1
|
Ai CJ, Chen LJ, Guo LX, Wang YP, Zhao ZY. Gossypol acetic acid regulates leukemia stem cells by degrading LRPPRC via inhibiting IL-6/JAK1/STAT3 signaling or resulting mitochondrial dysfunction. World J Stem Cells 2024; 16:444-458. [PMID: 38690512 PMCID: PMC11056636 DOI: 10.4252/wjsc.v16.i4.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/11/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Leukemia stem cells (LSCs) are found to be one of the main factors contributing to poor therapeutic effects in acute myeloid leukemia (AML), as they are protected by the bone marrow microenvironment (BMM) against conventional therapies. Gossypol acetic acid (GAA), which is extracted from the seeds of cotton plants, exerts anti-tumor roles in several types of cancer and has been reported to induce apoptosis of LSCs by inhibiting Bcl2. AIM To investigate the exact roles of GAA in regulating LSCs under different microenvironments and the exact mechanism. METHODS In this study, LSCs were magnetically sorted from AML cell lines and the CD34+CD38- population was obtained. The expression of leucine-rich pentatricopeptide repeat-containing protein (LRPPRC) and forkhead box M1 (FOXM1) was evaluated in LSCs, and the effects of GAA on malignancies and mitochondrial function were measured. RESULTS LRPPRC was found to be upregulated, and GAA inhibited cell proliferation by degrading LRPPRC. GAA induced LRPPRC degradation and inhibited the activation of interleukin 6 (IL-6)/janus kinase (JAK) 1/signal transducer and activator of transcription (STAT) 3 signaling, enhancing chemosensitivity in LSCs against conventional chemotherapies, including L-Asparaginase, Dexamethasone, and cytarabine. GAA was also found to downregulate FOXM1 indirectly by regulating LRPPRC. Furthermore, GAA induced reactive oxygen species accumulation, disturbed mitochondrial homeostasis, and caused mitochondrial dysfunction. By inhibiting IL-6/JAK1/STAT3 signaling via degrading LRPPRC, GAA resulted in the elimination of LSCs. Meanwhile, GAA induced oxidative stress and subsequent cell damage by causing mitochondrial damage. CONCLUSION Taken together, the results indicate that GAA might overcome the BMM protective effect and be considered as a novel and effective combination therapy for AML.
Collapse
Affiliation(s)
- Cheng-Jin Ai
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 641000, Sichuan Province, China
| | - Ling-Juan Chen
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 641000, Sichuan Province, China
| | - Li-Xuan Guo
- Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 641000, Sichuan Province, China
| | - Ya-Ping Wang
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 641000, Sichuan Province, China
| | - Zi-Yi Zhao
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 641000, Sichuan Province, China
- Traditional Chinese Medicine Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu 641000, Sichuan Province, China.
| |
Collapse
|
2
|
Marr AR, Halpin M, Corbin DL, Asemelash Y, Sher S, Gordon BK, Whipp EC, Mitchell S, Harrington BK, Orwick S, Benrashid S, Goettl VM, Yildiz V, Mitchell AD, Cahn O, Mims AS, Larkin KTM, Long M, Blachly J, Woyach JA, Lapalombella R, Grieselhuber NR. The multi-CDK inhibitor dinaciclib reverses bromo- and extra-terminal domain (BET) inhibitor resistance in acute myeloid leukemia via inhibition of Wnt/β-catenin signaling. Exp Hematol Oncol 2024; 13:27. [PMID: 38438856 PMCID: PMC10913666 DOI: 10.1186/s40164-024-00483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematologic cancer with poor survival across a broad range of molecular subtypes. Development of efficacious and well-tolerable therapies encompassing the range of mutations that can arise in AML remains an unmet need. The bromo- and extra-terminal domain (BET) family of proteins represents an attractive therapeutic target in AML due to their crucial roles in many cellular functions, regardless of any specific mutation. Many BET inhibitors (BETi) are currently in pre-clinical and early clinical development, but acquisition of resistance continues to remain an obstacle for the drug class. Novel methods to circumvent this development of resistance could be instrumental for the future use of BET inhibitors in AML, both as monotherapy and in combination. To date, many investigations into possible drug combinations of BETi with CDK inhibitors have focused on CDK9, which has a known physical and functional interaction with the BET protein BRD4. Therefore, we wished to investigate possible synergy and additive effects between inhibitors of these targets in AML. Here, we describe combination therapy with the multi-CDK inhibitor dinaciclib and the BETi PLX51107 in pre-clinical models of AML. Dinaciclib and PLX51107 demonstrate additive effects in AML cell lines, primary AML samples, and in vivo. Further, we demonstrate novel activity of dinaciclib through inhibition of the canonical/β-catenin dependent Wnt signaling pathway, a known resistance mechanism to BETi in AML. We show dinaciclib inhibits Wnt signaling at multiple levels, including downregulation of β-catenin, the Wnt co-receptor LRP6, as well as many Wnt pathway components and targets. Moreover, dinaciclib sensitivity remains unaffected in a setting of BET resistance, demonstrating similar inhibitory effects on Wnt signaling when compared to BET-sensitive cells. Ultimately, our results demonstrate rationale for combination CDKi and BETi in AML. In addition, our novel finding of Wnt signaling inhibition could have potential implications in other cancers where Wnt signaling is dysregulated and demonstrates one possible approach to circumvent development of BET resistance in AML.
Collapse
Affiliation(s)
- Alexander R Marr
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Madeline Halpin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Dominique L Corbin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Yerdanos Asemelash
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Steven Sher
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Britten K Gordon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ethan C Whipp
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | - Shelley Orwick
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Samon Benrashid
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Virginia M Goettl
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Vedat Yildiz
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Andrew D Mitchell
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Olivia Cahn
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Karilyn T M Larkin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Meixao Long
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - James Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicole R Grieselhuber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
3
|
Abazari N, Stefanucci MR, Bossi LE, Trojani A, Cairoli R, Beghini A. Cordycepin (3'dA) Induces Cell Death of AC133 + Leukemia Cells via Re-Expression of WIF1 and Down-Modulation of MYC. Cancers (Basel) 2023; 15:3931. [PMID: 37568748 PMCID: PMC10417454 DOI: 10.3390/cancers15153931] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Wnt/β-catenin signaling is critically required for the development and maintenance of leukemia stem cells (LSCs) in acute myeloid leukemia (AML) by constitutive activation of myeloid regeneration-related pathways. Cell-intrinsic activation of canonical Wnt signaling propagates in the nucleus by β-catenin translocation, where it induces expression of target oncogenes such as JUN, MYC and CCND1. As the Wnt/β-catenin pathway is now well established to be a key oncogenic signaling pathway promoting leukemic myelopoiesis, targeting it would be an effective strategy to impair LSC functionality. Although the effects of the adenosine analogue cordycepin in repressing β-catenins and destabilizing the LSC niche have been highlighted, the cellular and molecular effects on AML-LSC have not been fully clarified. In the present study, we evaluated the potency and efficacy of cordycepin, a selective repressor of Wnt/β-catenin signaling with anti-leukemia properties, on the AC133+ LSC fraction. Cordycepin effectively reduces cell viability of the AC133+ LSCs in the MUTZ-2 cell model and patient-derived cells through the induction of apoptosis. By Wnt-targeted RNA sequencing panel, we highlighted the re-expression of WIF1 and DKK1 among others, and the consequent downregulation of MYC and PROM1 (CD133) following MUTZ-2 cell exposure to increasing doses of cordycepin. Our results provide new insights into the molecular circuits involved in pharmacological inhibition mediated by cordycepin reinforcing the potential of targeting the Wnt/β-catenin and co-regulatory complexes in AML.
Collapse
Affiliation(s)
- Nazanin Abazari
- Department of Health Sciences, University of Milan, 20142 Milan, Italy; (N.A.); (M.R.S.)
| | - Marta Rachele Stefanucci
- Department of Health Sciences, University of Milan, 20142 Milan, Italy; (N.A.); (M.R.S.)
- Department of Hematology and Oncology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.E.B.); (A.T.); (R.C.)
| | - Luca Emanuele Bossi
- Department of Hematology and Oncology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.E.B.); (A.T.); (R.C.)
| | - Alessandra Trojani
- Department of Hematology and Oncology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.E.B.); (A.T.); (R.C.)
| | - Roberto Cairoli
- Department of Hematology and Oncology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy; (L.E.B.); (A.T.); (R.C.)
| | - Alessandro Beghini
- Department of Health Sciences, University of Milan, 20142 Milan, Italy; (N.A.); (M.R.S.)
| |
Collapse
|
4
|
Atilla E, Benabdellah K. The Black Hole: CAR T Cell Therapy in AML. Cancers (Basel) 2023; 15:2713. [PMID: 37345050 DOI: 10.3390/cancers15102713] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Despite exhaustive studies, researchers have made little progress in the field of adoptive cellular therapies for relapsed/refractory acute myeloid leukemia (AML), unlike the notable uptake for B cell malignancies. Various single antigen-targeting chimeric antigen receptor (CAR) T cell Phase I trials have been established worldwide and have recruited approximately 100 patients. The high heterogeneity at the genetic and molecular levels within and between AML patients resembles a black hole: a great gravitational field that sucks in everything. One must consider the fact that only around 30% of patients show a response; there are, however, consequential off-tumor effects. It is obvious that a new point of view is needed to achieve more promising results. This review first introduces the unique therapeutic challenges of not only CAR T cells but also other adoptive cellular therapies in AML. Next, recent single-cell sequencing data for AML to assess somatically acquired alterations at the DNA, epigenetic, RNA, and protein levels are discussed to give a perspective on cellular heterogeneity, intercellular hierarchies, and the cellular ecosystem. Finally, promising novel strategies are summarized, including more sophisticated next-generation CAR T, TCR-T, and CAR NK therapies; the approaches with which to tailor the microenvironment and target neoantigens; and allogeneic approaches.
Collapse
Affiliation(s)
- Erden Atilla
- Fred Hutchinson Cancer Research Center, Clinical Research Division, 1100 Fairview Ave N, Seattle, WA 98109, USA
- GENYO Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Health Sciences Technology Park, 18016 Granada, Spain
| | - Karim Benabdellah
- GENYO Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer/University of Granada/Andalusian Regional Government, Health Sciences Technology Park, 18016 Granada, Spain
| |
Collapse
|
5
|
Láinez-González D, Alonso-Aguado AB, Alonso-Dominguez JM. Understanding the Wnt Signaling Pathway in Acute Myeloid Leukemia Stem Cells: A Feasible Key against Relapses. BIOLOGY 2023; 12:biology12050683. [PMID: 37237497 DOI: 10.3390/biology12050683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023]
Abstract
Wnt signaling is a highly conserved pathway in evolution which controls important processes such as cell proliferation, differentiation and migration, both in the embryo and in the adult. Dysregulation of this pathway can favor the development of different types of cancer, such as acute myeloid leukemia and other hematological malignancies. Overactivation of this pathway may promote the transformation of pre-leukemic stem cells into acute myeloid leukemia stem cells, as well as the maintenance of their quiescent state, which confers them with self-renewal and chemoresistance capacity, favoring relapse of the disease. Although this pathway participates in the regulation of normal hematopoiesis, its requirements seem to be greater in the leukemic stem cell population. In this review, we explore the possible therapeutic targeting of Wnt to eradicate the LSCs of AML.
