1
|
Antos D, Parks OB, Duray AM, Abraham N, Michel JJ, Kupul S, Westcott R, Alcorn JF. Cell-intrinsic regulation of phagocyte function by interferon lambda during pulmonary viral, bacterial super-infection. PLoS Pathog 2024; 20:e1012498. [PMID: 39178311 PMCID: PMC11376568 DOI: 10.1371/journal.ppat.1012498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/05/2024] [Accepted: 08/12/2024] [Indexed: 08/25/2024] Open
Abstract
Influenza infections result in a significant number of severe illnesses annually, many of which are complicated by secondary bacterial super-infection. Primary influenza infection has been shown to increase susceptibility to secondary methicillin-resistant Staphylococcus aureus (MRSA) infection by altering the host immune response, leading to significant immunopathology. Type III interferons (IFNs), or IFNλs, have gained traction as potential antiviral therapeutics due to their restriction of viral replication without damaging inflammation. The role of IFNλ in regulating epithelial biology in super-infection has recently been established; however, the impact of IFNλ on immune cells is less defined. In this study, we infected wild-type and IFNLR1-/- mice with influenza A/PR/8/34 followed by S. aureus USA300. We demonstrated that global IFNLR1-/- mice have enhanced bacterial clearance through increased uptake by phagocytes, which was shown to be cell-intrinsic specifically in myeloid cells in mixed bone marrow chimeras. We also showed that depletion of IFNLR1 on CX3CR1 expressing myeloid immune cells, but not neutrophils, was sufficient to significantly reduce bacterial burden compared to mice with intact IFNLR1. These findings provide insight into how IFNλ in an influenza-infected lung impedes bacterial clearance during super-infection and show a direct cell intrinsic role for IFNλ signaling on myeloid cells.
Collapse
Affiliation(s)
- Danielle Antos
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Olivia B Parks
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexis M Duray
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nevil Abraham
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Joshua J Michel
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Saran Kupul
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Rosemary Westcott
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John F Alcorn
- Department of Pediatrics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
2
|
Giannessi F, Percario Z, Lombardi V, Sabatini A, Sacchi A, Lisi V, Battistini L, Borsellino G, Affabris E, Angelini DF. Macrophages treated with interferons induce different responses in lymphocytes via extracellular vesicles. iScience 2024; 27:109960. [PMID: 38832015 PMCID: PMC11144789 DOI: 10.1016/j.isci.2024.109960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/09/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Limited information exists regarding the impact of interferons (IFNs) on the information carried by extracellular vesicles (EVs). This study aimed at investigating whether IFN-α2b, IFN-β, IFN-γ, and IFN-λ1/2 modulate the content of EVs released by primary monocyte-derived macrophages (MDM). Small-EVs (sEVs) were purified by size exclusion chromatography from supernatants of MDM treated with IFNs. To characterize the concentration and dimensions of vesicles, nanoparticle tracking analysis was used. SEVs surface markers were examined by flow cytometry. IFN treatments induced a significant down-regulation of the exosomal markers CD9, CD63, and CD81 on sEVs, and a significant modulation of some adhesion molecules, major histocompatibility complexes and pro-coagulant proteins, suggesting IFNs influence biogenesis and shape the immunological asset of sEVs. SEVs released by IFN-stimulated MDM also impact lymphocyte function, showing significant modulation of lymphocyte activation and IL-17 release. Altogether, our results show that sEVs composition and activity are affected by IFN treatment of MDM.
Collapse
Affiliation(s)
- Flavia Giannessi
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179 Rome, Italy
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Zulema Percario
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Valentina Lombardi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Andrea Sabatini
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Alessandra Sacchi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Veronica Lisi
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Giovanna Borsellino
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Elisabetta Affabris
- Laboratory of Molecular Virology and Antimicrobial Immunity, Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Daniela F. Angelini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306-354, 00179 Rome, Italy
| |
Collapse
|
3
|
Huang LY, Chiu CJ, Hsing CH, Hsu YH. Interferon Family Cytokines in Obesity and Insulin Sensitivity. Cells 2022; 11:4041. [PMID: 36552805 PMCID: PMC9776768 DOI: 10.3390/cells11244041] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Obesity and its associated complications are global public health concerns. Metabolic disturbances and immune dysregulation cause adipose tissue stress and dysfunction in obese individuals. Immune cell accumulation in the adipose microenvironment is the main cause of insulin resistance and metabolic dysfunction. Infiltrated immune cells, adipocytes, and stromal cells are all involved in the production of proinflammatory cytokines and chemokines in adipose tissues and affect systemic homeostasis. Interferons (IFNs) are a large family of pleiotropic cytokines that play a pivotal role in host antiviral defenses. IFNs are critical immune modulators in response to pathogens, dead cells, and several inflammation-mediated diseases. Several studies have indicated that IFNs are involved in the pathogenesis of obesity. In this review, we discuss the roles of IFN family cytokines in the development of obesity-induced inflammation and insulin resistance.
Collapse
Affiliation(s)
- Ling-Yu Huang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiao-Juno Chiu
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Antibody New Drug Research Center, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
4
|
Membrane-Tethered Mucin 1 Is Stimulated by Interferon and Virus Infection in Multiple Cell Types and Inhibits Influenza A Virus Infection in Human Airway Epithelium. mBio 2022; 13:e0105522. [PMID: 35699372 PMCID: PMC9426523 DOI: 10.1128/mbio.01055-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza A virus (IAV) causes significant morbidity and mortality in the human population. Tethered mucin 1 (MUC1) is highly expressed in airway epithelium, the primary site of IAV replication, and also by other cell types that influence IAV infection, including macrophages. MUC1 has the potential to influence infection dynamics through physical interactions and/or signaling activity, yet MUC1 modulation and its impact during viral pathogenesis remain unclear. Thus, we investigated MUC1-IAV interactions in an in vitro model of human airway epithelium (HAE). Our data indicate that a recombinant IAV hemagglutinin (H3) and H3N2 virus can bind endogenous HAE MUC1. Notably, infection of HAE with H1N1 or H3N2 IAV strains does not trigger MUC1 shedding but instead stimulates an increase in cell-associated MUC1 protein. We observed a similar increase after type I or III interferon (IFN) stimulation; however, inhibition of IFN signaling during H1N1 infection only partially abrogated this increase, indicating that multiple soluble factors contribute to MUC1 upregulation during the antiviral response. In addition to HAE, primary human monocyte-derived macrophages also upregulated MUC1 protein in response to IFN treatment and conditioned media from IAV-infected HAE. Then, to determine the impact of MUC1 on IAV pathogenesis, we developed HAE genetically depleted of MUC1 and found that MUC1 knockout cultures exhibited enhanced viral growth compared to control cultures for several IAV strains. Together, our data support a model whereby MUC1 inhibits productive uptake of IAV in HAE. Infection then stimulates MUC1 expression on multiple cell types through IFN-dependent and -independent mechanisms that further impact infection dynamics.
Collapse
|
5
|
Sari G, Mulders CE, Zhu J, van Oord GW, Feng Z, Kreeft‐Voermans JJ, Boonstra A, Vanwolleghem T. Treatment induced clearance of hepatitis E viruses by interferon-lambda in liver-humanized mice. Liver Int 2021; 41:2866-2873. [PMID: 34392598 PMCID: PMC9291846 DOI: 10.1111/liv.15033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/02/2021] [Accepted: 07/28/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Hepatitis E viruses (HEV) are an underestimated global cause of enterically transmitted viral hepatitis, which may persist in immunocompromised hosts, posing a risk for progressive liver fibrosis with limited treatment options. We previously established liver-humanized mice as a model for chronic HEV infections, which can be cleared by a 2-week pegylated (peg)-Interferon(IFN)α treatment course. However, severe side effects may hamper the use of IFNα in immunocompromised transplant recipient patients. IFNλ may be a valuable alternative, as its receptor is less ubiquitously expressed. AIMS In this study, we assess the in vitro and in vivo potency of pegIFNλ to induce innate immune signalling in liver cells and to clear a persistent HEV infection in liver-humanized mice. METHODS & RESULTS We found that human liver cells expressed the IFNλ receptor (IFNLR1) and are responsive to pegIFNλ. Treatment with pegIFNλ of liver-humanized mice persistently infected with HEV genotype 3 showed that pegIFNλ was well tolerated. Dose escalation studies showed that although HEV was not cleared at pegIFNλ doses up to 0.12 mg/kg for a maximum of 8 weeks, a dose of 0.3 mg/kg pegIFNλ treatment resulted in complete clearance of HEV antigen and HEV RNA from the liver in 8 out of 9 liver-humanized mice. CONCLUSIONS PegIFNλ is well tolerated in mice and leads to clearance of a persistent HEV infection in liver-humanized mice.
Collapse
Affiliation(s)
- Gulce Sari
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Claudia E. Mulders
- Department of ViroscienceErasmus University Medical CenterRotterdamThe Netherlands
| | - Jingting Zhu
- Center for Vaccines and ImmunityThe Research Institute at Nationwide Children’s HospitalColumbusOhioUSA
| | - Gertine W. van Oord
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Zongdi Feng
- Center for Vaccines and ImmunityThe Research Institute at Nationwide Children’s HospitalColumbusOhioUSA,Department of PediatricsThe Ohio State University College of MedicineColumbusOhioUSA
| | | | - Andre Boonstra
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Thomas Vanwolleghem
- Department of Gastroenterology and HepatologyErasmus University Medical CenterRotterdamThe Netherlands,Laboratory of Experimental Medicine and PediatricsFaculty of Medicine and Health SciencesUniversity of AntwerpAntwerpBelgium,Department of Gastroenterology and HepatologyAntwerp University HospitalAntwerpBelgium
| |
Collapse
|
6
|
Manivasagam S, Klein RS. Type III Interferons: Emerging Roles in Autoimmunity. Front Immunol 2021; 12:764062. [PMID: 34899712 PMCID: PMC8660671 DOI: 10.3389/fimmu.2021.764062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Type III interferons (IFNs) or the lambda IFNs (IFNLs or IFN-λs) are antimicrobial cytokines that play key roles in immune host defense at endothelial and epithelial barriers. IFNLs signal via their heterodimeric receptor, comprised of two subunits, IFNLR1 and interleukin (IL)10Rβ, which defines the cellular specificity of the responses to the cytokines. Recent studies show that IFNL signaling regulates CD4+ T cell differentiation, favoring Th1 cells, which has led to the identification of IFNL as a putative therapeutic target for autoimmune diseases. Here, we summarize the IFNL signaling pathways during antimicrobial immunity, IFNL-mediated immunomodulation of both innate and adaptive immune cells, and induction of autoimmunity.
