1
|
Khalil JS, Law R, Raslan Z, Cheah LT, Hindle MS, Aburima AA, Kearney MT, Naseem KM. Protein Kinase A Regulates Platelet Phosphodiesterase 3A through an A-Kinase Anchoring Protein Dependent Manner. Cells 2024; 13:1104. [PMID: 38994957 PMCID: PMC11240354 DOI: 10.3390/cells13131104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Platelet activation is critical for haemostasis, but if unregulated can lead to pathological thrombosis. Endogenous platelet inhibitory mechanisms are mediated by prostacyclin (PGI2)-stimulated cAMP signalling, which is regulated by phosphodiesterase 3A (PDE3A). However, spatiotemporal regulation of PDE3A activity in platelets is unknown. Here, we report that platelets possess multiple PDE3A isoforms with seemingly identical molecular weights (100 kDa). One isoform contained a unique N-terminal sequence that corresponded to PDE3A1 in nucleated cells but with negligible contribution to overall PDE3A activity. The predominant cytosolic PDE3A isoform did not possess the unique N-terminal sequence and accounted for >99% of basal PDE3A activity. PGI2 treatment induced a dose and time-dependent increase in PDE3A phosphorylation which was PKA-dependent and associated with an increase in phosphodiesterase enzymatic activity. The effects of PGI2 on PDE3A were modulated by A-kinase anchoring protein (AKAP) disruptor peptides, suggesting an AKAP-mediated PDE3A signalosome. We identified AKAP7, AKAP9, AKAP12, AKAP13, and moesin expressed in platelets but focussed on AKAP7 as a potential PDE3A binding partner. Using a combination of immunoprecipitation, proximity ligation techniques, and activity assays, we identified a novel PDE3A/PKA RII/AKAP7 signalosome in platelets that integrates propagation and termination of cAMP signalling through coupling of PKA and PDE3A.
Collapse
Affiliation(s)
- Jawad S. Khalil
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (J.S.K.); (Z.R.); (L.T.C.); (M.S.H.); (M.T.K.)
| | - Robert Law
- Hull York Medical School, University of Hull, Hull HU6 7EL, UK; (R.L.); (A.A.A.)
| | - Zaher Raslan
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (J.S.K.); (Z.R.); (L.T.C.); (M.S.H.); (M.T.K.)
| | - Lih T. Cheah
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (J.S.K.); (Z.R.); (L.T.C.); (M.S.H.); (M.T.K.)
| | - Matthew S. Hindle
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (J.S.K.); (Z.R.); (L.T.C.); (M.S.H.); (M.T.K.)
| | - Ahmed A. Aburima
- Hull York Medical School, University of Hull, Hull HU6 7EL, UK; (R.L.); (A.A.A.)
| | - Mark T. Kearney
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (J.S.K.); (Z.R.); (L.T.C.); (M.S.H.); (M.T.K.)
| | - Khalid M. Naseem
- Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds LS2 9JT, UK; (J.S.K.); (Z.R.); (L.T.C.); (M.S.H.); (M.T.K.)
| |
Collapse
|
2
|
Activation of Most Toll-Like Receptors in Whole Human Blood Attenuates Platelet Deposition on Collagen under Flow. J Immunol Res 2023; 2023:1884439. [PMID: 36703865 PMCID: PMC9873445 DOI: 10.1155/2023/1884439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/19/2023] Open
Abstract
Platelets have toll-like receptors (TLRs); however, their function in thrombosis or hemostasis under flow conditions is not fully known. Thrombin-inhibited anticoagulated whole blood was treated with various TLR agonists and then perfused over fibrillar collagen using microfluidic assay at venous wall shear rate (100 s-1). Platelet deposition was imaged with fluorescent anti-CD61. For perfusion of whole blood without TLR agonist addition, platelets rapidly accumulated on collagen and eventually occluded the microchannels. Interestingly, most of the tested TLR agonists (Pam3CKS4, MALP-2, polyinosinic-polycytidylic acid HMW, imiquimod, and CpG oligodeoxynucleotides) strongly reduced platelet deposition on collagen, while only the TLR4 agonist endotoxin lipopolysaccharide (LPS) enhanced deposition. Following 90 sec of deposition under flow of untreated blood, the addition of various TLR-7 agonists (imiquimod, vesatolimod, and GSK2245035) all caused immediate blockade of further platelet deposition. Since TLR signaling can activate nuclear factor-kappaB (NF-κB), the IKK-inhibitor (IKK inhibitor VII) and NF-κB inhibitor (Bay 11-7082) were tested. The IKK/NF-κB inhibitors strongly inhibited platelet deposition under flow. Furthermore, addition of Pam3CSK4 (TLR1/2 ligand), MALP-2 (TLR2/6 ligand), and Imquimod (TLR7 ligand) reduced phosphotidylserine (PS) exposure. Activation of TLR1/2, TLR2/6, TLR3, TLR7, and TLR9 in whole blood reduced platelet deposition under flow on collagen; however, LPS (major Gram negative bacterial pathogenic component) activation of LTR4 was clearly prothrombotic.
Collapse
|
3
|
Hindle MS, Spurgeon BEJ, Cheah LT, Webb BA, Naseem KM. Multidimensional flow cytometry reveals novel platelet subpopulations in response to prostacyclin. J Thromb Haemost 2021; 19:1800-1812. [PMID: 33834609 DOI: 10.1111/jth.15330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/01/2021] [Indexed: 01/15/2023]
Abstract
BACKGROUND Robust platelet activation leads to the generation of subpopulations characterized by differential expression of phosphatidylserine (PS). Prostacyclin (PGI2 ) modulates many aspects of platelet function, but its influence on platelet subpopulations is unknown. OBJECTIVES AND METHODS We used fluorescent flow cytometry coupled to multidimensional fast Fourier transform-accelerated interpolation-based t-stochastic neighborhood embedding analysis to examine the influence of PGI2 on platelet subpopulations. RESULTS Platelet activation (SFLLRN/CRP-XL) in whole blood revealed three platelet subpopulations with unique combinations of fibrinogen (fb) binding and PS exposure. These subsets, PSlo /fbhi (68%), PShi /fblo (23%), and PShi /fbhi (8%), all expressed CD62P and partially shed CD42b. PGI2 significantly reduced fibrinogen binding and prevented the majority of PS exposure, but did not significantly reduce CD62P, CD154, or CD63 leading to the generation of four novel subpopulations, CD62Phi /PSlo /fblo (64%), CD62Phi /PSlo /fbhi (22%), CD62Phi /PShi /fblo (3%), and CD62Plo /PSlo /fblo (12%). Mechanistically this was linked to PGI2 -mediated inhibition of mitochondrial depolarization upstream of PS exposure. Combining phosphoflow with surface staining, we showed that PGI2 -treated platelets were characterized by both elevated vasodilator-stimulated phosphoprotein phosphorylation and CD62P. The resistance to cyclic AMP signaling was also observed for CD154 and CD63 expression. Consistent with the functional role of CD62P, exposure of blood to PGI2 failed to prevent SFLLRN/CRP-XL-induced platelet-monocyte aggregation despite reducing markers of hemostatic function. CONCLUSION The combination of multicolor flow cytometry assays with unbiased computational tools has identified novel platelet subpopulations that suggest differential regulation of platelet functions by PGI2 . Development of this approach with increased surface and intracellular markers will allow the identification of rare platelet subtypes and novel biomarkers.