Collapse
Affiliation(s)
- Daniel Láinez-González
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - Ana Belén Alonso-Aguado
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| | - Juan Manuel Alonso-Dominguez
- Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- Hematology Department, Hospital Universitario Fundación Jiménez Díaz, Avenida Reyes Católicos 2, 28040 Madrid, Spain
| |
Collapse
|
6
|
Austin RJ, Straube J, Halder R, Janardhanan Y, Bruedigam C, Witkowski M, Cooper L, Porter A, Braun M, Souza-Fonseca-Guimaraes F, Minnie SA, Cooper E, Jacquelin S, Song A, Bald T, Nakamura K, Hill GR, Aifantis I, Lane SW, Bywater MJ. Oncogenic drivers dictate immune control of acute myeloid leukemia. Nat Commun 2023; 14:2155. [PMID: 37059710 PMCID: PMC10104832 DOI: 10.1038/s41467-023-37592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Acute myeloid leukemia (AML) is a genetically heterogeneous, aggressive hematological malignancy induced by distinct oncogenic driver mutations. The effect of specific AML oncogenes on immune activation or suppression is unclear. Here, we examine immune responses in genetically distinct models of AML and demonstrate that specific AML oncogenes dictate immunogenicity, the quality of immune response and immune escape through immunoediting. Specifically, expression of NrasG12D alone is sufficient to drive a potent anti-leukemia response through increased MHC Class II expression that can be overcome with increased expression of Myc. These data have important implications for the design and implementation of personalized immunotherapies for patients with AML.
Collapse
Affiliation(s)
- Rebecca J Austin
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Jasmin Straube
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Rohit Halder
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | | | - Claudia Bruedigam
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Matthew Witkowski
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Leanne Cooper
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Amy Porter
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Matthias Braun
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | | | - Simone A Minnie
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Centre, Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Emily Cooper
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Sebastien Jacquelin
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- Mater Research, Translational Research Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Axia Song
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Tobias Bald
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- Institute of Experimental Oncology, University Hospital of Bonn, 53127, Bonn, Germany
| | - Kyohei Nakamura
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
| | - Geoffrey R Hill
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Centre, Seattle Cancer Care Alliance, Seattle, WA, USA
| | - Iannis Aifantis
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Laura & Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Steven W Lane
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia.
- The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
- Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, 4029, Australia.
| | - Megan J Bywater
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Australia.
- The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
7
|
Li Q, Wang M, Liu L. The role of exosomes in the stemness maintenance and progression of acute myeloid leukemia. Biochem Pharmacol 2023; 212:115539. [PMID: 37024061 DOI: 10.1016/j.bcp.2023.115539] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/17/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Acute myeloid leukemia (AML) is an aggressive malignancy of myeloid hematopoietic cells, which is characterized by the aberrant clonal proliferation of immature myeloblasts and compromised hematopoiesis. The leukemic cell population is strongly heterogeneous. Leukemic stem cells (LSCs) are an important leukemic cell subset with stemness characteristics and self-renewal ability, which contribute to the development of refractory or relapsed AML. It is now acknowledged that LSCs develop from hematopoietic stem cells (HSCs) or phenotypically directed cell populations with transcriptional stemness characteristics under selective pressure from the bone marrow (BM) niche. Exosomes are extracellular vesicles containing bioactive substances involved in intercellular communication and material exchange under steady state and pathological conditions. Several studies have reported that exosomes mediate molecular crosstalk between LSCs, leukemic blasts, and stromal cells in the BM niche, promoting LSC maintenance and AML progression. This review briefly describes the process of LSC transformation and the biogenesis of exosomes, highlighting the role of leukemic-cell- and BM-niche-derived exosomes in the maintenance of LSCs and AML progression. In addition, we discuss the potential application of exosomes in the clinic as biomarkers, therapeutic targets, and carriers for targeted drug delivery.
Collapse
Affiliation(s)
- Qian Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengyuan Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lingbo Liu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
8
|
Arroyo-Berdugo Y, Sendino M, Greaves D, Nojszewska N, Idilli O, So CW, Di Silvio L, Quartey-Papafio R, Farzaneh F, Rodriguez JA, Calle Y. High Throughput Fluorescence-Based In Vitro Experimental Platform for the Identification of Effective Therapies to Overcome Tumour Microenvironment-Mediated Drug Resistance in AML. Cancers (Basel) 2023; 15:1988. [PMID: 37046649 PMCID: PMC10093176 DOI: 10.3390/cancers15071988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The interactions between Acute Myeloid Leukaemia (AML) leukemic stem cells and the bone marrow (BM) microenvironment play a critical role during AML progression and resistance to drug treatments. Therefore, the identification of novel therapies requires drug-screening methods using in vitro co-culture models that closely recreate the cytoprotective BM setting. We have developed a new fluorescence-based in vitro co-culture system scalable to high throughput for measuring the concomitant effect of drugs on AML cells and the cytoprotective BM microenvironment. eGFP-expressing AML cells are co-cultured in direct contact with mCherry-expressing BM stromal cells for the accurate assessment of proliferation, viability, and signaling in both cell types. This model identified several efficacious compounds that overcome BM stroma-mediated drug resistance against daunorubicin, including the chromosome region maintenance 1 (CRM1/XPO1) inhibitor KPT-330. In silico analysis of genes co-expressed with CRM1, combined with in vitro experiments using our new methodology, also indicates that the combination of KPT-330 with the AURKA pharmacological inhibitor alisertib circumvents the cytoprotection of AML cells mediated by the BM stroma. This new experimental model and analysis provide a more precise screening method for developing improved therapeutics targeting AML cells within the cytoprotective BM microenvironment.
Collapse
Affiliation(s)
- Yoana Arroyo-Berdugo
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Maria Sendino
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - David Greaves
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Natalia Nojszewska
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Orest Idilli
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Chi Wai So
- Department of Haemato-Oncology, King’s College London, London SE5 9NU, UK
| | - Lucy Di Silvio
- Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| | | | - Farzin Farzaneh
- Department of Haemato-Oncology, King’s College London, London SE5 9NU, UK
| | - Jose Antonio Rodriguez
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Yolanda Calle
- School of Health and Life Sciences, University of Roehampton, London SW15 4JD, UK
| |
Collapse
|
9
|
Carpenter KA, Thurlow KE, Craig SEL, Grainger S. Wnt regulation of hematopoietic stem cell development and disease. Curr Top Dev Biol 2023; 153:255-279. [PMID: 36967197 PMCID: PMC11104846 DOI: 10.1016/bs.ctdb.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hematopoietic stem cells (HSCs) are multipotent stem cells that give rise to all cells of the blood and most immune cells. Due to their capacity for unlimited self-renewal, long-term HSCs replenish the blood and immune cells of an organism throughout its life. HSC development, maintenance, and differentiation are all tightly regulated by cell signaling pathways, including the Wnt pathway. Wnt signaling is initiated extracellularly by secreted ligands which bind to cell surface receptors and give rise to several different downstream signaling cascades. These are classically categorized either β-catenin dependent (BCD) or β-catenin independent (BCI) signaling, depending on their reliance on the β-catenin transcriptional activator. HSC development, homeostasis, and differentiation is influenced by both BCD and BCI, with a high degree of sensitivity to the timing and dosage of Wnt signaling. Importantly, dysregulated Wnt signals can result in hematological malignancies such as leukemia, lymphoma, and myeloma. Here, we review how Wnt signaling impacts HSCs during development and in disease.
Collapse
Affiliation(s)
- Kelsey A Carpenter
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Kate E Thurlow
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States; Van Andel Institute Graduate School, Grand Rapids, MI, United States
| | - Sonya E L Craig
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States
| | - Stephanie Grainger
- Department of Cell Biology, Van Andel Institute, Grand Rapids, MI, United States.
| |
Collapse
|
10
|
Skelding KA, Barry DL, Theron DZ, Lincz LF. Bone Marrow Microenvironment as a Source of New Drug Targets for the Treatment of Acute Myeloid Leukaemia. Int J Mol Sci 2022; 24:563. [PMID: 36614005 PMCID: PMC9820412 DOI: 10.3390/ijms24010563] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a heterogeneous disease with one of the worst survival rates of all cancers. The bone marrow microenvironment is increasingly being recognised as an important mediator of AML chemoresistance and relapse, supporting leukaemia stem cell survival through interactions among stromal, haematopoietic progenitor and leukaemic cells. Traditional therapies targeting leukaemic cells have failed to improve long term survival rates, and as such, the bone marrow niche has become a promising new source of potential therapeutic targets, particularly for relapsed and refractory AML. This review briefly discusses the role of the bone marrow microenvironment in AML development and progression, and as a source of novel therapeutic targets for AML. The main focus of this review is on drugs that modulate/target this bone marrow microenvironment and have been examined in in vivo models or clinically.
Collapse
Affiliation(s)
- Kathryn A. Skelding
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Daniel L. Barry
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Danielle Z. Theron
- Cancer Cell Biology Research Group, School of Biomedical Sciences and Pharmacy, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW 2308, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Lisa F. Lincz
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- Hunter Hematology Research Group, Calvary Mater Newcastle Hospital, Waratah, NSW 2298, Australia
| |
Collapse
|
11
|
Shahid AM, Um IH, Elshani M, Zhang Y, Harrison DJ. NUC-7738 regulates β-catenin signalling resulting in reduced proliferation and self-renewal of AML cells. PLoS One 2022; 17:e0278209. [PMID: 36520954 PMCID: PMC9754587 DOI: 10.1371/journal.pone.0278209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/13/2022] [Indexed: 12/23/2022] Open
Abstract
Acute myeloid leukemia (AML) stem cells are required for the initiation and maintenance of the disease. Activation of the Wnt/β-catenin pathway is required for the survival and development of AML leukaemia stem cells (LSCs) and therefore, targeting β-catenin is a potential therapeutic strategy. NUC-7738, a phosphoramidate transformation of 3'-deoxyadenosine (3'-dA) monophosphate, is specifically designed to generate the active anti-cancer metabolite 3'-deoxyadenosine triphosphate (3'-dATP) intracellularly, bypassing key limitations of breakdown, transport, and activation. NUC-7738 is currently in a Phase I/II clinical study for the treatment of patients with advanced solid tumors. Protein expression and immunophenotypic profiling revealed that NUC-7738 caused apoptosis in AML cell lines through reducing PI3K-p110α, phosphorylated Akt (Ser473) and phosphorylated GSK3β (Ser9) resulting in reduced β-catenin, c-Myc and CD44 expression. NUC-7738 reduced β-catenin nuclear expression in AML cells. NUC-7738 also decreased the percentage of CD34+ CD38- CD123+ (LSC-like cells) from 81% to 47% and reduced the total number and size of leukemic colonies. These results indicate that therapeutic targeting of the PI3K/Akt/GSK3β axis can inhibit β-catenin signalling, resulting in reduced clonogenicity and eventual apoptosis of AML cells.
Collapse
Affiliation(s)
| | - In Hwa Um
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Mustafa Elshani
- School of Medicine, University of St Andrews, St Andrews, United Kingdom,NuCana plc, Edinburgh, United Kingdom
| | - Ying Zhang
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - David James Harrison
- School of Medicine, University of St Andrews, St Andrews, United Kingdom,NuCana plc, Edinburgh, United Kingdom
| |
Collapse
|
12
|
Abstract
OPINION STATEMENT Acute myeloid leukemia (AML) is the most common form of leukemia in adults, leading to the highest number of annual leukemia-associated deaths in the USA. Although most AML patients initially enter remission following induction therapy, most eventually relapse, underscoring the unmet need for more effective therapies. In recent years, novel high-throughput sequencing techniques, and mouse and human models of disease have increased our understanding of the molecular mechanisms that lead to AML. Leukemogenic mechanisms can be broadly classified into two types-cell-intrinsic and cell-extrinsic. Cell-intrinsic mechanisms include an array of genetic and epigenetic alterations that lead to dysregulated gene expression and function in hematopoietic stem/progenitor cells, leading to their increased fitness and ultimately, malignant transformation. Extrinsic mechanisms include both hematopoietic and non-hematopoietic stromal components of the leukemic microenvironment that interact with pre-leukemic and leukemic clones to promote their survival, self-renewal, and/or resistance to therapy. Through the individual and concerted action of these factors, pre-leukemic clones acquire the changes necessary for leukemic transformation. In addition, following therapy, specific leukemic clones are selected for that eventually re-initiate disease. Improving our understanding of these cell-intrinsic and cell-extrinsic mechanisms will provide novel opportunities to treat AML as well as prevent the development of disease.
