1
|
Li Q, Guo G, Chen Y, Lu L, Li H, Zhou Z, Guo J, Gan X, Hu Y, Li Q, Sun M, Liu X. HCP5 Derived Novel Microprotein Triggers Progression of Gastric Cancer through Regulating Ferroptosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2407012. [PMID: 39447131 DOI: 10.1002/advs.202407012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/31/2024] [Indexed: 10/26/2024]
Abstract
The context of long noncoding RNAs (lncRNAs) contains many unannotated open reading frames (ORFs). These ORFs potentially encode novel proteins or peptides with crucial roles in various human cancers, yet the translational potential of these lncRNAs and the functions of the protein products remain largely unexplored, especially in gastric cancer (GC). In this study, a comprehensive analysis is performed and identified a GC associated lncRNA known as HCP5, which contains a non-canonical ORF. Further analysis showed that HCP5-132aa, a microprotein encoded by HCP5 harboring this ORF, is highly expressed in GC cells and tissues, and can promote the proliferation of GC cells by inhibiting ferroptosis. Mechanistically, HCP5-132aa enhances the interaction between YBX1 and ELAVL1, facilitates recognition of YBX1 at the m5C site in the 3'UTR of SLC7A11 and G6PD mRNA, and preserves their stability via ELAVL1. By employing a Cas9/sgRNA delivery system with AAV in vivo, effectively knocked out the HCP5-132aa and inhibition of tumor growth in a patient-derived xenograft model are achieved. These findings demonstrate that the novel protein HCP5-132aa, derived from lncRNA HCP5, mediates the repression of ferroptosis, thereby driving the progression of GC and identifying a new potential therapeutic target for its treatment.
Collapse
Affiliation(s)
- Qiuhui Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Guoqing Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Yuli Chen
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215001, China
| | - Lu Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Hanyang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Zihan Zhou
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Jiahao Guo
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215001, China
| | - Xiongkang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yanming Hu
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215001, China
| | - Qiunuo Li
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215001, China
| | - Xianghua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
2
|
Gui X, Huang J, Ruan L, Wu Y, Guo X, Cao R, Zhou S, Tan F, Zhu H, Li M, Zhang G, Zhou H, Zhan L, Liu X, Tu S, Shao Z. zMAP toolset: model-based analysis of large-scale proteomic data via a variance stabilizing z-transformation. Genome Biol 2024; 25:267. [PMID: 39402594 PMCID: PMC11472442 DOI: 10.1186/s13059-024-03382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Isobaric labeling-based mass spectrometry (ILMS) has been widely used to quantify, on a proteome-wide scale, the relative protein abundance in different biological conditions. However, large-scale ILMS data sets typically involve multiple runs of mass spectrometry, bringing great computational difficulty to the integration of ILMS samples. We present zMAP, a toolset that makes ILMS intensities comparable across mass spectrometry runs by modeling the associated mean-variance dependence and accordingly applying a variance stabilizing z-transformation. The practical utility of zMAP is demonstrated in several case studies involving the dynamics of cell differentiation and the heterogeneity across cancer patients.
Collapse
Affiliation(s)
- Xiuqi Gui
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Huang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Linjie Ruan
- Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanjun Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xuan Guo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ruifang Cao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuhan Zhou
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fengxiang Tan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongwen Zhu
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mushan Li
- Department of Statistics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Guoqing Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hu Zhou
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xin Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Shiqi Tu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
3
|
Borg J, Loy C, Kim J, Buhagiar A, Chin C, Damle N, De Vlaminck I, Felice A, Liu T, Matei I, Meydan C, Muratani M, Mzava O, Overbey E, Ryon KA, Smith SM, Tierney BT, Trudel G, Zwart SR, Beheshti A, Mason CE, Borg J. Spatiotemporal expression and control of haemoglobin in space. Nat Commun 2024; 15:4927. [PMID: 38862545 PMCID: PMC11166948 DOI: 10.1038/s41467-024-49289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
It is now widely recognised that the environment in space activates a diverse set of genes involved in regulating fundamental cellular pathways. This includes the activation of genes associated with blood homoeostasis and erythropoiesis, with a particular emphasis on those involved in globin chain production. Haemoglobin biology provides an intriguing model for studying space omics, as it has been extensively explored at multiple -omic levels, spanning DNA, RNA, and protein analyses, in both experimental and clinical contexts. In this study, we examined the developmental expression of haemoglobin over time and space using a unique suite of multi-omic datasets available on NASA GeneLab, from the NASA Twins Study, the JAXA CFE study, and the Inspiration4 mission. Our findings reveal significant variations in globin gene expression corresponding to the distinct spatiotemporal characteristics of the collected samples. This study sheds light on the dynamic nature of globin gene regulation in response to the space environment and provides valuable insights into the broader implications of space omics research.
Collapse
Affiliation(s)
- Josef Borg
- Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta
| | - Conor Loy
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Alfred Buhagiar
- Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta
| | - Christopher Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Iwijn De Vlaminck
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Alex Felice
- Department of Surgery, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
| | - Tammy Liu
- Ottawa Hospital Research Institute, Department of Medicine, Ottawa, Ontario, Canada
| | - Irina Matei
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Masafumi Muratani
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Omary Mzava
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Scott M Smith
- Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Guy Trudel
- Ottawa Hospital Research Institute, Department of Medicine, Ottawa, Ontario, Canada
| | - Sara R Zwart
- Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
- University of Texas Medical Branch, Galveston, TX, USA
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Joseph Borg
- Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta.
| |
Collapse
|
4
|
Musallam KM, Cappellini MD, Coates TD, Kuo KHM, Al-Samkari H, Sheth S, Viprakasit V, Taher AT. Αlpha-thalassemia: A practical overview. Blood Rev 2024; 64:101165. [PMID: 38182489 DOI: 10.1016/j.blre.2023.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
α-Thalassemia is an inherited blood disorder characterized by decreased synthesis of α-globin chains that results in an imbalance of α and β globin and thus varying degrees of ineffective erythropoiesis, decreased red blood cell (RBC) survival, chronic hemolytic anemia, and subsequent comorbidities. Clinical presentation varies depending on the genotype, ranging from a silent or mild carrier state to severe, transfusion-dependent or lethal disease. Management of patients with α-thalassemia is primarily supportive, addressing either symptoms (eg, RBC transfusions for anemia), complications of the disease, or its transfusion-dependence (eg, chelation therapy for iron overload). Several novel therapies are also in development, including curative gene manipulation techniques and disease modifying agents that target ineffective erythropoiesis and chronic hemolytic anemia. This review of α-thalassemia and its various manifestations provides practical information for clinicians who practice beyond those regions where it is found with high frequency.
Collapse
Affiliation(s)
- Khaled M Musallam
- Center for Research on Rare Blood Disorders (CR-RBD), Burjeel Medical City, Abu Dhabi, United Arab Emirates
| | - M Domenica Cappellini
- Department of Clinical Sciences and Community, University of Milan, Ca' Granda Foundation IRCCS Maggiore Policlinico Hospital, Milan, Italy
| | - Thomas D Coates
- Hematology Section, Cancer and Blood Disease Institute, Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Kevin H M Kuo
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Hanny Al-Samkari
- Center for Hematology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sujit Sheth
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Weill Cornell Medicine, New York, NY, USA
| | - Vip Viprakasit
- Department of Pediatrics & Thalassemia Center, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ali T Taher
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| |
Collapse
|
5
|
Gasparello J, Verona M, Chilin A, Gambari R, Marzaro G. Assessing the interaction between hemoglobin and the receptor binding domain of SARS-CoV-2 spike protein through MARTINI coarse-grained molecular dynamics. Int J Biol Macromol 2023; 253:127088. [PMID: 37774812 DOI: 10.1016/j.ijbiomac.2023.127088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/01/2023]
Abstract
The emergence of different coronavirus-related diseases in the 2000's (SARS, MERS, and Covid-19) warrants the need of a complete understanding of the pathological, biological, and biochemical behavior of this class of pathogens. Great attention has been paid to the SARS-CoV-2 Spike protein, and its interaction with the human ACE2 has been thoroughly investigated. Recent findings suggested that the SARS-CoV-2 components may interact with different human proteins, and hemoglobin has very recently been demonstrated as a potential target for the Spike protein. Here we have investigated the interaction between either adult or fetal hemoglobin and the receptor binding domain of the Spike protein at molecular level through advanced molecular dynamics techniques and proposed rational binding modes and energy estimations. Our results agree with biochemical data previously reported in literature. We also demonstrated that co-incubation of pulmonary epithelial cells with hemoglobin strongly reduces the pro-inflammatory effects exerted by the concomitant administration of Spike protein.
Collapse
Affiliation(s)
- Jessica Gasparello
- Department of Life Sciences and Biotechnology, University of Ferrara, via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Marco Verona
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35313 Padova, Italy
| | - Adriana Chilin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35313 Padova, Italy
| | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, via Fossato di Mortara 74, 44121 Ferrara, Italy
| | - Giovanni Marzaro
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, via Marzolo 5, 35313 Padova, Italy.
| |
Collapse
|
6
|
Han W, Qiu HY, Sun S, Fu ZC, Wang GQ, Qian X, Wang L, Zhai X, Wei J, Wang Y, Guo YL, Cao GH, Ji RJ, Zhang YZ, Ma H, Wang H, Zhao M, Wu J, Bi L, Chen QB, Li Z, Yu L, Mou X, Yin H, Yang L, Chen J, Yang B, Zhang Y. Base editing of the HBG promoter induces potent fetal hemoglobin expression with no detectable off-target mutations in human HSCs. Cell Stem Cell 2023; 30:1624-1639.e8. [PMID: 37989316 DOI: 10.1016/j.stem.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/13/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
Reactivating silenced γ-globin expression through the disruption of repressive regulatory domains offers a therapeutic strategy for treating β-hemoglobinopathies. Here, we used transformer base editor (tBE), a recently developed cytosine base editor with no detectable off-target mutations, to disrupt transcription-factor-binding motifs in hematopoietic stem cells. By performing functional screening of six motifs with tBE, we found that directly disrupting the BCL11A-binding motif in HBG1/2 promoters triggered the highest γ-globin expression. Via a side-by-side comparison with other clinical and preclinical strategies using Cas9 nuclease or conventional BEs (ABE8e and hA3A-BE3), we found that tBE-mediated disruption of the BCL11A-binding motif at the HBG1/2 promoters triggered the highest fetal hemoglobin in healthy and β-thalassemia patient hematopoietic stem/progenitor cells while exhibiting no detectable DNA or RNA off-target mutations. Durable therapeutic editing by tBE persisted in repopulating hematopoietic stem cells, demonstrating that tBE-mediated editing in HBG1/2 promoters is a safe and effective strategy for treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Wenyan Han
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hou-Yuan Qiu
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Shangwu Sun
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Zhi-Can Fu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Guo-Quan Wang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Xiaowen Qian
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Lijie Wang
- CorrectSequence Therapeutics, Shanghai 201210, China
| | - Xiaowen Zhai
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Jia Wei
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yichuan Wang
- CorrectSequence Therapeutics, Shanghai 201210, China
| | - Yi-Lin Guo
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Guo-Hua Cao
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Rui-Jin Ji
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yi-Zhou Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Hongxia Ma
- CorrectSequence Therapeutics, Shanghai 201210, China
| | - Hongsheng Wang
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Mingli Zhao
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jing Wu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Lili Bi
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Qiu-Bing Chen
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Zifeng Li
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Ling Yu
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Xiaodun Mou
- CorrectSequence Therapeutics, Shanghai 201210, China
| | - Hao Yin
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Pathology and Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; TaiKang Centre for Life and Medical Sciences, TaiKang Medical School, Wuhan University, Wuhan, China; State Key Laboratory of Virology, Wuhan University, Wuhan, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| | - Jia Chen
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China; Shanghai Frontiers Science Center for Biomacromolecules and Precision Medicine, ShanghaiTech University, Shanghai 200031, China.
| | - Bei Yang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China; Shanghai Frontiers Science Center for Biomacromolecules and Precision Medicine, ShanghaiTech University, Shanghai 200031, China.
| | - Ying Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Marchesani S, Di Mauro M, Ceglie G, Grassia G, Carletti M, Cristofaro RC, Cossutta M, Curcio C, Palumbo G. The blood count as a compass to navigate in the ever-changing landscape of the carrier state of hemoglobinopathies: a single-center Italian experience. Front Pediatr 2023; 11:1228443. [PMID: 37868262 PMCID: PMC10587575 DOI: 10.3389/fped.2023.1228443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Approximately 7% of the worldwide population exhibits variations in the globin genes. The recent migration of populations from countries where hemoglobin disorders are endemic has resulted in important epidemiological changes with the diffusion of newly discovered or poorly characterized genetic variants and new combinations and very heterogeneous clinical phenotypes. The aim of our study is to assess the parameters that are more significant in predicting a positive genetic testing outcome for hemoglobinopathies in a pediatric population of patients presenting with anemia or microcythemia, without a definite diagnosis. Methods and materials This study included patients evaluated in our hematological outpatient clinic for anemia and/or microcythemia despite normal ferritin levels. A screening of pathological hemoglobins using high-performance liquid chromatography (HPLC) was performed for the entire population of the study. Subsequently, patients with hemoglobin (Hb) S trait and patients with an HPLC profile compatible with beta thalassemia trait were excluded from the study. Genetic screening tests for hemoglobinopathies were performed on the remaining patients, which involved measuring the red blood cell (RBC) counts, red blood cells distribution width (RDW), reticulocyte count, and mean corpuscular volume of reticulocytes (MCVr). Results This study evaluated a total of 65 patients, consisting of nine patients with negative genetic analysis results and 56 patients with positive genetic analysis results. The Hb and RDW values in these two groups did not demonstrate statistical significance. On the other hand, there were statistically significant differences observed in the mean corpuscular volume (MCV), RBC count, reticulocyte count, and MCVr between the two groups. Furthermore, in the group of patients with positive genetic test results, specific genetic findings associated with different HPLC results were observed. In particular, 13 patients with positive genetic test results had normal HPLC findings. Discussion This study has demonstrated that HPLC, while serving as a valuable first-level test, has some limitations. Specifically, it has been observed that some patients may exhibit a negative HPLC result despite a positive genetic analysis. In addition to the presence of low levels of Hb and HPLC alterations, other parameters could potentially indicate the underlying mutations in the globin genes. Therefore, we propose that the complete blood cell count be utilized as a widely available parameter for conducting targeted genetic analyses to avoid the risk of overlooking rare hemoglobinopathies.
