1
|
Huang X, Chen W, Wang Y, Shytikov D, Wang Y, Zhu W, Chen R, He Y, Yang Y, Guo W. Canonical and noncanonical NOTCH signaling in the nongenetic resistance of cancer: distinct and concerted control. Front Med 2025; 19:23-52. [PMID: 39745621 DOI: 10.1007/s11684-024-1107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/18/2024] [Indexed: 02/27/2025]
Abstract
Therapeutic resistance in cancer is responsible for numerous cancer deaths in clinical practice. While target mutations are well recognized as the basis of genetic resistance to targeted therapy, nontarget mutation resistance (or nongenetic resistance) remains poorly characterized. Despite its complex and unintegrated mechanisms in the literature, nongenetic resistance is considered from our perspective to be a collective response of innate or acquired resistant subpopulations in heterogeneous tumors to therapy. These subpopulations, e.g., cancer stem-like cells, cancer cells with epithelial-to-mesenchymal transition, and drug-tolerant persisters, are protected by their resistance traits at cellular and molecular levels. This review summarizes recent advances in the research on resistant populations and their resistance traits. NOTCH signaling, as a central regulator of nongenetic resistance, is discussed with a special focus on its canonical maintenance of resistant cancer cells and noncanonical regulation of their resistance traits. This novel view of canonical and noncanonical NOTCH signaling pathways is translated into our proposal of reshaping therapeutic strategies targeting NOTCH signaling in resistant cancer cells. We hope that this review will lead researchers to study the canonical and noncanonical arms of NOTCH signaling as an integrated resistant mechanism, thus promoting the development of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Xianzhe Huang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wenwei Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanyan Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Dmytro Shytikov
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanwen Wang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wangyi Zhu
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Ruyi Chen
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yuwei He
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Yanjia Yang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China
| | - Wei Guo
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Jiaxing, 314400, China.
- First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Biomedical and Health Translational Research Center of Zhejiang Province, Jiaxing, 314400, China.
| |
Collapse
|
2
|
Zhang L, Zheng D, Xu L, Wang H, Zhang S, Shi J, Jin N. A novel variant in GAS2 is associated with autosomal dominant nonsyndromic hearing impairment in a Chinese family. Hum Genomics 2024; 18:73. [PMID: 38956677 PMCID: PMC11218307 DOI: 10.1186/s40246-024-00628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Knockout of GAS2 (growth arrest-specific protein 2), causes disorganization and destabilization of microtubule bundles in supporting cells of the cochlear duct, leading to hearing loss in vivo. However, the molecular mechanism through which GAS2 variant results in hearing loss remains unknown. By Whole-exome sequencing, we identified a novel heterozygous splicing variant in GAS2 (c.616-2 A > G) as the only candidate mutation segregating with late-onset and progressive nonsyndromic hearing loss (NSHL) in a large dominant family. This splicing mutation causes an intron retention and produces a C-terminal truncated protein (named GAS2mu). Mechanistically, the degradation of GAS2mu via the ubiquitin-proteasome pathway is enhanced, and cells expressing GAS2mu exhibit disorganized microtubule bundles. Additionally, GAS2mu further promotes apoptosis by increasing the Bcl-xS/Bcl-xL ratio instead of through the p53-dependent pathway as wild-type GAS2 does, indicating that GAS2mu acts as a toxic molecule to exacerbate apoptosis. Our findings demonstrate that this novel variant of GAS2 promotes its own protein degradation, microtubule disorganization and cellular apoptosis, leading to hearing loss in carriers. This study expands the spectrum of GAS2 variants and elucidates the underlying pathogenic mechanisms, providing a foundation for future investigations of new therapeutic strategies to prevent GAS2-associated progressive hearing loss.
Collapse
Affiliation(s)
- Luping Zhang
- Institute for Translational Neuroscience, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nantong University, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China
| | - Danya Zheng
- Institute for Translational Neuroscience, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nantong University, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China
| | - Lian Xu
- Institute for Translational Neuroscience, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nantong University, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China
| | - Han Wang
- Institute for Translational Neuroscience, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nantong University, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China
| | - Shuqiang Zhang
- Institute for Translational Neuroscience, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nantong University, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China
| | - Jianhua Shi
- Institute for Translational Neuroscience, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nantong University, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China
| | - Nana Jin
- Institute for Translational Neuroscience, Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Nantong University, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, 226001, China.
| |
Collapse
|
3
|
Lee KY, Wang H, Yook Y, Rhodes JS, Christian-Hinman CA, Tsai NP. Tumor suppressor p53 modulates activity-dependent synapse strengthening, autism-like behavior and hippocampus-dependent learning. Mol Psychiatry 2023; 28:3782-3794. [PMID: 37759036 PMCID: PMC11392564 DOI: 10.1038/s41380-023-02268-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Synaptic potentiation underlies various forms of behavior and depends on modulation by multiple activity-dependent transcription factors to coordinate the expression of genes necessary for sustaining synaptic transmission. Our current study identified the tumor suppressor p53 as a novel transcription factor involved in this process. We first revealed that p53 could be elevated upon chemically induced long-term potentiation (cLTP) in cultured primary neurons. By knocking down p53 in neurons, we further showed that p53 is required for cLTP-induced elevation of surface GluA1 and GluA2 subunits of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR). Because LTP is one of the principal plasticity mechanisms underlying behaviors, we employed forebrain-specific knockdown of p53 to evaluate the role of p53 in behavior. Our results showed that, while knocking down p53 in mice does not alter locomotion or anxiety-like behavior, it significantly promotes repetitive behavior and reduces sociability in mice of both sexes. In addition, knocking down p53 also impairs hippocampal LTP and hippocampus-dependent learning and memory. Most importantly, these learning-associated defects are more pronounced in male mice than in female mice, suggesting a sex-specific role of p53 in these behaviors. Using RNA sequencing (RNAseq) to identify p53-associated genes in the hippocampus, we showed that knocking down p53 up- or down-regulates multiple genes with known functions in synaptic plasticity and neurodevelopment. Altogether, our study suggests p53 as an activity-dependent transcription factor that mediates the surface expression of AMPAR, permits hippocampal synaptic plasticity, represses autism-like behavior, and promotes hippocampus-dependent learning and memory.
Collapse
Affiliation(s)
- Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Haohan Wang
- School of Information Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yeeun Yook
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Justin S Rhodes
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Catherine A Christian-Hinman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
4
|
Afshar S, Leili T, Amini P, Dinu I. Introducing novel key genes and transcription factors associated with rectal cancer response to chemoradiation through co-expression network analysis. Heliyon 2023; 9:e18869. [PMID: 37636389 PMCID: PMC10447927 DOI: 10.1016/j.heliyon.2023.e18869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/16/2023] [Accepted: 08/01/2023] [Indexed: 08/29/2023] Open
Abstract
Preoperative radiochemotherapy is a promising therapeutic method for locally advanced rectal cancer patients. However, the response of colorectal cancer (CRC) patients to preoperative radiotherapy varies widely. In this study, we aimed to identify novel biomarkers that could predict the response of colorectal tumors to treatment using a systems biology approach. We applied the Weighted Gene Co-Expression Network Analysis to construct co-expression networks and evaluated the correlation of these networks with radiation using the module-trait relationship. We then identified hub genes and related transcription factors in the selected co-expression module. Our analysis of seven constructed modules revealed that one module, which contained 113 nodes and 6066 edges, had the strongest correlation with radiation effects on CRC (correlation = 0.85; p-value = 6e-7). By analyzing the selected module with the CytoHubba plugin, we identified four hub genes, including ZEB2, JAM2, NDN, and PPAP2A. We also identified seven important transcription factors, including KLF4, SUZ12, TCF4, NANOG, POU5F1, SOX2, and SMARCA4, which may play essential roles in regulating the four hub genes. In summary, our findings suggest that ZEB2, JAM2, NDN, and PPAP2A, along with the seven transcription factors related to these hub genes, may be associated with the response of colorectal tumors to chemoradiotherapy.
Collapse
Affiliation(s)
- Saeid Afshar
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tapak Leili
- Department of Biostatistics, School of Public Health and Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Payam Amini
- School of Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | - Irina Dinu
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
5
|
Testa U, Castelli G, Pelosi E. TP53-Mutated Myelodysplasia and Acute Myeloid Leukemia. Mediterr J Hematol Infect Dis 2023; 15:e2023038. [PMID: 37435040 PMCID: PMC10332352 DOI: 10.4084/mjhid.2023.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) form a distinct and heterogeneous group of myeloid malignancies associated with poor outcomes. Studies carried out in the last years have in part elucidated the complex role played by TP53 mutations in the pathogenesis of these myeloid disorders and in the mechanisms of drug resistance. A consistent number of studies has shown that some molecular parameters, such as the presence of a single or multiple TP53 mutations, the presence of concomitant TP53 deletions, the association with co-occurring mutations, the clonal size of TP53 mutations, the involvement of a single (monoallelic) or of both TP53 alleles (biallelic) and the cytogenetic architecture of concomitant chromosome abnormalities are major determinants of outcomes of patients. The limited response of these patients to standard treatments, including induction chemotherapy, hypomethylating agents and venetoclax-based therapies and the discovery of an immune dysregulation have induced a shift to new emerging therapies, some of which being associated with promising efficacy. The main aim of these novel immune and nonimmune strategies consists in improving survival and in increasing the number of TP53-mutated MDS/AML patients in remission amenable to allogeneic stem cell transplantation.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Rome Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Rome Italy
| |
Collapse
|
6
|
Ishida T, Heck AM, Varnum-Finney B, Dozono S, Nourigat-McKay C, Kraskouskas K, Wellington R, Waltner O, Root, Jackson DL, Delaney C, Rafii S, Bernstein ID, Trapnell, Hadland B. Differentiation latency and dormancy signatures define fetal liver HSCs at single cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543314. [PMID: 37333272 PMCID: PMC10274697 DOI: 10.1101/2023.06.01.543314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Decoding the gene regulatory mechanisms mediating self-renewal of hematopoietic stem cells (HSCs) during their amplification in the fetal liver (FL) is relevant for advancing therapeutic applications aiming to expand transplantable HSCs, a long-standing challenge. Here, to explore intrinsic and extrinsic regulation of self-renewal in FL-HSCs at the single cell level, we engineered a culture platform designed to recapitulate the FL endothelial niche, which supports the amplification of serially engraftable HSCs ex vivo. Leveraging this platform in combination with single cell index flow cytometry, serial transplantation assays, and single cell RNA-sequencing, we elucidated previously unrecognized heterogeneity in immunophenotypically defined FL-HSCs and demonstrated that differentiation latency and transcriptional signatures of biosynthetic dormancy are distinguishing properties of self-renewing FL-HSCs with capacity for serial, long-term multilineage hematopoietic reconstitution. Altogether, our findings provide key insights into HSC expansion and generate a novel resource for future exploration of the intrinsic and niche-derived signaling pathways that support FL-HSC self-renewal.
