1
|
Li L, Ding P, Dong Y, Shen S, Lv X, Yu J, Li L, Chen J, Wang P, Han B, Xu T, Hu W. CG001, a C3b-targeted complement inhibitor, blocks 3 complement pathways: development and preclinical evaluation. Blood Adv 2024; 8:4181-4193. [PMID: 38865712 PMCID: PMC11334799 DOI: 10.1182/bloodadvances.2024012874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024] Open
Abstract
ABSTRACT Excessively activated or dysregulated complement activation may contribute to the pathogenesis of a wide range of human diseases, thus leading to a surge in complement inhibitors. Herein, we developed a human-derived and antibody-like C3b-targeted fusion protein (CRIg-FH-Fc) x2, termed CG001, that could potently block all 3 complement pathways. Complement receptor of the immunoglobulin superfamily (CRIg) and factor H (FH) bind to distinct sites in C3b and synergistically inhibit complement activation. CRIg occupancy in C3b prevents the recruitment of C3 and C5 substrates, whereas FH occupancy in C3b accelerates the decay of C3/C5 convertases and promotes the factor I-mediated degradation and inactivation of C3b. CG001 also showed therapeutic effects in alternative pathways-induced hemolytic mouse and classical pathways-induced mesangial proliferative glomerulonephritis rat models. In the pharmacological/toxicological evaluation in rats and cynomolgus monkeys, CG001 displayed an antibody-like pharmacokinetic profile, a convincing complement inhibitory effect, and no observable toxic effects. Therefore, CG001 holds substantial potential for human clinical studies.
Collapse
Affiliation(s)
- Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Shupei Shen
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Xinyue Lv
- ComGen Pharmaceutical Co Ltd, Shanghai, China
| | - Jie Yu
- ComGen Pharmaceutical Co Ltd, Shanghai, China
| | - Luying Li
- ComGen Pharmaceutical Co Ltd, Shanghai, China
| | - Jianfeng Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Pilin Wang
- Alphamab Co Ltd., Suzhou, Jiangsu, China
| | - Bing Han
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Ting Xu
- Alphamab Co Ltd., Suzhou, Jiangsu, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Wang H, van de Bovenkamp FS, Dijkstra DJ, Abendstein L, Borggreven NV, Pool J, Zuijderduijn R, Gstöttner C, Gelderman KA, Damelang T, Vidarsson G, Blom AM, Domínguez-Vega E, Parren PWHI, Sharp TH, Trouw LA. Targeted complement inhibition using bispecific antibodies that bind local antigens and endogenous complement regulators. Front Immunol 2024; 15:1288597. [PMID: 38817607 PMCID: PMC11137741 DOI: 10.3389/fimmu.2024.1288597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 04/17/2024] [Indexed: 06/01/2024] Open
Abstract
Complement activation protects against infection but also contributes to pathological mechanisms in a range of clinical conditions such as autoimmune diseases and transplant rejection. Complement-inhibitory drugs, either approved or in development, usually act systemically, thereby increasing the risk for infections. We therefore envisioned a novel class of bispecific antibodies (bsAbs) which are capable of site-directed complement inhibition by bringing endogenous complement regulators in the vicinity of defined cell surface antigens. Here, we analyzed a comprehensive set of obligate bsAbs designed to crosslink a specific target with either complement regulator factor H (FH) or C4b-binding protein (C4BP). The bsAbs were assessed for their capacity to inhibit complement activation and cell lysis in an antigen-targeted manner. We observed that the bsAbs inhibited classical, lectin, and alternative pathway complement activation in which sufficient endogenous serum FH and C4BP could be recruited to achieve local inhibition. Importantly, the bsAbs effectively protected antigen-positive liposomes, erythrocytes, and human leukocytes from complement-mediated lysis. In conclusion, localized complement inhibition by bsAbs capable of recruiting endogenous human complement regulators (such as FH or C4BP) to cell surfaces potentially provides a novel therapeutic approach for the targeted treatment of complement-mediated diseases.
Collapse
Affiliation(s)
- Haiyu Wang
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Douwe J. Dijkstra
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Leoni Abendstein
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Jos Pool
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Rob Zuijderduijn
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Christoph Gstöttner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Timon Damelang
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Gestur Vidarsson
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - Anna M. Blom
- Department of Translational Medicine, Section of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Elena Domínguez-Vega
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Paul W. H. I. Parren
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
- Gyes BV, Utrecht, Netherlands
| | - Thomas H. Sharp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Leendert A. Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
3
|
Liu F, Ryan ST, Fahnoe KC, Morgan JG, Cheung AE, Storek MJ, Best A, Chen HA, Locatelli M, Xu S, Schmidt E, Schmidt-Jiménez LF, Bieber K, Henderson JM, Lian CG, Verschoor A, Ludwig RJ, Benigni A, Remuzzi G, Salant DJ, Kalled SL, Thurman JM, Holers VM, Violette SM, Wawersik S. C3d-Targeted factor H inhibits tissue complement in disease models and reduces glomerular injury without affecting circulating complement. Mol Ther 2024; 32:1061-1079. [PMID: 38382529 PMCID: PMC11163200 DOI: 10.1016/j.ymthe.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/02/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Complement-mediated diseases can be treated using systemic inhibitors. However, complement components are abundant in circulation, affecting systemic inhibitors' exposure and efficacy. Furthermore, because of complement's essential role in immunity, systemic treatments raise infection risk in patients. To address these challenges, we developed antibody fusion proteins combining the alternative-pathway complement inhibitor factor H (fH1-5) with an anti-C3d monoclonal antibody (C3d-mAb-2fH). Because C3d is deposited at sites of complement activity, this molecule localizes to tissue complement while minimizing circulating complement engagement. These fusion proteins bind to deposited complement in diseased human skin sections and localize to activated complement in a primate skin injury model. We further explored the pharmacology of C3d-mAb-2fH proteins in rodent models with robust tissue complement activation. Doses of C3d-mAb-2fH >1 mg/kg achieved >75% tissue complement inhibition in mouse and rat injury models while avoiding circulating complement blockade. Glomerular-specific complement inhibition reduced proteinuria and preserved podocyte foot-process architecture in rat membranous nephropathy, indicating disease-modifying efficacy. These data indicate that targeting local tissue complement results in durable and efficacious complement blockade in skin and kidney while avoiding systemic inhibition, suggesting broad applicability of this approach in treating a range of complement-mediated diseases.
Collapse
Affiliation(s)
- Fei Liu
- Q32 Bio, Waltham, MA 02451, USA
| | | | | | | | | | | | | | - Hui A Chen
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine at Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Monica Locatelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Shuyun Xu
- Department of Pathology, Brigham & Women's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Enno Schmidt
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Leon F Schmidt-Jiménez
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Chobanian and Avedisian School of Medicine at Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Christine G Lian
- Department of Pathology, Brigham & Women's Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Admar Verschoor
- Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, 81675 Munich, Germany; Department of Dermatology, University Hospital Schleswig-Holstein, University of Lübeck, 23562 Lübeck, Germany
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, 23562 Lübeck, Germany
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, 24126 Bergamo, Italy
| | - David J Salant
- Department of Medicine, Chobanian and Avedisian School of Medicine at Boston University and Section of Nephrology, Boston Medical Center, Boston, MA 02118, USA
| | | | - Joshua M Thurman
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - V Michael Holers
- Department of Medicine, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | |
Collapse
|
4
|
Sándor N, Schneider AE, Matola AT, Barbai VH, Bencze D, Hammad HH, Papp A, Kövesdi D, Uzonyi B, Józsi M. The human factor H protein family - an update. Front Immunol 2024; 15:1135490. [PMID: 38410512 PMCID: PMC10894998 DOI: 10.3389/fimmu.2024.1135490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.
Collapse
Affiliation(s)
- Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | | | | | - Veronika H. Barbai
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bencze
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hani Hashim Hammad
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
5
|
Mastellos DC, Hajishengallis G, Lambris JD. A guide to complement biology, pathology and therapeutic opportunity. Nat Rev Immunol 2024; 24:118-141. [PMID: 37670180 DOI: 10.1038/s41577-023-00926-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/07/2023]
Abstract
Complement has long been considered a key innate immune effector system that mediates host defence and tissue homeostasis. Yet, growing evidence has illuminated a broader involvement of complement in fundamental biological processes extending far beyond its traditional realm in innate immunity. Complement engages in intricate crosstalk with multiple pattern-recognition and signalling pathways both in the extracellular and intracellular space. Besides modulating host-pathogen interactions, this crosstalk guides early developmental processes and distinct cell trajectories, shaping tissue immunometabolic and regenerative programmes in different physiological systems. This Review provides a guide to the system-wide functions of complement. It highlights illustrative paradigm shifts that have reshaped our understanding of complement pathobiology, drawing examples from evolution, development of the central nervous system, tissue regeneration and cancer immunity. Despite its tight spatiotemporal regulation, complement activation can be derailed, fuelling inflammatory tissue pathology. The pervasive contribution of complement to disease pathophysiology has inspired a resurgence of complement therapeutics with major clinical developments, some of which have challenged long-held dogmas. We thus highlight major therapeutic concepts and milestones in clinical complement intervention.
Collapse
Affiliation(s)
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Shughoury A, Sevgi DD, Ciulla TA. The complement system: a novel therapeutic target for age-related macular degeneration. Expert Opin Pharmacother 2023; 24:1887-1899. [PMID: 37691588 DOI: 10.1080/14656566.2023.2257604] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
INTRODUCTION With the recent FDA approvals of pegcetacoplan (SYFOVRE, Apellis Pharmaceuticals) and avacincaptad pegol (IZERVAY, Astellas Pharmaceuticals), modulation of the complement system has emerged as a promising therapeutic approach for slowing progression of geographic atrophy (GA) in AMD. AREAS COVERED This article reviews the current understanding of the complement system, its role in AMD, and the various complement-targeting therapies in development for the treatment of GA, including monoclonal antibodies, aptamers, protein analogs, and gene therapies. Approved and investigational agents have largely focused on interfering with the activity of complement components 3 and 5, owing to their central roles in the classical, lectin, and alternative complement pathways. Other investigational therapies have targeted formation of membrane attack complex (a terminal step in the complement cascade which leads to cell lysis), complement factors H and I (which serve regulatory functions in the alternative pathway), complement factors B and D (within the alternative pathway), and complement component 1 (within the classical pathway). Clinical trials investigating these agents are summarized, and the potential benefits and limitations of these therapies are discussed. EXPERT OPINION Targeting the complement system is a promising therapeutic approach for slowing the progression of GA in AMD, potentially improving visual outcomes. However, increased risk of exudative conversion must be considered, and further research is required to identify clinical criteria and best practices for initiating complement inhibitor therapy for GA.
Collapse
Affiliation(s)
- Aumer Shughoury
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Duriye D Sevgi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Thomas A Ciulla
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN, USA
- Clearside Biomedical, Inc, Alpharetta, GA, USA
- Midwest Eye Institute, Carmel, IN, USA
| |
Collapse
|
7
|
Kolev M, Barbour T, Baver S, Francois C, Deschatelets P. With complements: C3 inhibition in the clinic. Immunol Rev 2023; 313:358-375. [PMID: 36161656 DOI: 10.1111/imr.13138] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
C3 is a key complement protein, located at the nexus of all complement activation pathways. Extracellular, tissue, cell-derived, and intracellular C3 plays critical roles in the immune response that is dysregulated in many diseases, making it an attractive therapeutic target. However, challenges such as very high concentration in blood, increased acute expression, and the elevated risk of infections have historically posed significant challenges in the development of C3-targeted therapeutics. This is further complicated because C3 activation fragments and their receptors trigger a complex network of downstream effects; therefore, a clear understanding of these is needed to provide context for a better understanding of the mechanism of action (MoA) of C3 inhibitors, such as pegcetacoplan. Because of C3's differential upstream position to C5 in the complement cascade, there are mechanistic differences between pegcetacoplan and eculizumab that determine their efficacy in patients with paroxysmal nocturnal hemoglobinuria. In this review, we compare the MoA of pegcetacoplan and eculizumab in paroxysmal nocturnal hemoglobinuria and discuss the complement-mediated disease that might be amenable to C3 inhibition. We further discuss the current state and outlook for C3-targeted therapeutics and provide our perspective on which diseases might be the next success stories in the C3 therapeutics journey.
Collapse
Affiliation(s)
- Martin Kolev
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Tara Barbour
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | - Scott Baver
- Apellis Pharmaceuticals, Waltham, Massachusetts, USA
| | | | | |
Collapse
|
8
|
Risitano AM, Frieri C, Urciuoli E, Marano L. The complement alternative pathway in paroxysmal nocturnal hemoglobinuria: From a pathogenic mechanism to a therapeutic target. Immunol Rev 2023; 313:262-278. [PMID: 36110036 PMCID: PMC10087358 DOI: 10.1111/imr.13137] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare clonal, not malignant, hematological disease characterized by intravascular hemolysis, thrombophilia and bone marrow failure. While this latter presentation is due to a T-cell mediated auto-immune disorder resembling acquired aplastic anemia, the first two clinical presentations are largely driven by the complement pathway. Indeed, PNH is characterized by a broad impairment of complement regulation on affected cells, which is due to the lack of the complement regulators CD55 and CD59. The deficiency of these two proteins from PNH blood cells is due to the somatic mutation in the phosphatidylinositol N-acetylglucosaminyltransferase subunit A gene causing the disease, which impairs the surface expression of all proteins linked via the glycosylphosphatidylinositol anchor. The lack of the complement regulators CD55 and CD59 on PNH erythrocytes accounts for the hallmark of PNH, which is the chronic, complement-mediated intravascular hemolysis. This hemolysis results from the impaired regulation of the alternative pathway upstream in the complement cascade, as well as of the downstream terminal pathway. PNH represented the first indication for the development of anti-complement agents, and the therapeutic interception of the complement cascade at the level of C5 led to remarkable changes in the natural history of the disease. Nevertheless, the clinical use of an inhibitor of the terminal pathway highlighted the broader derangement of complement regulation in PNH, shedding light on the pivotal role of the complement alternative pathway. Here we review the current understanding of the role of the alternative pathway in PNH, including the emergence of C3-mediated extravascular hemolysis in PNH patients on anti-C5 therapies. These observations provide the rationale for the development of novel complement inhibitors for the treatment of PNH. Recent preclinical and clinical data on proximal complement inhibitors intercepting the alternative pathway with the aim of improving the treatment of PNH are discussed, together with their clinical implications which are animating a lively debate in the scientific community.