Collapse
Affiliation(s)
- Matthew S Hindle
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Benjamin E J Spurgeon
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Lih T Cheah
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Beth A Webb
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| | - Khalid M Naseem
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
4
|
Abstract
Thromboinflammation involves complex interactions between actors of inflammation and immunity and components of the hemostatic system, which are elicited upon infection or tissue injury. In this context, the interplay between platelets and innate immune cells has been intensively investigated. The ATP-gated P2X1 ion channel, expressed on both platelets and neutrophils is of particular interest. On platelets, this ion channel contributes to platelet activation and thrombosis, especially under high shear stress conditions of small arteries, whereas on neutrophils, it is involved in chemotaxis and in mitigating the activation of circulating cells. In vitro studies indicate that it may also be implicated in platelet-dependent immune responses during bacterial infection. More recently, in a mouse model of intestinal epithelial barrier disruption causing systemic inflammation, it has been reported that neutrophil P2X1 ion channel could play a protective role against exaggerated inflammation-associated thrombosis. This review will focus on this unique role of the ATP-gated P2X1 ion channel in thromboinflammation, highlighting possible implications and pointing to the need for further investigation of the role of P2X1 ion channels in the interplay between platelets and neutrophils during thrombus formation under various sterile or infectious inflammatory settings and in distinct vascular beds.
Collapse
Affiliation(s)
- Cécile Oury
- GIGA Cardiovascular Sciences, Laboratory of Cardiology, University of Liège, Liège, Belgium
| | - Odile Wéra
- GIGA Cardiovascular Sciences, Laboratory of Cardiology, University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Abstract
Platelets are the major cellular contributor to arterial thrombosis. However, activated platelets form two distinct subpopulations during thrombosis. Pro-aggregatory platelets aggregate to form the main body of the thrombus. In contrast, procoagulant platelets expose phosphatidylserine on their outer surface and promote thrombin generation. This apparently all-or-nothing segregation into subpopulations indicates that, during activation, platelets commit to becoming procoagulant or pro-aggregatory. Although the signaling pathways that control this commitment are not understood, distinct cytosolic and mitochondrial Ca2+ signals in different subpopulations are likely to be central. In this review, we discuss how these Ca2+ signals control procoagulant platelet formation and whether this process can be targeted pharmacologically to prevent arterial thrombosis.
Collapse
Affiliation(s)
| | - Matthew T Harper
- Department of Pharmacology, University of Cambridge Cambridge, UK
| |
Collapse
|
6
|
Lipopeptide PAM3CYS4 Synergizes N-Formyl-Met-Leu-Phe (fMLP)-Induced Calcium Transients in Mouse Neutrophils. Shock 2019; 50:493-499. [PMID: 29176405 DOI: 10.1097/shk.0000000000001062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
N-Formyl-Met-Leu-Phe (fMLP), a mimic of N-formyl oligopeptides that are released from bacteria, is a potent leukocyte chemotactic factor. It induces intracellular calcium ([Ca]i) transient that is important for various neutrophil biological functions, e.g., adhesion, ROS, and cytokine productions. Toll-like receptors (TLRs), an essential part of host innate immunity, regulate neutrophil activities, but their role in [Ca]i signaling is less clear. In the present study, we examined the effect of several TLR ligands, including Pam3Cys4 (TLR1/2), lipopolysaccharide (LPS, TLR4), and lipoteichoic acid (LTA, TLR2/6), on calcium signaling and on the fMLP-induced [Ca]i transients in mouse neutrophils loaded with Fura-2/AM. We found that unlike fMLP, the three TLR ligands tested did not elicit any detectable Ca flux. However, Pam3Cys4, but not LPS or LTA, markedly synergized the fMLP-induced [Ca]i transients, and had no effect on the host component keratinocyte-derived cytokine (KC)- or C5a-induced calcium flux. The effect of Pam3Cys4 on the fMLP-induced [Ca]i transients is by enhancing extracellular Ca influx, not intracellular Ca release. Surprisingly, deletion of TLR2 or MyD88 in neutrophils had no impact on the Pam3Cys4's effect, suggesting a TLR2-MyD88-independent mechanism. Finally, using the pan PKC activator and inhibitor, we demonstrated that PKC negatively regulated fMLP-induced [Ca]i transients and that inhibition of PKC did not prohibit Pam3Cys4's synergistic effect on the fMLP-induced calcium influx. In conclusion, the present study identified a novel synergistic effect of Pam3Cys4 on fMLP-induced [Ca]i transients, a process important for many neutrophil biological functions.
Collapse
|
7
|
Johansson KE, Ståhl AL, Arvidsson I, Loos S, Tontanahal A, Rebetz J, Chromek M, Kristoffersson AC, Johannes L, Karpman D. Shiga toxin signals via ATP and its effect is blocked by purinergic receptor antagonism. Sci Rep 2019; 9:14362. [PMID: 31591425 PMCID: PMC6779916 DOI: 10.1038/s41598-019-50692-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022] Open
Abstract
Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli (EHEC), that cause gastrointestinal infection leading to hemolytic uremic syndrome. The aim of this study was to investigate if Stx signals via ATP and if blockade of purinergic receptors could be protective. Stx induced ATP release from HeLa cells and in a mouse model. Toxin induced rapid calcium influx into HeLa cells, as well as platelets, and a P2X1 receptor antagonist, NF449, abolished this effect. Likewise, the P2X antagonist suramin blocked calcium influx in Hela cells. NF449 did not affect toxin intracellular retrograde transport, however, cells pre-treated with NF449 exhibited significantly higher viability after exposure to Stx for 24 hours, compared to untreated cells. NF449 protected HeLa cells from protein synthesis inhibition and from Stx-induced apoptosis, assayed by caspase 3/7 activity. The latter effect was confirmed by P2X1 receptor silencing. Stx induced the release of toxin-positive HeLa cell- and platelet-derived microvesicles, detected by flow cytometry, an effect significantly reduced by NF449 or suramin. Suramin decreased microvesicle levels in mice injected with Stx or inoculated with Stx-producing EHEC. Taken together, we describe a novel mechanism of Stx-mediated cellular injury associated with ATP signaling and inhibited by P2X receptor blockade.
