1
|
George Pryzdial EL, Perrier JR, Rashid MU, West HE, Sutherland MR. Viral coagulation: pushing the envelope. J Thromb Haemost 2024:S1538-7836(24)00500-2. [PMID: 39260743 DOI: 10.1016/j.jtha.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/11/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Many virus types affect the blood clotting system with correlations to pathology that range widely from thrombosis to hemorrhage linking to inflammation. Here we overview the intricate crosstalk induced by infection between proteins on the virus encoded by either the host or virus genomes, coagulation proteins, platelets, leukocytes, and endothelial cells. For blood-borne viruses with an outer covering acquired from the host cell, the envelope, a key player may be the cell-derived trigger of coagulation on the virus surface, tissue factor (TF). TF is a multifunctional transmembrane cofactor that accelerates factor (F)VIIa-dependent activation of FX to FXa, leading to clot formation. However, the nascent TF/FVIIa/FXa complex also facilitates G protein-coupled modulation of cells via protease-activated receptor 2. As a viral envelope constituent, TF can bypass the physiological modes of regulation, thereby initiating the activation of neighboring platelets, leukocytes, and endothelial cells. A thromboinflammatory environment is predicted due to feedback amplification in response to cellular release of cytokines, procoagulant proteins, neutrophil extracellular traps, and stimulus-induced accessibility of adhesive receptors, resulting in cellular aggregates. The pathobiological effects of thromboinflammation ultimately contribute to innate and adaptive immunity for viral clearance. In contrast, the preceding stages of viral infection may be enhanced via the TF-protease axis.
Collapse
Affiliation(s)
- Edward Louis George Pryzdial
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada.
| | - John Ruggles Perrier
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Mahamud-Ur Rashid
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Henry Euan West
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Michael Ross Sutherland
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada; Division of Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Kang J, Gu L, Guo B, Rong W, Xu S, Yang G, Ren W. Molecular evolution of wound healing-related genes during cetacean secondary aquatic adaptation. Integr Zool 2024; 19:898-912. [PMID: 37897119 DOI: 10.1111/1749-4877.12781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The marine environment presents challenges for wound healing in cetaceans, despite their remarkable recovery abilities with minimal infections or complications. However, the molecular mechanism underlying this efficient wound healing remains underexplored. To better understand the molecular mechanisms behind wound healing in cetaceans, we investigated the evolutionary patterns of 37 wound healing-related genes in representative mammals. We found wound healing-related genes experience adaptive evolution in cetaceans: (1) Three extrinsic coagulation pathway-related genes-tissue factor (F3), coagulation factor VII (F7), and coagulation factor X (F10)-are subject to positive selection in cetaceans, which might promote efficient hemostasis after injury; positive selection in transforming growth factor-beta 2 (TGF-β2), transforming growth factor-beta 3 (TGF-β3), and platelet-derived growth factor D (PDGFD), which play immunological roles in wound healing, may help cetaceans enhance inflammatory response and tissue debridement. (2) Coagulation factor XII (F12) is the initiation factor in the intrinsic coagulation pathway. It had a premature stop codon mutation and was subjected to selective stress relaxation in cetaceans, suggesting that the early termination of F12 may help cetaceans avoid the risk of vascular blockage during diving. (3) Fibrinogen alpha chain (FGA) and FIII, which were detected to contain the specific amino acid substitutions in marine mammals, indicating similar evolutionary mechanisms might exist among marine mammals to maintain strong wound-healing ability. Thus, our research provides further impetus to study the evolution of the wound healing system in cetaceans and other marine mammals, extending knowledge of preventing coagulation disorder and atherosclerosis in humans.
Collapse
Affiliation(s)
- Jieqiong Kang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Long Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Boxiong Guo
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenqi Rong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
3
|
Kespohl M, Goetzke CC, Althof N, Bredow C, Kelm N, Pinkert S, Bukur T, Bukur V, Grunz K, Kaur D, Heuser A, Mülleder M, Sauter M, Klingel K, Weiler H, Berndt N, Gaida MM, Ruf W, Beling A. TF-FVIIa PAR2-β-Arrestin Signaling Sustains Organ Dysfunction in Coxsackievirus B3 Infection of Mice. Arterioscler Thromb Vasc Biol 2024; 44:843-865. [PMID: 38385286 DOI: 10.1161/atvbaha.123.320157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Accumulating evidence implicates the activation of G-protein-coupled PARs (protease-activated receptors) by coagulation proteases in the regulation of innate immune responses. METHODS Using mouse models with genetic alterations of the PAR2 signaling platform, we have explored contributions of PAR2 signaling to infection with coxsackievirus B3, a single-stranded RNA virus provoking multiorgan tissue damage, including the heart. RESULTS We show that PAR2 activation sustains correlates of severe morbidity-hemodynamic compromise, aggravated hypothermia, and hypoglycemia-despite intact control of the virus. Following acute viral liver injury, canonical PAR2 signaling impairs the restoration process associated with exaggerated type I IFN (interferon) signatures in response to viral RNA recognition. Metabolic profiling in combination with proteomics of liver tissue shows PAR2-dependent reprogramming of liver metabolism, increased lipid droplet storage, and gluconeogenesis. PAR2-sustained hypodynamic compromise, reprograming of liver metabolism, as well as imbalanced IFN responses are prevented in β-arrestin coupling-deficient PAR2 C-terminal phosphorylation mutant mice. Thus, wiring between upstream proteases and immune-metabolic responses results from biased PAR2 signaling mediated by intracellular recruitment of β-arrestin. Importantly, blockade of the TF (tissue factor)-FVIIa (coagulation factor VIIa) complex capable of PAR2 proteolysis with the NAPc2 (nematode anticoagulant protein c2) mitigated virus-triggered pathology, recapitulating effects seen in protease cleavage-resistant PAR2 mice. CONCLUSIONS These data provide insights into a TF-FVIIa signaling axis through PAR2-β-arrestin coupling that is a regulator of inflammation-triggered tissue repair and hemodynamic compromise in coxsackievirus B3 infection and can potentially be targeted with selective coagulation inhibitors.
Collapse
Affiliation(s)
- Meike Kespohl
- Institute of Biochemistry (M.K., C.B., N.K., S.P., A.B.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Berlin, Germany (M.K., A.B.)
| | - Carl Christoph Goetzke
- Department of Pediatrics, Division of Pulmonology, Immunology and Critical Care Medicine (C.C.G.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
- Clinician Scientist Program, BIH (Berlin Institute of Health) Academy, BIH, Charité-Universitätsmedizin Berlin, Germany (C.C.G.)
- German Rheumatism Research Center, Leibniz Association, Berlin, Germany (C.C.G.)
| | - Nadine Althof
- German Federal Institute for Risk Assessment, Berlin, Germany (N.A.)
| | - Clara Bredow
- Institute of Biochemistry (M.K., C.B., N.K., S.P., A.B.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Nicolas Kelm
- Institute of Biochemistry (M.K., C.B., N.K., S.P., A.B.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Sandra Pinkert
- Institute of Biochemistry (M.K., C.B., N.K., S.P., A.B.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Thomas Bukur
- Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz (TRON), Germany (T.B., V.B.)
| | - Valesca Bukur
- Translational Oncology at the University Medical Center of the Johannes Gutenberg University Mainz (TRON), Germany (T.B., V.B.)
| | - Kristin Grunz
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Rhein-Main, Germany (K.G., D.K., W.R.)
- University Medical Center Mainz, Center for Thrombosis and Hemostasis, Germany (K.G., D.K., W.R.)
| | - Dilraj Kaur
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Rhein-Main, Germany (K.G., D.K., W.R.)
- University Medical Center Mainz, Center for Thrombosis and Hemostasis, Germany (K.G., D.K., W.R.)
| | - Arnd Heuser
- Max-Delbrueck-Center for Molecular Medicine, Animal Phenotyping Platform, Berlin, Germany (A.H.)
| | - Michael Mülleder
- Core Facility High-Throughput Mass Spectrometry (M.M.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Martina Sauter
- University Hospital Tuebingen, Institute for Pathology and Neuropathology, Cardiopathology, Germany (M.S., K.K.)
| | - Karin Klingel
- University Hospital Tuebingen, Institute for Pathology and Neuropathology, Cardiopathology, Germany (M.S., K.K.)
| | | | - Nikolaus Berndt
- Deutsches Herzzentrum der Charité, Institute of Computer-Assisted Cardiovascular Medicine, Berlin, Germany (N.B.)
- Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany (N.B.)
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Nuthetal, Germany (N.B.)
| | - Matthias M Gaida
- University Medical Center Mainz, Institute for Pathology, Johannes-Gutenberg-Universität Mainz, Germany (M.M.G.)
- University Medical Center Mainz, Research Center for Immunotherapy, Johannes-Gutenberg-Universität Mainz, Germany (M.M.G.)
- Joint Unit Immunopathology, Institute of Pathology, University Medical Center, Johannes Gutenberg University of Mainz, Germany (M.M.G.)
- TRON, Mainz, Germany (M.M.G.)
| | - Wolfram Ruf
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Rhein-Main, Germany (K.G., D.K., W.R.)
