1
|
Niimi T, Tanaka T, Aoyagi C, Onda Y, Nagamitsu S, Kodama S. Co-culture of vascular endothelial cells enhances corticosterone production in steroid hormone-producing cells generated from adipose-derived mesenchymal stromal cells. Sci Rep 2024; 14:18804. [PMID: 39138321 PMCID: PMC11322653 DOI: 10.1038/s41598-024-69878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024] Open
Abstract
Cell therapy for adrenocortical insufficiency can potentially provide steroid replacement in response to physiological stimuli. Previously, we reported that adipose tissue-derived stromal cells (ADSCs) are transformed into steroid-producing cells by overexpression of nuclear receptor subfamily 5 group A member 1 (NR5A1). The steroidogenic cells are characterized by the production of both adrenal and gonadal steroids. Cytotherapy for adrenocortical insufficiency requires cells with more adrenocortical characteristics. Considering the highly developed vascular network within the adrenal cortex, all adrenocortical cells are adjacent to and interact with vascular endothelial cells (VECs). In this study, NR5A1-induced steroidogenic cells derived from mouse ADSCs (NR5A1-ADSCs) were co-cultured with mouse VECs. Testosterone secretion in NR5A1-ADSCs was not altered; however, corticosterone secretion significantly increased while levels of steroidogenic enzymes significantly increased in the corticosterone synthesis pathway. Co-culture with lymphatic endothelial cells (LECs) or ADSCs, or transwell culture with NR5A1-ADSCs and VECs did not alter corticosterone production. VECs expressed higher levels of collagen and laminin than LECs. Culture in type-IV collagen and laminin-coated dishes increased corticosterone secretion in NR5A1-ADSCs. These results suggest that VECs may characterize ADSC-derived steroidogenic cells into a more corticosterone-producing phenotype, and VECs may be useful for generating adrenal steroidogenic cells from stem cells.
Collapse
Affiliation(s)
- Toshikazu Niimi
- Department of Regenerative Therapy and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
- Department of Pediatrics, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Tomoko Tanaka
- Department of Regenerative Therapy and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan.
| | - Chikao Aoyagi
- Department of Regenerative Therapy and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Yasuhiro Onda
- Department of Regenerative Therapy and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
- Department of Pediatrics, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Shinichiro Nagamitsu
- Department of Pediatrics, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan
| | - Shohta Kodama
- Department of Regenerative Therapy and Transplantation, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Jonan-Ku, Fukuoka, 814-0180, Japan.
| |
Collapse
|
2
|
Jackson DG. Lymphatic trafficking of immune cells and insights for cancer metastasis. Clin Exp Metastasis 2024; 41:381-386. [PMID: 37606814 PMCID: PMC11374813 DOI: 10.1007/s10585-023-10229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023]
Abstract
Most cancers and in particular carcinomas metastasise via the lymphatics to draining lymph nodes from where they can potentially achieve systemic dissemination by invasion of high endothelial blood venules (HEVs) in the paracortex [1, 2]. Currently however, the mechanisms by which tumours invade and migrate within the lymphatics are incompletely understood, although it seems likely they exploit at least some of the normal physiological mechanisms used by immune cells to access lymphatic capillaries and traffic to draining lymph nodes in the course of immune surveillance, immune modulation and the resolution of inflammation [3, 4]. Typically these include directional guidance via chemotaxis, haptotaxis and durotaxis, adhesion to the vessel surface via receptors including integrins, and junctional re-modelling by MMPs (Matrix MetalloProteinases) and ADAMs (A Disintegrin And Metalloproteinases) [5-7]. This short review focusses on a newly emerging mechanism for lymphatic entry that involves the large polysaccharide hyaluronan (HA) and its key lymphatic and immune cell receptors respectively LYVE-1 (Lymphatic Vessel Endothelial receptor) and CD44, and outlines recent work which indicates this axis may also be used by some tumours to aid nodal metastasis.
Collapse
Affiliation(s)
- David G Jackson
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK.
| |
Collapse
|
3
|
Karakousi T, Mudianto T, Lund AW. Lymphatic vessels in the age of cancer immunotherapy. Nat Rev Cancer 2024; 24:363-381. [PMID: 38605228 DOI: 10.1038/s41568-024-00681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/13/2024]
Abstract
Lymphatic transport maintains homeostatic health and is necessary for immune surveillance, and yet lymphatic growth is often associated with solid tumour development and dissemination. Although tumour-associated lymphatic remodelling and growth were initially presumed to simply expand a passive route for regional metastasis, emerging research puts lymphatic vessels and their active transport at the interface of metastasis, tumour-associated inflammation and systemic immune surveillance. Here, we discuss active mechanisms through which lymphatic vessels shape their transport function to influence peripheral tissue immunity and the current understanding of how tumour-associated lymphatic vessels may both augment and disrupt antitumour immune surveillance. We end by looking forward to emerging areas of interest in the field of cancer immunotherapy in which lymphatic vessels and their transport function are likely key players: the formation of tertiary lymphoid structures, immune surveillance in the central nervous system, the microbiome, obesity and ageing. The lessons learnt support a working framework that defines the lymphatic system as a key determinant of both local and systemic inflammatory networks and thereby a crucial player in the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Triantafyllia Karakousi
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Tenny Mudianto
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA.
| |
Collapse
|
4
|
Zhang X, Zhou Q, Qi Y, Chen X, Deng J, Zhang Y, Li R, Fan J. The effect of tomato and lycopene on clinical characteristics and molecular markers of UV-induced skin deterioration: A systematic review and meta-analysis of intervention trials. Crit Rev Food Sci Nutr 2024; 64:6198-6217. [PMID: 36606553 DOI: 10.1080/10408398.2022.2164557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lycopene as a natural antioxidant that have been studied for ultraviolet radiation (UVR) photo protection and is one of the most effective carotenoids to scavenge reactive oxygen species (ROS). This review aims to summarize the protective effect of tomato and lycopene on skin photo damage and skin photoaging in healthy subjects by reviewing the existing population intervention experiments. A total of five electronic databases including PubMed, Scopus, EBSCO, Web of Science and Cochrane Library were searched from inceptions to January 2021 without any restriction. Out of 19336 publications identified, 21 fulfilled the inclusion criteria and were meta-analysis. Overall, interventions supplementing tomato and lycopene were associated with significant reductions in Δa*, MMP-1, ICAM-1 and skin pigmentation; while tomato and lycopene supplementation were associated with significant increase in MED, skin thickness and skin density. Based on the results of this systematic review and meta-analysis, supplementation with tomato and lycopene could reduce skin erythema formation and improve the appearance and pigmentation of the skin, thereby preventing light-induced skin photodamage and skin photoaging. Lycopene-rich products could be used as endogenous sun protection and may be a potential nutraceutical for sun protection.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Qilun Zhou
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yue Qi
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoli Chen
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinlan Deng
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yongping Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ruonan Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jianming Fan
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Nakanishi M, Ibe A, Morishita K, Shinagawa K, Yamamoto Y, Takahashi H, Ikemori K, Muragaki Y, Ehata S. Acid-sensing receptor GPR4 plays a crucial role in lymphatic cancer metastasis. Cancer Sci 2024; 115:1551-1563. [PMID: 38410865 PMCID: PMC11093208 DOI: 10.1111/cas.16098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Cancer tissues exhibit an acidic microenvironment owing to the accumulation of protons and lactic acid produced by cancer and inflammatory cells. To examine the role of an acidic microenvironment in lymphatic cancer metastasis, gene expression profiling was conducted using human dermal lymphatic endothelial cells (HDLECs) treated with a low pH medium. Microarray and gene set enrichment analysis revealed that acid treatment induced the expression of inflammation-related genes in HDLECs, including genes encoding chemokines and adhesion molecules. Acid treatment-induced chemokines C-X3-C motif chemokine ligand 1 (CX3CL1) and C-X-C motif chemokine ligand 6 (CXCL6) autocrinally promoted the growth and tube formation of HDLECs. The expression of vascular cell adhesion molecule 1 (VCAM-1) increased in HDLECs after acid treatment in a time-dependent manner, which, in turn, enhanced their adhesion to melanoma cells. Among various acid-sensing receptors, HDLECs basally expressed G protein-coupled receptor 4 (GPR4), which was augmented under the acidic microenvironment. The induction of chemokines or VCAM-1 under acidic conditions was attenuated by GPR4 knockdown in HDLECs. In addition, lymph node metastases in a mouse melanoma model were suppressed by administering an anti-VCAM-1 antibody or a GPR4 antagonist. These results suggest that an acidic microenvironment modifies the function of lymphatic endothelial cells via GPR4, thereby promoting lymphatic cancer metastasis. Acid-sensing receptors and their downstream molecules might serve as preventive or therapeutic targets in cancer.
Collapse
Affiliation(s)
- Masako Nakanishi
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Akiya Ibe
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kiyoto Morishita
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kazutaka Shinagawa
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yushi Yamamoto
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Hibiki Takahashi
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Kyoka Ikemori
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Yasuteru Muragaki
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| | - Shogo Ehata
- Department of Pathology, School of MedicineWakayama Medical UniversityWakayamaJapan
| |
Collapse
|
6
|
Haghayegh Jahromi N, Gkountidi AO, Collado-Diaz V, Blatter K, Bauer A, Zambounis L, Medina-Sanchez JD, Russo E, Runge P, Restivo G, Gousopoulos E, Lindenblatt N, Levesque MP, Halin C. CD112 Supports Lymphatic Migration of Human Dermal Dendritic Cells. Cells 2024; 13:424. [PMID: 38474388 DOI: 10.3390/cells13050424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Dendritic cell (DC) migration from peripheral tissues via afferent lymphatic vessels to draining lymph nodes (dLNs) is important for the organism's immune regulation and immune protection. Several lymphatic endothelial cell (LEC)-expressed adhesion molecules have thus far been found to support transmigration and movement within the lymphatic vasculature. In this study, we investigated the contribution of CD112, an adhesion molecule that we recently found to be highly expressed in murine LECs, to this process. Performing in vitro assays in the murine system, we found that transmigration of bone marrow-derived dendritic cells (BM-DCs) across or adhesion to murine LEC monolayers was reduced when CD112 was absent on LECs, DCs, or both cell types, suggesting the involvement of homophilic CD112-CD112 interactions. While CD112 was highly expressed in murine dermal LECs, CD112 levels were low in endogenous murine dermal DCs and BM-DCs. This might explain why we observed no defect in the in vivo lymphatic migration of adoptively transferred BM-DCs or endogenous DCs from the skin to dLNs. Compared to murine DCs, human monocyte-derived DCs expressed higher CD112 levels, and their migration across human CD112-expressing LECs was significantly reduced upon CD112 blockade. CD112 expression was also readily detected in endogenous human dermal DCs and LECs by flow cytometry and immunofluorescence. Upon incubating human skin punch biopsies in the presence of CD112-blocking antibodies, DC emigration from the tissue into the culture medium was significantly reduced, indicating impaired lymphatic migration. Overall, our data reveal a contribution of CD112 to human DC migration.
