are developed. To develop disease management strategies, a better understanding of SARS-CoV-2 pathogenesis and population susceptibility to infection are needed. To this end, physiologically-relevant mathematical modeling can provide a robust in silico tool to understand COVID-19 pathophysiology and the in vivo dynamics of SARS-CoV-2. Guided by ACE2-tropism (ACE2 receptor dependency for infection) of the virus, and by incorporating cellular-scale viral dynamics and innate and adaptive immune responses, we have developed a multiscale mechanistic model for simulating the time-dependent evolution of viral load distribution in susceptible organs of the body (respiratory tract, gut, liver, spleen, heart, kidneys, and brain). Following calibration with in vivo and clinical data, we used the model to simulate viral load progression in a virtual patient with varying degrees of compromised immune status. Further, we conducted global sensitivity analysis of model parameters and ranked them for their significance in governing clearance of viral load to understand the effects of physiological factors and underlying conditions on viral load dynamics. Antiviral drug therapy, interferon therapy, and their combination was simulated to study the effects on viral load kinetics of SARS-CoV-2. The model revealed the dominant role of innate immunity (specifically interferons and resident macrophages) in controlling viral load, and the importance of timing when initiating therapy following infection.
Collapse
Affiliation(s)
- Prashant Dogra
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Javier Ruiz-Ramírez
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Kavya Sinha
- DeBakey Heart and Vascular Center, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Joseph D. Butner
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Maria J Peláez
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Venkata K. Yellepeddi
- Division of Clinical Pharmacology, Department of Pediatrics, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, NJ, 07101, USA
- Department of Radiation Oncology, Division of Cancer Biology, Rutgers Cancer Institute of New Jersey, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, NJ, 07101, USA
- Department of Medicine, Division of Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - H. Dirk Sostman
- Weill Cornell Medicine, New York, NY 10065, USA
- Houston Methodist Research Institute, Houston, TX 77030, USA
- Houston Methodist Academic Institute, Houston, TX 77030, USA
| | - Vittorio Cristini
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Zhihui Wang
- Mathematics in Medicine Program, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
21
|
Liu P, Xue Y, Zheng B, Liang Y, Zhang J, Shi J, Chu X, Han X, Chu L. Crocetin attenuates the oxidative stress, inflammation and apoptosisin arsenic trioxide-induced nephrotoxic rats: Implication of PI3K/AKT pathway. Int Immunopharmacol 2020; 88:106959. [PMID: 32919218 DOI: 10.1016/j.intimp.2020.106959] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
Abstract
Arsenic trioxide (ATO)-induced renal toxicity through oxidative stress and apoptosis restricts the therapeutic action of acute myelogenous leukemia. Crocetin (Crt) possesses antioxidant and antiapoptosis properties, and has certain renal protective effects, but it has not been reported that it has protective effect on renal injury caused by ATO. The current study explored the effects and mechanisms of Crt on kidney damage induced by ATO. Fifty Sprague-Dawley rats were randomly divided into five groups. Adult rats were given Crt concurrently with ATO for 1 week. On the 8th day, rats were killed and blood and kidney tissues were collected. Histopathological changes were measured, and kidneytissues and serum were used to determine renal function and antioxidant enzyme activity. In addition, the protein expression levels of P-PI3K, PI3K, P-AKT, AKT, CytC, Bax, Bcl-2 and Caspase-3 were determined via western blot analysis. Results revealed ATO induced renal morphological alterations and activated serum BUN and CRE. Compared with the control group, ROS, MDA, IL-1β, TNF-α, protein carbonyls (PC), lipid hydroperoxides (LOOH) and arsenic concentration levels were found to be significantly increased and SOD, CAT, GSH-Px, GSH and total sulphydryl groups (TSH) levels were attenuated in the ATO group. Crt markedly reduced oxidative stress in ATO-induced nephrotoxicity. Further, ATO induced apoptosis by significantly enhancing CytC, Bax and Caspase-3 and inhibiting Bcl-2. Administration with Crt markedly improved the expression of apoptosis factor. Moreover, Crt treatment stimulated the expressions of P-PI3K, PI3K, P-AKT, AKT induced by ATO. This study indicates Crt could prevent renal injury caused by ATO through inhibiting oxidative stress, inflammation and apoptosis, and its mechanism may be related to activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Panpan Liu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yurun Xue
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Bin Zheng
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yingran Liang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Jianping Zhang
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Jing Shi
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China.