Collapse
Affiliation(s)
- Antonio M Risitano
- AORN San Giuseppe Moscati, Avellino, Italy.,Federico II University of Naples, Naples, Italy.,Severe Aplastic Anemia Working Party of the European Society for Blood and Marrow Transplantation, Leiden, Netherlands
| | | | | | | |
Collapse
|
9
|
Schmidt CQ, Smith RJH. Protein therapeutics and their lessons: Expect the unexpected when inhibiting the multi-protein cascade of the complement system. Immunol Rev 2023; 313:376-401. [PMID: 36398537 PMCID: PMC9852015 DOI: 10.1111/imr.13164] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over a century after the discovery of the complement system, the first complement therapeutic was approved for the treatment of paroxysmal nocturnal hemoglobinuria (PNH). It was a long-acting monoclonal antibody (aka 5G1-1, 5G1.1, h5G1.1, and now known as eculizumab) that targets C5, specifically preventing the generation of C5a, a potent anaphylatoxin, and C5b, the first step in the eventual formation of membrane attack complex. The enormous clinical and financial success of eculizumab across four diseases (PNH, atypical hemolytic uremic syndrome (aHUS), myasthenia gravis (MG), and anti-aquaporin-4 (AQP4) antibody-positive neuromyelitis optica spectrum disorder (NMOSD)) has fueled a surge in complement therapeutics, especially targeting diseases with an underlying complement pathophysiology for which anti-C5 therapy is ineffective. Intensive research has also uncovered challenges that arise from C5 blockade. For example, PNH patients can still face extravascular hemolysis or pharmacodynamic breakthrough of complement suppression during complement-amplifying conditions. These "side" effects of a stoichiometric inhibitor like eculizumab were unexpected and are incompatible with some of our accepted knowledge of the complement cascade. And they are not unique to C5 inhibition. Indeed, "exceptions" to the rules of complement biology abound and have led to unprecedented and surprising insights. In this review, we will describe initial, present and future aspects of protein inhibitors of the complement cascade, highlighting unexpected findings that are redefining some of the mechanistic foundations upon which the complement cascade is organized.
Collapse
Affiliation(s)
- Christoph Q. Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Richard J. H. Smith
- Departments of Internal Medicine and Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Saez-Calveras N, Stuve O. The role of the complement system in Multiple Sclerosis: A review. Front Immunol 2022; 13:970486. [PMID: 36032156 PMCID: PMC9399629 DOI: 10.3389/fimmu.2022.970486] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
The complement system has been involved in the pathogenesis of multiple neuroinflammatory and neurodegenerative conditions. In this review, we evaluated the possible role of complement activation in multiple sclerosis (MS) with a focus in progressive MS, where the disease pathogenesis remains to be fully elucidated and treatment options are limited. The evidence for the involvement of the complement system in the white matter plaques and gray matter lesions of MS stems from immunohistochemical analysis of post-mortem MS brains, in vivo serum and cerebrospinal fluid biomarker studies, and animal models of Experimental Autoimmune Encephalomyelitis (EAE). Complement knock-out studies in these animal models have revealed that this system may have a “double-edge sword” effect in MS. On the one hand, complement proteins may aid in promoting the clearance of myelin degradation products and other debris through myeloid cell-mediated phagocytosis. On the other, its aberrant activation may lead to demyelination at the rim of progressive MS white matter lesions as well as synapse loss in the gray matter. The complement system may also interact with known risk factors of MS, including as Epstein Barr Virus (EBV) infection, and perpetuate the activation of CNS self-reactive B cell populations. With the mounting evidence for the involvement of complement in MS, the development of complement modulating therapies for this condition is appealing. Herein, we also reviewed the pharmacological complement inhibitors that have been tested in MS animal models as well as in clinical trials for other neurologic diseases. The potential use of these agents, such as the C5-binding antibody eculizumab in MS will require a detailed understanding of the role of the different complement effectors in this disease and the development of better CNS delivery strategies for these compounds.
Collapse
Affiliation(s)
- Nil Saez-Calveras
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Olaf Stuve
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Neurology Section, Veterans Affairs (VA) North Texas Health Care System, Dallas, TX, United States
- *Correspondence: Olaf Stuve,
| |
Collapse
|
11
|
Fahnoe KC, Liu F, Morgan JG, Ryan ST, Storek M, Stark EG, Taylor FR, Holers VM, Thurman JM, Wawersik S, Kalled SL, Violette SM. Development and Optimization of Bifunctional Fusion Proteins to Locally Modulate Complement Activation in Diseased Tissue. Front Immunol 2022; 13:869725. [PMID: 35784298 PMCID: PMC9244803 DOI: 10.3389/fimmu.2022.869725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
Sustained complement activation is an underlying pathologic driver in many inflammatory and autoimmune diseases. Currently approved anti-complement therapies are directed at the systemic blockade of complement. Consequently, these therapies provide widespread inhibition of complement pathway activity, beyond the site of ongoing activation and the intended pharmacodynamic (PD) effects. Given the essential role for complement in both innate and adaptive immunity, there is a need for therapies that inhibit complement in diseased tissue while limiting systemic blockade. One potential approach focuses on the development of novel fusion proteins that enable tissue-targeted delivery of complement negative regulatory proteins. These therapies are expected to provide increased potency and prolonged tissue PD, decreased dosing frequency, and the potential for improved safety profiles. We created a library of bifunctional fusion proteins that direct a fragment of the complement negative regulator, complement receptor type 1 (CR1) to sites of tissue injury. Tissue targeting is accomplished through the binding of the fusion protein to complement C3 fragments that contain a surface-exposed C3d domain and which are covalently deposited on tissues where complement is being activated. To that end, we generated a fusion protein that contains an anti-C3d monoclonal antibody recombinantly linked to the first 10 consensus repeats of CR1 (CR11-10) with the intention of delivering high local concentrations of this complement negative regulatory domain to tissue-bound complement C3 fragments iC3b, C3dg and C3d. Biochemical and in vitro characterization identified several fusion proteins that inhibit complement while maintaining the C3d domain binding properties of the parent monoclonal antibody. Preclinical in vivo studies further demonstrate that anti-C3d fusion proteins effectively distribute to injured tissue and reduce C3 fragment deposition for periods beyond 14 days. The in vitro and in vivo profiles support the further evaluation of C3d mAb-CR11-10 as a novel approach to restore proper complement activation in diseased tissue in the absence of continuous systemic complement blockade.
Collapse
Affiliation(s)
- Kelly C. Fahnoe
- Preclinical Research Q32 Bio Inc., Waltham, MA, United States
- *Correspondence: Kelly C. Fahnoe,
| | - Fei Liu
- Preclinical Research Q32 Bio Inc., Waltham, MA, United States
| | | | - Sarah T. Ryan
- Preclinical Research Q32 Bio Inc., Waltham, MA, United States
| | - Michael Storek
- Preclinical Research Q32 Bio Inc., Waltham, MA, United States
| | | | - Fred R. Taylor
- Preclinical Research Q32 Bio Inc., Waltham, MA, United States
| | - V. Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Joshua M. Thurman
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, CO, United States
| | - Stefan Wawersik
- Preclinical Research Q32 Bio Inc., Waltham, MA, United States
| | - Susan L. Kalled
- Preclinical Research Q32 Bio Inc., Waltham, MA, United States
| | | |
Collapse
|
12
|
Anliker M, Drees D, Loacker L, Hafner S, Griesmacher A, Hoermann G, Fux V, Schennach H, Hörtnagl P, Dopler A, Schmidt S, Bellmann-Weiler R, Weiss G, Marx-Hofmann A, Körper S, Höchsmann B, Schrezenmeier H, Schmidt CQ. Upregulation of Checkpoint Ligand Programmed Death-Ligand 1 in Patients with Paroxysmal Nocturnal Hemoglobinuria Explained by Proximal Complement Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1248-1258. [PMID: 35173033 DOI: 10.4049/jimmunol.2100031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare hemolytic disease driven by impaired complement regulation. Mutations in genes encoding the enzymes that build the GPI anchors are causative, with somatic mutations in the PIG-A gene occurring most frequently. As a result, the important membrane-bound complement regulators CD55 and CD59 are missing on the affected hematopoietic stem cells and their progeny, rendering those cells vulnerable to complement attack. Immune escape mechanisms sparing affected PNH stem cells from removal are suspected in the PNH pathogenesis, but molecular mechanisms have not been elucidated. We hypothesized that exuberant complement activity in PNH results in enhanced immune checkpoint interactions, providing a molecular basis for the potential immune escape in PNH. In a series of PNH patients, we found increased expression levels of the checkpoint ligand programmed death-ligand 1 (PD-L1) on granulocytes and monocytes, as well as in the plasma of PNH patients. Mechanistically, we demonstrate that complement activation leading to the decoration of particles/cells with C3- and/or C4-opsonins increased PD-L1 expression on neutrophils and monocytes as shown for different in vitro models of classical or alternative pathway activation. We further establish in vitro that complement inhibition at the level of C3, but not C5, inhibits the alternative pathway-mediated upregulation of PD-L1 and show by means of soluble PD-L1 that this observation translates into the clinical situation when PNH patients are treated with either C3 or C5 inhibitors. Together, the presented data show that the checkpoint ligand PD-L1 is increased in PNH patients, which correlates with proximal complement activation.
Collapse
Affiliation(s)
- Markus Anliker
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria
| | - Daniela Drees
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Lorin Loacker
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria
| | - Susanne Hafner
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Andrea Griesmacher
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria
| | - Gregor Hoermann
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria.,MLL Munich Leukemia Laboratory, Munich, Germany
| | - Vilmos Fux
- Central Institute for Medical and Chemical Laboratory Diagnosis, University Hospital, Innsbruck, Austria
| | - Harald Schennach
- Central Institute of Blood Transfusion and Immunology, University Hospital Innsbruck, Innsbruck, Austria
| | - Paul Hörtnagl
- Central Institute of Blood Transfusion and Immunology, University Hospital Innsbruck, Innsbruck, Austria
| | - Arthur Dopler
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Stefan Schmidt
- Department of Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria; and
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Innsbruck Medical University, Innsbruck, Austria
| | - Astrid Marx-Hofmann
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Sixten Körper
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Britta Höchsmann
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany; .,Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden-Württemberg-Hessen and University Hospital of Ulm, Ulm, Germany
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany;
| |
Collapse
|
13
|
Ruiz-Molina N, Parsons J, Müller M, Hoernstein SNW, Bohlender LL, Pumple S, Zipfel PF, Häffner K, Reski R, Decker EL. A synthetic protein as efficient multitarget regulator against complement over-activation. Commun Biol 2022; 5:152. [PMID: 35194132 PMCID: PMC8863895 DOI: 10.1038/s42003-022-03094-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022] Open
Abstract
The complement system constitutes the innate defense against pathogens. Its dysregulation leads to diseases and is a critical determinant in many viral infections, e.g., COVID-19. Factor H (FH) is the main regulator of the alternative pathway of complement activation and could be a therapy to restore homeostasis. However, recombinant FH is not available. Engineered FH versions may be alternative therapeutics. Here, we designed a synthetic protein, MFHR13, as a multitarget complement regulator. It combines the dimerization and C5-regulatory domains of human FH-related protein 1 (FHR1) with the C3-regulatory and cell surface recognition domains of human FH, including SCR 13. In summary, the fusion protein MFHR13 comprises SCRs FHR11-2:FH1-4:FH13:FH19-20. It protects sheep erythrocytes from complement attack exhibiting 26 and 4-fold the regulatory activity of eculizumab and human FH, respectively. Furthermore, we demonstrate that MFHR13 and FHR1 bind to all proteins forming the membrane attack complex, which contributes to the mechanistic understanding of FHR1. We consider MFHR13 a promising candidate as therapeutic for complement-associated diseases.
Collapse
Affiliation(s)
- Natalia Ruiz-Molina
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Madeleine Müller
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Lennard L Bohlender
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Steffen Pumple
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Peter F Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Karsten Häffner
- Faculty of Medicine, Department of Internal Medicine IV, Medical Center, University of Freiburg, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
14
|
Risitano AM, Peffault de Latour R, Marano L, Frieri C. Discovering C3 targeting therapies for paroxysmal nocturnal hemoglobinuria: Achievements and pitfalls. Semin Immunol 2022; 59:101618. [PMID: 35764467 DOI: 10.1016/j.smim.2022.101618] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/26/2022] [Accepted: 06/08/2022] [Indexed: 01/15/2023]
Abstract
The treatment of paroxysmal nocturnal hemoglobinuria (PNH) was revolutionized by the introduction of the anti-C5 agent eculizumab, which resulted in sustained control of intravascular hemolysis, leading to transfusion avoidance and hemoglobin stabilization in at least half of all patients. Nevertheless, extravascular hemolysis mediated by C3 has emerged as inescapable phenomenon in PNH patients on anti-C5 treatment, frequently limiting its hematological benefit. More than 10 years ago we postulated that therapeutic interception of the complement cascade at the level of C3 should improve the clinical response in PNH. Compstatin is a 13-residue disulfide-bridged peptide binding to both human C3 and C3b, eventually disabling the formation of C3 convertases and thereby preventing complement activation via all three of its activating pathways. Several generations of compstatin analogs have been tested in vitro, and their clinical evaluation has begun in PNH and other complement-mediated diseases. Pegcetacoplan, a pegylated form of the compstatin analog POT-4, has been investigated in two phase I/II and one phase III study in PNH patients. In the phase III study, PNH patients with residual anemia already on eculizumab were randomized to receive either pegcetacoplan or eculizumab in a head-to-head comparison. At week 16, pegcetacoplan was superior to eculizumab in terms of hemoglobin change from baseline (the primary endpoint), as well as in other secondary endpoints tracking intravascular and extravascular hemolysis. Pegcetacoplan showed a good safety profile, even though breakthrough hemolysis emerged as a possible risk requiring additional attention. Here we review all the available data regarding this innovative treatment that has recently been approved for the treatment of PNH.