Collapse
Affiliation(s)
- Neda Haghayegh Jahromi
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Anastasia-Olga Gkountidi
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Victor Collado-Diaz
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Katharina Blatter
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Aline Bauer
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Lito Zambounis
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | | | - Erica Russo
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Peter Runge
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Epameinondas Gousopoulos
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Raemistrasse 100, 8091 Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| |
Collapse
|
7
|
Lucas CJ, Sheridan RM, Reynoso GV, Davenport BJ, McCarthy MK, Martin A, Hesselberth JR, Hickman HD, Tamburini BAJ, Morrison TE. Chikungunya virus infection disrupts lymph node lymphatic endothelial cell composition and function via MARCO. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.561615. [PMID: 37873393 PMCID: PMC10592756 DOI: 10.1101/2023.10.12.561615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Infection with chikungunya virus (CHIKV) causes disruption of draining lymph node (dLN) organization, including paracortical relocalization of B cells, loss of the B cell-T cell border, and lymphocyte depletion that is associated with infiltration of the LN with inflammatory myeloid cells. Here, we find that during the first 24 h of infection, CHIKV RNA accumulates in MARCO-expressing lymphatic endothelial cells (LECs) in both the floor and medullary LN sinuses. The accumulation of viral RNA in the LN was associated with a switch to an antiviral and inflammatory gene expression program across LN stromal cells, and this inflammatory response, including recruitment of myeloid cells to the LN, was accelerated by CHIKV-MARCO interactions. As CHIKV infection progressed, both floor and medullary LECs diminished in number, suggesting further functional impairment of the LN by infection. Consistent with this idea, we find that antigen acquisition by LECs, a key function of LN LECs during infection and immunization, was reduced during pathogenic CHIKV infection.
Collapse
|
8
|
Viúdez-Pareja C, Kreft E, García-Caballero M. Immunomodulatory properties of the lymphatic endothelium in the tumor microenvironment. Front Immunol 2023; 14:1235812. [PMID: 37744339 PMCID: PMC10512957 DOI: 10.3389/fimmu.2023.1235812] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 09/26/2023] Open
Abstract
The tumor microenvironment (TME) is an intricate complex and dynamic structure composed of various cell types, including tumor, stromal and immune cells. Within this complex network, lymphatic endothelial cells (LECs) play a crucial role in regulating immune responses and influencing tumor progression and metastatic dissemination to lymph node and distant organs. Interestingly, LECs possess unique immunomodulatory properties that can either promote or inhibit anti-tumor immune responses. In fact, tumor-associated lymphangiogenesis can facilitate tumor cell dissemination and metastasis supporting immunoevasion, but also, different molecular mechanisms involved in LEC-mediated anti-tumor immunity have been already described. In this context, the crosstalk between cancer cells, LECs and immune cells and how this communication can shape the immune landscape in the TME is gaining increased interest in recent years. In this review, we present a comprehensive and updated report about the immunomodulatory properties of the lymphatic endothelium within the TME, with special focus on primary tumors and tumor-draining lymph nodes. Furthermore, we outline emerging research investigating the potential therapeutic strategies targeting the lymphatic endothelium to enhance anti-tumor immune responses. Understanding the intricate mechanisms involved in LEC-mediated immune modulation in the TME opens up new possibilities for the development of innovative approaches to fight cancer.
Collapse
Affiliation(s)
- Cristina Viúdez-Pareja
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| | - Ewa Kreft
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| | - Melissa García-Caballero
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Andalucía Tech, University of Málaga, Málaga, Spain
- IBIMA (Biomedical Research Institute of Málaga)-Plataforma BIONAND, Málaga, Spain
| |
Collapse
|
9
|
Cazzola A, Calzón Lozano D, Menne DH, Dávila Pedrera R, Liu J, Peña-Jiménez D, Fontenete S, Halin C, Perez-Moreno M. Lymph Vessels Associate with Cancer Stem Cells from Initiation to Malignant Stages of Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:13615. [PMID: 37686421 PMCID: PMC10488284 DOI: 10.3390/ijms241713615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Tumor-associated lymph vessels and lymph node involvement are critical staging criteria in several cancers. In skin squamous cell carcinoma, lymph vessels play a role in cancer development and metastatic spread. However, their relationship with the cancer stem cell niche at early tumor stages remains unclear. To address this gap, we studied the lymph vessel localization at the cancer stem cell niche and observed an association from benign skin lesions to malignant stages of skin squamous cell carcinoma. By co-culturing lymphatic endothelial cells with cancer cell lines representing the initiation and promotion stages, and conducting RNA profiling, we observed a reciprocal induction of cell adhesion, immunity regulation, and vessel remodeling genes, suggesting dynamic interactions between lymphatic and cancer cells. Additionally, imaging analyses of the cultured cells revealed the establishment of heterotypic contacts between cancer cells and lymph endothelial cells, potentially contributing to the observed distribution and maintenance at the cancer stem cell niche, inducing downstream cellular responses. Our data provide evidence for an association of lymph vessels from the early stages of skin squamous cell carcinoma development, opening new avenues for better comprehending their involvement in cancer progression.
Collapse
Affiliation(s)
- Anna Cazzola
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - David Calzón Lozano
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dennis Hirsch Menne
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Raquel Dávila Pedrera
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jingcheng Liu
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Daniel Peña-Jiménez
- Unidad de Investigación Biomédica, Universidad Alfonso X el Sabio (UAX), Avenida de la Universidad 1, Villanueva de la Cañada, 28691 Madrid, Spain
| | - Silvia Fontenete
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland;
| | - Mirna Perez-Moreno
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
10
|
Alexander S, Moghadam MG, Rothenbroker M, Y T Chou L. Addressing the in vivo delivery of nucleic-acid nanostructure therapeutics. Adv Drug Deliv Rev 2023; 199:114898. [PMID: 37230305 DOI: 10.1016/j.addr.2023.114898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/02/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023]
Abstract
DNA and RNA nanostructures are being investigated as therapeutics, vaccines, and drug delivery systems. These nanostructures can be functionalized with guests ranging from small molecules to proteins with precise spatial and stoichiometric control. This has enabled new strategies to manipulate drug activity and to engineer devices with novel therapeutic functionalities. Although existing studies have offered encouraging in vitro or pre-clinical proof-of-concepts, establishing mechanisms of in vivo delivery is the new frontier for nucleic-acid nanotechnologies. In this review, we first provide a summary of existing literature on the in vivo uses of DNA and RNA nanostructures. Based on their application areas, we discuss current models of nanoparticle delivery, and thereby highlight knowledge gaps on the in vivo interactions of nucleic-acid nanostructures. Finally, we describe techniques and strategies for investigating and engineering these interactions. Together, we propose a framework to establish in vivo design principles and advance the in vivo translation of nucleic-acid nanotechnologies.
Collapse
Affiliation(s)
- Shana Alexander
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | - Meghan Rothenbroker
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Leo Y T Chou
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.
| |
Collapse
|
11
|
Bauer A, Klassa S, Herbst A, Maccioni C, Abhamon W, Segueni N, Kaluzhny Y, Hunter MC, Halin C. Optimization and Characterization of Novel ALCAM-Targeting Antibody Fragments for Transepithelial Delivery. Pharmaceutics 2023; 15:1841. [PMID: 37514028 PMCID: PMC10385607 DOI: 10.3390/pharmaceutics15071841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Activated leukocyte cell adhesion molecule (ALCAM) is a cell adhesion molecule that supports T cell activation, leukocyte migration, and (lymph)angiogenesis and has been shown to contribute to the pathology of various immune-mediated disorders, including asthma and corneal graft rejection. In contrast to monoclonal antibodies (mAbs) targeting ALCAM's T cell expressed binding partner CD6, no ALCAM-targeting mAbs have thus far entered clinical development. This is likely linked with the broad expression of ALCAM on many different cell types, which increases the risk of eliciting unwanted treatment-induced side effects upon systemic mAb application. Targeting ALCAM in surface-exposed tissues, such as the lungs or the cornea, by a topical application could circumvent this issue. Here, we report the development of various stability- and affinity-improved anti-ALCAM mAb fragments with cross-species reactivity towards mouse, rat, monkey, and human ALCAM. Fragments generated in either mono- or bivalent formats potently blocked ALCAM-CD6 interactions in a competition ELISA, but only bivalent fragments efficiently inhibited ALCAM-ALCAM interactions in a leukocyte transmigration assay. The different fragments displayed a clear size-dependence in their ability to penetrate the human corneal epithelium. Furthermore, intranasal delivery of anti-ALCAM fragments reduced leukocyte infiltration in a mouse model of asthma, confirming ALCAM as a target for topical application in the lungs.
Collapse
Affiliation(s)
- Aline Bauer
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - Sven Klassa
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - Anja Herbst
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - Cristina Maccioni
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - William Abhamon
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - Noria Segueni
- Artimmune SAS, 13 Avenue Buffon, 45100 Orleans, France
| | - Yulia Kaluzhny
- MatTek Corporation, 200 Homer Avenue, Ashland, MA 01721, USA
| | - Morgan Campbell Hunter
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, 1-5/10 Vladimir-Prelog-Weg, 8093 Zurich, Switzerland
| |
Collapse
|
12
|
Baker ML, Cantley LG. The Lymphatic System in Kidney Disease. KIDNEY360 2023; 4:e841-e850. [PMID: 37019177 PMCID: PMC10371377 DOI: 10.34067/kid.0000000000000120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023]
Abstract
The high-capacity vessels of the lymphatic system drain extravasated fluid and macromolecules from nearly every part of the body. However, far from merely a passive conduit for fluid removal, the lymphatic system also plays a critical and active role in immune surveillance and immune response modulation through the presentation of fluid, macromolecules, and trafficking immune cells to surveillance cells in regional draining lymph nodes before their return to the systemic circulation. The potential effect of this system in numerous disease states both within and outside of the kidney is increasingly being explored for their therapeutic potential. In the kidneys, the lymphatics play a critical role in both fluid and macromolecule removal to maintain oncotic and hydrostatic pressure gradients for normal kidney function, as well as in shaping kidney immunity, and potentially in balancing physiological pathways that promote healthy organ maintenance and responses to injury. In many states of kidney disease, including AKI, the demand on the preexisting lymphatic network increases for clearance of injury-related tissue edema and inflammatory infiltrates. Lymphangiogenesis, stimulated by macrophages, injured resident cells, and other drivers in kidney tissue, is highly prevalent in settings of AKI, CKD, and transplantation. Accumulating evidence points toward lymphangiogenesis being possibly harmful in AKI and kidney allograft rejection, which would potentially position lymphatics as another target for novel therapies to improve outcomes. However, the extent to which lymphangiogenesis is protective rather than maladaptive in the kidney in various settings remains poorly understood and thus an area of active research.