Collapse
Affiliation(s)
- Silvio Marchesani
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Margherita Di Mauro
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Giulia Ceglie
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ginevra Grassia
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Michaela Carletti
- Clinical Laboratory Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Matilde Cossutta
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Cristina Curcio
- Medical Genetics Laboratory, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Palumbo
- University Department of Pediatrics, Bambino Gesù Children’s Hospital, University of Rome Tor Vergata, Rome, Italy
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
8
|
Nkya S, Kaywanga F, Nzunda C, Karim S, Solomon D, Saukiwa E, Christopher H, Ngowi D, Johansen J, Urio F, Mgaya J, Chamba C, Hashim F, Ambroise E, Acquah SO, Makani J. Genomics of fetal haemoglobin: a targeted approach for reticulocyte transcriptome study. RESEARCH SQUARE 2023:rs.3.rs-3061395. [PMID: 37461456 PMCID: PMC10350219 DOI: 10.21203/rs.3.rs-3061395/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Background Fetal haemoglobin (HbF) remains a major sickle cell disease modifier. The mechanism of HbF synthesis has been studied for several decades with the intention of increasing interventions for sickle cell disease (SCD), including drugs. However, the complex mechanism of HbF synthesis is influenced by multiple genetic factors interacting with environmental factors. In order to capture useful genetic information, especially with limited resources, one has to carefully design the study. This includes choosing the relevant participants, the correct phenotyping, the choice of samples, and the right genomic assays. This paper describes the approach undertaken as part of preparations for a reticulocyte transcriptome study intended to discover genes associated with HbF decline in newborns in Tanzania. Results Of the 152 newborns enrolled in the larger study, 40 babies were selected for the reticulocyte transcriptome study based on their HbF levels at birth and later stage of life. Of these, 30 individuals were included under the category of high HbF levels ranging from 72.6-90% and the remaining 10 under the category of low HbF levels ranging from 5.9 - 10.3%. The reticulocyte enrichment recovery purity ranged from 85% - 97%. The total RNA concentrations obtained were >250 ng total RNA, with the average purity of 1.9 (A 260/280) respectively. The total concentration obtained was sufficient for the transcriptome and other downstream assays. Conclusion We have documented important steps and factors to consider in identifying the relevant participants and required laboratory sample processes prior to the final stage, which involves total reticulocyte RNA sequencing.
Collapse
Affiliation(s)
- Siana Nkya
- Muhimbili University of Health and Allied Sciences
| | | | | | | | | | | | | | - Doreen Ngowi
- Muhimbili University of Health and Allied Sciences
| | | | | | | | - Clara Chamba
- Muhimbili University of Health and Allied Sciences
| | | | | | | | - Julie Makani
- Muhimbili University of Health and Allied Sciences
| |
Collapse
|
9
|
Oliveira JL, Thompson CH, Saravanaperumal SA, Koganti T, Jenkinson G, Hein MS, Kohorst MA, Hasadsri L, Nguyen PL, Matern D, Kipp BR, Klee EW, Wieben ED, Hoyer JD, Rangan A. εγ-Thalassemia, a New Hemoglobinopathy Category. Clin Chem 2023:7136664. [PMID: 37086467 DOI: 10.1093/clinchem/hvad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/07/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND Large β-globin gene cluster deletions (hereditary persistence of fetal hemoglobin [Hb] or β-, δβ-, γδβ-, and ϵγδβ-thalassemia), are associated with widely disparate phenotypes, including variable degrees of microcytic anemia and Hb F levels. When present, increased Hb A2 is used as a surrogate marker for β-thalassemia. Notably, ϵγδβ-thalassemias lack the essential regulatory locus control region (LCR) and cause severe transient perinatal anemia but normal newborn screen (NBS) results and Hb A2 levels. Herein, we report a novel deletion of the ϵ, Aγ, Gγ, and ψβ loci with intact LCR, δ-, and β-regions in 2 women and newborn twins. METHODS Capillary electrophoresis (CE), high-performance liquid chromatography (HPLC), DNA sequencing, multiplex ligation-dependent probe amplification (MLPA), gap-polymerase chain reaction (gap-PCR), and long-read sequencing (LRS) were performed. RESULTS NBS showed an Hb A > Hb F pattern for both twins. At 20 months, Hb A2 was increased similarly to that in the mother and an unrelated woman. Unexplained microcytosis was absent and the twins lacked severe neonatal anemia. MLPA, LRS, and gap-PCR confirmed a 32 599 base pair deletion of ϵ (HBE1) through ψβ (HBBP1) loci. CONCLUSIONS This deletion represents a hemoglobinopathy category with a distinct phenotype that has not been previously described, an ϵγ-thalassemia. Both the NBS Hb A > F pattern and the subsequent increased Hb A2 without microcytosis are unusual. A similar deletion should be considered when this pattern is encountered and appropriate test methods selected for detection. Knowledge of the clinical impact of this new category will improve genetic counselling, with distinction from the severe transient anemia associated with ϵγδβ-thalassemia.
Collapse
Affiliation(s)
- Jennifer L Oliveira
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | | | | | - Tejaswi Koganti
- Department of Clinical Genomics, Quantitative Health Sciences - Computational Biology, Mayo Clinic, Rochester, MN, United States
| | - Garrett Jenkinson
- Department of Clinical Genomics, Quantitative Health Sciences - Computational Biology, Mayo Clinic, Rochester, MN, United States
| | - Molly S Hein
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Mira A Kohorst
- Department of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, MN, United States
| | - Linda Hasadsri
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Phuong L Nguyen
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Dietrich Matern
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Benjamin R Kipp
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Eric W Klee
- Department of Clinical Genomics, Quantitative Health Sciences - Computational Biology, Mayo Clinic, Rochester, MN, United States
| | - Eric D Wieben
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
- Department of Clinical Genomics, Quantitative Health Sciences - Computational Biology, Mayo Clinic, Rochester, MN, United States
| | - James D Hoyer
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Aruna Rangan
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
10
|
Catapano R, Sessa R, Trombetti S, Cesaro E, Russo F, Izzo P, Makis A, Grosso M. Identification and Functional Analysis of Known and New Mutations in the Transcription Factor KLF1 Linked with β-Thalassemia-like Phenotypes. BIOLOGY 2023; 12:biology12040510. [PMID: 37106711 PMCID: PMC10135830 DOI: 10.3390/biology12040510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
The erythroid transcriptional factor Krüppel-like factor 1 (KLF1) is a master regulator of erythropoiesis. Mutations that cause KLF1 haploinsufficiency have been linked to increased fetal hemoglobin (HbF) and hemoglobin A2 (HbA2) levels with ameliorative effects on the severity of β-thalassemia. With the aim of determining if KLF1 gene variations might play a role in the modulation of β-thalassemia, in this study we screened 17 subjects showing a β-thalassemia-like phenotype with a slight or marked increase in HbA2 and HbF levels. Overall, seven KLF1 gene variants were identified, of which two were novel. Functional studies were performed in K562 cells to clarify the pathogenic significance of these mutations. Our study confirmed the ameliorative effect on the thalassemia phenotype for some of these variants but also raised the notion that certain mutations may have deteriorating effects by increasing KLF1 expression levels or enhancing its transcriptional activity. Our results indicate that functional studies are required to evaluate the possible effects of KLF1 mutations, particularly in the case of the co-existence of two or more mutations that could differently contribute to KLF1 expression or transcriptional activity and consequently to the thalassemia phenotype.
Collapse
Affiliation(s)
- Rosa Catapano
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Raffaele Sessa
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Silvia Trombetti
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Filippo Russo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Paola Izzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
| | - Alexandros Makis
- Department of Pediatrics, University Hospital of Ioannina, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Michela Grosso
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
11
|
D'Antonio M, Nguyen JP, Arthur TD, Matsui H, D'Antonio-Chronowska A, Frazer KA. Fine mapping spatiotemporal mechanisms of genetic variants underlying cardiac traits and disease. Nat Commun 2023; 14:1132. [PMID: 36854752 PMCID: PMC9975214 DOI: 10.1038/s41467-023-36638-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/10/2023] [Indexed: 03/02/2023] Open
Abstract
The causal variants and genes underlying thousands of cardiac GWAS signals have yet to be identified. Here, we leverage spatiotemporal information on 966 RNA-seq cardiac samples and perform an expression quantitative trait locus (eQTL) analysis detecting eQTLs considering both eGenes and eIsoforms. We identify 2,578 eQTLs associated with a specific developmental stage-, tissue- and/or cell type. Colocalization between eQTL and GWAS signals of five cardiac traits identified variants with high posterior probabilities for being causal in 210 GWAS loci. Pulse pressure GWAS loci are enriched for colocalization with fetal- and smooth muscle- eQTLs; pulse rate with adult- and cardiac muscle- eQTLs; and atrial fibrillation with cardiac muscle- eQTLs. Fine mapping identifies 79 credible sets with five or fewer SNPs, of which 15 were associated with spatiotemporal eQTLs. Our study shows that many cardiac GWAS variants impact traits and disease in a developmental stage-, tissue- and/or cell type-specific fashion.
Collapse
Affiliation(s)
- Matteo D'Antonio
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA.
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| | - Jennifer P Nguyen
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Timothy D Arthur
- Division of Biomedical Informatics, University of California, San Diego, La Jolla, CA, 92093, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Hiroko Matsui
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | | | - Kelly A Frazer
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
12
|
CRISPR Gene Therapy: A Promising One-Time Therapeutic Approach for Transfusion-Dependent β-Thalassemia—CRISPR-Cas9 Gene Editing for β-Thalassemia. THALASSEMIA REPORTS 2023. [DOI: 10.3390/thalassrep13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
β-Thalassemia is an inherited hematological disorder that results from genetic changes in the β-globin gene, leading to the reduced or absent synthesis of β-globin. For several decades, the only curative treatment option for β-thalassemia has been allogeneic hematopoietic cell transplantation (allo-HCT). Nonetheless, rapid progress in genome modification technologies holds great potential for treating this disease and will soon change the current standard of care for β-thalassemia. For instance, the emergence of the CRISPR/Cas9 genome editing platform has opened the door for precision gene editing and can serve as an effective molecular treatment for a multitude of genetic diseases. Investigational studies were carried out to treat β-thalassemia patients utilizing CRISPR-based CTX001 therapy targeting the fetal hemoglobin silencer BCL11A to restore γ-globin expression in place of deficient β-globin. The results of recently carried out clinical trials provide hope of CTX001 being a promising one-time therapeutic option to treat β-hemoglobinopathies. This review provides an insight into the key scientific steps that led to the development and application of novel CRISPR/Cas9–based gene therapies as a promising therapeutic platform for transfusion-dependent β-thalassemia (TDT). Despite the resulting ethical, moral, and social challenges, CRISPR provides an excellent treatment option against hemoglobin-associated genetic diseases.