- University Medical Center Mainz, Center for Thrombosis and Hemostasis, Germany (K.G., D.K., W.R.)
| | - Antje Beling
- Institute of Biochemistry (M.K., C.B., N.K., S.P., A.B.), Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
- Deutsches Zentrum für Herz-Kreislauf-Forschung (DZHK), partner site Berlin, Germany (M.K., A.B.)
| |
Collapse
|
4
|
Abdel-Bakky MS, Aldakhili ASA, Ali HM, Babiker AY, Alhowail AH, Mohammed SAA. Evaluation of Cisplatin-Induced Acute Renal Failure Amelioration Using Fondaparinux and Alteplase. Pharmaceuticals (Basel) 2023; 16:910. [PMID: 37513824 PMCID: PMC10383028 DOI: 10.3390/ph16070910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Acute renal failure (ARF) is a deleterious condition with increased mortality or healthcare costs or dialysis-dependent end-stage renal disease. The study aims to compare prophylaxis with fondaparinux (Fund) vs. treatment with alteplase (Alt) in ameliorating cisplatin (Cis)-induced ARF. Sixty male mice were equally divided randomly into six groups of control, Cis, Alt, and Cis + Alt groups receiving normal saline for 10 days. All four groups except for the control received Cis (30 mg/kg, i.p.) on day 7, and 6 h later, both the Alt groups received Alt (0.9 mg/kg, i.v.). The animal groups Fund and Fund + Cis received Fund (5 mg/kg, i.p.) for 10 days, and the Fund + Cis group on day 7 received Cis. All the animal groups were euthanized 72 h after the Cis dose. The Fund + Cis group showed significantly increased expression levels of platelet count, retinoid X receptor alpha (RXR-α) and phosphorylated Akt (p-Akt) in addition to decreased levels of urea, blood urea nitrogen (BUN), uric acid, white blood cells (WBCs), red blood cells (RBCs), relative kidney body weight, kidney injury score, glucose, prothrombin (PT), A Disintegrin And Metalloproteinases-10 (ADAM10), extracellular matrix deposition, protease-activated receptor 2 (PAR-2), and fibrinogen expression when compared to the Cis-only group. Meanwhile, the Cis + Alt group showed increased caspase-3 expression in addition to decreased levels of urea, BUN, uric acid, WBCs, RBCs, glucose, platelet count and PT expression with a marked decrease in PAR-2 protein expression compared to the Cis group. The creatinine levels for both the Fund + Cis and Cis + Alt groups were found to be comparable to those of the Cis-only group. The results demonstrate that the coagulation system's activation through the stimulation of PAR-2 and fibrinogen due to Cis-induced ADAM10 protein expression mediated the apoptotic pathway, as indicated by caspase-3 expression through the p-Akt pathway. This is normally accompanied by the loss of RXR-α distal and proximal tubules as lipid droplets. When the animals were pre-treated with the anticoagulant, Fund, the previous deleterious effect was halted while the fibrinolytic agent, Alt, most of the time failed to treat Cis-induced toxicity.
Collapse
Affiliation(s)
- Mohamed S Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Anas S A Aldakhili
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Hussein M Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | - Ali Y Babiker
- Department of Medical Laboratories, College of Applied Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad H Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Salman A A Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
5
|
Subramaniam S, Kothari H, Bosmann M. Tissue factor in COVID-19-associated coagulopathy. Thromb Res 2022; 220:35-47. [PMID: 36265412 PMCID: PMC9525243 DOI: 10.1016/j.thromres.2022.09.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022]
Abstract
Evidence of micro- and macro-thrombi in the arteries and veins of critically ill COVID-19 patients and in autopsies highlight the occurrence of COVID-19-associated coagulopathy (CAC). Clinical findings of critically ill COVID-19 patients point to various mechanisms for CAC; however, the definitive underlying cause is unclear. Multiple factors may contribute to the prothrombotic state in patients with COVID-19. Aberrant expression of tissue factor (TF), an initiator of the extrinsic coagulation pathway, leads to thrombotic complications during injury, inflammation, and infections. Clinical evidence suggests that TF-dependent coagulation activation likely plays a role in CAC. Multiple factors could trigger abnormal TF expression and coagulation activation in patients with severe COVID-19 infection. Proinflammatory cytokines that are highly elevated in COVID-19 (IL-1β, IL-6 and TNF-α) are known induce TF expression on leukocytes (e.g. monocytes, macrophages) and non-immune cells (e.g. endothelium, epithelium) in other conditions. Antiphospholipid antibodies, TF-positive extracellular vesicles, pattern recognition receptor (PRR) pathways and complement activation are all candidate factors that could trigger TF-dependent procoagulant activity. In addition, coagulation factors, such as thrombin, may further potentiate the induction of TF via protease-activated receptors on cells. In this systematic review, with other viral infections, we discuss potential mechanisms and cell-type-specific expressions of TF during SARS-CoV-2 infection and its role in the development of CAC.
Collapse
Affiliation(s)
- Saravanan Subramaniam
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Hema Kothari
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA; Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
6
|
Hess CN, Capell WH, Bristow MR, Ruf W, Szarek M, Morrow DA, Nicolau JC, Graybill CA, Marshall D, Hsia J, Bonaca MP. Rationale and design of a study to assess the safety and efficacy of rNAPc2 in COVID-19: the Phase 2b ASPEN-COVID-19 trial. Am Heart J 2022; 246:136-143. [PMID: 34986394 PMCID: PMC8720379 DOI: 10.1016/j.ahj.2021.12.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/11/2021] [Accepted: 12/21/2021] [Indexed: 12/22/2022]
Abstract
Background The interaction between thrombosis and inflammation appears central to COVID-19-associated coagulopathy and likely contributes to poor outcomes. Tissue factor is a driver of disordered coagulation and inflammatory signaling in viral infections and is important for viral replication; therefore, tissue factor may be an important therapeutic target in COVID-19. Study Design ASPEN-COVID-19 (NCT04655586) is a randomized, prospective open-label blinded endpoint (PROBE), active comparator Phase 2b trial to evaluate the safety and efficacy of recombinant Nematode Anticoagulant Protein c2 (rNAPc2), a potent tissue factor inhibitor, in patients hospitalized with COVID-19 with elevated D-dimer levels. This report describes the design of the Phase 2b dose ranging and proof of concept study. Participants are randomly assigned, in a 1:1:2 ratio, to lower or higher dose rNAPc2 by subcutaneous injection on days 1, 3, and 5 or to heparin according to local standard of care; randomization is stratified by baseline D-dimer level (at 2X upper limit of normal). The primary efficacy endpoint for Phase 2b is proportional change in D-dimer concentration from baseline to Day 8 or day of discharge, whichever is earlier. The primary safety endpoint is major or non-major clinically relevant bleeding through Day 8. Phase 2b enrollment began in December 2020 and is projected to complete ∼160 participants by Q4 2021. Conclusions ASPEN-COVID-19 will provide important data on a novel therapeutic approach that may improve outcomes in hospitalized COVID-19 patients beyond available anticoagulants by targeting tissue factor, with potential effects on not only thrombosis but also inflammation and viral propagation.
Collapse
|
7
|
Popescu NI, Lupu C, Lupu F. Disseminated intravascular coagulation and its immune mechanisms. Blood 2022; 139:1973-1986. [PMID: 34428280 PMCID: PMC8972096 DOI: 10.1182/blood.2020007208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/02/2021] [Indexed: 11/26/2022] Open
Abstract
Disseminated intravascular coagulation (DIC) is a syndrome triggered by infectious and noninfectious pathologies characterized by excessive generation of thrombin within the vasculature and widespread proteolytic conversion of fibrinogen. Despite diverse clinical manifestations ranging from thrombo-occlusive damage to bleeding diathesis, DIC etiology commonly involves excessive activation of blood coagulation and overlapping dysregulation of anticoagulants and fibrinolysis. Initiation of blood coagulation follows intravascular expression of tissue factor or activation of the contact pathway in response to pathogen-associated or host-derived, damage-associated molecular patterns. The process is further amplified through inflammatory and immunothrombotic mechanisms. Consumption of anticoagulants and disruption of endothelial homeostasis lower the regulatory control and disseminate microvascular thrombosis. Clinical DIC development in patients is associated with worsening morbidities and increased mortality, regardless of the underlying pathology; therefore, timely recognition of DIC is critical for reducing the pathologic burden. Due to the diversity of triggers and pathogenic mechanisms leading to DIC, diagnosis is based on algorithms that quantify hemostatic imbalance, thrombocytopenia, and fibrinogen conversion. Because current diagnosis primarily assesses overt consumptive coagulopathies, there is a critical need for better recognition of nonovert DIC and/or pre-DIC states. Therapeutic strategies for patients with DIC involve resolution of the eliciting triggers and supportive care for the hemostatic imbalance. Despite medical care, mortality in patients with DIC remains high, and new strategies, tailored to the underlying pathologic mechanisms, are needed.