Collapse
Affiliation(s)
- Megan L Baker
- Section of Nephrology, Yale School of Medicine, New Haven, Connecticut
| | | |
Collapse
|
13
|
Steele MM, Jaiswal A, Delclaux I, Dryg ID, Murugan D, Femel J, Son S, du Bois H, Hill C, Leachman SA, Chang YH, Coussens LM, Anandasabapathy N, Lund AW. T cell egress via lymphatic vessels is tuned by antigen encounter and limits tumor control. Nat Immunol 2023; 24:664-675. [PMID: 36849745 PMCID: PMC10998279 DOI: 10.1038/s41590-023-01443-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Antigen-specific CD8+ T cell accumulation in tumors is a prerequisite for effective immunotherapy, and yet the mechanisms of lymphocyte transit are not well defined. Here we show that tumor-associated lymphatic vessels control T cell exit from tumors via the chemokine CXCL12, and intratumoral antigen encounter tunes CXCR4 expression by effector CD8+ T cells. Only high-affinity antigen downregulates CXCR4 and upregulates the CXCL12 decoy receptor, ACKR3, thereby reducing CXCL12 sensitivity and promoting T cell retention. A diverse repertoire of functional tumor-specific CD8+ T cells, therefore, exit the tumor, which limits the pool of CD8+ T cells available to exert tumor control. CXCR4 inhibition or loss of lymphatic-specific CXCL12 boosts T cell retention and enhances tumor control. These data indicate that strategies to limit T cell egress might be an approach to boost the quantity and quality of intratumoral T cells and thereby response to immunotherapy.
Collapse
Affiliation(s)
- Maria M Steele
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York University Langone Health, New York, NY, USA
- Department of Cell, Developmental and Cancer Biology and Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Abhinav Jaiswal
- Department of Dermatology, Microbiology and Immunology, Meyer Cancer Center, Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ines Delclaux
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Ian D Dryg
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Dhaarini Murugan
- Department of Cell, Developmental and Cancer Biology and Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Julia Femel
- Department of Cell, Developmental and Cancer Biology and Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Sunny Son
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York University Langone Health, New York, NY, USA
- Applied Bioinformatics Laboratories, NYU Langone Health, New York, NY, USA
| | - Haley du Bois
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Cameron Hill
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York University Langone Health, New York, NY, USA
| | - Sancy A Leachman
- Department of Dermatology, Oregon Health and Science University, Portland, OR, USA
| | - Young H Chang
- Department of Biomedical Engineering and Computational Biology Program, Oregon Health and Science University, Portland, OR, USA
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, USA
| | - Lisa M Coussens
- Department of Cell, Developmental and Cancer Biology and Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA
| | - Niroshana Anandasabapathy
- Department of Dermatology, Microbiology and Immunology, Meyer Cancer Center, Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York University Langone Health, New York, NY, USA.
- Department of Cell, Developmental and Cancer Biology and Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York University Langone Health, New York, NY, USA.
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York University Langone Health, New York, NY, USA.
| |
Collapse
|
14
|
Trivedi A, Reed HO. The lymphatic vasculature in lung function and respiratory disease. Front Med (Lausanne) 2023; 10:1118583. [PMID: 36999077 PMCID: PMC10043242 DOI: 10.3389/fmed.2023.1118583] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
The lymphatic vasculature maintains tissue homeostasis via fluid drainage in the form of lymph and immune surveillance due to migration of leukocytes through the lymphatics to the draining lymph nodes. Lymphatic endothelial cells (LECs) form the lymphatic vessels and lymph node sinuses and are key players in shaping immune responses and tolerance. In the healthy lung, the vast majority of lymphatic vessels are found along the bronchovascular structures, in the interlobular septa, and in the subpleural space. Previous studies in both mice and humans have shown that the lymphatics are necessary for lung function from the neonatal period through adulthood. Furthermore, changes in the lymphatic vasculature are observed in nearly all respiratory diseases in which they have been analyzed. Recent work has pointed to a causative role for lymphatic dysfunction in the initiation and progression of lung disease, indicating that these vessels may be active players in pathologic processes in the lung. However, the mechanisms by which defects in lung lymphatic function are pathogenic are understudied, leaving many unanswered questions. A more comprehensive understanding of the mechanistic role of morphological, functional, and molecular changes in the lung lymphatic endothelium in respiratory diseases is a promising area of research that is likely to lead to novel therapeutic targets. In this review, we will discuss our current knowledge of the structure and function of the lung lymphatics and the role of these vessels in lung homeostasis and respiratory disease.
Collapse
Affiliation(s)
- Anjali Trivedi
- Weill Cornell Medical Center, New York, NY, United States
| | - Hasina Outtz Reed
- Weill Cornell Medical Center, New York, NY, United States
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Hasina Outtz Reed,
| |
Collapse
|
15
|
Stierschneider A, Neuditschko B, Colleselli K, Hundsberger H, Herzog F, Wiesner C. Comparative and Temporal Characterization of LPS and Blue-Light-Induced TLR4 Signal Transduction and Gene Expression in Optogenetically Manipulated Endothelial Cells. Cells 2023; 12:697. [PMID: 36899833 PMCID: PMC10000987 DOI: 10.3390/cells12050697] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
In endothelial cells (ECs), stimulation of Toll-like receptor 4 (TLR4) by the endotoxin lipopolysaccharide (LPS) induces the release of diverse pro-inflammatory mediators, beneficial in controlling bacterial infections. However, their systemic secretion is a main driver of sepsis and chronic inflammatory diseases. Since distinct and rapid induction of TLR4 signaling is difficult to achieve with LPS due to the specific and non-specific affinity to other surface molecules and receptors, we engineered new light-oxygen-voltage-sensing (LOV)-domain-based optogenetic endothelial cell lines (opto-TLR4-LOV LECs and opto-TLR4-LOV HUVECs) that allow fast, precise temporal, and reversible activation of TLR4 signaling pathways. Using quantitative mass-spectrometry, RT-qPCR, and Western blot analysis, we show that pro-inflammatory proteins were not only expressed differently, but also had a different time course when the cells were stimulated with light or LPS. Additional functional assays demonstrated that light induction promoted chemotaxis of THP-1 cells, disruption of the EC monolayer and transmigration. In contrast, ECs incorporating a truncated version of the TLR4 extracellular domain (opto-TLR4 ΔECD2-LOV LECs) revealed high basal activity with fast depletion of the cell signaling system upon illumination. We conclude that the established optogenetic cell lines are well suited to induce rapid and precise photoactivation of TLR4, allowing receptor-specific studies.
Collapse
Affiliation(s)
- Anna Stierschneider
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Benjamin Neuditschko
- Institute Krems Bioanalytics, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Katrin Colleselli
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Harald Hundsberger
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Franz Herzog
- Institute Krems Bioanalytics, IMC University of Applied Sciences, 3500 Krems, Austria
| | - Christoph Wiesner
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences, 3500 Krems, Austria
| |
Collapse
|
16
|
Antibody-Mediated Delivery of VEGF-C Promotes Long-Lasting Lymphatic Expansion That Reduces Recurrent Inflammation. Cells 2022; 12:cells12010172. [PMID: 36611965 PMCID: PMC9818868 DOI: 10.3390/cells12010172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The lymphatic vascular system plays a fundamental role in inflammation by draining interstitial fluid, immune cells, antigens, and inflammatory mediators from peripheral tissues. Site-specific delivery of the lymphangiogenic growth factor VEGF-C alleviates acute inflammation in mouse models of psoriasis and chronic colitis by enhancing local drainage. However, it is unclear whether therapeutically induced lymphangiogenesis is transient or long-lasting and whether it might prevent relapses of inflammation. Here, we investigated the long-term effects of targeted VEGF-C delivery in a chronic dermatitis model in mice. Congruent with our previous results, intravenous injection with a VEGF-C fusion protein targeted to the EDA domain of fibronectin initially resulted in reduced inflammation. Importantly, we found that targeted VEGF-C-mediated expansion of lymphatic vessels in the skin persisted for more than 170 days, long after primary inflammation had resolved. Furthermore, the treatment markedly decreased tissue swelling upon inflammatory re-challenge at the same site. Simultaneously, infiltration of leukocytes, including CD4+ T cells, macrophages, and dendritic cells, was significantly reduced in the previously treated group. In conclusion, our data show that targeted delivery of VEGF-C leads to long-lasting lymphatic expansion and long-term protection against repeated inflammatory challenge, suggesting that it is a promising new approach for the treatment of chronic, recurrent inflammatory diseases.
Collapse
|
17
|
Delgado M, Lennon-Duménil AM. How cell migration helps immune sentinels. Front Cell Dev Biol 2022; 10:932472. [PMID: 36268510 PMCID: PMC9577558 DOI: 10.3389/fcell.2022.932472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/13/2022] [Indexed: 12/01/2022] Open
Abstract
The immune system relies on the migratory capacity of its cellular components, which must be mobile in order to defend the host from invading micro-organisms or malignant cells. This applies in particular to immune sentinels from the myeloid lineage, i.e. macrophages and dendritic cells. Cell migration is already at work during mammalian early development, when myeloid cell precursors migrate from the yolk sac, an extra embryonic structure, to colonize tissues and form the pool of tissue-resident macrophages. Later, this is accompanied by a migration wave of precursors and monocytes from the bone marrow to secondary lymphoid organs and the peripheral tissues. They differentiate into DCs and monocyte-derived macrophages. During adult life, cell migration endows immune cells with the ability to patrol their environment as well as to circulate between peripheral tissues and lymphoid organs. Hence migration of immune cells is key to building an efficient defense system for an organism. In this review, we will describe how cell migratory capacity regulates the various stages in the life of myeloid cells from development to tissue patrolling, and migration to lymph nodes. We will focus on the role of the actin cytoskeletal machinery and its regulators, and how it contributes to the establishment and function of the immune system.
Collapse
|
18
|
Bauer A, Tatliadim H, Halin C. Leukocyte Trafficking in Lymphatic Vessels. Cold Spring Harb Perspect Med 2022; 12:a041186. [PMID: 35379657 PMCID: PMC9524389 DOI: 10.1101/cshperspect.a041186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
To ensure proper immune function, most leukocytes constantly move within tissues or between them using the blood and lymphatic vessels as transport routes. While afferent lymphatic vessels transfer leukocytes from peripheral tissues to draining lymph nodes (dLNs), efferent lymphatics return lymphocytes from LNs back into the blood vascular circulation. Over the last decades, great progress has been made in our understanding of leukocyte migration into and within the lymphatic compartment, leading to the approval of new drugs targeting this process. In this review, we first introduce the anatomy of the lymphatic vasculature and the main cell types migrating through lymphatics. We primarily focus on dendritic cells (DCs) and T cells, the most prominent lymph-borne cell types, and discuss the functional significance as well as the main molecules and steps involved in their migration. Additionally, we provide an overview of the different techniques used to study lymphatic trafficking.