Collapse
|
13
|
Minnie SA, Waltner OG, Ensbey KS, Nemychenkov NS, Schmidt CR, Bhise SS, Legg SRW, Campoy G, Samson LD, Kuns RD, Zhou T, Huck JD, Vuckovic S, Zamora D, Yeh A, Spencer A, Koyama M, Markey KA, Lane SW, Boeckh M, Ring AM, Furlan SN, Hill GR. Depletion of exhausted alloreactive T cells enables targeting of stem-like memory T cells to generate tumor-specific immunity. Sci Immunol 2022; 7:eabo3420. [PMID: 36240285 PMCID: PMC10184646 DOI: 10.1126/sciimmunol.abo3420] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Some hematological malignancies such as multiple myeloma are inherently resistant to immune-mediated antitumor responses, the cause of which remains unknown. Allogeneic bone marrow transplantation (alloBMT) is the only curative immunotherapy for hematological malignancies due to profound graft-versus-tumor (GVT) effects, but relapse remains the major cause of death. We developed murine models of alloBMT where the hematological malignancy is either sensitive [acute myeloid leukemia (AML)] or resistant (myeloma) to GVT effects. We found that CD8+ T cell exhaustion in bone marrow was primarily alloantigen-driven, with expression of inhibitory ligands present on myeloma but not AML. Because of this tumor-independent exhaustion signature, immune checkpoint inhibition (ICI) in myeloma exacerbated graft-versus-host disease (GVHD) without promoting GVT effects. Administration of post-transplant cyclophosphamide (PT-Cy) depleted donor T cells with an exhausted phenotype and spared T cells displaying a stem-like memory phenotype with chromatin accessibility present in cytokine signaling genes, including the interleukin-18 (IL-18) receptor. Whereas ICI with anti-PD-1 or anti-TIM-3 remained ineffective after PT-Cy, administration of a decoy-resistant IL-18 (DR-18) strongly enhanced GVT effects in both myeloma and leukemia models, without exacerbation of GVHD. We thus defined mechanisms of resistance to T cell-mediated antitumor effects after alloBMT and described an immunotherapy approach targeting stem-like memory T cells to enhance antitumor immunity.
Collapse
Affiliation(s)
- Simone A. Minnie
- Clinical Research Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, UNITED STATES
| | - Olivia G. Waltner
- Clinical Research Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, UNITED STATES
| | - Kathleen S. Ensbey
- Clinical Research Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, UNITED STATES
| | - Nicole S. Nemychenkov
- Clinical Research Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, UNITED STATES
| | - Christine R. Schmidt
- Clinical Research Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, UNITED STATES
| | - Shruti S. Bhise
- Clinical Research Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, UNITED STATES
| | - Samuel RW. Legg
- Clinical Research Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, UNITED STATES
| | - Gabriela Campoy
- Clinical Research Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, UNITED STATES
| | - Luke D. Samson
- Clinical Research Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, UNITED STATES
| | - Rachel D. Kuns
- QIMR Berghofer Medical Research Institute; Brisbane, QLD, 4006, AUSTRALIA
| | - Ting Zhou
- Department of Immunobiology, Yale School of Medicine; New Haven, CT, 06519, UNITED STATES
| | - John D. Huck
- Department of Immunobiology, Yale School of Medicine; New Haven, CT, 06519, UNITED STATES
| | - Slavica Vuckovic
- QIMR Berghofer Medical Research Institute; Brisbane, QLD, 4006, AUSTRALIA
| | - Danniel Zamora
- Department of Medicine, University of Washington; Seattle, WA, 98109, UNITED STATES
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, UNITED STATES
| | - Albert Yeh
- Clinical Research Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, UNITED STATES
- Department of Medicine, University of Washington; Seattle, WA, 98109, UNITED STATES
| | - Andrew Spencer
- Australian Center for Blood Diseases, Monash University/The Alfred Hospital; Melbourne, VIC, 3004, AUSTRALIA
- Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital; Melbourne, VIC, 3004, AUSTRALIA
- Department of Clinical Haematology, Monash University; Melbourne, VIC, 3800, AUSTRALIA
| | - Motoko Koyama
- Clinical Research Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, UNITED STATES
| | - Kate A. Markey
- Clinical Research Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, UNITED STATES
- Department of Medicine, University of Washington; Seattle, WA, 98109, UNITED STATES
| | - Steven W. Lane
- QIMR Berghofer Medical Research Institute; Brisbane, QLD, 4006, AUSTRALIA
| | - Michael Boeckh
- Clinical Research Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, UNITED STATES
- Department of Medicine, University of Washington; Seattle, WA, 98109, UNITED STATES
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, UNITED STATES
| | - Aaron M. Ring
- Department of Immunobiology, Yale School of Medicine; New Haven, CT, 06519, UNITED STATES
| | - Scott N. Furlan
- Clinical Research Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, UNITED STATES
- Department of Pediatrics, University of Washington; WA, 98105, UNITED STATES
| | - Geoffrey R. Hill
- Clinical Research Division, Fred Hutchinson Cancer Center; Seattle, WA, 98109, UNITED STATES
- Department of Medicine, University of Washington; Seattle, WA, 98109, UNITED STATES
| |
Collapse
|
14
|
Reduced expression of lncRNA DLEU7-AS1 is a novel favorable prognostic factor in acute myeloid leukemia. Biosci Rep 2022; 42:231264. [PMID: 35506368 PMCID: PMC9118369 DOI: 10.1042/bsr20212078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 11/26/2022] Open
Abstract
The objective of our study was to measure DLEU7-AS1 expression in de novo acute myeloid leukemia (AML) whilst also analyzing its clinical relevance. We used gene expression data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Cancer Cell Line Encyclopedia (CCLE) and Genotype-Tissue Expression project (GTEx) to assess the expression profile of DLEU7-AS1 in pan-cancers, cancer cell lines and normal tissues. Reverse transcription-quantitative PCR was used to measure DLEU7-AS1 expression in bone marrow from 30 normal individuals and 110 patients with de novo AML. DLEU7-AS1 expression was found to be markedly reduced in the AML samples of the TCGA pan-cancer datasets. In our PCR validation, DLEU7-AS1 expression was significantly decreased in the AML samples compared with that in controls (P<0.001). Low DLEU7-AS1 expression (DLEU7-AS1low) correlated positively with lower blood platelet counts (P=0.029). In addition, low DLEU7-AS1 expression was more frequently observed in the intermediate (58%; 44/76) and favorable karyotypes (65%; 15/23) compared with that in the poor karyotype (10%; 1/10; P=0.005). In particular, patients with high expression levels of DLEU7-AS1 (DLEU7-AS1high) showed lower complete remission rates (P=0.002) than patients with DLEU7-AS1low. Survival analysis revealed that patients with DLEU7-AS1low had longer overall survival (OS) than patients with DLEU7-AS1high (P<0.05). Multivariate Cox analysis demonstrated that in patients with non-acute promyelocytic leukemia (non-M3) who were ≤60 years old, DLEU7-AS1 expression was an independent prognostic factor for OS. Furthermore, we found distinct correlations among the expression of DLEU7-AS1, infiltration by immune cells and immune checkpoint genes in AML.
Collapse
|
15
|
Targeting β-catenin in acute myeloid leukaemia: past, present, and future perspectives. Biosci Rep 2022; 42:231097. [PMID: 35352805 PMCID: PMC9069440 DOI: 10.1042/bsr20211841] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/24/2022] Open
Abstract
Acute myeloid leukaemia (AML) is an aggressive disease of the bone marrow with a poor prognosis. Evidence suggests long established chemotherapeutic regimens used to treat AML are reaching the limits of their efficacy, necessitating the urgent development of novel targeted therapies. Canonical Wnt signalling is an evolutionary conserved cascade heavily implicated in normal developmental and disease processes in humans. For over 15 years its been known that the central mediator of this pathway, β-catenin, is dysregulated in AML promoting the emergence, maintenance, and drug resistance of leukaemia stem cells. Yet, despite this knowledge, and subsequent studies demonstrating the therapeutic potential of targeting Wnt activity in haematological cancers, β-catenin inhibitors have not yet reached the clinic. The aim of this review is to summarise the current understanding regarding the role and mechanistic dysregulation of β-catenin in AML, and assess the therapeutic merit of pharmacologically targeting this molecule, drawing on lessons from other disease contexts.
Collapse
|
16
|
Leukemia Stem Cells as a Potential Target to Achieve Therapy-Free Remission in Chronic Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13225822. [PMID: 34830976 PMCID: PMC8616035 DOI: 10.3390/cancers13225822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Leukemia stem cells (LSCs, also known as leukemia-initiating cells) not only drive leukemia initiation and progression, but also contribute to drug resistance and/or disease relapse. Therefore, eradication of every last LSC is critical for a patient's long-term cure. Chronic myeloid leukemia (CML) is a myeloproliferative disorder that arises from multipotent hematopoietic stem and progenitor cells. Tyrosine kinase inhibitors (TKIs) have dramatically improved long-term outcomes and quality of life for patients with CML in the chronic phase. Point mutations of the kinase domain of BCR-ABL1 lead to TKI resistance through a reduction in drug binding, and as a result, several new generations of TKIs have been introduced to the clinic. Some patients develop TKI resistance without known mutations, however, and the presence of LSCs is believed to be at least partially associated with resistance development and CML relapse. We previously proposed targeting quiescent LSCs as a therapeutic approach to CML, and a number of potential strategies for targeting insensitive LSCs have been presented over the last decade. The identification of specific markers distinguishing CML-LSCs from healthy HSCs, and the potential contributions of the bone marrow microenvironment to CML pathogenesis, have also been explored. Nonetheless, 25% of CML patients are still expected to switch TKIs at least once, and various TKI discontinuation studies have shown a wide range in the incidence of molecular relapse (from 30% to 60%). In this review, we revisit the current knowledge regarding the role(s) of LSCs in CML leukemogenesis and response to pharmacological treatment and explore how durable treatment-free remission may be achieved and maintained after discontinuing TKI treatment.
Collapse
|
17
|
Wen XM, Xu ZJ, Jin Y, Xia PH, Ma JC, Qian W, Lin J, Qian J. Association Analyses of TP53 Mutation With Prognosis, Tumor Mutational Burden, and Immunological Features in Acute Myeloid Leukemia. Front Immunol 2021; 12:717527. [PMID: 34745095 PMCID: PMC8566372 DOI: 10.3389/fimmu.2021.717527] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/27/2021] [Indexed: 12/28/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease related to a broad spectrum of molecular alterations. The successes of immunotherapies treating solid tumors and a deeper understanding of the immune systems of patients with hematologic malignancies have promoted the development of immunotherapies for the treatment of AML. And high tumor mutational burden (TMB) is an emerging predictive biomarker for response to immunotherapy. However, the association of gene mutation in AML with TMB and immunological features still has not been clearly elucidated. In our study, based on The Cancer Genome Atlas (TCGA) and BeatAML cohorts, 20 frequently mutated genes were found to be covered by both datasets in AML. And TP53 mutation was associated with a poor prognosis, and its mutation displayed exclusiveness with other common mutated genes in both datasets. Moreover, TP53 mutation correlated with TMB and the immune microenvironment. Gene Set Enrichment Analysis (GSEA) showed that TP53 mutation upregulated signaling pathways involved in the immune system. In summary, TP53 mutation is frequently mutated in AML, and its mutation is associated with dismal outcome, TMB, and immunological features, which may serve as a biomarker to predict immune response in AML.