Collapse
Affiliation(s)
| | - Cristina Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; and
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; and
- Department of Cell Biology
- Department of Pathology, and
- Department of Internal Medicine, Oklahoma University Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
8
|
Tang X, Ma X, Cao J, Sheng X, Xing J, Chi H, Zhan W. The Influence of Temperature on the Antiviral Response of mIgM+ B Lymphocytes Against Hirame Novirhabdovirus in Flounder (Paralichthys olivaceus). Front Immunol 2022; 13:802638. [PMID: 35197977 PMCID: PMC8858815 DOI: 10.3389/fimmu.2022.802638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Hirame novirhabdovirus (HIRRV) is an ongoing threat to the aquaculture industry. The water temperature for the onset of HIRRV is below 15°C, the peak is about 10°C, but no mortality is observed over 20°C. Previous studies found the positive signal of matrix protein of HIRRV (HIRRV-M) was detected in the peripheral blood leukocytes of viral-infected flounder. Flow cytometry and indirect immunofluorescence assay showed that HIRRV-M was detected in mIgM+ B lymphocytes in viral-infected flounder maintained at 10°C and 20°C, and 22% mIgM+ B lymphocytes are infected at 10°C while 13% are infected at 20°C, indicating that HIRRV could invade into mIgM+ B lymphocytes. Absolute quantitative RT-PCR showed that the viral copies in mIgM+ B lymphocytes were significantly increased at 24 h post infection (hpi) both at 10°C and 20°C, but the viral copies in 10°C infection group were significantly higher than that in 20°C infection group at 72 hpi and 96 hpi. Furthermore, the B lymphocytes were sorted from HIRRV-infected flounder maintained at 10°C and 20°C for RNA-seq. The results showed that the differentially expression genes in mIgM+ B lymphocyte of healthy flounder at 10°C and 20°C were mainly enriched in metabolic pathways. Lipid metabolism and Amino acid metabolism were enhanced at 10°C, while Glucose metabolism was enhanced at 20°C. In contrast, HIRRV infection at 10°C induced the up-regulation of the Complement and coagulation cascades, FcγR-mediated phagocytosis, Platelets activation, Leukocyte transendothelial migration and Natural killer cell mediated cytotoxicity pathways at 72 hpi. HIRRV infection at 20°C induced the up-regulation of the Antigen processing and presentation pathway at 72 hpi. Subsequently, the temporal expression patterns of 16 genes involved in Antigen processing and presentation pathway were investigated by qRT-PCR, and results showed that the pathway was significantly activated by HIRRV infection at 20°C but inhibited at 10°C. In conclusion, HIRRV could invade into mIgM+ B lymphocytes and elicit differential immune response under 10°C and 20°C, which provide a deep insight into the antiviral response in mIgM+ B lymphocytes.
Collapse
Affiliation(s)
- Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xinbiao Ma
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Jing Cao
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Wenbin Zhan,
| |
Collapse
|
9
|
Narasimhan B, Lorente-Ros M, Aguilar-Gallardo JS, Lizardo CP, Narasimhan H, Morton C, Donahue KR, Aronow WS. Anticoagulation in COVID-19: a review of current literature and guidelines. Hosp Pract (1995) 2021; 49:307-324. [PMID: 34807786 DOI: 10.1080/21548331.2021.2007648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 infections are associated with greater risk of both arterial and venous thromboembolic events.Pathophysiology and Clinical implications: This has been attributed to a florid proinflammatory state resulting in microvascular dysfunction, activation of platelets and procoagulant systems as well as possible direct endothelial injury. The associated morbidity and mortality of these events has prompted much speculation and varied anticoagulation and fibrinolytic strategies based on multiple criteria including disease severity and biomarkers. No clear definitive benefit has been established with these approaches, which have frequently led to greater bleeding complications without significant mortality benefit.Overview: In this review, we outline the burden of these thromboembolic events in coronavirus disease-2019 (COVID-19) as well as the hypothesized contributory biological mechanisms. Finally, we provide a brief overview of the major clinical studies on the topic, and end with a summary of major societal guideline recommendations on anticoagulation in COVID-19.
Collapse
Affiliation(s)
- Bharat Narasimhan
- Debakey Cardiovascular Center, Houston Methodist Hospital-Texas Medical Center, Houston, TX, USA
| | - Marta Lorente-Ros
- Department of Medicine, Mount Sinai Morningside-West, the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose S Aguilar-Gallardo
- Department of Medicine, Mount Sinai Morningside-West, the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher Perez Lizardo
- Department of Medicine, Mount Sinai Morningside-West, the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Celia Morton
- Department of Pharmacy, Houston Methodist Hospital-Texas Medical Center, Houston, TX, USA
| | - Kevin R Donahue
- Department of Pharmacy, Houston Methodist Hospital-Texas Medical Center, Houston, TX, USA
| | - Wilbert S Aronow
- Department of Cardiology, Westchester Medical Center/New York Medical College, Valhalla, NY, USA
| |
Collapse
|
10
|
Kapopara PR, Safikhan NS, Huang JL, Meixner SC, Gonzalez K, Loghmani H, Ruf W, Mast AE, Lei V, Pryzdial EL, Conway EM. CD248 enhances tissue factor procoagulant function, promoting arterial and venous thrombosis in mouse models. J Thromb Haemost 2021; 19:1932-1947. [PMID: 33830628 PMCID: PMC8571649 DOI: 10.1111/jth.15338] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/16/2021] [Accepted: 04/02/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND CD248 is a pro-inflammatory, transmembrane glycoprotein expressed by vascular smooth muscle cells (VSMC), monocytes/macrophages, and other cells of mesenchymal origin. Its distribution and properties are reminiscent of those of the initiator of coagulation, tissue factor (TF). OBJECTIVE We examined whether CD248 also participates in thrombosis. METHODS We evaluated the role of CD248 in coagulation using mouse models of vascular injury, and by assessing its functional interaction with the TF-factor VIIa (FVIIa)-factor X (FX) complex. RESULTS The time to ferric chloride-induced occlusion of the carotid artery in CD248 knockout (KO) mice was significantly longer than in wild-type (WT) mice. In an inferior vena cava (IVC) stenosis model of thrombosis, lack of CD248 conferred relative resistance to thrombus formation compared to WT mice. Levels of circulating cells and coagulation factors, prothrombin time, activated partial thromboplastin time, and tail bleeding times were similar in both groups. Proximity ligation assays revealed that TF and CD248 are <40 nm apart, suggesting a potential functional relationship. Expression of CD248 by murine and human VSMCs, and by a monocytic cell line, significantly augmented TF-FVIIa-mediated activation of FX, which was not due to differential expression or encryption of TF, altered exposure of phosphatidylserine or differences in tissue factor pathway inhibitor expression. Rather, conformation-specific antibodies showed that CD248 induces allosteric changes in the TF-FVIIa-FX complex that facilitates FX activation by TF-FVIIa. CONCLUSION CD248 is a newly uncovered protein partner and potential therapeutic target in the TF-FVIIa-FX macromolecular complex that modulates coagulation.
Collapse
Affiliation(s)
- Piyushkumar R. Kapopara
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nooshin S. Safikhan
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jenny L. Huang
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Scott C. Meixner
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Canadian Blood Services, Centre for Innovation, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin Gonzalez
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Canadian Blood Services, Centre for Innovation, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Houra Loghmani
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Wolfram Ruf
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Alan E. Mast
- Blood Research Institute, Versiti, Milwaukee, Wisconsin, USA
| | - Victor Lei
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward L.G. Pryzdial
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, Canadian Blood Services, Centre for Innovation, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward M. Conway
- Centre for Blood Research, Life Sciences Institute, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Kakarla V, Kaneko N, Nour M, Khatibi K, Elahi F, Liebeskind DS, Hinman JD. Pathophysiologic mechanisms of cerebral endotheliopathy and stroke due to Sars-CoV-2. J Cereb Blood Flow Metab 2021; 41:1179-1192. [PMID: 33530831 PMCID: PMC8142132 DOI: 10.1177/0271678x20985666] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022]
Abstract
Cerebrovascular events have emerged as a central feature of the clinical syndrome associated with Sars-CoV-2 infection. This increase in infection-related strokes is marked by atypical presentations including stroke in younger patients and a high rate of hemorrhagic transformation after ischemia. A variety of pathogenic mechanisms may underlie this connection. Efforts to identify synergism in the pathophysiology underlying stroke and Sars-CoV-2 infection can inform the understanding of both conditions in novel ways. In this review, the molecular cascades connected to Sars-CoV-2 infection are placed in the context of the cerebral vasculature and in relationship to pathways known to be associated with stroke. Cytokine-mediated promotion of systemic hypercoagulability is suggested while direct Sars-CoV-2 infection of cerebral endothelial cells may also contribute. Endotheliopathy resulting from direct Sars-CoV-2 infection of the cerebral vasculature can modulate ACE2/AT1R/MasR signaling pathways, trigger direct viral activation of the complement cascade, and activate feed-forward cytokine cascades that impact the blood-brain barrier. All of these pathways are already implicated as independent mechanisms driving stroke and cerebrovascular injury irrespective of Sars-CoV-2. Recognizing the overlap of molecular pathways triggered by Sars-CoV-2 infection with those implicated in the pathogenesis of stroke provides an opportunity to identify future therapeutics targeting both Sars-CoV-2 and stroke thereby reducing the impact of the global pandemic.
Collapse
Affiliation(s)
- Visesha Kakarla
- School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Naoki Kaneko
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - May Nour
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kasra Khatibi
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Fanny Elahi
- Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - David S Liebeskind
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason D Hinman
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
12
|
Bahouth MN, Venkatesan A. Acute Viral Illnesses and Ischemic Stroke: Pathophysiological Considerations in the Era of the COVID-19 Pandemic. Stroke 2021; 52:1885-1894. [PMID: 33794653 PMCID: PMC8078120 DOI: 10.1161/strokeaha.120.030630] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 or coronavirus disease 2019 (COVID-19) pandemic has raised concerns about the correlation with this viral illness and increased risk of stroke. Although it is too early in the pandemic to know the strength of the association between COVID-19 and stroke, it is an opportune time to review the relationship between acute viral illnesses and stroke. Here, we summarize pathophysiological principles and available literature to guide understanding of how viruses may contribute to ischemic stroke. After a review of inflammatory mechanisms, we summarize relevant pathophysiological principles of vasculopathy, hypercoagulability, and hemodynamic instability. We will end by discussing mechanisms by which several well-known viruses may cause stroke in an effort to inform our understanding of the relationship between COVID-19 and stroke.