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| |
Collapse
|
22
|
D'Souza L, Bhattacharya D. Plasma cells: You are what you eat. Immunol Rev 2019; 288:161-177. [PMID: 30874356 DOI: 10.1111/imr.12732] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/03/2018] [Indexed: 12/26/2022]
Abstract
Plasma cells are terminally differentiated B lymphocytes that constitutively secrete antibodies. These antibodies can provide protection against pathogens, and their quantity and quality are the best clinical correlates of vaccine efficacy. As such, plasma cell lifespan is the primary determinant of the duration of humoral immunity. Yet dysregulation of plasma cell function can cause autoimmunity or multiple myeloma. The longevity of plasma cells is primarily dictated by nutrient uptake and non-transcriptionally regulated metabolic pathways. We have previously shown a positive effect of glucose uptake and catabolism on plasma cell longevity and function. In this review, we discuss these findings with an emphasis on nutrient uptake and its effects on respiratory capacity, lifespan, endoplasmic reticulum stress, and antibody secretion in plasma cells. We further discuss how some of these pathways may be dysregulated in multiple myeloma, potentially providing new therapeutic targets. Finally, we speculate on the connection between plasma cell intrinsic metabolism and systemic changes in nutrient availability and metabolic diseases.
Collapse
Affiliation(s)
- Lucas D'Souza
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Arizona
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, Arizona
| |
Collapse
|
23
|
Saavedra-García P, Martini F, Auner HW. Proteasome inhibition in multiple myeloma: lessons for other cancers. Am J Physiol Cell Physiol 2019; 318:C451-C462. [PMID: 31875696 DOI: 10.1152/ajpcell.00286.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cellular protein homeostasis (proteostasis) depends on the controlled degradation of proteins that are damaged or no longer required by the ubiquitin-proteasome system (UPS). The 26S proteasome is the principal executer of substrate-specific proteolysis in eukaryotic cells and regulates a myriad of cellular functions. Proteasome inhibitors were initially developed as chemical tools to study proteasomal function but rapidly became widely used anticancer drugs that are now used at all stages of treatment for the bone marrow cancer multiple myeloma (MM). Here, we review the mechanisms of action of proteasome inhibitors that underlie their preferential toxicity to MM cells, focusing on endoplasmic reticulum stress, depletion of amino acids, and effects on glucose and lipid metabolism. We also discuss mechanisms of resistance to proteasome inhibition such as autophagy and metabolic rewiring and what lessons we may learn from the success and failure of proteasome inhibition in MM for treating other cancers with proteostasis-targeting drugs.
Collapse
Affiliation(s)
- Paula Saavedra-García
- Cancer Cell Metabolism Group, Hugh and Josseline Langmuir Centre for Myeloma Research, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Francesca Martini
- Department of Translational Research on New Technologies in Medicine and Surgery, Hematology Unit, Ospedale Santa Chiara, Pisa, Italy
| | - Holger W Auner
- Cancer Cell Metabolism Group, Hugh and Josseline Langmuir Centre for Myeloma Research, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
24
|
Boudreau MW, Peh J, Hergenrother PJ. Procaspase-3 Overexpression in Cancer: A Paradoxical Observation with Therapeutic Potential. ACS Chem Biol 2019; 14:2335-2348. [PMID: 31260254 PMCID: PMC6858495 DOI: 10.1021/acschembio.9b00338] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Many anticancer strategies rely on the promotion of apoptosis in cancer cells as a means to shrink tumors. Crucial for apoptotic function are executioner caspases, most notably caspase-3, that proteolyze a variety of proteins, inducing cell death. Paradoxically, overexpression of procaspase-3 (PC-3), the low-activity zymogen precursor to caspase-3, has been reported in a variety of cancer types. Until recently, this counterintuitive overexpression of a pro-apoptotic protein in cancer has been puzzling. Recent studies suggest subapoptotic caspase-3 activity may promote oncogenic transformation, a possible explanation for the enigmatic overexpression of PC-3. Herein, the overexpression of PC-3 in cancer and its mechanistic basis is reviewed; collectively, the data suggest the potential for exploitation of PC-3 overexpression with PC-3 activators as a targeted anticancer strategy.