Collapse
Affiliation(s)
- Aline Bauer
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Hazal Tatliadim
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
19
|
Li X, Wu Y, Wang S, Liu J, Zhang T, Wei Y, Zhu L, Bai W, Ye T, Wang S. Menthol nanoliposomes enhanced anti-tumor immunotherapy by increasing lymph node homing of dendritic cell vaccines. Clin Immunol 2022; 244:109119. [PMID: 36109005 DOI: 10.1016/j.clim.2022.109119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/18/2022]
Abstract
Menthol, a cyclic terpene alcohol, plays a critical role in overcoming the blood-brain barrier and stratum corneum barrier. Herein, we innovatively propose a menthol nanoliposome (Men-nanoLips) that can dramatically increase lymph node accumulation of the dendritic cell (DC)-based anti-tumor vaccines. Specifically, Men-nanoLips efficiently enhanced lymphatic endothelial cell (EC) barrier permeability by reducing the expression of tight junction proteins. And interestingly, Men-nanoLips not only up-regulated the expression of CCR7 in DCs but also increased the secretion of CCL21 in lymphatic ECs. Moreover, Men-nanoLips promoted DC vaccine maturation as evidenced by increasing the expression of costimulatory molecules and up-regulating the pseudopodia-like protein. With those complementary mechanisms provided by Men-nanoLips, the number of the B16 whole-tumor cell lysate-loaded DCs that target the draining LN enhanced remarkably and significantly boosted the treatment efficacy of DC anti-tumor vaccines. Therefore, we concluded that Men-nanoLips could be instructive for increasing LN homing of DC vaccines.
Collapse
Affiliation(s)
- Xianqiang Li
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Yue Wu
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Sixue Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Jun Liu
- Shenyang Junhong Pharmaceutical Co. LTD, 110016 Shenyang, Liaoning, China
| | - Tingting Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Yimei Wei
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Lili Zhu
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Wei Bai
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China
| | - Tiantian Ye
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China.
| | - Shujun Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Wenhua Road 103, 110016 Shenyang, Liaoning, China.
| |
Collapse
|
20
|
Goldstein SA, Yu S, Lowery R, Halligan NLN, Dahmer MK, Rocchini A. Analysis of inflammatory cytokines in the chest tube drainage of post-operative superior cavopulmonary connection patients. Cardiol Young 2022; 33:1-8. [PMID: 35766168 DOI: 10.1017/s1047951122001913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
INTRODUCTION Prolonged pleural effusions are common post Fontan operation and are associated with morbidity. Fontan pleural effusions have elevated proinflammatory cytokines. Little is known about the chest tube drainage after a superior cavopulmonary connection. We examined the chest tube drainage and the inflammatory profiles in post-operative superior cavopulmonary connection patients. METHODS This prospective cohort study enrolled 25 patients undergoing superior cavopulmonary connection and 10 age-similar controls. Data are also compared to 25 previously published Fontan patients and their 15 age-similar controls. Chest tube samples were analysed with a 17-cytokine BioPlex Assay. Descriptive statistics and univariate comparisons were made between groups. RESULTS Duration of chest tube drainage was significantly shorter in superior cavopulmonary connection patients (median 4 days, [interquartile range 3-5 days]) versus Fontan patients (10 days, [7-11 days], p < 0.0001). Cytokine concentrations were higher on post-operative day 1 in superior cavopulmonary connection patients versus Fontan patients (all p ≤ 0.01), however levels were comparable to age-similar controls. While proinflammatory IL 8, MIP-1β, and TNF-α concentrations increased in chest tube drainage of Fontan patients from post-operative day 1 to last chest tube day (all p < 0.0001), there was no change in these biomarkers in superior cavopulmonary connection patients, their controls, or Fontan controls. CONCLUSIONS Our study demonstrates that after superior cavopulmonary connection, proinflammatory cytokines in the chest tube drainage remain similar to biventricular controls of both age groups, unlike the significant rise over time observed in Fontan patients. Inflammation within the chest tube drainage is likely not innate to single ventricle patients.
Collapse
Affiliation(s)
- Stephanie A Goldstein
- University of Utah, Primary Children's Hospital, Division of Pediatric Critical Care, Salt Lake City, UT, USA
| | - Sunkyung Yu
- University of Michigan, C.S. Mott Children's Hospital, Division of Pediatric Cardiology, Ann Arbor, MI, USA
| | - Ray Lowery
- University of Michigan, C.S. Mott Children's Hospital, Division of Pediatric Cardiology, Ann Arbor, MI, USA
| | - Nadine L N Halligan
- University of Michigan, C.S. Mott Children's Hospital, Division of Pediatric Critical Care, Ann Arbor, MI, USA
| | - Mary K Dahmer
- University of Michigan, C.S. Mott Children's Hospital, Division of Pediatric Critical Care, Ann Arbor, MI, USA
| | - Albert Rocchini
- University of Michigan, C.S. Mott Children's Hospital, Division of Pediatric Cardiology, Ann Arbor, MI, USA
| |
Collapse
|
21
|
Liu J, Yu C. Lymphangiogenesis and Lymphatic Barrier Dysfunction in Renal Fibrosis. Int J Mol Sci 2022; 23:ijms23136970. [PMID: 35805972 PMCID: PMC9267103 DOI: 10.3390/ijms23136970] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
As an integral part of the vascular system, the lymphatic vasculature is essential for tissue fluid homeostasis, nutritional lipid assimilation and immune regulation. The composition of the lymphatic vasculature includes fluid-absorbing initial lymphatic vessels (LVs), transporting collecting vessels and anti-regurgitation valves. Although, in recent decades, research has drastically enlightened our view of LVs, investigations of initial LVs, also known as lymphatic capillaries, have been stagnant due to technical limitations. In the kidney, the lymphatic vasculature mainly presents in the cortex, keeping the local balance of fluid, solutes and immune cells. The contribution of renal LVs to various forms of pathology, especially chronic kidney diseases, has been addressed in previous studies, however with diverging and inconclusive results. In this review, we discuss the most recent advances in the proliferation and permeability of lymphatic capillaries as well as their influencing factors. Novel technologies to visualize and measure LVs function are described. Then, we highlight the role of the lymphatic network in renal fibrosis and the crosstalk between kidney and other organs, such as gut and heart.
Collapse
|
22
|
Roberts LM, Perez MJ, Balogh KN, Mingledorff G, Cross JV, Munson JM. Myeloid Derived Suppressor Cells Migrate in Response to Flow and Lymphatic Endothelial Cell Interaction in the Breast Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14123008. [PMID: 35740673 PMCID: PMC9221529 DOI: 10.3390/cancers14123008] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 12/07/2022] Open
Abstract
At the site of the tumor, myeloid derived suppressor cells (MDSCs) infiltrate and interact with elements of the tumor microenvironment in complex ways. Within the invading tumor, MDSCs are exposed to interstitial fluid flow (IFF) that exists within the chronic inflammatory tumor microenvironment at the tumor-lymphatic interface. As drivers of cell migration and invasion, the link between interstitial fluid flow, lymphatics, and MDSCs have not been clearly established. Here, we hypothesized that interstitial fluid flow and cells within the breast tumor microenvironment modulate migration of MDSCs. We developed a novel 3D model to mimic the breast tumor microenvironment and incorporated MDSCs harvested from 4T1-tumor bearing mice. Using live imaging, we found that sorted GR1+ splenocytes had reduced chemotactic index compared to the unsorted population, but their speed and displacement were similar. Using our adapted tissue culture insert assay, we show that interstitial fluid flow promotes MDSC invasion, regardless of absence or presence of tumor cells. Coordinating with lymphatic endothelial cells, interstitial fluid flow further enhanced invasion of MDSCs in the presence of 4T1 cells. We also show that VEGFR3 inhibition reduced both MDSC and 4T1 flow response. Together, these findings indicate a key role of interstitial fluid flow in MDSC migration as well as describe a tool to explore the immune microenvironment in breast cancer.
Collapse
Affiliation(s)
- LaDeidra Monét Roberts
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA;
| | - Matthew J. Perez
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA;
| | - Kristen N. Balogh
- Department of Pathology, University of Virginia, Charlottesville, VA 22904, USA; (K.N.B.); (J.V.C.)
| | - Garnett Mingledorff
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22904, USA;
| | - Janet V. Cross
- Department of Pathology, University of Virginia, Charlottesville, VA 22904, USA; (K.N.B.); (J.V.C.)
| | - Jennifer M. Munson
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA;
- Correspondence:
| |
Collapse
|
23
|
McCright J, Naiknavare R, Yarmovsky J, Maisel K. Targeting Lymphatics for Nanoparticle Drug Delivery. Front Pharmacol 2022; 13:887402. [PMID: 35721179 PMCID: PMC9203826 DOI: 10.3389/fphar.2022.887402] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/16/2022] [Indexed: 12/25/2022] Open
Abstract
The lymphatics transport material from peripheral tissues to lymph nodes, where immune responses are formed, before being transported into systemic circulation. With key roles in transport and fluid homeostasis, lymphatic dysregulation is linked to diseases, including lymphedema. Fluid within the interstitium passes into initial lymphatic vessels where a valve system prevents fluid backflow. Additionally, lymphatic endothelial cells produce key chemokines, such as CCL21, that direct the migration of dendritic cells and lymphocytes. As a result, lymphatics are an attractive delivery route for transporting immune modulatory treatments to lymph nodes where immunotherapies are potentiated in addition to being an alternative method of reaching systemic circulation. In this review, we discuss the physiology of lymphatic vessels and mechanisms used in the transport of materials from peripheral tissues to lymph nodes. We then summarize nanomaterial-based strategies to take advantage of lymphatic transport functions for delivering therapeutics to lymph nodes or systemic circulation. We also describe opportunities for targeting lymphatic endothelial cells to modulate transport and immune functions.
Collapse
|
24
|
Prat-Luri B, Neal C, Passelli K, Ganga E, Amore J, Firmino-Cruz L, Petrova TV, Müller AJ, Tacchini-Cottier F. The C5a-C5aR1 complement axis is essential for neutrophil recruitment to draining lymph nodes via high endothelial venules in cutaneous leishmaniasis. Cell Rep 2022; 39:110777. [PMID: 35508133 DOI: 10.1016/j.celrep.2022.110777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Accepted: 04/11/2022] [Indexed: 01/02/2023] Open
Abstract
Neutrophils are specialized innate immune cells known for their ability to fight pathogens. However, the mechanisms of neutrophil trafficking to lymph nodes are not fully clear. Using a murine model of dermal infection with Leishmania parasites, we observe a transient neutrophil influx in draining lymph nodes despite sustained recruitment to the infection site. Cell-tracking experiments, together with intravital two-photon microscopy, indicate that neutrophil recruitment to draining lymph nodes occurs minimally through lymphatics from the infected dermis, but mostly through blood vessels via high endothelial venules. Mechanistically, neutrophils do not respond to IL-1β or macrophage-derived molecules. Instead, they are guided by the C5a-C5aR1 axis, using L-selectin and integrins, to extravasate into the draining lymph node parenchyma. We also report that C5, the C5a precursor, is locally produced in the draining lymph node by lymphatic endothelial cells. Our data establish and detail organ-specific mechanisms of neutrophil trafficking.