Collapse
Affiliation(s)
- Xiang-Mei Wen
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Zi-Jun Xu
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Ye Jin
- Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Pei-Hui Xia
- Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Ji-Chun Ma
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Qian
- Department of Otolaryngology-Head and Neck Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jiang Lin
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,The Key Lab of Precision Diagnosis and Treatment in Hematologic Malignancies of Zhenjiang City, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Jun Qian
- Zhenjiang Clinical Research Center of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Department of Hematology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
18
|
Tosato G, Feng JX, Ohnuki H, Sim M. Bone marrow niches in myelodysplastic syndromes. JOURNAL OF CANCER METASTASIS AND TREATMENT 2021; 7. [PMID: 34746416 PMCID: PMC8570581 DOI: 10.20517/2394-4722.2021.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic and epigenetic lesions within hematopoietic cell populations drive diverse hematological malignancies. Myelodysplastic syndromes (MDS) are a group of myeloid neoplasms affecting the hematopoietic stem cells characterized by recurrent genetic abnormalities, myelodysplasia (a pathological definition of abnormal bone marrow structure), ineffective hematopoiesis resulting in blood cytopenia, and a propensity to evolve into acute myelogenous leukemia. Although there is evidence that the accumulation of a set of genetic mutations is an essential event in MDS, there is an increased appreciation of the contribution of specific microenvironments, niches, in the pathogenesis of MDS and response to treatment. In physiologic hematopoiesis, niches are critical functional units that maintain hematopoietic stem and progenitor cells and regulate their maturation into mature blood cells. In MDS and other hematological malignancies, altered bone marrow niches can promote the survival and expansion of mutant hematopoietic clones and provide a shield from therapy. In this review, we focus on our understanding of the composition and function of hematopoietic niches and their role in the evolution of myeloid malignancies, with an emphasis on MDS.
Collapse
Affiliation(s)
- Giovanna Tosato
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jing-Xin Feng
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hidetaka Ohnuki
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Minji Sim
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
19
|
Marchand T, Pinho S. Leukemic Stem Cells: From Leukemic Niche Biology to Treatment Opportunities. Front Immunol 2021; 12:775128. [PMID: 34721441 PMCID: PMC8554324 DOI: 10.3389/fimmu.2021.775128] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common types of leukemia in adults. While complete remission can be obtained with intensive chemotherapy in young and fit patients, relapse is frequent and prognosis remains poor. Leukemic cells are thought to arise from a pool of leukemic stem cells (LSCs) which sit at the top of the hierarchy. Since their discovery, more than 30 years ago, LSCs have been a topic of intense research and their identification paved the way for cancer stem cell research. LSCs are defined by their ability to self-renew, to engraft into recipient mice and to give rise to leukemia. Compared to healthy hematopoietic stem cells (HSCs), LSCs display specific mutations, epigenetic modifications, and a specific metabolic profile. LSCs are usually considered resistant to chemotherapy and are therefore the drivers of relapse. Similar to their HSC counterpart, LSCs reside in a highly specialized microenvironment referred to as the “niche”. Bidirectional interactions between leukemic cells and the microenvironment favor leukemic progression at the expense of healthy hematopoiesis. Within the niche, LSCs are thought to be protected from genotoxic insults. Improvement in our understanding of LSC gene expression profile and phenotype has led to the development of prognosis signatures and the identification of potential therapeutic targets. In this review, we will discuss LSC biology in the context of their specific microenvironment and how a better understanding of LSC niche biology could pave the way for new therapies that target AML.
Collapse
Affiliation(s)
- Tony Marchand
- Service d'Hématologie Clinique, Centre Hospitalier Universitaire de Rennes, Rennes, France.,Faculté de médecine, Université Rennes 1, Rennes, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) U1236, Rennes, France
| | - Sandra Pinho
- Department of Pharmacology & Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
20
|
Bolandi SM, Pakjoo M, Beigi P, Kiani M, Allahgholipour A, Goudarzi N, Khorashad JS, Eiring AM. A Role for the Bone Marrow Microenvironment in Drug Resistance of Acute Myeloid Leukemia. Cells 2021; 10:2833. [PMID: 34831055 PMCID: PMC8616250 DOI: 10.3390/cells10112833] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis and remarkable resistance to chemotherapeutic agents. Understanding resistance mechanisms against currently available drugs helps to recognize the therapeutic obstacles. Various mechanisms of resistance to chemotherapy or targeted inhibitors have been described for AML cells, including a role for the bone marrow niche in both the initiation and persistence of the disease, and in drug resistance of the leukemic stem cell (LSC) population. The BM niche supports LSC survival through direct and indirect interactions among the stromal cells, hematopoietic stem/progenitor cells, and leukemic cells. Additionally, the BM niche mediates changes in metabolic and signal pathway activation due to the acquisition of new mutations or selection and expansion of a minor clone. This review briefly discusses the role of the BM microenvironment and metabolic pathways in resistance to therapy, as discovered through AML clinical studies or cell line and animal models.
Collapse
Affiliation(s)
- Seyed Mohammadreza Bolandi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Mahdi Pakjoo
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Peyman Beigi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; (M.P.); (P.B.)
| | - Mohammad Kiani
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Ali Allahgholipour
- Department of Pharmacology, Karaj Branch, Islamic Azad University, Karaj, Iran; (M.K.); (A.A.)
| | - Negar Goudarzi
- Department of Immunology, Razi Vaccine and Sera Research Institute, Karaj, Iran; (S.M.B.); (N.G.)
| | - Jamshid S. Khorashad
- Centre for Haematology, Hammersmith Hospital, Imperial College London, London W12 0HS, UK;
| | - Anna M. Eiring
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center at El Paso, El Paso, TX 79905, USA
| |
Collapse
|
21
|
Li K, Jin R, Wu X. The role of macrophages and osteoclasts in the progression of leukemia. ACTA ACUST UNITED AC 2021; 26:724-733. [PMID: 34555294 DOI: 10.1080/16078454.2021.1976911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
ABSTRACTBone marrow microenvironment provides critical regulatory signals for lineage differentiation and maintenance of HSC quiescence, and these signals also contribute to hematological myeloid malignancies. Macrophages exhibit high phenotypic heterogeneity under both physiological and pathological conditions and are mainly divided into proinflammatory M1 and anti-inflammatory M2 macrophages. Furthermore, osteoclasts are multinucleated giant cells that arise by fusion of monocyte/macrophage-like cells, which are commonly known as bone macrophages. Emerging evidence suggests that macrophages and osteoclasts originating from myeloid progenitors lead to two competing differentiation outcomes, and they appear to play an important role in the onset, progression, and bone metastasis of solid cancers. However, little is known about their role in the development of hematological malignancies. In this review, we focus on macrophages and osteoclasts, their role in leukemia, and the potential for targeting these cells in this disease.
Collapse
Affiliation(s)
- Kun Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
22
|
Hiremath IS, Goel A, Warrier S, Kumar AP, Sethi G, Garg M. The multidimensional role of the Wnt/β-catenin signaling pathway in human malignancies. J Cell Physiol 2021; 237:199-238. [PMID: 34431086 DOI: 10.1002/jcp.30561] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023]
Abstract
Several signaling pathways have been identified as important for developmental processes. One of such important cascades is the Wnt/β-catenin signaling pathway, which can regulate various physiological processes such as embryonic development, tissue homeostasis, and tissue regeneration; while its dysregulation is implicated in several pathological conditions especially cancers. Interestingly, deregulation of the Wnt/β-catenin pathway has been reported to be closely associated with initiation, progression, metastasis, maintenance of cancer stem cells, and drug resistance in human malignancies. Moreover, several genetic and experimental models support the inhibition of the Wnt/β-catenin pathway to answer the key issues related to cancer development. The present review focuses on different regulators of Wnt pathway and how distinct mutations, deletion, and amplification in these regulators could possibly play an essential role in the development of several cancers such as colorectal, melanoma, breast, lung, and leukemia. Additionally, we also provide insights on diverse classes of inhibitors of the Wnt/β-catenin pathway, which are currently in preclinical and clinical trial against different cancers.
Collapse
Affiliation(s)
- Ishita S Hiremath
- Department of Bioengineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Arul Goel
- La Canada High School, La Canada Flintridge, California, USA
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India.,Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, Karnataka, India
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Manoj Garg
- Amity Institute of Biotechnology, Amity University, Manesar, Haryana, India
| |
Collapse
|
23
|
Kikushige Y. TIM-3 in normal and malignant hematopoiesis: Structure, function, and signaling pathways. Cancer Sci 2021; 112:3419-3426. [PMID: 34159709 PMCID: PMC8409405 DOI: 10.1111/cas.15042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/03/2021] [Accepted: 06/20/2021] [Indexed: 12/15/2022] Open
Abstract
Acute myeloid leukemia (AML) is hierarchically organized by self-renewing leukemic stem cells (LSCs). LSCs originate from hematopoietic stem cells (HSCs) by acquiring multistep leukemogenic events. To specifically eradicate LSCs, while keeping normal HSCs intact, the discrimination of LSCs from HSCs is important. We have identified T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) as an LSC-specific surface molecule in human myeloid malignancies and demonstrated its essential function in maintaining the self-renewal ability of LSCs. TIM-3 has been intensively investigated as a "coinhibitory" or "immune checkpoint" molecule of T cells. However, little is known about its distinct function in T cells and myeloid malignancies. In this review, we discuss the structure of TIM-3 and its function in normal blood cells and LSCs, emphasizing the specific signaling pathways involved, as well as the therapeutic applications of TIM-3 molecules in human myeloid malignancies.
Collapse
Affiliation(s)
- Yoshikane Kikushige
- Department of Medicine and Biosystemic Sciences, Kyushu University Graduate School of Medicine, Fukuoka, Japan.,Center for Cellular and Molecular Medicine, Kyushu University Hospital, Fukuoka, Japan
| |
Collapse
|
24
|
Caspi M, Wittenstein A, Kazelnik M, Shor-Nareznoy Y, Rosin-Arbesfeld R. Therapeutic targeting of the oncogenic Wnt signaling pathway for treating colorectal cancer and other colonic disorders. Adv Drug Deliv Rev 2021; 169:118-136. [PMID: 33346022 DOI: 10.1016/j.addr.2020.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
The canonical Wnt pathway is one of the key cellular signaling cascades that regulates, via the transcriptional co-activator β-catenin, numerous embryogenic developmental processes, as well as tissue homeostasis. It is therefore not surprising that misregulation of the Wnt/β-catenin pathway has been implicated in carcinogenesis. Aberrant Wnt signaling has been reported in a variety of malignancies, and its role in both hereditary and sporadic colorectal cancer (CRC), has been the subject of intensive study. Interestingly, the vast majority of colorectal tumors harbor mutations in the tumor suppressor gene adenomatous polyposis coli (APC). The Wnt pathway is complex, and despite decades of research, the mechanisms that underlie its functions are not completely known. Thus, although the Wnt cascade is an attractive target for therapeutic intervention against CRC, one of the malignancies with the highest morbidity and mortality rates, achieving efficacy and safety is yet extremely challenging. Here, we review the current knowledge of the Wnt different epistatic signaling components and the mechanism/s by which the signal is transduced in both health and disease, focusing on CRC. We address some of the important questions in the field and describe various therapeutic strategies designed to combat unregulated Wnt signaling, the development of targeted therapy approaches and the emerging challenges that are associated with these advanced methods.
