1
|
Chen Y, Wang Y, Wang J, Zhou Z, Cao S, Zhang J. Strategies of Targeting CK2 in Drug Discovery: Challenges, Opportunities, and Emerging Prospects. J Med Chem 2023; 66:2257-2281. [PMID: 36745746 DOI: 10.1021/acs.jmedchem.2c01523] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CK2 (casein kinase 2) is a serine/threonine protein kinase that is ubiquitous in eukaryotic cells and plays important roles in a variety of cellular functions, including cell growth, apoptosis, circadian rhythms, DNA damage repair, transcription, and translation. CK2 is involved in cancer pathogenesis and the occurrence of many diseases. Therefore, targeting CK2 is a promising therapeutic strategy. Although many CK2-specific small-molecule inhibitors have been developed, only CX-4945 has progressed to clinical trials. In recent years, novel CK2 inhibitors have gradually become a research hotspot, which is expected to overcome the limitations of traditional inhibitors. Herein, we summarize the structure, biological functions, and disease relevance of CK2 and emphatically analyze the structure-activity relationship (SAR) and binding modes of small-molecule CK2 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CK2 for clinical practice.
Collapse
Affiliation(s)
- Yijia Chen
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhilan Zhou
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Cao
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610064, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Quotti Tubi L, Mandato E, Canovas Nunes S, Arjomand A, Zaffino F, Manni S, Casellato A, Macaccaro P, Vitulo N, Zumerle S, Filhol O, Boldyreff B, Siebel CW, Viola A, Valle G, Mainoldi F, Casola S, Cancila V, Gulino A, Tripodo C, Pizzi M, Dei Tos AP, Trentin L, Semenzato G, Piazza F. CK2β-regulated signaling controls B cell differentiation and function. Front Immunol 2023; 13:959138. [PMID: 36713383 PMCID: PMC9874936 DOI: 10.3389/fimmu.2022.959138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 12/08/2022] [Indexed: 01/13/2023] Open
Abstract
Serine-Threonine kinase CK2 supports malignant B-lymphocyte growth but its role in B-cell development and activation is largely unknown. Here, we describe the first B-cell specific knockout (KO) mouse model of the β regulatory subunit of CK2. CK2βKO mice present an increase in marginal zone (MZ) and a reduction in follicular B cells, suggesting a role for CK2 in the regulation of the B cell receptor (BCR) and NOTCH2 signaling pathways. Biochemical analyses demonstrate an increased activation of the NOTCH2 pathway in CK2βKO animals, which sustains MZ B-cell development. Transcriptomic analyses indicate alterations in biological processes involved in immune response and B-cell activation. Upon sheep red blood cells (SRBC) immunization CK2βKO mice exhibit enlarged germinal centers (GCs) but display a limited capacity to generate class-switched GC B cells and immunoglobulins. In vitro assays highlight that B cells lacking CK2β have an impaired signaling downstream of BCR, Toll-like receptor, CD40, and IL-4R all crucial for B-cell activation and antigen presenting efficiency. Somatic hypermutations analysis upon 4-Hydroxy-3-nitrophenylacetyl hapten conjugated to Chicken Gamma Globulin (NP-CGG) evidences a reduced NP-specific W33L mutation frequency in CK2βKO mice suggesting the importance of the β subunit in sustaining antibody affinity maturation. Lastly, since diffuse large B cell lymphoma (DLBCL) cells derive from GC or post-GC B cells and rely on CK2 for their survival, we sought to investigate the consequences of CK2 inhibition on B cell signaling in DLBCL cells. In line with the observations in our murine model, CK2 inactivation leads to signaling defects in pathways that are essential for malignant B-lymphocyte activation.
Collapse
Affiliation(s)
- Laura Quotti Tubi
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Elisa Mandato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Sara Canovas Nunes
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Arash Arjomand
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Fortunato Zaffino
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Alessandro Casellato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Paolo Macaccaro
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Nicola Vitulo
- Department of Biology, Interdepartmental Research Center for Biotechnologies (CRIBI) Biotechnology Center, University of Padova, Padova, Italy
| | - Sara Zumerle
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Odile Filhol
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1036, Institute de Recherches en Technologies et Sciences pour le Vivant/Biologie du Cancer et de l’Infection, Grenoble, France
| | | | - Christian W. Siebel
- Department of Discovery Oncology, Genentech, Inc., South San Francisco, CA, United States
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giorgio Valle
- Department of Biology, Interdepartmental Research Center for Biotechnologies (CRIBI) Biotechnology Center, University of Padova, Padova, Italy
| | | | - Stefano Casola
- IFOM-ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | | | - Claudio Tripodo
- IFOM-ETS-The AIRC Institute of Molecular Oncology, Milan, Italy,Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Marco Pizzi
- Department of Medicine, Cytopathology and Surgical Pathology Unit, University of Padova, Padova, Italy
| | - Angelo Paolo Dei Tos
- Department of Medicine, Cytopathology and Surgical Pathology Unit, University of Padova, Padova, Italy
| | - Livio Trentin
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Division of Hematology, University of Padova, Padova, Italy,Unit of Normal and Malignant Hematopoiesis, Laboratory of Myeloma and Lymphoma Pathobiology, Veneto of Molecular Medicine (VIMM), Padova, Italy,*Correspondence: Francesco Piazza,
| |
Collapse
|
3
|
Alsagaby SA, Iqbal D, Ahmad I, Patel H, Mir SA, Madkhali YA, Oyouni AAA, Hawsawi YM, Alhumaydhi FA, Alshehri B, Alturaiki W, Alanazi B, Mir MA, Al Abdulmonem W. In silico investigations identified Butyl Xanalterate to competently target CK2α (CSNK2A1) for therapy of chronic lymphocytic leukemia. Sci Rep 2022; 12:17648. [PMID: 36271116 PMCID: PMC9587039 DOI: 10.1038/s41598-022-21546-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/28/2022] [Indexed: 01/18/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable malignancy of B-cells. In this study, bioinformatics analyses were conducted to identify possible pathogenic roles of CK2α, which is a protein encoded by CSNK2A1, in the progression and aggressiveness of CLL. Furthermore, various computational tools were used to search for a competent inhibitor of CK2α from fungal metabolites that could be proposed for CLL therapy. In CLL patients, high-expression of CSNK2A1 was associated with early need for therapy (n = 130, p < 0.0001) and short overall survival (OS; n = 107, p = 0.005). Consistently, bioinformatics analyses showed CSNK2A1 to associate with/play roles in CLL proliferation and survival-dependent pathways. Furthermore, PPI network analysis identified interaction partners of CK2α (PPI enrichment p value = 1 × 10-16) that associated with early need for therapy (n = 130, p < 0.003) and have been known to heavily impact on the progression of CLL. These findings constructed a rational for targeting CK2α for CLL therapy. Consequently, computational analyses reported 35 fungal metabolites out of 5820 (filtered from 19,967 metabolites) to have lower binding energy (ΔG: - 10.9 to - 11.7 kcal/mol) and better binding affinity (Kd: 9.77 × 107 M-1 to 3.77 × 108 M-1) compared with the native ligand (ΔG: - 10.8, Kd: 8.3 × 107 M--1). Furthermore, molecular dynamics simulation study established that Butyl Xanalterate-CK2α complex continuously remained stable throughout the simulation time (100 ns). Moreover, Butyl Xanalterate interacted with most of the catalytic residues, where complex was stabilized by more than 65% hydrogen bond interactions, and a significant hydrophobic interaction with residue Phe113. Here, high-expression of CSNK2A1 was implicated in the progression and poor prognosis of CLL, making it a potential therapeutic target in the disease. Butyl Xanalterate showed stable and strong interactions with CK2α, thus we propose it as a competitive inhibitor of CK2α for CLL therapy.
Collapse
Affiliation(s)
- Suliman A. Alsagaby
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Danish Iqbal
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Iqrar Ahmad
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Harun Patel
- grid.412233.50000 0001 0641 8393Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405 India
| | - Shabir Ahmad Mir
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Yahya Awaji Madkhali
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Atif Abdulwahab A. Oyouni
- grid.440760.10000 0004 0419 5685Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia ,grid.440760.10000 0004 0419 5685Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Yousef M. Hawsawi
- grid.415310.20000 0001 2191 4301Research Center, King Faisal Specialist Hospital and Research Center, P.O. Box 40047, Jeddah, 21499 Kingdom of Saudi Arabia ,grid.411335.10000 0004 1758 7207College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh, 11533 Kingdom of Saudi Arabia
| | - Fahad A. Alhumaydhi
- grid.412602.30000 0000 9421 8094Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Bader Alshehri
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Wael Alturaiki
- grid.449051.d0000 0004 0441 5633Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11952 Kingdom of Saudi Arabia
| | - Bader Alanazi
- grid.415277.20000 0004 0593 1832Biomedical Research Administration, Research Center, King Fahad Medical City, Riyadh, Kingdom of Saudi Arabia ,Prince Mohammed bin Abdulaziz Medical City, AlJouf, Kingdom of Saudi Arabia
| | - Manzoor Ahmad Mir
- grid.412997.00000 0001 2294 5433Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Waleed Al Abdulmonem
- grid.412602.30000 0000 9421 8094Department of Pathology, College of Medicine, Qassim University, Qassim, Kingdom of Saudi Arabia
| |
Collapse
|
4
|
Targeting CK2 in cancer: a valuable strategy or a waste of time? Cell Death Discov 2021; 7:325. [PMID: 34716311 PMCID: PMC8555718 DOI: 10.1038/s41420-021-00717-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
CK2 is a protein kinase involved in several human diseases (ranging from neurological and cardiovascular diseases to autoimmune disorders, diabetes, and infections, including COVID-19), but its best-known implications are in cancer, where it is considered a pharmacological target. Several CK2 inhibitors are available and clinical trials are underway in different cancer types. Recently, the suitability of CK2 as a broad anticancer target has been questioned by the finding that a newly developed compound, named SGC-CK2-1, which is more selective than any other known CK2 inhibitor, is poorly effective in reducing cell growth in different cancer lines, prompting the conclusion that the anticancer efficacy of CX-4945, the commonly used clinical-grade CK2 inhibitor, is to be attributed to its off-target effects. Here we perform a detailed scrutiny of published studies on CK2 targeting and a more in-depth analysis of the available data on SGC-CK2-1 vs. CX-4945 efficacy, providing a different perspective about the actual reliance of cancer cells on CK2. Collectively taken, our arguments would indicate that the pretended dispensability of CK2 in cancer is far from having been proved and warn against premature conclusions, which could discourage ongoing investigations on a potentially valuable drug target.
Collapse
|
5
|
Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6:183. [PMID: 33994545 PMCID: PMC8126563 DOI: 10.1038/s41392-021-00567-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Collapse
|
6
|
Spinello Z, Fregnani A, Quotti Tubi L, Trentin L, Piazza F, Manni S. Targeting Protein Kinases in Blood Cancer: Focusing on CK1α and CK2. Int J Mol Sci 2021; 22:ijms22073716. [PMID: 33918307 PMCID: PMC8038136 DOI: 10.3390/ijms22073716] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Disturbance of protein kinase activity may result in dramatic consequences that often lead to cancer development and progression. In tumors of blood origin, both tyrosine kinases and serine/threonine kinases are altered by different types of mutations, critically regulating cancer hallmarks. CK1α and CK2 are highly conserved, ubiquitously expressed and constitutively active pleiotropic kinases, which participate in multiple biological processes. The involvement of these kinases in solid and blood cancers is well documented. CK1α and CK2 are overactive in multiple myeloma, leukemias and lymphomas. Intriguingly, they are not required to the same degree for the viability of normal cells, corroborating the idea of “druggable” kinases. Different to other kinases, mutations on the gene encoding CK1α and CK2 are rare or not reported. Actually, these two kinases are outside the paradigm of oncogene addiction, since cancer cells’ dependency on these proteins resembles the phenomenon of “non-oncogene” addiction. In this review, we will summarize the general features of CK1α and CK2 and the most relevant oncogenic and stress-related signaling nodes, regulated by kinase phosphorylation, that may lead to tumor progression. Finally, we will report the current data, which support the positioning of these two kinases in the therapeutic scene of hematological cancers.