Collapse
Affiliation(s)
- Takashi Ishida
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Adam M. Heck
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Barbara Varnum-Finney
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stacey Dozono
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cynthia Nourigat-McKay
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Katie Kraskouskas
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Rachel Wellington
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology, School of Medicine, University of Washington, Seattle, WA
| | - Olivia Waltner
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Root
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Colleen Delaney
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Deverra Therapeutics, Seattle, WA, USA
- Division of Pediatric Hematology/Oncology, University of Washington, Seattle, WA, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Irwin D. Bernstein
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Pediatric Hematology/Oncology, University of Washington, Seattle, WA, USA
| | - Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brandon Hadland
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Pediatric Hematology/Oncology, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Xie X, Su M, Ren K, Ma X, Lv Z, Li Z, Mei Y, Ji P. Clonal hematopoiesis and bone marrow inflammation. Transl Res 2023; 255:159-170. [PMID: 36347490 DOI: 10.1016/j.trsl.2022.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/22/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022]
Abstract
Clonal hematopoiesis (CH) occurs in hematopoietic stem cells with increased risks of progressing to hematologic malignancies. CH mutations are predominantly found in aged populations and correlate with an increased incidence of cardiovascular and other diseases. Increased lines of evidence demonstrate that CH mutations are closely related to the inflammatory bone marrow microenvironment. In this review, we summarize the recent advances in this topic starting from the discovery of CH and its mutations. We focus on the most commonly mutated and well-studied genes in CH and their contributions to the innate immune responses and inflammatory signaling, especially in the hematopoietic cells of bone marrow. We also aimed to discuss the interrelationship between inflammatory bone marrow microenvironment and CH mutations. Finally, we provide our perspectives on the challenges in the field and possible future directions to help understand the pathophysiology of CH.
Collapse
Affiliation(s)
- Xinshu Xie
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Meng Su
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Kehan Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Xuezhen Ma
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhiyi Lv
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Zhaofeng Li
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Yang Mei
- School of Biomedical Sciences, Hunan University, Changsha, China; Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China.
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois.
| |
Collapse
|
8
|
Cell-intrinsic factors governing quiescence vis-à-vis activation of adult hematopoietic stem cells. Mol Cell Biochem 2022; 478:1361-1382. [PMID: 36309884 DOI: 10.1007/s11010-022-04594-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
Hematopoiesis is a highly complex process, regulated by both intrinsic and extrinsic factors. Often, these two regulatory arms work in tandem to maintain the steady-state condition of hematopoiesis. However, at times, certain intrinsic attributes of hematopoietic stem cells (HSCs) override the external stimuli and dominate the outcome. These could be genetic events like mutations or environmentally induced epigenetic or transcriptomic changes. Since leukemic stem cells (LSCs) share molecular pathways that also regulate normal HSCs, identifying specific, dominantly acting intrinsic factors could help in the development of novel therapeutic approaches. Here we have reviewed such dominantly acting intrinsic factors governing quiescence vis-à-vis activation of the HSCs in the face of external forces acting on them. For brevity, we have restricted our review to the articles dealing with adult HSCs of human and mouse origin that have been published in the last 10 years. Hematopoietic stem cells (HSCs) are closely associated with various stromal cells in their microenvironment and, thus, constantly receive signaling cues from them. The illustration depicts some dominantly acting intrinsic or cell-autonomous factors operative in the HSCs. These fall into various categories, such as epigenetic regulators, transcription factors, cell cycle regulators, tumor suppressor genes, signaling pathways, and metabolic regulators, which counteract the outcome of extrinsic signaling exerted by the HSC niche.
Collapse
|
9
|
Aljoufi A, Zhang C, Ropa J, Chang W, Palam LR, Cooper S, Ramdas B, Capitano ML, Broxmeyer HE, Kapur R. Physioxia-induced downregulation of Tet2 in hematopoietic stem cells contributes to enhanced self-renewal. Blood 2022; 140:1263-1277. [PMID: 35772013 PMCID: PMC9479026 DOI: 10.1182/blood.2022015499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 06/17/2022] [Indexed: 12/15/2022] Open
Abstract
Hematopoietic stem cells (HSCs) manifest impaired recovery and self-renewal with a concomitant increase in differentiation when exposed to ambient air as opposed to physioxia. Mechanism(s) behind this distinction are poorly understood but have the potential to improve stem cell transplantation. Single-cell RNA sequencing of HSCs in physioxia revealed upregulation of HSC self-renewal genes and downregulation of genes involved in inflammatory pathways and HSC differentiation. HSCs under physioxia also exhibited downregulation of the epigenetic modifier Tet2. Tet2 is α-ketoglutarate, iron- and oxygen-dependent dioxygenase that converts 5-methylcytosine to 5-hydroxymethylcytosine, thereby promoting active transcription. We evaluated whether loss of Tet2 affects the number and function of HSCs and hematopoietic progenitor cells (HPCs) under physioxia and ambient air. In contrast to wild-type HSCs (WT HSCs), a complete nonresponsiveness of Tet2-/- HSCs and HPCs to changes in oxygen tension was observed. Unlike WT HSCs, Tet2-/- HSCs and HPCs exhibited similar numbers and function in either physioxia or ambient air. The lack of response to changes in oxygen tension in Tet2-/- HSCs was associated with similar changes in self-renewal and quiescence genes among WT HSC-physioxia, Tet2-/- HSC-physioxia and Tet2-/- HSC-air. We define a novel molecular program involving Tet2 in regulating HSCs under physioxia.
Collapse
Affiliation(s)
| | - Chi Zhang
- Department of Medical and Molecular Genetics, and
| | - James Ropa
- Department of Microbiology and Immunology
| | - Wennan Chang
- Department of Medical and Molecular Genetics, and
| | - Lakshmi Reddy Palam
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | | | - Baskar Ramdas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | | | | | - Reuben Kapur
- Department of Microbiology and Immunology
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
10
|
Phosphate Metabolic Inhibition Contributes to Irradiation-Induced Myelosuppression through Dampening Hematopoietic Stem Cell Survival. Nutrients 2022; 14:nu14163395. [PMID: 36014901 PMCID: PMC9415467 DOI: 10.3390/nu14163395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 12/01/2022] Open
Abstract
Myelosuppression is a common and intractable side effect of cancer therapies including radiotherapy and chemotherapy, while the underlying mechanism remains incompletely understood. Here, using a mouse model of radiotherapy-induced myelosuppression, we show that inorganic phosphate (Pi) metabolism is acutely inhibited in hematopoietic stem cells (HSCs) during irradiation-induced myelosuppression, and closely correlated with the severity and prognosis of myelosuppression. Mechanistically, the acute Pi metabolic inhibition in HSCs results from extrinsic Pi loss in the bone marrow niche and the intrinsic transcriptional suppression of soluble carrier family 20 member 1 (SLC20A1)-mediated Pi uptake by p53. Meanwhile, Pi metabolic inhibition blunts irradiation-induced Akt hyperactivation in HSCs, thereby weakening its ability to counteract p53-mediated Pi metabolic inhibition and the apoptosis of HSCs and consequently contributing to myelosuppression progression. Conversely, the modulation of the Pi metabolism in HSCs via a high Pi diet or renal Klotho deficiency protects against irradiation-induced myelosuppression. These findings reveal that Pi metabolism and HSC survival are causally linked by the Akt/p53–SLC20A1 axis during myelosuppression and provide valuable insights into the pathogenesis and management of myelosuppression.
Collapse
|
11
|
Chen Z, Guo Q, Song G, Hou Y. Molecular regulation of hematopoietic stem cell quiescence. Cell Mol Life Sci 2022; 79:218. [PMID: 35357574 PMCID: PMC11072845 DOI: 10.1007/s00018-022-04200-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSCs) are primarily dormant in a cell-cycle quiescence state to preserve their self-renewal capacity and long-term maintenance, which is essential for the homeostasis of hematopoietic system. Dysregulation of quiescence causes HSC dysfunction and may result in aberrant hematopoiesis (e.g., myelodysplastic syndrome and bone marrow failure syndromes) and leukemia transformation. Accumulating evidence indicates that both intrinsic molecular networks and extrinsic signals regulate HSC quiescence, including cell-cycle regulators, transcription factors, epigenetic factors, and niche factors. Further, the transition between quiescence and activation of HSCs is a continuous developmental path driven by cell metabolism (e.g., protein synthesis, glycolysis, oxidative phosphorylation, and autophagy). Elucidating the complex regulatory networks of HSC quiescence will expand the knowledge of HSC hemostasis and benefit for clinical HSC use. Here, we review the current understanding and progression on the molecular and metabolic regulation of HSC quiescence, providing a more complete picture regarding the mechanisms of HSC quiescence maintenance.
Collapse
Affiliation(s)
- Zhe Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qian Guo
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| | - Yu Hou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China.
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
12
|
Mayer IM, Hoelbl-Kovacic A, Sexl V, Doma E. Isolation, Maintenance and Expansion of Adult Hematopoietic Stem/Progenitor Cells and Leukemic Stem Cells. Cancers (Basel) 2022; 14:1723. [PMID: 35406494 PMCID: PMC8996967 DOI: 10.3390/cancers14071723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are rare, self-renewing cells that perch on top of the hematopoietic tree. The HSCs ensure the constant supply of mature blood cells in a tightly regulated process producing peripheral blood cells. Intense efforts are ongoing to optimize HSC engraftment as therapeutic strategy to treat patients suffering from hematopoietic diseases. Preclinical research paves the way by developing methods to maintain, manipulate and expand HSCs ex vivo to understand their regulation and molecular make-up. The generation of a sufficient number of transplantable HSCs is the Holy Grail for clinical therapy. Leukemia stem cells (LSCs) are characterized by their acquired stem cell characteristics and are responsible for disease initiation, progression, and relapse. We summarize efforts, that have been undertaken to increase the number of long-term (LT)-HSCs and to prevent differentiation towards committed progenitors in ex vivo culture. We provide an overview and compare methods currently available to isolate, maintain and enrich HSC subsets, progenitors and LSCs and discuss their individual advantages and drawbacks.
Collapse
Affiliation(s)
| | | | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (I.M.M.); (A.H.-K.); (E.D.)
| | | |
Collapse
|
13
|
CDK19 regulates the proliferation of hematopoietic stem cells and acute myeloid leukemia cells by suppressing p53-mediated transcription of p21. Leukemia 2022; 36:956-969. [PMID: 35110726 DOI: 10.1038/s41375-022-01512-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
The cell cycle progression of hematopoietic stem cells (HSCs) and acute myeloid leukemia (AML) cells is precisely controlled by multiple regulatory factors. However, the underlying mechanisms are not fully understood. Here, we find that cyclin-dependent kinase 19 (CDK19), not its paralogue CDK8, is relatively enriched in mouse HSCs, and its expression is more significantly increased than CDK8 after proliferative stresses. Furthermore, SenexinB (a CDK8/19 inhibitor) treatment impairs the proliferation and self-renewal ability of HSCs. Moreover, overexpression of CDK19 promotes HSC function better than CDK8 overexpression. Using CDK19 knockout mice, we observe that CDK19-/- HSCs exhibit similar phenotypes to those of cells treated with SenexinB. Interestingly, the p53 signaling pathway is significantly activated in HSCs lacking CDK19 expression. Further investigations show that CDK19 can interact with p53 to inhibit p53-mediated transcription of p21 in HSCs and treatment with a specific p53 inhibitor (PFTβ) partially rescues the defects of CDK19-null HSCs. Importantly, SenexinB treatment markedly inhibits the proliferation of AML cells. Collectively, our findings indicate that CDK19 is involved in regulating HSC and AML cell proliferation via the p53-p21 pathway, revealing a new mechanism underlying cell cycle regulation in normal and malignant hematopoietic cells.