Collapse
Affiliation(s)
- Matthew W. Boudreau
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| | - Jessie Peh
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| | - Paul J. Hergenrother
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois, United States
| |
Collapse
|
25
|
Lam WY, Jash A, Yao CH, D'Souza L, Wong R, Nunley RM, Meares GP, Patti GJ, Bhattacharya D. Metabolic and Transcriptional Modules Independently Diversify Plasma Cell Lifespan and Function. Cell Rep 2018; 24:2479-2492.e6. [PMID: 30157439 PMCID: PMC6172041 DOI: 10.1016/j.celrep.2018.07.084] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/15/2018] [Accepted: 07/25/2018] [Indexed: 01/12/2023] Open
Abstract
Plasma cell survival and the consequent duration of immunity vary widely with infection or vaccination. Using fluorescent glucose analog uptake, we defined multiple developmentally independent mouse plasma cell populations with varying lifespans. Long-lived plasma cells imported more fluorescent glucose analog, expressed higher surface levels of the amino acid transporter CD98, and had more autophagosome mass than did short-lived cells. Low amino acid concentrations triggered reductions in both antibody secretion and mitochondrial respiration, especially by short-lived plasma cells. To explain these observations, we found that glutamine was used for both mitochondrial respiration and anaplerotic reactions, yielding glutamate and aspartate for antibody synthesis. Endoplasmic reticulum (ER) stress responses, which link metabolism to transcriptional outcomes, were similar between long- and short-lived subsets. Accordingly, population and single-cell transcriptional comparisons across mouse and human plasma cell subsets revealed few consistent and conserved differences. Thus, plasma cell antibody secretion and lifespan are primarily defined by non-transcriptional metabolic traits.
Collapse
Affiliation(s)
- Wing Y Lam
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arijita Jash
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Cong-Hui Yao
- Department of Chemistry, Washington University, St. Louis, MO 63110, USA
| | - Lucas D'Souza
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Rachel Wong
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Ryan M Nunley
- Washington University Orthopedics, Barnes Jewish Hospital, St. Louis, MO 63110, USA
| | - Gordon P Meares
- Department of Microbiology, Immunology and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26505, USA
| | - Gary J Patti
- Department of Chemistry, Washington University, St. Louis, MO 63110, USA
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
26
|
Lam WY, Bhattacharya D. Metabolic Links between Plasma Cell Survival, Secretion, and Stress. Trends Immunol 2017; 39:19-27. [PMID: 28919256 DOI: 10.1016/j.it.2017.08.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/18/2017] [Accepted: 08/18/2017] [Indexed: 01/12/2023]
Abstract
Humoral immunity is generated and maintained by antigen-specific antibodies that counter infectious pathogens. Plasma cells are the major producers of antibodies during and after infections, and each plasma cell produces some thousands of antibody molecules per second. This magnitude of secretion requires enormous quantities of amino acids and glycosylation sugars to properly build and fold antibodies, biosynthetic substrates to fuel endoplasmic reticulum (ER) biogenesis, and additional carbon sources to generate energy. Many of these processes are likely to be linked, thereby affording possibilities to improve vaccine design and to develop new therapies for autoimmunity. We review here aspects of plasma cell biology with an emphasis on recent studies and the relationships between intermediary metabolism, antibody production, and lifespan.
Collapse
Affiliation(s)
- Wing Y Lam
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Deepta Bhattacharya
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Current address: Department of Immunobiology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| |
Collapse
|
27
|
Chen L, Li Q, She T, Li H, Yue Y, Gao S, Yan T, Liu S, Ma J, Wang Y. IRE1α-XBP1 signaling pathway, a potential therapeutic target in multiple myeloma. Leuk Res 2016; 49:7-12. [PMID: 27518808 DOI: 10.1016/j.leukres.2016.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
Multiple myeloma (MM), which arises from the uncontrolled proliferation of malignant plasma cells, is the second most commonly diagnosed hematologic malignancy in the United States. Despite the development and application of novel drugs and autologous stem cell transplantation (ASCT), MM remains an incurable disease and patients become more prone to MM relapse and drug resistance. It is extremely urgent to find novel targeted therapy for MM. To date, the classic signaling pathways underlying MM have included the RAS/RAF/MEK/ERK pathway, the JAK-STAT3 pathway, the PI3K/Akt pathway and the NF-KB pathway. The IRE1α-XBP1 signaling pathway is currently emerging as an important pathway involved in the development of MM. Moreover, it is closely associated with the effect of MM treatment and its prognosis. All these findings indicate that the IRE1α-XBP1 pathway can be a potential treatment target. Herein, we investigate the relationship between the IRE1α-XBP1 pathway and MM and discuss the functions of IRE1α-XBP1-targeted drugs in the treatment of MM.
Collapse
Affiliation(s)
- Lin Chen
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin 300060, People's Republic of China
| | - Qian Li
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin 300060, People's Republic of China
| | - Tiantian She
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin 300060, People's Republic of China
| | - Han Li
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin 300060, People's Republic of China
| | - Yuanfang Yue
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin 300060, People's Republic of China
| | - Shuang Gao
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin 300060, People's Republic of China
| | - Tinghui Yan
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin 300060, People's Republic of China
| | - Su Liu
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin 300060, People's Republic of China
| | - Jing Ma
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin 300060, People's Republic of China
| | - Yafei Wang
- Department of Hematology and Blood and Marrow Transplantation, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Huan-Hu-Xi Road, Ti-Yuan-Bei, He Xi District, Tianjin 300060, People's Republic of China.