Collapse
|
13
|
Zarghamian P, Klermund J, Cathomen T. Clinical genome editing to treat sickle cell disease-A brief update. Front Med (Lausanne) 2023; 9:1065377. [PMID: 36698803 PMCID: PMC9868311 DOI: 10.3389/fmed.2022.1065377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023] Open
Abstract
Sickle cell disease (SCD) is one of the most common hemoglobinopathies. Due to its high prevalence, with about 20 million affected individuals worldwide, the development of novel effective treatments is highly warranted. While transplantation of allogeneic hematopoietic stem cells (HSC) is the standard curative treatment approach, a variety of gene transfer and genome editing strategies have demonstrated their potential to provide a prospective cure for SCD patients. Several stratagems employing CRISPR-Cas nucleases or base editors aim at reactivation of γ-globin expression to replace the faulty β-globin chain. The fetal hemoglobin (HbF), consisting of two α-globin and two γ-globin chains, can compensate for defective adult hemoglobin (HbA) and reverse the sickling of hemoglobin-S (HbS). Both disruption of cis-regulatory elements that are involved in inhibiting γ-globin expression, such as BCL11A or LRF binding sites in the γ-globin gene promoters (HBG1/2), or the lineage-specific disruption of BCL11A to reduce its expression in human erythroblasts, have been demonstrated to reestablish HbF expression. Alternatively, the point mutation in the HBB gene has been corrected using homology-directed repair (HDR)-based methodologies. In general, genome editing has shown promising results not only in preclinical animal models but also in clinical trials, both in terms of efficacy and safety. This review provides a brief update on the recent clinical advances in the genome editing space to offer cure for SCD patients, discusses open questions with regard to off-target effects induced by the employed genome editors, and gives an outlook of forthcoming developments.
Collapse
Affiliation(s)
- Parinaz Zarghamian
- Institute for Transfusion Medicine and Gene Therapy, Medical Center — University of Freiburg, Freiburg, Germany,Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany,Ph.D. Program, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Julia Klermund
- Institute for Transfusion Medicine and Gene Therapy, Medical Center — University of Freiburg, Freiburg, Germany,Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center — University of Freiburg, Freiburg, Germany,Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany,*Correspondence: Toni Cathomen,
| |
Collapse
|
14
|
Qiu HY, Ji RJ, Zhang Y. Current advances of CRISPR-Cas technology in cell therapy. CELL INSIGHT 2022; 1:100067. [PMID: 37193354 PMCID: PMC10120314 DOI: 10.1016/j.cellin.2022.100067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 05/18/2023]
Abstract
CRISPR-Cas is a versatile genome editing technology that has been broadly applied in both basic research and translation medicine. Ever since its discovery, the bacterial derived endonucleases have been engineered to a collection of robust genome-editing tools for introducing frameshift mutations or base conversions at site-specific loci. Since the initiation of first-in-human trial in 2016, CRISPR-Cas has been tested in 57 cell therapy trials, 38 of which focusing on engineered CAR-T cells and TCR-T cells for cancer malignancies, 15 trials of engineered hematopoietic stem cells treating hemoglobinopathies, leukemia and AIDS, and 4 trials of engineered iPSCs for diabetes and cancer. Here, we aim to review the recent breakthroughs of CRISPR technology and highlight their applications in cell therapy.
Collapse
Affiliation(s)
- Hou-Yuan Qiu
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Rui-Jin Ji
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ying Zhang
- Department of Rheumatology and Immunology, Medical Research Institute, Frontier Science Center for Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
15
|
Liu S, Cao Y, Cui K, Tang Q, Zhao K. Hi-TrAC reveals division of labor of transcription factors in organizing chromatin loops. Nat Commun 2022; 13:6679. [PMID: 36335136 PMCID: PMC9637178 DOI: 10.1038/s41467-022-34276-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022] Open
Abstract
The three-dimensional genomic structure plays a critical role in gene expression, cellular differentiation, and pathological conditions. It is pivotal to elucidate fine-scale chromatin architectures, especially interactions of regulatory elements, to understand the temporospatial regulation of gene expression. In this study, we report Hi-TrAC as a proximity ligation-free, robust, and sensitive technique to profile genome-wide chromatin interactions at high-resolution among regulatory elements. Hi-TrAC detects chromatin looping among accessible regions at single nucleosome resolution. With almost half-million identified loops, we reveal a comprehensive interaction network of regulatory elements across the genome. After integrating chromatin binding profiles of transcription factors, we discover that cohesin complex and CTCF are responsible for organizing long-range chromatin loops, related to domain formation; whereas ZNF143 and HCFC1 are involved in structuring short-range chromatin loops between regulatory elements, which directly regulate gene expression. Thus, we introduce a methodology to identify a delicate and comprehensive network of cis-regulatory elements, revealing the complexity and a division of labor of transcription factors in organizing chromatin loops for genome organization and gene expression.
Collapse
Affiliation(s)
- Shuai Liu
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Yaqiang Cao
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Kairong Cui
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Qingsong Tang
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Keji Zhao
- grid.94365.3d0000 0001 2297 5165Laboratory of Epigenome Biology, Systems Biology Center, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
16
|
Transmembrane Protein ANTXR1 Regulates γ-Globin Expression by Targeting the Wnt/β-Catenin Signaling Pathway. J Immunol Res 2022; 2022:8440422. [PMID: 35942209 PMCID: PMC9356848 DOI: 10.1155/2022/8440422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/25/2022] [Accepted: 05/28/2022] [Indexed: 12/02/2022] Open
Abstract
Reactivation of fetal hemoglobin (HbF, α2γ2) alleviates clinical symptoms in patients with β-thalassemia and sickle cell disease, although the regulatory mechanisms of γ-globin expression have not yet been fully elucidated. Recent studies found that interfering with the expression of the membrane protein ANTXR1 gene upregulated γ-globin levels. However, the exact mechanism by which ANTXR1 regulates γ-globin levels remains unclear. Our study showed that overexpression and knockdown of ANTXR1 in K562, cord blood CD34+, and HUDEP-2 cells decreased and increased γ-globin expression, respectively. ANTXR1 regulates the reactivation of fetal hemoglobin (HbF, α2γ2) in K562, cord blood CD34+, and adult peripheral blood CD34+ cells through interaction with LRP6 to promote the nuclear entry of β-catenin and activate the Wnt/β-catenin signaling pathway. The overexpression or knockdown of ANTXR1 on γ-globin and Wnt/β-catenin signaling in K562 cells was reversed by the inhibitor XAV939 and the activator LiCl, respectively, where XAV939 inhibits the transcription of β-catenin in the Wnt pathway, but LiCl inhibits GSK3-β. We also showed that the binding ability of the rank4 site in the transcriptional regulatory region of the SOX6 gene to c-Jun was significantly increased after overexpression of ANTXR1 in K562 cells. SOX6 protein expression was increased significantly after overexpression of the c-Jun gene, indicating that the transcription factor c-Jun initiated the transcription of SOX6, thereby silencing γ-globin. Our findings may provide a new intervention target for the treatment of β-hemoglobinopathies.
Collapse
|
17
|
Single Nucleotide Polymorphisms in XMN1-HBG2, HBS1L-MYB, and BCL11A and Their Relation to High Fetal Hemoglobin Levels That Alleviate Anemia. Diagnostics (Basel) 2022; 12:diagnostics12061374. [PMID: 35741184 PMCID: PMC9221560 DOI: 10.3390/diagnostics12061374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023] Open
Abstract
Anemia is a condition in which red blood cells and/or hemoglobin (Hb) concentrations are decreased below the normal range, resulting in a lack of oxygen being transported to tissues and organs. Those afflicted with this condition may feel lethargic and weak, which reduces their quality of life. The condition may be manifested in inherited blood disorders, such as thalassemia and sickle cell disease, whereas acquired disorders include aplastic anemia, chronic disease, drug toxicity, pregnancy, and nutritional deficiency. The augmentation of fetal hemoglobin (HbF) results in the reduction in clinical symptoms in beta-hemoglobinopathies. Several transcription factors as well as medications such as hydroxyurea may help red blood cells produce more HbF. HbF expression increases with the downregulation of three main quantitative trait loci, namely, the XMN1-HBG2, HBS1L-MYB, and BCL11A genes. These genes contain single nucleotide polymorphisms (SNPs) that modulate the expression of HbF differently in various populations. Allele discrimination is important in SNP genotyping and is widely applied in many assays. In conclusion, the expression of HbF with a genetic modifier is crucial in determining the severity of anemic diseases, and genetic modification of HbF expression may offer clinical benefits in diagnosis and disease management.
Collapse
|
18
|
Abstract
Enhancers control the establishment of spatiotemporal gene expression patterns throughout development. Over the past decade, the development of new technologies has improved our capacity to link enhancers with their target genes based on their colocalization within the same topological domains. However, the mechanisms that regulate how enhancers specifically activate some genes but not others within a given domain remain unclear. In this Review, we discuss recent insights into the factors controlling enhancer specificity, including the genetic composition of enhancers and promoters, the linear and 3D distance between enhancers and their target genes, and cell-type specific chromatin landscapes. We also discuss how elucidating the molecular principles of enhancer specificity might help us to better understand and predict the pathological consequences of human genetic, epigenetic and structural variants.
Collapse
Affiliation(s)
- Tomás Pachano
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Albert Einstein 22, 39011 Santander, Spain
| | - Endika Haro
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Albert Einstein 22, 39011 Santander, Spain
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Albert Einstein 22, 39011 Santander, Spain
| |
Collapse
|
19
|
Novel histone deacetylase inhibitor CT-101 induces γ-globin gene expression in sickle erythroid progenitors with targeted epigenetic effects. Blood Cells Mol Dis 2022; 93:102626. [PMID: 34856533 PMCID: PMC9733664 DOI: 10.1016/j.bcmd.2021.102626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/13/2022]
Abstract
Induction of fetal hemoglobin (HbF) expression ameliorates the clinical severity and prolong survival in persons with sickle cell disease (SCD). Hydroxyurea (HU) is the only FDA-approved HbF inducer however, additional therapeutics that produce an additive effect in SCD are needed. To this end, development of potent Class I histone deacetylase inhibitors (HDACi) for HbF induction represents a rational molecularly targeted approach. In studies here, we evaluated CT-101, a novel Class I-restricted HDACi, a Largazole derivative, for pharmacodynamics, cytotoxicity, and targeted epigenetic effects. In SCD-derived erythroid progenitors, CT-101 induced HbF expression with additive activity in combination with HU. CT-101 preferentially activated γ-globin gene transcription, increased acetylated histone H3 levels, and conferred an open chromatin conformation in the γ-globin promoter. These data indicate CT-101 represents a strong potential candidate as a molecularly targeted inducer of HbF.
Collapse
|
20
|
Abdelnour SA, Xie L, Hassanin AA, Zuo E, Lu Y. The Potential of CRISPR/Cas9 Gene Editing as a Treatment Strategy for Inherited Diseases. Front Cell Dev Biol 2022; 9:699597. [PMID: 34977000 PMCID: PMC8715006 DOI: 10.3389/fcell.2021.699597] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is a promising innovative technology for genomic editing that offers scientists the chance to edit DNA structures and change gene function. It has several possible uses consisting of editing inherited deficiencies, treating, and reducing the spread of disorders. Recently, reports have demonstrated the creation of synthetic RNA molecules and supplying them alongside Cas9 into genome of eukaryotes, since distinct specific regions of the genome can be manipulated and targeted. The therapeutic potential of CRISPR/Cas9 technology is great, especially in gene therapy, in which a patient-specific mutation is genetically edited, or in the treating of human disorders that are untreatable with traditional treatments. This review focused on numerous, in vivo, in vitro, and ex vivo uses of the CRISPR/Cas9 technology in human inherited diseases, discovering the capability of this versatile in medicine and examining some of the main limitations for its upcoming use in patients. In addition to introducing a brief impression of the biology of the CRISPR/Cas9 scheme and its mechanisms, we presented the utmost recent progress in the uses of CRISPR/Cas9 technology in editing and treating of human genetic diseases.