Collapse
Affiliation(s)
- Borja Prat-Luri
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland.
| | - Christopher Neal
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Katiuska Passelli
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Emma Ganga
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Jonas Amore
- Otto-von-Guericke-University Magdeburg and Helmholtz Centre for Infection Research Braunschweig, Magdeburg, Germany
| | - Luan Firmino-Cruz
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne, Epalinges, Switzerland; Ludwig Institute for Cancer Research Lausanne, Epalinges, Switzerland
| | - Andreas J Müller
- Otto-von-Guericke-University Magdeburg and Helmholtz Centre for Infection Research Braunschweig, Magdeburg, Germany
| | - Fabienne Tacchini-Cottier
- Department of Immunobiology, WHO Collaborative Center for Research and Training in Immunology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
25
|
Friess MC, Kritikos I, Schineis P, Medina-Sanchez JD, Gkountidi AO, Vallone A, Sigmund EC, Schwitter C, Vranova M, Matti C, Arasa J, Saygili Demir C, Bovay E, Proulx ST, Tomura M, Rot A, Legler DF, Petrova TV, Halin C. Mechanosensitive ACKR4 scavenges CCR7 chemokines to facilitate T cell de-adhesion and passive transport by flow in inflamed afferent lymphatics. Cell Rep 2022; 38:110334. [PMID: 35108538 DOI: 10.1016/j.celrep.2022.110334] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/02/2021] [Accepted: 01/12/2022] [Indexed: 11/03/2022] Open
Abstract
T cell migration via afferent lymphatics to draining lymph nodes (dLNs) depends on expression of CCR7 in T cells and CCL21 in the lymphatic vasculature. Once T cells have entered lymphatic capillaries, they slowly migrate into contracting collecting vessels. Here, lymph flow picks up, inducing T cell detachment and rapid transport to the dLNs. We find that the atypical chemokine receptor 4 (ACKR4), which binds and internalizes CCL19 and CCL21, is induced by lymph flow in endothelial cells lining lymphatic collectors, enabling them to scavenge these chemokines. In the absence of ACKR4, migration of T cells to dLNs in TPA-induced inflammation is significantly reduced. While entry into capillaries is not impaired, T cells accumulate in the ACKR4-deficient dermal collecting vessel segments. Overall, our findings identify an ACKR4-mediated mechanism by which lymphatic collectors facilitate the detachment of lymph-borne T cells in inflammation and their transition from crawling to free-flow toward the dLNs.
Collapse
Affiliation(s)
- Mona C Friess
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Ioannis Kritikos
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Philipp Schineis
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | - Angela Vallone
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Elena C Sigmund
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Corina Schwitter
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Martina Vranova
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Christoph Matti
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Jorge Arasa
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Cansaran Saygili Demir
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Esther Bovay
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland; Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | - Antal Rot
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Centre for Inflammation and Therapeutic Innovation, Queen Mary University London, London, UK; Institute for Cardiovascular Prevention, Ludwig-Maximilians University, Munich, Germany
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland; Theodor Kocher Institute, University of Bern, Bern, Switzerland; Faculty of Biology, University of Konstanz, Konstanz, Germany
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research, Lausanne, Epalinges, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
26
|
Johnson LA. Analyzing Lymphatic Vessel Patterning in Adult Tissue. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2441:85-94. [PMID: 35099730 DOI: 10.1007/978-1-0716-2059-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Whole-mount immunostaining allows intact tissue to be surveyed in three dimensions, avoiding the more restricted fields of view provided by visualizing thin sections. This technique is particularly useful for imaging lymphatic and blood networks by high-resolution confocal microscopy, revealing how such vessels are spatially positioned, the subcellular arrangements of individual antigens, and interactions with individual cells within the interstitium or vessel lumen. The purpose of this chapter is to provide a practical guide for obtaining images of lymphatic vessels following immunofluorescence staining, primarily in mouse skin.
Collapse
Affiliation(s)
- Louise A Johnson
- MRC Human Immunology Unit, Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
27
|
Lin J, Chen Y, Zhu H, Cheng K, Wang H, Yu X, Tang M, Chen J. Lymphatic Reconstruction in Kidney Allograft Aggravates Chronic Rejection by Promoting Alloantigen Presentation. Front Immunol 2021; 12:796260. [PMID: 34956231 PMCID: PMC8695730 DOI: 10.3389/fimmu.2021.796260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic rejection of the renal allograft remains a major cause of graft loss. Here, we demonstrated that the remodeling of lymphatic vessels (LVs) after their broken during transplantation contributes to the antigen presenting and lymph nodes activating. Our studies observed a rebuilt of interrupted lymph draining one week after mouse kidney transplantation, involving preexisting lymphatic endothelial cells (LECs) from both the donor and recipient. These expanding LVs also release C-C chemokine ligand 21 (CCL21) and recruit CCR7+ cells, mainly dendritic cells (DCs), toward lymph nodes and spleen, evoking the adaptive response. This rejection could be relieved by LYVE-1 specific LVs knockout or CCR7 migration inhibition in mouse model. Moreover, in retrospective analysis, posttransplant patients exhibiting higher area density of LVs presented with lower eGFR, severe serum creatinine and proteinuria, and greater interstitial fibrosis. These results reveal a rebuilt pathway for alloantigen trafficking and lymphocytes activation, providing strategies to alleviate chronic transplantation rejection.
Collapse
Affiliation(s)
- Jinwen Lin
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huijuan Zhu
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kai Cheng
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Huiping Wang
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xianping Yu
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Mengmeng Tang
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China,*Correspondence: Jianghua Chen,
| |
Collapse
|
28
|
Collado-Diaz V, Medina-Sanchez JD, Gkountidi AO, Halin C. Imaging leukocyte migration through afferent lymphatics. Immunol Rev 2021; 306:43-57. [PMID: 34708414 PMCID: PMC9298274 DOI: 10.1111/imr.13030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/11/2022]
Abstract
Afferent lymphatics mediate the transport of antigen and leukocytes, especially of dendritic cells (DCs) and T cells, from peripheral tissues to draining lymph nodes (dLNs). As such they play important roles in the induction and regulation of adaptive immunity. Over the past 15 years, great advances in our understanding of leukocyte trafficking through afferent lymphatics have been made through time‐lapse imaging studies performed in tissue explants and in vivo, allowing to visualize this process with cellular resolution. Intravital imaging has revealed that intralymphatic leukocytes continue to actively migrate once they have entered into lymphatic capillaries, as a consequence of the low flow conditions present in this compartment. In fact, leukocytes spend considerable time migrating, patrolling and interacting with the lymphatic endothelium or with other intralymphatic leukocytes within lymphatic capillaries. Cells typically only start to detach once they arrive in downstream‐located collecting vessels, where vessel contractions contribute to enhanced lymph flow. In this review, we will introduce the biology of afferent lymphatic vessels and report on the presumed significance of DC and T cell migration via this route. We will specifically highlight how time‐lapse imaging has contributed to the current model of lymphatic trafficking and the emerging notion that ‐ besides transport – lymphatic capillaries exert additional roles in immune modulation.
Collapse
Affiliation(s)
| | | | | | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Fujimoto N, Dieterich LC. Mechanisms and Clinical Significance of Tumor Lymphatic Invasion. Cells 2021; 10:cells10102585. [PMID: 34685565 PMCID: PMC8533989 DOI: 10.3390/cells10102585] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Accepted: 09/25/2021] [Indexed: 12/17/2022] Open
Abstract
Tumor-associated lymphatic vessels play an important role in tumor progression, mediating lymphatic dissemination of malignant cells to tumor-draining lymph nodes and regulating tumor immunity. An early, necessary step in the lymphatic metastasis cascade is the invasion of lymphatic vessels by tumor cell clusters or single tumor cells. In this review, we discuss our current understanding of the underlying cellular and molecular mechanisms, which include tumor-specific as well as normal, developmental and immunological processes “hijacked” by tumor cells to gain access to the lymphatic system. Furthermore, we summarize the prognostic value of lymphatic invasion, discuss its relationship with local recurrence, lymph node and distant metastasis, and highlight potential therapeutic options and challenges.
Collapse
Affiliation(s)
- Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science, Otsu 520-2192, Japan;
| | - Lothar C. Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
30
|
Ravaud C, Ved N, Jackson DG, Vieira JM, Riley PR. Lymphatic Clearance of Immune Cells in Cardiovascular Disease. Cells 2021; 10:cells10102594. [PMID: 34685572 PMCID: PMC8533855 DOI: 10.3390/cells10102594] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Recent advances in our understanding of the lymphatic system, its function, development, and role in pathophysiology have changed our views on its importance. Historically thought to be solely involved in the transport of tissue fluid, lipids, and immune cells, the lymphatic system displays great heterogeneity and plasticity and is actively involved in immune cell regulation. Interference in any of these processes can be deleterious, both at the developmental and adult level. Preclinical studies into the cardiac lymphatic system have shown that invoking lymphangiogenesis and enhancing immune cell trafficking in ischaemic hearts can reduce myocardial oedema, reduce inflammation, and improve cardiac outcome. Understanding how immune cells and the lymphatic endothelium interact is also vital to understanding how the lymphatic vascular network can be manipulated to improve immune cell clearance. In this Review, we examine the different types of immune cells involved in fibrotic repair following myocardial infarction. We also discuss the development and function of the cardiac lymphatic vasculature and how some immune cells interact with the lymphatic endothelium in the heart. Finally, we establish how promoting lymphangiogenesis is now a prime therapeutic target for reducing immune cell persistence, inflammation, and oedema to restore heart function in ischaemic heart disease.
Collapse
Affiliation(s)
- Christophe Ravaud
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; (C.R.); (N.V.); (J.M.V.)
| | - Nikita Ved
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; (C.R.); (N.V.); (J.M.V.)
| | - David G. Jackson
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK;
| | - Joaquim Miguel Vieira
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; (C.R.); (N.V.); (J.M.V.)
| | - Paul R. Riley
- Burdon-Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK; (C.R.); (N.V.); (J.M.V.)
- Correspondence:
| |
Collapse
|
31
|
Jakovija A, Chtanova T. Neutrophil Interactions with the Lymphatic System. Cells 2021; 10:cells10082106. [PMID: 34440875 PMCID: PMC8393351 DOI: 10.3390/cells10082106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
The lymphatic system is a complex network of lymphatic vessels and lymph nodes designed to balance fluid homeostasis and facilitate host immune defence. Neutrophils are rapidly recruited to sites of inflammation to provide the first line of protection against microbial infections. The traditional view of neutrophils as short-lived cells, whose role is restricted to providing sterilizing immunity at sites of infection, is rapidly evolving to include additional functions at the interface between the innate and adaptive immune systems. Neutrophils travel via the lymphatics from the site of inflammation to transport antigens to lymph nodes. They can also enter lymph nodes from the blood by crossing high endothelial venules. Neutrophil functions in draining lymph nodes include pathogen control and modulation of adaptive immunity. Another facet of neutrophil interactions with the lymphatic system is their ability to promote lymphangiogenesis in draining lymph nodes and inflamed tissues. In this review, we discuss the significance of neutrophil migration to secondary lymphoid organs and within the lymphatic vasculature and highlight emerging evidence of the neutrophils’ role in lymphangiogenesis.