| |
Collapse
|
28
|
Anania VG, Yu K, Gnad F, Pferdehirt RR, Li H, Ma TP, Jeon D, Fortelny N, Forrest W, Ashkenazi A, Overall CM, Lill JR. Uncovering a Dual Regulatory Role for Caspases During Endoplasmic Reticulum Stress-induced Cell Death. Mol Cell Proteomics 2016; 15:2293-307. [PMID: 27125827 PMCID: PMC4937505 DOI: 10.1074/mcp.m115.055376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 12/13/2022] Open
Abstract
Many diseases are associated with endoplasmic reticulum (ER) stress, which results from an accumulation of misfolded proteins. This triggers an adaptive response called the "unfolded protein response" (UPR), and prolonged exposure to ER stress leads to cell death. Caspases are reported to play a critical role in ER stress-induced cell death but the underlying mechanisms by which they exert their effect continue to remain elusive. To understand the role caspases play during ER stress, a systems level approach integrating analysis of the transcriptome, proteome, and proteolytic substrate profile was employed. This quantitative analysis revealed transcriptional profiles for most human genes, provided information on protein abundance for 4476 proteins, and identified 445 caspase substrates. Based on these data sets many caspase substrates were shown to be downregulated at the protein level during ER stress suggesting caspase activity inhibits their cellular function. Additionally, RNA sequencing revealed a role for caspases in regulation of ER stress-induced transcriptional pathways and gene set enrichment analysis showed expression of multiple gene targets of essential transcription factors to be upregulated during ER stress upon inhibition of caspases. Furthermore, these transcription factors were degraded in a caspase-dependent manner during ER stress. These results indicate that caspases play a dual role in regulating the cellular response to ER stress through both post-translational and transcriptional regulatory mechanisms. Moreover, this study provides unique insight into progression of the unfolded protein response into cell death, which may help identify therapeutic strategies to treat ER stress-related diseases.
Collapse
Affiliation(s)
| | - Kebing Yu
- From the Departments of ‡Protein Chemistry
| | | | | | | | | | - Diana Jeon
- From the Departments of ‡Protein Chemistry
| | - Nikolaus Fortelny
- ‖Departments of Oral Biological and Medical Sciences, and University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Christopher M Overall
- ‖Departments of Oral Biological and Medical Sciences, and University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
29
|
Horvilleur E, Wilson LA, Bastide A, Piñeiro D, Pöyry TAA, Willis AE. Cap-Independent Translation in Hematological Malignancies. Front Oncol 2015; 5:293. [PMID: 26734574 PMCID: PMC4685420 DOI: 10.3389/fonc.2015.00293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/08/2015] [Indexed: 12/25/2022] Open
Abstract
Hematological malignancies are a heterogeneous group of diseases deriving from blood cells progenitors. Although many genes involved in blood cancers contain internal ribosome entry sites (IRESes), there has been only few studies focusing on the role of cap-independent translation in leukemia and lymphomas. Expression of IRES trans-acting factors can also be altered, and interestingly, BCL-ABL1 fusion protein expressed from “Philadelphia” chromosome, found in some types of leukemia, regulates several of them. A mechanism involving c-Myc IRES and cap-independent translation and leading to resistance to chemotherapy in multiple myeloma emphasize the contribution of cap-independent translation in blood cancers and the need for more work to be done to clarify the roles of known IRESes in pathology and response to chemotherapeutics.
Collapse
Affiliation(s)
| | | | | | - David Piñeiro
- Medical Research Council Toxicology Unit , Leicester , UK
| | | | - Anne E Willis
- Medical Research Council Toxicology Unit , Leicester , UK
| |
Collapse
|
30
|
Schirmer L, Wölfel S, Georgi E, Ploner M, Bauer B, Hemmer B. Extensive Recruitment of Plasma Blasts to the Cerebrospinal Fluid in Toscana Virus Encephalitis. Open Forum Infect Dis 2015; 2:ofv124. [PMID: 26393235 PMCID: PMC4569839 DOI: 10.1093/ofid/ofv124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/17/2015] [Indexed: 01/09/2023] Open
Abstract
An unexpectedly extensive recruitment of B cells and plasma blasts to the cerebrospinal fluid (CSF) in a patient with Toscana virus (TOSV) encephalitis is described. Acute infection by TOSV was demonstrated by serological methods and by detection of TOSV-specific nucleic acid in the CSF by real-time polymerase chain reaction and sequencing.