Collapse
Affiliation(s)
- Zaira Spinello
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Anna Fregnani
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Livio Trentin
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
- Correspondence: (F.P.); (S.M.); Tel.: +39-049-792-3263 (F.P. & S.M.); Fax: +39-049-792-3250 (F.P. & S.M.)
| | - Sabrina Manni
- Department of Medicine, Hematology Section, University of Padova, Via N. Giustiniani 2, 35128 Padova, Italy; (Z.S.); (A.F.); (L.Q.T.); (L.T.)
- Veneto Institute of Molecular Medicine, Via G. Orus 2, 35129 Padova, Italy
- Correspondence: (F.P.); (S.M.); Tel.: +39-049-792-3263 (F.P. & S.M.); Fax: +39-049-792-3250 (F.P. & S.M.)
| |
Collapse
|
7
|
Klink M, Rahman MA, Song C, Dhanyamraju PK, Ehudin M, Ding Y, Steffens S, Bhadauria P, Iyer S, Aliaga C, Desai D, Huang S, Claxton D, Sharma A, Gowda C. Mechanistic Basis for In Vivo Therapeutic Efficacy of CK2 Inhibitor CX-4945 in Acute Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13051127. [PMID: 33807974 PMCID: PMC7975325 DOI: 10.3390/cancers13051127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Acute Myeloid Leukemia is an aggressive disease with poor outcomes. New targeted therapies that can boost the effects of currently used chemotherapy medications without added toxicity are needed. Targeting an overactive kinase, called the protein Kinase CK2 in AML, helps leukemia cells undergo cell death and helps certain chemotherapy drugs work better. Here, we present evidence that CX-4945, a CK2 inhibitor drug, effectively kills leukemia cells in mouse models and shows the mechanism of action responsible for these effects. Leukemia cells are more sensitive to a decrease in CK2 kinase levels than normal cells. Our results show that inhibiting CK2 kinase makes AML cells more susceptible to anthracycline-induced cell death. Anthracyclines like daunorubicin and doxorubicin are widely used to treat leukemia in children and adults. A rational combination of protein kinase CK2 inhibitors with the standard of care chemotherapy may help treat AML more effectively. Abstract Protein Kinase CK2 (Casein Kinase 2 or CK2) is a constitutively active serine-threonine kinase overactive in human malignancies. Increased expression and activity of CK2 in Acute Myeloid Leukemia (AML) is associated with a poor outcome. CK2 promotes AML cell survival by impinging on multiple oncogenic signaling pathways. The selective small-molecule CK2 inhibitor CX-4945 has shown in vitro cytotoxicity in AML. Here, we report that CX-4945 has a strong in vivo therapeutic effect in preclinical models of AML. The analysis of genome-wide DNA-binding and gene expression in CX-4945 treated AML cells shows that one mechanism, by which CK2 inhibition exerts a therapeutic effect in AML, involves the revival of IKAROS tumor suppressor function. CK2 phosphorylates IKAROS and disrupts IKAROS’ transcriptional activity by impairing DNA-binding and association with chromatin modifiers. Here, we demonstrate that CK2 inhibition decreases IKAROS phosphorylation and restores IKAROS binding to DNA. Further functional experiments show that IKAROS negatively regulates the transcription of anti-apoptotic genes, including BCL-XL (B cell Lymphoma like–2 like 1, BCL2L1). CX-4945 restitutes the IKAROS-mediated repression of BCL-XL in vivo and sensitizes AML cells to apoptosis. Using CX-4945, alongside the cytotoxic chemotherapeutic drug daunorubicin, augments BCL-XL suppression and AML cell apoptosis. Overall, these results establish the in vivo therapeutic efficacy of CX-4945 in AML preclinical models and determine the role of CK2 and IKAROS in regulating apoptosis in AML. Furthermore, our study provides functional and mechanistic bases for the addition of CK2 inhibitors to AML therapy.
Collapse
Affiliation(s)
- Morgann Klink
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Mohammad Atiqur Rahman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
- Department of Medicine, Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Pavan Kumar Dhanyamraju
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Melanie Ehudin
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Sadie Steffens
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Preeti Bhadauria
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - Soumya Iyer
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
- Department of Radiation Oncology, University of Chicago,Chicago, IL 60607, USA
| | - Cesar Aliaga
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.A.); (D.C.)
| | - Dhimant Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.D.); (A.S.)
| | - Suming Huang
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
| | - David Claxton
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (C.A.); (D.C.)
| | - Arati Sharma
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.D.); (A.S.)
| | - Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (M.K.); (M.A.R.); (C.S.); (P.K.D.); (M.E.); (Y.D.); (S.S.); (P.B.); (S.I.); (S.H.)
- Correspondence: ; Tel.: 717-531-6012; Fax: 717-531-4789
| |
Collapse
|
8
|
Husain K, Williamson TT, Nelson N, Ghansah T. Protein kinase 2 (CK2): a potential regulator of immune cell development and function in cancer. Immunol Med 2020; 44:159-174. [PMID: 33164702 DOI: 10.1080/25785826.2020.1843267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Protein kinase CK2, formally known as casein kinase II, is ubiquitously expressed and highly conserved serine/threonine or tyrosine kinase enzyme that regulates diverse signaling pathways responsible for cellular processes (i.e., cell proliferation and apoptosis) via interactions with over 500 known substrates. The enzyme's physiological interactions and cellular functions have been widely studied, most notably in the blood and solid malignancies. CK2 has intrinsic role in carcinogenesis as overexpression of CK2 subunits (α, α`, and β) and deregulation of its activity have been linked to various forms of cancers. CK2 also has extrinsic role in cancer stroma or in the tumor microenvironment (TME) including the immune cells. However, very few research studies have focused on extrinsic role of CK2 in regulating immune responses as a therapeutic alternative for cancer. The following review discusses CK2's regulation of key signaling events [Nuclear factor kappa B (NF-κB), Janus kinase/signal transducer and activators of transcription (JAK/STAT), Hypoxia inducible factor-1alpha (HIF-1α), Cyclooygenase-2 (COX-2), Extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK), Notch, Protein kinase B/AKT, Ikaros and Wnt] that can influence the development and function of immune cells in cancer. Potential clinical trials using potent CK2 inhibitors will facilitate and improve the treatment of human malignancies.
Collapse
Affiliation(s)
- Kazim Husain
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Tanika T Williamson
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Nadine Nelson
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Tomar Ghansah
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
9
|
Protopopov MV, Vdovin VS, Starosyla SA, Borysenko IP, Prykhod'ko AO, Lukashov SS, Bilokin YV, Bdzhola VG, Yarmoluk SM. Flavone inspired discovery of benzylidenebenzofuran-3(2H)-ones (aurones) as potent inhibitors of human protein kinase CK2. Bioorg Chem 2020; 102:104062. [PMID: 32683178 DOI: 10.1016/j.bioorg.2020.104062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/19/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022]
Abstract
In this work, we describe the design, synthesis and SAR studies of 2-benzylidenebenzofuran-3-ones (aurones), a new family of potent inhibitors of CK2. A series of aurones have been synthesized. These compounds are structurally related to the synthetic flavones and showed nanomolar activities towards CK2. Biochemical tests revealed that 20 newly synthesized compounds inhibited CK2 with IC50 values in the nanomolar range. Further property-based optimization of aurones was performed, yielding a series of CK2 inhibitors with enhanced lipophilic efficiency. The most potent compound 12m (BFO13) has CLipE = 4.94 (CLogP = 3.5; IC50 = 3.6 nM) commensurable with the best known inhibitors of CK2.
Collapse
Affiliation(s)
- M V Protopopov
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine.
| | - V S Vdovin
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - S A Starosyla
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - I P Borysenko
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine; LLC Scientific and Service Firm "Otava", 117/125 Borschagivska St., Suite 79, 03056 Kyiv, Ukraine
| | - A O Prykhod'ko
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine; LLC Scientific and Service Firm "Otava", 117/125 Borschagivska St., Suite 79, 03056 Kyiv, Ukraine
| | - S S Lukashov
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - Y V Bilokin
- OTAVA Ltd., 400 Applewood Crescent, Unit 100, Vaughan, Ontario L4K 0C3, Canada
| | - V G Bdzhola
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| | - S M Yarmoluk
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotnogo St., 03143 Kyiv, Ukraine
| |
Collapse
|
10
|
Andreani G, Carrà G, Lingua MF, Maffeo B, Brancaccio M, Taulli R, Morotti A. Tumor Suppressors in Chronic Lymphocytic Leukemia: From Lost Partners to Active Targets. Cancers (Basel) 2020; 12:cancers12030629. [PMID: 32182763 PMCID: PMC7139490 DOI: 10.3390/cancers12030629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/24/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022] Open
Abstract
Tumor suppressors play an important role in cancer pathogenesis and in the modulation of resistance to treatments. Loss of function of the proteins encoded by tumor suppressors, through genomic inactivation of the gene, disable all the controls that balance growth, survival, and apoptosis, promoting cancer transformation. Parallel to genetic impairments, tumor suppressor products may also be functionally inactivated in the absence of mutations/deletions upon post-transcriptional and post-translational modifications. Because restoring tumor suppressor functions remains the most effective and selective approach to induce apoptosis in cancer, the dissection of mechanisms of tumor suppressor inactivation is advisable in order to further augment targeted strategies. This review will summarize the role of tumor suppressors in chronic lymphocytic leukemia and attempt to describe how tumor suppressors can represent new hopes in our arsenal against chronic lymphocytic leukemia (CLL).
Collapse
Affiliation(s)
- Giacomo Andreani
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (G.A.); (G.C.); (B.M.)
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (G.A.); (G.C.); (B.M.)
| | | | - Beatrice Maffeo
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (G.A.); (G.C.); (B.M.)
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy;
| | - Riccardo Taulli
- Department of Oncology, University of Torino, 10043 Orbassano, Italy; (M.F.L.); (R.T.)
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Torino, 10043 Orbassano, Italy; (G.A.); (G.C.); (B.M.)
- Correspondence: ; Tel.: +39-011-9026305
| |
Collapse
|
11
|
Piazza F, Manni S, Arjomand A, Visentin A, Trentin L, Semenzato G. New responsibilities for aged kinases in B-lymphomas. Hematol Oncol 2019; 38:3-11. [PMID: 31782972 DOI: 10.1002/hon.2694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/05/2019] [Indexed: 12/21/2022]
Abstract
The knowledge accumulated over the last decade on B-cell-derived non-Hodgkin lymphoma (B-NHL) pathogenesis has led to the identification of several molecular abnormalities, opening new perspectives in the design of novel therapies. Indeed, drugs targeting specific biochemical pathways critical for B-NHL cell survival, proliferation, and fitness within the malignant microenvironment are now available to the clinician: the B-cell receptor signaling inhibitors of BTK, PI3Kδ, ζ, γ, and SYK or the pro-apoptotic BH3-mimetics are clear examples of it. Moreover, it is emerging that malignant B-cell growth is sustained not only by mutations in oncogenes/tumor suppressors but also by the "addiction" to nononcogene (ie, nonstructurally altered) molecules. In this regard, a consistent body of data has established that the Ser/Thr kinases CK1, CK2, and GSK3 are involved in malignant lymphocyte biology and act as pro-survival and signaling-boosting molecules, both in precursor and mature B-cell tumors. Currently, an experimental and clinical groundwork is available, upon which to design CK1-, CK2-, and GSK3-directed antilymphoma/leukemia therapies. In this review, we have examined the main features of CK1, CK2, and GSK3 kinases, summarized the data in B-NHL supporting them as suitable therapeutic targets, and proposed a perspective on potential future research development.
