1
|
Meng J, Yu J, Wu Z, Ma F, Zhang Y, Liu C. WSA-MP-Net: Weak-signal-attention and multi-scale perception network for microvascular extraction in optical-resolution photoacoustic microcopy. PHOTOACOUSTICS 2024; 37:100600. [PMID: 38516294 PMCID: PMC10955652 DOI: 10.1016/j.pacs.2024.100600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
The unique advantage of optical-resolution photoacoustic microscopy (OR-PAM) is its ability to achieve high-resolution microvascular imaging without exogenous agents. This ability has excellent potential in the study of tissue microcirculation. However, tracing and monitoring microvascular morphology and hemodynamics in tissues is challenging because the segmentation of microvascular in OR-PAM images is complex due to the high density, structure complexity, and low contrast of vascular structures. Various microvasculature extraction techniques have been developed over the years but have many limitations: they cannot consider both thick and thin blood vessel segmentation simultaneously, they cannot address incompleteness and discontinuity in microvasculature, there is a lack of open-access datasets for DL-based algorithms. We have developed a novel segmentation approach to extract vascularity in OR-PAM images using a deep learning network incorporating a weak signal attention mechanism and multi-scale perception (WSA-MP-Net) model. The proposed WSA network focuses on weak and tiny vessels, while the MP module extracts features from different vessel sizes. In addition, Hessian-matrix enhancement is incorporated into the pre-and post-processing of the input and output data of the network to enhance vessel continuity. We constructed normal vessel (NV-ORPAM, 660 data pairs) and tumor vessel (TV-ORPAM, 1168 data pairs) datasets to verify the performance of the proposed method. We developed a semi-automatic annotation algorithm to obtain the ground truth for our network optimization. We applied our optimized model successfully to monitor glioma angiogenesis in mouse brains, thus demonstrating the feasibility and excellent generalization ability of our model. Compared to previous works, our proposed WSA-MP-Net extracts a significant number of microvascular while maintaining vessel continuity and signal fidelity. In quantitative analysis, the indicator values of our method improved by about 1.3% to 25.9%. We believe our proposed approach provides a promising way to extract a complete and continuous microvascular network of OR-PAM and enables its use in many microvascular-related biological studies and medical diagnoses.
Collapse
Affiliation(s)
- Jing Meng
- School of Computer, Qufu Normal University, Rizhao 276826, China
| | - Jialing Yu
- School of Computer, Qufu Normal University, Rizhao 276826, China
| | - Zhifeng Wu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Fei Ma
- School of Computer, Qufu Normal University, Rizhao 276826, China
| | - Yuanke Zhang
- School of Computer, Qufu Normal University, Rizhao 276826, China
| | - Chengbo Liu
- Research Center for Biomedical Optics and Molecular Imaging, Key Laboratory of Biomedical Imaging Science and System, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
2
|
Meo C, de Nigris F. Clinical Potential of YY1-Hypoxia Axis for Vascular Normalization and to Improve Immunotherapy. Cancers (Basel) 2024; 16:491. [PMID: 38339244 PMCID: PMC10854702 DOI: 10.3390/cancers16030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Abnormal vasculature in solid tumors causes poor blood perfusion, hypoxia, low pH, and immune evasion. It also shapes the tumor microenvironment and affects response to immunotherapy. The combination of antiangiogenic therapy and immunotherapy has emerged as a promising approach to normalize vasculature and unlock the full potential of immunotherapy. However, the unpredictable and redundant mechanisms of vascularization and immune suppression triggered by tumor-specific hypoxic microenvironments indicate that such combination therapies need to be further evaluated to improve patient outcomes. Here, we provide an overview of the interplay between tumor angiogenesis and immune modulation and review the function and mechanism of the YY1-HIF axis that regulates the vascular and immune tumor microenvironment. Furthermore, we discuss the potential of targeting YY1 and other strategies, such as nanocarrier delivery systems and engineered immune cells (CAR-T), to normalize tumor vascularization and re-establish an immune-permissive microenvironment to enhance the efficacy of cancer therapy.
Collapse
Affiliation(s)
| | - Filomena de Nigris
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| |
Collapse
|
3
|
Kao TW, Bai GH, Wang TL, Shih IM, Chuang CM, Lo CL, Tsai MC, Chiu LY, Lin CC, Shen YA. Novel cancer treatment paradigm targeting hypoxia-induced factor in conjunction with current therapies to overcome resistance. J Exp Clin Cancer Res 2023; 42:171. [PMID: 37460927 DOI: 10.1186/s13046-023-02724-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/29/2023] [Indexed: 07/20/2023] Open
Abstract
Chemotherapy, radiotherapy, targeted therapy, and immunotherapy are established cancer treatment modalities that are widely used due to their demonstrated efficacy against tumors and favorable safety profiles or tolerability. Nevertheless, treatment resistance continues to be one of the most pressing unsolved conundrums in cancer treatment. Hypoxia-inducible factors (HIFs) are a family of transcription factors that regulate cellular responses to hypoxia by activating genes involved in various adaptations, including erythropoiesis, glucose metabolism, angiogenesis, cell proliferation, and apoptosis. Despite this critical function, overexpression of HIFs has been observed in numerous cancers, leading to resistance to therapy and disease progression. In recent years, much effort has been poured into developing innovative cancer treatments that target the HIF pathway. Combining HIF inhibitors with current cancer therapies to increase anti-tumor activity and diminish treatment resistance is one strategy for combating therapeutic resistance. This review focuses on how HIF inhibitors could be applied in conjunction with current cancer treatments, including those now being evaluated in clinical trials, to usher in a new era of cancer therapy.
Collapse
Affiliation(s)
- Ting-Wan Kao
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
| | - Geng-Hao Bai
- Department of Internal Medicine, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei City, 100225, Taiwan
| | - Tian-Li Wang
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Departments of Pathology, Oncology and Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans StreetRoom 306, Baltimore, MD, CRB221231, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chi-Mu Chuang
- Faculty of Medicine, School of Medicine, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, 112201, Taiwan
- Department of Midwifery and Women Health Care, National Taipei University of Nursing and Health Sciences, Taipei, 112303, Taiwan
| | - Chun-Liang Lo
- Department of Biomedical Engineering, National Yang-Ming Chiao Tung University, Taipei, 112304, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Meng-Chen Tsai
- Department of General Medicine, Taipei Medical University Hospital, Taipei, 110301, Taiwan
| | - Li-Yun Chiu
- Department of General Medicine, Mackay Memorial Hospital, Taipei, 104217, Taiwan
| | - Chu-Chien Lin
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan
- School of Medicine, College of Medicine, Taipei Medical University, Taipei City, 110301, Taiwan
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110301, Taiwan.
| |
Collapse
|
4
|
Li D, Humayun L, Vienneau E, Vu T, Yao J. Seeing through the Skin: Photoacoustic Tomography of Skin Vasculature and Beyond. JID INNOVATIONS 2021; 1:100039. [PMID: 34909735 PMCID: PMC8659408 DOI: 10.1016/j.xjidi.2021.100039] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Skin diseases are the most common human diseases and manifest in distinct structural and functional changes to skin tissue components such as basal cells, vasculature, and pigmentation. Although biopsy is the standard practice for skin disease diagnosis, it is not sufficient to provide in vivo status of the skin and highly depends on the timing of diagnosis. Noninvasive imaging technologies that can provide structural and functional tissue information in real time would be invaluable for skin disease diagnosis and treatment evaluation. Among the modern medical imaging technologies, photoacoustic (PA) tomography (PAT) shows great promise as an emerging optical imaging modality with high spatial resolution, high imaging speed, deep penetration depth, rich contrast, and inherent sensitivity to functional and molecular information. Over the last decade, PAT has undergone an explosion in technical development and biomedical applications. Particularly, PAT has attracted increasing attention in skin disease diagnosis, providing structural, functional, metabolic, molecular, and histological information. In this concise review, we introduce the principles and imaging capability of various PA skin imaging technologies. We highlight the representative applications in the past decade with a focus on imaging skin vasculature and melanoma. We also envision the critical technical developments necessary to further accelerate the translation of PAT technologies to fundamental skin research and clinical impacts.
Collapse
Key Words
- ACD, allergy contact dermatitis
- AR-PAM, acoustic-resolution photoacoustic microscopy
- CSC, cryogen spray cooling
- CSVV, cutaneous small-vessel vasculitis
- CTC, circulating tumor cell
- FDA, Food and Drug Administration
- NIR, near-infrared
- OR-PAM, optical-resolution photoacoustic microscopy
- PA, photoacoustic
- PACT, photoacoustic computed tomography
- PAM, photoacoustic microscopy
- PAT, photoacoustic tomography
- PWS, port-wine stain
- RSOM, raster-scan optoacoustic mesoscopy
- THb, total hemoglobin concentration
- sO2, oxygen saturation of hemoglobin
Collapse
Affiliation(s)
- Daiwei Li
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Lucas Humayun
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Emelina Vienneau
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Tri Vu
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Junjie Yao
- Photoacoustic Imaging Lab, Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
Cheng K, Zhang RY, Yang XQ, Zhang XS, Zhang F, An J, Wang ZY, Dong Y, Liu B, Zhao YD, Liu TC. One-for-All Nanoplatform for Synergistic Mild Cascade-Potentiated Ultrasound Therapy Induced with Targeting Imaging-Guided Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40052-40066. [PMID: 32806885 DOI: 10.1021/acsami.0c10475] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ameliorated therapy based on the tumor microenvironment is becoming increasingly popular, yet only a few methods have achieved wide recognition. Herein, targeting multifunctional hydrophilic nanomicelles, AgBiS2@DSPE-PEG2000-FA (ABS-FA), were obtained and employed for tumor treatment. In a cascade amplification mode, ABS-FA exhibited favorable properties of actively enhancing computed tomography/infrared (CT/IR) imaging and gently relieving ambient oxygen concentration by cooperative photothermal and sonodynamic therapy. Compared with traditional Bi2S3 nanoparticles, the CT imaging capability of the probe was augmented (43.21%), and the photothermal conversion efficiency was increased (33.1%). Furthermore, remarkable ultrasonic dynamic features of ABS-FA were observed, with increased generation of reactive oxygen species (24.3%) being obtained compared to Ce6, a commonly used sonosensitizer. Furthermore, ABS-FA exhibited obvious inhibitory effects on HeLa cell migration at 6 μg/mL, which to some extent, demonstrated its suppressive effect on tumor growth. A lower dose, laser and ultrasonic power, and shorter processing time endowed ABS-FA with excellent photothermal and sonodynamic effects. By mild cascade mode, the hypoxic condition of the tumor site was largely improved, and a suitable oxygen-rich environment was provided, thereby endowing ABS-FA with a superior synergistically enhanced treatment effect compared with the single-mode approach, which ultimately realized the purpose of "one injection, multiple treatment". Moreover, our data showed that ABS-FA was given with a biological safety profile while harnessing in vivo. Taken together, as a synergistically enhanced medical diagnosis and treatment method, the one-for-all nanoplatform will pave a new avenue for further clinical applications.