Collapse
Affiliation(s)
- Lucas Schirmer
- Department of Neurology , Klinikum Rechts der Isar, Technische Universität München
| | | | - Enrico Georgi
- Microbial Genomics and Bioinformatics , Bundeswehr Institute of Microbiology, German Center for Infection Research (DZIF)
| | - Markus Ploner
- Department of Neurology , Klinikum Rechts der Isar, Technische Universität München
| | - Barbara Bauer
- Institute of Virology, Technische Universität München and Helmholtz Zentrum München, German Center for Infection Research (DZIF)
| | - Bernhard Hemmer
- Department of Neurology , Klinikum Rechts der Isar, Technische Universität München ; Munich Cluster for Systems Neurology (SyNergy) , Munich , Germany
| |
Collapse
|
31
|
The flow cytometry-defined light chain cytoplasmic immunoglobulin index and an associated 12-gene expression signature are independent prognostic factors in multiple myeloma. Leukemia 2015; 29:1713-20. [PMID: 25753926 PMCID: PMC4530205 DOI: 10.1038/leu.2015.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/12/2015] [Accepted: 02/23/2015] [Indexed: 02/05/2023]
Abstract
As part of Total Therapy (TT) 3b, baseline marrow aspirates were subjected to two-color flow cytometry of nuclear DNA content and cytoplasmic immunoglobulin (DNA/CIG) as well as plasma cell gene expression profiling (GEP). DNA/CIG-derived parameters, GEP and standard clinical variables were examined for their effects on overall survival (OS) and progression-free survival (PFS). Among DNA/CIG parameters, the percentage of the light chain-restricted (LCR) cells and their cytoplasmic immunoglobulin index (CIg) were linked to poor outcome. In the absence of GEP data, low CIg <2.8, albumin <3.5 g/dl and age ⩾65 years were significantly associated with inferior OS and PFS. When GEP information was included, low CIg survived the model along with GEP70-defined high risk and low albumin. Low CIg was linked to beta-2-microglobulin >5.5 mg/l, a percentage of LCR cells exceeding 50%, C-reactive protein ⩾8 mg/l and GEP-derived high centrosome index. Further analysis revealed an association of low CIg with 12 gene probes implicated in cell cycle regulation, differentiation and drug transportation from which a risk score was developed in TT3b that held prognostic significance also in TT3a, TT2 and HOVON trials, thus validating its general applicability. Low CIg is a powerful new prognostic variable and has identified potentially drug-able targets.
Collapse
|
32
|
Auner HW, Cenci S. Recent advances and future directions in targeting the secretory apparatus in multiple myeloma. Br J Haematol 2015; 168:14-25. [PMID: 25296649 DOI: 10.1111/bjh.13172] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multiple myeloma is a genetically heterogeneous tumour of transformed plasma cells, terminally differentiated effectors of the B cell lineage specialized in producing large amounts of immunoglobulins. The uniquely well-developed secretory apparatus that equips normal and transformed plasma cells with the capacity for high-level protein secretion constitutes a distinctive therapeutic target. In this review we discuss how fundamental cellular processes, such as the unfolded protein response (UPR), endoplasmic reticulum (ER)-associated degradation and autophagy, maintain intracellular protein homeostasis (proteostasis) and regulate plasma cell ontogeny and malignancy. We summarize our current understanding of the cellular effects of proteasome inhibitors and the molecular bases of resistance to them. Furthermore, we discuss how improvements in our understanding of the secretory apparatus and of the complex interactions between intracellular protein synthesis and degradation pathways can disclose novel drug targets for multiple myeloma, defining a paradigm of general interest for cancer biology and disorders of altered proteostasis.
Collapse
Affiliation(s)
- Holger W Auner
- Department of Medicine, Centre for Haematology, Imperial College London, London, UK
| | | |
Collapse
|
33
|
Ramos-Amaya A, Rodríguez-Bayona B, López-Blanco R, Andújar E, Pérez-Alegre M, Campos-Caro A, Brieva JA. Survival of human circulating antigen-induced plasma cells is supported by plasma cell-niche cytokines and T follicular helper lymphocytes. THE JOURNAL OF IMMUNOLOGY 2014; 194:1031-8. [PMID: 25548228 DOI: 10.4049/jimmunol.1402231] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human circulating Ag-induced plasma cells (PCs) contain a high proportion of cycling cells. This study reveals that these PCs spontaneously proliferate in culture during 72 h, as determined by BrdU-uptake detection. Transcriptome analysis indicates that, in comparison with tonsil and bone marrow (BM) PCs, these PCs distinctively upregulate genes involved in cell division. Blood PC proliferation occurs simultaneously with increasing apoptosis rates, and is associated with PC survival. In addition, the proliferating activity of these PCs is enhanced by the addition of cytokines present in PC survival niches. Moreover, blood Ag-induced, but not BM, PCs exhibit the expression of molecules involved in the interaction between memory B cells and T follicular helper (Tfh) cells. In fact, purified circulating and tonsil Tfh cells increased IgG secretion by blood Ag-induced, but not by BM, PCs. This effect is exerted by augmenting blood PC survival through a mechanism partly dependent on cell contact. These results strongly suggest that the proliferating capacity of circulating Ag-induced PCs contributes to their competitive migration to survival niches, either to long-living PC niches or to temporal niches present in reactive lymphoid organs and inflamed tissues, structures where Tfh cells appear to participate.