Collapse
Affiliation(s)
- Antonio M Risitano
- AORN San Giuseppe Moscati Avellino, Italy; Federico II University of Naples, Naples, Italy; Severe Aplastic Anemia Working Party of the European Society for Blood and Marrow Transplantation, Leiden, Netherlands
| | - Regis Peffault de Latour
- Severe Aplastic Anemia Working Party of the European Society for Blood and Marrow Transplantation, Leiden, Netherlands; French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria, Saint-Louis Hospital and Université de Paris, Paris, France
| | | | - Camilla Frieri
- AORN San Giuseppe Moscati Avellino, Italy; Federico II University of Naples, Naples, Italy; French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria, Saint-Louis Hospital and Université de Paris, Paris, France
| |
Collapse
|
15
|
Kamala O, Malik TH, Hallam TM, Cox TE, Yang Y, Vyas F, Luli S, Connelly C, Gibson B, Smith-Jackson K, Denton H, Pappworth IY, Huang L, Kavanagh D, Pickering MC, Marchbank KJ. Homodimeric Minimal Factor H: In Vivo Tracking and Extended Dosing Studies in Factor H Deficient Mice. Front Immunol 2021; 12:752916. [PMID: 34956184 PMCID: PMC8696033 DOI: 10.3389/fimmu.2021.752916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
C3 glomerulopathy (C3G) is associated with dysregulation of the alternative pathway (AP) of complement and treatment options remain inadequate. Factor H (FH) is a potent regulator of the AP. An in-depth analysis of FH-related protein dimerised minimal (mini)-FH constructs has recently been published. This analysis showed that addition of a dimerisation module to mini-FH not only increased serum half-life but also improved complement regulatory function, thus providing a potential treatment option for C3G. Herein, we describe the production of a murine version of homodimeric mini-FH [mHDM-FH (mFH1-5^18-20^R1-2)], developed to reduce the risk of anti-drug antibody formation during long-term experiments in murine models of C3G and other complement-driven pathologies. Our analysis of mHDM-FH indicates that it binds with higher affinity and avidity to WT mC3b when compared to mouse (m)FH (mHDM-FH KD=505 nM; mFH KD=1370 nM) analogous to what we observed with the respective human proteins. The improved binding avidity resulted in enhanced complement regulatory function in haemolytic assays. Extended interval dosing studies in CFH-/- mice (5mg/kg every 72hrs) were partially effective and bio-distribution analysis in CFH-/- mice, through in vivo imaging technologies, demonstrates that mHDM-FH is preferentially deposited and remains fixed in the kidneys (and liver) for up to 4 days. Extended dosing using an AAV- human HDM-FH (hHDM-FH) construct achieved complete normalisation of C3 levels in CFH-/- mice for 3 months and was associated with a significant reduction in glomerular C3 staining. Our data demonstrate the ability of gene therapy delivery of mini-FH constructs to enhance complement regulation in vivo and support the application of this approach as a novel treatment strategy in diseases such as C3G.
Collapse
Affiliation(s)
- Ola Kamala
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Talat H. Malik
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Thomas M. Hallam
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Thomas E. Cox
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Yi Yang
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Falguni Vyas
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Saimir Luli
- Preclinical In Vivo Imaging, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Chloe Connelly
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Beth Gibson
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Kate Smith-Jackson
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Harriet Denton
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Isabel Y. Pappworth
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Lei Huang
- Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - David Kavanagh
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Matthew C. Pickering
- Centre for Inflammatory Disease, Imperial College London, London, United Kingdom
| | - Kevin J. Marchbank
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Translational and Clinical Research Institute, The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
16
|
Halting targeted and collateral damage to red blood cells by the complement system. Semin Immunopathol 2021; 43:799-816. [PMID: 34191092 PMCID: PMC8243056 DOI: 10.1007/s00281-021-00859-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/18/2021] [Indexed: 12/12/2022]
Abstract
The complement system is an important defense mechanism against pathogens; however, in certain pathologies, the system also attacks human cells, such as red blood cells (RBCs). In paroxysmal nocturnal hemoglobinuria (PNH), RBCs lack certain complement regulators which sensitize them to complement-mediated lysis, while in autoimmune hemolytic anemia (AIHA), antibodies against RBCs may initiate complement-mediated hemolysis. In recent years, complement inhibition has improved treatment prospects for these patients, with eculizumab now the standard of care for PNH patients. Current complement inhibitors are however not sufficient for all patients, and they come with high costs, patient burden, and increased infection risk. This review gives an overview of the underlying pathophysiology of complement-mediated hemolysis in PNH and AIHA, the role of therapeutic complement inhibition nowadays, and the high number of complement inhibitors currently under investigation, as for almost every complement protein, an inhibitor is being developed. The focus lies with novel therapeutics that inhibit complement activity specifically in the pathway that causes pathology or those that reduce costs or patient burden through novel administration routes.
Collapse
|
17
|
Höchsmann B, Körper S, Schrezenmeier H. Komplementinhibitoren: neue Therapeutika – neue Indikationen. TRANSFUSIONSMEDIZIN 2021. [DOI: 10.1055/a-1145-5522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
ZusammenfassungDas Komplementsystem, ein klassisch transfusionsmedizinisches Thema, hat in den letzten Jahren in allen Bereichen der Medizin an Bedeutung gewonnen. Komplementinhibitoren werden aufgrund eines besseren Verständnisses der Pathophysiologie unterschiedlicher Erkrankungen in einem sich stetig erweiternden Krankheitsspektrum eingesetzt. Dieses reicht von typisch komplementassoziierten Erkrankungen wie der PNH (paroxysmale nächtliche Hämoglobinurie) bis hin zu akuten Krankheitsbildern mit einer Fehlregulation des Komplementsystems, wie COVID-19.
Collapse
Affiliation(s)
- Britta Höchsmann
- Institut für Klinische Transfusionsmedizin und Immungenetik Ulm, DRK-Blutspendedienst Baden-Württemberg-Hessen und Universitätsklinikum Ulm; Institut für Transfusionsmedizin, Universität Ulm
| | - Sixten Körper
- Institut für Klinische Transfusionsmedizin und Immungenetik Ulm, DRK-Blutspendedienst Baden-Württemberg-Hessen und Universitätsklinikum Ulm; Institut für Transfusionsmedizin, Universität Ulm
| | - Hubert Schrezenmeier
- Institut für Klinische Transfusionsmedizin und Immungenetik Ulm, DRK-Blutspendedienst Baden-Württemberg-Hessen und Universitätsklinikum Ulm; Institut für Transfusionsmedizin, Universität Ulm
| |
Collapse
|
18
|
Garred P, Tenner AJ, Mollnes TE. Therapeutic Targeting of the Complement System: From Rare Diseases to Pandemics. Pharmacol Rev 2021; 73:792-827. [PMID: 33687995 PMCID: PMC7956994 DOI: 10.1124/pharmrev.120.000072] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The complement system was discovered at the end of the 19th century as a heat-labile plasma component that "complemented" the antibodies in killing microbes, hence the name "complement." Complement is also part of the innate immune system, protecting the host by recognition of pathogen-associated molecular patterns. However, complement is multifunctional far beyond infectious defense. It contributes to organ development, such as sculpting neuron synapses, promoting tissue regeneration and repair, and rapidly engaging and synergizing with a number of processes, including hemostasis leading to thromboinflammation. Complement is a double-edged sword. Although it usually protects the host, it may cause tissue damage when dysregulated or overactivated, such as in the systemic inflammatory reaction seen in trauma and sepsis and severe coronavirus disease 2019 (COVID-19). Damage-associated molecular patterns generated during ischemia-reperfusion injuries (myocardial infarction, stroke, and transplant dysfunction) and in chronic neurologic and rheumatic disease activate complement, thereby increasing damaging inflammation. Despite the long list of diseases with potential for ameliorating complement modulation, only a few rare diseases are approved for clinical treatment targeting complement. Those currently being efficiently treated include paroxysmal nocturnal hemoglobinuria, atypical hemolytic-uremic syndrome, myasthenia gravis, and neuromyelitis optica spectrum disorders. Rare diseases, unfortunately, preclude robust clinical trials. The increasing evidence for complement as a pathogenetic driver in many more common diseases suggests an opportunity for future complement therapy, which, however, requires robust clinical trials; one ongoing example is COVID-19 disease. The current review aims to discuss complement in disease pathogenesis and discuss future pharmacological strategies to treat these diseases with complement-targeted therapies. SIGNIFICANCE STATEMENT: The complement system is the host's defense friend by protecting it from invading pathogens, promoting tissue repair, and maintaining homeostasis. Complement is a double-edged sword, since when dysregulated or overactivated it becomes the host's enemy, leading to tissue damage, organ failure, and, in worst case, death. A number of acute and chronic diseases are candidates for pharmacological treatment to avoid complement-dependent damage, ranging from the well established treatment for rare diseases to possible future treatment of large patient groups like the pandemic coronavirus disease 2019.
Collapse
Affiliation(s)
- Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Andrea J Tenner
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| | - Tom E Mollnes
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen, Denmark, and Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (P.G.); Departments of Molecular Biology and Biochemistry, Neurobiology and Behavior, and Pathology and Laboratory Medicine, University of California, Irvine, California (A.J.T.); and Research Laboratory, Nordland Hospital, Bodø, Norway, Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway (T.E.M.); Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway (T.E.M.); and Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway (T.E.M.)
| |
Collapse
|
19
|
Poppelaars F, Goicoechea de Jorge E, Jongerius I, Baeumner AJ, Steiner MS, Józsi M, Toonen EJM, Pauly D. A Family Affair: Addressing the Challenges of Factor H and the Related Proteins. Front Immunol 2021; 12:660194. [PMID: 33868311 PMCID: PMC8044877 DOI: 10.3389/fimmu.2021.660194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammation is a common denominator of diseases. The complement system, an intrinsic part of the innate immune system, is a key driver of inflammation in numerous disorders. Recently, a family of proteins has been suggested to be of vital importance in conditions characterized by complement dysregulation: the human Factor H (FH) family. This group of proteins consists of FH, Factor H-like protein 1 and five Factor H-related proteins. The FH family has been linked to infectious, vascular, eye, kidney and autoimmune diseases. In contrast to FH, the functions of the other highly homologous proteins are largely unknown and, hence, their role in the different disease-specific pathogenic mechanisms remains elusive. In this perspective review, we address the major challenges ahead in this emerging area, including 1) the controversies about the functional roles of the FH protein family, 2) the discrepancies in quantification of the FH protein family, 3) the unmet needs for validated tools and 4) limitations of animal models. Next, we also discuss the opportunities that exist for the immunology community. A strong multidisciplinary approach is required to solve these obstacles and is only possible through interdisciplinary collaboration between biologists, chemists, geneticists and physicians. We position this review in light of our own perspective, as principal investigators of the SciFiMed Consortium, a consortium aiming to create a comprehensive analytical system for the quantitative and functional assessment of the entire FH protein family.
Collapse
Affiliation(s)
- Felix Poppelaars
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Elena Goicoechea de Jorge
- Department of Immunology, Faculty of Medicine, Complutense University and Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory of the Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
- Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Antje J. Baeumner
- Institute of Analytical Chemistry, Chemo-and Biosensors, Faculty of Chemistry and Pharmacy, University of Regensburg, Regensburg, Germany
| | | | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Complement Research Group, Eötvös Loránd Research Network (ELKH), Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | - Diana Pauly
- Department of Ophthalmology, University Hospital Regensburg, Regensburg, Germany
- Experimental Ophthalmology, University Marburg, Marburg, Germany
| | | |
Collapse
|
20
|
de Boer ECW, van Mourik AG, Jongerius I. Therapeutic Lessons to be Learned From the Role of Complement Regulators as Double-Edged Sword in Health and Disease. Front Immunol 2020; 11:578069. [PMID: 33362763 PMCID: PMC7758290 DOI: 10.3389/fimmu.2020.578069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
The complement system is an important part of the innate immune system, providing a strong defense against pathogens and removing apoptotic cells and immune complexes. Due to its strength, it is important that healthy human cells are protected against damage induced by the complement system. To be protected from complement, each cell type relies on a specific combination of both soluble and membrane-bound regulators. Their importance is indicated by the amount of pathologies associated with abnormalities in these complement regulators. Here, we will discuss the current knowledge on complement regulatory protein polymorphisms and expression levels together with their link to disease. These diseases often result in red blood cell destruction or occur in the eye, kidney or brain, which are tissues known for aberrant complement activity or regulation. In addition, complement regulators have also been associated with different types of cancer, although their mechanisms here have not been elucidated yet. In most of these pathologies, treatments are limited and do not prevent the complement system from attacking host cells, but rather fight the consequences of the complement-mediated damage, using for example blood transfusions in anemic patients. Currently only few drugs targeting the complement system are used in the clinic. With further demand for therapeutics rising linked to the wide range of complement-mediated disease we should broaden our horizon towards treatments that can actually protect the host cells against complement. Here, we will discuss the latest insights on how complement regulators can benefit therapeutics. Such therapeutics are currently being developed extensively, and can be categorized into full-length complement regulators, engineered complement system regulators and antibodies targeting complement regulators. In conclusion, this review provides an overview of the complement regulatory proteins and their links to disease, together with their potential in the development of novel therapeutics.