Collapse
Affiliation(s)
- Sindhu Manivasagam
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Robyn S. Klein
- Center for Neuroimmunology & Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO, United States
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurosciences, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
7
|
De M, Bhushan A, Chinnaswamy S. Monocytes differentiated into macrophages and dendritic cells in the presence of human IFN-λ3 or IFN-λ4 show distinct phenotypes. J Leukoc Biol 2021; 110:357-374. [PMID: 33205487 PMCID: PMC7611425 DOI: 10.1002/jlb.3a0120-001rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 10/29/2020] [Accepted: 11/01/2020] [Indexed: 12/13/2022] Open
Abstract
Human IFN-λ4 is expressed by only a subset of individuals who possess the ΔG variant allele at the dinucleotide polymorphism rs368234815. Recent genetic studies have shown an association between rs368234815 and different infectious and inflammatory disorders. It is not known if IFN-λ4 has immunomodulatory activity. The expression of another type III IFN, IFN-λ3, is also controlled by genetic polymorphisms that are strongly linked to rs368234815. Therefore, it is of interest to compare these two IFNs for their effects on immune cells. Herein, using THP-1 cells, it was confirmed that IFN-λ4 could affect the differentiation status of macrophage-like cells and dendritic cells (DCs). The global gene expression changes induced by IFN-λ4 were also characterized in in vitro generated primary macrophages. Next, human PBMC-derived CD14+ monocytes were used to obtain M1 and M2 macrophages and DCs in the presence of IFN-λ3 or IFN-λ4. These DCs were cocultured with CD4+ Th cells derived from allogenic donors and their in vitro cytokine responses were measured. The specific activity of recombinant IFN-λ4 was much lower than that of IFN-λ3, as shown by induction of IFN-stimulated genes. M1 macrophages differentiated in the presence of IFN-λ4 showed higher IL-10 secretion than those differentiated in IFN-λ3. Coculture experiments suggested that IFN-λ4 could confer a Th2-biased phenotype to allogenic Th cells, wherein IFN-λ3, under similar circumstances, did not induce a significant bias toward either a Th1 or Th2 phenotype. This study shows for the first time that IFN-λ4 may influence immune responses by immunomodulation.
Collapse
Affiliation(s)
- Manjarika De
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
| | - Anand Bhushan
- National Institute of Biomedical GenomicsKalyaniWest BengalIndia
| | | |
Collapse
|
8
|
Goel RR, Kotenko SV, Kaplan MJ. Interferon lambda in inflammation and autoimmune rheumatic diseases. Nat Rev Rheumatol 2021; 17:349-362. [PMID: 33907323 PMCID: PMC8077192 DOI: 10.1038/s41584-021-00606-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 12/23/2022]
Abstract
Interferons are potent antiviral cytokines that modulate immunity in response to infection or other danger signals. In addition to their antiviral functions, type I interferons (IFNα and IFNβ) are important in the pathogenesis of autoimmune diseases. Type III interferons (IFNλs) were initially described as a specialized system that inhibits viral replication at epithelial barrier surfaces while limiting inflammatory damage. However, evidence now suggests that type III interferons have complex effects on both innate and adaptive immune responses and might also be pathogenic in systemic autoimmune diseases. Concentrations of IFNλs are increased in blood and tissues in a number of autoimmune rheumatic diseases, including systemic lupus erythematosus, and are further associated with specific clinical and laboratory parameters. This Review is aimed at providing a critical evaluation of the current literature on IFNλ biology and how type III interferons might contribute to immune dysregulation and tissue damage in autoimmunity. The potential effects of type III interferons on treatment strategies for autoimmune rheumatic diseases, such as interferon blockade, are also considered.
Collapse
Affiliation(s)
- Rishi R Goel
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Sergei V Kotenko
- Department of Microbiology, Biochemistry and Molecular Genetics, Center for Cell Signaling, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Wang SQ, Shen Y, Li J, Liu Y, Cheng LS, Wu SD, She WM, Jiang W. Entecavir-induced interferon-λ1 suppresses type 2 innate lymphoid cells in patients with hepatitis B virus-related liver cirrhosis. J Viral Hepat 2021; 28:795-808. [PMID: 33482039 DOI: 10.1111/jvh.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 12/09/2022]
Abstract
The immunomodulatory effects of entecavir (ETV) in anti-hepatitis B virus (HBV) therapy have long been recognized. This study aimed to determine the effects of ETV on non-natural killer innate lymphoid cells (non-NK ILCs) in HBV-related liver disease progression. We enrolled treatment-naïve chronic hepatitis B (CHB) and HBV-related liver cirrhosis (LC) patients treated with ETV for 24 months. Before and after therapy, the frequency and cytokine profiles of ILC2s and non-NK ILCs subset homeostasis and their clinical significance were determined, and serial serum interferon (IFN)-λ levels were analysed. Peripheral blood mononuclear cells (PBMCs) of untreated LC patients were cultured with serum from untreated and ETV-treated LC patients in addition to being subject to IFN-λ1 neutralization and stimulation, and the frequency and cytokine production of ILC2s as well as non-NK ILCs subset ratios were calculated. Furthermore, IFN-λ receptor expression on non-NK ILCs and dendritic cells (DCs) was measured. After 24 months of ETV treatment, the frequency and cytokine production of ILC2s (IL-4, IL-13, IFN-γ, TNF-α) decreased with increased ILC1/ILC2 and decreased ILC2/ILC3 ratios, revealing a close association with disease status in LC patients. Long-term ETV administration-induced serum IFN-λ1 levels were negatively correlated with ILC2s. ETV-treated LC serum culture and IFN-λ1 stimulation yielded similar effects on suppression of ILC2s, and IFN-λ1 neutralization in serum culture partly inhibited this effect. The IFN-λ receptor was detected on DCs but not on non-NK ILCs. In conclusion, ETV suppresses the frequency and cytokine profiles of ILC2s by increasing IFN-λ1 in LC patients.
Collapse
Affiliation(s)
- Si-Qi Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Disease, Shanghai, China
| | - Yue Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Disease, Shanghai, China
| | - Jing Li
- Department of Gastroenterology, Tongji Hospital, Tongji University, Shanghai, China
| | - Yun Liu
- Department of Rheumatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Sha Cheng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Disease, Shanghai, China
| | - Sheng-Di Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Disease, Shanghai, China
| | - Wei-Min She
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Disease, Shanghai, China
| | - Wei Jiang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Liver Disease, Shanghai, China.,Department of Gastroenterology, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, Fujian, China
| |
Collapse
|
10
|
Støy S, Terczynska-Dyla E, Veidal SS, Rigbolt K, Vilstrup H, Grønbaek H, Hartmann R, Sandahl TD. Interferon lambda 4 genotype and pathway in alcoholic hepatitis. Scand J Gastroenterol 2021; 56:304-311. [PMID: 33602032 DOI: 10.1080/00365521.2021.1874046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Single nucleotide polymorphisms within the interferon lambda 4 (IFNL4) gene influence liver inflammation and fibrosis in chronic liver disease. We investigated whether this is also the case during acute liver disease, alcoholic hepatitis. We, therefore, related variants within the IFNL4 gene to the clinical course of acute alcoholic hepatitis, and characterized the activation state of the IFN lambda system in these patients. METHODS In this pilot study, 58 patients with alcoholic hepatitis were genotyped for the rs368234815IFNL4 single nucleotide polymorphism (deltaG, deltaG/TT: IFN lambda 4 positive, TT/TT: IFN lambda 4 negative). The genotypes were related to mortality, infection and inflammation and expression of the IFNL receptor 1 and IFN inducible genes were measured in liver and peripheral leukocytes. RESULTS Amongst the alcoholic hepatitis patients who died, the IFN negative patients live longer after diagnosis, and also the IFN negative patients tended to have an overall short-term survival benefit compared to IFN lambda positive patients (p = .058). The IFN lambda 4 negative patients at diagnosis had fewer circulating monocytes and lower plasma soluble CD163. The patients with alcoholic hepatitis had reduced expression of the IFNL receptor 1in both liver and blood compared with healthy controls. In blood, the expression of IFN stimulated genes was lower than in healthy controls and most so in the patients, who died. CONCLUSIONS The IFN lambda 4 pathway seems involved in the acute disease processes of alcoholic hepatitis and patients without IFN lambda expression seem to have a short-term survival benefit.
Collapse
Affiliation(s)
- Sidsel Støy
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Henning Grønbaek
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Thomas D Sandahl
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
11
|
Coto-Llerena M, Lepore M, Spagnuolo J, Di Blasi D, Calabrese D, Suslov A, Bantug G, Duong FH, Terracciano LM, De Libero G, Heim MH. Interferon lambda 4 can directly activate human CD19 + B cells and CD8 + T cells. Life Sci Alliance 2021; 4:e201900612. [PMID: 33158978 PMCID: PMC7668538 DOI: 10.26508/lsa.201900612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
Compared with the ubiquitous expression of type I (IFNα and IFNβ) interferon receptors, type III (IFNλ) interferon receptors are mainly expressed in epithelial cells of mucosal barriers of the of the intestine and respiratory tract. Consequently, IFNλs are important for innate pathogen defense in the lung and intestine. IFNλs also determine the outcome of hepatitis C virus (HCV) infections, with IFNλ4 inhibiting spontaneous clearance of HCV. Because viral clearance is dependent on T cells, we explored if IFNλs can directly bind to and regulate human T cells. We found that human B cells and CD8+ T cells express the IFNλ receptor and respond to IFNλs, including IFNλ4. IFNλs were not inhibitors but weak stimulators of B- and T-cell responses. Furthermore, IFNλ4 showed neither synergistic nor antagonistic effects in co-stimulatory experiments with IFNλ1 or IFNα. Multidimensional flow cytometry of cells from liver biopsies of hepatitis patients from IFNλ4-producers showed accumulation of activated CD8+ T cells with a central memory-like phenotype. In contrast, CD8+ T cells with a senescent/exhausted phenotype were more abundant in IFNλ4-non-producers. It remains to be elucidated how IFNλ4 promotes CD8 T-cell responses and inhibits the host immunity to HCV infections.
Collapse
Affiliation(s)
- Mairene Coto-Llerena
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Marco Lepore
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Julian Spagnuolo
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Daniela Di Blasi
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Diego Calabrese
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Aleksei Suslov
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Glenn Bantug
- Department of Biomedicine, Immunobiology, University Hospital and University of Basel, Basel, Switzerland
| | - Francois Ht Duong
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
| | - Luigi M Terracciano
- Molecular Pathology Division, Institute of Pathology, University Hospital Basel, Basel, Switzerland
| | - Gennaro De Libero
- Department of Biomedicine, Experimental Immunology, University Hospital and University of Basel, Basel, Switzerland
| | - Markus H Heim
- Department of Biomedicine, Hepatology, University Hospital and University of Basel, Basel, Switzerland
- Division of Gastroenterology and Hepatology, Clarunis, University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| |
Collapse
|
12
|
Wehrli M, Schneider C, Cortinas-Elizondo F, Verschoor D, Frias Boligan K, Adams OJ, Hlushchuk R, Engelmann C, Daudel F, Villiger PM, Seibold F, Yawalkar N, Vonarburg C, Miescher S, Lötscher M, Kaufmann T, Münz C, Mueller C, Djonov V, Simon HU, von Gunten S. IgA Triggers Cell Death of Neutrophils When Primed by Inflammatory Mediators. THE JOURNAL OF IMMUNOLOGY 2020; 205:2640-2648. [PMID: 33008951 DOI: 10.4049/jimmunol.1900883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/10/2020] [Indexed: 12/14/2022]
Abstract
IVIG preparations consisting of pooled IgG are increasingly used for the treatment of autoimmune diseases. IVIG is known to regulate the viability of immune cells, including neutrophils. We report that plasma-derived IgA efficiently triggers death of neutrophils primed by cytokines or TLR agonists. IgA-mediated programmed neutrophil death was PI3K-, p38 MAPK-, and JNK-dependent and evoked anti-inflammatory cytokines in macrophage cocultures. Neutrophils from patients with acute Crohn's disease, rheumatoid arthritis, or sepsis were susceptible to both IgA- and IVIG-mediated death. In contrast to IVIG, IgA did not promote cell death of quiescent neutrophils. Our findings suggest that plasma-derived IgA might provide a therapeutic option for the treatment of neutrophil-associated inflammatory disorders.