Collapse
Affiliation(s)
- Arnolda Jakovija
- Innate and Tumor Immunology Laboratory, Immunity Theme, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia;
- St Vincent’s School of Medicine, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tatyana Chtanova
- Innate and Tumor Immunology Laboratory, Immunity Theme, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia;
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, UNSW Sydney, Sydney, NSW 2052, Australia
- Correspondence:
| |
Collapse
|
32
|
Johnson LA, Jackson DG. Hyaluronan and Its Receptors: Key Mediators of Immune Cell Entry and Trafficking in the Lymphatic System. Cells 2021; 10:cells10082061. [PMID: 34440831 PMCID: PMC8393520 DOI: 10.3390/cells10082061] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 02/07/2023] Open
Abstract
Entry to the afferent lymphatics marks the first committed step for immune cell migration from tissues to draining lymph nodes both for the generation of immune responses and for timely resolution of tissue inflammation. This critical process occurs primarily at specialised discontinuous junctions in initial lymphatic capillaries, directed by chemokines released from lymphatic endothelium and orchestrated by adhesion between lymphatic receptors and their immune cell ligands. Prominent amongst the latter is the large glycosaminoglycan hyaluronan (HA) that can form a bulky glycocalyx on the surface of certain tissue-migrating leucocytes and whose engagement with its key lymphatic receptor LYVE-1 mediates docking and entry of dendritic cells to afferent lymphatics. Here we outline the latest insights into the molecular mechanisms by which the HA glycocalyx together with LYVE-1 and the related leucocyte receptor CD44 co-operate in immune cell entry, and how the process is facilitated by the unusual character of LYVE-1 • HA-binding interactions. In addition, we describe how pro-inflammatory breakdown products of HA may also contribute to lymphatic entry by transducing signals through LYVE-1 for lymphangiogenesis and increased junctional permeability. Lastly, we outline some future perspectives and highlight the LYVE-1 • HA axis as a potential target for immunotherapy.
Collapse
|
33
|
Cousin N, Cap S, Dihr M, Tacconi C, Detmar M, Dieterich LC. Lymphatic PD-L1 Expression Restricts Tumor-Specific CD8 + T-cell Responses. Cancer Res 2021; 81:4133-4144. [PMID: 34099493 PMCID: PMC9398148 DOI: 10.1158/0008-5472.can-21-0633] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/23/2021] [Accepted: 06/01/2021] [Indexed: 01/07/2023]
Abstract
Lymph node (LN)-resident lymphatic endothelial cells (LEC) mediate peripheral tolerance by self-antigen presentation on MHC-I and constitutive expression of T-cell inhibitory molecules, including PD-L1 (CD274). Tumor-associated LECs also upregulate PD-L1, but the specific role of lymphatic PD-L1 in tumor immunity is not well understood. In this study, we generated a mouse model lacking lymphatic PD-L1 expression and challenged these mice with two orthotopic tumor models, B16F10 melanoma and MC38 colorectal carcinoma. Lymphatic PD-L1 deficiency resulted in consistent expansion of tumor-specific CD8+ T cells in tumor-draining LNs in both tumor models, reduced primary tumor growth in the MC38 model, and increased efficacy of adoptive T-cell therapy in the B16F10 model. Strikingly, lymphatic PD-L1 acted primarily by inducing apoptosis in tumor-specific CD8+ central memory T cells. Overall, these findings demonstrate that LECs restrain tumor-specific immunity via PD-L1, which may explain why some patients with cancer without PD-L1 expression in the tumor microenvironment still respond to PD-L1/PD-1-targeted immunotherapy. SIGNIFICANCE: A new lymphatic-specific PD-L1 knockout mouse model reveals that lymphatic endothelial PD-L1 expression reduces tumor immunity, inducing apoptosis in tumor-specific CD8+ central memory cells in tumor-draining lymph nodes.
Collapse
Affiliation(s)
| | | | | | | | | | - Lothar C. Dieterich
- Corresponding Author: Lothar C. Dieterich, ETH Zurich, Institute of Pharmaceutical Sciences, Vladimir-Prelog-Weg 1–5/10, 8093 Zurich, Switzerland. Phone: 41-44-63-37392; Fax: 41-44-63-31344; E-mail:
| |
Collapse
|
34
|
Stritt S, Koltowska K, Mäkinen T. Homeostatic maintenance of the lymphatic vasculature. Trends Mol Med 2021; 27:955-970. [PMID: 34332911 DOI: 10.1016/j.molmed.2021.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022]
Abstract
The lymphatic vasculature is emerging as a multifaceted regulator of tissue homeostasis and regeneration. Lymphatic vessels drain fluid, macromolecules, and immune cells from peripheral tissues to lymph nodes (LNs) and the systemic circulation. Their recently uncovered functions extend beyond drainage and include direct modulation of adaptive immunity and paracrine regulation of organ growth. The developmental mechanisms controlling lymphatic vessel growth have been described with increasing precision. It is less clear how the essential functional features of lymphatic vessels are established and maintained. We discuss the mechanisms that maintain lymphatic vessel integrity in adult tissues and control vessel repair and regeneration. This knowledge is crucial for understanding the pathological vessel changes that contribute to disease, and provides an opportunity for therapy development.
Collapse
Affiliation(s)
- Simon Stritt
- Uppsala University, Department of Immunology, Genetics, and Pathology, 751 85 Uppsala, Sweden
| | - Katarzyna Koltowska
- Uppsala University, Department of Immunology, Genetics, and Pathology, 751 85 Uppsala, Sweden
| | - Taija Mäkinen
- Uppsala University, Department of Immunology, Genetics, and Pathology, 751 85 Uppsala, Sweden.
| |
Collapse
|
35
|
Structure and Immune Function of Afferent Lymphatics and Their Mechanistic Contribution to Dendritic Cell and T Cell Trafficking. Cells 2021; 10:cells10051269. [PMID: 34065513 PMCID: PMC8161367 DOI: 10.3390/cells10051269] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Afferent lymphatic vessels (LVs) mediate the transport of antigen and leukocytes to draining lymph nodes (dLNs), thereby serving as immunologic communication highways between peripheral tissues and LNs. The main cell types migrating via this route are antigen-presenting dendritic cells (DCs) and antigen-experienced T cells. While DC migration is important for maintenance of tolerance and for induction of protective immunity, T cell migration through afferent LVs contributes to immune surveillance. In recent years, great progress has been made in elucidating the mechanisms of lymphatic migration. Specifically, time-lapse imaging has revealed that, upon entry into capillaries, both DCs and T cells are not simply flushed away with the lymph flow, but actively crawl and patrol and even interact with each other in this compartment. Detachment and passive transport to the dLN only takes place once the cells have reached the downstream, contracting collecting vessel segments. In this review, we describe how the anatomy of the lymphatic network supports leukocyte trafficking and provide updated knowledge regarding the cellular and molecular mechanisms responsible for lymphatic migration of DCs and T cells. In addition, we discuss the relevance of DC and T cell migration through afferent LVs and its presumed implications on immunity.
Collapse
|
36
|
Arasa J, Collado-Diaz V, Kritikos I, Medina-Sanchez JD, Friess MC, Sigmund EC, Schineis P, Hunter MC, Tacconi C, Paterson N, Nagasawa T, Kiefer F, Makinen T, Detmar M, Moser M, Lämmermann T, Halin C. Upregulation of VCAM-1 in lymphatic collectors supports dendritic cell entry and rapid migration to lymph nodes in inflammation. J Exp Med 2021; 218:212103. [PMID: 33988714 PMCID: PMC8129804 DOI: 10.1084/jem.20201413] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/22/2021] [Accepted: 04/14/2021] [Indexed: 01/03/2023] Open
Abstract
Dendritic cell (DC) migration to draining lymph nodes (dLNs) is a slow process that is believed to begin with DCs approaching and entering into afferent lymphatic capillaries. From capillaries, DCs slowly crawl into lymphatic collectors, where lymph flow induced by collector contraction supports DC detachment and thereafter rapid, passive transport to dLNs. Performing a transcriptomics analysis of dermal endothelial cells, we found that inflammation induces the degradation of the basement membrane (BM) surrounding lymphatic collectors and preferential up-regulation of the DC trafficking molecule VCAM-1 in collectors. In crawl-in experiments performed in ear skin explants, DCs entered collectors in a CCR7- and β1 integrin–dependent manner. In vivo, loss of β1-integrins in DCs or of VCAM-1 in lymphatic collectors had the greatest impact on DC migration to dLNs at early time points when migration kinetics favor the accumulation of rapidly migrating collector DCs rather than slower capillary DCs. Taken together, our findings identify collector entry as a critical mechanism enabling rapid DC migration to dLNs in inflammation.
Collapse
Affiliation(s)
- Jorge Arasa
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Ioannis Kritikos
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Philipp Schineis
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | | | - Carlotta Tacconi
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Neil Paterson
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany.,International Max Planck Research School for Immunobiology, Epigenetics and Metabolism, Freiburg, Germany
| | - Takashi Nagasawa
- Laboratory of Stem Cell Biology and Developmental Immunology, Graduate School of Frontier Biosciences and Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Friedemann Kiefer
- Max Planck Institute for Molecular Biomedicine, Münster, Germany.,European Institute for Molecular Imaging, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Taija Makinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Markus Moser
- Max Planck Institute of Biochemistry, Martinsried, Germany.,Institute of Experimental Hematology, Technical University Munich, Munich, Germany
| | - Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
37
|
Steele MM, Lund AW. Afferent Lymphatic Transport and Peripheral Tissue Immunity. THE JOURNAL OF IMMUNOLOGY 2021; 206:264-272. [PMID: 33397740 DOI: 10.4049/jimmunol.2001060] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/11/2020] [Indexed: 12/30/2022]
Abstract
Lymphatic vessels provide an anatomical framework for immune surveillance and adaptive immune responses. Although appreciated as the route for Ag and dendritic cell transport, peripheral lymphatic vessels are often not considered active players in immune surveillance. Lymphatic vessels, however, integrate contextual cues that directly regulate transport, including changes in intrinsic pumping and capillary remodeling, and express a dynamic repertoire of inflammatory chemokines and adhesion molecules that facilitates leukocyte egress out of inflamed tissue. These mechanisms together contribute to the course of peripheral tissue immunity. In this review, we focus on context-dependent mechanisms that regulate fluid and cellular transport out of peripheral nonlymphoid tissues to provide a framework for understanding the effects of afferent lymphatic transport on immune surveillance, peripheral tissue inflammation, and adaptive immunity.