Collapse
Affiliation(s)
- Esther C W de Boer
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| | - Anouk G van Mourik
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands
| | - Ilse Jongerius
- Sanquin Research, Department of Immunopathology, and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, Netherlands.,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's Hospital, Amsterdam University Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
21
|
Chen JY, Galwankar NS, Emch HN, Menon SS, Cortes C, Thurman JM, Merrill SA, Brodsky RA, Ferreira VP. Properdin Is a Key Player in Lysis of Red Blood Cells and Complement Activation on Endothelial Cells in Hemolytic Anemias Caused by Complement Dysregulation. Front Immunol 2020; 11:1460. [PMID: 32793201 PMCID: PMC7387411 DOI: 10.3389/fimmu.2020.01460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/04/2020] [Indexed: 12/18/2022] Open
Abstract
The complement system alternative pathway (AP) can be activated excessively in inflammatory diseases, particularly when there is defective complement regulation. For instance, deficiency in complement regulators CD55 and CD59, leads to paroxysmal nocturnal hemoglobinuria (PNH), whereas Factor H mutations predispose to atypical hemolytic uremic syndrome (aHUS), both causing severe thrombohemolysis. Despite eculizumab being the treatment for these diseases, benefits vary considerably among patients. Understanding the molecular mechanisms involved in complement regulation is essential for developing new treatments. Properdin, the positive AP regulator, is essential for complement amplification by stabilizing enzymatic convertases. In this study, the role of properdin in red blood cell (RBC) lysis and endothelial cell opsonization in these AP-mediated diseases was addressed by developing in vitro assays using PNH patient RBCs and human primary endothelial cells, where the effects of inhibiting properdin, using novel monoclonal antibodies (MoAbs) that we generated and characterized, were compared to other complement inhibitors. In in vitro models of PNH, properdin inhibition prevented hemolysis of patient PNH type II and III RBCs more than inhibition of Factor B, C3, and C5 (>17-fold, or >81-fold, or >12-fold lower molar IC90 values, respectively). When tested in an in vitro aHUS hemolysis model, the anti-properdin MoAbs had 11-fold, and 86-fold lower molar IC90 values than inhibition of Factor B, or C3, respectively (P < 0.0001). When comparing target/inhibitor ratios in all hemolysis assays, inhibiting properdin was at least as efficient as the other complement inhibitors in most cases. In addition, using in vitro endothelial cell assays, the data indicate a critical novel role for properdin in promoting complement activation on human endothelial cells exposed to heme (a hemolysis by-product) and rH19-20 (to inhibit Factor H cell-surface protection), as occurs in aHUS. Inhibition of properdin or C3 in this system significantly reduced C3 fragment deposition by 75%. Altogether, the data indicate properdin is key in promoting RBC lysis and complement activation on human endothelial cells, contributing to the understanding of PNH and aHUS pathogenesis. Further studies to determine therapeutic values of inhibiting properdin in complement-mediated diseases, in particular those that are characterized by AP dysregulation, are warranted.
Collapse
Affiliation(s)
- Jin Y Chen
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Neeti S Galwankar
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Heather N Emch
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Smrithi S Menon
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Claudio Cortes
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Joshua M Thurman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Samuel A Merrill
- Section of Hematology/Oncology, Department of Medicine, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Robert A Brodsky
- Division of Hematology, Department of Medicine, John Hopkins University School of Medicine, Baltimore, MD, United States
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
22
|
Nguyen H, Alawieh A, Bastian D, Kuril S, Dai M, Daenthanasanmak A, Zhang M, Iamsawat S, Schutt SD, Wu Y, Sleiman MM, Shetty A, Atkinson C, Sun S, Varela JC, Tomlinson S, Yu XZ. Targeting the Complement Alternative Pathway Permits Graft Versus Leukemia Activity while Preventing Graft Versus Host Disease. Clin Cancer Res 2020; 26:3481-3490. [PMID: 31919135 PMCID: PMC7334060 DOI: 10.1158/1078-0432.ccr-19-1717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/03/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Application of allogeneic hematopoietic cell transplantation (allo-HCT) for patients with hematologic disorders is limited by the development of GVHD. Separation of GVHD and graft-versus-leukemia (GVL) remains a great challenge in the field. We investigated the contribution of individual pathways involved in the complement cascade in GVH and GVL responses to identify specific targets by which to separate these two processes. EXPERIMENTAL DESIGN We used multiple preclinical murine and human-to-mouse xenograft models involving allo-HCT recipients lacking components of the alternative pathway (AP) or classical pathway (CP)/lectin pathway (LP) to dissect the role of each individual pathway in GVHD pathogenesis and the GVL effect. For translational purposes, we used the AP-specific complement inhibitor, CR2-fH, which localizes in injured target organs to allow specific blockade of complement activation at sites of inflammation. RESULTS Complement deposition was evident in intestines of mice and patients with GVHD. In a preclinical setting, ablation of the AP, but not the CP/LP, significantly improved GVHD outcomes. Complement activation through the AP in host hematopoietic cells, and specifically dendritic cells (DC), was required for GVHD progression. AP deficiency in recipients decreased donor T-cell migration and Th1/Th2 differentiation, while increasing the generation of regulatory T cells. This was because of decreased activation and stimulatory activity of recipient DCs in GVHD target organs. Treatment with CR2-fH effectively prevented GVHD while preserving GVL activity. CONCLUSIONS This study highlights the AP as a new therapeutic target to prevent GVHD and tumor relapse after allo-HCT. Targeting the AP by CR2-fH represents a promising therapeutic approach for GVHD treatment.
Collapse
Affiliation(s)
- Hung Nguyen
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina.
| | - Ali Alawieh
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
- Medical Scientist Training Program, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - David Bastian
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Sandeepkumar Kuril
- Department of Pediatric, Medical University of South Carolina, Charleston, South Carolina
| | - Min Dai
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Anusara Daenthanasanmak
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Mengmeng Zhang
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Supinya Iamsawat
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Steven D Schutt
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Yongxia Wu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - M Mahdi Sleiman
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Akshay Shetty
- Department of Pathology, Medical University of South Carolina, Charleston, South Carolina
| | - Carl Atkinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
- Department of Surgery, Medical University of South Carolina, Charleston, South Carolina
| | - Shaoli Sun
- Department of Pathology, Medical University of South Carolina, Charleston, South Carolina
| | - Juan Carlos Varela
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina
- Ralph H. Johnson Veterans Affairs Medical Center, Medical University of South Carolina, Charleston, South Carolina
| | - Xue-Zhong Yu
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina.
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
23
|
Annamalai B, Parsons N, Brandon C, Rohrer B. The use of Matrigel combined with encapsulated cell technology to deliver a complement inhibitor in a mouse model of choroidal neovascularization. Mol Vis 2020; 26:370-377. [PMID: 32476817 PMCID: PMC7245607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/13/2020] [Indexed: 11/03/2022] Open
Abstract
Purpose Risk for age-related macular degeneration (AMD), a slowly progressing, complex disease, is tied to an overactive complement system. Efforts are under way to develop an anticomplement-based treatment to be delivered locally or systemically. We developed an alternative pathway (AP) inhibitor fusion protein consisting of a complement receptor-2 fragment linked to the inhibitory domain of factor H (CR2-fH), which reduces the size of mouse choroidal neovascularization (CNV) when delivered locally or systemically. Specifically, we confirmed that ARPE-19 cells genetically engineered to produce CR2-fH reduce CNV lesion size when encapsulated and placed intravitreally. We extend this observation by delivering the encapsulated cells systemically in Matrigel. Methods ARPE-19 cells were generated to stably express CR2 or CR2-fH, microencapsulated using sodium alginate, and injected subcutaneously in Matrigel into 2-month-old C57BL/6J mice. Four weeks after implantation, CNV was induced using argon laser photocoagulation. Progression of CNV was analyzed using optical coherence tomography. Bioavailability of CR2-fH was evaluated in Matrigel plugs with immunohistochemistry, as well as in ocular tissue with dot blots. Efficacy as an AP inhibitor was confirmed with protein chemistry. Results An efficacious number of implanted capsules to reduce CNV was identified. Expression of the fusion protein systemically did not elicit an immune response. Bioavailability studies showed that CR2-fH was present in the RPE/choroid fractions of the treated mice, and reduced CNV-associated ocular complement activation. Conclusions These findings indicate that systemic production of the AP inhibitor CR2-fH can reduce CNV in the mouse model.
Collapse
Affiliation(s)
| | - Nathaniel Parsons
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC
| | - Carlene Brandon
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC
| | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC,Department of Neuroscience; Medical University of South Carolina, Charleston, SC,Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC
| |
Collapse
|
24
|
Takasumi M, Omori T, Machida T, Ishida Y, Hayashi M, Suzuki T, Homma Y, Endo Y, Takahashi M, Ohira H, Fujita T, Sekine H. A novel complement inhibitor sMAP-FH targeting both the lectin and alternative complement pathways. FASEB J 2020; 34:6598-6612. [PMID: 32219899 DOI: 10.1096/fj.201902475r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/24/2019] [Accepted: 03/08/2020] [Indexed: 02/02/2023]
Abstract
Inhibition of the complement activation has emerged as an option for treatment of a range of diseases. Activation of the lectin and alternative pathways (LP and AP, respectively) contribute to the deterioration of conditions in certain diseases such as ischemia-reperfusion injuries and age-related macular degeneration (AMD). In the current study, we generated dual complement inhibitors of the pathways MAp44-FH and sMAP-FH by fusing full-length MAp44 or small mannose-binding lectin-associated protein (sMAP), LP regulators, with the N-terminal five short consensus repeat (SCR) domains of complement factor H (SCR1/5-FH), an AP regulator. The murine forms of both fusion proteins formed a complex with endogenous mannose-binding lectin (MBL) or ficolin A in the circulation when administered in mice intraperitoneally. Multiple complement activation assays revealed that sMAP-FH had significantly higher inhibitory effects on activation of the LP and AP in vivo as well as in vitro compared to MAp44-FH. Human form of sMAP-FH also showed dual inhibitory effects on LP and AP activation in human sera. Our results indicate that the novel fusion protein sMAP-FH inhibits both the LP and AP activation in mice and in human sera, and could be an effective therapeutic agent for diseases in which both the LP and AP activation are significantly involved.
Collapse
Affiliation(s)
- Mika Takasumi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan.,Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Tomoko Omori
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Takeshi Machida
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Yumi Ishida
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Manabu Hayashi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan.,Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Toshiyuki Suzuki
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Yoshimi Homma
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Yuichi Endo
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Minoru Takahashi
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| | - Teizo Fujita
- Fukushima Prefectural General Hygiene Institute, Fukushima-City, Japan
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University School of Medicine, Fukushima-City, Japan
| |
Collapse
|
25
|
Potentiation of complement regulator factor H protects human endothelial cells from complement attack in aHUS sera. Blood Adv 2020; 3:621-632. [PMID: 30804016 DOI: 10.1182/bloodadvances.2018025692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/24/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations in the gene encoding for complement regulator factor H (FH) severely disrupt its normal function to protect human cells from unwanted complement activation, resulting in diseases such as atypical hemolytic uremic syndrome (aHUS). aHUS presents with severe hemolytic anemia, thrombocytopenia, and renal disease, leading to end-stage renal failure. Treatment of severe complement-mediated disease, such as aHUS, by inhibiting the terminal complement pathway, has proven to be successful but at the same time fails to preserve the protective role of complement against pathogens. To improve complement regulation on human cells without interfering with antimicrobial activity, we identified an anti-FH monoclonal antibody (mAb) that induced increased FH-mediated protection of primary human endothelial cells from complement, while preserving the complement-mediated killing of bacteria. Moreover, this FH-activating mAb restored complement regulation in sera from aHUS patients carrying various heterozygous mutations in FH known to impair FH function and dysregulate complement activation. Our data suggest that FH normally circulates in a less active conformation and can become more active, allowing enhanced complement regulation on human cells. Antibody-mediated potentiation of FH may serve as a highly effective approach to inhibit unwanted complement activation on human cells in a wide range of hematological diseases while preserving the protective role of complement against pathogens.
Collapse
|
26
|
Carr JM, Cabezas-Falcon S, Dubowsky JG, Hulme-Jones J, Gordon DL. Dengue virus and the complement alternative pathway. FEBS Lett 2020; 594:2543-2555. [PMID: 31943152 DOI: 10.1002/1873-3468.13730] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/21/2019] [Accepted: 01/07/2020] [Indexed: 01/20/2023]
Abstract
Dengue disease is an inflammatory-driven pathology, and complement overactivation is linked to disease severity and vascular leakage. Additionally, dysregulation of complement alternative pathway (AP) components has been described, such as upregulation of complement factor D and downregulation of complement factor H (FH), which activate and inhibit the AP, respectively. Thus, the pathology of severe dengue could in part result from AP dysfunction, even though complement and AP activation usually provide protection against viral infections. In dengue virus-infected macrophages and endothelial cells (ECs), the site of replication and target for vascular pathology, respectively, the AP is activated. The AP activation, reduced FH and vascular leakage seen in dengue disease in part parallels other complement AP pathologies associated with FH deficiency, such as atypical haemolytic uraemic syndrome (aHUS). aHUS can be therapeutically targeted with inhibitors of complement terminal activity, raising the idea that strategies such as inhibition of complement or delivery of FH or other complement regulatory components to EC may be beneficial to combat the vascular leakage seen in severe dengue.