Collapse
Affiliation(s)
- Marc Wehrli
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | | | | | | | | | - Olivia Joan Adams
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Ruslan Hlushchuk
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Christine Engelmann
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Fritz Daudel
- Intensive Care Unit, Spital Thun, 3600 Thun, Switzerland
| | - Peter M Villiger
- Department of Rheumatology/Clinical Immunology/Allergology, University Hospital Bern, 3008 Bern, Switzerland
| | - Frank Seibold
- Gastroenterologie, Spitalnetz Bern, 3004 Bern, Switzerland.,Gastroenterologie, Praxis Balsiger, Seibold und Partner am Lindenhofspital, 3012 Bern, Switzerland
| | - Nikhil Yawalkar
- Department of Dermatology, University Hospital Bern, University of Bern, 3010 Bern, Switzerland
| | | | | | | | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Christoph Mueller
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; and
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow 119991, Russia
| | | |
Collapse
|
13
|
Santer DM, Minty GES, Golec DP, Lu J, May J, Namdar A, Shah J, Elahi S, Proud D, Joyce M, Tyrrell DL, Houghton M. Differential expression of interferon-lambda receptor 1 splice variants determines the magnitude of the antiviral response induced by interferon-lambda 3 in human immune cells. PLoS Pathog 2020; 16:e1008515. [PMID: 32353085 PMCID: PMC7217487 DOI: 10.1371/journal.ppat.1008515] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/12/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Type III interferons (IFN-lambdas(λ)) are important cytokines that inhibit viruses and modulate immune responses by acting through a unique IFN-λR1/IL-10RB heterodimeric receptor. Until now, the primary antiviral function of IFN-λs has been proposed to be at anatomical barrier sites. Here, we examine the regulation of IFN-λR1 expression and measure the downstream effects of IFN-λ3 stimulation in primary human blood immune cells, compared with lung or liver epithelial cells. IFN-λ3 directly bound and upregulated IFN-stimulated gene (ISG) expression in freshly purified human B cells and CD8+ T cells, but not monocytes, neutrophils, natural killer cells, and CD4+ T cells. Despite similar IFNLR1 transcript levels in B cells and lung epithelial cells, lung epithelial cells bound more IFN-λ3, which resulted in a 50-fold greater ISG induction when compared to B cells. The reduced response of B cells could be explained by higher expression of the soluble variant of IFN-λR1 (sIFN-λR1), which significantly reduced ISG induction when added with IFN-λ3 to peripheral blood mononuclear cells or liver epithelial cells. T-cell receptor stimulation potently, and specifically, upregulated membrane-bound IFNLR1 expression in CD4+ T cells, leading to greater antiviral gene induction, and inhibition of human immunodeficiency virus type 1 infection. Collectively, our data demonstrate IFN-λ3 directly interacts with the human adaptive immune system, unlike what has been previously shown in published mouse models, and that type III IFNs could be potentially utilized to suppress both mucosal and blood-borne viral infections.
Collapse
Affiliation(s)
- Deanna M. Santer
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Gillian E. S. Minty
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Dominic P. Golec
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Julia Lu
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Julia May
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Afshin Namdar
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Juhi Shah
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Shokrollah Elahi
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
- School of Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - David Proud
- Department of Physiology and Pharmacology and Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Michael Joyce
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - D. Lorne Tyrrell
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Houghton
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Lin TY, Chiu CJ, Kuan CH, Chen FH, Shen YC, Wu CH, Hsu YH. IL-29 promoted obesity-induced inflammation and insulin resistance. Cell Mol Immunol 2020; 17:369-379. [PMID: 31363171 PMCID: PMC7109060 DOI: 10.1038/s41423-019-0262-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022] Open
Abstract
Adipocyte-macrophage crosstalk plays a critical role to regulate adipose tissue microenvironment and cause chronic inflammation in the pathogenesis of obesity. Interleukin-29 (IL-29), a member of type 3 interferon family, plays a role in host defenses against microbes, however, little is known about its role in metabolic disorders. We explored the function of IL-29 in the pathogenesis of obesity-induced inflammation and insulin resistance. We found that serum IL-29 level was significantly higher in obese patients. IL-29 upregulated IL-1β, IL-8, and monocyte chemoattractant protein-1 (MCP-1) expression and decreased glucose uptake and insulin sensitivity in human Simpson-Golabi-Behmel syndrome (SGBS) adipocytes through reducing glucose transporter 4 (GLUT4) and AKT signals. In addition, IL-29 promoted monocyte/macrophage migration. Inhibition of IL-29 could reduce inflammatory cytokine production in macrophage-adipocyte coculture system, which mimic an obese microenvironment. In vivo, IL-29 reduced insulin sensitivity and increased the number of peritoneal macrophages in high-fat diet (HFD)-induced obese mice. IL-29 increased M1/M2 macrophage ratio and enhanced MCP-1 expression in adipose tissues of HFD mice. Therefore, we have identified a critical role of IL-29 in obesity-induced inflammation and insulin resistance, and we conclude that IL-29 may be a novel candidate target for treating obesity and insulin resistance in patients with metabolic disorders.
Collapse
Affiliation(s)
- Tian-Yu Lin
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Chiao-Juno Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, China
| | - Chen-Hsiang Kuan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan, China
- Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan, China
| | - Fang-Hsu Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Yin-Chen Shen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Chih-Hsing Wu
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China
| | - Yu-Hsiang Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China.
- Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan, China.
| |
Collapse
|
15
|
Wang J, Huang A, Xu W, Su L. Insights into IL-29: Emerging role in inflammatory autoimmune diseases. J Cell Mol Med 2019; 23:7926-7932. [PMID: 31578802 PMCID: PMC6850914 DOI: 10.1111/jcmm.14697] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/01/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
Interleukin-29 (IL-29) is a newly discovered member of type III interferon. It mediates signal transduction via binding to its receptor complex and activates downstream signalling pathways, and therefore induces the generation of inflammatory components. Recent studies reported that expression of IL-29 is dysregulated in inflammatory autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis, Sjögren's syndrome, psoriasis and systemic sclerosis. Furthermore, functional analysis revealed that IL-29 may involve in the pathogenesis of the inflammatory autoimmune disorders. In this review, we will systematically review the current knowledge about IL-29. The information collected revealed the regulatory role of IL-29 and may give important implications for its potential in clinical treatment.
Collapse
Affiliation(s)
- Jia‐Min Wang
- Department of Evidence‐Based MedicineSchool of Public HealthSouthwest Medical UniversitySichuanChina
| | - An‐Fang Huang
- Department of Rheumatology and ImmunologyAffiliated Hospital of Southwest Medical UniversitySichuanChina
| | - Wang‐Dong Xu
- Department of Evidence‐Based MedicineSchool of Public HealthSouthwest Medical UniversitySichuanChina
| | - Lin‐Chong Su
- Department of Rheumatology and ImmunologyMinda Hospital of Hubei Minzu UniversityEnshiChina
| |
Collapse
|
16
|
Read SA, Wijaya R, Ramezani-Moghadam M, Tay E, Schibeci S, Liddle C, Lam VWT, Yuen L, Douglas MW, Booth D, George J, Ahlenstiel G. Macrophage Coordination of the Interferon Lambda Immune Response. Front Immunol 2019; 10:2674. [PMID: 31798594 PMCID: PMC6878940 DOI: 10.3389/fimmu.2019.02674] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
Lambda interferons (IFN-λs) are a major component of the innate immune defense to viruses, bacteria, and fungi. In human liver, IFN-λ not only drives antiviral responses, but also promotes inflammation and fibrosis in viral and non-viral diseases. Here we demonstrate that macrophages are primary responders to IFN-λ, uniquely positioned to bridge the gap between IFN-λ producing cells and lymphocyte populations that are not intrinsically responsive to IFN-λ. While CD14+ monocytes do not express the IFN-λ receptor, IFNLR1, sensitivity is quickly gained upon differentiation to macrophages in vitro. IFN-λ stimulates macrophage cytotoxicity and phagocytosis as well as the secretion of pro-inflammatory cytokines and interferon stimulated genes that mediate immune cell chemotaxis and effector functions. In particular, IFN-λ induced CCR5 and CXCR3 chemokines, stimulating T and NK cell migration, as well as subsequent NK cell cytotoxicity. Using immunofluorescence and cell sorting techniques, we confirmed that human liver macrophages expressing CD14 and CD68 are highly responsive to IFN-λ ex vivo. Together, these data highlight a novel role for macrophages in shaping IFN-λ dependent immune responses both directly through pro-inflammatory activity and indirectly by recruiting and activating IFN-λ unresponsive lymphocytes.
Collapse
Affiliation(s)
- Scott A Read
- Blacktown Medical School, Western Sydney University, Blacktown, NSW, Australia.,Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Ratna Wijaya
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Mehdi Ramezani-Moghadam
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Enoch Tay
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Steve Schibeci
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Christopher Liddle
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Vincent W T Lam
- Department of Upper Gastrointestinal Surgery, Westmead Hospital, Westmead, NSW, Australia.,Discipline of Surgery, University of Sydney, Sydney, NSW, Australia
| | - Lawrence Yuen
- Department of Upper Gastrointestinal Surgery, Westmead Hospital, Westmead, NSW, Australia.,Discipline of Surgery, University of Sydney, Sydney, NSW, Australia
| | - Mark W Douglas
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, NSW, Australia
| | - David Booth
- Centre for Immunology and Allergy Research, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Jacob George
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia
| | - Golo Ahlenstiel
- Blacktown Medical School, Western Sydney University, Blacktown, NSW, Australia.,Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW, Australia.,Blacktown Hospital, Western Sydney Local Health District (WSLHD), Blacktown, NSW, Australia
| |
Collapse
|
17
|
Vlachiotis S, Andreakos E. Lambda interferons in immunity and autoimmunity. J Autoimmun 2019; 104:102319. [DOI: 10.1016/j.jaut.2019.102319] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 01/23/2023]
|
18
|
Gong T, Zhang P, Deng C, Xiao Y, Gong T, Zhang Z. An effective and safe treatment strategy for rheumatoid arthritis based on human serum albumin and Kolliphor® HS 15. Nanomedicine (Lond) 2019; 14:2169-2187. [PMID: 31397202 DOI: 10.2217/nnm-2019-0110] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: We aimed to construct human serum albumin-Kolliphor® HS 15 nanoparticles (HSA-HS15 NPs) to overcome the limitations in targeted therapy for rheumatoid arthritis (RA) and enhance the safety of drug-loaded HSA NPs. Methodology: Celastrol (CLT)-loaded HSA-HS15 NPs were prepared and the properties were adequately investigated; the treatment effect were evaluated in RA rats; in vitro and in vivo studies were performed to explain the mechanism. Results: CLT-HSA-HS15 NPs had remarkable treatment ability and enhanced safety in the treatment of RA compared with free CLT and CLT-HSA NPs. Conclusion: HSA-HS15 NPs could be a safe and efficient therapeutic strategy for the treatment of RA, because of the inflammatory targeting ability of albumin, the added HS15 and ELVIS effect (extravasation through leaky vasculature followed by inflammatory cell-mediated sequestration) of nanoparticles.
Collapse
Affiliation(s)
- Ting Gong
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Pei Zhang
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Caifeng Deng
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Yu Xiao
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Tao Gong
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting & Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drugs & Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610064, PR China
| |
Collapse
|
19
|
Interferon-λ orchestrates innate and adaptive mucosal immune responses. Nat Rev Immunol 2019; 19:614-625. [DOI: 10.1038/s41577-019-0182-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
|
20
|
Andreakos E, Zanoni I, Galani IE. Lambda interferons come to light: dual function cytokines mediating antiviral immunity and damage control. Curr Opin Immunol 2018; 56:67-75. [PMID: 30399529 PMCID: PMC6541392 DOI: 10.1016/j.coi.2018.10.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/22/2023]
Abstract
IFNλs are dual function cytokines mediating antiviral activity and damage control. IFNλs confer initial antimicrobial protection at anatomical barriers without provoking unnecessary inflammation. IFNλs exhibit immune regulatory and host protective actions reminiscent of IL-10. IFNλs form novel therapeutics with the beneficial actions of type I IFNs but lacking their pro-inflammatory side effects.