Collapse
Affiliation(s)
- Sameh A Abdelnour
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China.,Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Long Xie
- Center for Animal Genomics, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Abdallah A Hassanin
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Erwei Zuo
- Center for Animal Genomics, Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
21
|
Takeda T, Yokoyama Y, Takahashi H, Okuzaki D, Asai K, Itakura H, Miyoshi N, Kobayashi S, Uemura M, Fujita T, Ueno H, Mori M, Doki Y, Fujii H, Eguchi H, Yamamoto H. A stem cell marker KLF5 regulates CCAT1 via three-dimensional genome structure in colorectal cancer cells. Br J Cancer 2022; 126:109-119. [PMID: 34707247 PMCID: PMC8727571 DOI: 10.1038/s41416-021-01579-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND KLF5 plays a crucial role in stem cells of colorectum in cooperation with Lgr5 gene. In this study, we aimed to explicate a regulatory mechanism of the KLF5 gene product from a view of three-dimensional genome structure in colorectal cancer (CRC). METHODS In vitro engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP)-seq method was used to identify the regions that bind to the KLF5 promoter. RESULTS We revealed that the KLF5 promoter region interacted with the KLF5 enhancer region as well as the transcription start site (TSS) region of the Colon Cancer Associated Transcript 1 (CCAT1) gene. Notably, the heterodeletion mutants of KLF5 enhancer impaired the cancer stem-like properties of CRC cells. The KLF5 protein participated in the core-regulatory circuitry together with co-factors (BRD4, MED1, and RAD21), which constructs the three-dimensional genome structures consisting of KLF5 promoter, enhancer and CCAT1 TSS region. In vitro analysis indicated that KLF5 regulated CCAT1 expression and we found that CCAT1 expression was highly correlated with KLF5 expression in CRC clinical samples. CONCLUSIONS Our data propose the mechanistic insight that the KLF5 protein constructs the core-regulatory circuitry with co-factors in the three-dimensional genome structure and coordinately regulates KLF5 and CCAT1 expression in CRC.
Collapse
Affiliation(s)
- Takashi Takeda
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuhki Yokoyama
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hidekazu Takahashi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Okuzaki
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kaho Asai
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Itakura
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norikatsu Miyoshi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shogo Kobayashi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mamoru Uemura
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshitsugu Fujita
- Department of Biochemistry and Genome Biology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hiroo Ueno
- Department of Stem Cell Pathology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Masaki Mori
- School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Yuichiro Doki
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hodaka Fujii
- Department of Biochemistry and Genome Biology, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hidetoshi Eguchi
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Molecular Pathology, Division of Health Sciences, Graduate School of Medicine, Osaka University, 1-7, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
22
|
Higashi M, Ikehara T, Nakagawa T, Yoneda M, Hattori N, Ikeda M, Ito T. Long noncoding RNAs transcribed downstream of the human β-globin locus regulate β-globin gene expression. J Biochem 2021; 171:287-294. [PMID: 34878533 DOI: 10.1093/jb/mvab130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/07/2021] [Indexed: 01/29/2023] Open
Abstract
The five β-like globin genes (ε, Gγ, Aγ, δ, and β) at the human β-globin gene locus are known to be expressed at specific developmental stages, although details of the underlying mechanism remain to be uncovered. Here we used an in vitro transcription assay to clarify the mechanisms that control this gene expression. We first tested nuclear RNA from HeLa cells using RT-qPCR and discovered a long noncoding RNAs (lncRNAs) within a 5.2-kb region beginning 4.4 kb downstream of the β-globin gene coding region. We investigated nuclear RNA from K562 cells using a primer-extension assay and determined the transcription start sites (TSSs) of these lncRNAs. To clarify their functional role, we performed knockdown (KD) of these lncRNAs in K562 cells. Hydroxyurea, which induces differentiation of K562 cells, increased hemoglobin peptide production, and the effect was enhanced by KD of these lncRNAs, which also enhanced upregulation of the γ-globin expression induced by hydroxyurea. To confirm these results, we performed an in vitro transcription assay. Noncoding single-stranded RNAs inhibited β-globin expression, which was upregulated by GATA1. Furthermore, lncRNAs interacted with GATA1 without sequence specificity and inhibited its binding to its target DNA response element in vitro. Our results suggest that lncRNAs downstream of the β-globin gene locus are key factors regulating globin gene ex pression.
Collapse
Affiliation(s)
- Miki Higashi
- Department of Biochemistry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Physiology, Saitama Medical University, Saitama, Japan
| | - Tsuyoshi Ikehara
- Department of Biochemistry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Department of Food Science and Technology, National Fisheries University, Yamaguchi, Japan
| | - Takeya Nakagawa
- Department of Biochemistry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Mitsuhiro Yoneda
- Department of Biochemistry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Naoko Hattori
- Department of Biochemistry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Masaaki Ikeda
- Department of Physiology, Saitama Medical University, Saitama, Japan
| | - Takashi Ito
- Department of Biochemistry, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
23
|
Mukherjee M, Rahaman M, Ray SK, Shukla PC, Dolai TK, Chakravorty N. Revisiting fetal hemoglobin inducers in beta-hemoglobinopathies: a review of natural products, conventional and combinatorial therapies. Mol Biol Rep 2021; 49:2359-2373. [PMID: 34822068 DOI: 10.1007/s11033-021-06977-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022]
Abstract
Beta-hemoglobinopathies exhibit a heterogeneous clinical picture with varying degrees of clinical severity. Pertaining to the limited treatment options available, where blood transfusion still remains the commonest mode of treatment, pharmacological induction of fetal hemoglobin (HbF) has been a lucrative therapeutic intervention. Till now more than 70 different HbF inducers have been identified. The practical usage of many pharmacological drugs has been limited due to safety concerns. Natural compounds, like Resveratrol, Ripamycin and Bergaptene, with limited cytotoxicity and high efficacy have started capturing the attention of researchers. In this review, we have summarized pharmacological drugs and bioactive compounds isolated from natural sources that have been shown to increase HbF significantly. It primarily discusses recently identified synthetic and natural compounds, their mechanism of action, and their suitable screening platforms, including high throughput drug screening technology and biosensors. It also delves into the topic of combinatorial therapy and drug repurposing for HbF induction. Overall, we aim to provide insights into where we stand in HbF induction strategies for treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Mandrita Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Motiur Rahaman
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Suman Kumar Ray
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Tuphan Kanti Dolai
- Department of Hematology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, 700014, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
24
|
Barbarani G, Łabedz A, Ronchi AE. β-Hemoglobinopathies: The Test Bench for Genome Editing-Based Therapeutic Strategies. Front Genome Ed 2021; 2:571239. [PMID: 34713219 PMCID: PMC8525389 DOI: 10.3389/fgeed.2020.571239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/29/2020] [Indexed: 12/26/2022] Open
Abstract
Hemoglobin is a tetrameric protein composed of two α and two β chains, each containing a heme group that reversibly binds oxygen. The composition of hemoglobin changes during development in order to fulfill the need of the growing organism, stably maintaining a balanced production of α-like and β-like chains in a 1:1 ratio. Adult hemoglobin (HbA) is composed of two α and two β subunits (α2β2 tetramer), whereas fetal hemoglobin (HbF) is composed of two γ and two α subunits (α2γ2 tetramer). Qualitative or quantitative defects in β-globin production cause two of the most common monogenic-inherited disorders: β-thalassemia and sickle cell disease. The high frequency of these diseases and the relative accessibility of hematopoietic stem cells make them an ideal candidate for therapeutic interventions based on genome editing. These strategies move in two directions: the correction of the disease-causing mutation and the reactivation of the expression of HbF in adult cells, in the attempt to recreate the effect of hereditary persistence of fetal hemoglobin (HPFH) natural mutations, which mitigate the severity of β-hemoglobinopathies. Both lines of research rely on the knowledge gained so far on the regulatory mechanisms controlling the differential expression of globin genes during development.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | - Agata Łabedz
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
25
|
Li X, Chen M, Liu B, Lu P, Lv X, Zhao X, Cui S, Xu P, Nakamura Y, Kurita R, Chen B, Huang DCS, Liu DP, Liu M, Zhao Q. Transcriptional silencing of fetal hemoglobin expression by NonO. Nucleic Acids Res 2021; 49:9711-9723. [PMID: 34379783 PMCID: PMC8464040 DOI: 10.1093/nar/gkab671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Human fetal globin (γ-globin) genes are developmentally silenced after birth, and reactivation of γ-globin expression in adulthood ameliorates symptoms of hemoglobin disorders, such as sickle cell disease (SCD) and β-thalassemia. However, the mechanisms by which γ-globin expression is precisely regulated are still incompletely understood. Here, we found that NonO (non-POU domain-containing octamer-binding protein) interacted directly with SOX6, and repressed the expression of γ-globin gene in human erythroid cells. We showed that NonO bound to the octamer binding motif, ATGCAAAT, of the γ-globin proximal promoter, resulting in inhibition of γ-globin transcription. Depletion of NonO resulted in significant activation of γ-globin expression in K562, HUDEP-2, and primary human erythroid progenitor cells. To confirm the role of NonO in vivo, we further generated a conditional knockout of NonO by using IFN-inducible Mx1-Cre transgenic mice. We found that induced NonO deletion reactivated murine embryonic globin and human γ-globin gene expression in adult β-YAC mice, suggesting a conserved role for NonO during mammalian evolution. Thus, our data indicate that NonO acts as a novel transcriptional repressor of γ-globin gene expression through direct promoter binding, and is essential for γ-globin gene silencing.
Collapse
Affiliation(s)
- Xinyu Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Mengxia Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Biru Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Peifen Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiang Lv
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuaiying Cui
- Section of Hematology-Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Peipei Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Bing Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
26
|
Pace BS, Perrine S, Li B, Makala L, Xu H, Takezaki M, Wolf RF, Wang A, Xu X, Huang J, Alimardanov A, Tawa GJ, Sangerman J, Faller A, Zheng W, Toney L, Haugabook SJ. Benserazide racemate and enantiomers induce fetal globin gene expression in vivo: Studies to guide clinical development for beta thalassemia and sickle cell disease. Blood Cells Mol Dis 2021; 89:102561. [PMID: 33744514 PMCID: PMC8409227 DOI: 10.1016/j.bcmd.2021.102561] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/02/2023]
Abstract
Increased expression of developmentally silenced fetal globin (HBG) reduces the clinical severity of β-hemoglobinopathies. Benserazide has a relatively benign safety profile having been approved for 50 years in Europe and Canada for Parkinson's disease treatment. Benserazide was shown to activate HBG gene transcription in a high throughput screen, and subsequent studies confirmed fetal hemoglobin (HbF) induction in erythroid progenitors from hemoglobinopathy patients, transgenic mice containing the entire human β-globin gene (β-YAC) and anemic baboons. The goal of this study is to evaluate efficacies and plasma exposure profiles of benserazide racemate and its enantiomers to select the chemical form for clinical development. Intermittent treatment with all forms of benserazide in β-YAC mice significantly increased proportions of red blood cells expressing HbF and HbF protein per cell with similar pharmacokinetic profiles and with no cytopenia. These data contribute to the regulatory justification for development of the benserazide racemate. Additionally, dose ranges and frequencies required for HbF induction using racemic benserazide were explored. Orally administered escalating doses of benserazide in an anemic baboon induced γ-globin mRNA up to 13-fold and establish an intermittent dose regimen for clinical studies as a therapeutic candidate for potential treatment of β-hemoglobinopathies.
Collapse
Affiliation(s)
- Betty S Pace
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Susan Perrine
- Phoenicia BioSciences, Weston, MA 02493, USA; Department of Pharmacology and Experimental Therapeutics, Hemoglobinopathy Thalassemia Research Unit, Boston University School of Medicine, Boston, MA 02118, USA
| | - Biaoru Li
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Levi Makala
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Hongyan Xu
- Department of Population Health Sciences, Augusta University, Augusta, GA 30912, USA
| | - Mayuko Takezaki
- Department of Pediatrics, Augusta University, Augusta, GA 30912, USA
| | - Roman F Wolf
- Department of Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Amy Wang
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Xu
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Junfeng Huang
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Asaf Alimardanov
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gregory J Tawa
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jose Sangerman
- Phoenicia BioSciences, Weston, MA 02493, USA; Department of Pharmacology and Experimental Therapeutics, Hemoglobinopathy Thalassemia Research Unit, Boston University School of Medicine, Boston, MA 02118, USA
| | - Aidan Faller
- Phoenicia BioSciences, Weston, MA 02493, USA; Department of Pharmacology and Experimental Therapeutics, Hemoglobinopathy Thalassemia Research Unit, Boston University School of Medicine, Boston, MA 02118, USA
| | - Wei Zheng
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - London Toney
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sharie J Haugabook
- Division of Preclinical Innovation, Therapeutics for Rare and Neglected Diseases (TRND) Program, Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Karamperis K, Tsoumpeli MT, Kounelis F, Koromina M, Mitropoulou C, Moutinho C, Patrinos GP. Genome-based therapeutic interventions for β-type hemoglobinopathies. Hum Genomics 2021; 15:32. [PMID: 34090531 PMCID: PMC8178887 DOI: 10.1186/s40246-021-00329-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022] Open
Abstract
For decades, various strategies have been proposed to solve the enigma of hemoglobinopathies, especially severe cases. However, most of them seem to be lagging in terms of effectiveness and safety. So far, the most prevalent and promising treatment options for patients with β-types hemoglobinopathies, among others, predominantly include drug treatment and gene therapy. Despite the significant improvements of such interventions to the patient's quality of life, a variable response has been demonstrated among different groups of patients and populations. This is essentially due to the complexity of the disease and other genetic factors. In recent years, a more in-depth understanding of the molecular basis of the β-type hemoglobinopathies has led to significant upgrades to the current technologies, as well as the addition of new ones attempting to elucidate these barriers. Therefore, the purpose of this article is to shed light on pharmacogenomics, gene addition, and genome editing technologies, and consequently, their potential use as direct and indirect genome-based interventions, in different strategies, referring to drug and gene therapy. Furthermore, all the latest progress, updates, and scientific achievements for patients with β-type hemoglobinopathies will be described in detail.