Collapse
|
25
|
Mpakou V, Spathis A, Bouhla A, Mpazani E, Papageorgiou S, Gkontopoulos K, Glezou E, Thomopoulos T, Foukas P, Pappa V. Synergistic inhibitory effects of low-dose decitabine in combination with bortezomib in the AML cell line Kasumi-1. Exp Ther Med 2021; 21:195. [PMID: 33488804 PMCID: PMC7812574 DOI: 10.3892/etm.2021.9628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 11/17/2020] [Indexed: 11/29/2022] Open
Abstract
In the present study, the ability of the proteasome inhibitor bortezomib (BZ), an oxidative stress-inducing agent, to sensitize acute myeloid leukemia (AML) cells to decitabine (Dacogen®, DAC; a DNA methyltransferase inhibitor), in terms of cell viability and differentiation, was investigated. Kasumi-1 AML (M2) cells were treated with low-dose DAC (10, 50, 100, 200 or 400 nΜ), with or without BZ (10 nM). Apoptosis and the cell cycle were evaluated after 24 h of treatment through fluorescence-assisted cell sorting (FACS) with Annexin V/propidium iodide and DAPI staining, respectively. The expression levels of CD193, CD11b, CD13, CD14, CD15, CD16 and CD117 surface differentiation markers were evaluated by FACS after 6 days of treatment. The results indicated significant alterations in cell death and cell cycle phases in Kasumi-1 cells following DAC and BZ combination treatment compared to untreated cells and cells with single treatments. Low-dose DAC/BZ combinations significantly enhanced apoptosis and decreased the population of live Kasumi-1 cells, with 100 and 200 nM of DAC and 10 nM BZ appearing to have the most potent synergistic effect according to a combination index. Furthermore, cell cycle profiling revealed that DAC/BZ treatment synergistically led to G0/G1- and G2/M-phase arrest. By contrast, DAC appeared to promote monocytic and granulocytic differentiation of Kasumi-1 cells more effectively alone than in combination with BZ. BZ acted synergistically with low-dose DAC in vitro, leading to enhanced apoptosis and G0/G1- and G2/M-phase arrest in AML cells, hence prohibiting either DNA synthesis or mitosis. Although further in vivo investigation is necessary, these results provide a strong rationale for the implementation of a combination treatment with DAC and bortezomib in AML therapy, followed by DAC alone, which may achieve better clinical responses and possibly partially overcome the frequently encountered DAC resistance of patients with AML.
Collapse
Affiliation(s)
- Vassiliki Mpakou
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens 12462, Greece
| | - Aris Spathis
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens 12462, Greece
| | - Anthi Bouhla
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens 12462, Greece
| | - Efthimia Mpazani
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens 12462, Greece
| | - Sotirios Papageorgiou
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens 12462, Greece
| | - Konstantinos Gkontopoulos
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens 12462, Greece
| | - Eirini Glezou
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens 12462, Greece
| | - Thomas Thomopoulos
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens 12462, Greece
| | - Periklis Foukas
- Second Department of Pathology, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens 12462, Greece
| | - Vasiliki Pappa
- Second Department of Internal Medicine and Research Institute, National and Kapodistrian University of Athens, Attikon University General Hospital, Athens 12462, Greece
| |
Collapse
|
26
|
Frenquelli M, Tonon G. WNT Signaling in Hematological Malignancies. Front Oncol 2020; 10:615190. [PMID: 33409156 PMCID: PMC7779757 DOI: 10.3389/fonc.2020.615190] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022] Open
Abstract
The role of the WNT signaling pathway in key cellular processes, such as cell proliferation, differentiation and migration is well documented. WNT signaling cascade is initiated by the interaction of WNT ligands with receptors belonging to the Frizzled family, and/or the ROR1/ROR2 and RYK families. The downstream signaling cascade results in the activation of the canonical β-catenin dependent pathway, ultimately leading to transcriptional control of cell proliferation, or the non-canonical pathway, mainly acting on cell migration and cell polarity. The high level of expression of both WNT ligands and WNT receptors in cancer cells and in the surrounding microenvironment suggests that WNT may represent a central conduit of interactions between tumor cells and microenviroment. In this review we will focus on WNT pathways deregulation in hematological cancers, both at the ligand and receptor levels. We will review available literature regarding both the classical β-catenin dependent pathway as well as the non-canonical pathway, with particular emphasis on the possible exploitation of WNT aberrant activation as a therapeutic target, a notion supported by preclinical data.
Collapse
Affiliation(s)
- Michela Frenquelli
- B-cell Neoplasia Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Tonon
- Functional Genomics of Cancer Unit, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Center for Omics Sciences (COSR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
27
|
Miao R, Lim VY, Kothapalli N, Ma Y, Fossati J, Zehentmeier S, Sun R, Pereira JP. Hematopoietic Stem Cell Niches and Signals Controlling Immune Cell Development and Maintenance of Immunological Memory. Front Immunol 2020; 11:600127. [PMID: 33324418 PMCID: PMC7726109 DOI: 10.3389/fimmu.2020.600127] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Studies over the last couple of decades have shown that hematopoietic stem cells (HSCs) are critically dependent on cytokines such as Stem Cell Factor and other signals provided by bone marrow niches comprising of mesenchymal stem and progenitor cells (MSPCs) and endothelial cells (ECs). Because of their critical roles in HSC maintenance the niches formed by MSPCs and ECs are commonly referred to as HSC niches. For the most part, the signals required for HSC maintenance act in a short-range manner, which imposes the necessity for directional and positional cues in order for HSCs to localize and be retained properly in stem cell niches. The chemokine CXCL12 and its Gαi protein coupled receptor CXCR4, besides promoting HSC quiescence directly, also play instrumental roles in enabling HSCs to access bone marrow stem cell niches. Recent studies have revealed, however, that HSC niches also provide a constellation of hematopoietic cytokines that are critical for the production of most, if not all, blood cell types. Some hematopoietic cytokines, namely IL-7 and IL-15 produced by HSC niches, are not only required for lymphopoiesis but are also essential for memory T cell maintenance. Consequently, hematopoietic progenitors and differentiated immune cells, such as memory T cell subsets, also depend on the CXCL12/CXCR4 axis for migration into bone marrow and interactions with MSPCs and ECs. Similarly, subsets of antibody-secreting plasma cells also reside in close association with CXCL12-producing MSPCs in the bone marrow and require the CXCR4/CXCL12 axis for survival and long-term maintenance. Collectively, these studies demonstrate a broad range of key physiological roles, spanning blood cell production and maintenance of immunological memory, that are orchestrated by stem cell niches through a common and simple mechanism: CXCL12/CXCR4-mediated cell recruitment followed by receipt of a maintenance and/or instructive signal. A fundamental flaw of this type of cellular organization is revealed by myeloid and lymphoid leukemias, which target stem cell niches and induce profound transcriptomic changes that result in reduced hematopoietic activity and altered mesenchymal cell differentiation.
Collapse
Affiliation(s)
- Runfeng Miao
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Vivian Y Lim
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Neeharika Kothapalli
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Yifan Ma
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Julia Fossati
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Sandra Zehentmeier
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - Ruifeng Sun
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| | - João P Pereira
- Department of Immunobiology and Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
28
|
Forte D, García-Fernández M, Sánchez-Aguilera A, Stavropoulou V, Fielding C, Martín-Pérez D, López JA, Costa ASH, Tronci L, Nikitopoulou E, Barber M, Gallipoli P, Marando L, Fernández de Castillejo CL, Tzankov A, Dietmann S, Cavo M, Catani L, Curti A, Vázquez J, Frezza C, Huntly BJ, Schwaller J, Méndez-Ferrer S. Bone Marrow Mesenchymal Stem Cells Support Acute Myeloid Leukemia Bioenergetics and Enhance Antioxidant Defense and Escape from Chemotherapy. Cell Metab 2020; 32:829-843.e9. [PMID: 32966766 PMCID: PMC7658808 DOI: 10.1016/j.cmet.2020.09.001] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/12/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022]
Abstract
Like normal hematopoietic stem cells, leukemic stem cells depend on their bone marrow (BM) microenvironment for survival, but the underlying mechanisms remain largely unknown. We have studied the contribution of nestin+ BM mesenchymal stem cells (BMSCs) to MLL-AF9-driven acute myeloid leukemia (AML) development and chemoresistance in vivo. Unlike bulk stroma, nestin+ BMSC numbers are not reduced in AML, but their function changes to support AML cells, at the expense of non-mutated hematopoietic stem cells (HSCs). Nestin+ cell depletion delays leukemogenesis in primary AML mice and selectively decreases AML, but not normal, cells in chimeric mice. Nestin+ BMSCs support survival and chemotherapy relapse of AML through increased oxidative phosphorylation, tricarboxylic acid (TCA) cycle activity, and glutathione (GSH)-mediated antioxidant defense. Therefore, AML cells co-opt energy sources and antioxidant defense mechanisms from BMSCs to survive chemotherapy.
Collapse
Affiliation(s)
- Dorian Forte
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; National Health Service Blood and Transplant, CB2 0PT Cambridge, UK; Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, 40138 Bologna, Italy
| | - María García-Fernández
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; National Health Service Blood and Transplant, CB2 0PT Cambridge, UK
| | | | - Vaia Stavropoulou
- University Children's Hospital and Department of Biomedicine (DBM), University of Basel, 4031 Basel, Switzerland
| | - Claire Fielding
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; National Health Service Blood and Transplant, CB2 0PT Cambridge, UK
| | - Daniel Martín-Pérez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Juan Antonio López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, CB2 0XZ Cambridge, UK
| | - Laura Tronci
- MRC Cancer Unit, University of Cambridge, CB2 0XZ Cambridge, UK
| | | | - Michael Barber
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK
| | - Paolo Gallipoli
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK
| | - Ludovica Marando
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK
| | | | - Alexandar Tzankov
- Institute of Pathology, University Hospital Basel, 4031 Basel, Switzerland
| | - Sabine Dietmann
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK
| | - Michele Cavo
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, 40138 Bologna, Italy; Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, 40138 Bologna, Italy
| | - Lucia Catani
- Istituto di Ematologia "Seràgnoli", Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale, Università degli Studi, 40138 Bologna, Italy; Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, 40138 Bologna, Italy
| | - Antonio Curti
- Azienda Ospedaliero-Universitaria di Bologna, via Albertoni 15, 40138 Bologna, Italy
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | | | - Brian J Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; Department of Haematology, University of Cambridge, CB2 0AW Cambridge, UK
| | - Juerg Schwaller
- University Children's Hospital and Department of Biomedicine (DBM), University of Basel, 4031 Basel, Switzerland.
| | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, CB2 0AW Cambridge, UK; Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
29
|
Zhao X, Shao P, Gai K, Li F, Shan Q, Xue HH. β-catenin and γ-catenin are dispensable for T lymphocytes and AML leukemic stem cells. eLife 2020; 9:55360. [PMID: 32820720 PMCID: PMC7462606 DOI: 10.7554/elife.55360] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
The β-catenin transcriptional coregulator is involved in various biological and pathological processes; however, its requirements in hematopoietic cells remain controversial. We re-targeted the Ctnnb1 gene locus to generate a true β-catenin-null mutant mouse strain. Ablation of β-catenin alone, or in combination with its homologue γ-catenin, did not affect thymocyte maturation, survival or proliferation. Deficiency in β/γ-catenin did not detectably affect differentiation of CD4+T follicular helper cells or that of effector and memory CD8+ cytotoxic cells in response to acute viral infection. In an MLL-AF9 AML mouse model, genetic deletion of β-catenin, or even all four Tcf/Lef family transcription factors that interact with β-catenin, did not affect AML onset in primary recipients, or the ability of leukemic stem cells (LSCs) in propagating AML in secondary recipients. Our data thus clarify on a long-standing controversy and indicate that β-catenin is dispensable for T cells and AML LSCs.