Lambda interferons (IFNλs, type III IFNs or interleukins-28/29) were described fifteen years ago as novel cytokines sharing structural and functional homology with IL-10 and type I IFNs, respectively. IFNλs engage a unique receptor complex comprising IFNLR1 and IL10R2, nevertheless they share signaling cascade and many functions with type I IFNs, questioning their possible non-redundant roles and overall biological importance. Here, we review the latest evidence establishing the primacy of IFNλs in front line protection at anatomical barriers, mediating antiviral immunity before type I IFNs. We also discuss their emerging role in regulating inflammation and limiting host damage, a major difference to type I IFNs. IFNλs come thus to light as dual function cytokines mediating antiviral immunity and damage control.
Collapse
Affiliation(s)
- Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; Airway Disease Infection Section, National Heart and Lung Institute, Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, Imperial College London, London W2 1NY, United Kingdom.
| | - Ivan Zanoni
- Division of Gastroenterology, Boston Children's Hospital, Harvard University, Boston, MA 02115, USA; Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Ioanna E Galani
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
21
|
Crisler WJ, Lenz LL. Crosstalk between type I and II interferons in regulation of myeloid cell responses during bacterial infection. Curr Opin Immunol 2018; 54:35-41. [PMID: 29886270 DOI: 10.1016/j.coi.2018.05.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 12/29/2022]
Abstract
Type I and type II interferons (IFNα/β and IFNγ) are cytokines that play indispensable roles in directing myeloid cell activity during inflammatory and immune responses. Each IFN type binds a distinct receptor (IFNAR or IFNGR) to transduce signals that reshape gene expression and function of myeloid and other cell types. In the context of murine models and human bacterial infections, production of IFNγ generally promotes resistance while production of IFNα/β is associated with increased host susceptibility. Here, we review mechanisms of crosstalk between type I and II IFNs in myeloid cells and their impact on myeloid cell activation and anti-microbial function.
Collapse
Affiliation(s)
- William J Crisler
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Aurora, CO 80045, United States
| | - Laurel L Lenz
- Department of Microbiology and Immunology, University of Colorado School of Medicine, Aurora, CO 80045, United States.
| |
Collapse
|
22
|
Administration of Lactococcus lactis strain Plasma induces maturation of plasmacytoid dendritic cells and protection from rotavirus infection in suckling mice. Int Immunopharmacol 2018; 56:205-211. [DOI: 10.1016/j.intimp.2018.01.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 01/07/2023]
|
23
|
Long T, Liu Z, Shang J, Zhou X, Yu S, Tian H, Bao Y. Polygonatum sibiricum polysaccharides play anti-cancer effect through TLR4-MAPK/NF-κB signaling pathways. Int J Biol Macromol 2018; 111:813-821. [PMID: 29343453 DOI: 10.1016/j.ijbiomac.2018.01.070] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To investigate the anti-cancer effect of Polygonatum sibiricum polysaccharides (PSP) and the underlying mechanism. METHODS Tumor-bearing mice were randomly divided into normal saline (NS) group, adriamycin (ADM) group, PSP group and lipopolysaccharide (LPS) group. RAW264.7 cells were pre-treated with or without TLR4 inhibitor or MyD88 inhibitor. Quantitative RT-PCR and Western blot were performed to detect the mRNA and protein expressions, respectively. ELISA and Griess reaction was used to measure cytokines and NO levels. Flow cytometry was employed to examine T-lymphocyte subset and CCK-8 assay was used for cell viability. RESULTS The in vivo experiment found that PSP inhibited tumor growth and improved the spleen index, thymus index, the cytokines secretion and CD4+/CD8+ lymphocytes ratio. Compared with the NS group, the mRNA and protein expressions of the critical nodes inTLR4-MAPK/NF-κB signaling pathways (except TRAM) significantly increased in PSP group, as well as the NO and cytokines levels. Nevertheless, PSP had no obvious effects on TRAM. Further analysis showed that PSP effects on the critical nodes in TLR4-MAPK/NF-κB signaling pathways were suppressed by inhibitor in vitro. CONCLUSION The immunoenhancement effect of PSP against lung cancer is mediated by TLR4-MAPK/NF-κB signaling pathways.
Collapse
Affiliation(s)
- Tingting Long
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zijing Liu
- The Second Clinic College, Chongqing Medical University, Chongqing 400016, China
| | - Jingchuan Shang
- Department of Pharmacology, Chongqing Medical University, Chongqing 400016, China
| | - Xing Zhou
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shuang Yu
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Hui Tian
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yixi Bao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
| |
Collapse
|
24
|
Hemann EA, Gale M, Savan R. Interferon Lambda Genetics and Biology in Regulation of Viral Control. Front Immunol 2017; 8:1707. [PMID: 29270173 PMCID: PMC5723907 DOI: 10.3389/fimmu.2017.01707] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/20/2017] [Indexed: 12/14/2022] Open
Abstract
Type III interferons, also known as interferon lambdas (IFNλs), are the most recent addition to the IFN family following their discovery in 2003. Initially, IFNλ was demonstrated to induce expression of interferon-stimulated genes and exert antiviral properties in a similar manner to type I IFNs. However, while IFNλ has been described to have largely overlapping expression and function with type I IFNs, it has become increasingly clear that type III IFNs also have distinct functions from type I IFNs. In contrast to type I IFNs, whose receptor is ubiquitously expressed, type III IFNs signal and function largely at barrier epithelial surfaces, such as the respiratory and gastrointestinal tracts, as well as the blood–brain barrier. In further support of unique functions for type III IFNs, single nucleotide polymorphisms in IFNL genes in humans are strongly associated with outcomes to viral infection. These biological linkages have also been more directly supported by studies in mice highlighting roles of IFNλ in promoting antiviral immune responses. In this review, we discuss the current understanding of type III IFNs, and how their functions are similar to, and different from, type I IFN in various immune cell subtypes and viral infections.
Collapse
Affiliation(s)
- Emily A Hemann
- Department of Immunology, Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, United States
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, United States
| | - Ram Savan
- Department of Immunology, Center for Innate Immunity and Immune Diseases, University of Washington, Seattle, WA, United States
| |
Collapse
|
25
|
Zanoni I, Granucci F, Broggi A. Interferon (IFN)-λ Takes the Helm: Immunomodulatory Roles of Type III IFNs. Front Immunol 2017; 8:1661. [PMID: 29234323 PMCID: PMC5712353 DOI: 10.3389/fimmu.2017.01661] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/13/2017] [Indexed: 12/16/2022] Open
Abstract
Type III interferons (IFNs) (or IFN-λ) are the latest addition to the IFN family. Even though they share little protein homology with type I IFN, both exhibit remarkable functional similarities: each can be induced in response to viral infections, and both lead to Janus kinases (JAK) and signal transducer and activator of transcription (STAT) activation. The JAK/STAT pathway induces antiviral responses and IFN-stimulated gene transcription. However, despite the similarities in their effector functions with type I IFNs, IFN-λ also has a non-redundant role in protecting barrier organs: epithelial cells preferentially produce IFN-λ rather than type I IFNs; and interferon lambda receptor 1 (IFNLR1), the specific receptor for IFN-λ, is highly expressed on cells of epithelial lineage. Thus far, IFN-λ has been considered mainly as an epithelial cytokine, which restricts viral replication in epithelial cells and constitutes an added layer of protection at mucosal sites. However, it is now increasingly recognized that IFNLR1 is expressed broadly, and that immune cells such as neutrophils and dendritic cells also respond to IFN-λ. Moreover, in many in vivo models, IFN-λ modulates immune cell functions and thereby configures itself less as a cytokine that is only specific to the epithelium, and more as a cytokine that directly controls the inflammatory response at mucosal sites. Here, we critically review the recent literature on immune modulatory roles for IFN-λ, and distinguish between the direct and indirect effects of this IFN on immune cell functions in different inflammatory settings.
Collapse
Affiliation(s)
- Ivan Zanoni
- Harvard Medical School, Division of Gastroenterology, Boston Children’s Hospital, Boston, MA, United States
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Achille Broggi
- Harvard Medical School, Division of Gastroenterology, Boston Children’s Hospital, Boston, MA, United States
| |
Collapse
|
26
|
Wang Y, Li T, Chen Y, Wei H, Sun R, Tian Z. Involvement of NK Cells in IL-28B-Mediated Immunity against Influenza Virus Infection. THE JOURNAL OF IMMUNOLOGY 2017. [PMID: 28637903 DOI: 10.4049/jimmunol.1601430] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IL-28B is a member of the newly discovered type III IFN family and exhibits unique antiviral properties compared with other family members. NK cells play a critical role in defending against viruses; however, little is known about the role of IL-28B in NK cell function. In a mouse model of influenza A virus (mouse adapted influenza A/PR/8/34 strain) infection, long-term overexpression of IL-28B induced by hepatocyte-specific gene delivery exerted a strong antiviral effect in the presence of NK cells. In IL-28B-overexpressing wild-type mice, the percentages and absolute numbers of NK cells in the spleen, liver, and lung were markedly increased, with higher proliferation and accelerated NK cell maturation based on phenotypes staining with CD11b and CD27 or CD11b and KLRG1. Furthermore, the effect of IL-28B on NK cells was macrophage dependent, as confirmed in an in vitro coculture assay and in in vivo macrophage- or alveolar macrophage-depletion experiments. Transwell studies demonstrated that CFSE-labeled NK cell proliferation was driven, in a dose-dependent manner, by unknown soluble factor(s) secreted by IL-28B-stimulated alveolar macrophages, without requiring direct cell-cell contact. An understanding of the NK cell-promoting features of IL-28B will facilitate future clinical application of this cytokine.
Collapse
Affiliation(s)
- Yanshi Wang
- Institute of Immunology, The Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; and
| | - Tingting Li
- Institute of Immunology, The Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; and
| | - Yongyan Chen
- Institute of Immunology, The Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; and
| | - Haiming Wei
- Institute of Immunology, The Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; and
| | - Rui Sun
- Institute of Immunology, The Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; and .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Zhigang Tian
- Institute of Immunology, The Key Laboratory of Innate Immunity and Chronic Disease, Chinese Academy of Sciences, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China; and .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
27
|
Santer DM, Minty GES, Mohamed A, Baldwin L, Bhat R, Joyce M, Egli A, Tyrrell DLJ, Houghton M. A novel method for detection of IFN-lambda 3 binding to cells for quantifying IFN-lambda receptor expression. J Immunol Methods 2017; 445:15-22. [PMID: 28274837 DOI: 10.1016/j.jim.2017.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/08/2017] [Accepted: 03/03/2017] [Indexed: 01/23/2023]
Abstract
Type III interferons (IFN-lambdas) are important antiviral cytokines that also modulate immune responses acting through a unique IFN-λR1/IL-10R2 heterodimeric receptor. Conflicting data has been reported for which cells express the IFN-λR1 subunit and directly respond to IFN-λs. In this study we developed a novel method to measure IFN-λ3 binding to IFN-λR1/IL-10R2 on the surface of cells and relate this to a functional readout of interferon stimulated gene (ISG) activity in various cell lines. We show that Huh7.5 hepatoma cells bind IFN-λ3 at the highest levels with the lowest Kd(app), translating to the highest induction of various ISGs. Raji and Jurkat cell lines, representing B and T cells, respectively, moderately bind IFN-λ3 and have lower ISG responses. U937 cells, representing monocytes, did not bind IFN-λ3 well and therefore, did not have any ISG induction. Importantly, knockdown of IFNLR1 in Huh7.5 cells decreased our binding signal proportionally and reduced ISG induction by up to 93%. IFN-λ3 responsiveness increased over time with maximal ISG responses seen at 24h for all but one gene. These data confirm our new IFN-λ3 binding assay can be used to quantify IFN-λ receptor surface expression on a variety of cell types and reflects IFN-λ3 responsiveness.