Collapse
Affiliation(s)
- Jillian M Carr
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Sheila Cabezas-Falcon
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,TGR Biosciences, Adelaide, SA, Australia
| | - Joshua G Dubowsky
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Jarrod Hulme-Jones
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - David L Gordon
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia.,SA Pathology, Flinders Medical Centre, Adelaide, SA, Australia
| |
Collapse
|
27
|
Zelek WM, Xie L, Morgan BP, Harris CL. Compendium of current complement therapeutics. Mol Immunol 2019; 114:341-352. [PMID: 31446305 DOI: 10.1016/j.molimm.2019.07.030] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/13/2022]
Abstract
The complement system is well known for its role in innate immunity and in maintenance of tissue homeostasis, providing a first line of defence against infection and playing a key role in flagging apoptotic cells and debris for disposal. Unfortunately, complement also contributes to pathogenesis of many diseases, in some cases driving pathology, and in others amplifying or exacerbating the inflammatory and damaging impact of non-complement disease triggers. The driving role of complement in a single disease, paroxysmal nocturnal hemoglobinuria (PNH), provoked the development and eventual FDA (US Food and Drug Administration) approval of eculizumab (Soliris™), an anti-C5 antibody, for therapy. Although PNH is very rare, eculizumab provided clinical validation and demonstrated that inhibiting the complement system was not only well-tolerated, but also provided rapid therapy and saved lives. This clinical validation, together with advances in genetic analyses that demonstrated strong associations between complement and common diseases, drove new drug discovery programmes in both academic laboratories and large pharmaceutical companies. Numerous drugs have entered clinical development and several are in phase 3 trials; however, many have fallen by the wayside. Despite this high attrition rate, crucial lessons have been learnt and hurdles to development have become clear. These insights have driven development of next generation anti-complement drugs designed to avoid pitfalls and facilitate patient access. In this article, we do not set out to provide a text-heavy review of complement therapeutics but instead will simply highlight the targets, modalities and current status of the plethora of drugs approved or in clinical development. With such a fast-moving drug development landscape, such a compendium will inevitably become out-dated; however, we provide a snapshot of the current field and illustrate the increased choice that clinicians might enjoy in the future in selecting the best drug for their application, decisions based not only on efficacy but also cost, mechanistic target, modality and route of delivery.
Collapse
Affiliation(s)
- Wioleta M Zelek
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Long Xie
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - B Paul Morgan
- Systems Immunity Research Institute and Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK
| | - Claire L Harris
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.
| |
Collapse
|
28
|
Garam N, Prohászka Z, Szilágyi Á, Aigner C, Schmidt A, Gaggl M, Sunder-Plassmann G, Bajcsi D, Brunner J, Dumfarth A, Cejka D, Flaschberger S, Flögelova H, Haris Á, Hartmann Á, Heilos A, Mueller T, Rusai K, Arbeiter K, Hofer J, Jakab D, Sinkó M, Szigeti E, Bereczki C, Janko V, Kelen K, Reusz GS, Szabó AJ, Klenk N, Kóbor K, Kojc N, Knechtelsdorfer M, Laganovic M, Lungu AC, Meglic A, Rus R, Kersnik-Levart T, Macioniene E, Miglinas M, Pawłowska A, Stompór T, Podracka L, Rudnicki M, Mayer G, Rysava R, Reiterova J, Saraga M, Seeman T, Zieg J, Sládková E, Szabó T, Capitanescu A, Stancu S, Tisljar M, Galesic K, Tislér A, Vainumäe I, Windpessl M, Zaoral T, Zlatanova G, Csuka D. Validation of distinct pathogenic patterns in a cohort of membranoproliferative glomerulonephritis patients by cluster analysis. Clin Kidney J 2019; 13:225-234. [PMID: 32296528 PMCID: PMC7147314 DOI: 10.1093/ckj/sfz073] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/09/2019] [Indexed: 12/03/2022] Open
Abstract
Background A novel data-driven cluster analysis identified distinct pathogenic patterns in C3-glomerulopathies and immune complex-mediated membranoproliferative glomerulonephritis. Our aim was to replicate these observations in an independent cohort and elucidate disease pathophysiology with detailed analysis of functional complement markers. Methods A total of 92 patients with clinical, histological, complement and genetic data were involved in the study, and hierarchical cluster analysis was done by Ward method, where four clusters were generated. Results High levels of sC5b-9 (soluble membrane attack complex), low serum C3 levels and young age at onset (13 years) were characteristic for Cluster 1 with a high prevalence of likely pathogenic variations (LPVs) and C3 nephritic factor, whereas for Cluster 2—which is not reliable because of the small number of cases—strong immunoglobulin G staining, low C3 levels and high prevalence of nephritic syndrome at disease onset were observed. Low plasma sC5b-9 levels, decreased C3 levels and high prevalence of LPV and sclerotic glomeruli were present in Cluster 3, and patients with late onset of the disease (median: 39.5 years) and near-normal C3 levels in Cluster 4. A significant difference was observed in the incidence of end-stage renal disease during follow-up between the different clusters. Patients in Clusters 3–4 had worse renal survival than patients in Clusters 1–2. Conclusions Our results confirm the main findings of the original cluster analysis and indicate that the observed, distinct pathogenic patterns are replicated in our cohort. Further investigations are necessary to analyse the distinct biological and pathogenic processes in these patient groups.
Collapse
Affiliation(s)
- Nóra Garam
- Research Laboratory, 3rd Department of Internal Medicine, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Zoltán Prohászka
- Research Laboratory, 3rd Department of Internal Medicine, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Ágnes Szilágyi
- Research Laboratory, 3rd Department of Internal Medicine, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| | - Christof Aigner
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Alice Schmidt
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Martina Gaggl
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Gere Sunder-Plassmann
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Dóra Bajcsi
- 1st Department of Internal Medicine, University of Szeged, Szeged, Hungary
| | - Jürgen Brunner
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexandra Dumfarth
- Department of Medicine III: Nephrology, Transplant Medicine and Rheumatology, Linz, Austria.,Geriatric Department, Ordensklinikum Linz - Elisabethinen, Linz, Austria
| | - Daniel Cejka
- Department of Medicine III: Nephrology, Transplant Medicine and Rheumatology, Linz, Austria.,Geriatric Department, Ordensklinikum Linz - Elisabethinen, Linz, Austria
| | | | - Hana Flögelova
- Department of Pediatrics, Division of Nephrology, Faculty of Medicine, Palacky University and Faculty Hospital in Olomouc, Olomouc, Czech Republic
| | - Ágnes Haris
- Department of Nephrology, Szent Margit Hospital, Budapest, Hungary
| | - Ágnes Hartmann
- Department of Pediatrics, University of Pécs, Pécs, Hungary
| | - Andreas Heilos
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Thomas Mueller
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Krisztina Rusai
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Klaus Arbeiter
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Nephrology and Gastroenterology, Medical University of Vienna, Vienna, Austria
| | - Johannes Hofer
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria.,Institute of Neurology of Senses and Language, Hospital of St John of God, Linz, Austria.,Research Institute for Developmental Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Dániel Jakab
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Mária Sinkó
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Erika Szigeti
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Csaba Bereczki
- Department of Pediatrics, University of Szeged, Szeged, Hungary
| | - Viktor Janko
- Medimapax - Center of Elimination Methods, Bratislava, Slovakia
| | - Kata Kelen
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - György S Reusz
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Attila J Szabó
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Nóra Klenk
- FMC Center of Dialysis, Miskolc, Hungary
| | | | - Nika Kojc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | - Mario Laganovic
- Department of Nephrology, Arterial Hypertension, Dialysis and Transplantation, University Hospital Center Zagreb, School of Medicine University of Zagreb, Zagreb, Croatia
| | | | - Anamarija Meglic
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Rina Rus
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tanja Kersnik-Levart
- Department of Pediatric Nephrology, Division of Pediatrics, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Ernesta Macioniene
- Nephrology Center, Santaros Klinikos, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | - Marius Miglinas
- Nephrology Center, Santaros Klinikos, Medical Faculty, Vilnius University, Vilnius, Lithuania
| | - Anna Pawłowska
- Department of Nephrology, Hypertension and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Tomasz Stompór
- Department of Nephrology, Hypertension and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Ludmila Podracka
- Department of Pediatrics, Comenius University, Bratislava, Slovakia
| | - Michael Rudnicki
- Department of Internal Medicine IV-Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Gert Mayer
- Department of Internal Medicine IV-Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Romana Rysava
- Nephrology Clinic, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jana Reiterova
- Nephrology Clinic, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marijan Saraga
- Department of Pathology, University Hospital Split, Split, Croatia.,School of Medicine, University of Split, Split, Croatia
| | - Tomáš Seeman
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University Prague, University Hospital Motol, Prague, Czech Republic
| | - Jakub Zieg
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University Prague, University Hospital Motol, Prague, Czech Republic
| | - Eva Sládková
- Department of Pediatrics, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Tamás Szabó
- Department of Pediatrics, Faculty of Medicine, Debrecen University, Debrecen, Hungary
| | | | - Simona Stancu
- Carol Davila Nephrology Hospital, Bucharest, Romania
| | - Miroslav Tisljar
- Department of Nephrology, Dubrava University Hospital, Zagreb, Croatia
| | - Kresimir Galesic
- Department of Nephrology, Dubrava University Hospital, Zagreb, Croatia
| | - András Tislér
- 1st Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Inga Vainumäe
- Živile Riispere, Department of Pathology, Tartu University Hospital, Tartu, Estonia
| | - Martin Windpessl
- Internal Medicine IV, Section of Nephrology, Klinikum Wels-Grieskirchen, Wels, Austria
| | - Tomas Zaoral
- Department of Pediatrics, Faculty of Medicine, University Hospital, Ostrava, Czech Republic
| | - Galia Zlatanova
- University Children's Hospital, Medical University, Sofia, Bulgaria
| | - Dorottya Csuka
- Research Laboratory, 3rd Department of Internal Medicine, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary.,MTA-SE Research Group of Immunology and Hematology, Hungarian Academy of Sciences and Semmelweis University, Budapest, Hungary
| |
Collapse
|
29
|
Risitano AM, Marotta S, Ricci P, Marano L, Frieri C, Cacace F, Sica M, Kulasekararaj A, Calado RT, Scheinberg P, Notaro R, Peffault de Latour R. Anti-complement Treatment for Paroxysmal Nocturnal Hemoglobinuria: Time for Proximal Complement Inhibition? A Position Paper From the SAAWP of the EBMT. Front Immunol 2019; 10:1157. [PMID: 31258525 PMCID: PMC6587878 DOI: 10.3389/fimmu.2019.01157] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
The treatment of paroxysmal nocturnal hemoglobinuria has been revolutionized by the introduction of the anti-C5 agent eculizumab; however, eculizumab is not the cure for Paroxysmal nocturnal hemoglobinuria (PNH), and room for improvement remains. Indeed, the hematological benefit during eculizumab treatment for PNH is very heterogeneous among patients, and different response categories can be identified. Complete normalization of hemoglobin (complete and major hematological response), is seen in no more than one third of patients, while the remaining continue to experience some degree of anemia (good and partial hematological responses), in some cases requiring regular red blood cell transfusions (minor hematological response). Different factors contribute to residual anemia during eculizumab treatment: underlying bone marrow dysfunction, residual intravascular hemolysis and the emergence of C3-mediated extravascular hemolysis. These two latter pathogenic mechanisms are the target of novel strategies of anti-complement treatments, which can be split into terminal and proximal complement inhibitors. Many novel terminal complement inhibitors are now in clinical development: they all target C5 (as eculizumab), potentially paralleling the efficacy and safety profile of eculizumab. Possible advantages over eculizumab are long-lasting activity and subcutaneous self-administration. However, novel anti-C5 agents do not improve hematological response to eculizumab, even if some seem associated with a lower risk of breakthrough hemolysis caused by pharmacokinetic reasons (it remains unclear whether more effective inhibition of C5 is possible and clinically beneficial). Indeed, proximal inhibitors are designed to interfere with early phases of complement activation, eventually preventing C3-mediated extravascular hemolysis in addition to intravascular hemolysis. At the moment there are three strategies of proximal complement inhibition: anti-C3 agents, anti-factor D agents and anti-factor B agents. These agents are available either subcutaneously or orally, and have been investigated in monotherapy or in association with eculizumab in PNH patients. Preliminary data clearly demonstrate that proximal complement inhibition is pharmacologically feasible and apparently safe, and may drastically improve the hematological response to complement inhibition in PNH. Indeed, we envision a new scenario of therapeutic complement inhibition, where proximal inhibitors (either anti-C3, anti-FD or anti-FB) may prove effective for the treatment of PNH, either in monotherapy or in combination with anti-C5 agents, eventually leading to drastic improvement of hematological response.