Collapse
Affiliation(s)
- Karl E Johansson
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anne-Lie Ståhl
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ida Arvidsson
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sebastian Loos
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ashmita Tontanahal
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Johan Rebetz
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Milan Chromek
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Ludger Johannes
- Institut Curie, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, France
| | - Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
8
|
|
9
|
Yang CH, Hsia CW, Jayakumar T, Sheu JR, Hsia CH, Khamrang T, Chen YJ, Manubolu M, Chang Y. Structure⁻Activity Relationship Study of Newly Synthesized Iridium-III Complexes as Potential Series for Treating Thrombotic Diseases. Int J Mol Sci 2018; 19:ijms19113641. [PMID: 30463221 PMCID: PMC6274890 DOI: 10.3390/ijms19113641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 01/07/2023] Open
Abstract
Platelets play a major role in hemostatic events and are associated with various pathological events, such as arterial thrombosis and atherosclerosis. Iridium (Ir) compounds are potential alternatives to platinum compounds, since they exert promising anticancer effects without cellular toxicity. Our recent studies found that Ir compounds show potent antiplatelet properties. In this study, we evaluated the in vitro antiplatelet, in vivo antithrombotic and structure⁻activity relationship (SAR) of newly synthesized Ir complexes, Ir-1, Ir-2 and Ir-4, in agonists-induced human platelets. Among the tested compounds, Ir-1 was active in inhibiting platelet aggregation induced by collagen; however, Ir-2 and Ir-4 had no effects even at their maximum concentrations of 50 μM against collagen and 500 μM against U46619-induced aggregation. Similarly, Ir-1 was potently inhibiting of adenosine triphosphate (ATP) release, calcium mobilization ([Ca2+]i) and P-selectin expression induced by collagen-induced without cytotoxicity. Likewise, Ir-1 expressively suppressed collagen-induced Akt, PKC, p38MAPKs and JNK phosphorylation. Interestingly, Ir-2 and Ir-4 had no effect on platelet function analyzer (PFA-100) collagen-adenosine diphosphate (C-ADP) and collagen-epinephrine (C-EPI) induced closure times in mice, but Ir-1 caused a significant increase when using C-ADP stimulation. Other in vivo studies revealed that Ir-1 significantly prolonged the platelet plug formation, increased tail bleeding times and reduced the mortality of adenosine diphosphate (ADP)-induced acute pulmonary thromboembolism in mice. Ir-1 has no substitution on its phenyl group, a water molecule (like cisplatin) can replace its chloride ion and, hence, the rate of hydrolysis might be tuned by the substituent on the ligand system. These features might have played a role for the observed effects of Ir-1. These results indicate that Ir-1 may be a lead compound to design new antiplatelet drugs for the treatment of thromboembolic diseases.
Collapse
Affiliation(s)
- Chih-Hao Yang
- Department of Pharmacology, Schools of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
| | - Chih-Wei Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
| | - Thanasekaran Jayakumar
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
| | - Joen-Rong Sheu
- Department of Pharmacology, Schools of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
| | - Chih-Hsuan Hsia
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
| | - Themmila Khamrang
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India.
| | - Yen-Jen Chen
- Department of Pharmacology, Schools of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
| | - Manjunath Manubolu
- Department of Evolution, Ecology and Organismal Biology, Ohio State University, Columbus, OH 43212, USA.
| | - Yi Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan.
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, No. 95, Wen Chang Rd., Taipei 111, Taiwan.
- School of Medicine, Fu-Jen Catholic University, No. 510, Zhong Zheng Rd, Xin Zhuang Dist., New Taipei City 242, Taiwan.
| |
Collapse
|
10
|
Wang Y, Ouyang Y, Liu B, Ma X, Ding R. Platelet activation and antiplatelet therapy in sepsis: A narrative review. Thromb Res 2018; 166:28-36. [DOI: 10.1016/j.thromres.2018.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/03/2018] [Accepted: 04/06/2018] [Indexed: 12/31/2022]
|
11
|
Koupenova M, Ravid K. Biology of Platelet Purinergic Receptors and Implications for Platelet Heterogeneity. Front Pharmacol 2018; 9:37. [PMID: 29441021 PMCID: PMC5797577 DOI: 10.3389/fphar.2018.00037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/12/2018] [Indexed: 12/29/2022] Open
Abstract
Platelets are small anucleated cells present only in mammals. Platelets mediate intravascular hemostatic balance, prevent interstitial bleeding, and have a major role in thrombosis. Activation of platelet purinergic receptors is instrumental in initiation of hemostasis and formation of the hemostatic plug, although this activation process becomes problematic in pathological settings of thrombosis. This review briefly outlines the roles and function of currently known platelet purinergic receptors (P1 and P2) in the setting of hemostasis and thrombosis. Additionally, we discuss recent novel studies on purinergic receptor distribution according to heterogeneous platelet size, and the possible implication of this distribution on hemostatic function.
Collapse
Affiliation(s)
- Milka Koupenova
- Department of Medicine, Division of Cardiovascular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Katya Ravid
- Departments of Medicine and Biochemistry and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
12
|
Ilkan Z, Watson S, Watson SP, Mahaut-Smith MP. P2X1 Receptors Amplify FcγRIIa-Induced Ca2+ Increases and Functional Responses in Human Platelets. Thromb Haemost 2018; 118:369-380. [PMID: 29443373 PMCID: PMC6260114 DOI: 10.1160/th17-07-0530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Platelets express key receptors of the innate immune system such as FcγRIIa and Toll-like receptors (TLR). P2X1 cation channels amplify the platelet responses to several major platelet stimuli, particularly glycoprotein (GP)VI and TLR2/1, whereas their contribution to Src tyrosine kinase-dependent FcγRIIa receptors remains unknown. We investigated the role of P2X1 receptors during activation of FcγRIIa in human platelets, following stimulation by cross-linking of an anti-FcγRIIa monoclonal antibody (mAb) IV.3, or bacterial stimulation with
Streptococcus sanguinis
. Activation was assessed in washed platelet suspensions via measurement of intracellular Ca
2+
([Ca
2+
]
i
) increases, ATP release and aggregation. P2X1 activity was abolished by pre-addition of α,β-meATP, exclusion of apyrase or the antagonist NF449. FcγRIIa activation evoked a robust increase in [Ca
2+
]
i
(441 ± 33 nM at 30 μg/mL mAb), which was reduced to a similar extent (to 66–70% of control) by NF449, pre-exposure to α,β-meATP or apyrase omission, demonstrating a significant P2X1 receptor contribution. FcγRIIa activation-dependent P2X1 responses were partially resistant to nitric oxide (NO), but abrogated by 500 nM prostacyclin (PGI
2
). Aggregation responses to bacteria and FcγRIIa activation were also inhibited by P2X1 receptor desensitization (to 66 and 42% of control, respectively). However, FcγRIIa-mediated tyrosine phosphorylation and ATP release were not significantly altered by the loss of P2X1 activity. In conclusion, we show that P2X1 receptors enhance platelet FcγRIIa receptor-evoked aggregation through an increase in [Ca
2+
]
i
downstream of the initial tyrosine phosphorylation events and early dense granule release. This represents a further route whereby ATP-gated cation channels can contribute to platelet-dependent immune responses in vivo.