Collapse
Affiliation(s)
- Deanna M Santer
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| | - Gillian E S Minty
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Adil Mohamed
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Lesley Baldwin
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Rakesh Bhat
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Joyce
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Adrian Egli
- Division of Clinical Microbiology, University Hospital Basel, Basel, Switzerland; Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - D Lorne J Tyrrell
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael Houghton
- Li Ka Shing Institute of Virology and Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
28
|
Phillips S, Mistry S, Riva A, Cooksley H, Hadzhiolova-Lebeau T, Plavova S, Katzarov K, Simonova M, Zeuzem S, Woffendin C, Chen PJ, Peng CY, Chang TT, Lueth S, De Knegt R, Choi MS, Wedemeyer H, Dao M, Kim CW, Chu HC, Wind-Rotolo M, Williams R, Cooney E, Chokshi S. Peg-Interferon Lambda Treatment Induces Robust Innate and Adaptive Immunity in Chronic Hepatitis B Patients. Front Immunol 2017; 8:621. [PMID: 28611778 PMCID: PMC5446997 DOI: 10.3389/fimmu.2017.00621] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/10/2017] [Indexed: 12/15/2022] Open
Abstract
IFN-lambda (IFNλ) is a member of the type III IFN family and is reported to possess anti-pathogen, anti-cancer, and immunomodulatory properties; however, there are limited data regarding its impact on host immune responses in vivo. We performed longitudinal and comprehensive immunosurveillance to assess the ability of pegylated (peg)-IFNλ to augment antiviral host immunity as part of a clinical trial assessing the efficacy of peg-IFNλ in chronic hepatitis B (CHB) patients. These patients were pretreated with directly acting antiviral therapy (entecavir) for 12 weeks with subsequent addition of peg-IFNλ for up to 32 weeks. In a subgroup of patients, the addition of peg-IFNλ provoked high serum levels of antiviral cytokine IL-18. We also observed the enhancement of natural killer cell polyfunctionality and the recovery of a pan-genotypic HBV-specific CD4+ T cells producing IFN-γ with maintenance of HBV-specific CD8+ T cell antiviral and cytotoxic activities. It was only in these patients that we observed strong virological control with reductions in both viral replication and HBV antigen levels. Here, we show for the first time that in vivo peg-IFNλ displays significant immunostimulatory properties with improvements in the main effectors mediating anti-HBV immunity. Interestingly, the maintenance in HBV-specific CD8+ T cells in the presence of peg-IFNλ is in contrast to previous studies showing that peg-IFNα treatment for CHB results in a detrimental effect on the functionality of this important antiviral T cell compartment. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov NCT01204762.
Collapse
Affiliation(s)
- Sandra Phillips
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Sameer Mistry
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Antonio Riva
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Helen Cooksley
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | | | - Slava Plavova
- Clinic of Gastroenterology and Hepatology, Military Medical Academy, Sofia, Bulgaria
| | - Krum Katzarov
- Clinic of Gastroenterology and Hepatology, Military Medical Academy, Sofia, Bulgaria
| | - Marieta Simonova
- Clinic of Gastroenterology and Hepatology, Military Medical Academy, Sofia, Bulgaria
| | - Stephan Zeuzem
- Johann Wolfgang, Goethe University Medical Center, Frankfurt, Germany
| | - Clive Woffendin
- Oregon Clinical and Translational Research Institute, Portland, OR, United States
| | - Pei-Jer Chen
- National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | - Michael Dao
- Precision Diagnostic Laboratory, Santa Ana, CA, United States
| | | | | | - Megan Wind-Rotolo
- Research and Development, Bristol-Myers Squibb, Wallingford, CT, United States
| | - Roger Williams
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | | | - Shilpa Chokshi
- Institute of Hepatology, Foundation for Liver Research, London, United Kingdom.,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
29
|
Syedbasha M, Egli A. Interferon Lambda: Modulating Immunity in Infectious Diseases. Front Immunol 2017; 8:119. [PMID: 28293236 PMCID: PMC5328987 DOI: 10.3389/fimmu.2017.00119] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 01/25/2017] [Indexed: 12/22/2022] Open
Abstract
Interferon lambdas (IFN-λs; IFNL1-4) modulate immunity in the context of infections and autoimmune diseases, through a network of induced genes. IFN-λs act by binding to the heterodimeric IFN-λ receptor (IFNLR), activating a STAT phosphorylation-dependent signaling cascade. Thereby hundreds of IFN-stimulated genes are induced, which modulate various immune functions via complex forward and feedback loops. When compared to the well-characterized IFN-α signaling cascade, three important differences have been discovered. First, the IFNLR is not ubiquitously expressed: in particular, immune cells show significant variation in the expression levels of and susceptibilities to IFN-λs. Second, the binding affinities of individual IFN-λs to the IFNLR varies greatly and are generally lower compared to the binding affinities of IFN-α to its receptor. Finally, genetic variation in the form of a series of single-nucleotide polymorphisms (SNPs) linked to genes involved in the IFN-λ signaling cascade has been described and associated with the clinical course and treatment outcomes of hepatitis B and C virus infection. The clinical impact of IFN-λ signaling and the SNP variations may, however, reach far beyond viral hepatitis. Recent publications show important roles for IFN-λs in a broad range of viral infections such as human T-cell leukemia type-1 virus, rotaviruses, and influenza virus. IFN-λ also potentially modulates the course of bacterial colonization and infections as shown for Staphylococcus aureus and Mycobacterium tuberculosis. Although the immunological processes involved in controlling viral and bacterial infections are distinct, IFN-λs may interfere at various levels: as an innate immune cytokine with direct antiviral effects; or as a modulator of IFN-α-induced signaling via the suppressor of cytokine signaling 1 and the ubiquitin-specific peptidase 18 inhibitory feedback loops. In addition, the modulation of adaptive immune functions via macrophage and dendritic cell polarization, and subsequent priming, activation, and proliferation of pathogen-specific T- and B-cells may also be important elements associated with infectious disease outcomes. This review summarizes the emerging details of the IFN-λ immunobiology in the context of the host immune response and viral and bacterial infections.
Collapse
Affiliation(s)
- Mohammedyaseen Syedbasha
- Applied Microbiology Research, Department of Biomedicine, University of Basel , Basel , Switzerland
| | - Adrian Egli
- Applied Microbiology Research, Department of Biomedicine, University of Basel, Basel, Switzerland; Clinical Microbiology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
30
|
Boisvert M, Shoukry NH. Type III Interferons in Hepatitis C Virus Infection. Front Immunol 2016; 7:628. [PMID: 28066437 PMCID: PMC5179541 DOI: 10.3389/fimmu.2016.00628] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/08/2016] [Indexed: 12/20/2022] Open
Abstract
The interferon (IFN)-λ family of type III cytokines includes the closely related interleukin (IL)-28A (IFN-λ2), IL-28B (IFN-λ3), and IL-29 (IFN-λ1). They signal through the Janus kinases (JAK)-signal transducers and activators of transcription pathway and promote an antiviral state by the induction of expression of several interferon-stimulated genes (ISGs). Contrary to type I IFNs, the effect of IFN-λ cytokines is largely limited to epithelial cells due to the restricted pattern of expression of their specific receptor. Several genome-wide association studies have established a strong correlation between polymorphism in the region of IL-28B gene (encoding for IFN-λ3) and both spontaneous and therapeutic IFN-mediated clearance of hepatitis C virus (HCV) infection, but the mechanism(s) underlying this enhanced viral clearance are not fully understood. IFN-λ3 directly inhibits HCV replication, and in vitro studies suggest that polymorphism in the IFN-λ3 and its recently identified overlapping IFN-λ4 govern the pattern of ISGs induced upon HCV infection of hepatocytes. IFN-λ can also be produced by dendritic cells, and apart from its antiviral action on hepatocytes, it can regulate the inflammatory response of monocytes/macrophages, thus acting at the interface between innate and adaptive immunity. Here, we review the current state of knowledge about the role of IFN-λ cytokines in mediating and regulating the immune response during acute and chronic HCV infections.
Collapse
Affiliation(s)
- Maude Boisvert
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) , Montréal, QC , Canada
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Département de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
31
|
Abstract
INTRODUCTION Type-III interferons (IFN-λ), the most recently discovered family of IFNs, shares common features with other family members, but also has many distinctive activities. IFN-λ uniquely has a different receptor complex, and a more focused pattern of tissue expression and signaling effects, from other classes of IFNs. Multiple genome-wide association studies (GWAS) and subsequent validation reports suggest a pivotal role for polymorphisms near the IFNL3 gene in hepatitis C clearance and control, as also for several other epithelial cell tropic viruses. Apart from its antiviral activity, IFN-λ possesses anti-tumor, immune-inflammatory and homeostatic functions. The overlapping effects of IFN-λ with type I IFN, with a restricted tissue expression pattern renders IFN-λ an attractive therapeutic target for viral infection, cancer and autoimmune diseases, with limited side effects. Areas covered: This review will summarize the current and future therapeutic opportunities offered by this most recently discovered family of interferons. Expert opinion: Our knowledge on IFN-λ is rapidly expanding. Though there are many remaining questions and challenges that require elucidation, the unique characteristics of IFN-λ increases enthusiasm that multiple therapeutic options will emerge.
Collapse
Affiliation(s)
- Mohammed Eslam
- a Storr Liver Centre, Westmead Institute for Medical Research , Westmead Hospital and University of Sydney , Sydney , Australia
| | - Jacob George
- a Storr Liver Centre, Westmead Institute for Medical Research , Westmead Hospital and University of Sydney , Sydney , Australia
| |
Collapse
|
32
|
Kelm NE, Zhu Z, Ding VA, Xiao H, Wakefield MR, Bai Q, Fang Y. The role of IL-29 in immunity and cancer. Crit Rev Oncol Hematol 2016; 106:91-8. [PMID: 27637354 PMCID: PMC7129698 DOI: 10.1016/j.critrevonc.2016.08.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/27/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023] Open
Abstract
Interleukin-29 (IL-29) is a new member of the recently discovered interferon λ (IFNλ) family. It is produced predominantly by maturing dendritic cells and macrophages. It has been implicated in numerous immunological responses and has shown antiviral activity similar to the Type I interferons, although its target cell population is more limited than the Type I interferons. In recent years, the role of IL-29 in the pathogenesis of various cancers has also been extensively studied. In this review, we will discuss the recent advances of IL-29 in immunological processes and the pathogenesis of various cancer.