Collapse
Affiliation(s)
- Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States
| | - Peng Shao
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Kexin Gai
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States
| | - Fengyin Li
- Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiang Shan
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, United States.,New Jersey Veterans Affairs Health Care System, East Orange, United States
| |
Collapse
|
30
|
Kumar R, Pereira RS, Zanetti C, Minciacchi VR, Merten M, Meister M, Niemann J, Dietz MS, Rüssel N, Schnütgen F, Tamai M, Akahane K, Inukai T, Oellerich T, Kvasnicka HM, Pfeifer H, Nicolini FE, Heilemann M, Van Etten RA, Krause DS. Specific, targetable interactions with the microenvironment influence imatinib-resistant chronic myeloid leukemia. Leukemia 2020; 34:2087-2101. [PMID: 32439895 PMCID: PMC7387317 DOI: 10.1038/s41375-020-0866-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/29/2020] [Accepted: 05/11/2020] [Indexed: 12/30/2022]
Abstract
Therapy resistance in leukemia may be due to cancer cell-intrinsic and/or -extrinsic mechanisms. Mutations within BCR-ABL1, the oncogene giving rise to chronic myeloid leukemia (CML), lead to resistance to tyrosine kinase inhibitors (TKI), and some are associated with clinically more aggressive disease and worse outcome. Using the retroviral transduction/transplantation model of CML and human cell lines we faithfully recapitulate accelerated disease course in TKI resistance. We show in various models, that murine and human imatinib-resistant leukemia cells positive for the oncogene BCR-ABL1T315I differ from BCR-ABL1 native (BCR-ABL1) cells with regards to niche location and specific niche interactions. We implicate a pathway via integrin β3, integrin-linked kinase (ILK) and its role in deposition of the extracellular matrix (ECM) protein fibronectin as causative of these differences. We demonstrate a trend towards a reduced BCR-ABL1T315I+ tumor burden and significantly prolonged survival of mice with BCR-ABL1T315I+ CML treated with fibronectin or an ILK inhibitor in xenogeneic and syngeneic murine transplantation models, respectively. These data suggest that interactions with ECM proteins via the integrin β3/ILK-mediated signaling pathway in BCR-ABL1T315I+ cells differentially and specifically influence leukemia progression. Niche targeting via modulation of the ECM may be a feasible therapeutic approach to consider in this setting.
Collapse
Affiliation(s)
- Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Raquel S Pereira
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Costanza Zanetti
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Valentina R Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Maximilian Merten
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Melanie Meister
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Julian Niemann
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Marina S Dietz
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Nina Rüssel
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
| | - Minori Tamai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Japan
| | - Thomas Oellerich
- Department of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans Michael Kvasnicka
- Senckenberg Institute of Pathology, Goethe University Frankfurt, 60590, Frankfurt am Main, Germany
| | - Heike Pfeifer
- Department of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany
| | - Franck E Nicolini
- Department of Hematology and INSERM U 1052, CRCL, Centre Léon Bérard, 69373, Lyon Cedex, France
| | - Mike Heilemann
- Institute for Physical and Theoretical Chemistry, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Richard A Van Etten
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, 92697, USA
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596, Frankfurt am Main, Germany.
- Department of Internal Medicine, Hematology/Oncology, Goethe University, Frankfurt am Main, Germany.
- Frankfurt Cancer Institute (FCI), Goethe University, Frankfurt am Main, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
31
|
Bajaj J, Diaz E, Reya T. Stem cells in cancer initiation and progression. J Cell Biol 2020; 219:133538. [PMID: 31874116 PMCID: PMC7039188 DOI: 10.1083/jcb.201911053] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023] Open
Abstract
Bajaj et al. review how cancers originate, how their heterogeneity is linked to cancer stem cells, and the signals fundamental to driving these processes. While standard therapies can lead to an initial remission of aggressive cancers, they are often only a transient solution. The resistance and relapse that follows is driven by tumor heterogeneity and therapy-resistant populations that can reinitiate growth and promote disease progression. There is thus a significant need to understand the cell types and signaling pathways that not only contribute to cancer initiation, but also those that confer resistance and drive recurrence. Here, we discuss work showing that stem cells and progenitors may preferentially serve as a cell of origin for cancers, and that cancer stem cells can be key in driving the continued growth and functional heterogeneity of established cancers. We also describe emerging evidence for the role of developmental signals in cancer initiation, propagation, and therapy resistance and discuss how targeting these pathways may be of therapeutic value.
Collapse
Affiliation(s)
- Jeevisha Bajaj
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA.,Moores Cancer Center, School of Medicine, University of California, San Diego, La Jolla, CA.,Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Emily Diaz
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA.,Moores Cancer Center, School of Medicine, University of California, San Diego, La Jolla, CA.,Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Tannishtha Reya
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA.,Moores Cancer Center, School of Medicine, University of California, San Diego, La Jolla, CA.,Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA
| |
Collapse
|
32
|
Ghandadi M, Valadan R, Mohammadi H, Akhtari J, Khodashenas S, Ashari S. Wnt-β-catenin Signaling Pathway, the Achilles' Heels of Cancer Multidrug Resistance. Curr Pharm Des 2020; 25:4192-4207. [PMID: 31721699 DOI: 10.2174/1381612825666191112142943] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/08/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Most of the anticancer chemotherapies are hampered via the development of multidrug resistance (MDR), which is the resistance of tumor cells against cytotoxic effects of multiple chemotherapeutic agents. Overexpression and/or over-activation of ATP-dependent drug efflux transporters is a key mechanism underlying MDR development. Moreover, enhancement of drug metabolism, changes in drug targets and aberrant activation of the main signaling pathways, including Wnt, Akt and NF-κB are also responsible for MDR. METHODS In this study, we have reviewed the roles of Wnt signaling in MDR as well as its potential therapeutic significance. Pubmed and Scopus have been searched using Wnt, β-catenin, cancer, MDR and multidrug resistance as keywords. The last search was done in March 2019. Manuscripts investigating the roles of Wnt signaling in MDR or studying the modulation of MDR through the inhibition of Wnt signaling have been involved in the study. The main focus of the manuscript is regulation of MDR related transporters by canonical Wnt signaling pathway. RESULT AND CONCLUSION Wnt signaling has been involved in several pathophysiological states, including carcinogenesis and embryonic development. Wnt signaling is linked to various aspects of MDR including P-glycoprotein and multidrug resistance protein 1 regulation through its canonical pathways. Aberrant activation of Wnt/β- catenin signaling leads to the induction of cancer MDR mainly through the overexpression and/or over-activation of MDR related transporters. Accordingly, Wnt/β-catenin signaling can be a potential target for modulating cancer MDR.
Collapse
Affiliation(s)
- Morteza Ghandadi
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Valadan
- Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran.,Department of Immunology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran
| | - Hamidreza Mohammadi
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of toxicology and pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Javad Akhtari
- Molecular and Cell Biology Research Center (MCBRC), Faculty of Medicine, Mazandaran University of Medical Sciences, Sari 48157-33971, Iran.,Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shabanali Khodashenas
- Department of Medical Biotechnology, Faculty of Medical Sciences, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sorour Ashari
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of toxicology and pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
33
|
Méndez-Ferrer S, Bonnet D, Steensma DP, Hasserjian RP, Ghobrial IM, Gribben JG, Andreeff M, Krause DS. Bone marrow niches in haematological malignancies. Nat Rev Cancer 2020; 20:285-298. [PMID: 32112045 PMCID: PMC9912977 DOI: 10.1038/s41568-020-0245-2] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Haematological malignancies were previously thought to be driven solely by genetic or epigenetic lesions within haematopoietic cells. However, the niches that maintain and regulate daily production of blood and immune cells are now increasingly being recognized as having an important role in the pathogenesis and chemoresistance of haematological malignancies. Within haematopoietic cells, the accumulation of a small number of recurrent mutations initiates malignancy. Concomitantly, specific alterations of the niches, which support haematopoietic stem cells and their progeny, can act as predisposition events, facilitating mutant haematopoietic cell survival and expansion as well as contributing to malignancy progression and providing protection of malignant cells from chemotherapy, ultimately leading to relapse. In this Perspective, we summarize our current understanding of the composition and function of the specialized haematopoietic niches of the bone marrow during health and disease. We discuss disease mechanisms (rather than malignancy subtypes) to provide a comprehensive description of key niche-associated pathways that are shared across multiple haematological malignancies. These mechanisms include primary driver mutations in bone marrow niche cells, changes associated with increased hypoxia, angiogenesis and inflammation as well as metabolic reprogramming by stromal niche cells. Consequently, remodelling of bone marrow niches can facilitate immune evasion and activation of survival pathways favouring malignant haematopoietic cell maintenance, defence against excessive reactive oxygen species and protection from chemotherapy. Lastly, we suggest guidelines for the handling and biobanking of patient samples and analysis of the niche to ensure that basic research identifying therapeutic targets can be more efficiently translated to the clinic. The hope is that integrating knowledge of how bone marrow niches contribute to haematological disease predisposition, initiation, progression and response to therapy into future clinical practice will likely improve the treatment of these disorders.
Collapse
Affiliation(s)
- Simón Méndez-Ferrer
- Wellcome Trust - Medical Research Council Cambridge Stem Cell Institute, Cambridge, UK.
- National Health Service Blood and Transplant, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - David P Steensma
- Harvard Medical School, Boston, MA, USA
- The Center for Prevention of Progression of Blood Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Robert P Hasserjian
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Irene M Ghobrial
- Harvard Medical School, Boston, MA, USA
- The Center for Prevention of Progression of Blood Cancers, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - John G Gribben
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Medicine, Frankfurt, Germany
- Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
34
|
Schwaller J. Learning from mouse models of MLL fusion gene-driven acute leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194550. [PMID: 32320749 DOI: 10.1016/j.bbagrm.2020.194550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/17/2020] [Accepted: 04/05/2020] [Indexed: 01/28/2023]
Abstract
5-10% of human acute leukemias carry chromosomal translocations involving the mixed lineage leukemia (MLL) gene that result in the expression of chimeric protein fusing MLL to >80 different partners of which AF4, ENL and AF9 are the most prevalent. In contrast to many other leukemia-associated mutations, several MLL-fusions are powerful oncogenes that transform hematopoietic stem cells but also more committed progenitor cells. Here, I review different approaches that were used to express MLL fusions in the murine hematopoietic system which often, but not always, resulted in highly penetrant and transplantable leukemias that closely phenocopied the human disease. Due to its simple and reliable nature, reconstitution of irradiated mice with bone marrow cells retrovirally expressing the MLL-AF9 fusion became the most frequently in vivo model to study the biology of acute myeloid leukemia (AML). I review some of the most influential studies that used this model to dissect critical protein interactions, the impact of epigenetic regulators, microRNAs and microenvironment-dependent signals for MLL fusion-driven leukemia. In addition, I highlight studies that used this model for shRNA- or genome editing-based screens for cellular vulnerabilities that allowed to identify novel therapeutic targets of which some entered clinical trials. Finally, I discuss some inherent characteristics of the widely used mouse model based on retroviral expression of the MLL-AF9 fusion that can limit general conclusions for the biology of AML. This article is part of a Special Issue entitled: The MLL family of proteins in normal development and disease edited by Thomas A Milne.