Collapse
Affiliation(s)
- Zeki Ilkan
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| | - Stephanie Watson
- Institute of Cardiovascular Sciences, Institute of Biomedical Research Building, University of Birmingham, Birmingham, United Kingdom
| | - Steve P Watson
- Institute of Cardiovascular Sciences, Institute of Biomedical Research Building, University of Birmingham, Birmingham, United Kingdom.,Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Midlands, UK
| | - Martyn P Mahaut-Smith
- Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
13
|
de Stoppelaar SF, Claushuis TAM, Schaap MCL, Hou B, van der Poll T, Nieuwland R, van ‘t Veer C. Toll-Like Receptor Signalling Is Not Involved in Platelet Response to Streptococcus pneumoniae In Vitro or In Vivo. PLoS One 2016; 11:e0156977. [PMID: 27253707 PMCID: PMC4890788 DOI: 10.1371/journal.pone.0156977] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/23/2016] [Indexed: 12/20/2022] Open
Abstract
Streptococcus (S.) pneumoniae strains vary considerably in their ability to cause invasive disease in humans, which is at least in part determined by the capsular serotype. Platelets have been implicated as sentinel cells in the circulation for host defence. One of their utensils for this function is the expression of Toll-like receptors (TLRs). We here aimed to investigate platelet response to S. pneumoniae and a role for TLRs herein. Platelets were stimulated using four serotypes of S. pneumonia including an unencapsulated mutant strain. In vitro aggregation and flow cytometry assays were performed using blood of healthy volunteers, or blood of TLR knock out and WT mice. For in vivo pneumonia experiments, platelet specific Myd88 knockout (Plt-Myd88-/-) mice were used. We found that platelet aggregation was induced by unencapsulated S. pneumoniae only. Whole blood incubation with all S. pneumoniae serotypes tested resulted in platelet degranulation and platelet-leukocyte complex formation. Platelet activation was TLR independent, as responses were not inhibited by TLR blocking antibodies, not induced by TLR agonists and were equally induced in wild-type and Tlr2-/-, Tlr4-/-, Tlr2/4-/-, Tlr9-/- and Myd88-/- blood. Plt-Myd88-/- and control mice displayed no differences in bacterial clearance or immune response to pneumonia by unencapsulated S. pneumoniae. In conclusion, S. pneumoniae activates platelets through a TLR-independent mechanism that is impeded by the bacterial capsule. Additionally, platelet MyD88-dependent TLR signalling is not involved in host defence to unencapsulated S. pneumoniae in vivo.
Collapse
Affiliation(s)
- Sacha F. de Stoppelaar
- Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, the Netherlands
- * E-mail:
| | - Theodora A. M. Claushuis
- Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, the Netherlands
| | - Marianne C. L. Schaap
- Laboratory for Experimental and Clinical Chemistry (LEKC), University of Amsterdam, Amsterdam, the Netherlands
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chaoyang District, Beijing, China
| | - Tom van der Poll
- Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, the Netherlands
- Division of Infectious Diseases, University of Amsterdam, Amsterdam, the Netherlands
| | - Rienk Nieuwland
- Laboratory for Experimental and Clinical Chemistry (LEKC), University of Amsterdam, Amsterdam, the Netherlands
| | - Cornelis van ‘t Veer
- Center for Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, Amsterdam, the Netherlands
- Center for Experimental and Molecular Medicine (CEMM), University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Mahaut-Smith MP, Taylor KA, Evans RJ. Calcium Signalling through Ligand-Gated Ion Channels such as P2X1 Receptors in the Platelet and other Non-Excitable Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:305-29. [PMID: 27161234 DOI: 10.1007/978-3-319-26974-0_13] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ligand-gated ion channels on the cell surface are directly activated by the binding of an agonist to their extracellular domain and often referred to as ionotropic receptors. P2X receptors are ligand-gated non-selective cation channels with significant permeability to Ca(2+) whose principal physiological agonist is ATP. This chapter focuses on the mechanisms by which P2X1 receptors, a ubiquitously expressed member of the family of ATP-gated channels, can contribute to cellular responses in non-excitable cells. Much of the detailed information on the contribution of P2X1 to Ca(2+) signalling and downstream functional events has been derived from the platelet. The underlying primary P2X1-generated signalling event in non-excitable cells is principally due to Ca(2+) influx, although Na(+) entry will also occur along with membrane depolarization. P2X1 receptor stimulation can lead to additional Ca(2+) mobilization via a range of routes such as amplification of G-protein-coupled receptor-dependent Ca(2+) responses. This chapter also considers the mechanism by which cells generate extracellular ATP for autocrine or paracrine activation of P2X1 receptors. For example cytosolic ATP efflux can result from opening of pannexin anion-permeable channels or following damage to the cell membrane. Alternatively, ATP stored in specialised secretory vesicles can undergo quantal release via the process of exocytosis. Examples of physiological or pathophysiological roles of P2X1-dependent signalling in non-excitable cells are also discussed, such as thrombosis and immune responses.