Collapse
Affiliation(s)
- Noah E Kelm
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, United States
| | - Ziwen Zhu
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - Vivi A Ding
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, United States
| | - Huaping Xiao
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, United States; The Affiliated Hospital of Xiangnan University, Chenzhou, Hunan, China
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, United States
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University, Des Moines, IA 50312, United States; Department of Surgery, University of Missouri School of Medicine, Columbia, MO 65212, United States.
| |
Collapse
|
33
|
Kelly A, Robinson MW, Roche G, Biron CA, O'Farrelly C, Ryan EJ. Immune Cell Profiling of IFN-λ Response Shows pDCs Express Highest Level of IFN-λR1 and Are Directly Responsive via the JAK-STAT Pathway. J Interferon Cytokine Res 2016; 36:671-680. [PMID: 27617757 DOI: 10.1089/jir.2015.0169] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The interferon lambda (IFN-λ) cytokines have well-known antiviral properties, yet their contribution to immune regulation is not well understood. Epithelial cells represent the major target cell of IFN-λ; peripheral blood mononuclear cells are generally considered nonresponsive, with the exception of plasmacytoid dendritic cells (pDCs). In this study we aimed to define the potential for discrete subpopulations of cells to directly respond to IFN-λ. Analysis of peripheral blood leukocytes reveals that, while pDCs uniformly express the highest levels of IFN-λ receptor, a small proportion of B cells and monocytes also express the receptor. Nevertheless, B cells and monocytes respond poorly to IFN-λ stimulation in vitro, with minimal STAT phosphorylation and interferon-stimulated gene (ISG) induction observed. We confirm that pDCs respond to IFN-λ in vitro, upregulating their expression of pSTAT1, pSTAT3, and pSTAT5. However, we found that pDCs do not upregulate pSTAT6 in response to IFN-λ treatment. Our results highlight unique aspects of the response to IFN-λ and confirm that while the IFN-λ receptor is expressed by a small proportion of several different circulating immune cell lineages, under normal conditions only pDCs respond to IFN-λ stimulation with robust STAT phosphorylation and ISG induction. The difference in STAT6 responsiveness of pDCs to type I and type III interferons may help explain the divergence in their biological activities.
Collapse
Affiliation(s)
- Aoife Kelly
- 1 School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin, Ireland
| | - Mark W Robinson
- 1 School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin, Ireland
| | - Gerard Roche
- 1 School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin, Ireland
| | - Christine A Biron
- 2 Department of Molecular Microbiology and Immunology, Brown University , Providence, Rhode Island
| | - Cliona O'Farrelly
- 1 School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin, Ireland .,3 School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin , Dublin, Ireland
| | - Elizabeth J Ryan
- 4 Centre for Colorectal Disease, Education and Research Centre, St. Vincent's University Hospital , Dublin, Ireland .,5 School of Medicine and Medical Sciences, University College Dublin , Dublin, Ireland
| |
Collapse
|
34
|
Davidson S, McCabe TM, Crotta S, Gad HH, Hessel EM, Beinke S, Hartmann R, Wack A. IFNλ is a potent anti-influenza therapeutic without the inflammatory side effects of IFNα treatment. EMBO Mol Med 2016; 8:1099-112. [PMID: 27520969 PMCID: PMC5009813 DOI: 10.15252/emmm.201606413] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Influenza A virus (IAV)‐induced severe disease is characterized by infected lung epithelia, robust inflammatory responses and acute lung injury. Since type I interferon (IFNαβ) and type III interferon (IFNλ) are potent antiviral cytokines with immunomodulatory potential, we assessed their efficacy as IAV treatments. IFNλ treatment of IAV‐infected Mx1‐positive mice lowered viral load and protected from disease. IFNα treatment also restricted IAV replication but exacerbated disease. IFNα treatment increased pulmonary proinflammatory cytokine secretion, innate cell recruitment and epithelial cell death, unlike IFNλ‐treatment. IFNλ lacked the direct stimulatory activity of IFNα on immune cells. In epithelia, both IFNs induced antiviral genes but no inflammatory cytokines. Similarly, human airway epithelia responded to both IFNα and IFNλ by induction of antiviral genes but not of cytokines, while hPBMCs responded only to IFNα. The restriction of both IFNλ responsiveness and productive IAV replication to pulmonary epithelia allows IFNλ to limit IAV spread through antiviral gene induction in relevant cells without overstimulating the immune system and driving immunopathology. We propose IFNλ as a non‐inflammatory and hence superior treatment option for human IAV infection.
Collapse
Affiliation(s)
- Sophia Davidson
- Immunoregulation Laboratory, Mill Hill Laboratory, Francis Crick Institute, London, UK
| | - Teresa M McCabe
- Immunoregulation Laboratory, Mill Hill Laboratory, Francis Crick Institute, London, UK
| | - Stefania Crotta
- Immunoregulation Laboratory, Mill Hill Laboratory, Francis Crick Institute, London, UK
| | - Hans Henrik Gad
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Edith M Hessel
- Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GSK, Stevenage, UK
| | - Soren Beinke
- Refractory Respiratory Inflammation Discovery Performance Unit, Respiratory Therapy Area, GSK, Stevenage, UK
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Andreas Wack
- Immunoregulation Laboratory, Mill Hill Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
35
|
Depla M, Pelletier S, Bédard N, Brunaud C, Bruneau J, Shoukry NH. IFN-λ3 polymorphism indirectly influences NK cell phenotype and function during acute HCV infection. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:376-88. [PMID: 27621819 PMCID: PMC5004291 DOI: 10.1002/iid3.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 02/06/2023]
Abstract
Introduction Polymorphisms in the type III interferon IFN‐λ3 and the killer cell immunoglobulin‐like receptor (KIR) genes controlling the activity of natural killer (NK) cells can predict spontaneous resolution of acute hepatitis C virus (HCV) infection. We hypothesized that IFN‐λ3 polymorphism may modulate NK cell function during acute HCV. Methods We monitored the plasma levels of type III IFNs in relation to the phenotype and the function of NK cells in a cohort of people who inject drugs (PWID) during acute HCV infection with different outcomes. Results Early acute HCV was associated with high variability in type III IFNs plasma levels and the favorable IFN‐λ3 CC genotype was associated with higher viral loads. Reduced expression of Natural Killer Group Protein 2A (NKG2A) was associated with lower IFN‐λ3 plasma levels and the CC genotype. IFN‐γ production by NK cells was higher in individuals with the CC genotype during acute infection but this did not prevent viral persistence. IFN‐λ3 plasma levels did not correlate with function of NK cells and IFN‐λ3 prestimulation did not affect NK cell activation and function. Conclusions These results suggest that IFN‐λ3 polymorphism indirectly influences NK cell phenotype and function during acute HCV but other factors may act in concert to determine the outcome of the infection.
Collapse
Affiliation(s)
- Marion Depla
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) Montréal Québec Canada
| | - Sandy Pelletier
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada; Département de microbiologie et immunologieFaculté de médecineUniversité de MontréalMontréalQuébecCanada
| | - Nathalie Bédard
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) Montréal Québec Canada
| | - Camille Brunaud
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada; Département de microbiologie et immunologieFaculté de médecineUniversité de MontréalMontréalQuébecCanada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada; Département de médecine familiale et de médecine d'urgenceFaculté de médecineUniversité de MontréalMontréalQuébecCanada
| | - Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM)MontréalQuébecCanada; Département de médecineFaculté de médecineUniversité de MontréalMontréalQuébecCanada
| |
Collapse
|
36
|
Haasnoot AMJW, Kuiper JJW, Hiddingh S, Schellekens PAWJF, de Jager W, Imhof SM, Radstake TRDJ, de Boer JH. Ocular Fluid Analysis in Children Reveals Interleukin-29/Interferon-λ1 as a Biomarker for Juvenile Idiopathic Arthritis-Associated Uveitis. Arthritis Rheumatol 2016; 68:1769-79. [PMID: 26866822 DOI: 10.1002/art.39621] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/02/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Childhood uveitis is a vision-threatening inflammatory eye disease commonly attributed to juvenile idiopathic arthritis (JIA). The pathogenesis is poorly understood, which makes clinical management challenging. We analyzed soluble mediators in ocular fluid (aqueous humor [AqH]) and serum from children with JIA-associated uveitis and common childhood uveitis to identify potential biomarkers and investigate the ocular microenvironment of this sight-threatening eye disease. METHODS AqH (n = 73) and paired serum (n = 66) samples were analyzed for 51 soluble mediators of inflammation by multiplex immunoassay. Twenty-one children with JIA-associated uveitis were compared to 15 children with chronic anterior uveitis without arthritis, 29 children with noninfectious idiopathic uveitis, and 8 children with noninflammatory conditions (controls). For visualization of the joint effect of multiple mediators, we used the radial coordinate visualization (Radviz) method. Optimal biomarker level cutoffs were also determined. RESULTS The levels of interleukin-29 (IL-29)/interferon-λ1 (IFNλ1) were decreased (P < 0.001) and the levels of latency-associated peptide and osteoprotegerin were increased (P = 0.002 and P = 0.001, respectively) in samples of AqH, but not serum, from patients with JIA-associated uveitis. Multivariate analysis correcting for disease activity and treatment revealed that intraocular levels of IL-29/IFNλ1 were specifically decreased in patients with JIA-associated uveitis as compared to those with idiopathic uveitis. Indeed, JIA-associated uveitis patients and idiopathic uveitis patients showed distinct profiles of intraocular soluble mediators. IL-29/IFNλ1 showed a high area under the curve value (0.954), with 23.5 pg/ml as the optimal cutoff value. CONCLUSION We identified IL-29/IFNλ1 as an intraocular biomarker for JIA-associated uveitis, which suggests that aberrant IFNλ signaling might be important in JIA-associated uveitis and distinct from other forms of childhood uveitis.
Collapse
Affiliation(s)
| | | | - Sanne Hiddingh
- Utrecht University Medical Center, Utrecht, The Netherlands
| | | | - Wilco de Jager
- Utrecht University Medical Center and Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - Saskia M Imhof
- Utrecht University Medical Center, Utrecht, The Netherlands
| | | | - Joke H de Boer
- Utrecht University Medical Center, Utrecht, The Netherlands
| |
Collapse
|
37
|
Xu L, Peng Q, Xuan W, Feng X, Kong X, Zhang M, Tan W, Xue M, Wang F. Interleukin-29 Enhances Synovial Inflammation and Cartilage Degradation in Osteoarthritis. Mediators Inflamm 2016; 2016:9631510. [PMID: 27433031 PMCID: PMC4940582 DOI: 10.1155/2016/9631510] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/23/2016] [Accepted: 05/29/2016] [Indexed: 12/16/2022] Open
Abstract
We have recently shown that IL-29 was an important proinflammatory cytokine in pathogenesis of rheumatoid arthritis (RA). Inflammation also contributes to the pathogenesis of osteoarthritis (OA). The aim of this study was to investigate the effect and mechanism of IL-29 on cytokine production and cartilage degradation in OA. The mRNA levels of IL-29 and its specific receptor IL-28Ra in peripheral blood mononuclear cells (PBMCs) were significantly increased in OA patients when compared to healthy controls (HC). In the serum, IL-29 protein levels were higher in OA patients than those in HC. Immunohistochemistry revealed that both IL-29 and IL-28Ra were dramatically elevated in OA synovium compared to HC; synovial fibroblasts (FLS) and macrophages were the main IL-29-producing cells in OA synovium. Furthermore, recombinant IL-29 augmented the mRNA expression of IL-1β, IL-6, IL-8, and matrix-metalloproteinase-3 (MMP-3) in OA FLS and increased cartilage degradation when ex vivo OA cartilage explant was coincubated with OA FLS. Finally, in OA FLS, IL-29 dominantly activated MAPK and nuclear factor-κB (NF-κB), but not Jak-STAT and AKT signaling pathway as examined by western blot. In conclusion, IL-29 stimulates inflammation and cartilage degradation by OA FLS, indicating that this cytokine is likely involved in the pathogenesis of OA.