Collapse
Affiliation(s)
- Maria M Steele
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY 10016
| | - Amanda W Lund
- Ronald O. Perelman Department of Dermatology, New York University Grossman School of Medicine, New York, NY 10016; .,Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016; and.,Laura and Isaac Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY 10016
| |
Collapse
|
38
|
In Sickness and in Health: The Immunological Roles of the Lymphatic System. Int J Mol Sci 2021; 22:ijms22094458. [PMID: 33923289 PMCID: PMC8123157 DOI: 10.3390/ijms22094458] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/15/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
The lymphatic system plays crucial roles in immunity far beyond those of simply providing conduits for leukocytes and antigens in lymph fluid. Endothelial cells within this vasculature are distinct and highly specialized to perform roles based upon their location. Afferent lymphatic capillaries have unique intercellular junctions for efficient uptake of fluid and macromolecules, while expressing chemotactic and adhesion molecules that permit selective trafficking of specific immune cell subsets. Moreover, in response to events within peripheral tissue such as inflammation or infection, soluble factors from lymphatic endothelial cells exert “remote control” to modulate leukocyte migration across high endothelial venules from the blood to lymph nodes draining the tissue. These immune hubs are highly organized and perfectly arrayed to survey antigens from peripheral tissue while optimizing encounters between antigen-presenting cells and cognate lymphocytes. Furthermore, subsets of lymphatic endothelial cells exhibit differences in gene expression relating to specific functions and locality within the lymph node, facilitating both innate and acquired immune responses through antigen presentation, lymph node remodeling and regulation of leukocyte entry and exit. This review details the immune cell subsets in afferent and efferent lymph, and explores the mechanisms by which endothelial cells of the lymphatic system regulate such trafficking, for immune surveillance and tolerance during steady-state conditions, and in response to infection, acute and chronic inflammation, and subsequent resolution.
Collapse
|
39
|
Bioengineered in vitro models of leukocyte-vascular interactions. Biochem Soc Trans 2021; 49:693-704. [PMID: 33843967 DOI: 10.1042/bst20200620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 01/13/2023]
Abstract
Leukocytes continuously circulate our body through the blood and lymphatic vessels. To survey invaders or abnormalities and defend our body against them, blood-circulating leukocytes migrate from the blood vessels into the interstitial tissue space (leukocyte extravasation) and exit the interstitial tissue space through draining lymphatic vessels (leukocyte intravasation). In the process of leukocyte trafficking, leukocytes recognize and respond to multiple biophysical and biochemical cues in these vascular microenvironments to determine adequate migration and adhesion pathways. As leukocyte trafficking is an essential part of the immune system and is involved in numerous immune diseases and related immunotherapies, researchers have attempted to identify the key biophysical and biochemical factors that might be responsible for leukocyte migration, adhesion, and trafficking. Although intravital live imaging of in vivo animal models has been remarkably advanced and utilized, bioengineered in vitro models that recapitulate complicated in vivo vascular structure and microenvironments are needed to better understand leukocyte trafficking since these in vitro models better allow for spatiotemporal analyses of leukocyte behaviors, decoupling of interdependent biological factors, better controlling of experimental parameters, reproducible experiments, and quantitative cellular analyses. This review discusses bioengineered in vitro model systems that are developed to study leukocyte interactions with complex microenvironments of blood and lymphatic vessels. This review focuses on the emerging concepts and methods in generating relevant biophysical and biochemical cues. Finally, the review concludes with expert perspectives on the future research directions for investigating leukocyte and vascular biology using the in vitro models.
Collapse
|
40
|
Ariel O, Brouard JS, Marete A, Miglior F, Ibeagha-Awemu E, Bissonnette N. Genome-wide association analysis identified both RNA-seq and DNA variants associated to paratuberculosis in Canadian Holstein cattle 'in vitro' experimentally infected macrophages. BMC Genomics 2021; 22:162. [PMID: 33678157 PMCID: PMC7938594 DOI: 10.1186/s12864-021-07487-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 02/26/2021] [Indexed: 12/22/2022] Open
Abstract
Background Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of paratuberculosis, or Johne’s disease (JD), an incurable bovine disease. The evidence for susceptibility to MAP disease points to multiple interacting factors, including the genetic predisposition to a dysregulation of the immune system. The endemic situation in cattle populations can be in part explained by a genetic susceptibility to MAP infection. In order to identify the best genetic improvement strategy that will lead to a significant reduction of JD in the population, we need to understand the link between genetic variability and the biological systems that MAP targets in its assault to dominate macrophages. MAP survives in macrophages where it disseminates. We used next-generation RNA (RNA-Seq) sequencing to study of the transcriptome in response to MAP infection of the macrophages from cows that have been naturally infected and identified as positive for JD (JD (+); n = 22) or negative for JD (healthy/resistant, JD (−); n = 28). In addition to identifying genetic variants from RNA-seq data, SNP variants were also identified using the Bovine SNP50 DNA chip. Results The complementary strategy allowed the identification of 1,356,248 genetic variants, including 814,168 RNA-seq and 591,220 DNA chip variants. Annotation using SnpEff predicted that the 2435 RNA-seq genetic variants would produce high functional effect on known genes in comparison to the 33 DNA chip variants. Significant variants from JD(+/−) macrophages were identified by genome-wide association study and revealed two quantitative traits loci: BTA4 and 11 at (P < 5 × 10− 7). Using BovineMine, gene expression levels together with significant genomic variants revealed pathways that potentially influence JD susceptibility, notably the energy-dependent regulation of mTOR by LKB1-AMPK and the metabolism of lipids. Conclusion In the present study, we succeeded in identifying genetic variants in regulatory pathways of the macrophages that may affect the susceptibility of cows that are healthy/resistant to MAP infection. RNA-seq provides an unprecedented opportunity to investigate gene expression and to link the genetic variations to biological pathways that MAP normally manipulate during the process of killing macrophages. A strategy incorporating functional markers into genetic selection may have a considerable impact in improving resistance to an incurable disease. Integrating the findings of this research into the conventional genetic selection program may allow faster and more lasting improvement in resistance to bovine paratuberculosis in dairy cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07487-4.
Collapse
Affiliation(s)
- Olivier Ariel
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, J1M 0C8, Canada
| | - Jean-Simon Brouard
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, J1M 0C8, Canada
| | - Andrew Marete
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, J1M 0C8, Canada
| | - Filippo Miglior
- Center of Genetic Improvement of Livestock, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Canadian Dairy Network, Guelph, ON, N1K 1E5, Canada
| | - Eveline Ibeagha-Awemu
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, J1M 0C8, Canada
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Centre, Agriculture and Agri-Food Canada, Sherbrooke, QC, J1M 0C8, Canada.
| |
Collapse
|
41
|
Monitoring and Modulating Inflammation-Associated Alterations in Synaptic Plasticity: Role of Brain Stimulation and the Blood-Brain Interface. Biomolecules 2021; 11:biom11030359. [PMID: 33652912 PMCID: PMC7996828 DOI: 10.3390/biom11030359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammation of the central nervous system can be triggered by endogenous and exogenous stimuli such as local or systemic infection, trauma, and stroke. In addition to neurodegeneration and cell death, alterations in physiological brain functions are often associated with neuroinflammation. Robust experimental evidence has demonstrated that inflammatory cytokines affect the ability of neurons to express plasticity. It has been well-established that inflammation-associated alterations in synaptic plasticity contribute to the development of neuropsychiatric symptoms. Nevertheless, diagnostic approaches and interventional strategies to restore inflammatory deficits in synaptic plasticity are limited. Here, we review recent findings on inflammation-associated alterations in synaptic plasticity and the potential role of the blood–brain interface, i.e., the blood–brain barrier, in modulating synaptic plasticity. Based on recent findings indicating that brain stimulation promotes plasticity and modulates vascular function, we argue that clinically employed non-invasive brain stimulation techniques, such as transcranial magnetic stimulation, could be used for monitoring and modulating inflammation-induced alterations in synaptic plasticity.
Collapse
|
42
|
Schineis P, Kotkowska ZK, Vogel-Kindgen S, Friess MC, Theisen M, Schwyter D, Hausammann L, Subedi S, Varypataki EM, Waeckerle-Men Y, Kolm I, Kündig TM, Høgset A, Gander B, Halin C, Johansen P. Photochemical internalization (PCI)-mediated activation of CD8 T cells involves antigen uptake and CCR7-mediated transport by migratory dendritic cells to draining lymph nodes. J Control Release 2021; 332:96-108. [PMID: 33609623 DOI: 10.1016/j.jconrel.2021.02.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/22/2021] [Accepted: 02/10/2021] [Indexed: 12/11/2022]
Abstract
Antigen cross-presentation to cytotoxic CD8+ T cells is crucial for the induction of anti-tumor and anti-viral immune responses. Recently, co-encapsulation of photosensitizers and antigens into microspheres and subsequent photochemical internalization (PCI) of antigens in antigen presenting cells has emerged as a promising new strategy for inducing antigen-specific CD8+ T cell responses in vitro and in vivo. However, the exact cellular mechanisms have hardly been investigated in vivo, i.e., which cell types take up antigen-loaded microspheres at the site of injection, or in which secondary lymphoid organ does T cell priming occur? We used spray-dried poly(lactic-co-glycolic acid) (PLGA) microspheres loaded with ovalbumin and the photosensitizer tetraphenyl chlorine disulfonate (TPCS2a) to investigate these processes in vivo. Intravital microscopy and flow cytometric analysis of the murine ear skin revealed that dendritic cells (DCs) take up PLGA microspheres in peripheral tissues. Illumination then caused photoactivation of TPCS2a and induced local tissue inflammation that enhanced CCR7-dependent migration of microsphere-containing DCs to tissue-draining lymph nodes (LNs), i.e., the site of CD8+ T cell priming. The results contribute to a better understanding of the functional mechanism of PCI-mediated vaccination and highlight the importance of an active transport of vaccine microspheres by antigen presenting cells to draining LNs.
Collapse
Affiliation(s)
- Philipp Schineis
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Zuzanna K Kotkowska
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland; Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Sarah Vogel-Kindgen
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Mona C Friess
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Martine Theisen
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - David Schwyter
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Lucy Hausammann
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Saurav Subedi
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Eleni M Varypataki
- Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Ying Waeckerle-Men
- Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Isabel Kolm
- Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Thomas M Kündig
- Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Anders Høgset
- PCI Biotech AS, Ullernchauséen 64, 0379 Oslo, Norway
| | - Bruno Gander
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland.
| | - Pål Johansen
- Department of Dermatology, University of Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland; Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland.
| |
Collapse
|
43
|
CD112 Regulates Angiogenesis and T Cell Entry into the Spleen. Cells 2021; 10:cells10010169. [PMID: 33467729 PMCID: PMC7830896 DOI: 10.3390/cells10010169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Junctional adhesion proteins play important roles in controlling angiogenesis, vascular permeability and leukocyte trafficking. CD112 (nectin-2) belongs to the immunoglobulin superfamily and was shown to engage in homophilic and heterophilic interactions with a variety of binding partners expressed on endothelial cells and on leukocytes. Recent in vitro studies suggested that CD112 regulates human endothelial cell migration and proliferation as well as transendothelial migration of leukocytes. However, so far, the role of CD112 in endothelial cell biology and in leukocyte trafficking has not been elucidated in vivo. We found CD112 to be expressed by lymphatic and blood endothelial cells in different murine tissues. In CD112-deficient mice, the blood vessel coverage in the retina and spleen was significantly enhanced. In functional in vitro studies, a blockade of CD112 modulated endothelial cell migration and significantly enhanced endothelial tube formation. An antibody-based blockade of CD112 also significantly reduced T cell transmigration across endothelial monolayers in vitro. Moreover, T cell homing to the spleen was significantly reduced in CD112-deficient mice. Overall, our results identify CD112 as a regulator of angiogenic processes in vivo and demonstrate a novel role for CD112 in T cell entry into the spleen.