Collapse
|
14
|
Tung LT, Wang H, Belle JI, Petrov JC, Langlais D, Nijnik A. p53-dependent induction of P2X7 on hematopoietic stem and progenitor cells regulates hematopoietic response to genotoxic stress. Cell Death Dis 2021; 12:923. [PMID: 34625535 PMCID: PMC8501024 DOI: 10.1038/s41419-021-04202-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/27/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023]
Abstract
Stem and progenitor cells are the main mediators of tissue renewal and repair, both under homeostatic conditions and in response to physiological stress and injury. Hematopoietic system is responsible for the regeneration of blood and immune cells and is maintained by bone marrow-resident hematopoietic stem and progenitor cells (HSPCs). Hematopoietic system is particularly susceptible to injury in response to genotoxic stress, resulting in the risk of bone marrow failure and secondary malignancies in cancer patients undergoing radiotherapy. Here we analyze the in vivo transcriptional response of HSPCs to genotoxic stress in a mouse whole-body irradiation model and, together with p53 ChIP-Seq and studies in p53-knockout (p53KO) mice, characterize the p53-dependent and p53-independent branches of this transcriptional response. Our work demonstrates the p53-independent induction of inflammatory transcriptional signatures in HSPCs in response to genotoxic stress and identifies multiple novel p53-target genes induced in HSPCs in response to whole-body irradiation. In particular, we establish the direct p53-mediated induction of P2X7 expression on HSCs and HSPCs in response to genotoxic stress. We further demonstrate the role of P2X7 in hematopoietic response to acute genotoxic stress, with P2X7 deficiency significantly extending mouse survival in irradiation-induced hematopoietic failure. We also demonstrate the role of P2X7 in the context of long-term HSC regenerative fitness following sublethal irradiation. Overall our studies provide important insights into the mechanisms of HSC response to genotoxic stress and further suggest P2X7 as a target for pharmacological modulation of HSC fitness and hematopoietic response to genotoxic injury.
Collapse
Affiliation(s)
- Lin Tze Tung
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - HanChen Wang
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Jad I Belle
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - Jessica C Petrov
- Department of Physiology, McGill University, Montreal, QC, Canada
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
| | - David Langlais
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- McGill University Genome Centre, McGill University, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Anastasia Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada.
- McGill University Research Centre on Complex Traits, McGill University, Montreal, QC, Canada.
| |
Collapse
|
15
|
Dignum T, Varnum-Finney B, Srivatsan SR, Dozono S, Waltner O, Heck AM, Ishida T, Nourigat-McKay C, Jackson DL, Rafii S, Trapnell C, Bernstein ID, Hadland B. Multipotent progenitors and hematopoietic stem cells arise independently from hemogenic endothelium in the mouse embryo. Cell Rep 2021; 36:109675. [PMID: 34525376 PMCID: PMC8478150 DOI: 10.1016/j.celrep.2021.109675] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/28/2021] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
During embryogenesis, waves of hematopoietic progenitors develop from hemogenic endothelium (HE) prior to the emergence of self-renewing hematopoietic stem cells (HSCs). Although previous studies have shown that yolk-sac-derived erythromyeloid progenitors and HSCs emerge from distinct populations of HE, it remains unknown whether the earliest lymphoid-competent progenitors, multipotent progenitors, and HSCs originate from common HE. In this study, we demonstrate by clonal assays and single-cell transcriptomics that rare HE with functional HSC potential in the early murine embryo are distinct from more abundant HE with multilineage hematopoietic potential that fail to generate HSCs. Specifically, HSC-competent HE are characterized by expression of CXCR4 surface marker and by higher expression of genes tied to arterial programs regulating HSC dormancy and self-renewal. Taken together, these findings suggest a revised model of developmental hematopoiesis in which the initial populations of multipotent progenitors and HSCs arise independently from HE with distinct phenotypic and transcriptional properties.
Collapse
Affiliation(s)
- Tessa Dignum
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Barbara Varnum-Finney
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Sanjay R Srivatsan
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Stacey Dozono
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Olivia Waltner
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Adam M Heck
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Takashi Ishida
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cynthia Nourigat-McKay
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Dana L Jackson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Shahin Rafii
- Department of Genetic Medicine, Ansary Stem Cell Institute, Howard Hughes Medical Institute, Weill Cornell Medical College, New York, NY 10021, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Irwin D Bernstein
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Brandon Hadland
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98105, USA.
| |
Collapse
|
16
|
Ye X, Tang X, Zhao S, Ruan J, Wu M, Wang X, Li H, Zhong B. Mechanism of the growth and development of the posterior silk gland and silk secretion revealed by mutation of the fibroin light chain in silkworm. Int J Biol Macromol 2021; 188:375-384. [PMID: 34371049 DOI: 10.1016/j.ijbiomac.2021.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/12/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Silkworm, as a model organism, has very high economic value due to its silk secretion ability. Although a large number of studies have attempted to elucidate the mechanism of silk secretion, it remains unclear. In this study, the fibroin light chain (Fib-L) gene of silkworm was subjected to CRISPR/Cas9 editing, which yielded premature termination of translation at 135 aa. Compared with those of the wild type, the posterior silk glands (PSGs) of the homozygous mutants on the third day of the fifth instar showed obvious premature degeneration. Comparative transcriptome and proteomic analyses of the PSGs of wild-type individuals, heterozygous mutants and homozygous mutants were performed on the fourth day of the fifth instar. A GO enrichment analysis showed that the differentially expressed genes (DEGs) between homozygous mutants and wild-type individuals were enriched in cytoskeleton-related terms, and a KEGG enrichment analysis showed that the upregulated DEGs between homozygous mutants and wild-type individuals were enriched in the phagosome and apoptosis pathways. These results indicated that apoptosis was activated prematurely in the PSGs of homozygous mutants. Furthermore, autophagy and heat shock response were activated in the PSGs of homozygous mutants, as demonstrated by an analysis of the DEGs related to autophagy and heat shock. A comparative proteomic analysis further confirmed that autophagy, apoptosis and the heat shock response were activated in the PSGs of homozygous mutants, which led to premature degradation of the PSGs. These results provide insights for obtaining a more in-depth understanding of the mechanism of silk secretion in silkworms.
Collapse
Affiliation(s)
- Xiaogang Ye
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaoli Tang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Shuo Zhao
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Jinghua Ruan
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Meiyu Wu
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Xiaoxiao Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Huiping Li
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China
| | - Boxiong Zhong
- College of Animal Sciences, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
17
|
ANP32B-mediated repression of p53 contributes to maintenance of normal and CML stem cells. Blood 2021; 138:2485-2498. [PMID: 34359074 DOI: 10.1182/blood.2020010400] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 08/03/2021] [Indexed: 11/20/2022] Open
Abstract
Proper regulation of p53 signaling is critical for the maintenance of hematopoietic stem cells (HSCs) and leukemic stem cells (LSCs). The hematopoietic cell-specific mechanisms regulating p53 activity remain largely unknown. Here, we demonstrate that conditional deletion of acidic leucine-rich nuclear phosphoprotein 32B (ANP32B) in hematopoietic cells impairs repopulation capacity and post-injury regeneration of HSCs. Mechanistically, ANP32B forms a repressive complex with and thus inhibits the transcriptional activity of p53 in hematopoietic cells, and p53 deletion rescues the functional defect in Anp32b-deficient HSCs. Of great interest, ANP32B is highly expressed in leukemic cells from chronic myelogenous leukemia (CML) patients. Anp32b deletion enhances p53 transcriptional activity to impair LSCs function in a murine CML model, and exhibits synergistic therapeutic effects with tyrosine kinase inhibitors in inhibiting CML propagation. In summary, our findings provide a novel strategy to enhance p53 activity in LSCs by inhibiting ANP32B, and identify ANP32B as a potential therapeutic target in treating CML.
Collapse
|
18
|
Veiga CB, Lawrence EM, Murphy AJ, Herold MJ, Dragoljevic D. Myelodysplasia Syndrome, Clonal Hematopoiesis and Cardiovascular Disease. Cancers (Basel) 2021; 13:cancers13081968. [PMID: 33921778 PMCID: PMC8073047 DOI: 10.3390/cancers13081968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The development of blood cancers is a complex process that involves the acquisition of specific blood disorders that precede cancer. These blood disorders are often driven by the accumulation of genetic abnormalities, which are discussed in this review. Likewise, predicting the rate of progression of these diseases is difficult, but it appears to be linked to which specific gene mutations are present in blood cells. In this review, we discuss a variety of genetic abnormalities that drive blood cancer, conditions that precede clinical symptoms of blood cancer, and how alterations in these genes change blood cell function. Additionally, we discuss the novel links between blood cancer development and heart disease. Abstract The development of myelodysplasia syndromes (MDS) is multiphasic and can be driven by a plethora of genetic mutations and/or abnormalities. MDS is characterized by a hematopoietic differentiation block, evidenced by increased immature hematopoietic cells, termed blast cells and decreased mature circulating leukocytes in at least one lineage (i.e., cytopenia). Clonal hematopoiesis of indeterminate potential (CHIP) is a recently described phenomenon preceding MDS development that is driven by somatic mutations in hemopoietic stem cells (HSCs). These mutant HSCs have a competitive advantage over healthy cells, resulting in an expansion of these clonal mutated leukocytes. In this review, we discuss the multiphasic development of MDS, the common mutations found in both MDS and CHIP, how a loss-of-function in these CHIP-related genes can alter HSC function and leukocyte development and the potential disease outcomes that can occur with dysfunctional HSCs. In particular, we discuss the novel connections between MDS development and cardiovascular disease.
Collapse
Affiliation(s)
- Camilla Bertuzzo Veiga
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Erin M. Lawrence
- Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; (E.M.L.); (M.J.H.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Andrew J. Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Diabetes, Department of Immunology, Monash University, Clayton, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Marco J. Herold
- Walter and Eliza Hall Institute of Medical Research, 1 G Royal Parade, Parkville, Melbourne, VIC 3052, Australia; (E.M.L.); (M.J.H.)
- Department of Medical Biology, University of Melbourne, Parkville, Melbourne, VIC 3052, Australia
| | - Dragana Dragoljevic
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; (C.B.V.); (A.J.M.)
- Department of Diabetes, Department of Immunology, Monash University, Clayton, VIC 3004, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3052, Australia
- Correspondence:
| |
Collapse
|
19
|
Dias IB, Bouma HR, Henning RH. Unraveling the Big Sleep: Molecular Aspects of Stem Cell Dormancy and Hibernation. Front Physiol 2021; 12:624950. [PMID: 33867999 PMCID: PMC8047423 DOI: 10.3389/fphys.2021.624950] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Tissue-resident stem cells may enter a dormant state, also known as quiescence, which allows them to withstand metabolic stress and unfavorable conditions. Similarly, hibernating mammals can also enter a state of dormancy used to evade hostile circumstances, such as food shortage and low ambient temperatures. In hibernation, the dormant state of the individual and its cells is commonly known as torpor, and is characterized by metabolic suppression in individual cells. Given that both conditions represent cell survival strategies, we here compare the molecular aspects of cellular quiescence, particularly of well-studied hematopoietic stem cells, and torpor at the cellular level. Critical processes of dormancy are reviewed, including the suppression of the cell cycle, changes in metabolic characteristics, and cellular mechanisms of dealing with damage. Key factors shared by hematopoietic stem cell quiescence and torpor include a reversible activation of factors inhibiting the cell cycle, a shift in metabolism from glucose to fatty acid oxidation, downregulation of mitochondrial activity, key changes in hypoxia-inducible factor one alpha (HIF-1α), mTOR, reversible protein phosphorylation and autophagy, and increased radiation resistance. This similarity is remarkable in view of the difference in cell populations, as stem cell quiescence regards proliferating cells, while torpor mainly involves terminally differentiated cells. A future perspective is provided how to advance our understanding of the crucial pathways that allow stem cells and hibernating animals to engage in their 'great slumbers.'