Collapse
Affiliation(s)
- Juerg Schwaller
- University Children's Hospital Beider Basel (UKBB), Basel, Switzerland; Department of Biomedicine, University of Basel, Switzerland.
| |
Collapse
|
35
|
Li X, Ortiz MA, Kotula L. The physiological role of Wnt pathway in normal development and cancer. Exp Biol Med (Maywood) 2020; 245:411-426. [PMID: 31996036 PMCID: PMC7082880 DOI: 10.1177/1535370220901683] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Over the decades, many studies have illustrated the critical roles of Wnt signaling pathways in both developmental processes as well as tumorigenesis. Due to the complexity of Wnt signaling regulation, there are still questions to be addressed about ways cells are able to manipulate different types of Wnt pathways in order to fulfill the requirements for normal or cancer development. In this review, we will describe different types of Wnt signaling pathways and their roles in both normal developmental processes and their role in cancer development and progression. Additionally, we will briefly introduce new strategies currently in clinical trials targeting Wnt signaling pathway components for cancer therapy.
Collapse
Affiliation(s)
- Xiang Li
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Maria A Ortiz
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Leszek Kotula
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
36
|
Qian J, Huang X, Zhang Y, Ye X, Qian W. γ-Catenin Overexpression in AML Patients May Promote Tumor Cell Survival via Activation of the Wnt/β-Catenin Axis. Onco Targets Ther 2020; 13:1265-1276. [PMID: 32103994 PMCID: PMC7024797 DOI: 10.2147/ott.s230873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Background Canonical Wnt/β-catenin signaling is frequently dysregulated in acute myeloid leukemia (AML) and has been implicated in leukemogenesis. γ-catenin was previously demonstrated to be associated with the nuclear localization of β-catenin, the central mediator, and to exert oncogenic effects in AML; however, the underlying mechanisms remain unclear. Our study aimed to investigate the expression characteristics of γ-catenin in AML patients, explore the mechanisms by which γ-catenin regulates β-catenin, and discuss the feasibility of targeting γ-catenin for AML treatment. Methods The mRNA expression levels of γ-catenin in AML patients were measured by qRT-PCR. Cell proliferation was examined via Cell Counting Kit-8 (CCK-8) assays. The expression levels of related proteins were measured via Western blotting. Specific siRNA was used to modulate the expression level of the γ-catenin gene. Apoptosis and cell cycle distribution were quantified by flow cytometry. The subcellular localization of γ-catenin and β-catenin was examined via immunofluorescence with a confocal laser scanning microscope. Results Overexpression of γ-catenin was frequently observed in AML and correlated with poor prognosis. Consistent with this finding, suppression of γ-catenin in the AML cell line THP-1 induced growth inhibition, promoted apoptosis and blocked β-catenin nuclear translocation. Interestingly, γ-catenin knockdown sensitized THP-1 cells to cytotoxic chemotherapeutic agents such as cytarabine and homoharringtonine and further inhibited β-catenin nuclear localization. Moreover, our data implied the relationship between γ-catenin and GSK3β (whose effect on β-catenin is mediated by its own phosphorylation), which may be the principal mechanism underlying the anti-AML effect of γ-catenin inhibition. Conclusion Taken together, our results revealed a potential role of γ-catenin in AML pathogenesis–mainly through the inhibition of GSK3β-mediated nuclear localization of β-catenin–and indicate that targeting γ-catenin might offer new AML treatments.
Collapse
Affiliation(s)
- Jiejin Qian
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Xianbo Huang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Yinyin Zhang
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Xiujin Ye
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| | - Wenbin Qian
- Department of Hematology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China.,Malignant Lymphoma Diagnosis and Therapy Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, People's Republic of China
| |
Collapse
|
37
|
Clara JA, Monge C, Yang Y, Takebe N. Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update. Nat Rev Clin Oncol 2019; 17:204-232. [PMID: 31792354 DOI: 10.1038/s41571-019-0293-2] [Citation(s) in RCA: 443] [Impact Index Per Article: 88.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs) have important roles in tumour development, relapse and metastasis; the intrinsic self-renewal characteristics and tumorigenic properties of these cells provide them with unique capabilities to resist diverse forms of anticancer therapy, seed recurrent tumours, and disseminate to and colonize distant tissues. The findings of several studies indicate that CSCs originate from non-malignant stem or progenitor cells. Accordingly, inhibition of developmental signalling pathways that are crucial for stem and progenitor cell homeostasis and function, such as the Notch, WNT, Hedgehog and Hippo signalling cascades, continues to be pursued across multiple cancer types as a strategy for targeting the CSCs hypothesized to drive cancer progression - with some success in certain malignancies. In addition, with the renaissance of anticancer immunotherapy, a better understanding of the interplay between CSCs and the tumour immune microenvironment might be the key to unlocking a new era of oncological treatments associated with a reduced propensity for the development of resistance and with enhanced antimetastatic activity, thus ultimately resulting in improved patient outcomes. Herein, we provide an update on the progress to date in the clinical development of therapeutics targeting the Notch, WNT, Hedgehog and Hippo pathways. We also discuss the interactions between CSCs and the immune system, including the potential immunological effects of agents targeting CSC-associated developmental signalling pathways, and provide an overview of the emerging approaches to CSC-targeted immunotherapy.
Collapse
Affiliation(s)
- Joseph A Clara
- National Heart Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Cecilia Monge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| | - Naoko Takebe
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
38
|
Wnt Signalling in Acute Myeloid Leukaemia. Cells 2019; 8:cells8111403. [PMID: 31703382 PMCID: PMC6912424 DOI: 10.3390/cells8111403] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a group of malignant diseases of the haematopoietic system. AML occurs as the result of mutations in haematopoietic stem/progenitor cells, which upregulate Wnt signalling through a variety of mechanisms. Other mechanisms of Wnt activation in AML have been described such as Wnt antagonist inactivation through promoter methylation. Wnt signalling is necessary for the maintenance of leukaemic stem cells. Several molecules involved in or modulating Wnt signalling have a prognostic value in AML. These include: β-catenin, LEF-1, phosphorylated-GSK3β, PSMD2, PPARD, XPNPEP, sFRP2, RUNX1, AXIN2, PCDH17, CXXC5, LLGL1 and PTK7. Targeting Wnt signalling for tumour eradication is an approach that is being explored in haematological and solid tumours. A number of preclinical studies confirms its feasibility, albeit, so far no reliable clinical trial data are available to prove its utility and efficacy.
Collapse
|
39
|
Wnt Signaling in the Regulation of Immune Cell and Cancer Therapeutics. Cells 2019; 8:cells8111380. [PMID: 31684152 PMCID: PMC6912555 DOI: 10.3390/cells8111380] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/21/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling is one of the important pathways to play a major role in various biological processes, such as embryonic stem-cell development, tissue regeneration, cell differentiation, and immune cell regulation. Recent studies suggest that Wnt signaling performs an essential function in immune cell modulation and counteracts various disorders. Nonetheless, the emerging role and mechanism of action of this signaling cascade in immune cell regulation, as well as its involvement in various cancers, remain debatable. The Wnt signaling in immune cells is very diverse, e.g., the tolerogenic role of dendritic cells, the development of natural killer cells, thymopoiesis of T cells, B-cell-driven initiation of T-cells, and macrophage actions in tissue repair, regeneration, and fibrosis. The purpose of this review is to highlight the current therapeutic targets in (and the prospects of) Wnt signaling, as well as the potential suitability of available modulators for the development of cancer immunotherapies. Although there are several Wnt inhibitors relevant to cancer, it would be worthwhile to extend this approach to immune cells.
Collapse
|
40
|
Aleman J, George SK, Herberg S, Devarasetty M, Porada CD, Skardal A, Almeida-Porada G. Deconstructed Microfluidic Bone Marrow On-A-Chip to Study Normal and Malignant Hemopoietic Cell-Niche Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902971. [PMID: 31464364 PMCID: PMC8011350 DOI: 10.1002/smll.201902971] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/31/2019] [Indexed: 05/23/2023]
Abstract
Human hematopoietic niches are complex specialized microenvironments that maintain and regulate hematopoietic stem and progenitor cells (HSPC). Thus far, most of the studies performed investigating alterations of HSPC-niche dynamic interactions are conducted in animal models. Herein, organ microengineering with microfluidics is combined to develop a human bone marrow (BM)-on-a-chip with an integrated recirculating perfusion system that consolidates a variety of important parameters such as 3D architecture, cell-cell/cell-matrix interactions, and circulation, allowing a better mimicry of in vivo conditions. The complex BM environment is deconvoluted to 4 major distinct, but integrated, tissue-engineered 3D niche constructs housed within a single, closed, recirculating microfluidic device system, and equipped with cell tracking technology. It is shown that this technology successfully enables the identification and quantification of preferential interactions-homing and retention-of circulating normal and malignant HSPC with distinct niches.
Collapse
Affiliation(s)
- Julio Aleman
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Sunil K George
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Samuel Herberg
- Department of Opthamology, State University of New York Upstate Medical University, 4609 Institute for Human Performance, Syracuse, NY, 13210, USA
| | - Mahesh Devarasetty
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Christopher D Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Aleksander Skardal
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| | - Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way, Winston-Salem, NC, 27101, USA
| |
Collapse
|
41
|
HDAC3 Activity is Essential for Human Leukemic Cell Growth and the Expression of β-catenin, MYC, and WT1. Cancers (Basel) 2019; 11:cancers11101436. [PMID: 31561534 PMCID: PMC6826998 DOI: 10.3390/cancers11101436] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/11/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Therapy of acute myeloid leukemia (AML) is unsatisfactory. Histone deacetylase inhibitors (HDACi) are active against leukemic cells in vitro and in vivo. Clinical data suggest further testing of such epigenetic drugs and to identify mechanisms and markers for their efficacy. Primary and permanent AML cells were screened for viability, replication stress/DNA damage, and regrowth capacities after single exposures to the clinically used pan-HDACi panobinostat (LBH589), the class I HDACi entinostat/romidepsin (MS-275/FK228), the HDAC3 inhibitor RGFP966, the HDAC6 inhibitor marbostat-100, the non-steroidal anti-inflammatory drug (NSAID) indomethacin, and the replication stress inducer hydroxyurea (HU). Immunoblotting was used to test if HDACi modulate the leukemia-associated transcription factors β-catenin, Wilms tumor (WT1), and myelocytomatosis oncogene (MYC). RNAi was used to delineate how these factors interact. We show that LBH589, MS-275, FK228, RGFP966, and HU induce apoptosis, replication stress/DNA damage, and apoptotic fragmentation of β-catenin. Indomethacin destabilizes β-catenin and potentiates anti-proliferative effects of HDACi. HDACi attenuate WT1 and MYC caspase-dependently and -independently. Genetic experiments reveal a cross-regulation between MYC and WT1 and a regulation of β-catenin by WT1. In conclusion, reduced levels of β-catenin, MYC, and WT1 are molecular markers for the efficacy of HDACi. HDAC3 inhibition induces apoptosis and disrupts tumor-associated protein expression.
Collapse
|
42
|
Distinct roles of mesenchymal stem and progenitor cells during the development of acute myeloid leukemia in mice. Blood Adv 2019; 2:1480-1494. [PMID: 29945938 DOI: 10.1182/bloodadvances.2017013870] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Despite increasing evidence for the involvement of bone marrow (BM) hematopoietic stem cell niche in leukemogenesis, how BM mesenchymal stem and progenitor cells (MSPCs) contribute to leukemia niche formation and progression remains unclear. Using an MLL-AF9 acute myeloid leukemia (AML) mouse model, we demonstrate dynamic alterations of BM cellular niche components, including MSPCs and endothelial cells during AML development and its association with AML engraftment. Primary patient AML cells also induced similar niche alterations in xenografted mice. AML cell infiltration in BM causes an expansion of early B-cell factor 2+ (Ebf2+) MSPCs with reduced Cxcl12 expression and enhanced generation of more differentiated mesenchymal progenitor cells. Importantly, in vivo fate-mapping indicates that Ebf2+ MSPCs participated in AML niche formation. Ebf2+ cell deletion accelerated the AML development. These data suggest that native BM MSPCs may suppress AML. However, they can be remodeled by AML cells to form leukemic niche that might contribute to AML progression. AML induced dysregulation of hematopoietic niche factors like Angptl1, Cxcl12, Kitl, Il6, Nov, and Spp1 in AML BM MSPCs, which was associated with AML engraftment and partially appeared before the massive expansion of AML cells, indicating the possible involvement of the niche factors in AML progression. Our study demonstrates distinct dynamic features and roles of BM MSPCs during AML development.