Collapse
Affiliation(s)
- Antonio M. Risitano
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
- Severe Aplastic Anemia Working Party of the European Group for Blood and Marrow Transplantation, Leiden, Netherlands
| | - Serena Marotta
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
- Severe Aplastic Anemia Working Party of the European Group for Blood and Marrow Transplantation, Leiden, Netherlands
| | - Patrizia Ricci
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Luana Marano
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Camilla Frieri
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Fabiana Cacace
- Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Michela Sica
- Laboratory of Cancer Genetics and Gene Transfer, Core Research Laboratory - Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy
| | - Austin Kulasekararaj
- Laboratory of Cancer Genetics and Gene Transfer, Core Research Laboratory - Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy
- Department of Haematological Medicine, King's College Hospital, National Institute of Health Research/Wellcome King's Clinical Research Facility, London, United Kingdom
| | - Rodrigo T. Calado
- Department of Hematology and Oncology, University of São Paulo at Ribeirão Preto School of Medicine, São Paulo, Brazil
| | - Phillip Scheinberg
- Division of Hematology, Hospital A Beneficência Portuguesa, São Paulo, Brazil
| | - Rosario Notaro
- Laboratory of Cancer Genetics and Gene Transfer, Core Research Laboratory - Istituto per lo Studio, la Prevenzione e la Rete Oncologica (ISPRO), Florence, Italy
| | - Regis Peffault de Latour
- Severe Aplastic Anemia Working Party of the European Group for Blood and Marrow Transplantation, Leiden, Netherlands
- French Reference Center for Aplastic Anemia and Paroxysmal Nocturnal Hemoglobinuria, Saint Louis Hospital and University Paris Diderot, Paris, France
| |
Collapse
|
30
|
Kusner LL, Yucius K, Sengupta M, Sprague AG, Desai D, Nguyen T, Charisse K, Kuchimanchi S, Kallanthottathil R, Fitzgerald K, Kaminski HJ, Borodovsky A. Investigational RNAi Therapeutic Targeting C5 Is Efficacious in Pre-clinical Models of Myasthenia Gravis. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:484-492. [PMID: 31193726 PMCID: PMC6539425 DOI: 10.1016/j.omtm.2019.04.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 04/26/2019] [Indexed: 10/26/2022]
Abstract
Complement-mediated damage to the neuromuscular junction (NMJ) is a key mechanism of pathology in myasthenia gravis (MG), and therapeutics inhibiting complement have shown evidence of efficacy in the treatment of MG. In this study, we describe the development of a subcutaneously administered N-acetylgalactosamine (GalNAc)-conjugated small interfering RNA (siRNA) targeting the C5 component of complement that silences C5 expression in the liver (ALN-CC5). Treatment of wild-type rodents with ALN-CC5 resulted in robust and durable suppression of liver C5 expression. Dose-dependent serum C5 suppression was observed in non-human primates, with a lowering of serum C5 of up to 97.5% and the concomitant inhibition of serum complement activity. C5 silencing was efficacious in ameliorating disease symptoms in two standard rat models of MG, demonstrating the key role of circulating C5 in pathology at the NMJ. Improvement in disease activity scores and NMJ pathology was observed at intermediate levels of complement activity inhibition, suggesting that complete ablation of complement activity may not be required for efficacy in MG. The pre-clinical studies of ALN-CC5 and efficacy of C5 silencing in rat models of MG support further clinical development of ALN-CC5 as a potential therapeutic for the treatment of MG and other complement-mediated disorders.
Collapse
Affiliation(s)
- Linda L Kusner
- Department of Pharmacology and Physiology, George Washington University, Washington, DC 20037, USA
| | | | - Manjistha Sengupta
- Department of Neurology, George Washington University, Washington, DC 20037, USA
| | | | - Dhruv Desai
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | - Tuyen Nguyen
- Alnylam Pharmaceuticals, Cambridge, MA 02142, USA
| | | | | | | | | | - Henry J Kaminski
- Department of Neurology, George Washington University, Washington, DC 20037, USA
| | | |
Collapse
|
31
|
Top O, Parsons J, Bohlender LL, Michelfelder S, Kopp P, Busch-Steenberg C, Hoernstein SNW, Zipfel PF, Häffner K, Reski R, Decker EL. Recombinant Production of MFHR1, A Novel Synthetic Multitarget Complement Inhibitor, in Moss Bioreactors. FRONTIERS IN PLANT SCIENCE 2019; 10:260. [PMID: 30949184 PMCID: PMC6436476 DOI: 10.3389/fpls.2019.00260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/19/2019] [Indexed: 05/23/2023]
Abstract
The human complement system is an important part of the immune system responsible for lysis and elimination of invading microorganisms and apoptotic body cells. Improper activation of the system due to deficiency, mutations, or autoantibodies of complement regulators, mainly factor H (FH) and FH-related proteins (FHRs), causes severe kidney and eye diseases. However, there is no recombinant FH therapeutic available on the market. The first successful recombinant production of FH was accomplished with the moss bioreactor, Physcomitrella patens. Recently, a synthetic regulator, MFHR1, was designed to generate a multitarget complement inhibitor that combines the activities of FH and the FH-related protein 1 (FHR1). The potential of MFHR1 was demonstrated in a proof-of-concept study with transiently transfected insect cells. Here, we present the stable production of recombinant glyco-engineered MFHR1 in the moss bioreactor. The key features of this system are precise genome engineering via homologous recombination, Good Manufacturing Practice-compliant production in photobioreactors, high batch-to-batch reproducibility, and product stability. Several potential biopharmaceuticals are being produced in this system. In some cases, these are even biobetters, i.e., the recombinant proteins produced in moss have a superior quality compared to their counterparts from mammalian systems as for example moss-made aGal, which successfully passed phase I clinical trials. Via mass spectrometry-based analysis of moss-produced MFHR1, we now prove the correct synthesis and modification of this glycoprotein with predominantly complex-type N-glycan attachment. Moss-produced MFHR1 exhibits cofactor and decay acceleration activities comparable to FH, and its mechanism of action on multiple levels within the alternative pathway of complement activation led to a strong inhibitory activity on the whole alternative pathway, which was higher than with the physiological regulator FH.
Collapse
Affiliation(s)
- Oguz Top
- Department of Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Juliana Parsons
- Department of Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lennard L. Bohlender
- Department of Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Stefan Michelfelder
- Faculty of Medicine, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University Freiburg, University of Freiburg, Freiburg, Germany
| | - Phillipp Kopp
- Department of Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | | | - Peter F. Zipfel
- Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Jena, Germany
| | - Karsten Häffner
- Faculty of Medicine, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University Freiburg, University of Freiburg, Freiburg, Germany
| | - Ralf Reski
- Department of Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Eva L. Decker
- Department of Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
32
|
Hu C, Li L, Ding P, Li L, Ge X, Zheng L, Wang X, Wang J, Zhang W, Wang N, Gu H, Zhong F, Xu M, Rong R, Zhu T, Hu W. Complement Inhibitor CRIg/FH Ameliorates Renal Ischemia Reperfusion Injury via Activation of PI3K/AKT Signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:3717-3730. [PMID: 30429287 PMCID: PMC6287101 DOI: 10.4049/jimmunol.1800987] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/15/2018] [Indexed: 12/15/2022]
Abstract
Complement activation is involved in the pathogenesis of ischemia reperfusion injury (IRI), which is an inevitable process during kidney transplantation. Therefore, complement-targeted therapeutics hold great potential in protecting the allografts from IRI. We observed universal deposition of C3d and membrane attack complex in human renal allografts with delayed graft function or biopsy-proved rejection, which confirmed the involvement of complement in IRI. Using FB-, C3-, C4-, C5-, C5aR1-, C5aR2-, and C6-deficient mice, we found that all components, except C5aR2 deficiency, significantly alleviated renal IRI to varying degrees. These gene deficiencies reduced local (deposition of C3d and membrane attack complex) and systemic (serum levels of C3a and C5a) complement activation, attenuated pathological damage, suppressed apoptosis, and restored the levels of multiple local cytokines (e.g., reduced IL-1β, IL-9, and IL-12p40 and increased IL-4, IL-5, IL-10, and IL-13) in various gene-deficient mice, which resulted in the eventual recovery of renal function. In addition, we demonstrated that CRIg/FH, which is a targeted complement inhibitor for the classical and primarily alternative pathways, exerted a robust renoprotective effect that was comparable to gene deficiency using similar mechanisms. Further, we revealed that PI3K/AKT activation, predominantly in glomeruli that was remarkably inhibited by IRI, played an essential role in the CRIg/FH renoprotective effect. The specific PI3K antagonist duvelisib almost completely abrogated AKT phosphorylation, thus abolishing the renoprotective role of CRIg/FH. Our findings suggested that complement activation at multiple stages induced renal IRI, and CRIg/FH and/or PI3K/AKT agonists may hold the potential in ameliorating renal IRI.
Collapse
Affiliation(s)
- Chao Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Long Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China
- Department of Oncology, Fudan University, Shanghai 200032, China
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China
- Department of Oncology, Fudan University, Shanghai 200032, China
| | - Xiaowen Ge
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; and
| | - Long Zheng
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Xuanchuan Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jina Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Na Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China
- Department of Oncology, Fudan University, Shanghai 200032, China
| | - Hongyu Gu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China
- Department of Oncology, Fudan University, Shanghai 200032, China
| | - Fan Zhong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China
- Department of Oncology, Fudan University, Shanghai 200032, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
- Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Collaborative Innovation Center of Cancer Medicine, Fudan University, Shanghai 200032, China;
- Department of Oncology, Fudan University, Shanghai 200032, China
- Department of Immunology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
33
|
Fridkis-Hareli M, Storek M, Or E, Altman R, Katti S, Sun F, Peng T, Hunter J, Johnson K, Wang Y, Lundberg AS, Mehta G, Banda NK, Michael Holers V. The human complement receptor type 2 (CR2)/CR1 fusion protein TT32, a novel targeted inhibitor of the classical and alternative pathway C3 convertases, prevents arthritis in active immunization and passive transfer mouse models. Mol Immunol 2018; 105:150-164. [PMID: 30513451 DOI: 10.1016/j.molimm.2018.09.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/29/2018] [Accepted: 09/20/2018] [Indexed: 02/08/2023]
Abstract
Complement activation in human diseases is characterized by the local covalent deposition of the long-lived C3 fragments iC3b/C3dg/C3d. Previously, TT30, a complement alternative pathway (AP)-selective inhibitor, was designed as a fusion protein linking the first four short consensus repeats (SCRs) of human complement receptor type 2 (CR2) with the first five SCRs of human factor H (fH). TT30 acts by utilizing CR2 SCR1-4 to bind the initially formed iC3b/C3dg/C3d fragments and delivering surface-targeted inhibition of AP C3 and C5 convertases through fH SCR 1-5. In order to combine classical (CP) and lectin (LP) pathway inhibitory abilities employing CR2-mediated targeting, TT32 was developed. TT32 is a CR2-CR1 fusion protein using the first ten SCRs of CR1, chosen because they contain both C3 and C5 convertase inhibitory activity through utilization of decay-acceleration and cofactor activity for both AP and CP. In Wieslab assays, TT32 showed potent inhibition of the CP and AP with IC50 of 11 and 46 nM, respectively. The TT32 inhibitory activity is partially blocked with a molar excess of a competing anti-CR2 mAb, thus demonstrating the importance of the CR2 targeting. TT32 was studied in the type II (CII) collagen-induced arthritis (CIA), an active immunization model, and the CII antibody-induced arthritis (CAIA) passive transfer model. In CIA, injection of 2.0 mg TT32 at day 21 and 28 post disease induction, but not untargeted CR1 alone, resulted in a 51.5% decrease in clinical disease activity (CDA). In CAIA, treatment with TT32 resulted in a 47.4% decrease in CDA. Therefore, a complement inhibitor that targets both the AP and CP/LP C3/C5 convertases was shown to limit complement-mediated tissue damage and inflammation in disease models in which all three complement activation pathways are implicated.
Collapse
Affiliation(s)
| | - Michael Storek
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Eran Or
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Richard Altman
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Suresh Katti
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Fang Sun
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Tao Peng
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Jeff Hunter
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Krista Johnson
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Yi Wang
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Ante S Lundberg
- Alexion Pharmaceuticals, 100 College street New Haven CT, 06510, USA
| | - Gaurav Mehta
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| | - Nirmal K Banda
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA.
| | - V Michael Holers
- Division of Rheumatology, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, USA
| |
Collapse
|
34
|
Harris CL, Pouw RB, Kavanagh D, Sun R, Ricklin D. Developments in anti-complement therapy; from disease to clinical trial. Mol Immunol 2018; 102:89-119. [PMID: 30121124 DOI: 10.1016/j.molimm.2018.06.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023]
Abstract
The complement system is well known for its role in innate immunity and in maintenance of tissue homeostasis, providing a first line of defence against infection and playing a key role in flagging apoptotic cells and debris for disposal. Unfortunately complement also contributes to pathogenesis of a number of diseases; in some cases driving pathology, and in others amplifying or exacerbating the inflammatory and damaging impact of non-complement disease triggers. The role of complement in pathogenesis of an expanding number of diseases has driven industry and academia alike to develop an impressive arsenal of anti-complement drugs which target different proteins and functions of the complement cascade. Evidence from genetic and biochemical analyses, combined with improved identification of complement biomarkers and supportive data from sophisticated animal models of disease, has driven a drug development landscape in which the indications selected for clinical trial cluster in three 'target' tissues: the kidney, eye and vasculature. While the disease triggers may differ, complement activation and amplification is a common feature in many diseases which affect these three tissues. An abundance of drugs are in clinical development, some show favourable progression whereas others experience significant challenges. However, these hurdles in themselves drive an ever-evolving portfolio of 'next-generation' drugs with improved pharmacokinetic and pharmacodynamics properties. In this review we discuss the indications which are in the drug development 'spotlight' and review the relevant indication validation criteria. We present current progress in clinical trials, highlighting successes and difficulties, and look forward to approval of a wide selection of drugs for use in man which give clinicians choice in mechanistic target, modality and route of delivery.
Collapse
Affiliation(s)
- Claire L Harris
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK.