Collapse
Affiliation(s)
- Mona N. Bahouth
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Arun Venkatesan
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
13
|
Conway EM, Pryzdial ELG. Is the COVID-19 thrombotic catastrophe complement-connected? J Thromb Haemost 2020; 18:2812-2822. [PMID: 32762081 PMCID: PMC7436532 DOI: 10.1111/jth.15050] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/15/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
In December 2019, the world was introduced to a new betacoronavirus, referred to as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for its propensity to cause rapidly progressive lung damage, resulting in high death rates. As fast as the virus spread, it became evident that the novel coronavirus causes a multisystem disease (COVID-19) that may involve multiple organs and has a high risk of thrombosis associated with striking elevations in pro-inflammatory cytokines, D-dimer, and fibrinogen, but without disseminated intravascular coagulation. Postmortem studies have confirmed the high incidence of venous thromboembolism, but also notably revealed diffuse microvascular thrombi with endothelial swelling, consistent with a thrombotic microangiopathy, and inter-alveolar endothelial deposits of complement activation fragments. The clinicopathologic presentation of COVID-19 thus parallels that of other thrombotic diseases, such as atypical hemolytic uremic syndrome (aHUS), that are caused by dysregulation of the complement system. This raises the specter that many of the thrombotic complications arising from SARS-CoV-2 infections may be triggered and/or exacerbated by excess complement activation. This is of major potential clinical relevance, as currently available anti-complement therapies that are highly effective in protecting against thrombosis in aHUS, could be efficacious in COVID-19. In this review, we provide mounting evidence for complement participating in the pathophysiology underlying the thrombotic diathesis associated with pathogenic coronaviruses, including SARS-CoV-2. Based on current knowledge of complement, coagulation and the virus, we suggest lines of study to identify novel therapeutic targets and the rationale for clinical trials with currently available anti-complement agents for COVID-19.
Collapse
Affiliation(s)
- Edward M Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward L G Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Canadian Blood Services, Centre for Innovation, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
14
|
Nomura S, Taniura T, Ito T. Extracellular Vesicle-Related Thrombosis in Viral Infection. Int J Gen Med 2020; 13:559-568. [PMID: 32904587 PMCID: PMC7457561 DOI: 10.2147/ijgm.s265865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Although the outcomes of viral infectious diseases are remarkably varied, most infections cause acute diseases after a short period. Novel coronavirus disease 2019, which recently spread worldwide, is no exception. Extracellular vesicles (EVs) are small circulating membrane-enclosed entities shed from the cell surface in response to cell activation or apoptosis. EVs transport various kinds of bioactive molecules between cells, including functional RNAs, such as viral RNAs and proteins. Therefore, when EVs are at high levels, changes in cell activation, inflammation, angioplasty and transportation suggest that EVs are associated with various diseases. Clinical research on EVs includes studies on the coagulatory system. In particular, abnormal enhancement of the coagulatory system through EVs can cause thrombosis. In this review, we address the functions of EVs, thrombosis, and their involvement in viral infection.
Collapse
Affiliation(s)
- Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| | | | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
15
|
Yang Q, Xie L, Zhang W, Zhao L, Wu H, Jiang J, Zou J, Liu J, Wu J, Chen Y, Wu J. Analysis of the clinical characteristics, drug treatments and prognoses of 136 patients with coronavirus disease 2019. J Clin Pharm Ther 2020; 45:609-616. [PMID: 32449224 PMCID: PMC7283656 DOI: 10.1111/jcpt.13170] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 03/30/2020] [Accepted: 04/20/2020] [Indexed: 01/26/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Since the December 2019 discovery of several cases of coronavirus disease 2019 (COVID-19) in Wuhan, China, the infection has spread worldwide. Our aim is to report on the clinical characteristics, treatments and prognoses of COVID-19. METHODS This was a retrospective, single-centre, case series of 136 patients who were diagnosed with COVID-19 at Wuhan Third Hospital in Wuhan, China, between 28 January 2020 and 12 February 2020. The clinical characteristics, laboratory tests, treatment features and prognoses were summarized. RESULTS AND DISCUSSION The 136 patients were divided into a moderate (M) group (n = 103, 75.7%) and a severe and critical (SC) group (n = 33, 24.3%). There were significant differences in the incidences of concomitant chronic medical illnesses (eg, hypertension, diabetes and cardiovascular disease), fever, dry cough and dyspnoea among the two groups (P < .05). Compared with those in the M group, lymphocyte count (LYM) decreased significantly in the SC group, while the serum levels of C-reactive protein (CRP), procalcitonin (PCT), creatinine (Cre), D-dimer, lactic dehydrogenase (LDH), myoglobin (MB) and troponin I (cTnl) increased significantly in the SC group (P < .05). The main therapeutic drugs were antivirals, antibiotics, glucocorticoids, immunomodulators, traditional Chinese medicine preparations and symptomatic support drugs. There were significant differences in the incidences of shock, myocardial injury, acute respiratory distress syndrome (ARDS) and renal injury among the two groups (P < .05). Among the 136 patients, 99 (72.7%) were cured, 14 (10.3%) were transferred to other hospital and 23 (16.9%) died. WHAT IS NEW AND CONCLUSION Elderly patients with chronic diseases are more likely to develop severe or critical COVID-19 with multiple organ damage or systemic injuries. The improvement of LYM and CRP may be associated with the prognoses of COVID-19. The combined use of three or more antiviral drugs is to be avoided. The combination of broad-spectrum antibacterial drugs is not recommended and the risk of drug-induced liver injury should be monitored. Throughout a patient's hospitalization, their treatment plan should be evaluated and adjusted according to their vital signs, clinical symptoms, laboratory tests and imaging changes. Patients should receive effective psychological counselling.
Collapse
Affiliation(s)
- Qiuxiang Yang
- Pharmaceutical DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
- Infections DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
| | - Ling Xie
- Pharmaceutical DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
- Infections DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
| | - Wei Zhang
- Pharmaceutical DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
- Infections DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
| | - Lin Zhao
- Pharmaceutical DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
- Infections DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
| | - HuaJun Wu
- Pharmaceutical DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
- Infections DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
| | - Jie Jiang
- Pharmaceutical DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
- Infections DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
| | - Jili Zou
- Pharmaceutical DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
- Infections DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
| | - Jianguang Liu
- Infections DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
| | - Jun Wu
- Infections DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
| | - Yonggang Chen
- Pharmaceutical DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
- Infections DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
| | - Jinhu Wu
- Pharmaceutical DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
- Infections DepartmentWuhan Third Hospital (Tongren Hospital of Wuhan University)WuhanChina
| |
Collapse
|
16
|
Pryzdial ELG, Sutherland MR, Lin BH, Horwitz M. Antiviral anticoagulation. Res Pract Thromb Haemost 2020; 4:774-788. [PMID: 32685886 PMCID: PMC7354393 DOI: 10.1002/rth2.12406] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel envelope virus that causes coronavirus disease 2019 (COVID-19). Hallmarks of COVID-19 are a puzzling form of thrombophilia that has elevated D-dimer but only modest effects on other parameters of coagulopathy. This is combined with severe inflammation, often leading to acute respiratory distress and possible lethality. Coagulopathy and inflammation are interconnected by the transmembrane receptor, tissue factor (TF), which initiates blood clotting as a cofactor for factor VIIa (FVIIa)-mediated factor Xa (FXa) generation. TF also functions from within the nascent TF/FVIIa/FXa complex to trigger profound changes via protease-activated receptors (PARs) in many cell types, including SARS-CoV-2-trophic cells. Therefore, aberrant expression of TF may be the underlying basis of COVID-19 symptoms. Evidence suggests a correlation between infection with many virus types and development of clotting-related symptoms, ranging from heart disease to bleeding, depending on the virus. Since numerous cell types express TF and can act as sites for virus replication, a model envelope virus, herpes simplex virus type 1 (HSV1), has been used to investigate the uptake of TF into the envelope. Indeed, HSV1 and other viruses harbor surface TF antigen, which retains clotting and PAR signaling function. Strikingly, envelope TF is essential for HSV1 infection in mice, and the FXa-directed oral anticoagulant apixaban had remarkable antiviral efficacy. SARS-CoV-2 replicates in TF-bearing epithelial and endothelial cells and may stimulate and integrate host cell TF, like HSV1 and other known coagulopathic viruses. Combined with this possibility, the features of COVID-19 suggest that it is a TFopathy, and the TF/FVIIa/FXa complex is a feasible therapeutic target.