Collapse
Affiliation(s)
- Martyn P Mahaut-Smith
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, UK.
| | - Kirk A Taylor
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, Cambridge, UK
| | - Richard J Evans
- Department of Molecular and Cell Biology, University of Leicester, Henry Wellcome Building, Lancaster Road, Leicester, LE1 9HN, UK
| |
Collapse
|
15
|
Raslan Z, Magwenzi S, Aburima A, Taskén K, Naseem KM. Targeting of type I protein kinase A to lipid rafts is required for platelet inhibition by the 3',5'-cyclic adenosine monophosphate-signaling pathway. J Thromb Haemost 2015; 13:1721-34. [PMID: 26176741 DOI: 10.1111/jth.13042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 06/18/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Platelet adhesion to von Willebrand factor (VWF) is modulated by 3',5'-cyclic adenosine monophosphate (cAMP) signaling through protein kinase A (PKA)-mediated phosphorylation of glycoprotein (GP)Ibβ. A-kinase anchoring proteins (AKAPs) are proposed to control the localization and substrate specificity of individual PKA isoforms. However, the role of PKA isoforms in regulating the phosphorylation of GPIbβ and platelet response to VWF is unknown. OBJECTIVES We wished to determine the role of PKA isoforms in the phosphorylation of GPIbβ and platelet activation by VWF as a model for exploring the selective partitioning of cAMP signaling in platelets. RESULTS The two isoforms of PKA in platelets, type I (PKA-I) and type II (PKA-II), were differentially localized, with a small pool of PKA-I found in lipid rafts. Using a combination of Far Western blotting, immunoprecipitation, proximity ligation assay and cAMP pull-down we identified moesin as an AKAP that potentially localizes PKA-I to rafts. Introduction of cell-permeable anchoring disruptor peptide, RI anchoring disruptor (RIAD-Arg11 ), to block PKA-I/AKAP interactions, uncoupled PKA-RI from moesin, displaced PKA-RI from rafts and reduced kinase activity in rafts. Examination of GPIbβ demonstrated that it was phosphorylated in response to low concentrations of PGI2 in a PKA-dependent manner and occurred primarily in lipid raft fractions. RIAD-Arg11 caused a significant reduction in raft-localized phosphoGPIbβ and diminished the ability of PGI2 to regulate VWF-mediated aggregation and thrombus formation in vitro. CONCLUSION We propose that PKA-I-specific AKAPs in platelets, including moesin, organize a selective localization of PKA-I required for phosphorylation of GPIbβ and contribute to inhibition of platelet VWF interactions.
Collapse
Affiliation(s)
- Z Raslan
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - S Magwenzi
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - A Aburima
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| | - K Taskén
- Biotechnology Centre of Oslo, University of Oslo, Oslo, Norway
- K.G. Jebsen Inflammation Research Centre, University of Oslo, Oslo, Norway
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - K M Naseem
- Centre for Cardiovascular and Metabolic Research, Hull York Medical School, University of Hull, Hull, UK
| |
Collapse
|
16
|
Abstract
Blood platelet activation must be tightly regulated to ensure a balance between haemostasis and thrombosis. The cAMP signalling pathway is the most powerful endogenous regulator of blood platelet activation. PKA (protein kinase A), the foremost effector of cAMP signalling in platelets, phosphorylates a number of proteins that are thought to modulate multiple aspects of platelet activation. In the present mini-review, we outline our current understanding of cAMP-mediated platelet inhibition and discuss some of the issues that require clarification.
Collapse
|
17
|
Ruepp MD, Brozik JA, de Esch IJP, Farndale RW, Murrell-Lagnado RD, Thompson AJ. A fluorescent approach for identifying P2X1 ligands. Neuropharmacology 2015; 98:13-21. [PMID: 26026951 PMCID: PMC4728187 DOI: 10.1016/j.neuropharm.2015.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/02/2015] [Accepted: 05/12/2015] [Indexed: 02/06/2023]
Abstract
There are no commercially available, small, receptor-specific P2X1 ligands. There are several synthetic derivatives of the natural agonist ATP and some structurally-complex antagonists including compounds such as PPADS, NTP-ATP, suramin and its derivatives (e.g. NF279, NF449). NF449 is the most potent and selective ligand, but potencies of many others are not particularly high and they can also act at other P2X, P2Y and non-purinergic receptors. While there is clearly scope for further work on P2X1 receptor pharmacology, screening can be difficult owing to rapid receptor desensitisation. To reduce desensitisation substitutions can be made within the N-terminus of the P2X1 receptor, but these could also affect ligand properties. An alternative is the use of fluorescent voltage-sensitive dyes that respond to membrane potential changes resulting from channel opening. Here we utilised this approach in conjunction with fragment-based drug-discovery. Using a single concentration (300 μM) we identified 46 novel leads from a library of 1443 fragments (hit rate = 3.2%). These hits were independently validated by measuring concentration-dependence with the same voltage-sensitive dye, and by visualising the competition of hits with an Alexa-647-ATP fluorophore using confocal microscopy; confocal yielded kon (1.142 × 106 M−1 s−1) and koff (0.136 s−1) for Alexa-647-ATP (Kd = 119 nM). The identified hit fragments had promising structural diversity. In summary, the measurement of functional responses using voltage-sensitive dyes was flexible and cost-effective because labelled competitors were not needed, effects were independent of a specific binding site, and both agonist and antagonist actions were probed in a single assay. The method is widely applicable and could be applied to all P2X family members, as well as other voltage-gated and ligand-gated ion channels. This article is part of the Special Issue entitled ‘Fluorescent Tools in Neuropharmacology’. A novel fluorescence-based screening approach for identifying P2X1 receptor ligand candidates. Fragment-based drug discovery applied to ligand-gated ion channels. The use of confocal microscopy to determine the kinetics and affinity of Alexa-647-ATP binding to P2X1 receptors. Alexa-647-ATP for imaging P2X1 receptors on live cells.
Collapse
Affiliation(s)
- Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - James A Brozik
- Washington State University, Department of Chemistry, Pullman, WA 99164-4630, USA
| | - Iwan J P de Esch
- Medicinal Chemistry, VU University Amsterdam, Amsterdam, The Netherlands
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | | | - Andrew J Thompson
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
18
|
Purinergic control of inflammation and thrombosis: Role of P2X1 receptors. Comput Struct Biotechnol J 2014; 13:106-10. [PMID: 25709760 PMCID: PMC4334884 DOI: 10.1016/j.csbj.2014.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 01/08/2023] Open
Abstract
Inflammation shifts the hemostatic mechanisms in favor of thrombosis. Upon tissue damage or infection, a sudden increase of extracellular ATP occurs, that might contribute to the crosstalk between inflammation and thrombosis. On platelets, P2X1 receptors act to amplify platelet activation and aggregation induced by other platelet agonists. These receptors critically contribute to thrombus stability in small arteries. Besides platelets, studies by our group indicate that these receptors are expressed by neutrophils. They promote neutrophil chemotaxis, both in vitro and in vivo. In a laser-induced injury mouse model of thrombosis, it appears that neutrophils are required to initiate thrombus formation and coagulation activation on inflamed arteriolar endothelia. In this model, by using P2X1−/ − mice, we recently showed that P2X1 receptors, expressed on platelets and neutrophils, play a key role in thrombus growth and fibrin generation. Intriguingly, in a model of endotoxemia, P2X1−/ − mice exhibited aggravated oxidative tissue damage, along with exacerbated thrombocytopenia and increased activation of coagulation, which translated into higher susceptibility to septic shock. Thus, besides its ability to recruit neutrophils and platelets on inflamed endothelia, the P2X1 receptor also contributes to limit the activation of circulating neutrophils under systemic inflammatory conditions. Taken together, these data suggest that P2X1 receptors are involved in the interplay between platelets, neutrophils and thrombosis. We propose that activation of these receptors by ATP on neutrophils and platelets represents a new mechanism that regulates thrombo-inflammation.