Collapse
Affiliation(s)
- Lingxiao Xu
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiuyue Peng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenhua Xuan
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Miaojia Zhang
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wenfeng Tan
- Department of Rheumatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Meilang Xue
- Sutton Arthritis Research Laboratories, University of Sydney at Royal North Shore Hospital, Sydney, NSW, Australia
| | - Fang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
38
|
Alase AA, El-Sherbiny YM, Vital EM, Tobin DJ, Turner NA, Wittmann M. IFNλ Stimulates MxA Production in Human Dermal Fibroblasts via a MAPK-Dependent STAT1-Independent Mechanism. J Invest Dermatol 2015; 135:2935-2943. [PMID: 26288353 DOI: 10.1038/jid.2015.317] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/17/2015] [Accepted: 07/11/2015] [Indexed: 02/07/2023]
Abstract
IFNλ is important for epidermal defense against viruses. It is produced by, and acts on, keratinocytes, whereas fibroblasts were previously considered to be unresponsive to this type III IFN. Herein we report findings revealing cell type-specific differences in IFNλ signaling and function in skin resident cells. In dermal fibroblasts, IFNλ induced the expression of myxovirus protein A (MxA), a potent antiviral factor, but not other IFN signature genes as it does in primary keratinocytes. In contrast to its effect on keratinocytes, IFNλ did not phosphorylate signal transducer and activator of transcription 1 in fibroblasts, but instead activated mitogen activated protein kinases (MAPK). Accordingly, inhibition of MAPK activation (p38 and p42/44) blocked the expression of MxA protein in fibroblasts but not in keratinocytes. Functionally, IFNλ inhibited proliferation in keratinocytes but not in fibroblasts. Moreover, IFNλ upregulated the expression of Tumor growth factor beta 1 (TGFβ1)-induced collagens in fibroblasts. Taken together, our findings identify primary human dermal fibroblasts as responder cells to IFNλ. Our study shows cutaneous cell type-specific IFN signaling and suggests that IFNλ, although important for epidermal antiviral competence, may also have a regulatory role in the dermal compartment balancing type I IFN-induced inhibition of tissue repair processes.
Collapse
Affiliation(s)
- Adewonuola A Alase
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK.
| | - Yasser M El-Sherbiny
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Faculty of Medicine and Health, University of Leeds, Leeds, UK; Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Desmond J Tobin
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK
| | - Neil A Turner
- Division of Cardiovascular and Diabetes Research, Leeds Institute for Cardiovascular and Diabetes Research (LICAMM), Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Miriam Wittmann
- Centre for Skin Sciences, Faculty of Life Sciences, University of Bradford, Bradford, UK; Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Faculty of Medicine and Health, University of Leeds, Leeds, UK; Department of Dermatology, Bradford Teaching Hospitals NHS Foundation Trust, St Luke's Hospital, Bradford, UK; Leeds Musculoskeletal Biomedical Research Unit, National Institute of Health Research (NIHR), Chapel Allerton Hospital, Leeds, UK
| |
Collapse
|
39
|
de Groen RA, Groothuismink ZMA, Liu BS, Boonstra A. IFN-λ is able to augment TLR-mediated activation and subsequent function of primary human B cells. J Leukoc Biol 2015; 98:623-30. [PMID: 26130701 DOI: 10.1189/jlb.3a0215-041rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/09/2015] [Indexed: 11/24/2022] Open
Abstract
During the past decade, increased emphasis has been placed on finding alternatives to IFN-α-based therapies. One such alternative, IFN-λ, has shown therapeutic promise in a variety of diseases, but research of this family of cytokines has been primarily focused on their antiviral activities. The goal of the present study was to investigate the role of IFN-λ in the regulation and modulation of B cell function. We show that, similar to IFN-α, IFN-λ1 is able to augment TLR-mediated B cell activation, partially attributed to an upregulation of TLR7 expression, and that both naïve and memory B cells express the limiting type III IFN receptor component, IFN-λR1. Furthermore, this IFN-λ-enhanced B cell activation resulted in increased cytokine and Ig production during TLR7 challenge, most prominently after the addition of helper T cell signals. Ultimately, these elevated cytokine and Ig levels could be partially attributed to the increase in proliferation of TLR7-challenged B cells by both type I and type III IFNs. These findings demonstrate the ability of IFN-λ to boost humoral immunity, an important attribute to consider for further studies on immunity to pathogens, vaccine development, and ongoing advancement of therapeutic strategies aimed at replacing IFN-α-based treatments with IFN-λ.
Collapse
Affiliation(s)
- Rik A de Groen
- *Department of Gastroenterology and Hepatology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Zwier M A Groothuismink
- *Department of Gastroenterology and Hepatology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bi-Sheng Liu
- *Department of Gastroenterology and Hepatology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - André Boonstra
- *Department of Gastroenterology and Hepatology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands; and Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
40
|
Wack A, Terczyńska-Dyla E, Hartmann R. Guarding the frontiers: the biology of type III interferons. Nat Immunol 2015; 16:802-9. [PMID: 26194286 PMCID: PMC7096991 DOI: 10.1038/ni.3212] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 06/01/2015] [Indexed: 02/07/2023]
Abstract
Type III interferons (IFNs) or IFN-λs regulate a similar set of genes as type I IFNs, but whereas type I IFNs act globally, IFN-λs primarily target mucosal epithelial cells and protect them against the frequent viral attacks that are typical for barrier tissues. IFN-λs thereby help to maintain healthy mucosal surfaces through immune protection, without the significant immune-related pathogenic risk associated with type I IFN responses. Type III IFNs also target the human liver, with dual effects: they induce an antiviral state in hepatocytes, but specific IFN-λ4 action impairs the clearance of hepatitis C virus and could influence inflammatory responses. This constitutes a paradox that has yet to be resolved.
Collapse
Affiliation(s)
- Andreas Wack
- Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Ewa Terczyńska-Dyla
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
41
|
Inflammatory monocytes recruited to the liver within 24 hours after virus-induced inflammation resemble Kupffer cells but are functionally distinct. J Virol 2015; 89:4809-17. [PMID: 25673700 DOI: 10.1128/jvi.03733-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Accepted: 02/02/2015] [Indexed: 12/27/2022] Open
Abstract
UNLABELLED Due to a scarcity of immunocompetent animal models for viral hepatitis, little is known about the early innate immune responses in the liver. In various hepatotoxic models, both pro- and anti-inflammatory activities of recruited monocytes have been described. In this study, we compared the effect of liver inflammation induced by the Toll-like receptor 4 ligand lipopolysaccharide (LPS) with that of a persistent virus, lymphocytic choriomeningitis virus (LCMV) clone 13, on early innate intrahepatic immune responses in mice. LCMV infection induces a remarkable influx of inflammatory monocytes in the liver within 24 h, accompanied by increased transcript levels of several proinflammatory cytokines and chemokines in whole liver. Importantly, while a single LPS injection results in similar recruitment of inflammatory monocytes to the liver, the functional properties of the infiltrating cells are dramatically different in response to LPS versus LCMV infection. In fact, intrahepatic inflammatory monocytes are skewed toward a secretory phenotype with impaired phagocytosis in LCMV-induced liver inflammation but exhibit increased endocytic capacity after LPS challenge. In contrast, F4/80(high)-Kupffer cells retain their steady-state endocytic functions upon LCMV infection. Strikingly, the gene expression levels of inflammatory monocytes dramatically change upon LCMV exposure and resemble those of Kupffer cells. Since inflammatory monocytes outnumber Kupffer cells 24 h after LCMV infection, it is highly likely that inflammatory monocytes contribute to the intrahepatic inflammatory response during the early phase of infection. Our findings are instrumental in understanding the early immunological events during virus-induced liver disease and point toward inflammatory monocytes as potential target cells for future treatment options in viral hepatitis. IMPORTANCE Insights into how the immune system deals with hepatitis B virus (HBV) and HCV are scarce due to the lack of adequate animal model systems. This knowledge is, however, crucial to developing new antiviral strategies aimed at eradicating these chronic infections. We model virus-host interactions during the initial phase of liver inflammation 24 h after inoculating mice with LCMV. We show that infected Kupffer cells are rapidly outnumbered by infiltrating inflammatory monocytes, which secrete proinflammatory cytokines but are less phagocytic. Nevertheless, these recruited inflammatory monocytes start to resemble Kupffer cells on a transcript level. The specificity of these cellular changes for virus-induced liver inflammation is corroborated by demonstrating opposite functions of monocytes after LPS challenge. Overall, this demonstrates the enormous functional and genetic plasticity of infiltrating monocytes and identifies them as an important target cell for future treatment regimens.
Collapse
|
42
|
Griffiths SJ, Dunnigan CM, Russell CD, Haas JG. The Role of Interferon-λ Locus Polymorphisms in Hepatitis C and Other Infectious Diseases. J Innate Immun 2015; 7:231-42. [PMID: 25634147 PMCID: PMC6738896 DOI: 10.1159/000369902] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 11/15/2014] [Indexed: 12/19/2022] Open
Abstract
Since its discovery in 2003, the type III interferon-λ (IFN-λ) family has been found to contribute significantly to the host response to infection. Whilst IFN-λ shares many features with type I IFN induction and signalling pathways, the tissue-specific restricted expression of its receptor, IL28RA, makes IFN-λ a major mediator of host innate immunity in tissues and organs with a high epithelial cell content. Host susceptibility and responses to infection are known to be heterogeneous, and the identification of common genetic variants linked to disease outcome by genome-wide association studies (GWAS) has underscored the significance of host polymorphisms in responses to infection. Several such GWAS have highlighted the IFN-λ locus on chromosome 19q13 as an area of genetic variation significantly associated with hepatitis C virus (HCV) infection, and the rs12979860 genotype can be used in clinical practice as a biomarker for predicting a successful response to treatment with pegylated IFN and ribavarin. Here, we discuss IFN-λ genetic polymorphisms and their role in HCV and other infectious diseases as well as their potential impact on clinical diagnostics, patient stratification and therapy. Finally, the broader role of IFN-λ in the immunopathogenesis of non-infectious inflammatory diseases is considered.
Collapse
Affiliation(s)
- Samantha J Griffiths
- Division of Infection and Pathway Medicine, University of Edinburgh Medical School, Edinburgh, UK
| | | | | | | |
Collapse
|
43
|
Piliation of Lactobacillus rhamnosus GG promotes adhesion, phagocytosis, and cytokine modulation in macrophages. Appl Environ Microbiol 2015; 81:2050-62. [PMID: 25576613 DOI: 10.1128/aem.03949-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recently, spaCBA-encoded pili on the cell surface of Lactobacillus rhamnosus GG were identified to be key molecules for binding to human intestinal mucus and Caco-2 intestinal epithelial cells. Here, we investigated the role of the SpaCBA pilus of L. rhamnosus GG in the interaction with macrophages in vitro by comparing the wild type with surface mutants. Our results show that SpaCBA pili play a significant role in the capacity for adhesion to macrophages and also promote bacterial uptake by these phagocytic cells. Interestingly, our data suggest that SpaCBA pili also mediate anti-inflammatory effects by induction of interleukin-10 (IL-10) mRNA and reduction of interleukin-6 (IL-6) mRNA in a murine RAW 264.7 macrophage cell line. These pili appear to mediate these effects indirectly by promoting close contact with the macrophages, facilitating the exertion of anti-inflammatory effects by other surface molecules via yet unknown mechanisms. Blockage of complement receptor 3 (CR3), previously identified to be a receptor for streptococcal pili, significantly decreased the uptake of pilus-expressing strains in RAW 264.7 cells, while the expression of IL-10 and IL-6 mRNA by these macrophages was not affected by this blocking. On the other hand, blockage of Toll-like receptor 2 (TLR2) significantly reduced the expression of IL-6 mRNA irrespective of the presence of pili.