Collapse
Affiliation(s)
- Edward L. G. Pryzdial
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Michael R. Sutherland
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Bryan H. Lin
- Center for InnovationCanadian Blood ServicesVancouverBCCanada
- Centre for Blood Research and Department of Pathology and Laboratory MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Marc Horwitz
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
17
|
Lin BH, Sutherland MR, Rosell FI, Morrissey JH, Pryzdial ELG. Coagulation factor VIIa binds to herpes simplex virus 1-encoded glycoprotein C forming a factor X-enhanced tenase complex oriented on membranes. J Thromb Haemost 2020; 18:1370-1380. [PMID: 32145149 PMCID: PMC7647453 DOI: 10.1111/jth.14790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/28/2020] [Accepted: 03/04/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND The cell membrane-derived initiators of coagulation, tissue factor (TF) and anionic phospholipid (aPL), are constitutive on the herpes simplex virus type 1 (HSV1) surface, bypassing physiological regulation. TF and aPL accelerate proteolytic activation of factor (F) X to FXa by FVIIa to induce clot formation and cell signaling. Thus, infection in vivo is enhanced by virus surface TF. HSV1-encoded glycoprotein C (gC) is implicated in this tenase activity by providing viral FX binding sites and increasing FVIIa function in solution. OBJECTIVE To examine the biochemical influences of gC on FVIIa-dependent FX activation. METHODS Immunogold electron microscopy (IEM), kinetic chromogenic assays and microscale thermophoresis were used to dissect tenase biochemistry. Recombinant TF and gC were solubilized (s) by substituting the transmembrane domain with poly-histidine, which could be orientated on synthetic unilamellar vesicles containing Ni-chelating lipid (Ni-aPL). These constructs were compared to purified HSV1 TF±/gC ± variants. RESULTS IEM confirmed that gC, TF, and aPL are simultaneously expressed on a single HSV1 particle where the contribution of gC to tenase activity required the availability of viral TF. Unlike viral tenase activity, the cofactor effects of sTF and sgC on FVIIa was additive when bound to Ni-aPL. FVIIa was found to bind to sgC and this was enhanced by FX. Orientation of sgC on a lipid membrane was critical for FVIIa-dependent FX activation. CONCLUSIONS The assembly of gC with FVIIa/FX parallels that of TF and may involve other constituents on the HSV1 envelope with implications in virus infection and pathology.
Collapse
Affiliation(s)
- Bryan H Lin
- Center for Innovation, Canadian Blood Services, Vancouver, BC, Canada
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Sutherland
- Center for Innovation, Canadian Blood Services, Vancouver, BC, Canada
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Federico I Rosell
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - James H Morrissey
- Departments of Biological Chemistry & Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Edward L G Pryzdial
- Center for Innovation, Canadian Blood Services, Vancouver, BC, Canada
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Sutherland MR, Simon AY, Shanina I, Horwitz MS, Ruf W, Pryzdial ELG. Virus envelope tissue factor promotes infection in mice. J Thromb Haemost 2019; 17:482-491. [PMID: 30659719 PMCID: PMC6397068 DOI: 10.1111/jth.14389] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Indexed: 01/04/2023]
Abstract
Essentials The coagulation initiator, tissue factor (TF), is on the herpes simplex virus 1 (HSV1) surface. HSV1 surface TF was examined in mice as an antiviral target since it enhances infection in vitro. HSV1 surface TF facilitated infection of all organs evaluated and anticoagulants were antiviral. Protease activated receptor 2 inhibited infection in vivo and its pre-activation was antiviral. SUMMARY: Background Tissue factor (TF) is the essential cell surface initiator of coagulation, and mediates cell signaling through protease-activated receptor (PAR) 2. Having a diverse cellular distribution, TF is involved in many biological pathways and pathologies. Our earlier work identified host cell-derived TF on the envelope covering several viruses, and showed its involvement in enhanced cell infection in vitro. Objective In the current study, we evaluated the in vivo effects of virus surface TF on infection and on the related modulator of infection PAR2. Methods With the use of herpes simplex virus type 1 (HSV1) as a model enveloped virus, purified HSV1 was generated with or without envelope TF through propagation in a TF-inducible cell line. Infection was studied after intravenous inoculation of BALB/c, C57BL/6J or C57BL/6J PAR2 knockout mice with 5 × 105 plaque-forming units of HSV1, mimicking viremia. Three days after inoculation, organs were processed, and virus was quantified with plaque-forming assays and quantitative real-time PCR. Results Infection of brain, lung, heart, spinal cord and liver by HSV1 required viral TF. Demonstrating promise as a therapeutic target, virus-specific anti-TF mAbs or small-molecule inhibitors of coagulation inhibited infection. PAR2 modulates HSV1 in vivo as demonstrated with PAR2 knockout mice and PAR2 agonist peptide. Conclusion TF is a constituent of many permissive host cell types. Therefore, the results presented here may explain why many viruses are correlated with hemostatic abnormalities, and indicate that TF is a novel pan-specific envelope antiviral target.
Collapse
MESH Headings
- Animals
- Anticoagulants/pharmacology
- Antiviral Agents/pharmacology
- Disease Models, Animal
- Female
- Herpes Simplex/blood
- Herpes Simplex/drug therapy
- Herpes Simplex/immunology
- Herpes Simplex/virology
- Herpesvirus 1, Human/drug effects
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/metabolism
- Host-Pathogen Interactions
- Injections, Intravenous
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptor, PAR-2/genetics
- Receptor, PAR-2/metabolism
- Th1 Cells/immunology
- Th1 Cells/virology
- Thromboplastin/administration & dosage
- Thromboplastin/metabolism
- Viral Envelope Proteins/administration & dosage
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- Michael R Sutherland
- Canadian Blood Services, Center for Innovation, Vancouver, Canada
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Ayo Y Simon
- Canadian Blood Services, Center for Innovation, Vancouver, Canada
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- African Centre of Excellence on Neglected Tropical Diseases and Forensic Biotechnology and Veterinary Teaching Hospital, Ahmadu Bello University, Zaria, Nigeria
- Preclinical Research and Development, Emergent BioSolutions, Winnipeg, Manitoba, Canada
| | - Iryna Shanina
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Marc S Horwitz
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Wolfram Ruf
- Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA, USA
- Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany
| | - Edward L G Pryzdial
- Canadian Blood Services, Center for Innovation, Vancouver, Canada
- Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| |
Collapse
|
19
|
Lê VB, Riteau B, Alessi MC, Couture C, Jandrot-Perrus M, Rhéaume C, Hamelin MÈ, Boivin G. Protease-activated receptor 1 inhibition protects mice against thrombin-dependent respiratory syncytial virus and human metapneumovirus infections. Br J Pharmacol 2017; 175:388-403. [PMID: 29105740 DOI: 10.1111/bph.14084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Protease-activated receptor 1 (PAR1) has been demonstrated to be involved in the pathogenesis of viral diseases. However, its role remains controversial. The goal of our study was to investigate the contribution of PAR1 to respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections. EXPERIMENTAL APPROACH Pharmacological approaches were used to investigate the role of PAR1 during RSV and hMPV infection, in vitro using epithelial A549 cells and in vivo using a mouse model of virus infection. KEY RESULTS In vitro, the PAR1 antagonist RWJ-56110 reduced the replication of RSV and hMPV in A549 cells. In agreement with these results, RWJ-56110-treated mice were protected against RSV and hMPV infections, as indicated by less weight loss and mortality. This protective effect in mice correlated with decreased lung viral replication and inflammation. In contrast, hMPV-infected mice treated with the PAR1 agonist TFLLR-NH2 showed increased mortality, as compared to infected mice, which were left untreated. Thrombin generation was shown to occur downstream of PAR1 activation in infected mice via tissue factor exposure as part of the inflammatory response, and thrombin inhibition by argatroban reduced the pathogenicity of the infection with no additive effect to that induced by PAR1 inhibition. CONCLUSION AND IMPLICATIONS These data show that PAR1 plays a detrimental role during RSV and hMPV infections in mice via, at least, a thrombin-dependent mechanism. Thus, the use of PAR1 antagonists and thrombin inhibitors may have potential as a novel approach for the treatment of RSV and hMPV infections.
Collapse
Affiliation(s)
- Vuong Ba Lê
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Béatrice Riteau
- UMR INSERM U1062/INRA 1260/AMU, Aix Marseille University, Marseille, France
| | | | - Christian Couture
- Department of Anatomy-Pathology, Laval University Institute of Cardiology and Pneumology, Quebec City, Quebec, Canada
| | | | - Chantal Rhéaume
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Marie-Ève Hamelin
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| | - Guy Boivin
- Infectious Disease Research Centre, Laval University, Quebec City, Quebec, Canada
| |
Collapse
|
20
|
Abstract
Virus–platelet interplay is complex. Diverse virus types have been shown to associate with numerous distinct platelet receptors. This association can benefit the virus or the host, and thus the platelet is somewhat of a renegade. Evidence is accumulating to suggest that viruses are capable of entering platelets. For at least one type of RNA virus (dengue virus), the platelet has the necessary post-translational and packaging machinery required for production of replicative viral progeny. As a facilitator of immunity, the platelet also participates in eradicating the virus by direct and indirect mechanisms involving presentation of the pathogen to the innate and adaptive immune systems, thus enhancing inflammation by release of cytokines and other agonists. Virus-induced thrombocytopenia is caused by tangential imbalance of thrombopoeisis, autoimmunity, and loss of platelet function and integrity.
Collapse
|
21
|
Abstract
Cancer-associated thrombosis remains a significant complication in the clinical management of cancer and interactions of the hemostatic system with cancer biology continue to be elucidated. Here, we review recent progress in our understanding of tissue factor (TF) regulation and procoagulant activation, TF signaling in cancer and immune cells, and the expanding roles of the coagulation system in stem cell niches and the tumor microenvironment. The extravascular functions of coagulant and anti-coagulant pathways have significant implications not only for tumor progression, but also for the selection of appropriate target specific anticoagulants in the therapy of cancer patients.