Collapse
|
19
|
Taylor KA, Wright JR, Vial C, Evans RJ, Mahaut-Smith MP. Amplification of human platelet activation by surface pannexin-1 channels. J Thromb Haemost 2014; 12:987-98. [PMID: 24655807 PMCID: PMC4238786 DOI: 10.1111/jth.12566] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 03/04/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND Pannexin-1 (Panx1) forms an anion-selective channel with a permeability up to ~1 kDa and represents a non-lytic, non-vesicular ATP release pathway in erythrocytes, leukocytes and neurons. Related connexin gap junction proteins have been reported in platelets; however, the expression and function of the pannexins remain unknown. OBJECTIVE To determine the expression and function of pannexins in human plate-lets, using molecular, cellular and functional techniques. METHODS Panx1 expression in human platelets was det-ermined using qPCR and antibody-based techniques. Contributions of Panx1 to agonist-evoked efflux of cytoplasmic calcein, Ca(2+) influx, ATP release and aggregation were assessed in washed platelets under conditions where the P2X1 receptor response was preserved (0.32 U mL(-1) apyrase). Thrombus formation in whole blood was assessed in vitro using a shear chamber assay. Two structurally unrelated and widely used Panx1 inhibitors, probenecid and carbenoxolone, were used throughout this study, at concentrations that do not affect connexin channels. RESULTS PANX1, but not PANX2 or PANX3, mRNA was detected in human platelets. Furthermore, Panx1 protein is glycosylated and present on the plasma membrane of platelets, and displays weak physical association with P2X1 receptors. Panx1 inhibition blocked thrombin-evoked efflux of calcein, and reduced Ca(2+) influx, ATP release, platelet aggregation and thrombus formation under arterial shear rates in vitro. The Panx1-dependent contribution was not additive to that of P2X1 receptors. CONCLUSIONS Panx1 is expressed on human platelets and amplifies Ca(2+) influx, ATP release and aggregation through the secondary activation of P2X1 receptors. We propose that Panx1 represents a novel target for the management of arterial thrombosis.
Collapse
Affiliation(s)
- K A Taylor
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester, UK
| | | | | | | | | |
Collapse
|
20
|
Elevated levels of extracellular heat-shock protein 72 (eHSP72) are positively correlated with insulin resistance in vivo and cause pancreatic β-cell dysfunction and death in vitro. Clin Sci (Lond) 2014; 126:739-52. [PMID: 24325467 DOI: 10.1042/cs20130678] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
eHSP72 (extracellular heat-shock protein 72) is increased in the plasma of both types of diabetes and is positively correlated with inflammatory markers. Since aging is associated with a low-grade inflammation and IR (insulin resistance), we aimed to: (i) analyse the concentration of eHSP72 in elderly people and determine correlation with insulin resistance, and (ii) determine the effects of eHSP72 on β-cell function and viability in human and rodent pancreatic β-cells. Fasting blood samples were collected from 50 older people [27 females and 23 males; 63.4±4.4 years of age; BMI (body mass index)=25.5±2.7 kg/m2]. Plasma samples were analysed for eHSP72, insulin, TNF (tumour necrosis factor)-α, leptin, adiponectin and cortisol, and glycaemic and lipid profile. In vitro studies were conducted using rodent islets and clonal rat and human pancreatic β-cell lines (BRIN-BD11 and 1.1B4 respectively). Cells/islets were incubated for 24 h with eHSP72 (0, 0.2, 4, 8 and 40 ng/ml). Cell viability was measured using three different methods. The impact of HSP72 on β-cell metabolic status was determined using Seahorse Bioscience XFe96 technology. To assess whether the effects of eHSP72 were mediated by Toll-like receptors (TLR2/TLR4), we co-incubated rodent islets with eHSP72 and the TLR2/TLR4 inhibitor OxPAPC (oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine; 30 μg/ml). We found a positive correlation between plasma eHSP72 and HOMA-IR (homoeostasis model assessment of IR) (r=0.528, P<0.001), TNF-α (r=0.389, P<0.014), cortisol (r=0.348, P<0.03) and leptin/adiponectin (r=0.334, P<0.03). In the in vitro studies, insulin secretion was decreased in an eHSP72 dose-dependent manner in BRIN-BD11 cells (from 257.7±33 to 84.1±10.2 μg/mg of protein per 24 h with 40 ng/ml eHSP72), and in islets in the presence of 40 ng/ml eHSP72 (from 0.48±0.07 to 0.33±0.009 μg/20 islets per 24 h). Similarly, eHSP72 reduced β-cell viability (at least 30% for BRIN-BD11 and 10% for 1.1B4 cells). Bioenergetic studies revealed that eHSP72 altered pancreatic β-cell metabolism. OxPAPC restored insulin secretion in islets incubated with 40 ng/ml eHSP72. In conclusion, we have demonstrated a positive correlation between eHSP72 and IR. In addition, we suggest that chronic eHSP72 exposure may mediate β-cell failure.
Collapse
|
21
|
Assinger A, Kral JB, Yaiw KC, Schrottmaier WC, Kurzejamska E, Wang Y, Mohammad AA, Religa P, Rahbar A, Schabbauer G, Butler LM, Söderberg-Naucler C. Human cytomegalovirus-platelet interaction triggers toll-like receptor 2-dependent proinflammatory and proangiogenic responses. Arterioscler Thromb Vasc Biol 2014; 34:801-9. [PMID: 24558109 DOI: 10.1161/atvbaha.114.303287] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Human cytomegalovirus (HCMV) is a widespread pathogen that correlates with various clinical complications, including atherosclerosis. HCMV is released into the circulation during primary infection and periodic viral reactivation, allowing virus-platelet interactions. Platelets are important in the onset and development of atherosclerosis, but the consequences of platelet-HCMV interactions are unclear. APPROACH AND RESULTS We studied the effects of HCMV-platelet interactions in blood from healthy donors using the purified clinical HCMV isolate VR1814. We demonstrated that HCMV bound to a Toll-like receptor (TLR) 2-positive platelet subpopulation, which resulted in signal transduction, degranulation, and release of proinflammatory CD40L and interleukin-1β and proangiogenic vascular endothelial-derived growth factor. In mice, murine CMV activated wild-type but not TLR2-deficient platelets. However, supernatant from murine CMV-stimulated wild-type platelets also activated TLR2-deficient platelets, indicating that activated platelets generated soluble mediators that triggered further platelet activation, independent of TLR2 expression. Inhibitor studies, using ADP receptor antagonists and apyrase, revealed that ADP release is important to trigger secondary platelet activation in response to HCMV. HCMV-activated platelets rapidly bound to and activated neutrophils, supporting their adhesion and transmigration through endothelial monolayers. In an in vivo model, murine CMV induced systemic upregulation of platelet-leukocyte aggregates and plasma vascular endothelial-derived growth factor in mice and showed a tendency to enhance neutrophil extravasation in a TLR2-dependent fashion. CONCLUSIONS HCMV is a well-adapted pathogen that does not induce immediate thrombotic events. However, HCMV-platelet interactions lead to proinflammatory and proangiogenic responses, which exacerbate tissue damage and contribute to atherogenesis. Therefore, platelets might contribute to the effects of HCMV in accelerating atherosclerosis.