Collapse
Affiliation(s)
- Ana Ramos-Amaya
- Unidad de Investigación, Hospital Universitario Puerta del Mar, 11009 Cadiz, Spain
| | | | - Rubén López-Blanco
- Servicio de Inmunología, Hospital Universitario Puerta del Mar, 11009 Cadiz, Spain
| | - Eloisa Andújar
- Unidad de Genómica, Centro Andaluz de Biología Molecular y Medicina Regenerativa, 41092 Seville, Spain; and Consejo Superior de Investigaciones Científicas, 28008 Madrid, Spain
| | - Mónica Pérez-Alegre
- Unidad de Genómica, Centro Andaluz de Biología Molecular y Medicina Regenerativa, 41092 Seville, Spain; and
| | - Antonio Campos-Caro
- Unidad de Investigación, Hospital Universitario Puerta del Mar, 11009 Cadiz, Spain
| | - José A Brieva
- Unidad de Investigación, Hospital Universitario Puerta del Mar, 11009 Cadiz, Spain; Servicio de Inmunología, Hospital Universitario Puerta del Mar, 11009 Cadiz, Spain;
| |
Collapse
|
34
|
Human CD38hiCD138⁺ plasma cells can be generated in vitro from CD40-activated switched-memory B lymphocytes. J Immunol Res 2014; 2014:635108. [PMID: 25759831 PMCID: PMC4352507 DOI: 10.1155/2014/635108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 11/17/2022] Open
Abstract
B lymphocyte differentiation into long-lived plasma cells is the keystone event for the production of long-term protective antibodies. CD40-CD154 and CD27-CD70 interactions are involved in human B lymphocyte differentiation into CD38(hi)CD138(+) cells in vivo as well as in vitro. In this study, we have compared these interactions in their capacity to drive switched-memory B lymphocytes differentiation into CD38(hi)CD138(+) plasma cells. The targeted B lymphocytes were isolated from human peripheral blood, expanded for 19 days, and then submitted to CD70 or CD154 interactions for 14 days. The expanded B lymphocytes were constitutively expressing CD39, whereas CD31's expression was noticed only following the in vitro differentiation step (day 5) and was exclusively present on the CD38(hi) cell population. Furthermore, the generated CD38(hi)CD138(+) cells showed a higher proportion of CD31(+) cells than the CD38(hi)CD138(-) cells. Besides, analyses done with human blood and bone marrow plasma cells showed that in vivo and de novo generated CD38(hi)CD138(+) cells have a similar CD31 expression profile but are distinct according to their reduced CD39 expression level. Overall, we have evidences that in vitro generated plasma cells are heterogeneous and appear as CD39(+) precursors to the ones present in bone marrow niches.
Collapse
|
35
|
Identification of germinal centres in the lymph node of a patient with hyperimmunoglobulin M syndrome associated with congenital rubella. J Clin Immunol 2014; 34:796-803. [PMID: 25113848 DOI: 10.1007/s10875-014-0084-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND The hyper immunoglobulin M syndrome (HIM) associated with congenital rubella infection (rHIM) is an extremely rare disorder, where patients have elevated serum IgM in association with reduced IgG and IgA. We have previously shown that in contrast to X-linked HIM (XHIM), a patient with well-characterised rHIM is able to express functional CD40 ligand, undergo immunoglobulin isotype switching and to generate memory B cells. Here we describe the ultrastructural features of an excised lymph node from this patient. METHODS An inguinal lymph node was surgically removed and examined histologically as well as by immunohistochemistry. It was then stained with multiple fluorescent dyes to visualize the cellular interactions within the node. Flow cytometry was undertaken on a cellular suspension from the node. FINDINGS Our patient has normal lymph node architecture by light microscopy. Immunohistochemistry studies showed the presence of scattered germinal centres. Polychromatic immunofluorescence staining showed disruption of the architecture with mostly abnormal germinal centres. A small number of relatively intact germinal centres were identified. Both IgM and IgG bearing cells were identified in germinal centres. INTERPRETATION In contrast to XHIM where germinal centres are absent, the presence of small numbers of relatively normal germinal centres explain our previous identification of isotype switched memory B cells in rHIM.