Collapse
Affiliation(s)
- Kai Cheng
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Ruo-Yun Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Xiao-Quan Yang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Xiao-Shuai Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Fang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Jie An
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Zhuo-Ya Wang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Ying Dong
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| | - Bo Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China
| | - Tian-Cai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou 510515, Guangdong, P. R. China
| |
Collapse
|
6
|
Towards Clinical Translation of LED-Based Photoacoustic Imaging: A Review. SENSORS 2020; 20:s20092484. [PMID: 32349414 PMCID: PMC7249023 DOI: 10.3390/s20092484] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/14/2022]
Abstract
Photoacoustic imaging, with the capability to provide simultaneous structural, functional, and molecular information, is one of the fastest growing biomedical imaging modalities of recent times. As a hybrid modality, it not only provides greater penetration depth than the purely optical imaging techniques, but also provides optical contrast of molecular components in the living tissue. Conventionally, photoacoustic imaging systems utilize bulky and expensive class IV lasers, which is one of the key factors hindering the clinical translation of this promising modality. Use of LEDs which are portable and affordable offers a unique opportunity to accelerate the clinical translation of photoacoustics. In this paper, we first review the development history of LED as an illumination source in biomedical photoacoustic imaging. Key developments in this area, from point-source measurements to development of high-power LED arrays, are briefly discussed. Finally, we thoroughly review multiple phantom, ex-vivo, animal in-vivo, human in-vivo, and clinical pilot studies and demonstrate the unprecedented preclinical and clinical potential of LED-based photoacoustic imaging.
Collapse
|
7
|
Piperine Inhibits TGF-β Signaling Pathways and Disrupts EMT-Related Events in Human Lung Adenocarcinoma Cells. MEDICINES 2020; 7:medicines7040019. [PMID: 32276474 PMCID: PMC7235759 DOI: 10.3390/medicines7040019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/06/2023]
Abstract
Background: Piperine, an amide extracted from the Piper spices, exhibits strong anti-tumor properties. However, its effect on the epithelial–mesenchymal transition (EMT) process has never been investigated. Herein, we evaluate the toxic effect of piperine on lung adenocarcinoma (A549), breast adenocarcinoma (MDA-MB-231) and hepatocellular carcinoma (HepG2) cell lines, as well as its ability to inhibit EMT-related events induced by TGF-β1 treatment. Methods: The cell viability was investigated by MTT assay. Protein expression was evaluated by Western blot. Gene expression was monitored by real-time PCR. Zymography assay was employed to detect metalloproteinase (MMP) activity in conditioned media. Cell motility was assessed by the wound-healing and phagokinetic gold sol assays. Results: The results revealed that piperine was cytotoxic in concentrations over 100 µM, showing IC50 values for HepG2, MDA-MB-231 and A549 cell lines of 214, 238 and 198 µM, respectively. In order to investigate whether piperine would reverse the TGF-β1 induced-EMT, the A549 cell line was pretreated with sublethal concentrations of the natural amide followed by the addition of TGF-β1. Besides disrupting EMT-related events, piperine also inhibited both ERK 1/2 and SMAD 2 phosphorylation. Conclusions: These results suggest that piperine might be further used in therapeutic strategies for metastatic cancer and EMT-related disorders.
Collapse
|
8
|
Acosta‐Iborra B, Tiana M, Maeso‐Alonso L, Hernández‐Sierra R, Herranz G, Santamaria A, Rey C, Luna R, Puente‐Santamaria L, Marques MM, Marin MC, del Peso L, Jiménez B. Hypoxia compensates cell cycle arrest with progenitor differentiation during angiogenesis. FASEB J 2020; 34:6654-6674. [DOI: 10.1096/fj.201903082r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/03/2020] [Accepted: 03/11/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Bárbara Acosta‐Iborra
- Departamento de Bioquímica Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC‐UAM Madrid Spain
| | - Maria Tiana
- Departamento de Bioquímica Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC‐UAM Madrid Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz Madrid Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid Spain
| | - Laura Maeso‐Alonso
- Departamento de Biología Molecular, Laboratorio de Diferenciación Celular y Diseño de Modelos Celulares Instituto de Biomedicina, Universidad de León León Spain
| | - Rosana Hernández‐Sierra
- Departamento de Bioquímica Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC‐UAM Madrid Spain
| | - Gonzalo Herranz
- Departamento de Bioquímica Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC‐UAM Madrid Spain
| | - Andrea Santamaria
- Departamento de Bioquímica Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC‐UAM Madrid Spain
| | - Carlos Rey
- Departamento de Bioquímica Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC‐UAM Madrid Spain
| | - Raquel Luna
- Departamento de Bioquímica Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC‐UAM Madrid Spain
| | - Laura Puente‐Santamaria
- Departamento de Bioquímica Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC‐UAM Madrid Spain
| | - Margarita M. Marques
- Departamento de Producción Animal, Laboratorio de Diferenciación Celular y Diseño de Modelos Celulares Instituto de Desarrollo Ganadero y Sanidad Animal, Universidad de León León Spain
| | - Maria C. Marin
- Departamento de Biología Molecular, Laboratorio de Diferenciación Celular y Diseño de Modelos Celulares Instituto de Biomedicina, Universidad de León León Spain
| | - Luis del Peso
- Departamento de Bioquímica Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC‐UAM Madrid Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz Madrid Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid Spain
| | - Benilde Jiménez
- Departamento de Bioquímica Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas “Alberto Sols” CSIC‐UAM Madrid Spain
- IdiPaz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz Madrid Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Instituto de Salud Carlos III Madrid Spain
| |
Collapse
|
9
|
Zhou HC, Chen N, Zhao H, Yin T, Zhang J, Zheng W, Song L, Liu C, Zheng R. Optical-resolution photoacoustic microscopy for monitoring vascular normalization during anti-angiogenic therapy. PHOTOACOUSTICS 2019; 15:100143. [PMID: 31463195 PMCID: PMC6710376 DOI: 10.1016/j.pacs.2019.100143] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 07/17/2019] [Accepted: 08/09/2019] [Indexed: 05/03/2023]
Abstract
Monitoring the changes in tumor vascularity is important for anti-angiogenic therapy assessment with therapeutic implications. However, monitoring vascularity is quite challenging due to the lack of appropriate imaging techniques. Here, we describe a non-invasive imaging technique using optical-resolution photoacoustic microscopy (OR-PAM) to track vascular changes in prostate cancer treated with an anti-angiogenic agent, DC101, on a mouse ear xenograft model. Approximately 1-3 days after the initial therapy, OR-PAM imaging detected tumor vascular changes such as reduced vessel tortuosity, decreased vessel diameter and homogenized intratumoral vessel distribution. These observations indicated vessel normalization, which was pathologically validated as increased fractional pericyte coverage, functional perfusion and drug delivery of the vessels. After four DC101 interventions, OR-PAM imaging eventually revealed intratumoral vessel regression. Therefore, OR-PAM imaging of the vasculature offers a promising method to study anti-angiogenic drug mechanisms of action in vivo and holds potential in monitoring and guiding anti-angiogenic therapy.
Collapse
Affiliation(s)
- Hui-Chao Zhou
- Department of Medical Ultrasonic, Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ningbo Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, China
| | - Huangxuan Zhao
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Tinghui Yin
- Department of Medical Ultrasonic, Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianhui Zhang
- School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou, China
| | - Wei Zheng
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Corresponding author at: Research Laboratory for Biomedical Optics and Molecular Imaging, CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Boulevard, Shenzhen 518055, China.
| | - Rongqin Zheng
- Department of Medical Ultrasonic, Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Corresponding author at: Department of Medical Ultrasonic, Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-sen University, Tian He Road 600#, Guangzhou 510630, China.
| |
Collapse
|
10
|
Impaired tumor growth and angiogenesis in mice heterozygous for Vegfr2 (Flk1). Sci Rep 2018; 8:14724. [PMID: 30283071 PMCID: PMC6170482 DOI: 10.1038/s41598-018-33037-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 09/18/2018] [Indexed: 12/29/2022] Open
Abstract
VEGF signaling through its tyrosine kinase receptor, VEGFR2 (FLK1), is critical for tumor angiogenesis. Previous studies have identified a critical gene dosage effect of VegfA in embryonic development and vessel homeostasis, neovascularization, and tumor growth, and potent inhibitors of VEGFR2 have been used to treat a variety of cancers. Inhibition of FGFR signaling has also been considered as an antiangiogenic approach to treat a variety of cancers. Inhibition of VEGFR2 with neutralizing antibodies or with pharmacological inhibitors of the VEGFR tyrosine kinase domain has at least short-term efficacy with some cancers; however, also affects vessel homeostasis, leading to adverse complications. We investigate gene dosage effects of Vegfr2, Fgfr1, and Fgfr2 in three independent mouse models of tumorigenesis: two-stage skin chemical carcinogenesis, and sub-cutaneous transplantation of B16F0 melanoma and Lewis Lung Carcinoma (LLC). Mice heterozygous for Vegfr2 display profound defects in supporting tumor growth and angiogenesis. Unexpectedly, additional deletion of endothelial Fgfr1 and Fgfr2 in Vegfr2 heterozygous mice shows similar tumor growth and angiogenesis as the Vegfr2 heterozygous mice. Notably, hematopoietic deletion of two alleles of Vegfr2 had minimal impact on tumor growth, with little effect on angiogenesis, reinforcing the importance of endothelial Vegfr2 heterozygosity. These studies reveal previously unrecognized Vegfr2 gene dosage effects in tumor angiogenesis and a lack of synergy between VEGFR2 and endothelial FGFR1/2 signaling during tumor growth.