Collapse
Affiliation(s)
- Alice Assinger
- From the Department of Medicine, Centre for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden (A.A., K.C.Y., E.K., Y.W., A.-A.M., P.R., A.R., L.M.B., C.S.-N.); Institute of Physiology, Centre for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria (A.A., J.B.K., W.C.S., G.S.); Postgraduate School of Molecular Medicine, Department of Internal Medicine and Hypertension, Medical University of Warsaw, Warsaw, Poland (E.K.); and Department of Geriatrics, Qilu Hospital, Shandong University, Jinan, China (Y.W.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Huang Z, Liu P, Zhu L, Li N, Hu H. P2X1-initiated p38 signalling enhances thromboxane A2-induced platelet secretion and aggregation. Thromb Haemost 2014; 112:142-50. [PMID: 24633352 DOI: 10.1160/th13-09-0726] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 02/14/2014] [Indexed: 11/05/2022]
Abstract
ATP released by activated platelets can serve as a positive feedback machinery to amplify platelet responses by activating P2X1 receptors. It has, however, not been defined how P2X1 activities influence thromboxane A2 (TXA2)-stimulated platelet functional responses. Our aim was to elaborate the molecular mechanisms of P2X1 engagements in TXA2-induced platelet secretion and aggregation. P2X1 inhibition by 1 µM NF449 inhibited platelet P-selectin expression induced by a low concentration of the TXA2 analogue U46619 (0.3 µM) (32.0 ± 2.0% vs 43.4 ± 3.0%; n=5; p<0.05). p38 inhibition by SB203580, but not ERK inhibition by U0126, elicited a similar inhibition by NF499. The combination of NF449 and SB203580 provided, however, no additive effects. U46619-induced platelet aggregation was similarly decreased by NF449 and SB203580 alone or in combination, and by P2X1 pre-desensitisation with α,β-Me-ATP. U46619 caused rapid and reversible P2X1-dependent p38 phosphorylation. However, the P2X1-p38 pathway mainly enhanced mild platelet activation by U46619, because α,β-Me-ATP supplementation or p38 blockade had no effect on intense platelet activation induced by a higher concentration of U46619 (3 µM). In conclusion, P2X1 activation, via p38 signalling, potentiates platelet activation initiated by low doses of U46619. Hence, the P2X1-induced p38 signalling promotes more robust platelet activation in response to mild platelet stimuli.
Collapse
Affiliation(s)
| | | | | | - N Li
- Nailin Li, MD, PhD, FAHA, Karolinska Institute, Department of Medicine-Solna, Clinical Pharmacology Unit, Karolinska University Hospital-Solna, SE-171 76 Stockholm, SWEDEN, E-mail:
| | - H Hu
- Hu Hu, MD, PhD, Department of Pathology & Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China, E-mail:
| |
Collapse
|
23
|
Rivadeneyra L, Carestia A, Etulain J, Pozner RG, Fondevila C, Negrotto S, Schattner M. Regulation of platelet responses triggered by Toll-like receptor 2 and 4 ligands is another non-genomic role of nuclear factor-kappaB. Thromb Res 2013; 133:235-43. [PMID: 24331207 DOI: 10.1016/j.thromres.2013.11.028] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/06/2013] [Accepted: 11/26/2013] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Platelets express Toll-like receptors (TLRs) that recognise molecular components of pathogens and, in nucleated cells, elicit immune responses through nuclear factor-kappaB (NF-κB) activation. We have shown that NF-κB mediates platelet activation in response to classical agonists, suggesting that this transcription factor exerts non-genomic functions in platelets. The aim of this study was to determine whether NF-κB activation is a downstream signal involved in TLR2 and 4-mediated platelet responses. MATERIAL AND METHODS Aggregation and ATP release were measured with a Lumi-aggregometer. Fibrinogen binding, P-selectin and CD40 ligand (CD40L) levels and platelet-neutrophil aggregates were measured by cytometry. I kappa B alpha (IκBα) degradation and p65 phosphorylation were determined by Western blot and von Willebrand factor (vWF) by ELISA. RESULTS Platelet stimulation with Pam3CSK4 or LPS resulted in IκBα degradation and p65 phosphorylation. These responses were suppressed by TLR2 and 4 blocking and synergised by thrombin. Aggregation, fibrinogen binding and ATP and vWF release were triggered by Pam3CSK4. LPS did not induce platelet responses per se, except for vWF release, but it did potentiate thrombin-induced aggregation, fibrinogen binding and ATP secretion. Pam3CSK4, but not LPS, induced P-selectin and CD40L expression and mixed aggregate formation. All of these responses, except for CD40L expression, were inhibited in platelets treated with the NF-κB inhibitors BAY 11-7082 or Ro 106-9920. CONCLUSION TLR2 and 4 agonists trigger platelet activation responses through NF-κB. These data show another non-genomic function of NF-κB in platelets and highlight this molecule as a potential target to prevent platelet activation in inflammatory or infectious diseases.