Collapse
Affiliation(s)
- Itamar B. Dias
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hjalmar R. Bouma
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
20
|
Zhang N, Zhao C, Zhang X, Cui X, Zhao Y, Yang J, Gao X. Growth arrest-specific 2 protein family: Structure and function. Cell Prolif 2020; 54:e12934. [PMID: 33103301 PMCID: PMC7791176 DOI: 10.1111/cpr.12934] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/15/2022] Open
Abstract
Members of the growth arrest–specific 2 (GAS2) protein family consist of a putative actin‐binding (CH) domain and a microtubule‐binding (GAR) domain and are considered miniversions of spectraplakins. There are four members in the GAS2 family, viz. GAS2, GAS2L1, GAS2L2 and GAS2L3. Although GAS2 is defined as a family of growth arrest–specific proteins, the significant differences in the expression patterns, interaction characteristics and biological issues or diseases among the different GAS2 family members have not been systemically reviewed to date. Therefore, we summarized the available evidence on the structures and functions of GAS2 family members. This review facilitates a comprehensive molecular understanding of the involvement of the GAS2 family members in an array of biological processes, including cytoskeleton reorganization, cell cycle, apoptosis and cancer development.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Chunyan Zhao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Xinxin Zhang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Xiaoteng Cui
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China.,Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Department of Neurosurgery, Tianjin Medical University General Hospital and Key Laboratory of Neurotrauma, Variation, and Regeneration, Ministry of Education and Tianjin Municipal Government, Tianjin, China
| | - Yan Zhao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,Key Laboratory of Immune Microenvironment and Disease, Ministry of Education, Key Laboratory of Cellular and Molecular Immunology in Tianjin, Excellent Talent Project, Tianjin Medical University, Tianjin, China
| |
Collapse
|
21
|
Spreafico M, Gruszka AM, Valli D, Mazzola M, Deflorian G, Quintè A, Totaro MG, Battaglia C, Alcalay M, Marozzi A, Pistocchi A. HDAC8: A Promising Therapeutic Target for Acute Myeloid Leukemia. Front Cell Dev Biol 2020; 8:844. [PMID: 33015043 PMCID: PMC7498549 DOI: 10.3389/fcell.2020.00844] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/06/2020] [Indexed: 12/23/2022] Open
Abstract
Histone deacetylase 8 (HDAC8), a class I HDAC that modifies non-histone proteins such as p53, is highly expressed in different hematological neoplasms including a subtype of acute myeloid leukemia (AML) bearing inversion of chromosome 16 [inv(16)]. To investigate HDAC8 contribution to hematopoietic stem cell maintenance and myeloid leukemic transformation, we generated a zebrafish model with Hdac8 overexpression and observed an increase in hematopoietic stem/progenitor cells, a phenotype that could be reverted using a specific HDAC8 inhibitor, PCI-34051 (PCI). In addition, we demonstrated that AML cell lines respond differently to PCI treatment: HDAC8 inhibition elicits cytotoxic effect with cell cycle arrest followed by apoptosis in THP-1 cells, and cytostatic effect in HL60 cells that lack p53. A combination of cytarabine, a standard anti-AML chemotherapeutic, with PCI resulted in a synergistic effect in all the cell lines tested. We, then, searched for a mechanism behind cell cycle arrest caused by HDAC8 inhibition in the absence of functional p53 and demonstrated an involvement of the canonical WNT signaling in zebrafish and in cell lines. Together, we provide the evidence for the role of HDAC8 in hematopoietic stem cell differentiation in zebrafish and AML cell lines, suggesting HDAC8 inhibition as a therapeutic target in hematological malignancies. Accordingly, we demonstrated the utility of a highly specific HDAC8 inhibition as a therapeutic strategy in combination with standard chemotherapy.
Collapse
Affiliation(s)
- Marco Spreafico
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Alicja M Gruszka
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia IRCCS, Milan, Italy
| | - Debora Valli
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia IRCCS, Milan, Italy
| | - Mara Mazzola
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | | | | | | | - Cristina Battaglia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Myriam Alcalay
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia IRCCS, Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Anna Marozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
22
|
Chen S, Wang Q, Yu H, Capitano ML, Vemula S, Nabinger SC, Gao R, Yao C, Kobayashi M, Geng Z, Fahey A, Henley D, Liu SZ, Barajas S, Cai W, Wolf ER, Ramdas B, Cai Z, Gao H, Luo N, Sun Y, Wong TN, Link DC, Liu Y, Boswell HS, Mayo LD, Huang G, Kapur R, Yoder MC, Broxmeyer HE, Gao Z, Liu Y. Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway. Nat Commun 2019; 10:5649. [PMID: 31827082 PMCID: PMC6906427 DOI: 10.1038/s41467-019-13542-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/11/2019] [Indexed: 01/16/2023] Open
Abstract
Clonal hematopoiesis of indeterminate potential (CHIP) increases with age and is associated with increased risks of hematological malignancies. While TP53 mutations have been identified in CHIP, the molecular mechanisms by which mutant p53 promotes hematopoietic stem and progenitor cell (HSPC) expansion are largely unknown. Here we discover that mutant p53 confers a competitive advantage to HSPCs following transplantation and promotes HSPC expansion after radiation-induced stress. Mechanistically, mutant p53 interacts with EZH2 and enhances its association with the chromatin, thereby increasing the levels of H3K27me3 in genes regulating HSPC self-renewal and differentiation. Furthermore, genetic and pharmacological inhibition of EZH2 decreases the repopulating potential of p53 mutant HSPCs. Thus, we uncover an epigenetic mechanism by which mutant p53 drives clonal hematopoiesis. Our work will likely establish epigenetic regulator EZH2 as a novel therapeutic target for preventing CHIP progression and treating hematological malignancies with TP53 mutations.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Qiang Wang
- Department of Biochemistry and Molecular Biology, the Cancer Institute, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Hao Yu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Maegan L Capitano
- Department of Microbiology and Immunology, Indiana University, Indianapolis, IN, 46202, USA
| | - Sasidhar Vemula
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Sarah C Nabinger
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Rui Gao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Chonghua Yao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Michihiro Kobayashi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Zhuangzhuang Geng
- Department of Biochemistry and Molecular Biology, the Cancer Institute, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Aidan Fahey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Danielle Henley
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Stephen Z Liu
- Department of Medical Genetics, Indiana University, Indianapolis, IN, 46202, USA
| | - Sergio Barajas
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, 46202, USA
| | - Wenjie Cai
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, 46202, USA
| | - Eric R Wolf
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Baskar Ramdas
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Zhigang Cai
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Hongyu Gao
- Department of Medical Genetics, Indiana University, Indianapolis, IN, 46202, USA
| | - Na Luo
- Department of Ophthalmology, Indiana University, Indianapolis, IN, 46202, USA
| | - Yang Sun
- Department of Ophthalmology, Indiana University, Indianapolis, IN, 46202, USA
| | - Terrence N Wong
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - Daniel C Link
- Siteman Cancer Center, Washington University, St. Louis, MO, 63110, USA
| | - Yunlong Liu
- Department of Medical Genetics, Indiana University, Indianapolis, IN, 46202, USA
| | - H Scott Boswell
- Department of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Lindsey D Mayo
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Gang Huang
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Reuben Kapur
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Mervin C Yoder
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, Indiana University, Indianapolis, IN, 46202, USA
| | - Zhonghua Gao
- Department of Biochemistry and Molecular Biology, the Cancer Institute, College of Medicine, Pennsylvania State University, Hershey, PA, 17033, USA.
| | - Yan Liu
- Department of Biochemistry and Molecular Biology, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
23
|
Carvajal LA, Neriah DB, Senecal A, Benard L, Thiruthuvanathan V, Yatsenko T, Narayanagari SR, Wheat JC, Todorova TI, Mitchell K, Kenworthy C, Guerlavais V, Annis DA, Bartholdy B, Will B, Anampa JD, Mantzaris I, Aivado M, Singer RH, Coleman RA, Verma A, Steidl U. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci Transl Med 2019; 10:10/436/eaao3003. [PMID: 29643228 DOI: 10.1126/scitranslmed.aao3003] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/12/2018] [Accepted: 03/23/2018] [Indexed: 12/14/2022]
Abstract
The tumor suppressor p53 is often inactivated via its interaction with endogenous inhibitors mouse double minute 4 homolog (MDM4 or MDMX) or mouse double minute 2 homolog (MDM2), which are frequently overexpressed in patients with acute myeloid leukemia (AML) and other cancers. Pharmacological disruption of both of these interactions has long been sought after as an attractive strategy to fully restore p53-dependent tumor suppressor activity in cancers with wild-type p53. Selective targeting of this pathway has thus far been limited to MDM2-only small-molecule inhibitors, which lack affinity for MDMX. We demonstrate that dual MDMX/MDM2 inhibition with a stapled α-helical peptide (ALRN-6924), which has recently entered phase I clinical testing, produces marked antileukemic effects. ALRN-6924 robustly activates p53-dependent transcription at the single-cell and single-molecule levels and exhibits biochemical and molecular biological on-target activity in leukemia cells in vitro and in vivo. Dual MDMX/MDM2 inhibition by ALRN-6924 inhibits cellular proliferation by inducing cell cycle arrest and apoptosis in cell lines and primary AML patient cells, including leukemic stem cell-enriched populations, and disrupts functional clonogenic and serial replating capacity. Furthermore, ALRN-6924 markedly improves survival in AML xenograft models. Our study provides mechanistic insight to support further testing of ALRN-6924 as a therapeutic approach in AML and other cancers with wild-type p53.
Collapse
Affiliation(s)
- Luis A Carvajal
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Daniela Ben Neriah
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adrien Senecal
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Lumie Benard
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Tatyana Yatsenko
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Swathi-Rao Narayanagari
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Justin C Wheat
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tihomira I Todorova
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kelly Mitchell
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Charles Kenworthy
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Boris Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Britta Will
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jesus D Anampa
- Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ioannis Mantzaris
- Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Amit Verma
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ulrich Steidl
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA. .,Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Division of Hemato-Oncology, Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
24
|
Jahanban-Esfahlan R, Seidi K, Manjili MH, Jahanban-Esfahlan A, Javaheri T, Zare P. Tumor Cell Dormancy: Threat or Opportunity in the Fight against Cancer. Cancers (Basel) 2019; 11:cancers11081207. [PMID: 31430951 PMCID: PMC6721805 DOI: 10.3390/cancers11081207] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/11/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor dormancy, a clinically undetectable state of cancer, makes a major contribution to the development of multidrug resistance (MDR), minimum residual disease (MRD), tumor outgrowth, cancer relapse, and metastasis. Despite its high incidence, the whole picture of dormancy-regulated molecular programs is far from clear. That is, it is unknown when and which dormant cells will resume proliferation causing late relapse, and which will remain asymptomatic and harmless to their hosts. Thus, identification of dormancy-related culprits and understanding their roles can help predict cancer prognosis and may increase the probability of timely therapeutic intervention for the desired outcome. Here, we provide a comprehensive review of the dormancy-dictated molecular mechanisms, including angiogenic switch, immune escape, cancer stem cells, extracellular matrix (ECM) remodeling, metabolic reprogramming, miRNAs, epigenetic modifications, and stress-induced p38 signaling pathways. Further, we analyze the possibility of leveraging these dormancy-related molecular cues to outmaneuver cancer and discuss the implications of such approaches in cancer treatment.