Collapse
Affiliation(s)
- Kariofyllis Karamperis
- Department of Pharmacy, School of Health Sciences, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece
- The Golden Helix Foundation, London, UK
| | - Maria T Tsoumpeli
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Fotios Kounelis
- Department of Computing, Group of Large-Scale Data & Systems, Imperial College London, London, UK
| | - Maria Koromina
- Department of Pharmacy, School of Health Sciences, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece
| | | | - Catia Moutinho
- Garvan-Weizmann Centre for Cellular Genomics, Garvan Institute of Medical Research, Darlinghurst, Sydney, Australia
| | - George P Patrinos
- Department of Pharmacy, School of Health Sciences, Laboratory of Pharmacogenomics and Individualized Therapy, University of Patras, Patras, Greece.
- College of Medicine and Health Sciences, Department of Pathology, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
28
|
Salah NY, Ali HGA, Bassiouny N, Salem L, Taha SI, Youssef MK, Annaka L, Barakat NM. BCL11A Polymorphism in Egyptian Children with β-Thalassemia: Relation to Phenotypic Heterogeneity. J Pediatr Genet 2021; 12:16-22. [PMID: 36684548 PMCID: PMC9848767 DOI: 10.1055/s-0041-1728744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/10/2021] [Indexed: 01/25/2023]
Abstract
Fetal hemoglobin (HbF) is a potent genetic modifier of β-thalassemia phenotype. B-cell lymphoma 11A ( BCL11A ) gene results in significant silencing of HbF. The aim of this study was to assess the prevalence of different BCL11A genotypes among a cohort of Egyptian children with β-thalassemia and to correlate them to HbF and clinical severity score. Eighty-two children with β-thalassemia (aged 12.95 ± 3.63 years) were recruited from the Pediatric Hematology Clinic, Ain Shams University. They were divided based on the clinical severity of β-thalassemia into three subgroups: 20 mild (24.4%), 24 moderate (29.3%), and 38 severe (46.3%). Age, gender, age of diagnosis, initial HbF level, transfusion history, and history of splenectomy were assessed. Anthropometric measures, signs of anemia and hemosiderosis, and the severity score were determined. Laboratory investigations such as complete blood picture, ferritin, and single gene polymorphism genotyping of the rs11886868 were also performed. Our findings showed that 16 children had CC genotype (19.5%), 38 had TC genotype (46.3%), and 28 had TT genotype (34.1%) of the rs#. β-thalassemia children with TT genotype had significantly higher severity scoring than the other two groups ( p < 0.001). Moreover, mean initial HbF was found to be lower in children with TT genotype followed by TC and CC genotypes ( p < 0.001). Increased γ-globin expression associated with BCL11A gene polymorphism is associated with better clinical severity of β-thalassemia.
Collapse
Affiliation(s)
- Nouran Y. Salah
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt,Address for correspondence Nouran Yousef Salah, MD Department of Pediatrics, Faculty of Medicine, Ain Shams University25 Korash Street, Nasr City, Cairo 11375Egypt
| | - Heba G. A. Ali
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Noha Bassiouny
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Lamya Salem
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Sara I. Taha
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mariam K. Youssef
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Layla Annaka
- Department of Clinical Pathology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Noha M. Barakat
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
29
|
Liu N, Xu S, Yao Q, Zhu Q, Kai Y, Hsu JY, Sakon P, Pinello L, Yuan GC, Bauer DE, Orkin SH. Transcription factor competition at the γ-globin promoters controls hemoglobin switching. Nat Genet 2021; 53:511-520. [PMID: 33649594 PMCID: PMC8038971 DOI: 10.1038/s41588-021-00798-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/21/2021] [Indexed: 02/06/2023]
Abstract
BCL11A, the major regulator of fetal hemoglobin (HbF, α2γ2) level, represses γ-globin expression through direct promoter binding in adult erythroid cells in a switch to adult hemoglobin (HbA, α2β2). To uncover how BCL11A initiates repression, we used CRISPR-Cas9, dCas9, dCas9-KRAB and dCas9-VP64 screens to dissect the γ-globin promoters and identified an activator element near the BCL11A-binding site. Using CUT&RUN and base editing, we demonstrate that a proximal CCAAT box is occupied by the activator NF-Y. BCL11A competes with NF-Y binding through steric hindrance to initiate repression. Occupancy of NF-Y is rapidly established following BCL11A depletion, and precedes γ-globin derepression and locus control region (LCR)-globin loop formation. Our findings reveal that the switch from fetal to adult globin gene expression within the >50-kb β-globin gene cluster is initiated by competition between a stage-selective repressor and a ubiquitous activating factor within a remarkably discrete region of the γ-globin promoters.
Collapse
Affiliation(s)
- Nan Liu
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuqian Xu
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qiuming Yao
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qian Zhu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Yan Kai
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Jonathan Y Hsu
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Phraew Sakon
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Luca Pinello
- Molecular Pathology Unit & Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guo-Cheng Yuan
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Department of Genetics and Genomic Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel E Bauer
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stuart H Orkin
- Cancer and Blood Disorders Center, Dana-Farber Cancer Institute and Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Boston, MA, USA.
| |
Collapse
|
30
|
Hernández-Fernández J, Pinzón-Velasco A, López EA, Rodríguez-Becerra P, Mariño-Ramírez L. Transcriptional Analyses of Acute Exposure to Methylmercury on Erythrocytes of Loggerhead Sea Turtle. TOXICS 2021; 9:70. [PMID: 33805397 PMCID: PMC8066450 DOI: 10.3390/toxics9040070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023]
Abstract
To understand changes in enzyme activity and gene expression as biomarkers of exposure to methylmercury, we exposed loggerhead turtle erythrocytes (RBCs) to concentrations of 0, 1, and 5 mg L-1 of MeHg and de novo transcriptome were assembled using RNA-seq. The analysis of differentially expressed genes (DEGs) indicated that 79 unique genes were dysregulated (39 upregulated and 44 downregulated genes). The results showed that MeHg altered gene expression patterns as a response to the cellular stress produced, reflected in cell cycle regulation, lysosomal activity, autophagy, calcium regulation, mitochondrial regulation, apoptosis, and regulation of transcription and translation. The analysis of DEGs showed a low response of the antioxidant machinery to MeHg, evidenced by the fact that genes of early response to oxidative stress were not dysregulated. The RBCs maintained a constitutive expression of proteins that represented a good part of the defense against reactive oxygen species (ROS) induced by MeHg.
Collapse
Affiliation(s)
- Javier Hernández-Fernández
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
- Faculty of Sciences, Department of Biology, Pontificia Universidad Javeriana, Calle 45, Cra. 7, Bogotá 110231, Colombia
| | - Andrés Pinzón-Velasco
- Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Calle 45, Cra. 30, Bogotá 111321, Colombia;
| | - Ellie Anne López
- IDEASA Research Group-Environment and Sustainability, Institute of Environmental Studies and Services, Sergio Arboleda University, Bogotá 111711, Colombia;
| | - Pilar Rodríguez-Becerra
- Department of Natural and Environmental Science, Marine Biology Program, Faculty of Science and Engineering, Genetics, Molecular Biology and Bioinformatic Research Group–GENBIMOL, Jorge Tadeo Lozano University, Cra. 4 No 22-61, Bogotá 110311, Colombia;
| | - Leonardo Mariño-Ramírez
- NCBI, NLM, NIH Computational Biology Branch, Building 38A, Room 6S614M 8600 Rockville Pike, MSC 6075, Bethesda, MD 20894-6075, USA;
| |
Collapse
|
31
|
Varied Age of First Presentation of Sickle Cell Disease: Case Presentations and Review. Case Rep Med 2021; 2021:8895020. [PMID: 33628264 PMCID: PMC7884135 DOI: 10.1155/2021/8895020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/23/2021] [Accepted: 01/30/2021] [Indexed: 11/17/2022] Open
Abstract
Sickle cell disease is a multisystem condition characterized by hemolytic anemia and vasoocclusion. Not only are the symptoms of the first presentation but also the ages of presentation are very variable. Following three case reports, different causes of possible late presentation are discussed. Many factors are responsible for the age at which sickle cell disease is diagnosed: doctor's delay (unfamiliarity with the disease), patient's delay (education and financial position of the parents, cultural factors), high- versus low-resource country (availability of newborn screening), fetal hemoglobin, reticulocyte count, and genetic modulators, such as SCD genotype, alpha-thalassemia, fetal hemoglobin concentration, and G6PD deficiency. The individual course of sickle cell disease depends on (epi) genetic and environmental properties and the underlying interactions. In further studies, the role of each factor should be evaluated more deeply, and its use as a marker of disease severity or activity should be assessed.
Collapse
|
32
|
Persad E, Sibrecht G, Ringsten M, Karlelid S, Romantsik O, Ulinder T, Borges do Nascimento IJ, Björklund M, Arno A, Bruschettini M. Interventions to minimize blood loss in very preterm infants-A systematic review and meta-analysis. PLoS One 2021; 16:e0246353. [PMID: 33556082 PMCID: PMC7870155 DOI: 10.1371/journal.pone.0246353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022] Open
Abstract
Blood loss in the first days of life has been associated with increased morbidity and mortality in very preterm infants. In this systematic review we included randomized controlled trials comparing the effects of interventions to preserve blood volume in the infant from birth, reduce the need for sampling, or limit the blood sampled. Mortality and major neurodevelopmental disabilities were the primary outcomes. Included studies underwent risk of bias-assessment and data extraction by two review authors independently. We used risk ratio or mean difference to evaluate the treatment effect and meta-analysis for pooled results. The certainty of evidence was assessed using GRADE. We included 31 trials enrolling 3,759 infants. Twenty-five trials were pooled in the comparison delayed cord clamping or cord milking vs. immediate cord clamping or no milking. Increasing placental transfusion resulted in lower mortality during the neonatal period (RR 0.51, 95% CI 0.26 to 1.00; participants = 595; trials = 5; I2 = 0%, moderate certainty of evidence) and during first hospitalization (RR 0.70, 95% CI 0.51, 0.96; 10 RCTs, participants = 2,476, low certainty of evidence). The certainty of evidence was very low for the other primary outcomes of this review. The six remaining trials compared devices to monitor glucose levels (three trials), blood sampling from the umbilical cord or from the placenta vs. blood sampling from the infant (2 trials), and devices to reintroduce the blood after analysis vs. conventional blood sampling (1 trial); the certainty of evidence was rated as very low for all outcomes in these comparisons. Increasing placental transfusion at birth may reduce mortality in very preterm infants; However, extremely limited evidence is available to assess the effects of other interventions to reduce blood loss after birth. In future trials, infants could be randomized following placental transfusion to different blood saving approaches. Trial registration: PROSPERO CRD42020159882.