Collapse
Affiliation(s)
- Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.
| | - Andrea S Rothmeier
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Claudine Graf
- Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany; 3(rd) Medical Department, University Medical Center, Mainz, Germany
| |
Collapse
|
22
|
Pulmonary C Fibers Modulate MMP-12 Production via PAR2 and Are Involved in the Long-Term Airway Inflammation and Airway Hyperresponsiveness Induced by Respiratory Syncytial Virus Infection. J Virol 2015; 90:2536-43. [PMID: 26676790 DOI: 10.1128/jvi.02534-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/11/2015] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Children with acute respiratory syncytial virus (RSV) infection often develop sequelae of persistent airway inflammation and wheezing. Pulmonary C fibers (PCFs) are involved in the generation of airway inflammation and resistance; however, their role in persistent airway diseases after RSV is unexplored. Here, we elucidated the pathogenesis of PCF activation in RSV-induced persistent airway disorders. PCF-degenerated and intact mice were used in the current study. Airway inflammation and airway resistance were evaluated. MMP408 and FSLLRY-NH2 were the selective antagonists for MMP-12 and PAR2, respectively, to investigate the roles of MMP-12 and PAR2 in PCFs mediating airway diseases. As a result, PCF degeneration significantly reduced the following responses to RSV infection: augmenting of inflammatory cells, especially macrophages, and infiltrating of inflammatory cells in lung tissues; specific airway resistance (sRaw) response to methacholine; and upregulation of MMP-12 and PAR2 expression. Moreover, the inhibition of MMP-12 reduced the total number of cells and macrophages in bronchiolar lavage fluid (BALF), as well infiltrating inflammatory cells, and decreased the sRaw response to methacholine. In addition, PAR2 was upregulated especially at the later stage of RSV infection. Downregulation of PAR2 ameliorated airway inflammation and resistance following RSV infection and suppressed the level of MMP-12. In all, the results suggest that PCF involvement in long-term airway inflammation and airway hyperresponsiveness occurred at least partially via modulating MMP-12, and the activation of PAR2 might be related to PCF-modulated MMP-12 production. Our initial findings indicated that the inhibition of PCF activity would be targeted therapeutically for virus infection-induced long-term airway disorders. IMPORTANCE The current study is critical to understanding that PCFs are involved in long-term airway inflammation and airway resistance after RSV infection through mediating MMP-12 production via PAR2, indicating that the inhibition of PCF activity can be targeted therapeutically for virus infection-induced long-term airway disorders.
Collapse
|
23
|
Hun Yeon J, Chan KYT, Wong TC, Chan K, Sutherland MR, Ismagilov RF, Pryzdial ELG, Kastrup CJ. A biochemical network can control formation of a synthetic material by sensing numerous specific stimuli. Sci Rep 2015; 5:10274. [PMID: 25975772 PMCID: PMC4432564 DOI: 10.1038/srep10274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/10/2015] [Indexed: 11/29/2022] Open
Abstract
Developing bio-compatible smart materials that assemble in response to environmental cues requires strategies that can discriminate multiple specific stimuli in a complex milieu. Synthetic materials have yet to achieve this level of sensitivity, which would emulate the highly evolved and tailored reaction networks of complex biological systems. Here we show that the output of a naturally occurring network can be replaced with a synthetic material. Exploiting the blood coagulation system as an exquisite biological sensor, the fibrin clot end-product was replaced with a synthetic material under the biological control of a precisely regulated cross-linking enzyme. The functions of the coagulation network remained intact when the material was incorporated. Clot-like polymerization was induced in indirect response to distinct small molecules, phospholipids, enzymes, cells, viruses, an inorganic solid, a polyphenol, a polysaccharide, and a membrane protein. This strategy demonstrates for the first time that an existing stimulus-responsive biological network can be used to control the formation of a synthetic material by diverse classes of physiological triggers.
Collapse
Affiliation(s)
- Ju Hun Yeon
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Karen Y T Chan
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Ting-Chia Wong
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Kelvin Chan
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Michael R Sutherland
- 1] Centre for Innovation, Canadian Blood Services, Vancouver, BC, Canada [2] Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Rustem F Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Edward L G Pryzdial
- 1] Centre for Innovation, Canadian Blood Services, Vancouver, BC, Canada [2] Centre for Blood Research and Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Christian J Kastrup
- Michael Smith Laboratories and Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Dengue virus binding and replication by platelets. Blood 2015; 126:378-85. [PMID: 25943787 DOI: 10.1182/blood-2014-09-598029] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 04/28/2015] [Indexed: 02/07/2023] Open
Abstract
Dengue virus (DENV) infection causes ∼200 million cases of severe flulike illness annually, escalating to life-threatening hemorrhagic fever or shock syndrome in ∼500,000. Although thrombocytopenia is typical of both mild and severe diseases, the mechanism triggering platelet reduction is incompletely understood. As a probable initiating event, direct purified DENV-platelet binding was followed in the current study by quantitative reverse transcription-polymerase chain reaction and confirmed antigenically. Approximately 800 viruses specifically bound per platelet at 37°C. Fewer sites were observed at 25°C, the blood bank storage temperature (∼350 sites), or 4°C, known to attenuate virus cell entry (∼200 sites). Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) and heparan sulfate proteoglycan were implicated as coreceptors because only the combination of anti-DC-SIGN and low-molecular-weight heparin prevented binding. Interestingly, at 37°C and 25°C, platelets replicated the positive sense single-stranded RNA genome of DENV by up to ∼4-fold over 7 days. Further time course experiments demonstrated production of viral NS1 protein, which is known to be highly antigenic in patient serum. The infectivity of DENV intrinsically decayed in vitro, which was moderated by platelet-mediated generation of viable progeny. This was shown using a transcription inhibitor and confirmed by freeze-denatured platelets being incapable of replicating the DENV genome. For the first time, these data demonstrate that platelets directly bind DENV saturably and produce infectious virus. Thus, expression of antigen encoded by DENV is a novel consideration in the pathogen-induced thrombocytopenia mechanism. These results furthermore draw attention to the possibility that platelets may produce permissive RNA viruses in addition to DENV.
Collapse
|
25
|
Stokol T, Yeo WM, Burnett D, DeAngelis N, Huang T, Osterrieder N, Catalfamo J. Equid herpesvirus type 1 activates platelets. PLoS One 2015; 10:e0122640. [PMID: 25905776 PMCID: PMC4407896 DOI: 10.1371/journal.pone.0122640] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/23/2015] [Indexed: 01/28/2023] Open
Abstract
Equid herpesvirus type 1 (EHV-1) causes outbreaks of abortion and neurological disease in horses. One of the main causes of these clinical syndromes is thrombosis in placental and spinal cord vessels, however the mechanism for thrombus formation is unknown. Platelets form part of the thrombus and amplify and propagate thrombin generation. Here, we tested the hypothesis that EHV-1 activates platelets. We found that two EHV-1 strains, RacL11 and Ab4 at 0.5 or higher plaque forming unit/cell, activate platelets within 10 minutes, causing α-granule secretion (surface P-selectin expression) and platelet microvesiculation (increased small events double positive for CD41 and Annexin V). Microvesiculation was more pronounced with the RacL11 strain. Virus-induced P-selectin expression required plasma and 1.0 mM exogenous calcium. P-selectin expression was abolished and microvesiculation was significantly reduced in factor VII- or X-deficient human plasma. Both P-selectin expression and microvesiculation were re-established in factor VII-deficient human plasma with added purified human factor VIIa (1 nM). A glycoprotein C-deficient mutant of the Ab4 strain activated platelets as effectively as non-mutated Ab4. P-selectin expression was abolished and microvesiculation was significantly reduced by preincubation of virus with a goat polyclonal anti-rabbit tissue factor antibody. Infectious virus could be retrieved from washed EHV-1-exposed platelets, suggesting a direct platelet-virus interaction. Our results indicate that EHV-1 activates equine platelets and that α-granule secretion is a consequence of virus-associated tissue factor triggering factor X activation and thrombin generation. Microvesiculation was only partly tissue factor and thrombin-dependent, suggesting the virus causes microvesiculation through other mechanisms, potentially through direct binding. These findings suggest that EHV-1-induced platelet activation could contribute to the thrombosis that occurs in clinically infected horses and provides a new mechanism by which viruses activate hemostasis.
Collapse
Affiliation(s)
- Tracy Stokol
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| | - Wee Ming Yeo
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Deborah Burnett
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Nicole DeAngelis
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Teng Huang
- Institut für Virologie, Freie Universität Berlin, Berlin, Germany
| | | | - James Catalfamo
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
26
|
Rothmeier AS, Marchese P, Petrich BG, Furlan-Freguia C, Ginsberg MH, Ruggeri ZM, Ruf W. Caspase-1-mediated pathway promotes generation of thromboinflammatory microparticles. J Clin Invest 2015; 125:1471-84. [PMID: 25705884 DOI: 10.1172/jci79329] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/09/2015] [Indexed: 12/30/2022] Open
Abstract
Extracellular ATP is a signal of tissue damage and induces macrophage responses that amplify inflammation and coagulation. Here we demonstrate that ATP signaling through macrophage P2X7 receptors uncouples the thioredoxin (TRX)/TRX reductase (TRXR) system and activates the inflammasome through endosome-generated ROS. TRXR and inflammasome activity promoted filopodia formation, cellular release of reduced TRX, and generation of extracellular thiol pathway-dependent, procoagulant microparticles (MPs). Additionally, inflammasome-induced activation of an intracellular caspase-1/calpain cysteine protease cascade degraded filamin, thereby severing bonds between the cytoskeleton and tissue factor (TF), the cell surface receptor responsible for coagulation activation. This cascade enabled TF trafficking from rafts to filopodia and ultimately onto phosphatidylserine-positive, highly procoagulant MPs. Furthermore, caspase-1 specifically facilitated cell surface actin exposure, which was required for the final release of highly procoagulant MPs from filopodia. Together, the results of this study delineate a thromboinflammatory pathway and suggest that components of this pathway have potential as pharmacological targets to simultaneously attenuate inflammation and innate immune cell-induced thrombosis.