Collapse
Affiliation(s)
- Francesco Piazza
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy.,Unit of Hematological Malignancies - Laboratory of Myeloma and Lymphoma Pathobiology, Foundation for Advanced Biomedical Research - Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy.,Unit of Hematological Malignancies - Laboratory of Myeloma and Lymphoma Pathobiology, Foundation for Advanced Biomedical Research - Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Arash Arjomand
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy.,Unit of Hematological Malignancies - Laboratory of Myeloma and Lymphoma Pathobiology, Foundation for Advanced Biomedical Research - Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Andrea Visentin
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy.,Unit of Hematological Malignancies - Laboratory of Myeloma and Lymphoma Pathobiology, Foundation for Advanced Biomedical Research - Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Livio Trentin
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy.,Unit of Hematological Malignancies - Laboratory of Myeloma and Lymphoma Pathobiology, Foundation for Advanced Biomedical Research - Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, University of Padova, Padova, Italy.,Unit of Hematological Malignancies - Laboratory of Myeloma and Lymphoma Pathobiology, Foundation for Advanced Biomedical Research - Veneto Institute of Molecular Medicine (FABR-VIMM), Padova, Italy
| |
Collapse
|
12
|
Gowda C, Song C, Ding Y, Iyer S, Dhanyamraju PK, McGrath M, Bamme Y, Soliman M, Kane S, Payne JL, Dovat S. Cellular signaling and epigenetic regulation of gene expression in leukemia. Adv Biol Regul 2019; 75:100665. [PMID: 31623972 PMCID: PMC7239353 DOI: 10.1016/j.jbior.2019.100665] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/11/2022]
Abstract
Alterations in normal regulation of gene expression is one of the key features of hematopoietic malignancies. In order to gain insight into the mechanisms that regulate gene expression in these diseases, we dissected the role of the Ikaros protein in leukemia. Ikaros is a DNA-binding, zinc finger protein that functions as a transcriptional regulator and a tumor suppressor in leukemia. The use of ChIP-seq, RNA-seq, and ATAC-seq—coupled with functional experiments—revealed that Ikaros regulates both the global epigenomic landscape and epigenetic signature at promoter regions of its target genes. Casein kinase II (CK2), an oncogenic kinase that is overexpressed in leukemia, directly phosphorylates Ikaros at multiple, evolutionarily-conserved residues. Phosphorylation of Ikaros impairs the protein's ability to regulate both the transcription of its target genes and global epigenetic landscape in leukemia. Treatment of leukemia cells with a specific inhibitor of CK2 restores Ikaros function, resulting in cytotoxicity of leukemia cells. Here, we review the mechanisms through which the CK2-Ikaros signaling axis regulates the global epigenomic landscape and expression of genes that control cellular proliferation in leukemia.
Collapse
Affiliation(s)
- Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Soumya Iyer
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Pavan K Dhanyamraju
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mary McGrath
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yevgeniya Bamme
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Mario Soliman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Shriya Kane
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Jonathon L Payne
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
13
|
Lian H, Su M, Zhu Y, Zhou Y, Soomro SH, Fu H. Protein Kinase CK2, a Potential Therapeutic Target in Carcinoma Management. Asian Pac J Cancer Prev 2019; 20:23-32. [PMID: 30677865 PMCID: PMC6485562 DOI: 10.31557/apjcp.2019.20.1.23] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The Protein kinase CK2 (formerly known as casein kinase 2) is a highly conserved serine/ threonine kinase
overexpressed in various human carcinomas and its high expression often correlates with poor prognosis. CK2 protein
is localized in the nucleus of many tumor cells and correlates with clinical features in many cases. Increased expression
of CK2 in mice results in the development of various types of carcinomas (both solids and blood related tumors, such
as (breast carcinoma, lymphoma, etc), which reveals its carcinogenic properties. CK2 plays essential roles in many key
biological processes related to carcinoma, including cell apoptosis, DNA damage responses and cell cycle regulation.
CK2 has become a potential anti-carcinoma target. Various CK2 inhibitors have been developed with anti-neoplastic
properties against a variety of carcinomas. Some CK2 inhibitors have showed good results in in vitro and pre-clinical
models, and have even entered in clinical trials. This article will review effects of CK2 and its inhibitors on common
carcinomas in in vitro and pre-clinical studies.
Collapse
Affiliation(s)
- Haiwei Lian
- Department of Human Anatomy, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, P.R, China.
| | | | | | | | | | | |
Collapse
|
14
|
Jung JI, Kim SY, Park KY, Sydara K, Lee SW, Kim SA, Kim J. In vitro combinatorial anti-proliferative and immunosuppressive effects of Brucea javanica extract with CX-4945 and imatinib in human T-cell acute lymphoblastic leukemia cells. Biomed Pharmacother 2018; 106:403-410. [PMID: 29966986 DOI: 10.1016/j.biopha.2018.06.164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 11/15/2022] Open
Abstract
Since 1970, the isolated and identified components of Brucea javanica (L.) Merr. have been known to contain anticancer effects, particularly antileukemic effect. In this study, the inhibitory effect of Brucea javanica (BJ) on cell growth and inflammation was confirmed in human T-cell acute lymphocytic leukemia (T-ALL) cells, and its efficacy as an antileukemic agent was verified. Our results showed that BJ extract induced caspase-dependent apoptosis of T-ALL Jurkat cells through inhibition of the CK2-mediated signaling pathway, while exerting no significant cytotoxicity in normal peripheral blood mononuclear cells. Moreover, BJ extract suppressed the NF-κB signaling pathway, thus, inhibiting the interleukin (IL)-2 expression induced by phorbol 12-myristate 13-acetate (PMA) and phytohemagglutinin (PHA). Notably, combined treatment with BJ extract plus CX-4945 or imatinib exerted enhanced inhibitory effects on T-ALL cell growth and IL-2 production. Overall, these results suggest that BJ extract can be a potent therapeutic herbal agent for T-ALL treatment and prevention of IL-2 mediated inflammatory immune responses.
Collapse
Affiliation(s)
- Jung-Il Jung
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea.
| | - Se Young Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea.
| | - Kyeong-Yong Park
- Department of Integrated Material's Development, CHA Meditech Co., Ltd, Daejeon 34025, Republic of Korea.
| | - Kongmany Sydara
- Institute of Traditional Medicine, Ministry of Health, Vientiane Capital, Lao People's Democratic Republic.
| | - Sang Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
| | - Soon Ae Kim
- Department of Pharmacology, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea.
| | - Jiyeon Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea.
| |
Collapse
|
15
|
Russo M, Milito A, Spagnuolo C, Carbone V, Rosén A, Minasi P, Lauria F, Russo GL. CK2 and PI3K are direct molecular targets of quercetin in chronic lymphocytic leukaemia. Oncotarget 2018; 8:42571-42587. [PMID: 28489572 PMCID: PMC5522089 DOI: 10.18632/oncotarget.17246] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/05/2017] [Indexed: 11/25/2022] Open
Abstract
Despite the encouraging results of the innovative therapeutic treatments, complete remission is uncommon in patients affected by chronic lymphocytic leukaemia, which remains an essentially incurable disease. Recently, clinical trials based on BH3-mimetic drugs showed positive outcomes in subjects with poor prognostic features. However, resistance to treatments occurs in a significant number of patients. We previously reported that the multi-kinase inhibitor quercetin, a natural flavonol, restores sensitivity to ABT-737, a BH3-mimetic compound, in both leukemic cell lines and B-cells isolated from patients. To identify the molecular target of quercetin, we employed a new cell line, HG3, obtained by immortalization of B-cells from a chronic lymphocytic leukaemia patient at the later stage of disease. We confirmed that quercetin in association with ABT-737 synergistically enhances apoptosis in HG3 (combination index < 1 for all fractions affected). We also reported that the cellular uptake of quercetin is extremely rapid, with an intracellular concentration of about 38.5 ng/106 cells, after treatment with 25 μM for 5 min. We demonstrated that the activity of protein kinase CK2, which positively triggers PI3K/Akt pathway by inactivating PTEN phosphatase, is inhibited by quercetin immediately after its addition to HG3 cells (0–2 min). PI3K activity was also inhibited by quercetin within 60 min from the treatment. The combined inhibition of CK2 and PI3K kinase activities by quercetin restored ABT-737 sensitivity and increased lethality in human leukemia cells.
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Alfonsina Milito
- Institute of Food Sciences, National Research Council, Avellino, Italy.,Current address: Stazione Zoologica "Anton Dohrn", Villa Comunale, Napoli, Italy
| | - Carmela Spagnuolo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Virginia Carbone
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Anders Rosén
- Department of Clinical and Experimental Medicine, Division of Cell Biology, Linköping University, Linköping, Sweden
| | - Paola Minasi
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Fabio Lauria
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, Avellino, Italy
| |
Collapse
|
16
|
Carrà G, Panuzzo C, Torti D, Parvis G, Crivellaro S, Familiari U, Volante M, Morena D, Lingua MF, Brancaccio M, Guerrasio A, Pandolfi PP, Saglio G, Taulli R, Morotti A. Therapeutic inhibition of USP7-PTEN network in chronic lymphocytic leukemia: a strategy to overcome TP53 mutated/deleted clones. Oncotarget 2018; 8:35508-35522. [PMID: 28418900 PMCID: PMC5482594 DOI: 10.18632/oncotarget.16348] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Chronic Lymphocytic Leukemia (CLL) is a lymphoproliferative disorder with either indolent or aggressive clinical course. Current treatment regiments have significantly improved the overall outcomes even if higher risk subgroups - those harboring TP53 mutations or deletions of the short arm of chromosome 17 (del17p) - remain highly challenging. In the present work, we identified USP7, a known de-ubiquitinase with multiple roles in cellular homeostasis, as a potential therapeutic target in CLL. We demonstrated that in primary CLL samples and in CLL cell lines USP7 is: i) over-expressed through a mechanism involving miR-338-3p and miR-181b deregulation; ii) functionally activated by Casein Kinase 2 (CK2), an upstream interactor known to be deregulated in CLL; iii) effectively targeted by the USP7 inhibitor P5091. Treatment of primary CLL samples and cell lines with P5091 induces cell growth arrest and apoptosis, through the restoration of PTEN nuclear pool, both in TP53-wild type and -null environment. Importantly, PTEN acts as the main tumor suppressive mediator along the USP7-PTEN axis in a p53 dispensable manner. In conclusion, we propose USP7 as a new druggable target in CLL.
Collapse
Affiliation(s)
- Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Cristina Panuzzo
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Davide Torti
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy.,Division of Internal Medicine - Hematology, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Guido Parvis
- Division of Internal Medicine - Hematology, San Luigi Gonzaga Hospital, Orbassano, Italy.,Division of Hematology, Azienda Ospedaliera, Mauriziano, Turin, Italy
| | - Sabrina Crivellaro
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | | | - Marco Volante
- Division of Pathology, San Luigi Hospital, Orbassano, Italy.,Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Deborah Morena
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | | | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Angelo Guerrasio
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Pier Paolo Pandolfi
- Cancer Genetics Program, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy.,Division of Internal Medicine - Hematology, San Luigi Gonzaga Hospital, Orbassano, Italy.,Division of Hematology, Azienda Ospedaliera, Mauriziano, Turin, Italy
| | - Riccardo Taulli
- Department of Oncology, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| | - Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Gonzaga Hospital, Orbassano, Italy
| |
Collapse
|
17
|
Synergistic therapeutic effect of diethylstilbestrol and CX-4945 in human acute T-lymphocytic leukemia cells. Biomed Pharmacother 2018; 98:357-363. [DOI: 10.1016/j.biopha.2017.12.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/08/2023] Open
|
18
|
Martín-Acosta P, Haider S, Amesty Á, Aichele D, Jose J, Estévez-Braun A. A new family of densely functionalized fused-benzoquinones as potent human protein kinase CK2 inhibitors. Eur J Med Chem 2018; 144:410-423. [DOI: 10.1016/j.ejmech.2017.12.058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022]
|
19
|
Chua MMJ, Lee M, Dominguez I. Cancer-type dependent expression of CK2 transcripts. PLoS One 2017; 12:e0188854. [PMID: 29206231 PMCID: PMC5714396 DOI: 10.1371/journal.pone.0188854] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 11/14/2017] [Indexed: 01/31/2023] Open
Abstract
A multitude of proteins are aberrantly expressed in cancer cells, including the oncogenic serine-threonine kinase CK2. In a previous report, we found increases in CK2 transcript expression that could explain the increased CK2 protein levels found in tumors from lung and bronchus, prostate, breast, colon and rectum, ovarian and pancreatic cancers. We also found that, contrary to the current notions about CK2, some CK2 transcripts were downregulated in several cancers. Here, we investigate all other cancers using Oncomine to determine whether they also display significant CK2 transcript dysregulation. As anticipated from our previous analysis, we found cancers with all CK2 transcripts upregulated (e.g. cervical), and cancers where there was a combination of upregulation and/or downregulation of the CK2 transcripts (e.g. sarcoma). Unexpectedly, we found some cancers with significant downregulation of all CK2 transcripts (e.g. testicular cancer). We also found that, in some cases, CK2 transcript levels were already dysregulated in benign lesions (e.g. Barrett’s esophagus). We also found that CK2 transcript upregulation correlated with lower patient survival in most cases where data was significant. However, there were two cancer types, glioblastoma and renal cell carcinoma, where CK2 transcript upregulation correlated with higher survival. Overall, these data show that the expression levels of CK2 genes is highly variable in cancers and can lead to different patient outcomes.