Collapse
Affiliation(s)
- Emma Persad
- Department for Evidence-Based Medicine and Evaluation, Danube University Krems, Krems an der Donau, Austria
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| | | | | | | | | | - Tommy Ulinder
- Department of Pediatrics, Lund University, Lund, Sweden
| | - Israel Júnior Borges do Nascimento
- University Hospital and School of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- School of Medicine, Milwaukee Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Maria Björklund
- Library & ICT, Faculty of Medicine, Lund University, Lund, Sweden
| | - Anneliese Arno
- Eppi-Centre, Institute of Education, University College London, London, United Kingdom
| | - Matteo Bruschettini
- Department of Pediatrics, Lund University, Lund, Sweden
- Cochrane Sweden, Research and Development, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
33
|
Fugazza C, Barbarani G, Elangovan S, Marini MG, Giolitto S, Font-Monclus I, Marongiu MF, Manunza L, Strouboulis J, Cantù C, Gasparri F, Barabino SML, Nakamura Y, Ottolenghi S, Moi P, Ronchi AE. The Coup-TFII orphan nuclear receptor is an activator of the γ-globin gene. Haematologica 2021; 106:474-482. [PMID: 32107331 PMCID: PMC7849756 DOI: 10.3324/haematol.2019.241224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
The human fetal γ-globin gene is repressed in adulthood through complex regulatory mechanisms involving transcription factors and epigenetic modifiers. Reversing γ-globin repression, or maintaining its expression by manipulating regulatory mechanisms, has become a major clinical goal in the treatment of β-hemoglobinopathies. Here we identify the orphan nuclear receptor Coup-TFII (NR2F2/ARP- 1) as an embryonic/fetal stage activator of γ-globin expression. We show that Coup-TFII is expressed in early erythropoiesis of yolk sac origin, together with embryonic/fetal globins. When overexpressed in adult cells (including peripheral blood cells from human healthy donors and β039 thalassemic patients) Coup-TFII activates the embryonic/fetal globin genes, overcoming the repression imposed by the adult erythroid environment. Conversely, the knockout of Coup-TFII increases the β/γ+β globin ratio. Molecular analysis indicates that Coup-TFII binds in vivo to the β-locus and contributes to its three-dimensional conformation. Overall, our data identify Coup-TFII as a specific activator of the γ- globin gene.
Collapse
Affiliation(s)
- Cristina Fugazza
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Sudharshan Elangovan
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Maria Giuseppina Marini
- Istituto di Ricerca Genetica e Biomedica del Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Serena Giolitto
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Isaura Font-Monclus
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Maria Franca Marongiu
- Istituto di Ricerca Genetica e Biomedica del Consiglio Nazionale delle Ricerche, Cagliari, Italy
| | - Laura Manunza
- Dip. di Sanità Pubblica, Medicina Clinica e Molecolare, Universita degli Studi di Cagliari
| | - John Strouboulis
- School of Cancer and Pharmaceutical Sciences, King's College London, United Kingdom
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linkoping University, Linköping, Sweden
| | - Fabio Gasparri
- Department of Biology, Nerviano Medical Sciences S.r.l., Nerviano, Milano, Italy
| | - Silvia M L Barabino
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Yukio Nakamura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Sergio Ottolenghi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Paolo Moi
- Dip. di Sanità Pubblica, Medicina Clinica e Molecolare, Universita degli Studi di Cagliari
| | | |
Collapse
|
34
|
Katayama K, Ishii K, Terashima H, Tsuda E, Suzuki M, Yotsumoto K, Hiramoto K, Yasumatsu I, Torihata M, Ishiyama T, Muto T, Katagiri T. Discovery of DS79932728: A Potent, Orally Available G9a/GLP Inhibitor for Treating β-Thalassemia and Sickle Cell Disease. ACS Med Chem Lett 2021; 12:121-128. [PMID: 33488973 DOI: 10.1021/acsmedchemlett.0c00572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022] Open
Abstract
Therapeutic reactivation of the γ-globin genes for fetal hemoglobin (HbF) production is an attractive strategy for treating β-thalassemia and sickle cell disease. It was reported that genetic knockdown of the histone lysine methyltransferase EHMT2/1 (G9a/GLP) is sufficient to induce HbF production. The aim of the present work was to acquire a G9a/GLP inhibitor that induces HbF production sufficiently. It was revealed that tetrahydroazepine has versatility as a side chain in various skeletons. We ultimately obtained a promising aminoindole derivative (DS79932728), a potent and orally bioavailable G9a/GLP inhibitor that was found to induce γ-globin production in a phlebotomized cynomolgus monkey model. This work could facilitate the development of effective new approaches for treating β-thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Katsushi Katayama
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Ken Ishii
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Hideki Terashima
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Eisuke Tsuda
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Makoto Suzuki
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Keiichi Yotsumoto
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Kumiko Hiramoto
- Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa-ku, Tokyo 134-8630, Japan
| | - Isao Yasumatsu
- Daiichi Sankyo RD Novare Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Munefumi Torihata
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takashi Ishiyama
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Tsuyoshi Muto
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| | - Takahiro Katagiri
- R&D Division, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan
| |
Collapse
|
35
|
Das SS, Das S, Byram PK, Rahaman M, Dolai TK, Chatterjee A, Chakravorty N. MicroRNA expression patterns in HbE/β-thalassemia patients: The passwords to unlock fetal hemoglobin expression in β-hemoglobinopathies. Blood Cells Mol Dis 2020; 87:102523. [PMID: 33242839 DOI: 10.1016/j.bcmd.2020.102523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 11/29/2022]
Abstract
Hemoglobin E (HbE)/β-thalassemia is a form of β-hemoglobinopathy that is well-known for its clinical heterogeneity. Individuals suffering from this condition are often found to exhibit increased fetal hemoglobin (HbF) levels - a factor that may contribute to their reduced blood transfusion requirements. This study hypothesized that the high HbF levels in HbE/β-thalassemia individuals may be guided by microRNAs and explored their involvement in the disease pathophysiology. The miRNA expression profile of hematopoietic progenitor cells in HbE/β-thalassemia patients was investigated and compared with that of healthy controls. Using miRNA PCR array experiments, eight miRNAs (hsa-miR-146a-5p, hsa-miR-146b-5p, hsa-miR-148b-3p, hsa-miR-155-5p, hsa-miR-192-5p, hsa-miR-335-5p, hsa-miR-7-5p, hsa-miR-98-5p) were identified to be significantly up-regulated whereas four miRNAs (hsa-let-7a-5p, hsa-miR-320a, hsa-let-7b-5p, hsa-miR-92a-3p) were significantly down-regulated. Target analysis found them to be associated with several biological processes and molecular functions including MAPK and HIF-1 signaling pathways - the pathways known to be associated with HbF upregulation. Results of dysregulated miRNAs further indicated that miR-17/92 cluster might be of critical importance in HbF regulation. The findings of our study thus identify key miRNAs that can be extrinsically manipulated to elevate HbF levels in β-hemoglobinopathies.
Collapse
Affiliation(s)
- Sankha Subhra Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Prasanna Kumar Byram
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Motiur Rahaman
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Tuphan Kanti Dolai
- Haematology Department, Nilratan Sircar Medical College and Hospital, Kolkata, West Bengal 700014, India
| | - Anish Chatterjee
- Department of Pediatric Medicine, Rampurhat Government Medical College and Hospital, Rampurhat, Birbhum, West Bengal 731224, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India.
| |
Collapse
|
36
|
Samuel PP, Case DA. Atomistic Simulations of Heme Dissociation Pathways in Human Methemoglobins Reveal Hidden Intermediates. Biochemistry 2020; 59:4093-4107. [PMID: 32945658 DOI: 10.1021/acs.biochem.0c00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heme dissociations disrupt function and structural integrity of human hemoglobin and trigger various cardiovascular complications. These events become significant in methemoglobins that have undergone autoxidation of ferrous into ferric heme. We have structurally characterized the heme disassociation pathways for adult tetrameric methemoglobins using all-atom molecular dynamics simulations. These reveal that bis-histidine hemichromes, characterized here by the coordination of heme iron to both the F8 (proximal) and E7 (distal) histidines, are seen as intermediates following dissociation of the water molecule distally bound to each heme iron. Later, the breaking of coordination between heme iron and proximal histidine disrupts the F helix and pushes it away from the heme cavity, enabling both bulk solvent penetration and disruption of tetramer interface interactions. The interactions inhibiting heme dissociation were then seen to be (i) either a direct or a water-molecule-mediated interaction between distal histidine and heme iron and (ii) stacking between heme and the αCE1/βCD1 phenylalanine residue. These interactions are less important in the β than in α subunits due to a more flexible β subunit CE loop region. The absence of a distal histidine interaction in the H(E7)L mutant and increased heme cavity volume in the V(E11)A mutant both promoted heme escape from the protein interior. Adult and fetal hemoglobins were seen to share a general heme disassociation pathway and intermediates due to the conservation of key heme pocket residues. The intermediates seen here are analyzed in light of experimental studies of heme dissociation and pathways of certain hemoglobinopathies.
Collapse
Affiliation(s)
- Premila P Samuel
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States
| | - David A Case
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States.,Department of Chemistry & Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
37
|
Katayama K, Tsunemi T, Miyazaki K, Uoto K, Yoshioka R, Terashima H, Terakawa M, Yamashiro K, Haruyama M, Maeda H, Makino T. Design, synthesis, and optimization of a series of 2-azaspiro[3.3]heptane derivatives as orally bioavailable fetal hemoglobin inducers. Bioorg Med Chem Lett 2020; 30:127425. [PMID: 32717372 DOI: 10.1016/j.bmcl.2020.127425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022]
Abstract
Pharmacological reactivation of the γ-globin gene for the production of fetal hemoglobin (HbF) is a promising approach for the management of β-thalassemia and sickle cell disease (SCD). We conducted a phenotypic screen in human erythroid progenitor cells to identify molecules that could induce HbF, which resulted in identification of the hit compound 1. Exploration of structure-activity relationships and optimization of ADME properties led to 2-azaspiro[3.3]heptane derivative 18, which is more rigid and has a unique structure. In vivo using cynomolgus monkeys, compound 18 induced a significant dose-dependent increase in globin switching, with developable properties. Moreover, compound 18 showed no genotoxic effects and was much safer than hydroxyurea. These findings could facilitate the development of effective new therapies for the treatment of β-hemoglobinopathies, including SCD.
Collapse
Affiliation(s)
- Katsushi Katayama
- Asubio Pharma Co. Ltd, 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Tomoyuki Tsunemi
- Asubio Pharma Co. Ltd, 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kazuo Miyazaki
- Asubio Pharma Co. Ltd, 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kouichi Uoto
- Asubio Pharma Co. Ltd, 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Ryosuke Yoshioka
- Asubio Pharma Co. Ltd, 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hideki Terashima
- Asubio Pharma Co. Ltd, 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Maki Terakawa
- Asubio Pharma Co. Ltd, 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Kyoko Yamashiro
- Asubio Pharma Co. Ltd, 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Munetada Haruyama
- Asubio Pharma Co. Ltd, 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hiroaki Maeda
- Asubio Pharma Co. Ltd, 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Tomohiro Makino
- Asubio Pharma Co. Ltd, 6-4-3 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
38
|
Lamsfus-Calle A, Daniel-Moreno A, Antony JS, Epting T, Heumos L, Baskaran P, Admard J, Casadei N, Latifi N, Siegmund DM, Kormann MSD, Handgretinger R, Mezger M. Comparative targeting analysis of KLF1, BCL11A, and HBG1/2 in CD34 + HSPCs by CRISPR/Cas9 for the induction of fetal hemoglobin. Sci Rep 2020; 10:10133. [PMID: 32576837 PMCID: PMC7311455 DOI: 10.1038/s41598-020-66309-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/19/2020] [Indexed: 12/22/2022] Open
Abstract
β-hemoglobinopathies are caused by abnormal or absent production of hemoglobin in the blood due to mutations in the β-globin gene (HBB). Imbalanced expression of adult hemoglobin (HbA) induces strong anemia in patients suffering from the disease. However, individuals with natural-occurring mutations in the HBB cluster or related genes, compensate this disparity through γ-globin expression and subsequent fetal hemoglobin (HbF) production. Several preclinical and clinical studies have been performed in order to induce HbF by knocking-down genes involved in HbF repression (KLF1 and BCL11A) or disrupting the binding sites of several transcription factors in the γ-globin gene (HBG1/2). In this study, we thoroughly compared the different CRISPR/Cas9 gene-disruption strategies by gene editing analysis and assessed their safety profile by RNA-seq and GUIDE-seq. All approaches reached therapeutic levels of HbF after gene editing and showed similar gene expression to the control sample, while no significant off-targets were detected by GUIDE-seq. Likewise, all three gene editing platforms were established in the GMP-grade CliniMACS Prodigy, achieving similar outcome to preclinical devices. Based on this gene editing comparative analysis, we concluded that BCL11A is the most clinically relevant approach while HBG1/2 could represent a promising alternative for the treatment of β-hemoglobinopathies.