Collapse
Affiliation(s)
- Rana Jahanban-Esfahlan
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz 9841, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 9841, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 9841, Iran
| | - Khaled Seidi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 9841, Iran
| | - Masoud H Manjili
- Department of Microbiology & Immunology, VCU School of Medicine, Massey Cancer Center, Richmond, VA 23298, USA
| | | | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria.
| | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland.
| |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Clonal hematopoiesis of indeterminate potential (CHIP) increases with age and occurs when a single mutant hematopoietic stem cell (HSC) contributes to a significant clonal proportion of mature blood lineages. Somatic mutations in the TP53 gene, which encodes the tumor suppressor protein p53, rank in the top five among genes that were mutated in CHIP. This review focuses on mechanisms by which mutant p53 promotes CHIP progression and drives the pathogenesis of hematological malignancies, including myelodysplastic syndromes, and acute myeloid leukemia. RECENT FINDINGS TP53 was frequently mutated in individuals with CHIP. Although clinical studies suggest that expansion of HSCs with TP53 mutations predisposes the elderly to hematological neoplasms, there is a significant gap in knowledge regarding the mechanisms by which TP53 mutations promote HSC expansion. Recent findings suggest that several cellular stressors, including hematopoietic transplantation, genotoxic stress, and inflammation, promote the expansion of HSCs with TP53 mutations. Further, TP53 mutations identified in CHIP cooperate with genetic and/or epigenetic changes in leukemogenesis. SUMMARY TP53 mutations identified in CHIP are associated with increased risks of de novo and therapy-related hematological neoplasms. Thus, targeting mutant p53 and related pathways holds great potential in preventing CHIP progression and treating hematological malignancies.
Collapse
Affiliation(s)
- Sisi Chen
- Department of Biochemistry and Molecular Biology
| | - Yan Liu
- Department of Biochemistry and Molecular Biology
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
26
|
Mohammad K, Dakik P, Medkour Y, Mitrofanova D, Titorenko VI. Quiescence Entry, Maintenance, and Exit in Adult Stem Cells. Int J Mol Sci 2019; 20:ijms20092158. [PMID: 31052375 PMCID: PMC6539837 DOI: 10.3390/ijms20092158] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 12/13/2022] Open
Abstract
Cells of unicellular and multicellular eukaryotes can respond to certain environmental cues by arresting the cell cycle and entering a reversible state of quiescence. Quiescent cells do not divide, but can re-enter the cell cycle and resume proliferation if exposed to some signals from the environment. Quiescent cells in mammals and humans include adult stem cells. These cells exhibit improved stress resistance and enhanced survival ability. In response to certain extrinsic signals, adult stem cells can self-renew by dividing asymmetrically. Such asymmetric divisions not only allow the maintenance of a population of quiescent cells, but also yield daughter progenitor cells. A multistep process of the controlled proliferation of these progenitor cells leads to the formation of one or more types of fully differentiated cells. An age-related decline in the ability of adult stem cells to balance quiescence maintenance and regulated proliferation has been implicated in many aging-associated diseases. In this review, we describe many traits shared by different types of quiescent adult stem cells. We discuss how these traits contribute to the quiescence, self-renewal, and proliferation of adult stem cells. We examine the cell-intrinsic mechanisms that allow establishing and sustaining the characteristic traits of adult stem cells, thereby regulating quiescence entry, maintenance, and exit.
Collapse
Affiliation(s)
- Karamat Mohammad
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Paméla Dakik
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Younes Medkour
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Darya Mitrofanova
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| | - Vladimir I Titorenko
- Department of Biology, Concordia University, 7141 Sherbrooke Street, West, SP Building, Room 501-13, Montreal, QC H4B 1R6, Canada.
| |
Collapse
|
27
|
Galinato M, Shimoda K, Aguiar A, Hennig F, Boffelli D, McVoy MA, Hertel L. Single-Cell Transcriptome Analysis of CD34 + Stem Cell-Derived Myeloid Cells Infected With Human Cytomegalovirus. Front Microbiol 2019; 10:577. [PMID: 30949159 PMCID: PMC6437045 DOI: 10.3389/fmicb.2019.00577] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
Myeloid cells are important sites of lytic and latent infection by human cytomegalovirus (CMV). We previously showed that only a small subset of myeloid cells differentiated from CD34+ hematopoietic stem cells is permissive to CMV replication, underscoring the heterogeneous nature of these populations. The exact identity of resistant and permissive cell types, and the cellular features characterizing the latter, however, could not be dissected using averaging transcriptional analysis tools such as microarrays and, hence, remained enigmatic. Here, we profile the transcriptomes of ∼7000 individual cells at day 1 post-infection using the 10× genomics platform. We show that viral transcripts are detectable in the majority of the cells, suggesting that virion entry is unlikely to be the main target of cellular restriction mechanisms. We further show that viral replication occurs in a small but specific sub-group of cells transcriptionally related to, and likely derived from, a cluster of cells expressing markers of Colony Forming Unit – Granulocyte, Erythrocyte, Monocyte, Megakaryocyte (CFU-GEMM) oligopotent progenitors. Compared to the remainder of the population, CFU-GEMM cells are enriched in transcripts with functions in mitochondrial energy production, cell proliferation, RNA processing and protein synthesis, and express similar or higher levels of interferon-related genes. While expression levels of the former are maintained in infected cells, the latter are strongly down-regulated. We thus propose that the preferential infection of CFU-GEMM cells may be due to the presence of a pre-established pro-viral environment, requiring minimal optimization efforts from viral effectors, rather than to the absence of specific restriction factors. Together, these findings identify a potentially new population of myeloid cells permissive to CMV replication, and provide a possible rationale for their preferential infection.
Collapse
Affiliation(s)
- Melissa Galinato
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Kristen Shimoda
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Alexis Aguiar
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Fiona Hennig
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Dario Boffelli
- Center for Genetics, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, United States
| | - Laura Hertel
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, United States
| |
Collapse
|
28
|
Carias KV, Wevrick R. Preclinical Testing in Translational Animal Models of Prader-Willi Syndrome: Overview and Gap Analysis. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 13:344-358. [PMID: 30989085 PMCID: PMC6447752 DOI: 10.1016/j.omtm.2019.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prader-Willi syndrome (PWS) is a rare neurodevelopmental disorder causing endocrine, musculoskeletal, and neurological dysfunction. PWS is caused by the inactivation of contiguous genes, complicating the development of targeted therapeutics. Clinical trials are now underway in PWS, with more trials to be implemented in the next few years. PWS-like endophenotypes are recapitulated in gene-targeted mice in which the function of one or more PWS genes is disrupted. These animal models can guide priorities for clinical trials or provide information about efficacy of a compound within the context of the specific disease. We now review the current status of preclinical studies that measure the effect of therapeutics on PWS-like endophenotypes. Seven categories of therapeutics (oxytocin and related compounds, K+-ATP channel agonists, melanocortin 4 receptor agonists, incretin mimetics and/or GLP-1 receptor agonists, cannabinoids, ghrelin agents, and Caralluma fimbriata [cactus] extract) have been tested for their effect on endophenotypes in both PWS animal models and clinical trials. Many other therapeutics have been tested in clinical trials, but not preclinical models of PWS or vice versa. Fostering dialogs among investigators performing preclinical validation of animal models and those implementing clinical studies will accelerate the discovery and translation of therapies into clinical practice in PWS.
Collapse
Affiliation(s)
- K Vanessa Carias
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Rachel Wevrick
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
29
|
Lee JM, Govindarajah V, Goddard B, Hinge A, Muench DE, Filippi MD, Aronow B, Cancelas JA, Salomonis N, Grimes HL, Reynaud D. Obesity alters the long-term fitness of the hematopoietic stem cell compartment through modulation of Gfi1 expression. J Exp Med 2017; 215:627-644. [PMID: 29282250 PMCID: PMC5789409 DOI: 10.1084/jem.20170690] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/31/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Lee et al. show that established obesity alters the composition and long-term fitness of the hematopoietic stem cell (HSC) compartment, in part through a Gfi1-dependent HSC regulatory program that is activated by the chronic oxidative stress associated with this condition. Obesity is a chronic organismal stress that disrupts multiple systemic and tissue-specific functions. In this study, we describe the impact of obesity on the activity of the hematopoietic stem cell (HSC) compartment. We show that obesity alters the composition of the HSC compartment and its activity in response to hematopoietic stress. The impact of obesity on HSC function is progressively acquired but persists after weight loss or transplantation into a normal environment. Mechanistically, we establish that the oxidative stress induced by obesity dysregulates the expression of the transcription factor Gfi1 and that increased Gfi1 expression is required for the abnormal HSC function induced by obesity. These results demonstrate that obesity produces durable changes in HSC function and phenotype and that elevation of Gfi1 expression in response to the oxidative environment is a key driver of the altered HSC properties observed in obesity. Altogether, these data provide phenotypic and mechanistic insight into durable hematopoietic dysregulations resulting from obesity.
Collapse
Affiliation(s)
- Jung-Mi Lee
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Vinothini Govindarajah
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Bryan Goddard
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Ashwini Hinge
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - David E Muench
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Marie-Dominique Filippi
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Bruce Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Jose A Cancelas
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Damien Reynaud
- Stem Cell Program, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
30
|
Hua WK, Qi J, Cai Q, Carnahan E, Ayala Ramirez M, Li L, Marcucci G, Kuo YH. HDAC8 regulates long-term hematopoietic stem-cell maintenance under stress by modulating p53 activity. Blood 2017; 130:2619-2630. [PMID: 29084772 PMCID: PMC5731083 DOI: 10.1182/blood-2017-03-771386] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 10/20/2017] [Indexed: 12/11/2022] Open
Abstract
The maintenance and functional integrity of long-term hematopoietic stem cells (LT-HSCs) is critical for lifelong hematopoietic regeneration. Histone deacetylases (HDACs) modulate acetylation of lysine residues, a protein modification important for regulation of numerous biological processes. Here, we show that Hdac8 is most highly expressed in the phenotypic LT-HSC population within the adult hematopoietic hierarchy. Using an Hdac8-floxed allele and a dual-fluorescence Cre reporter allele, largely normal hematopoietic differentiation capacity of Hdac8-deficient cells was observed. However, the frequency of phenotypic LT-HSC population was significantly higher shortly after Hdac8 deletion, and the expansion had shifted to the phenotypic multipotent progenitor population by 1 year. We show that Hdac8-deficient hematopoietic progenitors are compromised in colony-forming cell serial replating in vitro and long-term serial repopulating activity in vivo. Mechanistically, we demonstrate that the HDAC8 protein interacts with the p53 protein and modulates p53 activity via deacetylation. Hdac8-deficient LT-HSCs displayed hyperactivation of p53 and increased apoptosis under genotoxic and hematopoietic stress. Genetic inactivation of p53 reversed the increased apoptosis and elevated expression of proapoptotic targets Noxa and Puma seen in Hdac8-deleted LT-HSCs. Dramatically compromised hematopoietic recovery and increased lethality were seen in Hdac8-deficient mice challenged with serial 5-fluorouracil treatment. This hypersensitivity to hematopoietic ablation was completely rescued by inactivation of p53. Altogether, these results indicate that HDAC8 functions to modulate p53 activity to ensure LT-HSC maintenance and cell survival under stress.