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056, Basel, Switzerland
| | - David Kavanagh
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK; National Renal Complement Therapeutics Centre, Building 26, Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Ruyue Sun
- Complement Therapeutics Research Group, Institute of Cellular Medicine, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, CH-4056, Basel, Switzerland.
| |
Collapse
|
35
|
Risitano AM, Marotta S. Toward complement inhibition 2.0: Next generation anticomplement agents for paroxysmal nocturnal hemoglobinuria. Am J Hematol 2018; 93:564-577. [PMID: 29314145 DOI: 10.1002/ajh.25016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 12/20/2017] [Indexed: 12/15/2022]
Abstract
Therapeutic complement inhibition by eculizumab has revolutionized the treatment of paroxysmal nocturnal hemoglobinuria (PNH) with a major impact on its natural history. Nevertheless, emerging unmet clinical needs may benefit from the development of novel complement inhibitors. Novel strategies of complement inhibition exploit different agents targeting C5, as well as compound intercepting the complement cascade at the level of its key component C3, or even upstream at the level of components involved in complement alternative pathway initiation. Many of these agents are already in their clinical development; preliminary data together with a deep understanding of PNH biology may help to anticipate their possible clinical effect. Novel anti-C5 agents include monoclonal antibodies (even long-lasting) as well as other small molecules bioavailable by subcutaneous administration; an anti-C5 small interfering RNA has been developed too. All these anti-C5 agents seem to recapitulate safety and efficacy of current eculizumab treatment; their main improvement pertains to better patient's convenience due to longer dosing interval and/or possible subcutaneous self-administration. The possibility of achieving a deeper C5 inhibition has been shown as well, but its actual clinical meaning remains to be elucidated. Upstream complement inhibitors include the anti-C3 small peptide compstatin (and its derivatives), and small inhibitors of complement factor D or complement factor B. This class of compounds anticipates a possible efficacy in prevention of C3-mediated extravascular hemolysis, in addition to inhibition of intravascular hemolysis, eventually leading to improved hematological responses. The availability of all these compounds will result soon in a substantial improvement of PNH management.
Collapse
Affiliation(s)
- Antonio M. Risitano
- Hematology, Department of Clinical Medicine and Surgery; Federico II University; Naples, Italy
| | - Serena Marotta
- Hematology, Department of Clinical Medicine and Surgery; Federico II University; Naples, Italy
| |
Collapse
|
36
|
Mastellos DC, Reis ES, Yancopoulou D, Risitano AM, Lambris JD. Expanding Complement Therapeutics for the Treatment of Paroxysmal Nocturnal Hemoglobinuria. Semin Hematol 2018; 55:167-175. [PMID: 30032754 PMCID: PMC6060635 DOI: 10.1053/j.seminhematol.2018.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/30/2022]
Abstract
Paroxysmal nocturnal hemoglobinuria (PNH) is widely regarded as an archetypal complement-mediated disorder that has propelled complement drug discovery in recent decades. Its pathology is driven by chronic complement dysregulation resulting from the lack of the glycosyl phosphatidyl inositol-linked regulators DAF and CD59 on susceptible erythrocytes. This complement imbalance fuels persistent C3 activation on affected erythrocytes, which culminates in chronic complement-mediated intravascular hemolysis. The clinical application of eculizumab, a humanized anti-C5 antibody that blocks terminal pathway activation, has led to drastic improvement of therapeutic outcomes but has also unveiled hitherto elusive pathogenic mechanisms that are now known to contribute to the clinical burden of a significant proportion of patients with PNH. These emerging clinical needs have sparked a true resurgence of complement therapeutics that offer the promise of even more effective, disease-tailored therapies for PNH. Here, we review the current state of complement therapeutics with a focus on the clinical development of C3-targeted and alternative pathway-directed drug candidates for the treatment of PNH. We also discuss the relative advantages and benefits offered by each complement-targeting approach, including translational considerations that might leverage a more comprehensive clinical intervention for PNH.
Collapse
Affiliation(s)
- Dimitrios C Mastellos
- Division of Biodiagnostic Sciences and Technologies, INRASTES, National Center for Scientific Research "Demokritos", Athens, Greece
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Antonio M Risitano
- Hematology and Bone Marrow Transplant Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
37
|
Yang Y, Denton H, Davies OR, Smith-Jackson K, Kerr H, Herbert AP, Barlow PN, Pickering MC, Marchbank KJ. An Engineered Complement Factor H Construct for Treatment of C3 Glomerulopathy. J Am Soc Nephrol 2018; 29:1649-1661. [PMID: 29588430 PMCID: PMC6054357 DOI: 10.1681/asn.2017091006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/26/2018] [Indexed: 01/06/2023] Open
Abstract
Background C3 glomerulopathy (C3G) is associated with dysregulation of the alternative pathway of complement activation, and treatment options for C3G remain limited. Complement factor H (FH) is a potent regulator of the alternative pathway and might offer a solution, but the mass and complexity of FH makes generation of full-length FH far from trivial. We previously generated a mini-FH construct, with FH short consensus repeats 1-5 linked to repeats 18-20 (FH1-5^18-20), that was effective in experimental C3G. However, the serum t1/2 of FH1-5^18-20 was significantly shorter than that of serum-purified FH.Methods We introduced the oligomerization domain of human FH-related protein 1 (denoted by R1-2) at the carboxy or amino terminus of human FH1-5^18-20 to generate two homodimeric mini-FH constructs (FHR1-2^1-5^18-20 and FH1-5^18-20^R1-2, respectively) in Chinese hamster ovary cells and tested these constructs using binding, fluid-phase, and erythrocyte lysis assays, followed by experiments in FH-deficient Cfh-/- mice.Results FHR1-2^1-5^18-20 and FH1-5^18-20^R1-2 homodimerized in solution and displayed avid binding profiles on clustered C3b surfaces, particularly FHR1-2^1-5^18-20 Each construct was >10-fold more effective than FH at inhibiting cell surface complement activity in vitro and restricted glomerular basement membrane C3 deposition in vivo significantly better than FH or FH1-5^18-20 FH1-5^18-20^R1-2 had a C3 breakdown fragment binding profile similar to that of FH, a >5-fold increase in serum t1/2 compared with that of FH1-5^18-20, and significantly better retention in the kidney than FH or FH1-5^18-20Conclusions FH1-5^18-20^R1-2 may have utility as a treatment option for C3G or other complement-mediated diseases.
Collapse
Affiliation(s)
- Yi Yang
- Institute of Cellular Medicine, Newcastle University and National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Harriet Denton
- Institute of Cellular Medicine, Newcastle University and National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Owen R Davies
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Kate Smith-Jackson
- Institute of Cellular Medicine, Newcastle University and National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Heather Kerr
- Department of Chemistry, Edinburgh University, Edinburgh, UK; and
| | - Andrew P Herbert
- Department of Chemistry, Edinburgh University, Edinburgh, UK; and
| | - Paul N Barlow
- Department of Chemistry, Edinburgh University, Edinburgh, UK; and
| | | | - Kevin J Marchbank
- Institute of Cellular Medicine, Newcastle University and National Renal Complement Therapeutics Centre, Royal Victoria Infirmary, Newcastle upon Tyne, UK;
| |
Collapse
|
38
|
Annamalai B, Parsons N, Belhaj M, Brandon C, Potts J, Rohrer B. Encapsulated Cell Technology-Based Delivery of a Complement Inhibitor Reduces Choroidal Neovascularization in a Mouse Model. Transl Vis Sci Technol 2018; 7:3. [PMID: 29576927 PMCID: PMC5846441 DOI: 10.1167/tvst.7.2.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/19/2017] [Indexed: 12/28/2022] Open
Abstract
Purpose Age-related macular degeneration (AMD) is a slowly progressing disease, and risk appears to be tied to an overactive complement system. We have previously demonstrated that mouse choroidal neovascularization (CNV) and smoke-induced ocular pathology can be reduced with an alternative pathway (AP) inhibitor fusion protein consisting of a complement receptor-2 fragment linked to the inhibitory domain of factor H (CR2-fH) when delivered systemically. Here we developed an experimental approach with genetically engineered encapsulated ARPE-19 cells to produce CR2-fH intravitreally. Methods ARPE-19 cells were generated to stably express CR2 or CR2-fH, microencapsulated using sodium alginate, and injected intravitreally into 2-month-old C57BL/6J mice. CNV was induced using argon laser photocoagulation 4 weeks postinjection. Presence of capsules and progression of CNV was analyzed using optical coherence tomography. Bioavailability of CR2-fH was evaluated in retina sections by immunohistochemistry, and efficacy as an AP inhibitor by C3a ELISA. Results Secretion of CR2-fH or CR2 from encapsulated ARPE-19 cells was confirmed. An efficacious concentration of CR2-fH capsules to reduce CNV was identified. Bioavailability studies showed that CR2-fH was present in capsules and retinas of injected mice, and reduced CNV-associated ocular C3a production. Conclusions These findings indicate that the AP inhibitor CR2-fH, when generated intravitreally, can reduce CNV in mouse. Translational Relevance Encapsulated ARPE-19 cells secreting CR2-fH or perhaps other antiangiogenic or prosurvival factors might be useful as a potential therapeutic tool to treat age-related macular degeneration.
Collapse
Affiliation(s)
| | - Nathaniel Parsons
- Departments of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Marwa Belhaj
- Department of Cell Biology, University of South Carolina, Columbia, SC, USA
| | - Carlene Brandon
- Departments of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | - Jay Potts
- Department of Cell Biology, University of South Carolina, Columbia, SC, USA
| | - Bärbel Rohrer
- Departments of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA.,Neurosciences, Division of Research, Medical University of South Carolina, Charleston, SC, USA.,Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA
| |
Collapse
|
39
|
Abstract
INTRODUCTION Therapeutic modulation of complement activation is considered as a promising approach for the treatment of host tissue damage in several inflammatory and autoimmune diseases. Complement component protein C3 is a particularly attractive drug target for complement inhibitors, due to its central role in three pathways of complement activation cascade. Areas covered: The author provides a comprehensive review on compstatin family peptides which have been discovered and optimized as potent and selective C3 inhibitors via a combination of chemical, biophysical and computational approaches. New generations of the compstatin family with improved potency and therapeutic properties have been developed in recent years. Over two decades, compstatin demonstrated therapeutic potential as a first-of-its-kind complement inhibitor in a series of disease models, with encouraging efforts in clinical trials. Expert opinion: Compstatin holds promise for new therapeutic implications in blocking the effect of the complement cascade in a variety of disease conditions. The development of cost-effective treatment options with suitable dosing route and schedule will be critical for patients with complement mediated chronic diseases.
Collapse
Affiliation(s)
- Yijun Huang
- a WuXi AppTec Inc ., Philadelphia , PA , USA
| |
Collapse
|
40
|
Michelfelder S, Fischer F, Wäldin A, Hörle KV, Pohl M, Parsons J, Reski R, Decker EL, Zipfel PF, Skerka C, Häffner K. The MFHR1 Fusion Protein Is a Novel Synthetic Multitarget Complement Inhibitor with Therapeutic Potential. J Am Soc Nephrol 2018; 29:1141-1153. [PMID: 29335241 DOI: 10.1681/asn.2017070738] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
The complement system is essential for host defense, but uncontrolled complement system activation leads to severe, mostly renal pathologies, such as atypical hemolytic uremic syndrome or C3 glomerulopathy. Here, we investigated a novel combinational approach to modulate complement activation by targeting C3 and the terminal pathway simultaneously. The synthetic fusion protein MFHR1 links the regulatory domains of complement factor H (FH) with the C5 convertase/C5b-9 inhibitory fragment of the FH-related protein 1. In vitro, MFHR1 showed cofactor and decay acceleration activity and inhibited C5 convertase activation and C5b-9 assembly, which prevented C3b deposition and reduced C3a/C5a and C5b-9 generation. Furthermore, this fusion protein showed the ability to escape deregulation by FH-related proteins and form multimeric complexes with increased inhibitory activity. In addition to substantially inhibiting alternative and classic pathway activation, MFHR1 blocked hemolysis mediated by serum from a patient with aHUS expressing truncated FH. In FH-/- mice, MFHR1 administration augmented serum C3 levels, reduced abnormal glomerular C3 deposition, and ameliorated C3 glomerulopathy. Taking the unique design of MFHR1 into account, we suggest that the combination of proximal and terminal cascade inhibition together with the ability to form multimeric complexes explain the strong inhibitory capacity of MFHR1, which offers a novel basis for complement therapeutics.
Collapse
Affiliation(s)
- Stefan Michelfelder
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine
| | - Friedericke Fischer
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine
| | - Astrid Wäldin
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine
| | - Kim V Hörle
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine
| | - Martin Pohl
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine
| | | | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, and.,Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany; and
| | | | - Peter F Zipfel
- Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Jena, Germany
| | - Christine Skerka
- Leibniz Institute for Natural Product Research and Infection Biology, Friedrich Schiller University, Jena, Germany
| | - Karsten Häffner
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center, Faculty of Medicine,
| |
Collapse
|
41
|
Ray TD, Mekasha S, Liang Y, Lu B, Ram S, Ingalls RR. Species-specific differences in regulation of macrophage inflammation by the C3a-C3a receptor axis. Innate Immun 2018; 24:66-78. [PMID: 29297237 PMCID: PMC6818254 DOI: 10.1177/1753425917747044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Complement is an important arm of the innate immune system. Recent studies have shown that products of complement pathway activation can interact directly with other innate immune signaling molecules, including TLRs and inflammasome family members, during some infectious and chronic inflammatory disorders. Activation of the complement system generates anaphylatoxins, such as C3a and C5a, which modulate inflammation. However, the biological effects of interactions between the anaphylatoxins with their receptors may vary across species. In this study, we demonstrate that human complement and rat complement differ in the way they modulate the inflammatory response to the human pathogen, Neisseria gonorrhoeae, as well as purified pathogen-associated ligands, such as LPS. While rat serum down-regulates MyD88-dependent pro-inflammatory cytokine responses in macrophages, human serum has no effect, or in some cases an enhancing effect. Further, the inhibitory effect of rat serum on otherwise pro-inflammatory stimuli is mediated by complement, specifically C3a-C3a receptor interactions, via an undefined signaling mechanism that down-regulates the transcription factor, NF-κB and NLRP3 inflammasome-mediated caspase-1 activation. This study highlights important functional differences between rodent and human complement that could explain some of the differences in immune responses between these two species. Understanding the crosstalk between complement and other arms of the innate immune system will facilitate the development of better anti-inflammatory therapeutics.