Collapse
Affiliation(s)
- Melissa M. J. Chua
- Department of Medicine, Boston University School of Medicine, Boston MA, United States of America
| | - Migi Lee
- Department of Medicine, Boston University School of Medicine, Boston MA, United States of America
| | - Isabel Dominguez
- Department of Medicine, Boston University School of Medicine, Boston MA, United States of America
- * E-mail:
| |
Collapse
|
20
|
Buontempo F, McCubrey JA, Orsini E, Ruzzene M, Cappellini A, Lonetti A, Evangelisti C, Chiarini F, Evangelisti C, Barata JT, Martelli AM. Therapeutic targeting of CK2 in acute and chronic leukemias. Leukemia 2017; 32:1-10. [PMID: 28951560 PMCID: PMC5770594 DOI: 10.1038/leu.2017.301] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/22/2022]
Abstract
CK2 is a ubiquitously expressed, constitutively active Ser/Thr protein kinase, which is considered the most pleiotropic protein kinase in the human kinome. Such a pleiotropy explains the involvement of CK2 in many cellular events. However, its predominant roles are stimulation of cell growth and prevention of apoptosis. High levels of CK2 messenger RNA and protein are associated with CK2 pathological functions in human cancers. Over the last decade, basic and translational studies have provided evidence of CK2 as a pivotal molecule driving the growth of different blood malignancies. CK2 overexpression has been demonstrated in nearly all the types of hematological cancers, including acute and chronic leukemias, where CK2 is a key regulator of signaling networks critical for cell proliferation, survival and drug resistance. The findings that emerged from these studies suggest that CK2 could be a valuable therapeutic target in leukemias and supported the initiation of clinical trials using CK2 antagonists. In this review, we summarize the recent advances on the understanding of the signaling pathways involved in CK2 inhibition-mediated effects with a particular emphasis on the combinatorial use of CK2 inhibitors as novel therapeutic strategies for treating both acute and chronic leukemia patients.
Collapse
Affiliation(s)
- F Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - J A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - E Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - M Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - A Cappellini
- Department of Human, Social and Health Sciences, University of Cassino, Cassino, Italy
| | - A Lonetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - C Evangelisti
- Institute of Molecular Genetics, National Research Council, Bologna, Italy.,Cell and Molecular Biology Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - F Chiarini
- Institute of Molecular Genetics, National Research Council, Bologna, Italy.,Cell and Molecular Biology Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - C Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - J T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - A M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
21
|
Ribeiro ST, Tesio M, Ribot JC, Macintyre E, Barata JT, Silva-Santos B. Casein kinase 2 controls the survival of normal thymic and leukemic γδ T cells via promotion of AKT signaling. Leukemia 2017; 31:1603-1610. [PMID: 27899804 PMCID: PMC5357576 DOI: 10.1038/leu.2016.363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/12/2016] [Accepted: 11/18/2016] [Indexed: 12/19/2022]
Abstract
The thymus is the major site for normal and leukemic T-cell development. The dissection of the molecular determinants of T-cell survival and differentiation is paramount for the manipulation of healthy or transformed T cells in cancer (immuno)therapy. Casein kinase 2 (CK2) is a serine/threonine protein kinase whose anti-apoptotic functions have been described in various hematological and solid tumors. Here we disclose an unanticipated role of CK2 in healthy human thymocytes that is selective to the γδ T-cell lineage. γδ thymocytes display higher (and T-cell receptor inducible) CK2 activity than their αβ counterparts, and are strikingly sensitive to death upon CK2 inhibition. Mechanistically, we show that CK2 regulates the pro-survival AKT signaling pathway in γδ thymocytes and, importantly, also in γδ T-cell acute lymphoblastic leukemia (T-ALL) cells. When compared with healthy thymocytes or leukemic αβ T cells, γδ T-ALL cells show upregulated CK2 activity, potentiated by CD27 costimulation, and enhanced apoptosis upon CK2 blockade using the chemical inhibitor CX-4945. Critically, this results in inhibition of tumor growth in a xenograft model of human γδ T-ALL. These data identify CK2 as a novel survival determinant of both healthy and leukemic γδ T cells, and may thus greatly impact their therapeutic manipulation.
Collapse
Affiliation(s)
- S T Ribeiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - M Tesio
- Institut Necker Enfants Malades, Hôpital Necker-Enfants Malades, APHP et Université Paris, Paris, France
| | - J C Ribot
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - E Macintyre
- Institut Necker Enfants Malades, Hôpital Necker-Enfants Malades, APHP et Université Paris, Paris, France
| | - J T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - B Silva-Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
22
|
Gowda C, Soliman M, Kapadia M, Ding Y, Payne K, Dovat S. Casein Kinase II (CK2), Glycogen Synthase Kinase-3 (GSK-3) and Ikaros mediated regulation of leukemia. Adv Biol Regul 2017. [PMID: 28623166 DOI: 10.1016/j.jbior.2017.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Signaling networks that regulate cellular proliferation often involve complex interactions between several signaling pathways. In this manuscript we review the crosstalk between the Casein Kinase II (CK2) and Glycogen Synthase Kinase-3 (GSK-3) pathways that plays a critical role in the regulation of cellular proliferation in leukemia. Both CK2 and GSK-3 are potential targets for anti-leukemia treatment. Previously published data suggest that CK2 and GSK-3 act synergistically to promote the phosphatidylinositol-3 kinase (PI3K) pathway via phosphorylation of PTEN. More recent data demonstrate another mechanism through which CK2 promotes the PI3K pathway - via transcriptional regulation of PI3K pathway genes by the newly-discovered CK2-Ikaros axis. Together, these data suggest that the CK2 and GSK-3 pathways regulate AKT/PI3K signaling in leukemia via two complementary mechanisms: a) direct phosphorylation of PTEN and b) transcriptional regulation of PI3K-promoting genes. Functional interactions between CK2, Ikaros and GSK3 define a novel signaling network that regulates proliferation of leukemia cells. This regulatory network involves both direct posttranslational modifications (by CK and GSK-3) and transcriptional regulation (via CK2-mediated phosphorylation of Ikaros). This information provides a basis for the development of targeted therapy for leukemia.
Collapse
Affiliation(s)
- Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Mario Soliman
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Malika Kapadia
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | - Kimberly Payne
- Department of Anatomy, Loma Linda University, Loma Linda, CA, USA.
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
23
|
Figliozzi RW, Chen F, Hsia SV. New insights on thyroid hormone mediated regulation of herpesvirus infections. Cell Biosci 2017; 7:13. [PMID: 28344765 PMCID: PMC5360088 DOI: 10.1186/s13578-017-0140-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 03/14/2017] [Indexed: 12/22/2022] Open
Abstract
Thyroid hormone (T3) has been suggested to participate in the regulation of herpesvirus replication during reactivation. Clinical observations and in vivo experiments suggest that T3 are involved in the suppression of herpes virus replication. In vitro, differentiated LNCaP cells, a human neuron-like cells, further resisted HSV-1 replication upon addition of T3. Previous studies indicate that T3 controlled the expression of several key viral genes via its nuclear receptors in differentiated LNCaP cells. Additional observation showed that differentiated LNCaP cells have active PI3K signaling and inhibitor LY294002 can reverse T3-mediated repression of viral replication. Active PI3K signaling has been linked to HSV-1 latency in neurons. The hypothesis is that, in addition to repressing viral gene transcription at the nuclear level, T3 may influence PI3K signaling to control HSV-1 replication in human neuron-like cells. We review the genomic and non-genomic regulatory roles of T3 by examining the phosphoinositide 3-kinase (PI3K) pathway gene expression profile changes in differentiated LNCaP cells under the influence of hormone. The results indicated that 15 genes were down-regulated and 22 genes were up-regulated in T3-treated differentiated LNCaP cells in comparison to undifferentiated state. Of all these genes, casein kinase 2 (CK2), a key component to enhance PI3K signaling pathway, was significantly increased upon T3 treatment only while the cells were differentiated. Further studies revealed that CK2 inhibitors tetrabrominated cinnamic acid (TBCA) and 4, 5, 6, 7-tetrabromo-2H-benzotriazole (TBB) both reversed the T3-mediated repression of viral replication. Together these observations suggested a new approach to understanding the roles of T3 in the complicated regulation of HSV-1 replication during latency and reactivation.
Collapse
Affiliation(s)
- Robert W Figliozzi
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, USA.,Department of Natural Sciences, School of Agriculture and Natural Sciences, University of Maryland Eastern Shore, Princess Anne, USA
| | - Feng Chen
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, USA
| | - S Victor Hsia
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Professions, University of Maryland Eastern Shore, Princess Anne, USA.,Department of Natural Sciences, School of Agriculture and Natural Sciences, University of Maryland Eastern Shore, Princess Anne, USA
| |
Collapse
|
24
|
Phosphoproteomics Reveals HMGA1, a CK2 Substrate, as a Drug-Resistant Target in Non-Small Cell Lung Cancer. Sci Rep 2017; 7:44021. [PMID: 28290473 PMCID: PMC5349541 DOI: 10.1038/srep44021] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/03/2017] [Indexed: 12/13/2022] Open
Abstract
Although EGFR tyrosine kinase inhibitors (TKIs) have demonstrated good efficacy in non-small-cell lung cancer (NSCLC) patients harboring EGFR mutations, most patients develop intrinsic and acquired resistance. We quantitatively profiled the phosphoproteome and proteome of drug-sensitive and drug-resistant NSCLC cells under gefitinib treatment. The construction of a dose-dependent responsive kinase-substrate network of 1548 phosphoproteins and 3834 proteins revealed CK2-centric modules as the dominant core network for the potential gefitinib resistance-associated proteins. CK2 knockdown decreased cell survival in gefitinib-resistant NSCLCs. Using motif analysis to identify the CK2 core sub-network, we verified that elevated phosphorylation level of a CK2 substrate, HMGA1 was a critical node contributing to EGFR-TKI resistance in NSCLC cell. Both HMGA1 knockdown or mutation of the CK2 phosphorylation site, S102, of HMGA1 reinforced the efficacy of gefitinib in resistant NSCLC cells through reactivation of the downstream signaling of EGFR. Our results delineate the TKI resistance-associated kinase-substrate network, suggesting a potential therapeutic strategy for overcoming TKI-induced resistance in NSCLC.
Collapse
|
25
|
Targeting Protein Kinase CK2: Evaluating CX-4945 Potential for GL261 Glioblastoma Therapy in Immunocompetent Mice. Pharmaceuticals (Basel) 2017; 10:ph10010024. [PMID: 28208677 PMCID: PMC5374428 DOI: 10.3390/ph10010024] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/01/2017] [Accepted: 02/06/2017] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) causes poor survival in patients even with aggressive treatment. Temozolomide (TMZ) is the standard chemotherapeutic choice for GBM treatment but resistance always ensues. Protein kinase CK2 (CK2) contributes to tumour development and proliferation in cancer, and it is overexpressed in human GBM. Accordingly, targeting CK2 in GBM may benefit patients. Our goal has been to evaluate whether CK2 inhibitors (iCK2s) could increase survival in an immunocompetent preclinical GBM model. Cultured GL261 cells were treated with different iCK2s including CX-4945, and target effects evaluated in vitro. CX-4945 was found to decrease CK2 activity and Akt(S129) phosphorylation in GL261 cells. Longitudinal in vivo studies with CX-4945 alone or in combination with TMZ were performed in tumour-bearing mice. Increase in survival (p < 0.05) was found with combined CX-4945 and TMZ metronomic treatment (54.7 ± 11.9 days, n = 6) when compared to individual metronomic treatments (CX-4945: 24.5 ± 2.0 and TMZ: 38.7 ± 2.7, n = 6) and controls (22.5 ± 1.2, n = 6). Despite this, CX-4945 did not improve mice outcome when administered on every/alternate days, either alone or in combination with 3-cycle TMZ. The highest survival rate was obtained with the metronomic combined TMZ+CX-4945 every 6 days, pointing to the participation of the immune system or other ancillary mechanism in therapy response.