Collapse
|
11
|
Li M, Tang Y, Yao J. Photoacoustic tomography of blood oxygenation: A mini review. PHOTOACOUSTICS 2018; 10:65-73. [PMID: 29988848 PMCID: PMC6033062 DOI: 10.1016/j.pacs.2018.05.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/24/2018] [Accepted: 05/28/2018] [Indexed: 05/04/2023]
Abstract
Photoacoustic tomography (PAT) is a hybrid imaging modality that combines rich contrast of optical excitation and deep penetration of ultrasound detection. With its unique optical absorption contrast mechanism, PAT is inherently sensitive to the functional and molecular information of biological tissues, and thus has been widely used in preclinical and clinical studies. Among many functional capabilities of PAT, measuring blood oxygenation is arguably one of the most important applications, and has been widely performed in photoacoustic studies of brain functions, tumor hypoxia, wound healing, and cancer therapy. Yet, the complex optical conditions of biological tissues, especially the strong wavelength-dependent optical attenuation, have long hurdled the PAT measurement of blood oxygenation at depths beyond a few millimeters. A variety of PAT methods have been developed to improve the accuracy of blood oxygenation measurement, using novel laser illumination schemes, oxygen-sensitive fluorescent dyes, comprehensive mathematic models, or prior information provided by complementary imaging modalities. These novel methods have made exciting progress, while several challenges remain. This concise review aims to introduce the recent developments in photoacoustic blood oxygenation measurement, compare each method's advantages and limitations, highlight their representative applications, and discuss the remaining challenges for future advances.
Collapse
Affiliation(s)
| | | | - Junjie Yao
- Photoacoustic Imaging Laboratory, Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
12
|
Zafar H, Leahy M, Wijns W, Kolios M, Zafar J, Johnson N, Sharif F. Photoacoustic cardiovascular imaging: a new technique for imaging of atherosclerosis and vulnerable plaque detection. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aab640] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Jin T, Guo H, Yao L, Xie H, Jiang H, Xi L. Portable optical-resolution photoacoustic microscopy for volumetric imaging of multiscale organisms. JOURNAL OF BIOPHOTONICS 2018; 11:e201700250. [PMID: 29064190 DOI: 10.1002/jbio.201700250] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/15/2017] [Accepted: 10/22/2017] [Indexed: 05/22/2023]
Abstract
Photoacoustic microscopy (PAM) provides a fundamentally new tool for a broad range of studies of biological structures and functions. However, the use of PAM has been largely limited to small vertebrates due to the large size/weight and the inconvenience of the equipment. Here, we describe a portable optical-resolution photoacoustic microscopy (pORPAM) system for 3-dimensional (3D) imaging of small-to-large rodents and humans with a high spatiotemporal resolution and a large field of view. We show extensive applications of pORPAM to multiscale animals including mice and rabbits. In addition, we image the 3D vascular networks of human lips, and demonstrate the feasibility of pORPAM to observe the recovery process of oral ulcer and cancer-associated capillary loops in human oral cavities. This technology is promising for broad biomedical studies from fundamental biology to clinical diseases.
Collapse
Affiliation(s)
- Tian Jin
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
| | - Heng Guo
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Yao
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huikai Xie
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
| | - Huabei Jiang
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Medical Engineering, University of South Florida, Tampa, Florida
| | - Lei Xi
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu, China
- Center for Information in Biomedicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Park K, Kim JY, Lee C, Jeon S, Lim G, Kim C. Handheld Photoacoustic Microscopy Probe. Sci Rep 2017; 7:13359. [PMID: 29042650 PMCID: PMC5645466 DOI: 10.1038/s41598-017-13224-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/20/2017] [Indexed: 11/09/2022] Open
Abstract
Optical resolution photoacoustic microscopy (OR-PAM) is a non-invasive, label-free method of in vivo imaging with microscopic resolution and high optical contrast. Based on intrinsic contrasts, OR-PAM has expanded to include in vivo vessel imaging, flow cytometry, physiological parameter analysis, and single-cell characterization. However, since conventional OR-PAM systems have a fixed tabletop configuration, a large system size, and slow imaging speed, their use in preclinical and clinical studies remains limited. In this study, using microelectromechanical systems (MEMS) technology, we developed a handheld PAM probe with a high signal-to-noise ratio and image rate. To enable broader application of the OR-PAM system, we reduced its size and combined its fast scanning capabilities into a small handheld probe that uses a 2-axis waterproof MEMS scanner (2A-WP-MEMS scanner). All acoustical, optical, and mechanical components are integrated into a single probe with a diameter of 17 mm and a weight of 162 g. This study shows phantom and in vivo images of various samples acquired with the probe, including carbon fibers, electrospun microfibers, and the ear, iris, and brain of a living mouse. In particular, this study investigated the possibility of clinical applications for melanoma diagnosis by imaging the boundaries and morphology of a human mole.
Collapse
Affiliation(s)
- Kyungjin Park
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jin Young Kim
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Changho Lee
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Nuclear medicine, Chonnam National University Medical School & Hwasun Hospital, 160 Baekseo-ro, Gwangju, 61469, South Korea
| | - Seungwan Jeon
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Geunbae Lim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| | - Chulhong Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
15
|
Pham TT, Verheijen M, Vandermosten L, Deroost K, Knoops S, Van den Eynde K, Boon L, Janse CJ, Opdenakker G, Van den Steen PE. Pathogenic CD8 + T Cells Cause Increased Levels of VEGF-A in Experimental Malaria-Associated Acute Respiratory Distress Syndrome, but Therapeutic VEGFR Inhibition Is Not Effective. Front Cell Infect Microbiol 2017; 7:416. [PMID: 29034214 PMCID: PMC5627041 DOI: 10.3389/fcimb.2017.00416] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/06/2017] [Indexed: 12/29/2022] Open
Abstract
Malaria is a severe disease and kills over 400,000 people each year. Malarial complications are the main cause of death and include cerebral malaria and malaria-associated acute respiratory distress syndrome (MA-ARDS). Despite antimalarial treatment, lethality rates of MA-ARDS are still between 20 and 80%. Patients develop pulmonary edema with hemorrhages and leukocyte extravasation in the lungs. The vascular endothelial growth factor-A (VEGF-A) and the placental growth factor (PlGF) are vascular permeability factors and may be involved in the disruption of the alveolar-capillary membrane, leading to alveolar edema. We demonstrated increased pulmonary VEGF-A and PlGF levels in lungs of mice with experimental MA-ARDS. Depletion of pathogenic CD8+ T cells blocked pulmonary edema and abolished the increase of VEGF-A and PlGF. However, neutralization of VEGF receptor-2 (VEGFR-2) with the monoclonal antibody clone DC101 did not decrease pulmonary pathology. The broader spectrum receptor tyrosine kinase inhibitor sunitinib even increased lung pathology. These data suggest that the increase in alveolar VEGF-A and PlGF is not a cause but rather a consequence of the pulmonary pathology in experimental MA-ARDS and that therapeutic inhibition of VEGF receptors is not effective and even contra-indicated.
Collapse
Affiliation(s)
- Thao-Thy Pham
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of LeuvenLeuven, Belgium
| | - Melissa Verheijen
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of LeuvenLeuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of LeuvenLeuven, Belgium
| | - Katrien Deroost
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of LeuvenLeuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of LeuvenLeuven, Belgium
| | | | | | - Chris J Janse
- Leiden Malaria Research Group, Department of Parasitology, Leiden University Medical CenterLeiden, Netherlands
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of LeuvenLeuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven-University of LeuvenLeuven, Belgium
| |
Collapse
|
16
|
Liu X, Wang S, Wang X, Liang J, Zhang Y. Recent drug therapies for corneal neovascularization. Chem Biol Drug Des 2017; 90:653-664. [PMID: 28489275 DOI: 10.1111/cbdd.13018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/17/2017] [Accepted: 04/25/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Xinyao Liu
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Shurong Wang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Xuanzhong Wang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Jiaming Liang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| | - Yan Zhang
- Department of Ophthalmology; The 2nd Teaching Hospital of Jilin University; Changchun Jilin China
| |
Collapse
|
17
|
Upputuri PK, Krisnan M, Pramanik M. Microsphere enabled subdiffraction-limited optical-resolution photoacoustic microscopy: a simulation study. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:45001. [PMID: 27901548 DOI: 10.1117/1.jbo.22.4.045001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/07/2016] [Indexed: 05/21/2023]
Abstract
Optical resolution photoacoustic microscopy (ORPAM) is a high-resolution hybrid imaging modality having potential for microscale in vivo imaging. Optical diffraction limits the lateral resolution of ORPAM. A photonic nanojet (PNJ) was used to break this diffraction limit. A single round microsphere can generate a PNJ with subwavelength waist, but its short axial length limits its applications to surface imaging only. We investigate different sphere designs to achieve ultralong nanojets that will make the nanojet more viable in far-field applications, such as photoacoustic imaging. The PNJ properties, including effective length, waist size, working distance, and peak intensity, can be tuned and controlled by changing the sphere design and its refractive index. A truncated multilayer microsphere design could generate an ultraelongated PNJ with length larger than ∼172λ (∼138 μm) while retaining a large working distance ∼32λ (∼26 μm). Through simulation study, we observed ∼11-fold enhancement in lateral resolution with 5 μm round sphere (refractive index 2.2) when used in a conventional ORPAM setup with NA=0.1 and λ=800 nm.
Collapse
Affiliation(s)
- Paul Kumar Upputuri
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Moganasundari Krisnan
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Manojit Pramanik
- Nanyang Technological University, School of Chemical and Biomedical Engineering, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
18
|
Hu Y, Bai J, Hou SX, Tang JS, Shi XX, Qin J, Ren N. Hypoxia-Inducible Factor 1-Alpha Regulates Cancer-Inhibitory Effect of Human Mesenchymal Stem Cells. Cell Biochem Biophys 2016; 72:131-6. [PMID: 25572053 DOI: 10.1007/s12013-014-0420-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mesenchymal stem cells (MSCs) have been shown to be able to inhibit cancer cells growth. In this study, we investigate the role and the molecular mechanism of hypoxia-inducible factor 1-alpha (HIF-1α) in inhibition of cancer cell proliferation by human MSCs through depletion and overexpression of HIF-1α in human MSCs. We found that the cell culture medium from HIF-1α-depleted Z3 cells significantly promotes breast cancer MCF-7 cell proliferation and colony formation. The expression of p21 is increased in MCF-7 cells, but p53 level remains unchanged. In contrast, the cultured medium from HIF-1α-overexpressed Z3 cells dramatically inhibits MCF-7 cell proliferation and colony formation. The expression of p21 is inhibited in MCF-7 cells, but p53 does not change. We conclude HIF-1α promotes inhibitory effect of human MCSs on breast cancer cell proliferation and colony formation. This process is tightly correlated with cell cycle protein p21 level in cancer cells.