Collapse
|
36
|
Inducible nitric oxide synthase is a major intermediate in signaling pathways for the survival of plasma cells. Nat Immunol 2014; 15:275-82. [DOI: 10.1038/ni.2806] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/06/2013] [Indexed: 12/31/2022]
|
37
|
Auner HW, Moody AM, Ward TH, Kraus M, Milan E, May P, Chaidos A, Driessen C, Cenci S, Dazzi F, Rahemtulla A, Apperley JF, Karadimitris A, Dillon N. Combined inhibition of p97 and the proteasome causes lethal disruption of the secretory apparatus in multiple myeloma cells. PLoS One 2013; 8:e74415. [PMID: 24069311 PMCID: PMC3775786 DOI: 10.1371/journal.pone.0074415] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/01/2013] [Indexed: 11/18/2022] Open
Abstract
Inhibition of the proteasome is a widely used strategy for treating multiple myeloma that takes advantage of the heavy secretory load that multiple myeloma cells (MMCs) have to deal with. Resistance of MMCs to proteasome inhibition has been linked to incomplete disruption of proteasomal endoplasmic-reticulum (ER)-associated degradation (ERAD) and activation of non-proteasomal protein degradation pathways. The ATPase p97 (VCP/Cdc48) has key roles in mediating both ERAD and non-proteasomal protein degradation and can be targeted pharmacologically by small molecule inhibition. In this study, we compared the effects of p97 inhibition with Eeyarestatin 1 and DBeQ on the secretory apparatus of MMCs with the effects induced by the proteasome inhibitor bortezomib, and the effects caused by combined inhibition of p97 and the proteasome. We found that p97 inhibition elicits cellular responses that are different from those induced by proteasome inhibition, and that the responses differ considerably between MMC lines. Moreover, we found that dual inhibition of both p97 and the proteasome terminally disrupts ER configuration and intracellular protein metabolism in MMCs. Dual inhibition of p97 and the proteasome induced high levels of apoptosis in all of the MMC lines that we analysed, including bortezomib-adapted AMO-1 cells, and was also effective in killing primary MMCs. Only minor toxicity was observed in untransformed and non-secretory cells. Our observations highlight non-redundant roles of p97 and the proteasome in maintaining secretory homeostasis in MMCs and provide a preclinical conceptual framework for dual targeting of p97 and the proteasome as a potential new therapeutic strategy in multiple myeloma.
Collapse
Affiliation(s)
- Holger W. Auner
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
- Centre for Haematology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Anne Marie Moody
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| | - Theresa H. Ward
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Enrico Milan
- Age Related Diseases Group, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Philippa May
- Centre for Haematology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Aristeidis Chaidos
- Centre for Haematology, Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Simone Cenci
- Age Related Diseases Group, Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | - Francesco Dazzi
- Centre for Haematology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Amin Rahemtulla
- Centre for Haematology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Jane F. Apperley
- Centre for Haematology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Anastasios Karadimitris
- Centre for Haematology, Department of Medicine, Imperial College London, London, United Kingdom
| | - Niall Dillon
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
38
|
Berrih-Aknin S, Ragheb S, Le Panse R, Lisak RP. Ectopic germinal centers, BAFF and anti-B-cell therapy in myasthenia gravis. Autoimmun Rev 2013; 12:885-93. [DOI: 10.1016/j.autrev.2013.03.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 12/19/2022]
|
39
|
Abstract
The ability of eukaryotic cells to adapt to changing environmental conditions, respond to stimuli, and differentiate relies on their capacity to control the concentration, conformation, localization, and interaction of proteins, thereby reshaping their proteome. Protein degradation plays a critical role in maintaining protein homeostasis, and hence is carefully regulated. During the spectacular and demanding metamorphosis of activated B lymphocytes, expression programs are launched in coordinated waves, and adaptive strategies are deployed to prepare for antibody secretion. Surprisingly, though, despite increased demand for proteolysis, proteasome capacity collapses. As a result, antibody-secreting cells show symptoms of proteotoxic stress, and become extremely vulnerable to proteasome inhibition. The emerging concept that proteostenosis naturally follows B-cell activation has biological and immune implications, for it provides a model to dissect the integrated regulation of protein homeostasis, and a molecular counter limiting antibody responses, of use against autoimmune diseases. Mounting evidence linking proteotoxicity with proteasome vulnerability in malignant plasma cells visualizes strategies to understand responsiveness and obviate resistance to proteasome inhibition, with implications for the biology and therapy of plasma cell dyscrasias, namely, light chain amyloidosis and multiple myeloma.