Collapse
|
26
|
Chua MMJ, Ortega CE, Sheikh A, Lee M, Abdul-Rassoul H, Hartshorn KL, Dominguez I. CK2 in Cancer: Cellular and Biochemical Mechanisms and Potential Therapeutic Target. Pharmaceuticals (Basel) 2017; 10:E18. [PMID: 28134850 PMCID: PMC5374422 DOI: 10.3390/ph10010018] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/23/2017] [Accepted: 01/23/2017] [Indexed: 01/09/2023] Open
Abstract
CK2 genes are overexpressed in many human cancers, and most often overexpression is associated with worse prognosis. Site-specific expression in mice leads to cancer development (e.g., breast, lymphoma) indicating the oncogenic nature of CK2. CK2 is involved in many key aspects of cancer including inhibition of apoptosis, modulation of signaling pathways, DNA damage response, and cell cycle regulation. A number of CK2 inhibitors are now available and have been shown to have activity against various cancers in vitro and in pre-clinical models. Some of these inhibitors are now undergoing exploration in clinical trials as well. In this review, we will examine some of the major cancers in which CK2 inhibition has promise based on in vitro and pre-clinical studies, the proposed cellular and signaling mechanisms of anti-cancer activity by CK2 inhibitors, and the current or recent clinical trials using CK2 inhibitors.
Collapse
Affiliation(s)
- Melissa M J Chua
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Charina E Ortega
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Ayesha Sheikh
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Migi Lee
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Hussein Abdul-Rassoul
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Kevan L Hartshorn
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| | - Isabel Dominguez
- Department of Medicine, School of Medicine, Boston University, Boston, MA 02118, USA.
| |
Collapse
|
27
|
Rozovski U, Harris DM, Li P, Liu Z, Jain P, Veletic I, Ferrajoli A, Burger J, O'Brien S, Bose P, Thompson P, Jain N, Wierda W, Keating MJ, Estrov Z. Constitutive Phosphorylation of STAT3 by the CK2-BLNK-CD5 Complex. Mol Cancer Res 2017; 15:610-618. [PMID: 28130399 DOI: 10.1158/1541-7786.mcr-16-0291] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/19/2016] [Accepted: 01/10/2017] [Indexed: 12/25/2022]
Abstract
In chronic lymphocytic leukemia (CLL), STAT3 is constitutively phosphorylated on serine 727 and plays a role in the pathobiology of CLL. However, what induces constitutive phosphorylation of STAT3 is currently unknown. Mass spectrometry was used to identify casein kinase 2 (CK2), a serine/threonine kinase that coimmunoprecipitated with serine phosphorylated STAT3 (pSTAT3). Furthermore, activated CK2 incubated with recombinant STAT3 induced phosphorylation of STAT3 on serine 727. Although STAT3 and CK2 are present in normal B- and T cells, STAT3 is not constitutively phosphorylated in these cells. Further study found that CD5 and BLNK coexpressed in CLL, but not in normal B- or T cells, are required for STAT3 phosphorylation. To elucidate the relationship of CD5 and BLNK to CK2 and STAT3, STAT3 was immunoprecipitated from CLL cells, and CK2, CD5, and BLNK were detected in the immunoprecipitate. Conversely, STAT3, CD5, and BLNK were in the immunoprecipitate of CLL cells immunoprecipitated with CK2 antibodies. Furthermore, siRNA knockdown of CD5 or BLNK, or treatment with CD5-neutralizing antibodies significantly reduced the levels of serine pSTAT3 in CLL cells. Finally, confocal microscopy determined that CD5 is cell membrane bound, and fractionation studies revealed that the CK2/CD5/BLNK/STAT3 complex remains in the cytoplasm, whereas serine pSTAT3 is shuttled to the nucleus.Implications: These data show that the cellular proteins CK2, CD5, and BLNK are required for constitutive phosphorylation of STAT3 in CLL. Whether this protein complex phosphorylates other proteins or inhibiting its activity would have clinical benefit in patients has yet to be determined. Mol Cancer Res; 15(5); 610-8. ©2017 AACR.
Collapse
Affiliation(s)
- Uri Rozovski
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Division of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah Tiqva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David M Harris
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ping Li
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhiming Liu
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Preetesh Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ivo Veletic
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alessandra Ferrajoli
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jan Burger
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Susan O'Brien
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Philip Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
28
|
Ma Z, Wang X, He J, Xia J, Li Y. Increased expression of protein kinase CK2α correlates with poor patient prognosis in epithelial ovarian cancer. PLoS One 2017; 12:e0174037. [PMID: 28355289 PMCID: PMC5371331 DOI: 10.1371/journal.pone.0174037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 03/02/2017] [Indexed: 02/05/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the deadly gynecological malignancies. The function of protein kinase CK2α (CK2α) in EOC is still unknown. Our study aimed to investigate the relationship between the protein expression of CK2α and the tumor progression, the prognosis of human EOC. In this study, we analyzed the expression levels of CK2α through Western blot, using EOC cell lines like A2780, HO8910, COV644, OVCAR3, SKOV3, and the primary normal ovarian surface epithelial (NOSE) cells. Furthermore, OVCAR3 and SKOV3 EOC cells were employed as a cellular model to study the role of CK2α on cell growth, migration, invasion, apoptosis, and cell cycle distribution. In addition, we investigated CK2α protein expression in tumor tissues from patients with EOC by immunohistochemistry and analyzed the association between CK2α expression and clinicopathologic parameters and prognosis of EOC patients. And we found that compared with NOSE cells, CK2α protein expression was increased in A2780, HO8910, OVCAR3, and SKOV3 ovarian cancer cell lines. Decreased CK2α expression suppressed OVCAR3 and SKOV3 cell growth and induced more apoptosis. CK2α knockdown using specific siRNAs inhibited migration and invasion ability of OVCAR3 and SKOV3 cells. In addition, high CK2α protein expression was found in 68.4% (80/117) of EOC patients. Increased CK2α expression of was significantly correlated with FIGO staging and peritoneal cytology. Patients with higher CK2α expression had a significantly poorer overall survival compared with those with lower CK2α expression. Multi-variate Cox regression analysis proved that increased CK2α expression was an independent prognostic marker for EOC. Taken together, our data displayed that CK2α may play a role in tumor aggressive behavior of EOC and could be used as a marker for predicting prognosis of EOC patient. High CK2α expression might predict poor patient survival.
Collapse
Affiliation(s)
- Zebiao Ma
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, P. R. China
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- Department of Gynecologic Oncology, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, P. R. China
| | - Xiaojing Wang
- Department of Gynecologic Oncology, The Affiliated Cancer Hospital of Zhengzhou University; Henan Province Cancer Hospital, Zhengzhou, Henan, P.R. China
| | - Jiehua He
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, P. R. China
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
| | - Jianchuan Xia
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, P. R. China
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- * E-mail: (YFL); (JCX)
| | - Yanfang Li
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, Guangdong, P. R. China
- Department of Gynecologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P. R. China
- * E-mail: (YFL); (JCX)
| |
Collapse
|
29
|
Gowda C, Song C, Kapadia M, Payne JL, Hu T, Ding Y, Dovat S. Regulation of cellular proliferation in acute lymphoblastic leukemia by Casein Kinase II (CK2) and Ikaros. Adv Biol Regul 2016; 63:71-80. [PMID: 27666503 DOI: 10.1016/j.jbior.2016.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/23/2022]
Abstract
The IKZF1 gene encodes the Ikaros protein, a zinc finger transcriptional factor that acts as a master regulator of hematopoiesis and a tumor suppressor in leukemia. Impaired activity of Ikaros is associated with the development of high-risk acute lymphoblastic leukemia (ALL) with a poor prognosis. The molecular mechanisms that regulate Ikaros' function as a tumor suppressor and regulator of cellular proliferation are not well understood. We demonstrated that Ikaros is a substrate for Casein Kinase II (CK2), an oncogenic kinase that is overexpressed in ALL. Phosphorylation of Ikaros by CK2 impairs Ikaros' DNA-binding ability, as well as Ikaros' ability to regulate gene expression and function as a tumor suppressor in leukemia. Targeting CK2 with specific inhibitors restores Ikaros' function as a transcriptional regulator and tumor suppressor resulting in a therapeutic, anti-leukemia effect in a preclinical model of ALL. Here, we review the genes and pathways that are regulated by Ikaros and the molecular mechanisms through which Ikaros and CK2 regulate cellular proliferation in leukemia.
Collapse
Affiliation(s)
- Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Malika Kapadia
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Jonathon L Payne
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA; Loma Linda University, Loma Linda, CA, USA
| | - Tommy Hu
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
30
|
Zhang HX, Jiang SS, Zhang XF, Zhou ZQ, Pan QZ, Chen CL, Zhao JJ, Tang Y, Xia JC, Weng DS. Protein kinase CK2α catalytic subunit is overexpressed and serves as an unfavorable prognostic marker in primary hepatocellular carcinoma. Oncotarget 2016; 6:34800-17. [PMID: 26430962 PMCID: PMC4741491 DOI: 10.18632/oncotarget.5470] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023] Open
Abstract
Protein kinase CK2 alpha (CK2α), one isoform of the catalytic subunit of serine/threonine kinase CK2, has been indicated to participate in tumorigenesis of various malignancies. We conducted this study to investigate the biological significances of CK2α expression in hepatocellular carcinoma (HCC) development. Real-time quantitative polymerase and western blotting analyses revealed that CK2α expression was significantly increased at mRNA and protein levels in HCC tissues. Immunohistochemical analyses indicated that amplified expression of CK2α was highly correlated with poor prognosis. And functional analyses (cell proliferation and colony formation assays, cell migration and invasion assays, cell cycle and apoptosis assays) found that CK2α promoted cell proliferation, colony formation, migration and invasion, as well as inhibited apoptosis in hepatoma cell lines in vitro. CK2α-silenced resulted in significant apoptosis in cells that was demonstrated been associated with downregulation of expression of Bcl-2, p-AKT (ser473) and upregulation of expression of total P53, p-P53, Bax, caspase3 and cleaved-caspase3 in HCC cells. In addition, experiments with a mouse model revealed that the stimulative effect of CK2α on tumorigenesis in nude mice. Our results suggest that CK2α might play an oncogenic role in HCC, and therefore it could serve as a biomarker for prognostic and therapeutic applications in HCC.
Collapse
Affiliation(s)
- Hong-Xia Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shan-Shan Jiang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xiao-Fei Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zi-Qi Zhou
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Qiu-Zhong Pan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Chang-Long Chen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jing-Jing Zhao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Yan Tang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Jian-Chuan Xia
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - De-Sheng Weng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China.,Department of Biotherapy, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
31
|
Melão A, Spit M, Cardoso BA, Barata JT. Optimal interleukin-7 receptor-mediated signaling, cell cycle progression and viability of T-cell acute lymphoblastic leukemia cells rely on casein kinase 2 activity. Haematologica 2016; 101:1368-1379. [PMID: 27470599 DOI: 10.3324/haematol.2015.141143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 07/26/2016] [Indexed: 11/09/2022] Open
Abstract
Interleukin-7 and interleukin-7 receptor are essential for normal T-cell development and homeostasis, whereas excessive interleukin-7/interleukin-7 receptor-mediated signaling promotes leukemogenesis. The protein kinase, casein kinase 2, is overexpressed and hyperactivated in cancer, including T-cell acute lymphoblastic leukemia. Herein, we show that while interleukin-7 had a minor but significant positive effect on casein kinase 2 activity in leukemia T-cells, casein kinase 2 activity was mandatory for optimal interleukin-7/interleukin-7 receptor-mediated signaling. Casein kinase 2 pharmacological inhibition impaired signal transducer and activator of transcription 5 and phosphoinositide 3-kinase/v-Akt murine thymoma viral oncogene homolog 1 pathway activation triggered by interleukin-7 or by mutational activation of interleukin-7 receptor. By contrast, forced expression of casein kinase 2 augmented interleukin-7 signaling in human embryonic kidney 293T cells reconstituted with the interleukin-7 receptor machinery. Casein kinase 2 inactivation prevented interleukin-7-induced B-cell lymphoma 2 upregulation, maintenance of mitochondrial homeostasis and viability of T-cell acute lymphoblastic leukemia cell lines and primary leukemia cells collected from patients at diagnosis. Casein kinase 2 inhibition further abrogated interleukin-7-mediated cell growth and upregulation of the transferrin receptor, and blocked cyclin A and E upregulation and cell cycle progression. Notably, casein kinase 2 was also required for the viability of mutant interleukin-7 receptor expressing leukemia T-cells. Overall, our study identifies casein kinase 2 as a major player in the effects of interleukin-7 and interleukin-7 receptor in T-cell acute lymphoblastic leukemia. This further highlights the potential relevance of targeting casein kinase 2 in this malignancy.