Collapse
Affiliation(s)
- Yuan Hu
- Institute of Orthopedics, The First Affiliated Hospital of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Jing Bai
- Department of Cardiology, The First Affiliated Hospital of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Shu-Xun Hou
- Institute of Orthopedics, The First Affiliated Hospital of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Jin-Shu Tang
- Institute of Orthopedics, The First Affiliated Hospital of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Xiu-Xiu Shi
- Institute of Orthopedics, The First Affiliated Hospital of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Jiang Qin
- Institute of Orthopedics, The First Affiliated Hospital of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| | - Neng Ren
- Institute of Orthopedics, The First Affiliated Hospital of Chinese PLA General Hospital, 51 Fucheng Road, Haidian District, Beijing, 100048, China
| |
Collapse
|
19
|
HIF-α Promotes Chronic Myelogenous Leukemia Cell Proliferation by Upregulating p21 Expression. Cell Biochem Biophys 2016; 72:179-83. [PMID: 25596666 DOI: 10.1007/s12013-014-0434-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We sought to determine the expression levels of hypoxia-inducible factor-1α (HIF-1α) in the bone marrow chronic myelogenous leukemia (CML) patients. We also tried to determine the roles HIF-1α in the proliferation of CML cells by small interfering RNA (siRNA) knockdown. Real-time PCR was performed to determine the expression levels of HIF-1α in the bone marrows of CML patients and healthy volunteers. HIF-1α knockdown by siRNA in K562 cells was confirmed by RT-PCR. Proliferation and colony formation of the treated cells were determined by CCK8 after HIF-1α knockdown. RT-PCR and western blotting were performed to detect mRNA and protein levels of p21 and p53 in K562 cells. HIF-1α mRNA expression in the bone marrow of CML patients was significantly higher than that in the control, which was statistically significant (P < 0.05). HIF-1α knockdown dramatically reduced the proliferation of K562 cells, which was also statistically significant (P < 0.05). HIF-1α knockdown markedly reduced the colony formation ability of K562 cells, which was also statistically significant (P < 0.05). The mRNA and protein expression of p21 were significantly reduced in K562 cell after HIF-1α knockdown with affecting the mRNA and protein levels of p53. HIF-α promotes chronic CML cell proliferation by up-regulating p21 expression.
Collapse
|
20
|
Falcon BL, Chintharlapalli S, Uhlik MT, Pytowski B. Antagonist antibodies to vascular endothelial growth factor receptor 2 (VEGFR-2) as anti-angiogenic agents. Pharmacol Ther 2016; 164:204-25. [PMID: 27288725 DOI: 10.1016/j.pharmthera.2016.06.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interaction of numerous signaling pathways in endothelial and mesangial cells results in exquisite control of the process of physiological angiogenesis, with a central role played by vascular endothelial growth factor receptor 2 (VEGFR-2) and its cognate ligands. However, deregulated angiogenesis participates in numerous pathological processes. Excessive activation of VEGFR-2 has been found to mediate tissue-damaging vascular changes as well as the induction of blood vessel expansion to support the growth of solid tumors. Consequently, therapeutic intervention aimed at inhibiting the VEGFR-2 pathway has become a mainstay of treatment in cancer and retinal diseases. In this review, we introduce the concepts of physiological and pathological angiogenesis, the crucial role played by the VEGFR-2 pathway in these processes, and the various inhibitors of its activity that have entered the clinical practice. We primarily focus on the development of ramucirumab, the antagonist monoclonal antibody (mAb) that inhibits VEGFR-2 and has recently been approved for use in patients with gastric, colorectal, and lung cancers. We examine in-depth the pre-clinical studies using DC101, the mAb to mouse VEGFR-2, which provided a conceptual foundation for the role of VEGFR-2 in physiological and pathological angiogenesis. Finally, we discuss further clinical development of ramucirumab and the future of targeting the VEGF pathway for the treatment of cancer.
Collapse
|
21
|
Samant P, Chen J, Xiang L. Characterization of the temperature rise in a single cell during photoacoustic tomography at the nanoscale. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:75009. [PMID: 27405264 DOI: 10.1117/1.jbo.21.7.075009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
We are developing a label-free nanoscale photoacoustic tomography (nPAT) for imaging a single living cell. nPAT uses a laser-induced acoustic pulse to generate a nanometer-scale image. The primary motivation behind this imaging technique is the imaging of biological cells in the context of diagnosis without fluorescent tagging. During this procedure, thermal damage due to the laser pulse is a potential risk that may damage the cells. A physical model is built to estimate the temperature rise and thermal relaxation during the imaging procedure. Through simulations using finite element methods, two lasers (532 nm at 5 ps pulse duration and 830 nm at 0.2 ps pulse duration) were simulated for imaging red blood cells (RBCs). We demonstrate that a single 5-ps pulse laser with a 400-Hz repetition rate will generate a steady state temperature rise of less than a Kelvin on the surface of the RBCs. All the simulation results show that there is no significant temperature rise in an RBC in either single pulse or multiple pulse illumination with a 532-nm laser with 219 W fluence. Therefore, our simulation results demonstrate the thermal safety of an nPAT system. The photoacoustic signal generated by this laser is on the order of 2.5 kPa, so it should still be large enough to generate high-resolution images with nPAT. Frequency analysis of this signal shows a peak at 1.47 GHz, with frequencies as high as 3.5 GHz still being present in the spectrum. We believe that nPAT will open an avenue for disease diagnosis and cell biology studies at the nanometer-level.
Collapse
|
22
|
Xia J, Kim C, Lovell JF. Opportunities for Photoacoustic-Guided Drug Delivery. Curr Drug Targets 2016; 16:571-81. [PMID: 26148989 DOI: 10.2174/1389450116666150707100328] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 01/23/2023]
Abstract
Photoacoustic imaging (PAI) is rapidly becoming established as a viable imaging modality for small animal research, with promise of near-future human clinical translation. In this review, we discuss emerging prospects for photoacoustic-guided drug delivery. PAI presents opportunities for applications related to drug delivery, mainly with respect to either monitoring drug effects or monitoring drugs themselves. PAI is well-suited for imaging disease pathology and treatment response. Alternatively, PAI can be used to directly monitor the accumulation of various light-absorbing contrast agents or carriers with theranostic properties.
Collapse
Affiliation(s)
| | | | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, Buffalo, USA.
| |
Collapse
|
23
|
Leahy M, Thompson K, Zafar H, Alexandrov S, Foley M, O'Flatharta C, Dockery P. Functional imaging for regenerative medicine. Stem Cell Res Ther 2016; 7:57. [PMID: 27095443 PMCID: PMC4837501 DOI: 10.1186/s13287-016-0315-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In vivo imaging is a platform technology with the power to put function in its natural structural context. With the drive to translate stem cell therapies into pre-clinical and clinical trials, early selection of the right imaging techniques is paramount to success. There are many instances in regenerative medicine where the biological, biochemical, and biomechanical mechanisms behind the proposed function of stem cell therapies can be elucidated by appropriate imaging. Imaging techniques can be divided according to whether labels are used and as to whether the imaging can be done in vivo. In vivo human imaging places additional restrictions on the imaging tools that can be used. Microscopies and nanoscopies, especially those requiring fluorescent markers, have made an extraordinary impact on discovery at the molecular and cellular level, but due to their very limited ability to focus in the scattering tissues encountered for in vivo applications they are largely confined to superficial imaging applications in research laboratories. Nanoscopy, which has tremendous benefits in resolution, is limited to the near-field (e.g. near-field scanning optical microscope (NSNOM)) or to very high light intensity (e.g. stimulated emission depletion (STED)) or to slow stochastic events (photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM)). In all cases, nanoscopy is limited to very superficial applications. Imaging depth may be increased using multiphoton or coherence gating tricks. Scattering dominates the limitation on imaging depth in most tissues and this can be mitigated by the application of optical clearing techniques that can impose mild (e.g. topical application of glycerol) or severe (e.g. CLARITY) changes to the tissue to be imaged. Progression of therapies through to clinical trials requires some thought as to the imaging and sensing modalities that should be used. Smoother progression is facilitated by the use of comparable imaging modalities throughout the discovery and trial phases, giving label-free techniques an advantage wherever they can be used, although this is seldom considered in the early stages. In this paper, we will explore the techniques that have found success in aiding discovery in stem cell therapies and try to predict the likely technologies best suited to translation and future directions.
Collapse
Affiliation(s)
- Martin Leahy
- Tissue Optics & Microcirculation Imaging Group, School of Physics, National University of Ireland (NUI), Galway, Ireland. .,Chair of Applied Physics, National University of Ireland (NUI), Galway, Ireland.
| | - Kerry Thompson
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland (NUI), Galway, Ireland
| | - Haroon Zafar
- Tissue Optics & Microcirculation Imaging Group, School of Physics, National University of Ireland (NUI), Galway, Ireland
| | - Sergey Alexandrov
- Tissue Optics & Microcirculation Imaging Group, School of Physics, National University of Ireland (NUI), Galway, Ireland
| | - Mark Foley
- Medical Physics Research Cluster, School of Physics, National University of Ireland (NUI), Galway, Ireland
| | - Cathal O'Flatharta
- Regenerative Medicine Institute (REMEDI), National University of Ireland (NUI), Galway, Ireland
| | - Peter Dockery
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland (NUI), Galway, Ireland
| |
Collapse
|
24
|
Ultrasound-aided Multi-parametric Photoacoustic Microscopy of the Mouse Brain. Sci Rep 2015; 5:18775. [PMID: 26688368 PMCID: PMC4685318 DOI: 10.1038/srep18775] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/16/2015] [Indexed: 12/24/2022] Open
Abstract
High-resolution quantitative imaging of cerebral oxygen metabolism in mice is crucial for understanding brain functions and formulating new strategies to treat neurological disorders, but remains a challenge. Here, we report on our newly developed ultrasound-aided multi-parametric photoacoustic microscopy (PAM), which enables simultaneous quantification of the total concentration of hemoglobin (CHb), the oxygen saturation of hemoglobin (sO2), and cerebral blood flow (CBF) at the microscopic level and through the intact mouse skull. The three-dimensional skull and vascular anatomies delineated by the dual-contrast (i.e., ultrasonic and photoacoustic) system provide important guidance for dynamically focused contour scan and vessel orientation-dependent correction of CBF, respectively. Moreover, bi-directional raster scan allows determining the direction of blood flow in individual vessels. Capable of imaging all three hemodynamic parameters at the same spatiotemporal scale, our ultrasound-aided PAM fills a critical gap in preclinical neuroimaging and lays the foundation for high-resolution mapping of the cerebral metabolic rate of oxygen (CMRO2)-a quantitative index of cerebral oxygen metabolism. This technical innovation is expected to shed new light on the mechanism and treatment of a broad spectrum of neurological disorders, including Alzheimer's disease and ischemic stroke.