Collapse
Affiliation(s)
- Leonardo Rivadeneyra
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (CONICET), National Academy of Medicine, Buenos Aires, Argentina
| | - Agostina Carestia
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (CONICET), National Academy of Medicine, Buenos Aires, Argentina
| | - Julia Etulain
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (CONICET), National Academy of Medicine, Buenos Aires, Argentina
| | - Roberto G Pozner
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (CONICET), National Academy of Medicine, Buenos Aires, Argentina
| | - Carlos Fondevila
- Service of Hematology, Bazterrica Clinic, Buenos Aires, Argentina
| | - Soledad Negrotto
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (CONICET), National Academy of Medicine, Buenos Aires, Argentina
| | - Mirta Schattner
- Laboratory of Experimental Thrombosis, Institute of Experimental Medicine (CONICET), National Academy of Medicine, Buenos Aires, Argentina.
| |
Collapse
|
24
|
Melhorn MI, Brodsky AS, Estanislau J, Khoory JA, Illigens B, Hamachi I, Kurishita Y, Fraser AD, Nicholson-Weller A, Dolmatova E, Duffy HS, Ghiran IC. CR1-mediated ATP release by human red blood cells promotes CR1 clustering and modulates the immune transfer process. J Biol Chem 2013; 288:31139-53. [PMID: 24022490 DOI: 10.1074/jbc.m113.486035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Humans and other higher primates are unique among mammals in using complement receptor 1 (CR1, CD35) on red blood cells (RBC) to ligate complement-tagged inflammatory particles (immune complexes, apoptotic/necrotic debris, and microbes) in the circulation for quiet transport to the sinusoids of spleen and liver where resident macrophages remove the particles, but allow the RBC to return unharmed to the circulation. This process is called immune-adherence clearance. In this study we found using luminometric- and fluorescence-based methods that ligation of CR1 on human RBC promotes ATP release. Our data show that CR1-mediated ATP release does not depend on Ca(2+) or enzymes previously shown to mediate an increase in membrane deformability promoted by CR1 ligation. Furthermore, ATP release following CR1 ligation increases the mobility of the lipid fraction of RBC membranes, which in turn facilitates CR1 clustering, and thereby enhances the binding avidity of complement-opsonized particles to the RBC CR1. Finally, we have found that RBC-derived ATP has a stimulatory effect on phagocytosis of immune-adherent immune complexes.
Collapse
|
25
|
Abstract
Ion channels are transmembrane proteins that play ubiquitous roles in cellular homeostasis and activation. In addition to their recognized role in the regulation of ionic permeability and thus membrane potential, some channel proteins possess intrinsic kinase activity, directly interact with integrins or are permeable to molecules up to ≈1000 Da. The small size and anuclear nature of the platelet has often hindered progress in understanding the role of specific ion channels in hemostasis, thrombosis and other platelet-dependent events. However, with the aid of transgenic mice and 'surrogate' patch clamp recordings from primary megakaryocytes, important unique contributions to platelet function have been identified for several classes of ion channel. Examples include ATP-gated P2X1 channels, Orai1 store-operated Ca2+ channels, voltage-gated Kv1.3 channels, AMPA and kainate glutamate receptors and connexin gap junction channels. Furthermore, evidence exists that some ion channels, such as NMDA glutamate receptors, contribute to megakaryocyte development. This review examines the evidence for expression of a range of ion channels in the platelet and its progenitor cell, and highlights the distinct roles that these proteins may play in health and disease.
Collapse
Affiliation(s)
- M P Mahaut-Smith
- Department of Cell Physiology & Pharmacology, University of Leicester, Leicester, UK.
| |
Collapse
|
26
|
Lalo U, Jones S, Roberts JA, Mahaut-Smith MP, Evans RJ. Heat shock protein 90 inhibitors reduce trafficking of ATP-gated P2X1 receptors and human platelet responsiveness. J Biol Chem 2012; 287:32747-54. [PMID: 22851178 PMCID: PMC3463321 DOI: 10.1074/jbc.m112.376566] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have used selective inhibitors to determine whether the molecular chaperone heat shock protein 90 (HSP90) has an effect on both recombinant and native human P2X1 receptors. P2X1 receptor currents in HEK293 cells were reduced by ∼70–85% by the selective HSP90 inhibitor geldanamycin (2 μm, 20 min). This was associated with a speeding in the time course of desensitization as well as a reduction in cell surface expression. Imaging in real time of photoactivatable GFP-tagged P2X receptors showed that they are highly mobile. Geldanamycin almost abolished this movement for P2X1 receptors but had no effect on P2X2 receptor trafficking. P2X1/2 receptor chimeras showed that the intracellular N and C termini were involved in geldanamycin sensitivity. Geldanamycin also inhibited native P2X1 receptor-mediated responses. Platelet P2X1 receptors play an important role in hemostasis, contribute to amplification of signaling to a range of stimuli including collagen, and are novel targets for antithrombotic therapies. Platelet P2X1 receptor-, but not P2Y1 receptor-, mediated increases in intracellular calcium were reduced by 40–45% following HSP90 inhibition with geldanamycin or radicicol. Collagen stimulation leads to ATP release from platelets, and calcium increases to low doses of collagen were also reduced by ∼40% by the HSP90 inhibitors consistent with an effect on P2X1 receptors. These studies suggest that HSP90 inhibitors may be as effective as selective antagonists in regulating platelet P2X1 receptors, and their potential effects on hemostasis should be considered in clinical studies.
Collapse
Affiliation(s)
- Ulyana Lalo
- Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN, United Kingdom
| | | | | | | | | |
Collapse
|
27
|
New approaches for measurement of platelet reactivity. Blood 2012; 119:3378-9. [PMID: 22500052 DOI: 10.1182/blood-2012-01-403717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In a highly interesting, intricate, and novel paper in this issue of Blood, Fung and colleagues have extended their previous pioneering studies and now reveal that molecules such as ATP can promote platelet activation through the P2X1 receptor.
Collapse
|
28
|
Garraud O, Hamzeh-Cognasse H, Cognasse F. Platelets and cytokines: How and why? Transfus Clin Biol 2012; 19:104-8. [PMID: 22682309 DOI: 10.1016/j.tracli.2012.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 02/29/2012] [Indexed: 12/11/2022]
Abstract
For patients with platelet deficiencies, platelet components are therapeutic products for which there is no substitute. However, transfusion complications are more frequent with this labile blood product than with others. This is attributable to products secreted by the platelets themselves, including a variety of cytokines, chemokines, and biological response modifiers, some of which are secreted in large quantities following platelet activation. Why platelets are activated and prone to releasing these molecules during certain inflammatory and innate immune responses is not yet fully understood, but it could be due to several parameters including incompatibilities between blood donors and recipients, the process of platelet preparation and preservation, and the ability of the donor's immune system to sense danger presented by external stimuli during the blood donation process. This review presents our current knowledge of how the platelets that constitute the platelet component for transfusion are sources of cytokines and biological response modifiers and discusses methods to improve the quality of blood transfusion products and safety for patients.
Collapse
Affiliation(s)
- O Garraud
- Établissement français du sang Auvergne-Loire, 25, boulevard Pasteur, 42023 Saint-Étienne cedex 02, France.
| | | | | |
Collapse
|