Collapse
|
44
|
de Groen RA, Boltjes A, Hou J, Liu BS, McPhee F, Friborg J, Janssen HLA, Boonstra A. IFN-λ-mediated IL-12 production in macrophages induces IFN-γ production in human NK cells. Eur J Immunol 2015; 45:250-9. [PMID: 25316442 DOI: 10.1002/eji.201444903] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/24/2014] [Accepted: 10/10/2014] [Indexed: 12/16/2022]
Abstract
With increasing interest in alternative options to interferon-alpha-based treatments, IFN-λ has shown therapeutic promise in a variety of diseases. Although the antiviral activity of IFN-λ has been extensively studied, there is limited knowledge regarding the immunological functions of IFN-λ and how these differ from those of other classes of IFNs. In this study, we investigated the effects of IFN-λ on primary human NK cells, both in a direct and indirect capacity. We demonstrate that in contrast to interferon-alpha, IFN-λ is unable to directly stimulate NK cells, due to the absence of IFN-λ receptor chain 1 (IFN-λR1) on NK cells. However, IFN-λ, in combination with TLR4 challenge, is able to induce the production of select members of the IL-12 family of cytokines in monocyte-derived macrophages. We further show that through macrophage-mediated IL-12 production, IFN-λ is able to indirectly affect NK cells and ultimately induce IFN-γ production.
Collapse
Affiliation(s)
- Rik A de Groen
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Zdrenghea MT, Makrinioti H, Muresan A, Johnston SL, Stanciu LA. The role of macrophage IL-10/innate IFN interplay during virus-induced asthma. Rev Med Virol 2014; 25:33-49. [PMID: 25430775 PMCID: PMC4316183 DOI: 10.1002/rmv.1817] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/25/2014] [Accepted: 10/14/2014] [Indexed: 12/18/2022]
Abstract
Activation through different signaling pathways results in two functionally different types of macrophages, the pro-inflammatory (M1) and the anti-inflammatory (M2). The polarization of macrophages toward the pro-inflammatory M1 phenotype is considered to be critical for efficient antiviral immune responses in the lung. Among the various cell types that are present in the asthmatic airways, macrophages have emerged as significant participants in disease pathogenesis, because of their activation during both the inflammatory and resolution phases, with an impact on disease progression. Polarized M1 and M2 macrophages are able to reversibly undergo functional redifferentiation into anti-inflammatory or pro-inflammatory macrophages, respectively, and therefore, macrophages mediate both processes. Recent studies have indicated a predominance of M2 macrophages in asthmatic airways. During a virus infection, it is likely that M2 macrophages would secrete higher amounts of the suppressor cytokine IL-10, and less innate IFNs. However, the interactions between IL-10 and innate IFNs during virus-induced exacerbations of asthma have not been well studied. The possible role of IL-10 as a therapy in allergic asthma has already been suggested, but the divergent roles of this suppressor molecule in the antiviral immune response raise concerns. This review attempts to shed light on macrophage IL-10-IFNs interactions and discusses the role of IL-10 in virus-induced asthma exacerbations. Whereas IL-10 is important in terminating pro-inflammatory and antiviral immune responses, the presence of this immune regulatory cytokine at the beginning of virus infection could impair the response to viruses and play a role in virus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Mihnea T Zdrenghea
- Ion Chiricuta Oncology InstituteCluj-Napoca, Romania
- Iuliu Hatieganu, University of Medicine and PharmacyCluj-Napoca, Romania
| | - Heidi Makrinioti
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of AsthmaLondon, UK
- Centre for Respiratory InfectionsLondon, UK
| | - Adriana Muresan
- Iuliu Hatieganu, University of Medicine and PharmacyCluj-Napoca, Romania
| | - Sebastian L Johnston
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of AsthmaLondon, UK
- Centre for Respiratory InfectionsLondon, UK
| | - Luminita A Stanciu
- Iuliu Hatieganu, University of Medicine and PharmacyCluj-Napoca, Romania
- Airways Disease Infection Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
- Medical Research Council and Asthma UK Centre in Allergic Mechanisms of AsthmaLondon, UK
- Centre for Respiratory InfectionsLondon, UK
- *
Correspondence to: Dr. L. A. Stanciu, MD, PhD, Airway Disease Infection Section, Imperial College London, London, UK., E-mail:
| |
Collapse
|
46
|
Zhou H, Chen S, Wang M, Cheng A. Interferons and Their Receptors in Birds: A Comparison of Gene Structure, Phylogenetic Analysis, and Cross Modulation. Int J Mol Sci 2014; 15:21045-68. [PMID: 25405736 PMCID: PMC4264211 DOI: 10.3390/ijms151121045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/26/2014] [Accepted: 11/04/2014] [Indexed: 11/17/2022] Open
Abstract
Interferon may be thought of as a key, with the interferon receptor as the signal lock: Crosstalk between them maintains their balance during viral infection. In this review, the protein structure of avian interferon and the interferon receptor are discussed, indicating remarkable similarity between different species. However, the structures of the interferon receptors are more sophisticated than those of the interferons, suggesting that the interferon receptor is a more complicated signal lock system and has considerable diversity in subtypes or structures. Preliminary evolutionary analysis showed that the subunits of the interferon receptor formed a distinct clade, and the orthologs may be derived from the same ancestor. Furthermore, the development of interferons and interferon receptors in birds may be related to an animal’s age and the maintenance of a balanced state. In addition, the equilibrium between interferon and its receptor during pathological and physiological states revealed that the virus and the host influence this equilibrium. Birds could represent an important model for studies on interferon’s antiviral activities and may provide the basis for new antiviral strategies.
Collapse
Affiliation(s)
- Hao Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
47
|
Wehrli M, Cortinas-Elizondo F, Hlushchuk R, Daudel F, Villiger PM, Miescher S, Zuercher AW, Djonov V, Simon HU, von Gunten S. Human IgA Fc Receptor FcαRI (CD89) Triggers Different Forms of Neutrophil Death Depending on the Inflammatory Microenvironment. THE JOURNAL OF IMMUNOLOGY 2014; 193:5649-59. [DOI: 10.4049/jimmunol.1400028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Hou J, Groothuismink ZMA, Koning L, Roomer R, van IJcken WFJ, Kreefft K, Liu BS, Janssen HLA, de Knegt RJ, Boonstra A. Analysis of the transcriptome and immune function of monocytes during IFNα-based therapy in chronic HCV revealed induction of TLR7 responsiveness. Antiviral Res 2014; 109:116-24. [PMID: 25014880 DOI: 10.1016/j.antiviral.2014.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/10/2014] [Accepted: 06/30/2014] [Indexed: 01/17/2023]
Abstract
Although in vitro studies have been performed to dissect the mechanism of action of IFNα, detailed in vivo studies on the long-term effects of IFNα on monocytes have not been performed. Here we examined peripheral blood from 14 chronic HCV patients at baseline and 12 weeks after start of IFNα-based therapy. Monocytes were phenotyped by flow-cytometry and their function evaluated upon TLR stimulation and assessed by multiplex cytokine assays. During therapy of HCV patients, monocytes displayed a hyperactive state as evidenced by increased TLR-induced pro-inflammatory cytokine levels, as well as enhanced CD69 and CD83 mRNA and protein expression. Moreover, monocytes from 8 patients at baseline and 12 weeks after start of IFNα-based therapy were transcriptomically profiled by high throughput RNA-sequencing. Detailed RNA-seq analysis of monocytes showed significant ISG mRNA induction during therapy. Importantly, IFNα-based therapy activated TLR7 signaling pathways, as demonstrated by up-regulated expression of TLR7, MyD88, and IRF7 mRNA, whereas other TLR family members as well as CD1c, CLEC4C, and CLEC9A were not induced. The induction of TLR7 responsiveness of monocytes by IFNα in vivo in HCV patients is relevant for the development of TLR7 agonists that are currently under development as a promising immunotherapeutic compounds to treat chronic viral hepatitis.
Collapse
Affiliation(s)
- Jun Hou
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Zwier M A Groothuismink
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Ludi Koning
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Robert Roomer
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | - Kim Kreefft
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Bi-Sheng Liu
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Harry L A Janssen
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands; Liver Clinic University Health Network, Division of Gastroenterology, University of Toronto, Canada
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
| |
Collapse
|
49
|
Egli A, Santer DM, O'Shea D, Tyrrell DL, Houghton M. The impact of the interferon-lambda family on the innate and adaptive immune response to viral infections. Emerg Microbes Infect 2014; 3:e51. [PMID: 26038748 PMCID: PMC4126180 DOI: 10.1038/emi.2014.51] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/06/2014] [Accepted: 05/20/2014] [Indexed: 12/12/2022]
Abstract
Type-III interferons (IFN-λ, IFNL) are the most recently described family of IFNs. This family of innate cytokines are increasingly being ascribed pivotal roles in host-pathogen interactions. Herein, we will review the accumulating evidence detailing the immune biology of IFNL during viral infection, and the implications of this novel information on means to advance the development of therapies and vaccines against existing and emerging pathogens. IFNLs exert antiviral effects via induction of IFN-stimulated genes. Common single nucleotide polymorphisms (SNPs) in the IFNL3, IFNL4 and the IFNL receptor α-subunit genes have been strongly associated with IFN-α-based treatment of chronic hepatitis C virus infection. The clinical impact of these SNPs may be dependent on the status of viral infection (acute or chronic) and the potential to develop viral resistance. Another important function of IFNLs is macrophage and dendritic cell polarization, which prime helper T-cell activation and proliferation. It has been demonstrated that IFNL increase Th1- and reduce Th2-cytokines. Therefore, can such SNPs affect the IFNL signaling and thereby modulate the Th1/Th2 balance during infection? In turn, this may influence the subsequent priming of cytotoxic T cells versus antibody-secreting B cells, with implications for the breadth and durability of the host response.
Collapse
Affiliation(s)
- Adrian Egli
- Infection Biology, Department of Biomedicine, University Hospital of Basel , 4031 Basel, Switzerland ; Clinical Microbiology, University Hospital of Basel , 4031 Basel, Switzerland
| | - Deanna M Santer
- Department of Medical Microbiology and Immunology, and Li Ka Shing Institute of Virology, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Daire O'Shea
- Department of Medical Microbiology and Immunology, and Li Ka Shing Institute of Virology, University of Alberta , Edmonton, Alberta T6G 2E1, Canada ; Division of Infectious Diseases, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - D Lorne Tyrrell
- Department of Medical Microbiology and Immunology, and Li Ka Shing Institute of Virology, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Michael Houghton
- Department of Medical Microbiology and Immunology, and Li Ka Shing Institute of Virology, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
50
|
Liu BS, Cao Y, Huizinga TW, Hafler DA, Toes RE. TLR-mediated STAT3 and ERK activation controls IL-10 secretion by human B cells. Eur J Immunol 2014; 44:2121-9. [DOI: 10.1002/eji.201344341] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/10/2014] [Accepted: 03/12/2014] [Indexed: 01/10/2023]
Affiliation(s)
- Bi-Sheng Liu
- Department of Rheumatology; Leiden University Medical Center; Leiden The Netherlands
| | - Yonghao Cao
- Departments of Neurology and Immunobiology; Yale School of Medicine; New Haven CT USA
| | - Tom W. Huizinga
- Department of Rheumatology; Leiden University Medical Center; Leiden The Netherlands
| | - David A. Hafler
- Departments of Neurology and Immunobiology; Yale School of Medicine; New Haven CT USA
| | - Rene E.M. Toes
- Department of Rheumatology; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|