Collapse
|
25
|
Cao R, Kilroy JP, Ning B, Wang T, Hossack JA, Hu S. Multispectral photoacoustic microscopy based on an optical-acoustic objective. PHOTOACOUSTICS 2015; 3:55-9. [PMID: 26236641 PMCID: PMC4519805 DOI: 10.1016/j.pacs.2014.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/10/2014] [Accepted: 12/26/2014] [Indexed: 05/15/2023]
Abstract
We have developed reflection-mode multispectral photoacoustic microscopy (PAM) based on a novel optical-acoustic objective that integrates a customized ultrasonic transducer and a commercial reflective microscope objective into one solid piece. This technical innovation provides zero chromatic aberration and convenient confocal alignment of the optical excitation and acoustic detection. With a wavelength-tunable optical-parametric-oscillator laser, we have demonstrated multispectral PAM over an ultrabroad spectral range of 270-1300 nm. A near-constant lateral resolution of ∼2.8 μm is achieved experimentally. Capitalizing on the consistent performance over the ultraviolet, visible, and near-infrared range, multispectral PAM enables label-free concurrent imaging of cell nucleus (DNA/RNA contrast at 270 nm), blood vessel (hemoglobin contrast at 532 nm), and sebaceous gland (lipid contrast at 1260 nm) at the same spatial scale in a living mouse ear.
Collapse
Affiliation(s)
| | | | | | | | | | - Song Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, United States
| |
Collapse
|
26
|
Zafar H, Breathnach A, Subhash HM, Leahy MJ. Linear-array-based photoacoustic imaging of human microcirculation with a range of high frequency transducer probes. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:051021. [PMID: 25536121 DOI: 10.1117/1.jbo.20.5.051021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/02/2014] [Indexed: 05/07/2023]
Abstract
Photoacoustic imaging (PAI) with a linear-array-based probe can provide a convenient means of imaging the human microcirculation within its native structural context and adds functional information. PAI using a multielement linear transducer array combined with multichannel collecting system was used for in vivo volumetric imaging of the blood microcirculation, the total concentration of hemoglobin (HbT), and the hemoglobin oxygen saturation (sO₂) within human tissue. Three-dimensional (3-D) PA and ultrasound (US) volumetric scans were acquired from the forearm skin by linearly translating the transducer with a stepper motor over a region of interest, while capturing two-dimensional images using 15, 21, and 40 MHz frequency transducer probes. For the microvasculature imaging, PA images were acquired at 800- and 1064-nm wavelengths. For the HbT and sO₂ estimates, PA images were collected at 750- and 850-nm wavelengths. 3-D microcirculation, HbT, and sO₂ maps of the forearm skin were obtained from normal subjects. The linear-array-based PAI has been found promising in terms of resolution, imaging depth, and imaging speed for in vivo microcirculation imaging within human skin. We believe that a reflection type probe, similar to existing clinical US probes, is most likely to succeed in real clinical applications. Its advantages include ease of use, speed, and familiarity for radiographers and clinicians.
Collapse
Affiliation(s)
- Haroon Zafar
- National University of Ireland Galway, School of Physics, Tissue Optics and Microcirculation Imaging Facility, Arts and Science Building, University Road, Galway, IrelandbNational Biophotonics and Imaging Platform, Research Office, 121 St. Stephens Green
| | - Aedán Breathnach
- National University of Ireland Galway, School of Physics, Tissue Optics and Microcirculation Imaging Facility, Arts and Science Building, University Road, Galway, IrelandbNational Biophotonics and Imaging Platform, Research Office, 121 St. Stephens Green
| | - Hrebesh M Subhash
- National University of Ireland Galway, School of Physics, Tissue Optics and Microcirculation Imaging Facility, Arts and Science Building, University Road, Galway, IrelandbNational Biophotonics and Imaging Platform, Research Office, 121 St. Stephens Green
| | - Martin J Leahy
- National University of Ireland Galway, School of Physics, Tissue Optics and Microcirculation Imaging Facility, Arts and Science Building, University Road, Galway, IrelandbNational Biophotonics and Imaging Platform, Research Office, 121 St. Stephens Green
| |
Collapse
|
27
|
Lin R, Chen J, Wang H, Yan M, Zheng W, Song L. Longitudinal label-free optical-resolution photoacoustic microscopy of tumor angiogenesis in vivo. Quant Imaging Med Surg 2015; 5:23-9. [PMID: 25694950 DOI: 10.3978/j.issn.2223-4292.2014.11.08] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Optical-resolution photoacoustic microscopy (OR-PAM) is a high-resolution imaging technology capable of label-free imaging of the morphology and functions of the microvasculature in vivo. Previous studies of angiogenesis by OR-PAM were carried out primarily with transgenic mice and the mouse ear model. While important findings have been generated using this approach, the application of OR-PAM to the more widely used subcutaneous dorsal tumor models remains challenging, largely due to the respiratory and cardiac motion artifacts, as well as the protruding tumor contours. METHODS AND MATERIALS A noninvasive dorsal skin-fold (N-DSF) model, along with adaptive z-scanning and a corresponding experimental protocol, is developed. Mammary carcinoma cells (4T1) were administered subcutaneously to the backs of female BALB/c mice for tumor inoculation. The mice were anesthetized using a mixture of isofluorane and oxygen. RESULTS In vivo OR-PAM of angiogenesis with subcutaneous dorsal tumor models in mice has been demonstrated. To test the performance of this method, we have monitored the growth of 4T1 mouse mammary carcinoma in BALB/c mice over a period of 9 days. The major features of tumor angiogenesis, including the change of vascular tortuosity, the dilation of vessel diameters, and the increase of blood supply, have been clearly captured with OR-PAM. CONCLUSIONS In combination with N-DSF model, OR-PAM has demonstrated outstanding capacity to provide label-free monitoring of angiogenesis in tumor. Thus, OR-PAM is of great potential to find broad biomedical applications in the pathophysiological studies of tumor and the treatments for anti-angiogenesis.
Collapse
Affiliation(s)
- Riqiang Lin
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianhua Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huina Wang
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Meng Yan
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Zheng
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
28
|
Xia J, Yao J, Wang LV. Photoacoustic tomography: principles and advances. ELECTROMAGNETIC WAVES (CAMBRIDGE, MASS.) 2015; 147:1-22. [PMID: 25642127 PMCID: PMC4311576 DOI: 10.2528/pier14032303] [Citation(s) in RCA: 309] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photoacoustic tomography (PAT) is an emerging imaging modality that shows great potential for preclinical research and clinical practice. As a hybrid technique, PAT is based on the acoustic detection of optical absorption from either endogenous chromophores, such as oxy-hemoglobin and deoxy-hemoglobin, or exogenous contrast agents, such as organic dyes and nanoparticles. Because ultrasound scatters much less than light in tissue, PAT generates high-resolution images in both the optical ballistic and diffusive regimes. Over the past decade, the photoacoustic technique has been evolving rapidly, leading to a variety of exciting discoveries and applications. This review covers the basic principles of PAT and its different implementations. Strengths of PAT are highlighted, along with the most recent imaging results.
Collapse
Affiliation(s)
- Jun Xia
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Junjie Yao
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130, USA
| |
Collapse
|
29
|
Lin R, Chen J, Wang H, Yan M, Zheng W, Song L. Longitudinal label-free optical-resolution photoacoustic microscopy of tumor angiogenesis in vivo. Quant Imaging Med Surg 2015; 5:23-29. [PMID: 25694950 DOI: 10.3978/2fj.issn.2223-4292.2014.11.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND Optical-resolution photoacoustic microscopy (OR-PAM) is a high-resolution imaging technology capable of label-free imaging of the morphology and functions of the microvasculature in vivo. Previous studies of angiogenesis by OR-PAM were carried out primarily with transgenic mice and the mouse ear model. While important findings have been generated using this approach, the application of OR-PAM to the more widely used subcutaneous dorsal tumor models remains challenging, largely due to the respiratory and cardiac motion artifacts, as well as the protruding tumor contours. METHODS AND MATERIALS A noninvasive dorsal skin-fold (N-DSF) model, along with adaptive z-scanning and a corresponding experimental protocol, is developed. Mammary carcinoma cells (4T1) were administered subcutaneously to the backs of female BALB/c mice for tumor inoculation. The mice were anesthetized using a mixture of isofluorane and oxygen. RESULTS In vivo OR-PAM of angiogenesis with subcutaneous dorsal tumor models in mice has been demonstrated. To test the performance of this method, we have monitored the growth of 4T1 mouse mammary carcinoma in BALB/c mice over a period of 9 days. The major features of tumor angiogenesis, including the change of vascular tortuosity, the dilation of vessel diameters, and the increase of blood supply, have been clearly captured with OR-PAM. CONCLUSIONS In combination with N-DSF model, OR-PAM has demonstrated outstanding capacity to provide label-free monitoring of angiogenesis in tumor. Thus, OR-PAM is of great potential to find broad biomedical applications in the pathophysiological studies of tumor and the treatments for anti-angiogenesis.
Collapse
Affiliation(s)
- Riqiang Lin
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianhua Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Huina Wang
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Meng Yan
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Zheng
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liang Song
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Key Laboratory for Molecular Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
30
|
Yeh C, Soetikno B, Hu S, Maslov KI, Wang LV. Microvascular quantification based on contour-scanning photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:96011. [PMID: 25223708 PMCID: PMC4164706 DOI: 10.1117/1.jbo.19.9.096011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/27/2014] [Indexed: 05/04/2023]
Abstract
Accurate quantification of microvasculature remains of interest in fundamental pathophysiological studies and clinical trials. Current photoacoustic microscopy can noninvasively quantify properties of the microvasculature, including vessel density and diameter, with a high spatial resolution. However, the depth range of focus (i.e., focal zone) of optical-resolution photoacoustic microscopy (OR-PAM) is often insufficient to encompass the depth variations of features of interest—such as blood vessels—due to uneven tissue surfaces. Thus, time-consuming image acquisitions at multiple different focal planes are required to maintain the region of interest in the focal zone. We have developed continuous three-dimensional motorized contour-scanning OR-PAM, which enables real-time adjustment of the focal plane to track the vessels’ profile. We have experimentally demonstrated that contour scanning improves the signal-to-noise ratio of conventional OR-PAM by as much as 41% and shortens the image acquisition time by 3.2 times. Moreover, contour-scanning OR-PAM more accurately quantifies vessel density and diameter, and has been applied to studying tumors with uneven surfaces.