Collapse
Affiliation(s)
- Wei-Kai Hua
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Jing Qi
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Qi Cai
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Emily Carnahan
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Maria Ayala Ramirez
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Guido Marcucci
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| | - Ya-Huei Kuo
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA
| |
Collapse
|
31
|
Yao C, Kobayashi M, Chen S, Nabinger SC, Gao R, Liu SZ, Asai T, Liu Y. Necdin modulates leukemia-initiating cell quiescence and chemotherapy response. Oncotarget 2017; 8:87607-87622. [PMID: 29152105 PMCID: PMC5675657 DOI: 10.18632/oncotarget.20999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 08/26/2017] [Indexed: 12/29/2022] Open
Abstract
Acute myeloid leukemia (AML) is a devastating illness which carries a very poor prognosis, with most patients living less than 18 months. Leukemia relapse may occur because current therapies eliminate proliferating leukemia cells but fail to eradicate quiescent leukemia-initiating cells (LICs) that can reinitiate the disease after a period of latency. While we demonstrated that p53 target gene Necdin maintains hematopoietic stem cell (HSC) quiescence, its roles in LIC quiescence and response to chemotherapy are unclear. In this study, we utilized two well-established murine models of human AML induced by MLL-AF9 or AML1-ETO9a to determine the role of Necdin in leukemogenesis. We found that loss of Necdin decreased the number of functional LICs and enhanced myeloid differentiation in vivo, leading to delayed development of leukemia induced by MLL-AF9. Importantly, Necdin null LICs expressing MLL-AF9 were less quiescent than wild-type LICs. Further, loss of Necdin enhanced the response of MLL-AF9+ leukemia cells to chemotherapy treatment, manifested by decreased viability and enhanced apoptosis. We observed decreased expression of Bcl2 and increased expression of p53 and its target gene Bax in Necdin null leukemia cells following chemotherapy treatment, indicating that p53-dependent apoptotic pathways may be activated in the absence of Necdin. In addition, we found that loss of Necdin decreased the engraftment of AML1-ETO9a+ hematopoietic stem and progenitor cells in transplantation assays. However, Necdin-deficiency did not affect the response of AML1-ETO9a+ hematopoietic cells to chemotherapy treatment. Thus, Necdin regulates leukemia-initiating cell quiescence and chemotherapy response in a context-dependent manner. Our findings suggest that pharmacological inhibition of Necdin may hold potential as a novel therapy for leukemia patients with MLL translocations.
Collapse
Affiliation(s)
- Chonghua Yao
- Department of Rheumatism, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Michihiro Kobayashi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sisi Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah C Nabinger
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rui Gao
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephen Z Liu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Takashi Asai
- Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Yan Liu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
32
|
Ju H, Lee S, Lee J, Ghil S. Necdin modulates osteogenic cell differentiation by regulating Dlx5 and MAGE-D1. Biochem Biophys Res Commun 2017; 489:109-115. [PMID: 28528976 DOI: 10.1016/j.bbrc.2017.05.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/17/2017] [Indexed: 02/05/2023]
Abstract
Osteoblasts originate from mesenchymal stem cells that also differentiate into adipocytes, myoblasts, chondrocytes and fibroblasts. Osteogenic differentiation involves diverse regulatory proteins, including transcription and growth factors. Neurally differentiated embryonal carcinoma-derived protein (Necdin) has been identified as a key regulator of cell differentiation in various tissues, including neuronal, adipose, and muscular tissues; although its role in bone tissue remains to be established. Here, we investigated the potential involvement of Necdin in osteogenic differentiation. Our experiments revealed high expression of Necdin during osteoblast differentiation. Moreover, both transient and stable expression of Necdin induced osteoblast-specific markers in an osteogenic cell line through formation of a complex with melanoma-associated antigen D1 (MAGE-D1) and distal-less Homeobox 5 (Dlx5) and Runx2 promoter activation. Necdin expression was further associated with suppression of both cell proliferation and death in osteoblasts. Our results suggest that Necdin plays roles in cellular differentiation, proliferation and death in bone tissue.
Collapse
Affiliation(s)
- Hyunhee Ju
- Department of Life Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Sangho Lee
- Department of Life Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Jinyong Lee
- Department of Life Science, Kyonggi University, Suwon 16227, Republic of Korea
| | - Sungho Ghil
- Department of Life Science, Kyonggi University, Suwon 16227, Republic of Korea.
| |
Collapse
|
33
|
Biechonski S, Yassin M, Milyavsky M. DNA-damage response in hematopoietic stem cells: an evolutionary trade-off between blood regeneration and leukemia suppression. Carcinogenesis 2017; 38:367-377. [PMID: 28334174 DOI: 10.1093/carcin/bgx002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 01/11/2017] [Indexed: 12/12/2022] Open
Abstract
Self-renewing and multipotent hematopoietic stem cells (HSCs) maintain lifelong hematopoiesis. Their enormous regenerative potential coupled with lifetime persistence in the body, in contrast with the Progenitors, demand tight control of HSCs genome stability. Indeed, failure to accurately repair DNA damage in HSCs is associated with bone marrow failure and accelerated leukemogenesis. Recent observations exposed remarkable differences in several DNA-damage response (DDR) aspects between HSCs and Progenitors, especially in their DNA-repair capacities and susceptibility to apoptosis. Human HSCs in comparison with Progenitors exhibit delayed DNA double-strand break rejoining, persistent DDR signaling activation, higher sensitivity to the cytotoxic effects of ionizing radiation and attenuated expression of DNA-repair genes. Importantly, the distinct DDR of HSCs was also documented in mouse models. Nevertheless, physiological significance and the molecular basis of the HSCs-specific DDR features are only partially understood. Taking radiation-induced DDR as a paradigm, this review will focus on the current advances in understanding the role of cell-intrinsic DDR regulators and the cellular microenvironment in balancing stemness with genome stability. Pre-leukemia HSCs and clonal hematopoiesis evolvement will be discussed as an evolutionary compromise between the need for lifelong blood regeneration and DDR. Uniquely for this review, we outline the differences in HSCs-related DDR as highlighted by various experimental systems and attempt to provide their critical analysis.
Collapse
Affiliation(s)
- Shahar Biechonski
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Muhammad Yassin
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
34
|
Kollek M, Müller A, Egle A, Erlacher M. Bcl-2 proteins in development, health, and disease of the hematopoietic system. FEBS J 2016; 283:2779-810. [DOI: 10.1111/febs.13683] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 01/29/2016] [Accepted: 02/12/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Matthias Kollek
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
- Faculty of Biology; University of Freiburg; Germany
| | - Alexandra Müller
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
| | - Alexander Egle
- Laboratory for Immunological and Molecular Cancer Research; 3rd Medical Department for Hematology; Paracelsus Private Medical University Hospital; Salzburg Austria
| | - Miriam Erlacher
- Division of Pediatric Hematology and Oncology; Department of Pediatrics and Adolescent Medicine; University Medical Center of Freiburg; Germany
| |
Collapse
|
35
|
Belle JI, Petrov JC, Langlais D, Robert F, Cencic R, Shen S, Pelletier J, Gros P, Nijnik A. Repression of p53-target gene Bbc3/PUMA by MYSM1 is essential for the survival of hematopoietic multipotent progenitors and contributes to stem cell maintenance. Cell Death Differ 2016; 23:759-75. [PMID: 26768662 PMCID: PMC4832099 DOI: 10.1038/cdd.2015.140] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 09/24/2015] [Accepted: 09/25/2015] [Indexed: 12/16/2022] Open
Abstract
p53 is a central mediator of cellular stress responses, and its precise regulation is essential for the normal progression of hematopoiesis. MYSM1 is an epigenetic regulator essential for the maintenance of hematopoietic stem cell (HSC) function, hematopoietic progenitor survival, and lymphocyte development. We recently demonstrated that all developmental and hematopoietic phenotypes of Mysm1 deficiency are p53-mediated and rescued in the Mysm1(-/-)p53(-/-) mouse model. However, the mechanisms triggering p53 activation in Mysm1(-/-) HSPCs, and the pathways downstream of p53 driving different aspects of the Mysm1(-/-) phenotype remain unknown. Here we show the transcriptional activation of p53 stress responses in Mysm1(-/-) HSPCs. Mechanistically, we find that the MYSM1 protein associates with p53 and colocalizes to promoters of classical p53-target genes Bbc3/PUMA (p53 upregulated modulator of apoptosis) and Cdkn1a/p21. Furthermore, it antagonizes their p53-driven expression by modulating local histone modifications (H3K27ac and H3K4me3) and p53 recruitment. Using double-knockout mouse models, we establish that PUMA, but not p21, is an important mediator of p53-driven Mysm1(-/-) hematopoietic dysfunction. Specifically, Mysm1(-/-)Puma(-/-) mice show full rescue of multipotent progenitor (MPP) viability, partial rescue of HSC quiescence and function, but persistent lymphopenia. Through transcriptome analysis of Mysm1(-/-)Puma(-/-) MPPs, we demonstrate strong upregulation of other p53-induced mediators of apoptosis and cell-cycle arrest. The full viability of Mysm1(-/-)Puma(-/-) MPPs, despite strong upregulation of many other pro-apoptotic mediators, establishes PUMA as the essential non-redundant effector of p53-induced MPP apoptosis. Furthermore, we identify potential mediators of p53-dependent but PUMA-independent Mysm1(-/-)hematopoietic deficiency phenotypes. Overall, our study provides novel insight into the cell-type-specific roles of p53 and its downstream effectors in hematopoiesis using unique models of p53 hyperactivity induced by endogenous stress. We conclude that MYSM1 is a critical negative regulator of p53 transcriptional programs in hematopoiesis, and that its repression of Bbc3/PUMA expression is essential for MPP survival, and partly contributes to maintaining HSC function.