Collapse
Affiliation(s)
- Andrés Lamsfus-Calle
- University Children's Hospital. Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Alberto Daniel-Moreno
- University Children's Hospital. Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Justin S Antony
- University Children's Hospital. Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Thomas Epting
- Institute for Clinical Chemistry and Laboratory Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Heumos
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Praveen Baskaran
- Quantitative Biology Center (QBiC), University of Tübingen, Tübingen, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ngadhnjim Latifi
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Darina M Siegmund
- University Hospital Freiburg. Department of Hematology, Oncology, and Stem-Cell Transplantation, Medical Center, University of Freiburg, Freiburg, Germany
| | - Michael S D Kormann
- University Children's Hospital. Department of Pediatrics I, Pediatric Infectiology and Immunology, Translational Genomics and Gene Therapy in Pediatrics, University of Tübingen, Tübingen, Germany
| | - Rupert Handgretinger
- University Children's Hospital. Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - Markus Mezger
- University Children's Hospital. Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
39
|
Hu L, Huang L, Han Y, Jin T, Liu J, Jiang M, Liu X, Li Y, Han W, An B, Huang S. Association of polymorphisms in the HBG1-HBD intergenic region with HbF levels. J Clin Lab Anal 2020; 34:e23243. [PMID: 32068918 PMCID: PMC7307336 DOI: 10.1002/jcla.23243] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Increased levels of fetal hemoglobin (HbF) can improve the clinical course of the patients with sickle cell anemia (SCA) or β-thalassemia. The HBG1-HBD intergenic region plays an important role in this process. However, very few studies investigated whether the variations in this region have an effect on HbF expression. METHODS We retrieved all the SNP data in the HBG1-HBD intergenic region and defined the haplotype blocks, then performed cluster analysis and selected a tagSNP. A total of 500 normal individuals and 300 β-thalassemia carriers were enrolled. After routine blood and hemoglobin capillary electrophoresis testing, β-thalassemia mutations were detected using PCR-reverse dot blot. The genotypes of the rs4910736 (A > C) and rs10128556 (C > T) were determined using Sanger sequencing; the relationship between the two SNPs and the levels of HbF was analyzed. RESULTS Two haplotype blocks were constructed. Block 1 included seven haplotypes divided into two groups M and N by 11 tagSNPs, among which rs4910736 was selected as a tagSNP, while block 2 included three haplotypes. We found that the haplotypes of block 1 were statistically associated with HbF levels, but the non-tagSNP rs10128556 was shown to be more strongly associated with HbF levels than rs4910736. CONCLUSION This work proved that the haplotypes in the HBG1-HBD intergenic region and SNP rs10128556 are both statistically associated with HbF levels, revealing the association of polymorphisms in the HBG1-HBD intergenic region with HbF levels.
Collapse
Affiliation(s)
- Li Hu
- School of MedicineGuizhou UniversityGuiyangChina
- Prenatal Diagnosis CenterGuizhou Provincial People's HospitalGuiyangChina
| | - Ling Huang
- Department of LaboratoryGuizhou Provincial People's HospitalGuiyangChina
| | - Yuanyuan Han
- School of MedicineGuizhou UniversityGuiyangChina
| | - Tingting Jin
- School of MedicineGuizhou UniversityGuiyangChina
| | - Juan Liu
- School of MedicineGuizhou UniversityGuiyangChina
| | - Minmin Jiang
- Prenatal Diagnosis CenterGuizhou Provincial People's HospitalGuiyangChina
| | - Xingmei Liu
- Department of LaboratoryGuizhou Provincial People's HospitalGuiyangChina
| | - Yuanyuan Li
- Department of LaboratoryGuizhou Provincial People's HospitalGuiyangChina
| | - Wenping Han
- Department of LaboratoryNanjing Red Cross Blood CenterNanjingChina
| | - Bangquan An
- Department of Planning and DevelopmentGuizhou Provincial People's HospitalGuiyangChina
| | - Shengwen Huang
- School of MedicineGuizhou UniversityGuiyangChina
- Prenatal Diagnosis CenterGuizhou Provincial People's HospitalGuiyangChina
- NHC Key Laboratory of Pulmonary Immunological DiseasesGuizhou Provincial People's HospitalGuiyangChina
| |
Collapse
|
40
|
Ikawa Y, Miccio A, Magrin E, Kwiatkowski JL, Rivella S, Cavazzana M. Gene therapy of hemoglobinopathies: progress and future challenges. Hum Mol Genet 2020; 28:R24-R30. [PMID: 31322165 DOI: 10.1093/hmg/ddz172] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
Recently, gene therapy clinical trials have been successfully applied to hemoglobinopathies, such as sickle cell disease (SCD) and β-thalassemia. Among the great discoveries that led to the design of genetic approaches to cure these disorders is the discovery of the β-globin locus control region and several associated transcription factors, which determine hemoglobin switching as well as high-level, erythroid-specific expression of genes at the ß-globin locus. Moreover, increasing evidence shows that lentiviral vectors are efficient tools to insert large DNA elements into nondividing hematopoietic stem cells, showing reassuring safe integration profiles. Alternatively, genome editing could restore expression of fetal hemoglobin or target specific mutations to restore expression of the wild-type β-globin gene. The most recent clinical trials for β-thalassemia and SCD are showing promising outcomes: patients were able to discontinue transfusions or had reduced transfusion requirements. However, toxic myeloablation and the high cost of current ex vivo hematopoietic stem cell gene therapy platforms represent a barrier to a widespread application of these approaches. In this review, we summarize these gene therapy strategies and ongoing clinical trials. Finally, we discuss possible strategies to improve outcomes, reduce myeloablative regimens and future challenges to reduce the cost of gene therapy platform.
Collapse
Affiliation(s)
- Yasuhiro Ikawa
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA
| | - Annarita Miccio
- Laboratory of chromatin and gene regulation during development, INSERM UMR1163, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Elisa Magrin
- Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France
| | - Janet L Kwiatkowski
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA.,University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Stefano Rivella
- Division of Hematology, Department of Pediatrics, Children's Hospital of Philadelphia (CHOP), Philadelphia, PA, USA.,University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.,Cell and Molecular Biology affinity group (CAMB), University of Pennsylvania.,Penn Center for Musculoskeletal Disorders, CHOP, Philadelphia, PA, USA
| | - Marina Cavazzana
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Biotherapy Department, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.,Biotherapy Clinical Investigation Center, Groupe Hospitalier Universitaire Ouest, Assistance Publique-Hôpitaux de Paris, INSERM, Paris, France.,INSERM UMR 1163, Laboratory of Human Lymphohematopoiesis, Paris, France
| |
Collapse
|
41
|
Khosravi MA, Abbasalipour M, Concordet JP, Berg JV, Zeinali S, Arashkia A, Buch T, Karimipoor M. Expression analysis data of BCL11A and γ-globin genes in KU812 and KG-1 cell lines after CRISPR/Cas9-mediated BCL11A enhancer deletion. Data Brief 2019; 28:104974. [PMID: 31890812 PMCID: PMC6933148 DOI: 10.1016/j.dib.2019.104974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 11/20/2022] Open
Abstract
The data presented in this article are related to the research article entitled as “Targeted deletion of the BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta-thalassemia disease " [1]. BCL11A is a master regulator of γ-globin gene silencing, and suppresses fetal hemoglobin expression by association with other γ-globin suppressors, and also interacts with human beta-globin locus control region as well as intergenic region between the Aγ and δ-globin genes to reconfigure beta-globin cluster. Thus, HbF reactivation has been proposed to be an approach for the treatment of β-thalassemia through knockout of BCL11A. Accordingly, an erythroid enhancer sequence was identified that, when inactivated, led to repression of BCL11A and induction of γ-globin in the erythroid lineage [2–7]. This article describes data that obtained from BCL11A gene enhancer modification in KU812 and KG-1 cell lines using the CRISPR-Cas9 genome editing system in order to reactivate γ-globin gene expression.
Collapse
Affiliation(s)
- Mohammad Ali Khosravi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Maryam Abbasalipour
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Jean-Paul Concordet
- Museum national d’Histoire naturelle, INSERM U1154, CNRS UMR 7196, Sorbonne Universites, 43 rue Cuvier, Paris, F-75231, France
| | - Johannes vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Sirous Zeinali
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Arash Arashkia
- Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
- Corresponding author.
| | - Morteza Karimipoor
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Corresponding author.
| |
Collapse
|
42
|
Notarangelo LD, Agostini A, Casale M, Samperi P, Arcioni F, Gorello P, Perrotta S, Masera N, Barone A, Bertoni E, Bonetti E, Burnelli R, Casini T, Del Vecchio GC, Filippini B, Giona F, Giordano P, Gorio C, Marchina E, Nardi M, Petrone A, Colombatti R, Sainati L, Russo G. HbS/β+ thalassemia: Really a mild disease? A National survey from the AIEOP Sickle Cell Disease Study Group with genotype-phenotype correlation. Eur J Haematol 2019; 104:214-222. [PMID: 31788855 DOI: 10.1111/ejh.13362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 12/20/2022]
Abstract
OBJECTIVES HbS/β+ patients' presence in Italy increased due to immigration; these patients are clinically heterogeneous, and specific guidelines are lacking. Our aim is to describe a cohort of HbS/β+ patients, with genotype-phenotype correlation, in order to offer guidance for clinical management of such patients. METHODS Retrospective cohort study of HbS/β+ patients among 15 AIEOP Centres. RESULTS A total of 41 molecularly confirmed S/β+ patients were enrolled (1-55 years, median 10.9) and classified on β+ mutation: IVS-I-110, IVS-I-6, promoter, and "others." Prediagnostic events included VOC 16/41 (39%), ACS 6/41 (14.6%), sepsis 3/41 (3.7%), and avascular necrosis 3/41 (7,3%). Postdiagnostic events were VOC 22/41 (53.6% %), sepsis 4/41 (9.7%), ACS 4/41 (9.7%), avascular necrosis 3/41 (7.3%), aplastic crisis 2/41 (4.8%), stroke 1/41 (2.4%), ACS 1/41 (2.4%), and skin ulcerations 1/41 (2.4%). The IVS-I-110 group presented the lowest median age at first SCD-related event (P = .02 vs promoter group) and the higher median number of severe events/year (0.26 events/patient/year) (P = .01 vs IVS-I-6 and promoter groups). Promoter group presented a specific skeletal phenotype. Treatment regimen applied was variable among the centers. CONCLUSIONS HbS/β+ is not always a mild disease. Patients with IVS-I-110 mutation could benefit from a standard of care like SS and S/β° patients. Standardization of treatment is needed.
Collapse
Affiliation(s)
| | - Annalisa Agostini
- Pediatrics Clinic, University of Brescia, Spedali Civili di Brescia, Brescia, Italy
| | - Maddalena Casale
- Department of Woman, Child and General and Specialist Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Piera Samperi
- Unit of Pediatric Hematology and Oncology, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Francesco Arcioni
- Pediatric Hematology and Oncology with Bone Marrow Transplation, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Paolo Gorello
- Department of Medicine, University of Perugia, CREO, Hematology, Perugia, Italy
| | - Silverio Perrotta
- Department of Woman, Child and General and Specialist Surgery, Università degli Studi della Campania "Luigi Vanvitelli", Napoli, Italy
| | - Nicoletta Masera
- Department of Pediatrics, Università di Milano Bicocca, Fondazione MBBM, Monza, Italy
| | - Angelica Barone
- Department of Pediatric Onco-Hematology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Elisa Bertoni
- Hematology Oncology Unit, Children's Hospital, ASST Spedali Civili, Brescia, Italy
| | - Elisa Bonetti
- Department of Pediatric Onco-Hematology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Roberta Burnelli
- Pediatric Oncology University Hospital, Sant'Anna Hospital, Ferrara, Italy
| | - Tommaso Casini
- Pediatric Hematology-Oncology, IRCCS Meyer Children's Hospital, Florence, Italy
| | - Giovanni Carlo Del Vecchio
- Pediatric Unit "F. Vecchio", Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | | | - Fiorina Giona
- Department of Cellular Biotechnologies and Hematology, Policlinico Umberto I, Sapienza University, Hematology, Rome, Italy
| | - Paola Giordano
- Pediatric Unit "F. Vecchio", Department of Biomedical Sciences and Human Oncology, University of Bari "Aldo Moro", Bari, Italy
| | - Chiara Gorio
- Hematology Oncology Unit, Children's Hospital, ASST Spedali Civili, Brescia, Italy
| | - Eleonora Marchina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Margherita Nardi
- Onco-Hematologic Pediatric Center, University Hospital of Pisa, Pisa, Italy
| | - Angela Petrone
- Department of Pediatrics, Rovereto Hospital, Rovereto, Italy
| | - Raffaella Colombatti
- Clinic of Pediatric Hematology Oncology, Department of Woman's and Child Health, Azienda Ospedaliera-Università di Padova, Padova, Italy
| | - Laura Sainati
- Clinic of Pediatric Hematology Oncology, Department of Woman's and Child Health, Azienda Ospedaliera-Università di Padova, Padova, Italy
| | - Giovanna Russo
- Unit of Pediatric Hematology and Oncology, Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
43
|
Phenotypic-screening generates active novel fetal globin-inducers that downregulate Bcl11a in a monkey model. Biochem Pharmacol 2019; 171:113717. [PMID: 31751536 DOI: 10.1016/j.bcp.2019.113717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 11/13/2019] [Indexed: 01/02/2023]
Abstract
Heritable disorders associated with hemoglobin production are the most common monogenic disorders. These are mainly represented by disorders such as β-thalassemia and sickle cell disease. Induction of fetal hemoglobin (HbF) has been known to ameliorate the clinical severity of these β hemoglobinopathies. A high throughput phenotypic screening was used in this study to isolate novel compounds that may enhance the expression of γ-globin, the component of HbF, in human erythroid cell lines and primary erythroid progenitors derived from human CD34+ cells. The effect of lead compounds on epigenetic enzymes and key transcriptional factors was evaluated to identify their mode of action. One hit compound was further evaluated in vivo using monkey models. Among the ~18,000 compounds screened, 18 compounds were selected and tested to determine their ability to induce HbF in human erythroid cell lines and primary erythroid cells. One of these compounds, a 3-phenyl-isoxazole derivative, could potentially induce HbF in monkey bone marrow cells when administered orally. The compound downregulated negative transcriptional regulators of HbF, Bcl11a and LRF without inhibiting the known epigenetic enzymes. These studies demonstrated the advantages associated with phenotype-screening and identified novel fetal globin inducers that may be useful for treating hemoglobinopathies.