Collapse
Affiliation(s)
- Chenghung Yeh
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Brian Soetikno
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Song Hu
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130, United States
- University of Virginia, Department of Biomedical Engineering, PO Box 800759, Charlottesville, Virginia 22908, United States
| | - Konstantin I. Maslov
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Lihong V. Wang
- Washington University in St. Louis, Department of Biomedical Engineering, Optical Imaging Laboratory, One Brookings Drive, St. Louis, Missouri 63130, United States
- Address all correspondence to: Lihong V. Wang, E-mail:
| |
Collapse
|
31
|
The myeloid-binding peptide adenoviral vector enables multi-organ vascular endothelial gene targeting. J Transl Med 2014; 94:881-92. [PMID: 24955893 PMCID: PMC4117817 DOI: 10.1038/labinvest.2014.78] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/25/2014] [Accepted: 05/08/2014] [Indexed: 01/05/2023] Open
Abstract
Vascular endothelial cells (ECs) are ideal gene therapy targets as they provide widespread tissue access and are the first contact surfaces following intravenous vector administration. Human recombinant adenovirus serotype 5 (Ad5) is the most frequently used gene transfer system because of its appreciable transgene payload capacity and lack of somatic mutation risk. However, standard Ad5 vectors predominantly transduce liver but not the vasculature following intravenous administration. We recently developed an Ad5 vector with a myeloid cell-binding peptide (MBP) incorporated into the knob-deleted, T4 fibritin chimeric fiber (Ad.MBP). This vector was shown to transduce pulmonary ECs presumably via a vector handoff mechanism. Here we tested the body-wide tropism of the Ad.MBP vector, its myeloid cell necessity, and vector-EC expression dose response. Using comprehensive multi-organ co-immunofluorescence analysis, we discovered that Ad.MBP produced widespread EC transduction in the lung, heart, kidney, skeletal muscle, pancreas, small bowel, and brain. Surprisingly, Ad.MBP retained hepatocyte tropism albeit at a reduced frequency compared with the standard Ad5. While binding specifically to myeloid cells ex vivo, multi-organ Ad.MBP expression was not dependent on circulating monocytes or macrophages. Ad.MBP dose de-escalation maintained full lung-targeting capacity but drastically reduced transgene expression in other organs. Swapping the EC-specific ROBO4 for the CMV promoter/enhancer abrogated hepatocyte expression but also reduced gene expression in other organs. Collectively, our multilevel targeting strategy could enable therapeutic biological production in previously inaccessible organs that pertain to the most debilitating or lethal human diseases.
Collapse
|
32
|
Yao J, Wang LV. Sensitivity of photoacoustic microscopy. PHOTOACOUSTICS 2014; 2:87-101. [PMID: 25302158 PMCID: PMC4182819 DOI: 10.1016/j.pacs.2014.04.002] [Citation(s) in RCA: 211] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/12/2014] [Indexed: 05/03/2023]
Abstract
Building on its high spatial resolution, deep penetration depth and excellent image contrast, 3D photoacoustic microscopy (PAM) has grown tremendously since its first publication in 2005. Integrating optical excitation and acoustic detection, PAM has broken through both the optical diffusion and optical diffraction limits. PAM has 100% relative sensitivity to optical absorption (i.e., a given percentage change in the optical absorption coefficient yields the same percentage change in the photoacoustic amplitude), and its ultimate detection sensitivity is limited only by thermal noise. Focusing on the engineering aspects of PAM, this Review discusses the detection sensitivity of PAM, compares the detection efficiency of different PAM designs, and summarizes the imaging performance of various endogenous and exogenous contrast agents. It then describes representative PAM applications with high detection sensitivity, and outlines paths to further improvement.
Collapse
Affiliation(s)
| | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
33
|
Xi L, Grobmyer SR, Zhou G, Qian W, Yang L, Jiang H. Molecular photoacoustic tomography of breast cancer using receptor targeted magnetic iron oxide nanoparticles as contrast agents. JOURNAL OF BIOPHOTONICS 2014; 7:401-9. [PMID: 23125139 PMCID: PMC3823680 DOI: 10.1002/jbio.201200155] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/02/2012] [Accepted: 10/03/2012] [Indexed: 05/20/2023]
Abstract
In this report, we present a breast imaging technique combining high-resolution near-infrared (NIR) light induced photoacoustic tomography (PAT) with NIR dye-labeled amino-terminal fragments of urokinase plasminogen activator receptor (uPAR) targeted magnetic iron oxide nanoparticles (NIR830-ATF-IONP) for breast cancer imaging using an orthotopic mouse mammary tumor model. We show that accumulation of the targeted nanoparticles in the tumor led to photoacoustic contrast enhancement due to the high absorption of iron oxide nanoparticles (IONP). NIR fluorescence images were used to validate specific delivery of NIR830-ATF-IONP to mouse mammary tumors. We found that systemic delivery of the targeted IONP produced 4- and 10-fold enhancement in photoacoustic signals in the tumor, compared to the tumor of the mice that received non-targeted IONP or control mice. The use of targeted nanoparticles allowed imaging of tumors located as deep as 3.1 cm beneath the normal tissues. Our study indicates the potential of the combination of photoacoustic tomography and receptor-targeted NIR830-ATF-IONP as a clinical tool that can provide improved specificity and sensitivity for breast cancer detection.
Collapse
Affiliation(s)
- Lei Xi
- Department of Biomedical Engineering, University of Florida, College of Engineering JG56 BMS Bldg., Gainesville, FL 32611-6131, USA
| | | | - Guangyin Zhou
- Department of Surgery, University of Florida, Gainesville, FL, 32611, USA
| | - Weiping Qian
- Department of Surgery, Emory University, Atlanta, Georgia, 30322, USA
| | - Lily Yang
- Department of Surgery, Emory University, Atlanta, Georgia, 30322, USA
| | - Huabei Jiang
- Department of Biomedical Engineering, University of Florida, College of Engineering JG56 BMS Bldg., Gainesville, FL 32611-6131, USA
| |
Collapse
|
34
|
Li L, Yeh C, Hu S, Wang L, Soetikno BT, Chen R, Zhou Q, Shung KK, Maslov KI, Wang LV. Fully motorized optical-resolution photoacoustic microscopy. OPTICS LETTERS 2014; 39:2117-20. [PMID: 24686689 PMCID: PMC4048805 DOI: 10.1364/ol.39.002117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We have developed fully motorized optical-resolution photoacoustic microscopy (OR-PAM), which integrates five complementary scanning modes and simultaneously provides a high imaging speed and a wide field of view (FOV) with 2.6 μm lateral resolution. With one-dimensional (1D) motion-mode mechanical scanning, we measured the blood flow through a cross section of a blood vessel in vivo. With two-dimensional (2D) optical scanning at a laser repetition rate of 40 kHz, we achieved a 2 kHz B-scan rate over a range of 50 μm with 20 A-lines and 50 Hz volumetric-scan rate over a FOV of 50 μm × 50 μm with 400 A-lines, which enabled real-time tracking of cellular dynamics in vivo. With synchronized 1D optical and 2D mechanical hybrid scanning, we imaged a 10 mm × 8 mm FOV within three minutes, which is 20 times faster than the conventional mechanical scan in our second-generation OR-PAM. With three-dimensional mechanical contour scanning, we maintained the optimal signal-to-noise ratio and spatial resolution of OR-PAM while imaging objects with uneven surfaces, which is essential for quantitative studies.
Collapse
Affiliation(s)
- Lei Li
- Department of Electrical and System Engineering, Washington University in St. Louis One Brookings Dr., St. Louis, MO, 63130
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Dr., St. Louis, MO, 63130
| | - Chenghung Yeh
- Department of Electrical and System Engineering, Washington University in St. Louis One Brookings Dr., St. Louis, MO, 63130
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Dr., St. Louis, MO, 63130
| | - Song Hu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Dr., St. Louis, MO, 63130
- Department of Biomedical Engineering, University of Virginia, PO Box 800759, Charlottesville, VA 22908, USA
| | - Lidai Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Dr., St. Louis, MO, 63130
| | - Brian T. Soetikno
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Dr., St. Louis, MO, 63130
| | - Ruimin Chen
- Resource Center for Medical Ultrasonic Transducer Technology, Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, DRB 136, Los Angeles, California 90089-1111, USA
| | - Qifa Zhou
- Resource Center for Medical Ultrasonic Transducer Technology, Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, DRB 136, Los Angeles, California 90089-1111, USA
| | - K. Kirk Shung
- Resource Center for Medical Ultrasonic Transducer Technology, Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, DRB 136, Los Angeles, California 90089-1111, USA
| | - Konstantin I. Maslov
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Dr., St. Louis, MO, 63130
| | - Lihong V. Wang
- Department of Electrical and System Engineering, Washington University in St. Louis One Brookings Dr., St. Louis, MO, 63130
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Dr., St. Louis, MO, 63130
| |
Collapse
|
35
|
Yang Z, Chen J, Yao J, Lin R, Meng J, Liu C, Yang J, Li X, Wang L, Song L. Multi-parametric quantitative microvascular imaging with optical-resolution photoacoustic microscopy in vivo. OPTICS EXPRESS 2014; 22:1500-11. [PMID: 24515157 DOI: 10.1364/oe.22.001500] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Many diseases involve either the formation of new blood vessels (e.g., tumor angiogenesis) or the damage of existing ones (e.g., diabetic retinopathy) at the microcirculation level. Optical-resolution photoacoustic microscopy (OR-PAM), capable of imaging microvessels in 3D in vivo down to individual capillaries using endogenous contrast, has the potential to reveal microvascular information critical to the diagnosis and staging of microcirculation-related diseases. In this study, we have developed a dedicated microvascular quantification (MQ) algorithm for OR-PAM to automatically quantify multiple microvascular morphological parameters in parallel, including the vessel diameter distribution, the microvessel density, the vascular tortuosity, and the fractal dimension. The algorithm has been tested on in vivo OR-PAM images of a healthy mouse, demonstrating high accuracy for microvascular segmentation and quantification. The developed MQ algorithm for OR-PAM may greatly facilitate quantitative imaging of tumor angiogenesis and many other microcirculation related diseases in vivo.