Collapse
Affiliation(s)
- J I Belle
- Department of Physiology, McGill University, Montreal, QC, Canada.,Complex Traits Group, McGill University, Montreal, QC, Canada
| | - J C Petrov
- Department of Physiology, McGill University, Montreal, QC, Canada.,Complex Traits Group, McGill University, Montreal, QC, Canada
| | - D Langlais
- Complex Traits Group, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - F Robert
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - R Cencic
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - S Shen
- Department of Physiology, McGill University, Montreal, QC, Canada.,Complex Traits Group, McGill University, Montreal, QC, Canada
| | - J Pelletier
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - P Gros
- Complex Traits Group, McGill University, Montreal, QC, Canada.,Department of Biochemistry, McGill University, Montreal, QC, Canada.,The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| | - A Nijnik
- Department of Physiology, McGill University, Montreal, QC, Canada.,Complex Traits Group, McGill University, Montreal, QC, Canada
| |
Collapse
|
36
|
Yamashita M, Nitta E, Suda T. Regulation of hematopoietic stem cell integrity through p53 and its related factors. Ann N Y Acad Sci 2015; 1370:45-54. [DOI: 10.1111/nyas.12986] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/11/2015] [Accepted: 11/13/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Masayuki Yamashita
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology; School of Medicine, Keio University; Tokyo Japan
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Division of Hematology/Oncology; Department of Medicine, University of California San Francisco; San Francisco California
| | - Eriko Nitta
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology; School of Medicine, Keio University; Tokyo Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine; Chiba University; Chiba Japan
| | - Toshio Suda
- Department of Cell Differentiation, The Sakaguchi Laboratory of Developmental Biology; School of Medicine, Keio University; Tokyo Japan
- Cancer Science Institute; National University of Singapore; Singapore
- International Research Center for Medical Sciences; Kumamoto University; Kumamoto Japan
| |
Collapse
|
37
|
Ugarte F, Sousae R, Cinquin B, Martin EW, Krietsch J, Sanchez G, Inman M, Tsang H, Warr M, Passegué E, Larabell CA, Forsberg EC. Progressive Chromatin Condensation and H3K9 Methylation Regulate the Differentiation of Embryonic and Hematopoietic Stem Cells. Stem Cell Reports 2015; 5:728-740. [PMID: 26489895 PMCID: PMC4649257 DOI: 10.1016/j.stemcr.2015.09.009] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 01/09/2023] Open
Abstract
Epigenetic regulation serves as the basis for stem cell differentiation into distinct cell types, but it is unclear how global epigenetic changes are regulated during this process. Here, we tested the hypothesis that global chromatin organization affects the lineage potential of stem cells and that manipulation of chromatin dynamics influences stem cell function. Using nuclease sensitivity assays, we found a progressive decrease in chromatin digestion among pluripotent embryonic stem cells (ESCs), multipotent hematopoietic stem cells (HSCs), and mature hematopoietic cells. Quantitative high-resolution microscopy revealed that ESCs contain significantly more euchromatin than HSCs, with a further reduction in mature cells. Increased cellular maturation also led to heterochromatin localization to the nuclear periphery. Functionally, prevention of heterochromatin formation by inhibition of the histone methyltransferase G9A resulted in delayed HSC differentiation. Our results demonstrate global chromatin rearrangements during stem cell differentiation and that heterochromatin formation by H3K9 methylation regulates HSC differentiation.
Collapse
Affiliation(s)
- Fernando Ugarte
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Rebekah Sousae
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Bertrand Cinquin
- National Center for X-ray Tomography, UCSF, San Francisco, CA 94143, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Eric W Martin
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jana Krietsch
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gabriela Sanchez
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Margaux Inman
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Herman Tsang
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Matthew Warr
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Medicine Department, Hem/Onc Division, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Emmanuelle Passegué
- The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Medicine Department, Hem/Onc Division, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Carolyn A Larabell
- National Center for X-ray Tomography, UCSF, San Francisco, CA 94143, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - E Camilla Forsberg
- Institute for the Biology of Stem Cells, Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
38
|
Chang CH, Zhang M, Rajapakshe K, Coarfa C, Edwards D, Huang S, Rosen JM. Mammary Stem Cells and Tumor-Initiating Cells Are More Resistant to Apoptosis and Exhibit Increased DNA Repair Activity in Response to DNA Damage. Stem Cell Reports 2015; 5:378-91. [PMID: 26300228 PMCID: PMC4618454 DOI: 10.1016/j.stemcr.2015.07.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/05/2023] Open
Abstract
Adult stem cells and tumor-initiating cells (TICs) often employ different mechanisms of DNA damage response (DDR) as compared to other tissue cell types. However, little is known about how mammary stem cells (MaSCs) and mammary TICs respond to DNA damage. Using the mouse mammary gland and syngeneic p53-null tumors as models, we investigated the molecular and physiological consequences of DNA damage in wild-type MaSCs, p53-null MaSCs, and p53-null TICs. We showed that wild-type MaSCs and basal cells are more resistant to apoptosis and exhibit increased non-homologous end joining (NHEJ) activity. Loss of p53 in mammary epithelium affected both cell-cycle regulation and DNA repair efficiency. In p53-null tumors, we showed that TICs are more resistant to ionizing radiation (IR) due to decreased apoptosis, elevated NHEJ activity, and more-rapid DNA repair. These results have important implications for understanding DDR mechanisms involved in both tumorigenesis and therapy resistance. MaSCs are more resistant to apoptosis and exhibit increased NHEJ activity Loss of p53 in MECs impairs cell-cycle regulation and DNA repair efficiency TICs exhibit decreased apoptosis, increased DNA repair efficiency, and NHEJ activity TICs are highly proliferative and exhibit improper cell-cycle regulation after IR
Collapse
Affiliation(s)
- Chi-Hsuan Chang
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mei Zhang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dean Edwards
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shixia Huang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Integrative Molecular and Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Al Adhami H, Evano B, Le Digarcher A, Gueydan C, Dubois E, Parrinello H, Dantec C, Bouschet T, Varrault A, Journot L. A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation. Genome Res 2015; 25:353-67. [PMID: 25614607 PMCID: PMC4352888 DOI: 10.1101/gr.175919.114] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 12/08/2014] [Indexed: 11/24/2022]
Abstract
Genomic imprinting is an epigenetic mechanism that restrains the expression of ∼ 100 eutherian genes in a parent-of-origin-specific manner. The reason for this selective targeting of genes with seemingly disparate molecular functions is unclear. In the present work, we show that imprinted genes are coexpressed in a network that is regulated at the transition from proliferation to quiescence and differentiation during fibroblast cell cycle withdrawal, adipogenesis in vitro, and muscle regeneration in vivo. Imprinted gene regulation is not linked to alteration of DNA methylation or to perturbation of monoallelic, parent-of-origin-dependent expression. Overexpression and knockdown of imprinted gene expression alters the sensitivity of preadipocytes to contact inhibition and adipogenic differentiation. In silico and in cellulo experiments showed that the imprinted gene network includes biallelically expressed, nonimprinted genes. These control the extracellular matrix composition, cell adhesion, cell junction, and extracellular matrix-activated and growth factor-activated signaling. These observations show that imprinted genes share a common biological process that may account for their seemingly diverse roles in embryonic development, obesity, diabetes, muscle physiology, and neoplasm.
Collapse
Affiliation(s)
- Hala Al Adhami
- Institut de Genomique Fonctionnelle, Montpellier 34094, France; CNRS, UMR 5203, Montpellier 34094, France; INSERM, U661, Montpellier 34094, France; Faculté des Sciences, Université de Montpellier, Montpellier 34095, France
| | - Brendan Evano
- Institut de Genomique Fonctionnelle, Montpellier 34094, France; CNRS, UMR 5203, Montpellier 34094, France; INSERM, U661, Montpellier 34094, France; Faculté des Sciences, Université de Montpellier, Montpellier 34095, France
| | - Anne Le Digarcher
- Institut de Genomique Fonctionnelle, Montpellier 34094, France; CNRS, UMR 5203, Montpellier 34094, France; INSERM, U661, Montpellier 34094, France; Faculté des Sciences, Université de Montpellier, Montpellier 34095, France
| | - Charlotte Gueydan
- Institut de Genomique Fonctionnelle, Montpellier 34094, France; CNRS, UMR 5203, Montpellier 34094, France; INSERM, U661, Montpellier 34094, France; Faculté des Sciences, Université de Montpellier, Montpellier 34095, France
| | | | | | | | - Tristan Bouschet
- Institut de Genomique Fonctionnelle, Montpellier 34094, France; CNRS, UMR 5203, Montpellier 34094, France; INSERM, U661, Montpellier 34094, France; Faculté des Sciences, Université de Montpellier, Montpellier 34095, France
| | - Annie Varrault
- Institut de Genomique Fonctionnelle, Montpellier 34094, France; CNRS, UMR 5203, Montpellier 34094, France; INSERM, U661, Montpellier 34094, France; Faculté des Sciences, Université de Montpellier, Montpellier 34095, France
| | - Laurent Journot
- Institut de Genomique Fonctionnelle, Montpellier 34094, France; CNRS, UMR 5203, Montpellier 34094, France; INSERM, U661, Montpellier 34094, France; Faculté des Sciences, Université de Montpellier, Montpellier 34095, France; MGX-Montpellier GenomiX, Montpellier 34094, France
| |
Collapse
|
40
|
Nakamura-Ishizu A, Takizawa H, Suda T. The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development 2015; 141:4656-66. [PMID: 25468935 DOI: 10.1242/dev.106575] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue homeostasis requires the presence of multipotent adult stem cells that are capable of efficient self-renewal and differentiation; some of these have been shown to exist in a dormant, or quiescent, cell cycle state. Such quiescence has been proposed as a fundamental property of hematopoietic stem cells (HSCs) in the adult bone marrow, acting to protect HSCs from functional exhaustion and cellular insults to enable lifelong hematopoietic cell production. Recent studies have demonstrated that HSC quiescence is regulated by a complex network of cell-intrinsic and -extrinsic factors. In addition, detailed single-cell analyses and novel imaging techniques have identified functional heterogeneity within quiescent HSC populations and have begun to delineate the topological organization of quiescent HSCs. Here, we review the current methods available to measure quiescence in HSCs and discuss the roles of HSC quiescence and the various mechanisms by which HSC quiescence is maintained.
Collapse
Affiliation(s)
- Ayako Nakamura-Ishizu
- Department of Cell Differentiation, The Sakaguchi Laboratory, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan Cancer Science Institute, National University of Singapore, 14 Medical Drive MD6, Centre for Translational Medicine, 117599 Singapore
| | - Hitoshi Takizawa
- Division of Hematology, University Hospital Zurich, Raemistrasse 100, Zurich 8091, Switzerland
| | - Toshio Suda
- Department of Cell Differentiation, The Sakaguchi Laboratory, Keio University, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan Cancer Science Institute, National University of Singapore, 14 Medical Drive MD6, Centre for Translational Medicine, 117599 Singapore
| |
Collapse
|
41
|
MERIT40 deficiency expands hematopoietic stem cell pools by regulating thrombopoietin receptor signaling. Blood 2015; 125:1730-8. [PMID: 25636339 DOI: 10.1182/blood-2014-07-588145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hematopoietic stem cell (HSC) self-renewal and multilineage reconstitution are controlled by positive and negative signaling cues with perturbations leading to disease. Lnk is an essential signaling adaptor protein that dampens signaling by the cytokine thrombopoietin (Tpo) to limit HSC expansion. Here, we show that MERIT40 (Mediator of RAP80 Interactions and Targeting 40 kDa [M40]), a core subunit of an Lnk-associated Lys63 deubiquitinating (DUB) complex, attenuates HSC expansion. M40 deficiency increases the size of phenotypic and functional HSC pools. M40(-/-) HSCs are more resistant to cytoablative stress, and exhibit superior repopulating ability and self-renewal upon serial transplantation. M40(-/-) HSCs display increased quiescence and decelerated cell cycle kinetics accompanied by downregulation of gene sets associated with cell division. Mechanistically, M40 deficiency triggers hypersensitivity to Tpo stimulation and the stem cell phenotypes are abrogated on a background null for the Tpo receptor Mpl. These results establish M40-containing DUB complexes as novel HSC regulators of HSC expansion, implicate Lys63 ubiquitination in HSC signaling, and point to DUB-specific inhibitors as reagents to expand stem cell populations.