Collapse
Affiliation(s)
- Alice Melão
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maureen Spit
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Bruno A Cardoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
32
|
Zhou B, Ritt DA, Morrison DK, Der CJ, Cox AD. Protein Kinase CK2α Maintains Extracellular Signal-regulated Kinase (ERK) Activity in a CK2α Kinase-independent Manner to Promote Resistance to Inhibitors of RAF and MEK but Not ERK in BRAF Mutant Melanoma. J Biol Chem 2016; 291:17804-15. [PMID: 27226552 DOI: 10.1074/jbc.m115.712885] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Indexed: 11/06/2022] Open
Abstract
The protein kinase casein kinase 2 (CK2) is a pleiotropic and constitutively active kinase that plays crucial roles in cellular proliferation and survival. Overexpression of CK2, particularly the α catalytic subunit (CK2α, CSNK2A1), has been implicated in a wide variety of cancers and is associated with poorer survival and resistance to both conventional and targeted anticancer therapies. Here, we found that CK2α protein is elevated in melanoma cell lines compared with normal human melanocytes. We then tested the involvement of CK2α in drug resistance to Food and Drug Administration-approved single agent targeted therapies for melanoma. In BRAF mutant melanoma cells, ectopic CK2α decreased sensitivity to vemurafenib (BRAF inhibitor), dabrafenib (BRAF inhibitor), and trametinib (MEK inhibitor) by a mechanism distinct from that of mutant NRAS. Conversely, knockdown of CK2α sensitized cells to inhibitor treatment. CK2α-mediated RAF-MEK kinase inhibitor resistance was tightly linked to its maintenance of ERK phosphorylation. We found that CK2α post-translationally regulates the ERK-specific phosphatase dual specificity phosphatase 6 (DUSP6) in a kinase dependent-manner, decreasing its abundance. However, we unexpectedly showed, by using a kinase-inactive mutant of CK2α, that RAF-MEK inhibitor resistance did not rely on CK2α kinase catalytic function, and both wild-type and kinase-inactive CK2α maintained ERK phosphorylation upon inhibition of BRAF or MEK. That both wild-type and kinase-inactive CK2α bound equally well to the RAF-MEK-ERK scaffold kinase suppressor of Ras 1 (KSR1) suggested that CK2α increases KSR facilitation of ERK phosphorylation. Accordingly, CK2α did not cause resistance to direct inhibition of ERK by the ERK1/2-selective inhibitor SCH772984. Our findings support a kinase-independent scaffolding function of CK2α that promotes resistance to RAF- and MEK-targeted therapies.
Collapse
Affiliation(s)
| | - Daniel A Ritt
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, NCI, National Institutes of Health, Frederick, Maryland 21702
| | - Channing J Der
- From the Department of Pharmacology, Lineberger Comprehensive Cancer Center, and
| | - Adrienne D Cox
- From the Department of Pharmacology, Lineberger Comprehensive Cancer Center, and Department of Radiation Oncology, University of North Carolina, Chapel Hill, North Carolina 27599 and
| |
Collapse
|
33
|
Kohnoh T, Hashimoto N, Ando A, Sakamoto K, Miyazaki S, Aoyama D, Kusunose M, Kimura M, Omote N, Imaizumi K, Kawabe T, Hasegawa Y. Hypoxia-induced modulation of PTEN activity and EMT phenotypes in lung cancers. Cancer Cell Int 2016; 16:33. [PMID: 27095949 PMCID: PMC4836157 DOI: 10.1186/s12935-016-0308-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 04/11/2016] [Indexed: 01/11/2023] Open
Abstract
Background Persistent hypoxia stimulation, one of the most critical microenvironmental factors, accelerates the acquisition of epithelial–mesenchymal transition (EMT) phenotypes in lung cancer cells. Loss of phosphatase and tensin homologue deleted from chromosome 10 (PTEN) expression might accelerate the development of lung cancer in vivo. Recent studies suggest that tumor microenvironmental factors might modulate the PTEN activity though a decrease in total PTEN expression and an increase in phosphorylation of the PTEN C-terminus (p-PTEN), resulting in the acquisition of the EMT phenotypes. Nevertheless, it is not known whether persistent hypoxia can modulate PTEN phosphatase activity or whether hypoxia-induced EMT phenotypes are negatively regulated by the PTEN phosphatase activity. We aimed to investigate hypoxia-induced modulation of PTEN activity and EMT phenotypes in lung cancers. Methods Western blotting was performed in five lung cancer cell lines to evaluate total PTEN expression levels and the PTEN activation. In a xenograft model of lung cancer cells with endogenous PTEN expression, the PTEN expression was evaluated by immunohistochemistry. To examine the effect of hypoxia on phenotypic alterations in lung cancer cells in vitro, the cells were cultured under hypoxia. The effect of unphosphorylated PTEN (PTEN4A) induction on hypoxia-induced EMT phenotypes was evaluated, by using a Dox-dependent gene expression system. Results Lung cancer cells involving the EMT phenotypes showed a decrease in total PTEN expression and an increase in p-PTEN. In a xenograft model, loss of PTEN expression was observed in the tumor lesions showing tissue hypoxia. Persistent hypoxia yielded an approximately eight-fold increase in the p-PTEN/PTEN ratio in vitro. PTEN4A did not affect stabilization of hypoxia-inducible factor 1α. PTEN4A blunted hypoxia-induced EMT via inhibition of β-catenin translocation into the cytoplasm and nucleus. Conclusion Our study strengthens the therapeutic possibility that compensatory induction of unphosphorylated PTEN may inhibit the acquisition of EMT phenotypes in lung cancer cells under persistent hypoxia.
Collapse
Affiliation(s)
- Takashi Kohnoh
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Akira Ando
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Koji Sakamoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Shinichi Miyazaki
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Daisuke Aoyama
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Masaaki Kusunose
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Motohiro Kimura
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Norihito Omote
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine and Allergy, Fujita Health University, Toyoake, Japan
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-Ku, Nagoya 466-8550 Japan
| |
Collapse
|
34
|
Mandato E, Manni S, Zaffino F, Semenzato G, Piazza F. Targeting CK2-driven non-oncogene addiction in B-cell tumors. Oncogene 2016; 35:6045-6052. [PMID: 27041560 DOI: 10.1038/onc.2016.86] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/15/2016] [Accepted: 02/15/2016] [Indexed: 12/14/2022]
Abstract
Genetic mutations of oncogenes often underlie deranged cell growth and altered differentiation pathways leading to malignant transformation of B-lymphocytes. However, addiction to oncogenes is not the only drive to lymphoid tumor pathogenesis. Dependence on non-oncogenes, which act by propelling basic mechanisms of cell proliferation and survival, has also been recognized in the pathobiology of lymphoid leukemias, lymphomas and multiple myeloma. Among the growing number of molecules that may uphold non-oncogene addiction, a key place is increasingly being recognized to the serine-threonine kinase CK2. This enzyme is overexpressed and overactive in B-acute lymphoblastic leukemia, multiple myeloma, chronic lymphocytic leukemia and non-Hodgkin lymphomas, such as mantle cell, follicular, Burkitt's and diffuse large B-cell lymphomas. In these tumors, CK2 may serve the activity of oncogenes, similar to BCR-ABL and c-MYC, control the activation of critical signaling cascades, such as NF-κB (nuclear factor-κB), STAT3 (signal transducer and activator of transcription 3) and PTEN/PI3K/AKT (phosphatase and tensin homolog protein/phosphoinositide 3-kinase/AKR thymoma), and sustain multiple cellular stress-elicited pathways, such as the proteotoxic stress, unfolded protein and DNA-damage responses. CK2 has also been shown to have an essential role in tuning signals derived from the stromal tumor microenvironment. Not surprisingly, targeting CK2 in lymphoid tumor cell lines or mouse xenograft models can boost the cytotoxic effects of both conventional chemotherapeutics and novel agents, similar to heat-shock protein 90, proteasome and tyrosine kinases inhibitors. In this review, we summarize the evidence indicating how CK2 embodies most of the features of a cancer growth-promoting non-oncogene, focusing on lymphoid tumors. We further discuss the preclinical data of the use of small ATP-competitive CK2 inhibitors, which hold the promise to be additional options in novel drug combinations for the therapy of lymphoid and plasmacellular malignancies.
Collapse
Affiliation(s)
- E Mandato
- Department of Medicine, Hematology Branch, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - S Manni
- Department of Medicine, Hematology Branch, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - F Zaffino
- Department of Medicine, Hematology Branch, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - G Semenzato
- Department of Medicine, Hematology Branch, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| | - F Piazza
- Department of Medicine, Hematology Branch, University of Padova, Padova, Italy.,Venetian Institute of Molecular Medicine, Padova, Italy
| |
Collapse
|
35
|
Liu Y, Amin EB, Mayo MW, Chudgar NP, Bucciarelli PR, Kadota K, Adusumilli PS, Jones DR. CK2α' Drives Lung Cancer Metastasis by Targeting BRMS1 Nuclear Export and Degradation. Cancer Res 2016; 76:2675-86. [PMID: 26980766 DOI: 10.1158/0008-5472.can-15-2888] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/27/2016] [Indexed: 11/16/2022]
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) is decreased in non-small cell lung cancer (NSCLC) and other solid tumors, and its loss correlates with increased metastases. We show that BRMS1 is posttranslationally regulated by TNF-induced casein kinase 2 catalytic subunit (CK2α') phosphorylation of nuclear BRMS1 on serine 30 (S30), resulting in 14-3-3ε-mediated nuclear exportation, increased BRMS1 cytosolic expression, and ubiquitin-proteasome-induced BRMS1 degradation. Using our in vivo orthotopic mouse model of lung cancer metastases, we found that mutation of S30 in BRMS1 or the use of the CK2-specific small-molecule inhibitor CX4945 abrogates CK2α'-induced cell migration and invasion and decreases NSCLC metastasis by 60-fold. Analysis of 160 human NSCLC specimens confirmed that tumor CK2α' and cytoplasmic BRMS1 expression levels are associated with increased tumor recurrence, metastatic foci, and reduced disease-free survival. Collectively, we identify a therapeutically exploitable posttranslational mechanism by which CK2α-mediated degradation of BRMS1 promotes metastases in lung cancer. Cancer Res; 76(9); 2675-86. ©2016 AACR.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Elianna B Amin
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marty W Mayo
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia
| | - Neel P Chudgar
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Peter R Bucciarelli
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kyuichi Kadota
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad S Adusumilli
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York. Weill Cornell Medical College, New York, New York
| | - David R Jones
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York. Weill Cornell Medical College, New York, New York.
| |
Collapse
|
36
|
Pizzi M, Piazza F, Agostinelli C, Fuligni F, Benvenuti P, Mandato E, Casellato A, Rugge M, Semenzato G, Pileri SA. Protein kinase CK2 is widely expressed in follicular, Burkitt and diffuse large B-cell lymphomas and propels malignant B-cell growth. Oncotarget 2016; 6:6544-52. [PMID: 25788269 PMCID: PMC4466633 DOI: 10.18632/oncotarget.3446] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 01/28/2015] [Indexed: 12/02/2022] Open
Abstract
Serine-threonine kinase CK2 is highly expressed and pivotal for survival and proliferation in multiple myeloma, chronic lymphocytic leukemia and mantle cell lymphoma. Here, we investigated the expression of α catalytic and β regulatory CK2 subunits by immunohistochemistry in 57 follicular (FL), 18 Burkitt (BL), 52 diffuse large B-cell (DLBCL) non-Hodgkin lymphomas (NHL) and in normal reactive follicles. In silico evaluation of available Gene Expression Profile (GEP) data sets from patients and Western blot (WB) analysis in NHL cell-lines were also performed. Moreover, the novel, clinical-grade, ATP-competitive CK2-inhibitor CX-4945 (Silmitasertib) was assayed on lymphoma cells. CK2 was detected in 98.4% of cases with a trend towards a stronger CK2α immunostain in BL compared to FL and DLBCL. No significant differences were observed between Germinal Center B (GCB) and non-GCB DLBCL types. GEP data and WB confirmed elevated CK2 mRNA and protein levels as well as active phosphorylation of specific targets in NHL cells. CX-4945 caused a dose-dependent growth-arresting effect on GCB, non-GCB DLBCL and BL cell-lines and it efficiently shut off phosphorylation of NF-κB RelA and CDC37 on CK2 target sites. Thus, CK2 is highly expressed and could represent a suitable therapeutic target in BL, FL and DLBCL NHL.