Collapse
|
44
|
Abstract
Gene therapy for β-thalassemia and sickle-cell disease is based on transplantation of genetically corrected, autologous hematopoietic stem cells. Preclinical and clinical studies have shown the safety and efficacy of this therapeutic approach, currently based on lentiviral vectors to transfer a β-globin gene under the transcriptional control of regulatory elements of the β-globin locus. Nevertheless, a number of factors are still limiting its efficacy, such as limited stem-cell dose and quality, suboptimal gene transfer efficiency and gene expression levels, and toxicity of myeloablative regimens. In addition, the cost and complexity of the current vector and cell manufacturing clearly limits its application to patients living in less favored countries, where hemoglobinopathies may reach endemic proportions. Gene-editing technology may provide a therapeutic alternative overcoming some of these limitations, though proving its safety and efficacy will most likely require extensive clinical investigation.
Collapse
Affiliation(s)
- Marina Cavazzana
- University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
- Correspondence: Marina Cavazzana, Imagine Institute, 24 Boulevard de Montparnasse, 75015 Paris, France.
| | - Fulvio Mavilio
- University of Paris Descartes-Sorbonne Paris Cité, IMAGINE Institute, Paris, France
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Fulvio Mavilio, Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41100 Modena, Italy.
| |
Collapse
|
45
|
Stratopoulos A, Kolliopoulou A, Karamperis K, John A, Kydonopoulou K, Esftathiou G, Sgourou A, Kourakli A, Vlachaki E, Chalkia P, Theodoridou S, Papadakis MN, Gerou S, Symeonidis A, Katsila T, Ali BR, Papachatzopoulou A, Patrinos GP. Genomic variants in members of the Krüppel-like factor gene family are associated with disease severity and hydroxyurea treatment efficacy in β-hemoglobinopathies patients. Pharmacogenomics 2019; 20:791-801. [PMID: 31393228 DOI: 10.2217/pgs-2019-0063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: β-Type hemoglobinopathies are characterized by vast phenotypic diversity as far as disease severity is concerned, while differences have also been observed in hydroxyurea (HU) treatment efficacy. These differences are partly attributed to the residual expression of fetal hemoglobin (HbF) in adulthood. The Krüppel-like family of transcription factors (KLFs) are a set of zinc finger DNA-binding proteins which play a major role in HbF regulation. Here, we explored the possible association of variants in KLF gene family members with response to HU treatment efficacy and disease severity in β-hemoglobinopathies patients. Materials & methods: Six tag single nucleotide polymorphisms, located in four KLF genes, namely KLF3, KLF4, KLF9 and KLF10, were analyzed in 110 β-thalassemia major patients (TDT), 18 nontransfusion dependent β-thalassemia patients (NTDT), 82 sickle cell disease/β-thalassemia compound heterozygous patients and 85 healthy individuals as controls. Results: Our findings show that a KLF4 genomic variant (rs2236599) is associated with HU treatment efficacy in sickle cell disease/β-thalassemia compound heterozygous patients and two KLF10 genomic variants (rs980112, rs3191333) are associated with persistent HbF levels in NTDT patients. Conclusion: Our findings provide evidence that genomic variants located in KLF10 gene may be considered as potential prognostic biomarkers of β-thalassemia clinical severity and an additional variant in KLF4 gene as a pharmacogenomic biomarker, predicting response to HU treatment.
Collapse
Affiliation(s)
- Apostolos Stratopoulos
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Alexandra Kolliopoulou
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Kariofyllis Karamperis
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Anne John
- United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
| | | | | | - Argyro Sgourou
- School of Science & Technology, Biology Laboratory, Hellenic Open University, Patras, Greece
| | - Alexandra Kourakli
- Thalassemia & Hemoglobinopathies Unit, Hematology Division, Department of Internal Medicine, General University Hospital of Patras, Patras, Greece
| | - Efthimia Vlachaki
- Thalassemia Unit, "Hippocrateion" General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Panagiota Chalkia
- Thalassemia & Sickle Cell Unit, AHEPA University General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Stamatia Theodoridou
- Thalassemia Unit, "Hippocrateion" General Hospital of Thessaloniki, Thessaloniki, Greece
| | | | | | - Argiris Symeonidis
- Medical Faculty, Hematology Division, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Theodora Katsila
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece
| | - Bassam R Ali
- United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates
| | | | - George P Patrinos
- University of Patras, School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics & Individualized Therapy, Patras, Greece.,United Arab Emirates University, College of Medicine & Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates.,United Arab Emirates University, Zayed Center of Health Sciences, Al-Ain, United Arab Emirates
| |
Collapse
|
46
|
Ghiaccio V, Chappell M, Rivella S, Breda L. Gene Therapy for Beta-Hemoglobinopathies: Milestones, New Therapies and Challenges. Mol Diagn Ther 2019; 23:173-186. [PMID: 30701409 DOI: 10.1007/s40291-019-00383-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inherited monogenic disorders such as beta-hemoglobinopathies (BH) are fitting candidates for treatment via gene therapy by gene transfer or gene editing. The reported safety and efficacy of lentiviral vectors in preclinical studies have led to the development of several clinical trials for the addition of a functional beta-globin gene. Across trials, dozens of transfusion-dependent patients with sickle cell disease (SCD) and transfusion-dependent beta-thalassemia (TDT) have been treated via gene therapy and have achieved reduced transfusion requirements. While overall results are encouraging, the outcomes appear to be strongly influenced by the level of lentiviral integration in transduced cells after engraftment, as well as the underlying genotype resulting in thalassemia. In addition, the method of procurement of hematopoietic stem cells can affect their quality and thus the outcome of gene therapy both in SCD and TDT. This suggests that new studies aimed at maximizing the number of corrected cells with long-term self-renewal potential are crucial to ensure successful treatment for every patient. Recent advancements in gene transfer and bone marrow transplantation have improved the success of this approach, and the results obtained by using these strategies demonstrated significant improvement of gene transfer outcome in patients. The advent of new gene-editing technologies has suggested additional therapeutic options. These are primarily focused on correcting the defective beta-globin gene or editing the expression of genes or genomic segments that regulate fetal hemoglobin synthesis. In this review, we aim to establish the potential benefits of gene therapy for BH, to summarize the status of the ongoing trials, and to discuss the possible improvement or direction for future treatments.
Collapse
Affiliation(s)
- Valentina Ghiaccio
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Maxwell Chappell
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Stefano Rivella
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Laura Breda
- Hematology Division, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
47
|
Affiliation(s)
- Katherine A High
- From Spark Therapeutics, Philadelphia (K.A.H.); and Stanford University, Stanford, CA (M.G.R.)
| | - Maria G Roncarolo
- From Spark Therapeutics, Philadelphia (K.A.H.); and Stanford University, Stanford, CA (M.G.R.)
| |
Collapse
|
48
|
Shariati L, Modarressi MH, Tabatabaiefar MA, Kouhpayeh S, Hejazi Z, Shahbazi M, Sabzehei F, Salehi M, Khanahmad H. Engineered zinc-finger nuclease to generate site-directed modification in the KLF1 gene for fetal hemoglobin induction. J Cell Biochem 2019; 120:8438-8446. [PMID: 30556211 DOI: 10.1002/jcb.28130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
Elevation of hemoglobin F (HbF) ameliorates symptoms of β-thalassemia, as a common autosomal recessive disorder. In this study, the ability of an engineered zinc-finger nuclease (ZFN) system was assesed to disrupt the KLF1 gene to inhibit the γ to β hemoglobin switching in K562 cells. This study was performed using a second generation integration-deficient lentiviral vector assigned to transient gene targeting. The sequences coding for zinc finger protein arrays were designed and subcloned in TDH plus as a transfer vector. Transduction of K562 cells was performed with the integrase minus lentivirus containing ZFN. The indel percentage of the transducted cells with lentivirus containing ZFN was about 29%. Differentiation of K562 cell line into erythroid cell lineage was induced with cisplatin concentration of 15 µg/mL. After differentiation, γ-globin and HbF expression were evaluated using real-time reverse-transcription polymerase chain reaction and hemoglobin electrophoresis methods. The levels of γ-globin messenger RNA were nine-fold higher in the ZFN treated cells compared with untreated cells 5 days after differentiation. Hemoglobin electrophoresis method showed the same results for HbF level measurement. Application of the ZFN tool to induce KLF1 gene mutation in adult erythroid progenitors might be a candidate to stimulate HbF expression in β-thalassemia patients.
Collapse
Affiliation(s)
- Laleh Shariati
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Kouhpayeh
- Department of Immunology, Erythron Genetics and Pathobiology Laboratory, Isfahan, Iran
| | - Zahra Hejazi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoureh Shahbazi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faezeh Sabzehei
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansoor Salehi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Khanahmad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
49
|
Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. Eur J Pharmacol 2019; 854:398-405. [PMID: 31039344 DOI: 10.1016/j.ejphar.2019.04.042] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 11/24/2022]
Abstract
Hemoglobinopathies, such as β-thalassemia, and sickle cell disease (SCD) are caused by abnormal structure or reduced production of β-chains and affect millions of people worldwide. Hereditary persistence of fetal hemoglobin (HPFH) is a condition which is naturally occurring and characterized by a considerable elevation of fetal hemoglobin (HbF) in adult red blood cells. Individuals with compound heterozygous β-thalassemia or SCD and HPFH have milder clinical symptoms. So, HbF reactivation has long been sought as an approach to mitigate the clinical symptoms of β-thalassemia and SCD. Using CRISPR-Cas9 genome-editing strategy, we deleted a 200bp genomic region within the human erythroid-specific BCL11A (B-cell lymphoma/leukemia 11A) enhancer in KU-812, KG-1, and K562 cell lines. In our study, deletion of 200bp of BCL11A erythroid enhancer including GATAA motif leads to strong induction of γ-hemoglobin expression in K562 cells, but not in KU-812 and KG-1 cells. Altogether, our findings highlight the therapeutic potential of CRISPR-Cas9 as a precision genome editing tool for treating β-thalassemia. In addition, our data indicate that KU-812 and KG-1 cell lines are not good models for studying HbF reactivation through inactivation of BCL11A silencing pathway.
Collapse
|
50
|
Das SS, Chakravorty N. Identification of deleterious SNPs and their effects on BCL11A, the master regulator of fetal hemoglobin expression. Genomics 2019; 112:397-403. [PMID: 30853596 DOI: 10.1016/j.ygeno.2019.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/14/2019] [Accepted: 03/04/2019] [Indexed: 12/18/2022]
Abstract
The B-cell lymphoma/leukemia 11A protein (encoded by BCL11A gene) is a key regulator of fetal-to-adult hemoglobin switching as seen in post-natal life. Although genetic polymorphisms like SNPs in BCL11A gene are expected to affect fetal hemoglobin (HbF) expression levels, yet their implications are poorly studied. This study utilizes a computational approach to identify the deleterious SNPs which may affect the structure and function of BCL11A protein. The study also generated a 3D structure of native and mutants. The analysis identified two SNPs in BCL11A as highly deleterious: N391K and C414S which are expected to affect structure and stability of the protein. According to conservation analysis, both residues N391 and C414 were identified as highly conserved. Additionally, post-translational modification sites were predicted at both sites. Ligand binding sites were also predicted in N391 and C414. Therefore, N391K and C414S in BCL11A can considered as important candidates to mediate HbF variation.
Collapse
Affiliation(s)
- Sankha Subhra Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|