Collapse
|
27
|
Pryzdial ELG, Sutherland MR, Ruf W. The procoagulant envelope virus surface: contribution to enhanced infection. Thromb Res 2014; 133 Suppl 1:S15-7. [PMID: 24759132 DOI: 10.1016/j.thromres.2014.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Many virus types are covered by a lipid bilayer. This structure called an envelope, is derived from the host cell and includes host- and virus-encoded proteins. Because envelope components first interact with the host, it is the trigger for infection, immunity and pathology. The roles of especially host-derived constituents are poorly understood. Focusing on herpes simplex type 1 (HSV1) as a model, we have shown that the envelope acquires the physiological initiators of coagulation from the host cell; tissue factor (TF) and procoagulant phospholipid (proPL). Unlike resting cells, where TF and proPL accessibility is carefully restricted, their expression is constitutive on the purified virus enabling factor VIIa (FVIIa)-dependant factor Xa (FXa) and thrombin generation. Interestingly, HSV1-encoded glycoprotein C (gC) on the virus enhances FXa production. In addition to coagulation proteases, HSV1 also facilitates fibrinolytic plasmin generation. HSV1 TF and gC combine to optimally enhance cultured cell infection when both FVIIa and FXa are available through protease activated receptor (PAR) 2. Plasmin also increases infection through PAR2, whereas thrombin provides an additive effect via PAR1. Thus, depending on the host cell, TF and proPL may be a general feature of enveloped viruses, enabling coagulation protease activation and PAR-mediated effects on infection.
Collapse
Affiliation(s)
- Edward L G Pryzdial
- Canadian Blood Services, Centre for Innovation, Vancouver, BC, Canada; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Michael R Sutherland
- Canadian Blood Services, Centre for Innovation, Vancouver, BC, Canada; Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Wolfram Ruf
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
28
|
Rallapalli PM, Orengo CA, Studer RA, Perkins SJ. Positive selection during the evolution of the blood coagulation factors in the context of their disease-causing mutations. Mol Biol Evol 2014; 31:3040-56. [PMID: 25158795 PMCID: PMC4209140 DOI: 10.1093/molbev/msu248] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Blood coagulation occurs through a cascade of enzymes and cofactors that produces a fibrin clot, while otherwise maintaining hemostasis. The 11 human coagulation factors (FG, FII–FXIII) have been identified across all vertebrates, suggesting that they emerged with the first vertebrates around 500 Ma. Human FVIII, FIX, and FXI are associated with thousands of disease-causing mutations. Here, we evaluated the strength of selective pressures on the 14 genes coding for the 11 factors during vertebrate evolution, and compared these with human mutations in FVIII, FIX, and FXI. Positive selection was identified for fibrinogen (FG), FIII, FVIII, FIX, and FX in the mammalian Primates and Laurasiatheria and the Sauropsida (reptiles and birds). This showed that the coagulation system in vertebrates was under strong selective pressures, perhaps to adapt against blood-invading pathogens. The comparison of these results with disease-causing mutations reported in FVIII, FIX, and FXI showed that the number of disease-causing mutations, and the probability of positive selection were inversely related to each other. It was concluded that when a site was under positive selection, it was less likely to be associated with disease-causing mutations. In contrast, sites under negative selection were more likely to be associated with disease-causing mutations and be destabilizing. A residue-by-residue comparison of the FVIII, FIX, and FXI sequence alignments confirmed this. This improved understanding of evolutionary changes in FVIII, FIX, and FXI provided greater insight into disease-causing mutations, and better assessments of the codon sites that may be mutated in applications of gene therapy.
Collapse
Affiliation(s)
- Pavithra M Rallapalli
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Christine A Orengo
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Romain A Studer
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| | - Stephen J Perkins
- Department of Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
29
|
Li Y, Feng C, Wei X, Zhang J, Zan R, Zheng G, Yang X, Zhai J. Activation of protease-activated receptor-2 disrupts vaginal epithelial barrier function. Cell Biol Int 2014; 38:1247-51. [PMID: 24889831 DOI: 10.1002/cbin.10315] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 05/06/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Yan Li
- Department of Obstetrics and Gynecology; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Chong Feng
- Department of Obstetrics and Gynecology; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Xing Wei
- Beijing Taipu-Shunkang Institute for Laboratory Medicine; Beijing China
| | - Jiyuan Zhang
- Department of Obstetrics and Gynecology; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Ronghua Zan
- Department of Obstetrics and Gynecology; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Guizhi Zheng
- Department of Obstetrics and Gynecology; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Xiaoying Yang
- Department of Obstetrics and Gynecology; Beijing Tongren Hospital; Capital Medical University; Beijing China
| | - Jianjun Zhai
- Department of Obstetrics and Gynecology; Beijing Tongren Hospital; Capital Medical University; Beijing China
| |
Collapse
|
30
|
Role of protease-activated receptors for the innate immune response of the heart. Trends Cardiovasc Med 2014; 24:249-55. [PMID: 25066486 DOI: 10.1016/j.tcm.2014.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 06/04/2014] [Accepted: 06/21/2014] [Indexed: 02/07/2023]
Abstract
Protease-activated receptors (PARs) are a family of G-protein-coupled receptors with a unique activation mechanism via cleavage by the serine proteases of the coagulation cascade, immune cell-released proteases, and proteases from pathogens. Pathogens, such as viruses and bacteria, cause myocarditis and heart failure and PAR1 was shown to positively regulate the anti-viral innate immune response via interferon β during virus-induced myocarditis. In contrast, PAR2 negatively regulated the innate immune response and inhibited the interferon β expression. Thus, PARs play a central role for the innate immune response in the heart.
Collapse
|
31
|
Abstract
The coagulation cascade is activated during viral infections. This response may be part of the host defense system to limit spread of the pathogen. However, excessive activation of the coagulation cascade can be deleterious. In fact, inhibition of the tissue factor/factor VIIa complex reduced mortality in a monkey model of Ebola hemorrhagic fever. Other studies showed that incorporation of tissue factor into the envelope of herpes simplex virus increases infection of endothelial cells and mice. Furthermore, binding of factor X to adenovirus serotype 5 enhances infection of hepatocytes but also increases the activation of the innate immune response to the virus. Coagulation proteases activate protease-activated receptors (PARs). Interestingly, we and others found that PAR1 and PAR2 modulate the immune response to viral infection. For instance, PAR1 positively regulates TLR3-dependent expression of the antiviral protein interferon β, whereas PAR2 negatively regulates expression during coxsackievirus group B infection. These studies indicate that the coagulation cascade plays multiple roles during viral infections.
Collapse
|
32
|
Antoniak S, Mackman N. Coagulation, protease-activated receptors, and viral myocarditis. J Cardiovasc Transl Res 2013; 7:203-11. [PMID: 24203054 DOI: 10.1007/s12265-013-9515-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/16/2013] [Indexed: 12/29/2022]
Abstract
The coagulation protease cascade plays an essential role in hemostasis. In addition, a clot contributes to host defense by limiting the spread of pathogens. Coagulation proteases induce intracellular signaling by cleavage of cell surface receptors called protease-activated receptors (PARs). These receptors allow cells to sense changes in the extracellular environment, such as infection. Viruses activate the coagulation cascade by inducing tissue factor expression and by disrupting the endothelium. Virus infection of the heart can cause myocarditis, cardiac remodeling, and heart failure. A recent study using a mouse model have shown that tissue factor, thrombin, and PAR-1 signaling all positively regulate the innate immune during viral myocarditis. In contrast, PAR-2 signaling was found to inhibit interferon-β expression and the innate immune response. These observations suggest that anticoagulants may impair the innate immune response to viral infection and that inhibition of PAR-2 may be a new strategy to reduce viral myocarditis.
Collapse
Affiliation(s)
- Silvio Antoniak
- Division of Hematology and Oncology, Department of Medicine, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill, 98 Manning Drive, Campus Box 7035, Chapel Hill, NC, 27599, USA,
| | | |
Collapse
|
33
|
Aerts L, Hamelin MÈ, Rhéaume C, Lavigne S, Couture C, Kim W, Susan-Resiga D, Prat A, Seidah NG, Vergnolle N, Riteau B, Boivin G. Modulation of protease activated receptor 1 influences human metapneumovirus disease severity in a mouse model. PLoS One 2013; 8:e72529. [PMID: 24015257 PMCID: PMC3755973 DOI: 10.1371/journal.pone.0072529] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
Human metapneumovirus (hMPV) infection causes acute respiratory tract infections (RTI) which can result in hospitalization of both children and adults. To date, no antiviral or vaccine is available for this common viral infection. Immunomodulators could represent an interesting strategy for the treatment of severe viral infection. Recently, the role of protease-activated receptors (PAR) in inflammation, coagulation and infection processes has been of growing interest. Herein, the effects of a PAR1 agonist and a PAR1 antagonist on hMPV infection were investigated in BALB/c mice. Intranasal administration of the PAR1 agonist resulted in increased weight loss and mortality of infected mice. Conversely, the PAR1 antagonist was beneficial to hMPV infection by decreasing weight loss and clinical signs and by significantly reducing pulmonary inflammation, pro-inflammatory cytokine levels (including IL-6, KC and MCP-1) and recruitment of immune cells to the lungs. In addition, a significant reduction in pulmonary viral titers was also observed in the lungs of PAR1 antagonist-treated mice. Despite no apparent direct effect on virus replication during in vitro experiments, an important role for PAR1 in the regulation of furin expression in the lungs was shown for the first time. Further experiments indicated that the hMPV fusion protein can be cleaved by furin thus suggesting that PAR1 could have an effect on viral infectivity in addition to its immunomodulatory properties. Thus, inhibition of PAR1 by selected antagonists could represent an interesting strategy for decreasing the severity of paramyxovirus infections.