Collapse
|
36
|
Nie L, Chen X. Structural and functional photoacoustic molecular tomography aided by emerging contrast agents. Chem Soc Rev 2014; 43:7132-70. [PMID: 24967718 PMCID: PMC4569000 DOI: 10.1039/c4cs00086b] [Citation(s) in RCA: 269] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Photoacoustic tomography (PAT) can offer structural, functional and molecular contrasts at scalable observation level. By ultrasonically overcoming the strong optical scattering, this imaging technology can reach centimeters penetration depth while retaining high spatial resolution in biological tissue. Recent extensive research has been focused on developing new contrast agents to improve the imaging sensitivity, specificity and efficiency. These emerging materials have substantially accelerated PAT applications in signal sensing, functional imaging, biomarker labeling and therapy monitoring etc. Here, the potentials of different optical probes as PAT contrast agents were elucidated. We first describe the instrumental embodiments and the measured functional parameters, then focus on emerging contrast agent-based PAT applications, and finally discuss the challenges and prospects.
Collapse
Affiliation(s)
- Liming Nie
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
37
|
Xi L, Satpathy M, Zhao Q, Qian W, Yang L, Jiang H. HER-2/neu targeted delivery of a nanoprobe enables dual photoacoustic and fluorescence tomography of ovarian cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 10:669-77. [PMID: 24269306 DOI: 10.1016/j.nano.2013.11.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 10/22/2013] [Accepted: 11/09/2013] [Indexed: 11/19/2022]
Abstract
UNLABELLED Development of sensitive and specific imaging approaches for the detection of ovarian cancer holds great promise for improving survival of ovarian cancer patients. Here we describe a dual-modality photoacoustic and fluorescence molecular tomography (PAT/FMT) approach in combination with a targeted imaging probe for three-dimensional imaging of ovarian tumors in mice. We found that the selective accumulation of the HER-2/neu targeted magnetic iron oxide nanoparticles (IONPs) led to about 5-fold contrast enhancements in the tumor for PAT, while near-infrared (NIR) dye labeled nanoparticles emitted strong optical signals for FMT. Both PAT and FMT were demonstrated to be able to detect ovarian tumors located deep in the peritoneal cavity in mice. The targeted nanoprobes allowed mapping tumors in high resolution via PAT, and high sensitivity and specificity via FMT. This study demonstrated the potential of the application of HER-2/neu-targeted PAT/FMT approach for non-invasive or intraoperative imaging of ovarian cancer. FROM THE CLINICAL EDITOR This paper details the development of a dual-modality photoacoustic and fluorescence molecular tomography approach in combination with a targeted imaging probe for three-dimensional imaging of ovarian tumors in a mouse model, demonstrating the application of the HER-2/neu-targeted approach for non-invasive or intraoperative imaging of ovarian cancer.
Collapse
Affiliation(s)
- Lei Xi
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Minati Satpathy
- Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - Qing Zhao
- Department of Biomedical Engineering, University of Florida, Gainesville, FL
| | - Weiping Qian
- Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - Lily Yang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA.
| | - Huabei Jiang
- Department of Biomedical Engineering, University of Florida, Gainesville, FL.
| |
Collapse
|
38
|
Yao J, Wang LV. Photoacoustic Microscopy. LASER & PHOTONICS REVIEWS 2013; 7:10.1002/lpor.201200060. [PMID: 24416085 PMCID: PMC3887369 DOI: 10.1002/lpor.201200060] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 11/02/2012] [Indexed: 05/13/2023]
Abstract
Photoacoustic microscopy (PAM) is a hybrid in vivo imaging technique that acoustically detects optical contrast via the photoacoustic effect. Unlike pure optical microscopic techniques, PAM takes advantage of the weak acoustic scattering in tissue and thus breaks through the optical diffusion limit (~1 mm in soft tissue). With its excellent scalability, PAM can provide high-resolution images at desired maximum imaging depths up to a few millimeters. Compared with backscattering-based confocal microscopy and optical coherence tomography, PAM provides absorption contrast instead of scattering contrast. Furthermore, PAM can image more molecules, endogenous or exogenous, at their absorbing wavelengths than fluorescence-based methods, such as wide-field, confocal, and multi-photon microscopy. Most importantly, PAM can simultaneously image anatomical, functional, molecular, flow dynamic and metabolic contrasts in vivo. Focusing on state-of-the-art developments in PAM, this Review discusses the key features of PAM implementations and their applications in biomedical studies.
Collapse
Affiliation(s)
- Junjie Yao
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
39
|
Hu S, Wang L. Optical-resolution photoacoustic microscopy: auscultation of biological systems at the cellular level. Biophys J 2013; 105:841-7. [PMID: 23972836 PMCID: PMC3752103 DOI: 10.1016/j.bpj.2013.07.017] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 06/16/2013] [Accepted: 07/12/2013] [Indexed: 11/19/2022] Open
Abstract
Photoacoustic microscopy (PAM) offers unprecedented sensitivity to optical absorption and opens a new window to study biological systems at multiple length- and timescales. In particular, optical-resolution PAM (OR-PAM) has pushed the technical envelope to submicron length scales and millisecond timescales. Here, we review the state of the art of OR-PAM in biophysical research. With properly chosen optical wavelengths, OR-PAM can spectrally differentiate a variety of endogenous and exogenous chromophores, unveiling the anatomical, functional, metabolic, and molecular information of biological systems. Newly uncovered contrast mechanisms of linear dichroism and Förster resonance energy transfer further distinguish OR-PAM. Integrating multiple contrasts and advanced scanning mechanisms has capacitated OR-PAM to comprehensively interrogate biological systems at the cellular level in real time. Two future directions are discussed, where OR-PAM holds the potential to translate basic biophysical research into clinical healthcare.
Collapse
Affiliation(s)
- Song Hu
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| | - Lihong V. Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
40
|
Meng J, Song L. Biomedical photoacoustics in China. PHOTOACOUSTICS 2013; 1:43-48. [PMID: 25300898 PMCID: PMC4134904 DOI: 10.1016/j.pacs.2013.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 07/30/2013] [Accepted: 07/31/2013] [Indexed: 06/01/2023]
Abstract
During the last decade, along with its explosive growth globally, biomedical photoacoustics has become a rapidly growing research field in China as well. In particular, photoacoustic tomography (PAT), capable of imaging intact biological tissue in vivo at great depths, has generated intense interest among Chinese researchers. This review briefly summarizes the current status and recent progress of the research in PAT in China. The focus is on the technology development and biomedical applications of three representative embodiments of PAT: photoacoustic microscopy, photoacoustic computed tomography, and photoacoustic endoscopy. In addition, recent development and studies in other related areas are also reviewed shortly.
Collapse
Affiliation(s)
| | - Liang Song
- Corresponding author. Tel.: +86 755 8639 2240.
| |
Collapse
|
41
|
Eklund L, Bry M, Alitalo K. Mouse models for studying angiogenesis and lymphangiogenesis in cancer. Mol Oncol 2013; 7:259-82. [PMID: 23522958 PMCID: PMC5528409 DOI: 10.1016/j.molonc.2013.02.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/06/2013] [Indexed: 12/11/2022] Open
Abstract
The formation of new blood vessels (angiogenesis) is required for the growth of most tumors. The tumor microenvironment also induces lymphangiogenic factors that promote metastatic spread. Anti-angiogenic therapy targets the mechanisms behind the growth of the tumor vasculature. During the past two decades, several strategies targeting blood and lymphatic vessels in tumors have been developed. The blocking of vascular endothelial growth factor (VEGF)/VEGF receptor-2 (VEGFR-2) signaling has proven effective for inhibition of tumor angiogenesis and growth, and inhibitors of VEGF-C/VEGFR-3 involved in lymphangiogenesis have recently entered clinical trials. However, thus far anti-angiogenic treatments have been less effective in humans than predicted on the basis of pre-clinical tests in mice. Intrinsic and induced resistance against anti-angiogenesis occurs in patients, and thus far the clinical benefit of the treatments has been limited to modest improvements in overall survival in selected tumor types. Our current knowledge of tumor angiogenesis is based mainly on experiments performed in tumor-transplanted mice, and it has become evident that these models are not representative of human cancer. For an improved understanding, angiogenesis research needs models that better recapitulate the multistep tumorigenesis of human cancers, from the initial genetic insults in single cells to malignant progression in a proper tissue environment. To improve anti-angiogenic therapies in cancer patients, it is necessary to identify additional molecular targets important for tumor angiogenesis, and to get mechanistic insight into their interactions for eventual combinatorial targeting. The recent development of techniques for manipulating the mammalian genome in a precise and predictable manner has opened up new possibilities for the generation of more reliable models of human cancer that are essential for the testing of new therapeutic strategies. In addition, new imaging modalities that permit visualization of the entire mouse tumor vasculature down to the resolution of single capillaries have been developed in pre-clinical models and will likely benefit clinical imaging.
Collapse
Affiliation(s)
- Lauri Eklund
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Department of Medical Biochemistry and Molecular Biology, P.O.B. 5000, 90014 University of Oulu, Finland.
| | | | | |
Collapse
|
42
|
Xi L, Duan C, Xie H, Jiang H. Miniature probe combining optical-resolution photoacoustic microscopy and optical coherence tomography for in vivo microcirculation study. APPLIED OPTICS 2013; 52:1928-31. [PMID: 23518738 DOI: 10.1364/ao.52.001928] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/21/2013] [Indexed: 05/22/2023]
Abstract
Photoacoustic microscopy (PAM) is sensitive to optical absorption, while optical coherence tomography (OCT) is based on optical backscattering. Combining PAM and OCT can provide complementary information about biological tissue. Here we present a combined optical-resolution PAM (ORPAM) and OCT system that is integrated through a miniature probe with an overall diameter of 2.3 mm, suitable for insertion through a standard endoscopic or laparoscopic port during minimally invasive surgery or endoscopic exam. The hybrid probe consists of a common optical path for OCT (light delivery/detection) and ORPAM (light excitation) and a 10 MHz unfocused ultrasound transducer for photoacoustic detection. The combined system yields a lateral resolution of 15 μm for both ORPAM and OCT.