Collapse
Affiliation(s)
- Simone Cenci
- Division of Genetics and Cell Biology, DiBiT, San Raffaele Scientific Institute, and Università Vita-Salute San Raffaele, Milano, Italy.
| |
Collapse
|
40
|
Arsenic Trioxide Toxicity in H9c2 Myoblasts—Damage to Cell Organelles and Possible Amelioration with Boerhavia diffusa. Cardiovasc Toxicol 2012; 13:123-37. [DOI: 10.1007/s12012-012-9191-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
41
|
Cocco M, Stephenson S, Care MA, Newton D, Barnes NA, Davison A, Rawstron A, Westhead DR, Doody GM, Tooze RM. In vitro generation of long-lived human plasma cells. THE JOURNAL OF IMMUNOLOGY 2012; 189:5773-85. [PMID: 23162129 DOI: 10.4049/jimmunol.1103720] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Plasma cells (PCs), the terminal effectors of humoral immunity, are short-lived unless supported by niche environments in which they may persist for years. No model system has linked B cell activation with niche function to allow the in vitro generation of long-lived PCs. Thus, the full trajectory of B cell terminal differentiation has yet to be investigated in vitro. In this article, we describe a robust model for the generation of polyclonal long-lived human PCs from peripheral blood B cells. After a proliferative plasmablast phase, PCs persist in the absence of cell division, with viability limited only by elective culture termination. Conservative predictions for PC life expectancy are 300 d, but with the potential for significantly longer life spans for some cells. These long-lived PCs are preferentially derived from memory B cells, and acquire a CD138(high) phenotype analogous to that of human bone marrow PCs. Analysis of gene expression across the system defines clusters of genes with related dynamics and linked functional characteristics. Importantly, genes in these differentiation clusters demonstrate a similar overall pattern of expression for in vitro and ex vivo PCs. In vitro PCs are fully reprogrammed to a secretory state and are adapted to their secretory load, maintaining IgG secretion of 120 pg/cell/day in the absence of XBP1 mRNA splicing. By establishing a set of conditions sufficient to allow the development and persistence of mature human PCs in vitro, to our knowledge, we provide the first platform with which to sequentially explore and manipulate each stage of human PC differentiation.
Collapse
Affiliation(s)
- Mario Cocco
- Section of Experimental Haematology, Leeds Institute of Molecular Medicine, University of Leeds, Leeds LS9 7TF, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Njau MN, Kim JH, Chappell CP, Ravindran R, Thomas L, Pulendran B, Jacob J. CD28-B7 interaction modulates short- and long-lived plasma cell function. THE JOURNAL OF IMMUNOLOGY 2012; 189:2758-67. [PMID: 22908331 DOI: 10.4049/jimmunol.1102728] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The interaction of CD28, which is constitutively expressed on T cells, with B7.1/B7.2 expressed on APCs is critical for T cell activation. CD28 is also expressed on murine and human plasma cells but its function on these cells remains unclear. There are two types of plasma cells: short-lived ones that appear in the secondary lymphoid tissue shortly after Ag exposure, and long-lived plasma cells that mainly reside in the bone marrow. We demonstrate that CD28-deficient murine short- and long-lived plasma cells produce significantly higher levels of Abs than do their wild-type counterparts. This was owing to both increased frequencies of plasma cells as well as increased Ab production per plasma cell. Plasma cells also express the ligand for CD28, B7.1, and B7.2. Surprisingly, deficiency of B7.1 and B7.2 in B cells also led to higher Ab levels, analogous to Cd28(-/-) plasma cells. Collectively, our results suggest that the CD28-B7 interaction operates as a key modulator of plasma cell function.
Collapse
Affiliation(s)
- Modesta N Njau
- Department of Microbiology and Immunology, Emory Vaccine Center, Yerkes National Primate Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Although the overproduction of immunoglobulins by short-lived plasma cells accompanying an immune response links with their apoptosis, how long-lived plasma cells adapt to ensure their longevity in this context is obscure. Here, we show that apoptosis signal-regulating kinase 1 (ASK1) contributes to apoptosis of plasma cells because ASK1 activity was induced during differentiation of short-lived plasma cells, and, when produced by ASK1-deficient mice, these cells survived better than those of control mice. Moreover, antigen-specific long-lived plasma cells generated by immunization accumulated in ASK1-deficient mice, suggesting ASK1 also plays a negative role in survival of long-lived plasma cells. In malignant plasma cells, ASK1 transcription was directly suppressed by B lymphocyte-induced maturation protein-1 (Blimp-1). The expression of ASK1 and Blimp-1 showed an inverse correlation between normal human mature B cells and bone marrow plasma cells from patients with multiple myeloma (MM). Suppression of ASK1 is crucial for cell survival because its enforced expression in MM cells caused apoptosis in vitro and lowered MM load in a xenograft animal model; furthermore, alteration of ASK1 activity affected MM cell survival. Our findings indicate a novel mechanism underlying the regulation of survival in normal and malignant plasma cells by ASK1.
Collapse
|