Collapse
Affiliation(s)
- Marco Pizzi
- Department of Medicine, Surgical Pathology and Cytopathology Unit, DIMED University of Padua, Padua, Italy
| | - Francesco Piazza
- Department of Medicine, Hematology and Clinical Immunology Branch, DIMED University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Claudio Agostinelli
- Department of Experimental, Hematopathology and Hematology Sections, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Fabio Fuligni
- Department of Experimental, Hematopathology and Hematology Sections, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Pietro Benvenuti
- Department of Medicine, Surgical Pathology and Cytopathology Unit, DIMED University of Padua, Padua, Italy
| | - Elisa Mandato
- Department of Medicine, Hematology and Clinical Immunology Branch, DIMED University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Alessandro Casellato
- Department of Medicine, Hematology and Clinical Immunology Branch, DIMED University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Massimo Rugge
- Department of Medicine, Surgical Pathology and Cytopathology Unit, DIMED University of Padua, Padua, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Hematology and Clinical Immunology Branch, DIMED University of Padua, Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Stefano A Pileri
- Department of Experimental, Hematopathology and Hematology Sections, Diagnostic and Specialty Medicine, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
Morotti A, Panuzzo C, Crivellaro S, Carrà G, Fava C, Guerrasio A, Pandolfi PP, Saglio G. BCR-ABL inactivates cytosolic PTEN through Casein Kinase II mediated tail phosphorylation. Cell Cycle 2015; 14:973-9. [PMID: 25608112 DOI: 10.1080/15384101.2015.1006970] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The tumor suppressive function of PTEN is exerted within 2 different cellular compartments. In the cytosol-membrane, it negatively regulates PI3K-AKT pathway through the de-phosphorylation of phosphatidylinositol (3,4,5)-triphosphate (PIP3), therefore blocking one of the major signaling transduction pathways in tumorigenesis. In the nucleus, PTEN controls genomic stability and cellular proliferation through phosphatase independent mechanisms. Importantly, impairments in PTEN cellular compartmentalization, changes in protein levels and post-transductional modifications affect PTEN tumor suppressive functions. Targeting mechanisms that inactivate PTEN promotes apoptosis induction of cancer cells, without affecting normal cells, with appealing therapeutic implications. Recently, we have shown that BCR-ABL promotes PTEN nuclear exclusion by favoring HAUSP mediated PTEN de-ubiquitination in Chronic Myeloid Leukemia. Here, we show that nuclear exclusion of PTEN is associated with PTEN inactivation in the cytoplasm of CML cells. In particular, BCR-ABL promotes Casein Kinase II-mediated PTEN tail phosphorylation with consequent inhibition of the phosphatase activity toward PIP3. Targeting Casein Kinase II promotes PTEN reactivation with apoptosis induction. We therefore propose a novel BCR-ABL/CKII/PTEN pathway as a potential target to achieve synthetic lethality with tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Alessandro Morotti
- a Department of Clinical and Biological Sciences; San Luigi Hospital ; Orbassano - Turin University ; Turin , Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Kusunose M, Hashimoto N, Kimura M, Ogata R, Aoyama D, Sakamoto K, Miyazaki S, Ando A, Omote N, Imaizumi K, Kawabe T, Hasegawa Y. Direct regulation of transforming growth factor β-induced epithelial-mesenchymal transition by the protein phosphatase activity of unphosphorylated PTEN in lung cancer cells. Cancer Sci 2015; 106:1693-704. [PMID: 26450531 PMCID: PMC4714667 DOI: 10.1111/cas.12831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/30/2015] [Accepted: 10/04/2015] [Indexed: 12/29/2022] Open
Abstract
Transforming growth factor β (TGFβ) causes the acquisition of epithelial-mesenchymal transition (EMT). Although the tumor suppressor gene PTEN (phosphatase and tensin homologue deleted from chromosome 10) can negatively regulate many signaling pathways activated by TGFβ, hyperactivation of these signaling pathways is observed in lung cancer cells. We recently showed that PTEN might be subject to TGFβ-induced phosphorylation of its C-terminus, resulting in a loss of its enzyme activities; PTEN with an unphosphorylated C-terminus (PTEN4A), but not PTEN wild, inhibits TGFβ-induced EMT. Nevertheless, whether or not the blockade of TGFβ-induced EMT by the PTEN phosphatase activity might be attributed to the unphosphorylated PTEN C-terminus itself has not been fully determined. Furthermore, the lipid phosphatase activity of PTEN is well characterized, whereas the protein phosphatase activity has not been determined. By using lung cancer cells carrying PTEN domain deletions or point mutants, we investigated the role of PTEN protein phosphatase activities on TGFβ-induced EMT in lung cancer cells. The unphosphorylated PTEN C-terminus might not directly retain the phosphatase activities and repress TGFβ-induced EMT; the modification that keeps the PTEN C-terminus not phosphorylated might enable PTEN to retain the phosphatase activity. PTEN4A with G129E mutation, which lacks lipid phosphatase activity but retains protein phosphatase activity, repressed TGFβ-induced EMT. Furthermore, the protein phosphatase activity of PTEN4A depended on an essential association between the C2 and phosphatase domains. These data suggest that the protein phosphatase activity of PTEN with an unphosphorylated C-terminus might be a therapeutic target to negatively regulate TGFβ-induced EMT in lung cancer cells.
Collapse
Affiliation(s)
- Masaaki Kusunose
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Naozumi Hashimoto
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Motohiro Kimura
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Ryo Ogata
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Daisuke Aoyama
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Koji Sakamoto
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Shinichi Miyazaki
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Akira Ando
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Norihito Omote
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine and AllergyFujita Health UniversityToyoakeJapan
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Yoshinori Hasegawa
- Department of Respiratory MedicineNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
39
|
Song C, Gowda C, Pan X, Ding Y, Tong Y, Tan BH, Wang H, Muthusami S, Ge Z, Sachdev M, Amin SG, Desai D, Gowda K, Gowda R, Robertson GP, Schjerven H, Muschen M, Payne KJ, Dovat S. Targeting casein kinase II restores Ikaros tumor suppressor activity and demonstrates therapeutic efficacy in high-risk leukemia. Blood 2015; 126:1813-22. [PMID: 26219304 PMCID: PMC4600018 DOI: 10.1182/blood-2015-06-651505] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/16/2015] [Indexed: 12/13/2022] Open
Abstract
Ikaros (IKZF1) is a tumor suppressor that binds DNA and regulates expression of its target genes. The mechanism of Ikaros activity as a tumor suppressor and the regulation of Ikaros function in leukemia are unknown. Here, we demonstrate that Ikaros controls cellular proliferation by repressing expression of genes that promote cell cycle progression and the phosphatidylinositol-3 kinase (PI3K) pathway. We show that Ikaros function is impaired by the pro-oncogenic casein kinase II (CK2), and that CK2 is overexpressed in leukemia. CK2 inhibition restores Ikaros function as transcriptional repressor of cell cycle and PI3K pathway genes, resulting in an antileukemia effect. In high-risk leukemia where one IKZF1 allele has been deleted, CK2 inhibition restores the transcriptional repressor function of the remaining wild-type IKZF1 allele. CK2 inhibition demonstrated a potent therapeutic effect in a panel of patient-derived primary high-risk B-cell acute lymphoblastic leukemia xenografts as indicated by prolonged survival and a reduction of leukemia burden. We demonstrate the efficacy of a novel therapeutic approach for high-risk leukemia: restoration of Ikaros tumor suppressor activity via inhibition of CK2. These results provide a rationale for the use of CK2 inhibitors in clinical trials for high-risk leukemia, including cases with deletion of one IKZF1 allele.
Collapse
Affiliation(s)
- Chunhua Song
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Chandrika Gowda
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Xiaokang Pan
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Yali Ding
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Yongqing Tong
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Bi-Hua Tan
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Haijun Wang
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Sunil Muthusami
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Zheng Ge
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA; Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Mansi Sachdev
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| | - Shantu G Amin
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Dhimant Desai
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Krishne Gowda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Raghavendra Gowda
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Gavin P Robertson
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA
| | - Hilde Schjerven
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA; and
| | - Markus Muschen
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA; and
| | - Kimberly J Payne
- Department of Pathology and Human Anatomy, Loma Linda University, Loma Linda, CA
| | - Sinisa Dovat
- Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
| |
Collapse
|
40
|
Fragoso R, Barata JT. Kinases, tails and more: regulation of PTEN function by phosphorylation. Methods 2015; 77-78:75-81. [PMID: 25448482 DOI: 10.1016/j.ymeth.2014.10.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 12/15/2022] Open
Abstract
Phosphorylation regulates the conformation, stability, homo- and heterotypic protein interactions, localization, and activity of the tumor suppressor PTEN. From a simple picture, at the beginning of this millennium, recognizing that CK2 phosphorylated PTEN at the C-terminus and thereby impacted on PTEN stability and activity, research has led to a significantly more complex scenario today, where for instance GSK3, Plk3, ATM, ROCK or Src-family kinases are also gaining the spotlight in this evolving play. Here, we review the current knowledge on the kinases that phosphorylate PTEN, and on the impact that specific phosphorylation events have on PTEN function.
Collapse
Affiliation(s)
- Rita Fragoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
41
|
Chon HJ, Bae KJ, Lee Y, Kim J. The casein kinase 2 inhibitor, CX-4945, as an anti-cancer drug in treatment of human hematological malignancies. Front Pharmacol 2015; 6:70. [PMID: 25873900 PMCID: PMC4379896 DOI: 10.3389/fphar.2015.00070] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/16/2015] [Indexed: 12/20/2022] Open
Abstract
The casein kinase 2 (CK2) protein kinase is a pro-survival kinase and therapeutic target in treatment of various human cancers. CK2 overexpression has been demonstrated in hematological malignancies, including chronic lymphocytic leukemia, chronic myeloid leukemia, acute lymphoblastic leukemia, acute myeloid leukemia, and multiple myeloma. CX-4945, also known as Silmitasertib, is an orally administered, highly specific, ATP-competitive inhibitor of CK2. CX-4945 induces cytotoxicity and apoptosis and is currently being evaluated in clinical trials for treatment of many cancer types. In the past 2 years, the focus on the therapeutic potential of CX-4945 has shifted from solid tumors to hematological malignancies. CX-4945 exerts anti-proliferative effects in hematological tumors by downregulating CK2 expression and suppressing activation of CK2-mediated PI3K/Akt/mTOR signaling pathways. Furthermore, combination of CX-4945 with other inhibitors yielded synergistic effects in cell death induction. These new findings demonstrate that CK2 overexpression contributes to blood cancer cell survival and resistance to chemotherapy. Combinatorial use of CX-4945 is a promising therapeutic tool for treatment of hematological malignancies.