Collapse
|
43
|
Cackowski FC, Taichman RS. Parallels between hematopoietic stem cell and prostate cancer disseminated tumor cell regulation. Bone 2019; 119:82-86. [PMID: 29496517 PMCID: PMC6109615 DOI: 10.1016/j.bone.2018.02.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 12/14/2022]
Abstract
The bone marrow is the primary site of hematopoiesis and the home for hematopoietic stem cells (HSCs) in adult mammals. Prostate cancer commonly metastasizes to the bone and forms bone metastases in almost all patients who die of the disease. Prostate cancer bone metastases are thought to develop after rare bone marrow disseminated tumor cells (DTCs) escape a dormant state and reactivate. Prostate cancer DTCs and normal HSCs have been shown to compete for residence in the bone marrow and share many of same regulatory mechanisms for survival, proliferation and homing. In this review, we highlight these parallels in order to help our readers use the literature in HSC and DTC biology to inform their research and generate hypotheses in both fields.
Collapse
Affiliation(s)
- Frank C Cackowski
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Department of Medicine, Division of Hematology & Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.
| |
Collapse
|
44
|
Sipa1 deficiency-induced bone marrow niche alterations lead to the initiation of myeloproliferative neoplasm. Blood Adv 2019. [PMID: 29514790 DOI: 10.1182/bloodadvances.2017013599] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations of signal-induced proliferation-associated gene 1 (SIPA1), a RAP1 GTPase-activating protein, were reported in patients with juvenile myelomonocytic leukemia, a childhood myelodysplastic/myeloproliferative neoplasm (MDS/MPN). Sipa1 deficiency in mice leads to the development of age-dependent MPN. However, Sipa1 expression in bone marrow (BM) microenvironment and its effect on the pathogenesis of MPN remain unclear. We here report that Sipa1 is expressed in human and mouse BM stromal cells and downregulated in these cells from patients with MPN or MDS/MPN at diagnosis. By using the Sipa1-/- MPN mouse model, we find that Sipa1 deletion causes phenotypic and functional alterations of BM mesenchymal stem and progenitor cells prior to the initiation of the MPN. Importantly, the altered Sipa1-/- BM niche is required for the development of MDS/MPN following transplantation of normal hematopoietic cells. RNA sequencing reveals an enhanced inflammatory cytokine signaling and dysregulated Dicer1, Kitl, Angptl1, Cxcl12, and Thpo in the Sipa1-/- BM cellular niches. Our data suggest that Sipa1 expression in the BM niche is critical for maintaining BM niche homeostasis. Moreover, Sipa1 loss-induced BM niche alterations likely enable evolution of clonal hematopoiesis to the hematological malignancies. Therefore, restoring Sipa1 expression or modulating the altered signaling pathways involved might offer therapeutic potential for MPN.
Collapse
|
45
|
Cartledge Wolf DM, Langhans SA. Moving Myeloid Leukemia Drug Discovery Into the Third Dimension. Front Pediatr 2019; 7:314. [PMID: 31417884 PMCID: PMC6682595 DOI: 10.3389/fped.2019.00314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/11/2019] [Indexed: 12/12/2022] Open
Abstract
The development of therapies aimed at leukemia has progressed substantially in the past years but childhood acute myeloid leukemia (AML) remains one of the most challenging cancers to treat. Genomic profiling of AML has greatly enhanced our understanding of the genetic and epigenetic landscape of this high-risk leukemia. With it comes the opportunity to develop targeted therapies that are expected to be more effective and less toxic than current treatment regimens. Nevertheless, often overlooked in leukemia drug discovery are the dynamic interactions between leukemic cells and the bone marrow environment. The interplay between leukemic cells, stromal cells and the extracellular matrix plays critical roles in the development, progression and relapse of AML as well as in drug response and the development of resistance. Here we will review pediatric leukemia with a special focus on acute myeloid disease in children, and discuss the tumor microenvironment in the context of drug resistance and leukemia stem cell survival. We will emphasize how three-dimensional (3D) cell-based drug discovery may offer hope for both the identification and advancement of more effective treatment options for patients suffering from this devastating disease.
Collapse
Affiliation(s)
- Donna M Cartledge Wolf
- Nemours Center for Childhood Cancer Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| | - Sigrid A Langhans
- Nemours Center for Childhood Cancer Research, Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, United States
| |
Collapse
|
46
|
Zhang LS, Kang X, Lu J, Zhang Y, Wu X, Wu G, Zheng J, Tuladhar R, Shi H, Wang Q, Morlock L, Yao H, Huang LJS, Maire P, Kim J, Williams N, Xu J, Chen C, Zhang CC, Lum L. Installation of a cancer promoting WNT/SIX1 signaling axis by the oncofusion protein MLL-AF9. EBioMedicine 2019; 39:145-158. [PMID: 30528456 PMCID: PMC6354558 DOI: 10.1016/j.ebiom.2018.11.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Chromosomal translocation-induced expression of the chromatin modifying oncofusion protein MLL-AF9 promotes acute myelocytic leukemia (AML). Whereas WNT/β-catenin signaling has previously been shown to support MLL-AF9-driven leukemogenesis, the mechanism underlying this relationship remains unclear. METHODS We used two novel small molecules targeting WNT signaling as well as a genetically modified mouse model that allow targeted deletion of the WNT protein chaperone Wntless (WLS) to evaluate the role of WNT signaling in AML progression. ATAC-seq and transcriptome profiling were deployed to understand the cellular consequences of disrupting a WNT signaling in leukemic initiating cells (LICs). FINDINGS We identified Six1 to be a WNT-controlled target gene in MLL-AF9-transformed leukemic initiating cells (LICs). MLL-AF9 alters the accessibility of Six1 DNA to the transcriptional effector TCF7L2, a transducer of WNT/β-catenin gene expression changes. Disruption of WNT/SIX1 signaling using inhibitors of the Wnt signaling delays the development of AML. INTERPRETATION By rendering TCF/LEF-binding elements controlling Six1 accessible to TCF7L2, MLL-AF9 promotes WNT/β-catenin-dependent growth of LICs. Small molecules disrupting WNT/β-catenin signaling block Six1 expression thereby disrupting leukemia driven by MLL fusion proteins.
Collapse
Affiliation(s)
- Li-Shu Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xunlei Kang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jianming Lu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaofeng Wu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junke Zheng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rubina Tuladhar
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heping Shi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiaoling Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lorraine Morlock
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huiyu Yao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lily Jun-Shen Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pascal Maire
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR, 8104, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - James Kim
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jian Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chuo Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lawrence Lum
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
47
|
Bernasconi P, Borsani O. Endosteal vessel integrity: a new therapeutic goal in acute myeloid leukemia? Stem Cell Investig 2018; 5:36. [PMID: 30498747 DOI: 10.21037/sci.2018.10.04] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Paolo Bernasconi
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Oscar Borsani
- Division of Hematology, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| |
Collapse
|
48
|
Le PM, Andreeff M, Battula VL. Osteogenic niche in the regulation of normal hematopoiesis and leukemogenesis. Haematologica 2018; 103:1945-1955. [PMID: 30337364 PMCID: PMC6269284 DOI: 10.3324/haematol.2018.197004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
The bone marrow microenvironment, also known as the bone marrow niche, is a complex network of cell types and acellular factors that supports normal hematopoiesis. For many years, leukemia was believed to be caused by a series of genetic hits to hematopoietic stem and progenitor cells, which transform them to preleukemic, and eventually to leukemic, cells. Recent discoveries suggest that genetic alterations in bone marrow niche cells, particularly in osteogenic cells, may also cause myeloid leukemia in mouse models. The osteogenic niche, which consists of osteoprogenitors, preosteoblasts, mature osteoblasts, osteocytes and osteoclasts, has been shown to play a critical role in the maintenance and expansion of hematopoietic stem and progenitor cells as well as in their oncogenic transformation into leukemia stem/initiating cells. We have recently shown that acute myeloid leukemia cells induce osteogenic differentiation in mesenchymal stromal cells to gain a growth advantage. In this review, we discuss the role of the osteogenic niche in the maintenance of hematopoietic stem and progenitor cells, as well as in their transformation into leukemia cells. We also discuss the signaling pathways that regulate osteogenic niche-hematopoietic stem and progenitor cells or osteogenic niche-leukemic stem/initiating cell interactions in the bone marrow, together with novel approaches for therapeutically targeting these interactions.
Collapse
Affiliation(s)
- Phuong M Le
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Venkata Lokesh Battula
- Section of Molecular Hematology and Therapy, Leukemia Department, The University of Texas MD Anderson Cancer Center, Houston, TX .,Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
49
|
Galán-Díez M, Cuesta-Domínguez Á, Kousteni S. The Bone Marrow Microenvironment in Health and Myeloid Malignancy. Cold Spring Harb Perspect Med 2018; 8:a031328. [PMID: 28963115 PMCID: PMC6027930 DOI: 10.1101/cshperspect.a031328] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hematopoietic stem cells (HSCs) interact dynamically with an intricate network of cells in the bone marrow (BM) microenvironment or niche. These interactions provide instructive cues that influence the production and lineage determination of different types of blood cells and maintenance of HSC quiescence. They also contribute to hematopoietic deregulation and hematological myeloid malignancies. Alterations in the BM niche are commonly observed in myeloid malignancies and contribute to the aberrant function of myelodysplastic and leukemia-initiating stem cells. In this work, we review how different components of the BM niche affect normal hematopoiesis, the molecular signals that govern this interaction, and how genetic changes in stromal cells or alterations in remodeled malignant BM niches contribute to myeloid malignancies. Understanding the intricacies between normal and malignant niches and their modulation may provide insights into developing novel therapeutics for blood disorders.
Collapse
Affiliation(s)
- Marta Galán-Díez
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, New York 10032
| | - Álvaro Cuesta-Domínguez
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, New York 10032
| | - Stavroula Kousteni
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, New York 10032
| |
Collapse
|
50
|
Systems for localized release to mimic paracrine cell communication in vitro. J Control Release 2018; 278:24-36. [PMID: 29601931 DOI: 10.1016/j.jconrel.2018.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022]
Abstract
Paracrine cell communication plays a pivotal role for signal exchange between proximal cells in vivo. However, this localized, gradient type release of mediators at very low concentrations (pg/ml), relevant during physiological and pathological processes, is rarely reflected within in vitro approaches. This review gives an overview on state-of-the-art approaches, which transfer the paracrine cell-to-cell communication into in vitro cell culture model setups. The traditional methods like trans-well assays and more advanced microfluidic approaches are included. The review focusses on systems for localized release, mostly based on microparticles, which tightly mimic the paracrine interaction between single cells in 3D microenvironments. Approaches based on single microparticles, with the main focus on affinity-controlled storage and release of cytokines, are reviewed and their importance for understanding paracrine communication is highlighted. Various methods to study the cytokine release and their advantages and disadvantages are discussed. Basic principles of the release characteristics, like diffusion mechanisms, are quantitatively described, including the formation of resulting gradients around the local sources. In vitro cell experiments using such localized microparticle release systems in approaches to increase understanding of stem cell behavior within their niches and regulation of wound healing are highlighted as examples of successful localized release systems for mimicking paracrine cell communication.
Collapse
|