Collapse
Affiliation(s)
- Tathagat Dutta Ray
- 1 Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
| | - Samrawit Mekasha
- 1 Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
| | - Yanmei Liang
- 1 Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
| | - Bao Lu
- 2 1862 Division of Pulmonary and Respiratory Disease, Boston Children's Hospital , Harvard Medical School, Boston, MA, USA
| | - Sanjay Ram
- 3 Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Robin R Ingalls
- 1 Section of Infectious Diseases, Department of Medicine, Boston Medical Center and Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
42
|
Harris CL. Expanding horizons in complement drug discovery: challenges and emerging strategies. Semin Immunopathol 2017; 40:125-140. [PMID: 28986638 PMCID: PMC5794834 DOI: 10.1007/s00281-017-0655-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/19/2017] [Indexed: 12/28/2022]
Abstract
The complement system is best known for its role in innate immunity, providing a first line of defence against infection, maintaining tissue homeostasis by flagging apoptotic cells and debris for removal, and orchestrating crosstalk between adaptive and innate immunity. In a growing number of diseases, complement is known to drive pathogenesis or to contribute as an inflammatory amplifier of a disease trigger. Association of complement with common and devastating diseases has driven an upsurge in complement drug discovery, but despite a wealth of knowledge in the complexities of the cascade, and many decades of effort, very few drugs have progressed to late-stage clinical studies. The reasons for this are becoming clear with difficulties including high target concentration and turnover, lack of clarity around disease mechanism and unwanted side effects. Lessons learnt from drugs which are either approved, or are currently in late-stage development, or have failed and dropped off the drug development landscape, have been invaluable to drive a new generation of innovative drugs which are progressing through clinical development. In this review, the challenges associated with complement drug discovery are discussed and the current drug development landscape is reviewed. The latest approaches to improve drug characteristics are explored and those agents which employ these technologies to improve accessibility to patients are highlighted.
Collapse
Affiliation(s)
- Claire L Harris
- Complement Therapeutics Research Group and National Renal Complement Therapeutics Centre, Institute of Cellular Medicine, Newcastle University, 3rd floor William Leech Building, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
43
|
Trouw LA, Pickering MC, Blom AM. The complement system as a potential therapeutic target in rheumatic disease. Nat Rev Rheumatol 2017; 13:538-547. [DOI: 10.1038/nrrheum.2017.125] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Schmidt CQ, Lambris JD, Ricklin D. Protection of host cells by complement regulators. Immunol Rev 2017; 274:152-171. [PMID: 27782321 DOI: 10.1111/imr.12475] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The complement cascade is an ancient immune-surveillance system that not only provides protection from pathogen invasion but has also evolved to participate in physiological processes to maintain tissue homeostasis. The alternative pathway (AP) of complement activation is the evolutionarily oldest part of this innate immune cascade. It is unique in that it is continuously activated at a low level and arbitrarily probes foreign, modified-self, and also unaltered self-structures. This indiscriminate activation necessitates the presence of preformed regulators on autologous surfaces to spare self-cells from the undirected nature of AP activation. Although the other two canonical complement activation routes, the classical and lectin pathways, initiate the cascade more specifically through pattern recognition, their activity still needs to be tightly controlled to avoid excessive reactivity. It is the perpetual duty of complement regulators to protect the self from damage inflicted by inadequate complement activation. Here, we review the role of complement regulators as preformed mediators of defense, explain their common and specialized functions, and discuss selected cases in which alterations in complement regulators lead to disease. Finally, rational engineering approaches using natural complement inhibitors as potential therapeutics are highlighted.
Collapse
Affiliation(s)
- Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany.
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
45
|
Blatt AZ, Pathan S, Ferreira VP. Properdin: a tightly regulated critical inflammatory modulator. Immunol Rev 2017; 274:172-190. [PMID: 27782331 PMCID: PMC5096056 DOI: 10.1111/imr.12466] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complement alternative pathway is a powerful arm of the innate immune system that enhances diverse inflammatory responses in the human host. Key to the effects of the alternative pathway is properdin, a serum glycoprotein that can both initiate and positively regulate alternative pathway activity. Properdin is produced by many different leukocyte subsets and circulates as cyclic oligomers of monomeric subunits. While the formation of non‐physiological aggregates in purified properdin preparations and the presence of potential properdin inhibitors in serum have complicated studies of its function, properdin has, regardless, emerged as a key player in various inflammatory disease models. Here, we review basic properdin biology, emphasizing the major hurdles that have complicated the interpretation of results from properdin‐centered studies. In addition, we elaborate on an emerging role for properdin in thromboinflammation and discuss the potential utility of properdin inhibitors as long‐term therapeutic options to treat diseases marked by increased formation of platelet/granulocyte aggregates. Finally, we describe the interplay between properdin and the alternative pathway negative regulator, Factor H, and how aiming to understand these interactions can provide scientists with the most effective ways to manipulate alternative pathway activation in complex systems.
Collapse
Affiliation(s)
- Adam Z Blatt
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sabina Pathan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
46
|
A review of human diseases caused or exacerbated by aberrant complement activation. Neurobiol Aging 2017; 52:12-22. [DOI: 10.1016/j.neurobiolaging.2016.12.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/15/2016] [Accepted: 12/18/2016] [Indexed: 12/14/2022]
|
47
|
Harder MJ, Kuhn N, Schrezenmeier H, Höchsmann B, von Zabern I, Weinstock C, Simmet T, Ricklin D, Lambris JD, Skerra A, Anliker M, Schmidt CQ. Incomplete inhibition by eculizumab: mechanistic evidence for residual C5 activity during strong complement activation. Blood 2017; 129:970-980. [PMID: 28028023 PMCID: PMC5324716 DOI: 10.1182/blood-2016-08-732800] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022] Open
Abstract
Eculizumab inhibits the terminal, lytic pathway of complement by blocking the activation of the complement protein C5 and shows remarkable clinical benefits in certain complement-mediated diseases. However, several reports suggest that activation of C5 is not always completely suppressed in patients even under excess of eculizumab over C5, indicating that residual C5 activity may derogate the drug's therapeutic benefit under certain conditions. By using eculizumab and the tick-derived C5 inhibitor coversin, we determined conditions ex vivo in which C5 inhibition is incomplete. The degree of such residual lytic activity depended on the strength of the complement activator and the resulting surface density of the complement activation product C3b, which autoamplifies via the alternative pathway (AP) amplification loop. We show that at high C3b densities required for binding and activation of C5, both inhibitors reduce but do not abolish this interaction. The decrease of C5 binding to C3b clusters in the presence of C5 inhibitors correlated with the levels of residual hemolysis. However, by employing different C5 inhibitors simultaneously, residual hemolytic activity could be abolished. The importance of AP-produced C3b clusters for C5 activation in the presence of eculizumab was corroborated by the finding that residual hemolysis after forceful activation of the classical pathway could be reduced by blocking the AP. By providing insights into C5 activation and inhibition, our study delivers the rationale for the clinically observed phenomenon of residual terminal pathway activity under eculizumab treatment with important implications for anti-C5 therapy in general.
Collapse
Affiliation(s)
- Markus J Harder
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Nadine Kuhn
- Lehrstuhl für Biologische Chemie, Technische Universität München, Freising, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital of Ulm, Ulm, Germany; and
| | - Britta Höchsmann
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital of Ulm, Ulm, Germany; and
| | - Inge von Zabern
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital of Ulm, Ulm, Germany; and
| | - Christof Weinstock
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital of Ulm, Ulm, Germany; and
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Daniel Ricklin
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital of Ulm, Ulm, Germany; and
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA
| | - Arne Skerra
- Lehrstuhl für Biologische Chemie, Technische Universität München, Freising, Germany
| | - Markus Anliker
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service and University Hospital of Ulm, Ulm, Germany; and
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| |
Collapse
|
48
|
Biffi S, Andolfi L, Caltagirone C, Garrovo C, Falchi AM, Lippolis V, Lorenzon A, Macor P, Meli V, Monduzzi M, Obiols-Rabasa M, Petrizza L, Prodi L, Rosa A, Schmidt J, Talmon Y, Murgia S. Cubosomes for in vivo fluorescence lifetime imaging. NANOTECHNOLOGY 2017; 28:055102. [PMID: 28032617 DOI: 10.1088/1361-6528/28/5/055102] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Herein we provided the first proof of principle for in vivo fluorescence optical imaging application using monoolein-based cubosomes in a healthy mouse animal model. This formulation, administered at a non-cytotoxic concentration, was capable of providing both exogenous contrast for NIR fluorescence imaging with very high efficiency and chemospecific information upon lifetime analysis. Time-resolved measurements of fluorescence after the intravenous injection of cubosomes revealed that the dye rapidly accumulated mainly in the liver, while lifetimes profiles obtained in vivo allowed for discriminating between free dye or dye embedded within the cubosome nanostructure after injection.
Collapse
Affiliation(s)
- Stefania Biffi
- Institute for Maternal and Child Health-IRCCS 'Burlo Garofolo', Trieste, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wehling C, Amon O, Bommer M, Hoppe B, Kentouche K, Schalk G, Weimer R, Wiesener M, Hohenstein B, Tönshoff B, Büscher R, Fehrenbach H, Gök ÖN, Kirschfink M. Monitoring of complement activation biomarkers and eculizumab in complement-mediated renal disorders. Clin Exp Immunol 2016; 187:304-315. [PMID: 27784126 DOI: 10.1111/cei.12890] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 12/18/2022] Open
Abstract
Various complement-mediated renal disorders are treated currently with the complement inhibitor eculizumab. By blocking the cleavage of C5, this monoclonal antibody prevents cell damage caused by complement-mediated inflammation. We included 23 patients with atypical haemolytic uraemic syndrome (aHUS, n = 12), C3 glomerulopathies (C3G, n = 9) and acute antibody-mediated renal graft rejection (AMR, n = 2), treated with eculizumab in 12 hospitals in Germany. We explored the course of complement activation biomarkers and the benefit of therapeutic drug monitoring of eculizumab. Complement activation was assessed by analysing the haemolytic complement function of the classical (CH50) and the alternative pathway (APH50), C3 and the activation products C3d, C5a and sC5b-9 prior to, 3 and 6 months after eculizumab treatment. Eculizumab concentrations were determined by a newly established specific enzyme-linked immunosorbent assay (ELISA). Serum eculizumab concentrations up to 1082 μg/ml point to drug accumulation, especially in paediatric patients. Loss of the therapeutic antibody via urine with concentrations up to 56 μg/ml correlated with proteinuria. In aHUS patients, effective complement inhibition was demonstrated by significant reductions of CH50, APH50, C3d and sC5b-9 levels, whereas C5a levels were only reduced significantly after 6 months' treatment. C3G patients presented increased C3d and consistently low C3 levels, reflecting ongoing complement activation and consumption at the C3 level, despite eculizumab treatment. A comprehensive complement analysis together with drug monitoring is required to distinguish mode of complement activation and efficacy of eculizumab treatment in distinct renal disorders. Accumulation of the anti-C5 antibody points to the need for a patient-orientated tailored therapy.
Collapse
Affiliation(s)
- C Wehling
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| | - O Amon
- Department of Pediatric Nephrology, University Hospital Tübingen, Germany
| | - M Bommer
- Department of Hematology and Oncology, ALB FILS Hospital Göppingen, Germany
| | - B Hoppe
- Department of Pediatric Nephrology, University Hospital Bonn, Germany
| | - K Kentouche
- Department of Pediatric Immunology, University Hospital Jena, Germany
| | - G Schalk
- Department of Pediatric Nephrology, University Children's Hospital Zurich, Switzerland
| | - R Weimer
- Department of Internal Medicine, University of Giessen, Germany
| | - M Wiesener
- Department of Nephrology and Hypertension, University Hospital Erlangen, Germany
| | - B Hohenstein
- Division of Nephrology, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Dresden, Germany
| | - B Tönshoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, Germany
| | - R Büscher
- Department of Pediatric Nephrology, University Hospital Essen, Germany
| | - H Fehrenbach
- Department of Pediatric Nephrology, Hospital Memmingen, Germany
| | - Ö-N Gök
- Department of Internal Medicine IV, University Hospital Freiburg, Germany
| | - M Kirschfink
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
50
|
Ricklin D, Reis ES, Mastellos DC, Gros P, Lambris JD. Complement component C3 - The "Swiss Army Knife" of innate immunity and host defense. Immunol Rev 2016; 274:33-58. [PMID: 27782325 PMCID: PMC5427221 DOI: 10.1111/imr.12500] [Citation(s) in RCA: 273] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
As a preformed defense system, complement faces a delicate challenge in providing an immediate, forceful response to pathogens even at first encounter, while sparing host cells in the process. For this purpose, it engages a tightly regulated network of plasma proteins, cell surface receptors, and regulators. Complement component C3 plays a particularly versatile role in this process by keeping the cascade alert, acting as a point of convergence of activation pathways, fueling the amplification of the complement response, exerting direct effector functions, and helping to coordinate downstream immune responses. In recent years, it has become evident that nature engages the power of C3 not only to clear pathogens but also for a variety of homeostatic processes ranging from tissue regeneration and synapse pruning to clearing debris and controlling tumor cell progression. At the same time, its central position in immune surveillance makes C3 a target for microbial immune evasion and, if improperly engaged, a trigger point for various clinical conditions. In our review, we look at the versatile roles and evolutionary journey of C3, discuss new insights into the molecular basis for C3 function, provide examples of disease involvement, and summarize the emerging potential of C3 as a therapeutic target.
Collapse
Affiliation(s)
- Daniel Ricklin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Edimara S Reis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitrios C Mastellos
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- National Center for Scientific Research 'Demokritos', Athens, Greece
| | - Piet Gros
- Utrecht University, Utrecht, The Netherlands
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|