Collapse
Affiliation(s)
- Hae J Chon
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University , Daejeon, South Korea
| | - Kyoung J Bae
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University , Daejeon, South Korea
| | - Yura Lee
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University , Daejeon, South Korea
| | - Jiyeon Kim
- Department of Biomedical Laboratory Science, School of Medicine, Eulji University , Daejeon, South Korea
| |
Collapse
|
42
|
Martins LR, Perera Y, Lúcio P, Silva MG, Perea SE, Barata JT. Targeting chronic lymphocytic leukemia using CIGB-300, a clinical-stage CK2-specific cell-permeable peptide inhibitor. Oncotarget 2014; 5:258-63. [PMID: 24473900 PMCID: PMC3960206 DOI: 10.18632/oncotarget.1513] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) remains an incurable malignancy, urging for the identification of new molecular targets for therapeutic intervention. CLL cells rely on overexpression and hyperactivation of the ubiquitous serine/threonine protein kinase CK2 for their viability in vitro. CIGB-300 is a cell-permeable selective CK2 inhibitor peptide undergoing clinical trials for several cancers. Here, we show that CIGB-300 promotes activation of the tumor suppressor PTEN and abrogates PI3K-mediated downstream signaling in CLL cells. In accordance, CIGB-300 decreases the viability and proliferation of CLL cell lines, promotes apoptosis of primary leukemia cells and displays antitumor efficacy in a xenograft mouse model of human CLL. Our studies provide pre-clinical support for the testing and possible inclusion of CK2 inhibitors in the clinical arsenal against CLL.
Collapse
Affiliation(s)
- Leila R Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
43
|
Zhang S, Yang YL, Wang Y, You B, Dai Y, Chan G, Hsieh D, Kim IJ, Fang LT, Au A, Stoppler HJ, Xu Z, Jablons DM, You L. CK2α, over-expressed in human malignant pleural mesothelioma, regulates the Hedgehog signaling pathway in mesothelioma cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2014; 33:93. [PMID: 25422081 PMCID: PMC4254219 DOI: 10.1186/s13046-014-0093-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/22/2014] [Indexed: 12/26/2022]
Abstract
Background The Hedgehog (Hh) signaling pathway has been implicated in stem cell maintenance and its activation is aberrant in several types of cancer including mesothelioma. Protein kinase CK2 affects several cell signaling pathways through the mechanism of phosphorylation. Methods Protein and mRNA levels of CK2α and Gli1 were tested by quantitative RT-PCR and immunohistochemistry staining in mesothelioma samples and cell lines. Down-regulated Gli1 expression and transcriptional activity were demonstrated by RT-PCR, Western blot and luciferase reporter assay. Results In this study, we show that CK2α is over-expressed and a positive regulator of Hegdehog/Gli1 signaling in human malignant pleural mesothelioma. First of all, we found that the mRNA levels of CK2α and Gli1 were broadly elevated and correlated (n = 52, r = 0.401, P < 0.05), compared with LP9 (a normal mesothelial cell line). We then investigated their expression at the protein level, and found that all the 7 mesothelioma cell lines tested showed positive staining in CK2α and Gli1 immunohistochemistry. Correlation analysis by Pearson test for CK2α and Gli1 expression in the 75 mesothelioma tumors and the 7 mesothelioma cell lines showed that the two protein expression was significantly correlated (n = 82, r = 0.554, P < 0.01). Furthermore, we demonstrated that Gli1 expression and transcriptional activity were down-regulated after CK2α was silenced in two mesothelioma cell lines (H28 and H2052). CK2α siRNA also down-regulated the expression of Hh target genes in these cell lines. Moreover, treatment with a small-molecule CK2α inhibitor CX-4945 led to dose-dependent inhibition of Gli1 expression and transcriptional activity. Conversely, forced over-expression of CK2α resulted in an increase in Gli1 transcriptional activity in H28 cells. Conclusions Thus, we report for the first time that over-expressed CK2α positively regulate Hh/Gli1 signaling in human mesothelioma. Electronic supplementary material The online version of this article (doi:10.1186/s13046-014-0093-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shulin Zhang
- Department of Thoracic Surgery, The Fifth Hospital of Dalian, Dalian, 116021, P.R. China. .,Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Yi-Lin Yang
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Yucheng Wang
- Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Bin You
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA. .,Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Affiliated with Capital University of Medical Science, Beijing, P.R. China.
| | - Yuyuan Dai
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Geraldine Chan
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - David Hsieh
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Il-Jin Kim
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Li Tai Fang
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Alfred Au
- Division of Diagnostic Pathology, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Hubert J Stoppler
- Tissue Core, Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Zhidong Xu
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - David M Jablons
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| | - Liang You
- Thoracic Oncology Laboratory, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
44
|
Fragoso R, Barata JT. PTEN and leukemia stem cells. Adv Biol Regul 2014; 56:22-29. [PMID: 24961634 DOI: 10.1016/j.jbior.2014.05.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
Leukemia stem cells (LSCs) are considered responsible for leukemia initiation, relapse and resistance to chemotherapy. These cells have self-renewal capacity and originate the other cells in the leukemia pool. Therefore, in order to completely eradicate leukemia cells and consequently cure the disease, therapies should in principle necessarily target LSCs. However, the fact that LSCs share functional and phenotypic properties with normal hematopoietic stem cells (HSCs) poses a significant challenge: how to target LSCs without damaging normal HSCs and compromising hematopoiesis? The discovery that PTEN regulates LSCs and HSCs through different mechanisms, demonstrated that it is possible to identify pathways that differentially impact leukemia and normal stem cell function and opened new therapeutic perspectives for the selective elimination of LSCs. In this review, we briefly discuss the mechanisms that regulate PTEN function in LSCs and HSCs and their potential for the development of LSC-targeted therapies.
Collapse
Affiliation(s)
- Rita Fragoso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal.
| |
Collapse
|
45
|
Russo M, Spagnuolo C, Bilotto S, Tedesco I, Maiani G, Russo GL. Inhibition of protein kinase CK2 by quercetin enhances CD95-mediated apoptosis in a human thymus-derived T cell line. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
46
|
Palacios F, Abreu C, Prieto D, Morande P, Ruiz S, Fernández-Calero T, Naya H, Libisch G, Robello C, Landoni AI, Gabus R, Dighiero G, Oppezzo P. Activation of the PI3K/AKT pathway by microRNA-22 results in CLL B-cell proliferation. Leukemia 2014; 29:115-25. [DOI: 10.1038/leu.2014.158] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/06/2014] [Accepted: 05/07/2014] [Indexed: 01/26/2023]
|
47
|
Gomes AM, Soares MVD, Ribeiro P, Caldas J, Póvoa V, Martins LR, Melão A, Serra-Caetano A, de Sousa AB, Lacerda JF, Barata JT. Adult B-cell acute lymphoblastic leukemia cells display decreased PTEN activity and constitutive hyperactivation of PI3K/Akt pathway despite high PTEN protein levels. Haematologica 2014; 99:1062-8. [PMID: 24561792 DOI: 10.3324/haematol.2013.096438] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adult B-cell acute lymphoblastic leukemia remains a major therapeutic challenge, requiring a better characterization of the molecular determinants underlying disease progression and resistance to treatment. Here, using a phospho-flow cytometry approach we show that adult diagnostic B-cell acute lymphoblastic leukemia specimens display PI3K/Akt pathway hyperactivation, irrespective of their BCR-ABL status and despite paradoxically high basal expression of PTEN, the major negative regulator of the pathway. Protein kinase CK2 is known to phosphorylate PTEN thereby driving PTEN protein stabilization and concomitant PTEN functional inactivation. In agreement, we found that adult B-cell acute lymphoblastic leukemia samples show significantly higher CK2 kinase activity and lower PTEN lipid phosphatase activity than healthy controls. Moreover, the clinical-grade CK2 inhibitor CX-4945 (Silmitasertib) reversed PTEN levels in leukemia cells to those observed in healthy controls, and promoted leukemia cell death without significantly affecting normal bone marrow cells. Our studies indicate that CK2-mediated PTEN posttranslational inactivation, associated with PI3K/Akt pathway hyperactivation, are a common event in adult B-cell acute lymphoblastic leukemia and suggest that CK2 inhibition may constitute a valid, novel therapeutic tool in this malignancy.
Collapse
Affiliation(s)
- A Margarida Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Maria V D Soares
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Vanda Póvoa
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Leila R Martins
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Alice Melão
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Ana Serra-Caetano
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | | | - João F Lacerda
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal Hospital de Santa Maria, Lisboa, Portugal
| | - João T Barata
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
48
|
Correia NC, Gírio A, Antunes I, Martins LR, Barata JT. The multiple layers of non-genetic regulation of PTEN tumour suppressor activity. Eur J Cancer 2014; 50:216-25. [DOI: 10.1016/j.ejca.2013.08.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/29/2013] [Accepted: 08/20/2013] [Indexed: 12/19/2022]
|
49
|
Aoyama D, Hashimoto N, Sakamoto K, Kohnoh T, Kusunose M, Kimura M, Ogata R, Imaizumi K, Kawabe T, Hasegawa Y. Involvement of TGFβ-induced phosphorylation of the PTEN C-terminus on TGFβ-induced acquisition of malignant phenotypes in lung cancer cells. PLoS One 2013; 8:e81133. [PMID: 24278390 PMCID: PMC3838341 DOI: 10.1371/journal.pone.0081133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 10/18/2013] [Indexed: 01/09/2023] Open
Abstract
Transforming growth factor β (TGFβ) derived from the tumor microenvironment induces malignant phenotypes such as epithelial-mesenchymal transition (EMT) and aberrant cell motility in lung cancers. TGFβ-induced translocation of β-catenin from E-cadherin complexes into the cytoplasm is involved in the transcription of EMT target genes. PTEN (phosphatase and tensin homologue deleted from chromosome 10) is known to exert phosphatase activity by binding to E-cadherin complexes via β-catenin, and recent studies suggest that phosphorylation of the PTEN C-terminus tail might cause loss of this PTEN phosphatase activity. However, whether TGFβ can modulate both β-catenin translocation and PTEN phosphatase activity via phosphorylation of the PTEN C-terminus remains elusive. Furthermore, the role of phosphorylation of the PTEN C-terminus in TGFβ-induced malignant phenotypes has not been evaluated. To investigate whether modulation of phosphorylation of the PTEN C-terminus can regulate malignant phenotypes, here we established lung cancer cells expressing PTEN protein with mutation of phosphorylation sites in the PTEN C-terminus (PTEN4A). We found that TGFβ stimulation yielded a two-fold increase in the phosphorylated -PTEN/PTEN ratio. Expression of PTEN4A repressed TGFβ-induced EMT and cell motility even after snail expression. Our data showed that PTEN4A might repress EMT through complete blockade of β-catenin translocation into the cytoplasm, besides the inhibitory effect of PTEN4A on TGFβ-induced activation of smad-independent signaling pathways. In a xenograft model, the tumor growth ratio was repressed in cells expressing PTEN4A. Taken together, these data suggest that phosphorylation sites in the PTEN C-terminus might be a therapeutic target for TGFβ-induced malignant phenotypes in lung cancer cells.
Collapse
Affiliation(s)
- Daisuke Aoyama
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Naozumi Hashimoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
- * E-mail:
| | - Koji Sakamoto
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Kohnoh
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaaki Kusunose
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Motohiro Kimura
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryo Ogata
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuyoshi Imaizumi
- Department of Respiratory Medicine and Allergy, Fujita Health University, Toyoake, Japan
| | - Tsutomu Kawabe
- Department of Medical Technology, Nagoya University Graduate School of Health Science, Nagoya, Japan
| | - Yoshinori Hasegawa
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
50
|
Martins LR, Lúcio P, Melão A, Antunes I, Cardoso BA, Stansfield R, Bertilaccio MTS, Ghia P, Drygin D, Silva MG, Barata JT. Activity of the clinical-stage CK2-specific inhibitor CX-4945 against chronic lymphocytic leukemia. Leukemia 2013; 28:179-82. [PMID: 23925046 DOI: 10.1038/leu.2013.232] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- L R Martins
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - P Lúcio
- CEDOC, Faculdade de Ciências Médicas, FCM, Universidade Nova de Lisboa and Instituto Português de Oncologia, Lisbon, Portugal
| | - A Melão
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - I Antunes
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - B A Cardoso
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | | | | | - P Ghia
- 1] Istituto Scientifico San Raffaele, Milano, Italy [2] Università Vita-Salute San Raffaele, Milano, Italy
| | - D Drygin
- Cylene Pharmaceuticals, San Diego, CA, USA
| | - M G Silva
- CEDOC, Faculdade de Ciências Médicas, FCM, Universidade Nova de Lisboa and Instituto Português de Oncologia, Lisbon, Portugal
| | - J T Barata
- Faculdade de Medicina, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|