Collapse
|
42
|
Li X, Hughes SC, Wevrick R. Evaluation of melanoma antigen (MAGE) gene expression in human cancers using The Cancer Genome Atlas. Cancer Genet 2015; 208:25-34. [DOI: 10.1016/j.cancergen.2014.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 11/11/2014] [Accepted: 11/18/2014] [Indexed: 12/20/2022]
|
43
|
Nakagaki A, Osanai H, Kishino T. Imprinting analysis of the mouse chromosome 7C region in DNMT1-null embryos. Gene 2014; 553:63-8. [PMID: 25300248 DOI: 10.1016/j.gene.2014.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 07/02/2014] [Accepted: 10/05/2014] [Indexed: 02/06/2023]
Abstract
The mouse chromosome 7C, orthologous to the human 15q11-q13 has an imprinted domain, where most of the genes are expressed only from the paternal allele. The imprinted domain contains paternally expressed genes, Snurf/Snrpn, Ndn, Magel2, Mkrn3, and Frat3, C/D-box small nucleolar RNAs (snoRNAs), and the maternally expressed gene, Ube3a. Imprinted expression in this large (approximately 3-4 Mb) domain is coordinated by a bipartite cis-acting imprinting center (IC), located upstream of the Snurf/Snrpn gene. The molecular mechanism how IC regulates gene expression of the whole domain remains partially understood. Here we analyzed the relationship between imprinted gene expression and DNA methylation in the mouse chromosome 7C using DNA methyltransferase 1 (DNMT1)-null mutant embryos carrying Dnmt1(ps) alleles, which show global loss of DNA methylation and embryonic lethality. In the DNMT1-null embryos at embryonic day 9.5, the paternally expressed genes were biallelically expressed. Bisulfite DNA methylation analysis revealed loss of methylation on the maternal allele in the promoter regions of the genes. These results demonstrate that DNMT1 is necessary for monoallelic expression of the imprinted genes in the chromosome 7C domain, suggesting that DNA methylation in the secondary differentially methylated regions (DMRs), which are acquired during development serves primarily to control the imprinted expression from the maternal allele in the mouse chromosome 7C.
Collapse
Affiliation(s)
- Ayumi Nakagaki
- Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| | - Hanae Osanai
- Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| | - Tatsuya Kishino
- Division of Functional Genomics, Center for Frontier Life Sciences, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan.
| |
Collapse
|
44
|
Sharaby Y, Lahmi R, Amar O, Elbaz I, Lerer-Goldshtein T, Weiss AM, Appelbaum L, Tzur A. Gas2l3 is essential for brain morphogenesis and development. Dev Biol 2014; 394:305-13. [PMID: 25131197 DOI: 10.1016/j.ydbio.2014.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 07/30/2014] [Accepted: 08/04/2014] [Indexed: 11/19/2022]
Abstract
Growth arrest-specific 2-like 3 (Gas2l3) is a newly discovered cell cycle protein and a cytoskeleton orchestrator that binds both actin filament and microtubule networks. Studies of cultured mammalian cells established Gas2l3 as a regulator of the cell division process, in particular cytokinesis and cell abscission. Thus far, the role of Gas2l3 in vivo remains entirely unknown. In order to investigate Gas2l3 in developing vertebrates, we cloned the zebrafish gene. Spatiotemporal analysis of gas2l3 expression revealed a ubiquitous maternal transcript as well as a zygotic transcript primarily restricted to brain tissues. We next conducted a series of loss-of-function experiments, and searched for developmental anomalies at the end of the segmentation period. Our analysis revealed abnormal brain morphogenesis and ventricle formation in gas2l3 knockdown embryos. This signature phenotype could be rescued by elevated levels of gas2l3 RNA. At the tissue level, gas2l3 downregulation interferes with cell proliferation, suggesting that the cell cycle activities of Gas2l3 are essential for brain tissue homeostasis. Altogether, this study provides the first insight into the function of gas2l3 in vivo, demonstrating its essential role in brain development.
Collapse
Affiliation(s)
- Yaara Sharaby
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Roxane Lahmi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Omer Amar
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Idan Elbaz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tali Lerer-Goldshtein
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Aryeh M Weiss
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Appelbaum
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Amit Tzur
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
45
|
Salvatoni A, Squillace S, Calcaterra L. Long-term side effects of growth hormone treatment in children with Prader-Willi syndrome. Expert Rev Endocrinol Metab 2014; 9:369-375. [PMID: 30763996 DOI: 10.1586/17446651.2014.910110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The main motivations of growth hormone (GH) treatment of Prader-Willi syndrome (PWS) are the stimulation of growth and lean muscle mass. Furthermore GH therapy in Prader-Willi children seems to favorably affect their behavior and mental performances. It is still a matter of discussion whether GH therapy in PWS should be considered responsible for specific adverse events. The most significant of them are scoliosis and breathing disorders, the latter considered being responsible for some deaths, reported in children with PWS, mainly at the beginning of GH therapy. Obstructive sleep apnea was occasionally reported also in patients treated with GH for several years. The review reports and discusses the latest data related to side effects of long-term GH treatment in children with PWS.
Collapse
|
46
|
|
47
|
Chaurasia P, Gajzer DC, Schaniel C, D'Souza S, Hoffman R. Epigenetic reprogramming induces the expansion of cord blood stem cells. J Clin Invest 2014; 124:2378-95. [PMID: 24762436 DOI: 10.1172/jci70313] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cord blood (CB) cells that express CD34 have extensive hematopoietic capacity and rapidly divide ex vivo in the presence of cytokine combinations; however, many of these CB CD34+ cells lose their marrow-repopulating potential. To overcome this decline in function, we treated dividing CB CD34+ cells ex vivo with several histone deacetylase inhibitors (HDACIs). Treatment of CB CD34+ cells with the most active HDACI, valproic acid (VPA), following an initial 16-hour cytokine priming, increased the number of multipotent cells (CD34+CD90+) generated; however, the degree of expansion was substantially greater in the presence of both VPA and cytokines for a full 7 days. Treated CD34+ cells were characterized based on the upregulation of pluripotency genes, increased aldehyde dehydrogenase activity, and enhanced expression of CD90, c-Kit (CD117), integrin α6 (CD49f), and CXCR4 (CD184). Furthermore, siRNA-mediated inhibition of pluripotency gene expression reduced the generation of CD34+CD90+ cells by 89%. Compared with CB CD34+ cells, VPA-treated CD34+ cells produced a greater number of SCID-repopulating cells and established multilineage hematopoiesis in primary and secondary immune-deficient recipient mice. These data indicate that dividing CB CD34+ cells can be epigenetically reprogrammed by treatment with VPA so as to generate greater numbers of functional CB stem cells for use as transplantation grafts.
Collapse
|
48
|
Minamide R, Fujiwara K, Hasegawa K, Yoshikawa K. Antagonistic interplay between necdin and Bmi1 controls proliferation of neural precursor cells in the embryonic mouse neocortex. PLoS One 2014; 9:e84460. [PMID: 24392139 PMCID: PMC3879318 DOI: 10.1371/journal.pone.0084460] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 11/21/2013] [Indexed: 01/07/2023] Open
Abstract
Neural precursor cells (NPCs) in the neocortex exhibit a high proliferation capacity during early embryonic development and give rise to cortical projection neurons after maturation. Necdin, a mammal-specific MAGE (melanoma antigen) family protein that possesses anti-mitotic and pro-survival activities, is expressed abundantly in postmitotic neurons and moderately in tissue-specific stem cells or progenitors. Necdin interacts with E2F transcription factors and suppresses E2F1-dependent transcriptional activation of the cyclin-dependent kinase Cdk1 gene. Here we show that necdin serves as a suppressor of NPC proliferation in the embryonic neocortex. Necdin is moderately expressed in the ventricular zone of mouse embryonic neocortex, in which proliferative cell populations are significantly increased in necdin-null mice. In the neocortex of necdin-null embryos, expression of Cdk1 and Sox2, a stem cell marker, is significantly increased, whereas expression of p16, a cyclin-dependent kinase inhibitor, is markedly diminished. Cdk1 and p16 expression levels are also significantly increased and decreased, respectively, in primary NPCs prepared from necdin-null embryos. Intriguingly, necdin interacts directly with Bmi1, a Polycomb group protein that suppresses p16 expression and promotes NPC proliferation. In HEK293A cells transfected with luciferase reporter constructs, necdin relieves Bmi1-dependent repression of p16 promoter activity, whereas Bmi1 counteracts necdin-mediated repression of E2F1-dependent Cdk1 promoter activity. In lentivirus-infected primary NPCs, necdin overexpression increases p16 expression, suppresses Cdk1 expression, and inhibits NPC proliferation, whereas Bmi1 overexpression suppresses p16 expression, increases Cdk1 expression, and promotes NPC proliferation. Our data suggest that embryonic NPC proliferation in the neocortex is regulated by the antagonistic interplay between necdin and Bmi1.
Collapse
Affiliation(s)
- Ryohei Minamide
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kazushiro Fujiwara
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Koichi Hasegawa
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kazuaki Yoshikawa
- Laboratory of Regulation of Neuronal Development, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
49
|
Weiss CN, Ito K. DNA damage response, redox status and hematopoiesis. Blood Cells Mol Dis 2013; 52:12-8. [PMID: 24041596 DOI: 10.1016/j.bcmd.2013.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/06/2013] [Indexed: 12/15/2022]
Abstract
The ability of hematopoietic stem cells (HSCs) to self-renew and differentiate into progenitors is essential for homeostasis of the hematopoietic system. The longevity of HSCs makes them vulnerable to accumulating DNA damage, which may be leukemogenic or result in senescence and cell death. Additionally, the ability of HSCs to self-renew and differentiate allows DNA damage to spread throughout the hematologic system, leaving the organism vulnerable to disease. In this review we discuss cell fate decisions made in the face of DNA damage and other cellular stresses, and the role of reactive oxygen species in the long-term maintenance of HSCs and their DNA damage response.
Collapse
Affiliation(s)
- Cary N Weiss
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Departments of Cell Biology and Medicine, Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
50
|
Yamada T, Park CS, Lacorazza HD. Genetic control of quiescence in hematopoietic stem cells. Cell Cycle 2013; 12:2376-83. [PMID: 23839041 PMCID: PMC3841317 DOI: 10.4161/cc.25416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 01/08/2023] Open
Abstract
Cellular quiescence is a reversible cell cycle arrest that is poised to re-enter the cell cycle in response to a combination of cell-intrinsic factors and environmental cues. In hematopoietic stem cells, a coordinated balance between quiescence and differentiating proliferation ensures longevity and prevents both genetic damage and stem cell exhaustion. However, little is known about how all these processes are integrated at the molecular level. We will briefly review the environmental and intrinsic control of stem cell quiescence and discuss a new model that involves a protein-to-protein interaction between G0S2 and the phospho-nucleoprotein nucleolin in the cytosol.
Collapse
Affiliation(s)
- Takeshi Yamada
- Department of Pathology & Immunology; Baylor College of Medicine; Texas Children’s Hospital; Houston, TX USA
| | - Chun Shik Park
- Department of Pathology & Immunology; Baylor College of Medicine; Texas Children’s Hospital; Houston, TX USA
| | - H Daniel Lacorazza
- Department of Pathology & Immunology; Baylor College of Medicine; Texas Children’s Hospital; Houston, TX USA
| |
Collapse
|