Collapse
Affiliation(s)
- Laetitia Aerts
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Marie-Ève Hamelin
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Chantal Rhéaume
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Sophie Lavigne
- Department of Anatomo-pathology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - Christian Couture
- Department of Anatomo-pathology, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Quebec, Canada
| | - WooJin Kim
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Nabil G. Seidah
- Laboratory of Biochemical Neuroendocrinology, Clinical Research Institute of Montreal, Montreal, Canada
| | - Nathalie Vergnolle
- Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Toulouse, Université Paul Sabatier, Centre de Physiopathologie de Toulouse Purpan, Toulouse, France
- Department of Physiology and Pharmacology, University of Calgary, Alberta, Canada
| | - Beatrice Riteau
- Virologie et Pathologie Humaine, Université Lyon, Faculté de Médecine RTH Laennec, Lyon, France
- Centre de Tours-Nouzilly Institut National de la Recherche Agronomique, Nouzilly, France
| | - Guy Boivin
- Centre de Recherche en Infectiologie du Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| |
Collapse
|
34
|
Protease-activated receptor-2 regulates the innate immune response to viral infection in a coxsackievirus B3-induced myocarditis. J Am Coll Cardiol 2013; 62:1737-45. [PMID: 23871888 DOI: 10.1016/j.jacc.2013.05.076] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 01/04/2023]
Abstract
OBJECTIVES This study sought to evaluate the role of protease-activated receptor-2 (PAR2) in coxsackievirus B3 (CVB3)-induced myocarditis. BACKGROUND An infection with CVB3 leads to myocarditis. PAR2 modulates the innate immune response. Toll-like receptor-3 (TLR3) is crucial for the innate immune response by inducing the expression of the antiviral cytokine interferon-beta (IFNβ). METHODS To induce myocarditis, wild-type (wt) and PAR2 knockout (ko) mice were infected with 10(5) plaque-forming units CVB3. Mice underwent hemodynamic measurements with a 1.2-F microconductance catheter. Wt and PAR2ko hearts and cardiac cells were analyzed for viral replication and immune response with plaque assay, quantitative polymerase chain reaction, Western blot, and immunohistochemistry. RESULTS Compared with wt mice, PAR2ko mice and cardiomyocytes exhibited a reduced viral load and developed no myocarditis after infection with CVB3. Hearts and cardiac fibroblasts from PAR2ko mice expressed higher basal levels of IFNβ than wt mice did. Treatment with CVB3 and polyinosinic:polycytidylic acid led to higher IFNβ expression in PAR2ko than in wt fibroblasts and reduced virus replication in PAR2ko fibroblasts was abrogated by neutralizing IFNβ antibody. Overexpression of PAR2 reduced the basal IFNβ expression. Moreover, a direct interaction between PAR2 and Toll-like receptor 3 was observed. PAR2 expression in endomyocardial biopsies of patients with nonischemic cardiomyopathy was positively correlated with myocardial inflammation and negatively with IFNβ expression and left ventricular ejection fraction. CONCLUSIONS PAR2 negatively regulates the innate immune response to CVB3 infection and contributes to myocardial dysfunction. The antagonism of PAR2 is of therapeutic interest to strengthen the antiviral response after an infection with a cardiotropic virus.
Collapse
|
35
|
Yeo WM, Osterrieder N, Stokol T. Equine herpesvirus type 1 infection induces procoagulant activity in equine monocytes. Vet Res 2013; 44:16. [PMID: 23497076 PMCID: PMC3618259 DOI: 10.1186/1297-9716-44-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 02/18/2013] [Indexed: 01/25/2023] Open
Abstract
The alphaherpesvirus, equine herpesvirus type 1 (EHV-1), is a highly prevalent cause of equine infectious abortion and encephalomyelopathy. These syndromes have been attributed to ischemic necrosis from thrombosis in placental and neural vessels, although the mechanisms underlying thrombosis are unknown. After inhalation, EHV-1 establishes a peripheral blood mononuclear cell-associated viremia, with monocytes being a target of infection. Monocytes are also the main source of tissue factor (TF) in diseased states. Since TF is the primary activator of coagulation, increased monocyte TF expression could be involved in EHV-1-associated thrombosis. We hypothesized that EHV-1 infection would induce TF-dependent procoagulant activity in equine monocytes. Monocyte-enriched fractions of blood were infected with abortigenic (RacL11, NY03) and neuropathogenic (Ab4) EHV-1 strains. All strains induced procoagulant activity, to variable degrees, within 1 to 4 h, with maximal activity at 24 h, after infection. Virus-induced procoagulant activity was similar to that seen with lipopolysaccharide, a known stimulant of TF-mediated procoagulant responses. Virus-induced procoagulant activity was factor VIIa-dependent and temporally associated with TF gene transcription, implicating TF as the main driver of the activity. Procoagulant activity was mildly decreased (30-40%) when virus was inactivated by ultraviolet light or when infected cells were treated with aphidicolin, a virus DNA polymerase inhibitor, suggesting early events of virus infection (attachment, entry or intracellular trafficking) are the primary stimulus of procoagulant activity. Our results indicate that EHV-1 rapidly stimulates procoagulant activity in equine monocytes in vitro. The EHV-1-induced procoagulant activity in monocytes may contribute to clinical thrombosis in horses with EHV-1 infection.
Collapse
Affiliation(s)
- Wee Ming Yeo
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| | | | | |
Collapse
|
36
|
Antoniak S, Owens AP, Baunacke M, Williams JC, Lee RD, Weithäuser A, Sheridan PA, Malz R, Luyendyk JP, Esserman DA, Trejo J, Kirchhofer D, Blaxall BC, Pawlinski R, Beck MA, Rauch U, Mackman N. PAR-1 contributes to the innate immune response during viral infection. J Clin Invest 2013; 123:1310-22. [PMID: 23391721 DOI: 10.1172/jci66125] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 12/10/2012] [Indexed: 01/25/2023] Open
Abstract
Coagulation is a host defense system that limits the spread of pathogens. Coagulation proteases, such as thrombin, also activate cells by cleaving PARs. In this study, we analyzed the role of PAR-1 in coxsackievirus B3-induced (CVB3-induced) myocarditis and influenza A infection. CVB3-infected Par1(-/-) mice expressed reduced levels of IFN-β and CXCL10 during the early phase of infection compared with Par1(+/+) mice that resulted in higher viral loads and cardiac injury at day 8 after infection. Inhibition of either tissue factor or thrombin in WT mice also significantly increased CVB3 levels in the heart and cardiac injury compared with controls. BM transplantation experiments demonstrated that PAR-1 in nonhematopoietic cells protected mice from CVB3 infection. Transgenic mice overexpressing PAR-1 in cardiomyocytes had reduced CVB3-induced myocarditis. We found that cooperative signaling between PAR-1 and TLR3 in mouse cardiac fibroblasts enhanced activation of p38 and induction of IFN-β and CXCL10 expression. Par1(-/-) mice also had decreased CXCL10 expression and increased viral levels in the lung after influenza A infection compared with Par1(+/+) mice. Our results indicate that the tissue factor/thrombin/PAR-1 pathway enhances IFN-β expression and contributes to the innate immune response during single-stranded RNA viral infection.
Collapse
Affiliation(s)
- Silvio Antoniak
- Department of Medicine, Division of Hematology and Oncology, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Goeijenbier M, van Wissen M, van de Weg C, Jong E, Gerdes VEA, Meijers JCM, Brandjes DPM, van Gorp ECM. Review: Viral infections and mechanisms of thrombosis and bleeding. J Med Virol 2013; 84:1680-96. [PMID: 22930518 PMCID: PMC7166625 DOI: 10.1002/jmv.23354] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Viral infections are associated with coagulation disorders. All aspects of the coagulation cascade, primary hemostasis, coagulation, and fibrinolysis, can be affected. As a consequence, thrombosis and disseminated intravascular coagulation, hemorrhage, or both, may occur. Investigation of coagulation disorders as a consequence of different viral infections have not been performed uniformly. Common pathways are therefore not fully elucidated. In many severe viral infections there is no treatment other than supportive measures. A better understanding of the pathophysiology behind the association of viral infections and coagulation disorders is crucial for developing therapeutic strategies. This is of special importance in case of severe complications, such as those seen in hemorrhagic viral infections, the incidence of which is increasing worldwide. To date, only a few promising targets have been discovered, meaning the implementation in a clinical context is still hampered. This review discusses non‐hemorrhagic and hemorrhagic viruses for which sufficient data on the association with hemostasis and related clinical features is available. This will enable clinicians to interpret research data and place them into a perspective. J. Med. Virol. 84:1680–1696, 2012. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- M Goeijenbier
- Department of Virology, Erasmus Medical Centre, University of Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|