Collapse
|
44
|
Segawa K, Blumenthal Y, Yamawaki Y, Ohtsuki G. A Destruction Model of the Vascular and Lymphatic Systems in the Emergence of Psychiatric Symptoms. BIOLOGY 2021; 10:34. [PMID: 33419067 PMCID: PMC7825436 DOI: 10.3390/biology10010034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 01/02/2023]
Abstract
The lymphatic system is important for antigen presentation and immune surveillance. The lymphatic system in the brain was originally introduced by Giovanni Mascagni in 1787, while the rediscovery of it by Jonathan Kipnis and Kari Kustaa Alitalo now opens the door for a new interpretation of neurological diseases and therapeutic applications. The glymphatic system for the exchanges of cerebrospinal fluid (CSF) and interstitial fluid (ISF) is associated with the blood-brain barrier (BBB), which is involved in the maintenance of immune privilege and homeostasis in the brain. Recent notions from studies of postmortem brains and clinical studies of neurodegenerative diseases, infection, and cerebral hemorrhage, implied that the breakdown of those barrier systems and infiltration of activated immune cells disrupt the function of both neurons and glia in the parenchyma (e.g., modulation of neurophysiological properties and maturation of myelination), which causes the abnormality in the functional connectivity of the entire brain network. Due to the vulnerability, such dysfunction may occur in developing brains as well as in senile or neurodegenerative diseases and may raise the risk of emergence of psychosis symptoms. Here, we introduce this hypothesis with a series of studies and cellular mechanisms.
Collapse
Affiliation(s)
- Kohei Segawa
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan; (K.S.); (Y.Y.)
| | - Yukari Blumenthal
- Urology Department at Cambridge University Hospitals, NHS Foundation Trust, Addenbrooke’s Hospital, Hills Road Cambridge, Cambridge CB2 0QQ, UK;
| | - Yuki Yamawaki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan; (K.S.); (Y.Y.)
| | - Gen Ohtsuki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto 606-8397, Japan; (K.S.); (Y.Y.)
| |
Collapse
|
45
|
Tfh Cells in Health and Immunity: Potential Targets for Systems Biology Approaches to Vaccination. Int J Mol Sci 2020; 21:ijms21228524. [PMID: 33198297 PMCID: PMC7696930 DOI: 10.3390/ijms21228524] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
T follicular helper (Tfh) cells are a specialised subset of CD4+ T cells that play a significant role in the adaptive immune response, providing critical help to B cells within the germinal centres (GC) of secondary lymphoid organs. The B cell receptors of GC B cells undergo multiple rounds of somatic hypermutation and affinity maturation within the GC response, a process dependent on cognate interactions with Tfh cells. B cells that receive sufficient help from Tfh cells form antibody-producing long-lived plasma and memory B cells that provide the basis of decades of effective and efficient protection and are considered the gold standard in correlates of protection post-vaccination. However, the T cell response to vaccination has been understudied, and over the last 10 years, exponential improvements in the technological underpinnings of sampling techniques, experimental and analytical tools have allowed multidisciplinary characterisation of the role of T cells and the immune system as a whole. Of particular interest to the field of vaccinology are GCs and Tfh cells, representing a unique target for improving immunisation strategies. Here, we discuss recent insights into the unique journey of Tfh cells from thymus to lymph node during differentiation and their role in the production of high-quality antibody responses as well as their journey back to the periphery as a population of memory cells. Further, we explore their function in health and disease and the power of next-generation sequencing techniques to uncover their potential as modulators of vaccine-induced immunity.
Collapse
|
46
|
Birmingham KG, O'Melia MJ, Bordy S, Reyes Aguilar D, El-Reyas B, Lesinski G, Thomas SN. Lymph Node Subcapsular Sinus Microenvironment-On-A-Chip Modeling Shear Flow Relevant to Lymphatic Metastasis and Immune Cell Homing. iScience 2020; 23:101751. [PMID: 33241198 PMCID: PMC7672279 DOI: 10.1016/j.isci.2020.101751] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/11/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
A lymph node sinus-on-a-chip adhesion microfluidic platform that recapitulates the hydrodynamic microenvironment of the lymph node subcapsular sinus was engineered. This device was used to interrogate the effects of lymph node remodeling on cellular adhesion in fluid flow relevant to lymphatic metastasis. Wall shear stress levels analytically estimated and modeled after quiescent and diseased/inflamed lymph nodes were experimentally recapitulated using a flow-based microfluidic perfusion system to assess the effects of physiological flow fields on human metastatic cancer cell adhesion. Results suggest that both altered fluid flow profiles and presentation of adhesive ligands, which are predicted to manifest within the lymph node subcapsular sinus as a result of inflammation-induced remodeling, and the presence of lymph-borne monocytic cells may synergistically contribute to the dynamic extent of cell adhesion in flow relevant to lymph node invasion by cancer and monocytic immune cells during lymphatic metastasis.
Collapse
Affiliation(s)
- Katherine G. Birmingham
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, IBB 2310 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Meghan J. O'Melia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Samantha Bordy
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David Reyes Aguilar
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, IBB 2310 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Bassel El-Reyas
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Gregory Lesinski
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Susan N. Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, IBB 2310 315 Ferst Drive NW, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Corresponding author
| |
Collapse
|
47
|
Munir H, Mazzaglia C, Shields JD. Stromal regulation of tumor-associated lymphatics. Adv Drug Deliv Rev 2020; 161-162:75-89. [PMID: 32783989 DOI: 10.1016/j.addr.2020.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 02/08/2023]
Abstract
Recent advances have identified a growing array of roles played by lymphatics in the tumor microenvironment, from providing a route of metastasis to immune modulation. The tumor microenvironment represents an exceptionally complex, dynamic niche comprised of a diverse mixture of cancer cells and normal host cells termed the stroma. This review discusses our current understanding of stromal elements and how they regulate lymphatic growth and functional properties in the tumor context.
Collapse
Affiliation(s)
- Hafsa Munir
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ
| | - Corrado Mazzaglia
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ
| | - Jacqueline D Shields
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Box 197 Cambridge Biomedical Campus, Cambridge, CB2 0XZ.
| |
Collapse
|
48
|
de Winde CM, Munday C, Acton SE. Molecular mechanisms of dendritic cell migration in immunity and cancer. Med Microbiol Immunol 2020; 209:515-529. [PMID: 32451606 PMCID: PMC7395046 DOI: 10.1007/s00430-020-00680-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022]
Abstract
Dendritic cells (DCs) are a heterogeneous population of antigen-presenting cells that act to bridge innate and adaptive immunity. DCs are critical in mounting effective immune responses to tissue damage, pathogens and cancer. Immature DCs continuously sample tissues and engulf antigens via endocytic pathways such as phagocytosis or macropinocytosis, which result in DC activation. Activated DCs undergo a maturation process by downregulating endocytosis and upregulating surface proteins controlling migration to lymphoid tissues where DC-mediated antigen presentation initiates adaptive immune responses. To traffic to lymphoid tissues, DCs must adapt their motility mechanisms to migrate within a wide variety of tissue types and cross barriers to enter lymphatics. All steps of DC migration involve cell-cell or cell-substrate interactions. This review discusses DC migration mechanisms in immunity and cancer with a focus on the role of cytoskeletal processes and cell surface proteins, including integrins, lectins and tetraspanins. Understanding the adapting molecular mechanisms controlling DC migration in immunity provides the basis for therapeutic interventions to dampen immune activation in autoimmunity, or to improve anti-tumour immune responses.
Collapse
Affiliation(s)
- Charlotte M de Winde
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Clare Munday
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Sophie E Acton
- Stromal Immunology Group, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
49
|
Halabi EA, Arasa J, Püntener S, Collado-Diaz V, Halin C, Rivera-Fuentes P. Dual-Activatable Cell Tracker for Controlled and Prolonged Single-Cell Labeling. ACS Chem Biol 2020; 15:1613-1620. [PMID: 32298071 PMCID: PMC7309267 DOI: 10.1021/acschembio.0c00208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cell
trackers are fluorescent chemical tools that facilitate imaging
and tracking cells within live organisms. Despite their versatility,
these dyes lack specificity, tend to leak outside of the cell, and
stain neighboring cells. Here, we report a dual-activatable cell tracker
for increased spatial and temporal staining control, especially for
single-cell tracking. This probe overcomes the typical problems of
current cell trackers: off-target staining, high background signal,
and leakage from the intracellular medium. Staining with this dye
is not cytotoxic, and it can be used in sensitive primary cells. Moreover,
this dye is resistant to harsh fixation and permeabilization conditions
and allows for multiwavelength studies with confocal microscopy and
fluorescence-activated cell sorting. Using this cell tracker, we performed in vivo homing experiments in mice with primary splenocytes
and tracked a single cell in a heterogeneous, multicellular culture
environment for over 20 h. These experiments, in addition to comparative
proliferation studies with other cell trackers, demonstrated that
the signal from this dye is retained in cells for over 72 h after
photoactivation. We envision that this type of probes will facilitate
the analysis of single-cell behavior and migration in cell culture
and in vivo experiments.
Collapse
Affiliation(s)
- Elias A. Halabi
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Jorge Arasa
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Salome Püntener
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
- Institute of Chemical Sciences and Engineering, EPF Lausanne, 1015, Lausanne, Switzerland
| | | | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Pablo Rivera-Fuentes
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
- Institute of Chemical Sciences and Engineering, EPF Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
50
|
Zhang F, Zarkada G, Yi S, Eichmann A. Lymphatic Endothelial Cell Junctions: Molecular Regulation in Physiology and Diseases. Front Physiol 2020; 11:509. [PMID: 32547411 PMCID: PMC7274196 DOI: 10.3389/fphys.2020.00509] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Lymphatic endothelial cells (LECs) lining lymphatic vessels develop specialized cell-cell junctions that are crucial for the maintenance of vessel integrity and proper lymphatic vascular functions. Successful lymphatic drainage requires a division of labor between lymphatic capillaries that take up lymph via open "button-like" junctions, and collectors that transport lymph to veins, which have tight "zipper-like" junctions that prevent lymph leakage. In recent years, progress has been made in the understanding of these specialized junctions, as a result of the application of state-of-the-art imaging tools and novel transgenic animal models. In this review, we discuss lymphatic development and mechanisms governing junction remodeling between button and zipper-like states in LECs. Understanding lymphatic junction remodeling is important in order to unravel lymphatic drainage regulation in obesity and inflammatory diseases and may pave the way towards future novel therapeutic interventions.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Georgia Zarkada
- Department of Cellular and Molecular Physiology, Cardiovascular Research Center, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Sanjun Yi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Anne Eichmann
- Department of Cellular and Molecular Physiology, Cardiovascular Research Center, Yale School of Medicine, Yale University, New Haven, CT, United States.,INSERM U970, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|