Collapse
Affiliation(s)
- Lei Xi
- Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | |
Collapse
|
43
|
Chen SL, Burnett J, Sun D, Wei X, Xie Z, Wang X. Photoacoustic microscopy: a potential new tool for evaluation of angiogenesis inhibitor. BIOMEDICAL OPTICS EXPRESS 2013; 4:2657-66. [PMID: 24298423 PMCID: PMC3829558 DOI: 10.1364/boe.4.002657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/07/2013] [Accepted: 10/12/2013] [Indexed: 05/07/2023]
Abstract
The feasibility of photoacoustic microscopy (PAM) for evaluation of angiogenesis inhibitor was investigated on a chick embryo model in vivo. Different concentrations of the angiogenesis inhibitor, Sunitinib, were applied to the chorioallantoic membrane (CAM) of the chick embryos. Imaging of microvasculature in embryo CAMs was acquired using a laser-scanning PAM system; while the optical microscopy (OM) capturing the microvascular images of the same set of CAMs for comparison served as a gold standard for validating the results from PAM. The microvascular density as a function of applied Sunitinib concentration has been quantified in both PAM and OM images. The results from these two modalities have a good agreement, suggesting that PAM could provide an unbiased quantification of microvascular density for objective evaluation of anti-angiogenesis medication. In comparison with conventional OM which enables only two-dimensional enface imaging, PAM is capable of three-dimensional analysis of microvessels, including not only morphology but also functions, as demonstrated in part by the imaging result on a canine bladder model. The emerging PAM technique shows promise to be used in clinical and preclinical settings for comprehensive and objective evaluation of anti-angiogenesis medications.
Collapse
Affiliation(s)
- Sung-Liang Chen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph Burnett
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Zhixing Xie
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xueding Wang
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
44
|
VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood 2012; 120:4653-62. [PMID: 22966168 DOI: 10.1182/blood-2012-04-421040] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recruitment and retention of leukocytes at a site of blood vessel growth are crucial for proper angiogenesis and subsequent tissue perfusion. Although critical for many aspects of regenerative medicine, the mechanisms of leukocyte recruitment to and actions at sites of angiogenesis are not fully understood. In this study, we investigated the signals attracting leukocytes to avascular transplanted pancreatic islets and leukocyte actions at the engraftment site. Expression of the angiogenic stimulus VEGF-A by mouse pancreatic islets was elevated shortly after syngeneic transplantation to muscle. High levels of leukocytes, predominantly CD11b(+)/Gr-1(+)/CXCR4(hi) neutrophils, were observed at the site of engraftment, whereas VEGF-A-deficient islets recruited only half of the amount of leukocytes when transplanted. Acute VEGF-A exposure of muscle increased leukocyte extravasation but not the levels of SDF-1α. VEGF-A-recruited neutrophils expressed 10 times higher amounts of MMP-9 than neutrophils recruited to an inflammatory stimulus. Revascularization of islets transplanted to MMP-9-deficient mice was impaired because blood vessels initially failed to penetrate grafts, and after 2 weeks vascularity was still disturbed. This study demonstrates that VEGF-A recruits a proangiogenic circulating subset of CD11b(+)/Gr-1(+) neutrophils that are CXCR4(hi) and deliver large amounts of the effector protein MMP-9, required for islet revascularization and functional integration after transplantation.
Collapse
|
45
|
Abstract
Judah Folkman recognized that new blood vessel formation is important for tumor growth and proposed antiangiogenesis as a novel approach to cancer therapy. Discovery of vascular permeability factor VEGF-A as the primary tumor angiogenesis factor prompted the development of a number of drugs that targeted it or its receptors. These agents have often been successful in halting tumor angiogenesis and in regressing rapidly growing mouse tumors. However, results in human cancer have been less impressive. A number of reasons have been offered for the lack of greater success, and, here, we call attention to the heterogeneity of the tumor vasculature as an important issue. Human and mouse tumors are supplied by at least 6 well-defined blood vessel types that arise by both angiogenesis and arterio-venogenesis. All 6 types can be generated in mouse tissues by an adenoviral vector expressing VEGF-A(164). Once formed, 4 of the 6 types lose their VEGF-A dependency, and so their responsiveness to anti-VEGF/VEGF receptor therapy. If therapies directed against the vasculature are to have a greater impact on human cancer, targets other than VEGF and its receptors will need to be identified on these resistant tumor vessels.
Collapse
Affiliation(s)
- Basel Sitohy
- The Center for Vascular Biology Research, Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
46
|
Abstract
Photoacoustic tomography (PAT) can create multiscale multicontrast images of living biological structures ranging from organelles to organs. This emerging technology overcomes the high degree of scattering of optical photons in biological tissue by making use of the photoacoustic effect. Light absorption by molecules creates a thermally induced pressure jump that launches ultrasonic waves, which are received by acoustic detectors to form images. Different implementations of PAT allow the spatial resolution to be scaled with the desired imaging depth in tissue while a high depth-to-resolution ratio is maintained. As a rule of thumb, the achievable spatial resolution is on the order of 1/200 of the desired imaging depth, which can reach up to 7 centimeters. PAT provides anatomical, functional, metabolic, molecular, and genetic contrasts of vasculature, hemodynamics, oxygen metabolism, biomarkers, and gene expression. We review the state of the art of PAT for both biological and clinical studies and discuss future prospects.
Collapse
Affiliation(s)
- Lihong V Wang
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA.
| | | |
Collapse
|
47
|
Yao J, Maslov KI, Wang LV. In vivo photoacoustic tomography of total blood flow and potential imaging of cancer angiogenesis and hypermetabolism. Technol Cancer Res Treat 2012; 11:301-7. [PMID: 22417060 DOI: 10.7785/tcrt.2012.500278] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Blood flow is a key parameter in studying cancer angiogenesis and hypermetabolism. Current photoacoustic blood flow estimation methods focus on either the axial or transverse component of the flow vector. However, the Doppler angle (beam-to-flow angle) is needed to calculate the total flow speed, and it cannot always be estimated accurately in practice, especially when the system's axial and lateral resolutions are different. To overcome this problem, we propose a method to compute the total flow speed and Doppler angle by combining the axial and transverse flow measurements. The method has been verified by flowing bovine blood in a plastic tube at various speeds and Doppler angles. The error was experimentally determined to be less than 0.3 mm/s for total flow speed, and less than 158 for the Doppler angle. In addition, the method was tested in vivo on a mouse ear. We believe that the proposed method has the potential to be used for cancer angiogenesis and hypermetabolism imaging.
Collapse
Affiliation(s)
- Junjie Yao
- Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | |
Collapse
|
48
|
Palmer GM, Vishwanath K, Dewhirst MW. Application of optical imaging and spectroscopy to radiation biology. Radiat Res 2012; 177:365-75. [PMID: 22360397 DOI: 10.1667/rr2531.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Optical imaging and spectroscopy is a diverse field that has been of critical importance in a wide range of areas in radiation research. It is capable of spanning a wide range of spatial and temporal scales, and has the sensitivity and specificity needed for molecular and functional imaging. This review will describe the basic principles of optical imaging and spectroscopy, highlighting a few relevant applications to radiation research.
Collapse
Affiliation(s)
- Gregory M Palmer
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA.
| | | | | |
Collapse
|
49
|
Xie Z, Roberts W, Carson P, Liu X, Tao C, Wang X. Evaluation of bladder microvasculature with high-resolution photoacoustic imaging. OPTICS LETTERS 2011; 36:4815-7. [PMID: 22179893 PMCID: PMC3660853 DOI: 10.1364/ol.36.004815] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We explored the potential of an emerging laser-based technology, photoacoustic imaging (PAI), for bladder cancer diagnosis through high-resolution imaging of microvasculature in the bladder tissues. Imaging results from ex vivo canine bladders demonstrated the excellent ability of PAI in mapping three-dimensional microvasculature in optically scattering bladder tissues. By comparing the results from human bladder specimens affected by cancer to those from the normal control, the feasibility of PAI to differentiate malignant from benign bladder tissues was also explored. The distinctive morphometric characteristics of tumor microvasculature can be seen in the images from cancer samples, suggesting that PAI may allow in vivo assessment of neoangiogenesis that is closely associated with bladder cancer generation and progression. By presenting subsurface morphological and physiological information in bladder tissues, PAI, when performed in a similar way as in conventional endoscopy, provides an opportunity for improved diagnosis, staging, and treatment guidance of bladder cancer.
Collapse
Affiliation(s)
- Zhixing Xie
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - William Roberts
- Department of Urology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Paul Carson
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Xiaojun Liu
- Institute of Acoustics, Nanjing University, Nanjing 210093, China
| | - Chao Tao
- Institute of Acoustics, Nanjing University, Nanjing 210093, China
| | - Xueding Wang
- Department of Radiology, University of Michigan School of Medicine, Ann Arbor, MI 48109
- Corresponding author:
| |
Collapse
|
50
|
Bridges JP, Lin S, Ikegami M, Shannon JM. Conditional hypoxia inducible factor-1α induction in embryonic pulmonary epithelium impairs maturation and augments lymphangiogenesis. Dev Biol 2011; 362:24-41. [PMID: 22094019 DOI: 10.1016/j.ydbio.2011.10.033] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/29/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
Abstract
Hypoxia inducible factor (HIF) 1a, EPAS1 and NEPAS are expressed in the embryonic mouse lung and each isoform exhibits distinct spatiotemporal expression patterns throughout morphogenesis. To further assess the role of the HIF1a isoform in lung epithelial cell differentiation and homeostasis, we created transgenic mice that express a constitutively active isoform of human HIF-1a (HIF-1a three point mutant (TPM)), in a doxycycline-dependent manner. Expression of HIF1a TPM in the developing pulmonary epithelium resulted in lung hypoplasia characterized by defective branching morphogenesis, altered cellular energetics and impaired epithelial maturation, culminating in neonatal lethality at birth from severe respiratory distress. Histological and biochemical analyses revealed expanded glycogen pools in the pulmonary epithelial cells at E18.5, concomitant with decreased pulmonary surfactant, suggesting a delay or an arrest in maturation. Importantly, these defects occurred in the absence of apoptosis or necrosis. In addition, sub-pleural hemorrhaging was evident as early as E14.5 in HIF1a TPM lungs, despite normal patterning of the blood vasculature, consistent with defects in endothelial barrier function. Epithelial expression of HIF1a TPM also resulted in increased VEGFA and VEGFC production, an increase in the number of lymphatic vessels and indirect activation of the multiple Notch pathway components in endothelial precursor cells. Collectively, these data indicate that HIF-1a protein levels in the pulmonary epithelium must be tightly controlled for proper development of the epithelial and mesenchymal compartments.
Collapse
Affiliation(s)
- James P Bridges
- Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | | | |
Collapse
|