1
|
Kovuru N, Mochizuki-Kashio M, Menna T, Jeffrey G, Hong Y, Me Yoon Y, Zhang Z, Kurre P. Deregulated protein homeostasis constrains fetal hematopoietic stem cell pool expansion in Fanconi anemia. Nat Commun 2024; 15:1852. [PMID: 38424108 PMCID: PMC10904799 DOI: 10.1038/s41467-024-46159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Demand-adjusted and cell type specific rates of protein synthesis represent an important safeguard for fate and function of long-term hematopoietic stem cells. Here, we identify increased protein synthesis rates in the fetal hematopoietic stem cell pool at the onset of hematopoietic failure in Fanconi Anemia, a prototypical DNA repair disorder that manifests with bone marrow failure. Mechanistically, the accumulation of misfolded proteins in Fancd2-/- fetal liver hematopoietic stem cells converges on endoplasmic reticulum stress, which in turn constrains midgestational expansion. Restoration of protein folding by the chemical chaperone tauroursodeoxycholic acid, a hydrophilic bile salt, prevents accumulation of unfolded proteins and rescues Fancd2-/- fetal liver long-term hematopoietic stem cell numbers. We find that proteostasis deregulation itself is driven by excess sterile inflammatory activity in hematopoietic and stromal cells within the fetal liver, and dampened Type I interferon signaling similarly restores fetal Fancd2-/- long-term hematopoietic stem cells to wild type-equivalent numbers. Our study reveals the origin and pathophysiological trigger that gives rise to Fanconi anemia hematopoietic stem cell pool deficits. More broadly, we show that fetal protein homeostasis serves as a physiological rheostat for hematopoietic stem cell fate and function.
Collapse
Affiliation(s)
- Narasaiah Kovuru
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Makiko Mochizuki-Kashio
- Department of Microscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan
| | - Theresa Menna
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Greer Jeffrey
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuning Hong
- La Trobe University, Department of Biochemistry and Chemistry, Melbourne, Australia
| | - Young Me Yoon
- Committee on Immunology, Graduate Program in Biosciences, University of Chicago, Chicago, IL, USA
| | - Zhe Zhang
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children's Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Dave A, Liu S, Riley JS, Bose S, Luks V, Berkowitz C, Menon P, Jung S, Li H, Kurre P, Peranteau WH. In utero hematopoietic cell transplantation leads to sustained engraftment in a mouse model of Fanconi anemia. Blood Adv 2024; 8:624-628. [PMID: 37906519 PMCID: PMC10838693 DOI: 10.1182/bloodadvances.2023010354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/18/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Affiliation(s)
- Apeksha Dave
- The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Suying Liu
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA
- Cell and Molecular Biology Graduate Training Program, University of Pennsylvania, Philadelphia, PA
| | - John S. Riley
- The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sourav Bose
- The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Valerie Luks
- The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Cara Berkowitz
- The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Pallavi Menon
- The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Seul Jung
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Haiying Li
- The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - William H. Peranteau
- The Center for Fetal Research, Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
3
|
Marion W, Koppe T, Chen CC, Wang D, Frenis K, Fierstein S, Sensharma P, Aumais O, Peters M, Ruiz-Torres S, Chihanga T, Boettcher S, Shimamura A, Bauer DE, Schlaeger T, Wells SI, Ebert BL, Starczynowski D, da Rocha EL, Rowe RG. RUNX1 mutations mitigate quiescence to promote transformation of hematopoietic progenitors in Fanconi anemia. Leukemia 2023; 37:1698-1708. [PMID: 37391485 PMCID: PMC11009868 DOI: 10.1038/s41375-023-01945-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 07/02/2023]
Abstract
Many inherited bone marrow failure syndromes (IBMFSs) present a high risk of transformation to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). During transformation of IBMFSs, hematopoietic stem and progenitor cells (HSPCs) with poor fitness gain ectopic, dysregulated self-renewal secondary to somatic mutations via undefined mechanisms. Here, in the context of the prototypical IBMFS Fanconi anemia (FA), we performed multiplexed gene editing of mutational hotspots in MDS-associated genes in human induced pluripotent stem cells (iPSCs) followed by hematopoietic differentiation. We observed aberrant self-renewal and impaired differentiation of HSPCs with enrichment of RUNX1 insertions and deletions (indels), generating a model of IBMFS-associated MDS. We observed that compared to the failure state, FA MDS cells show mutant RUNX1-mediated blunting of the G1/S cell cycle checkpoint that is normally activated in FA in response to DNA damage. RUNX1 indels also lead to activation of innate immune signaling, which stabilizes the homologous recombination (HR) effector BRCA1, and this pathway can be targeted to abrogate viability and restore sensitivity to genotoxins in FA MDS. Together, these studies develop a paradigm for modeling clonal evolution in IBMFSs, provide basic understanding of the pathogenesis of MDS, and uncover a therapeutic target in FA-associated MDS.
Collapse
Affiliation(s)
- William Marion
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Tiago Koppe
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Chun-Chin Chen
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dahai Wang
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Katie Frenis
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Sara Fierstein
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Prerana Sensharma
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Olivia Aumais
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | - Michael Peters
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
| | | | | | - Steffen Boettcher
- Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medical Oncology and Hematology, University of Zurich and University Hospital of Zurich, Zurich, Switzerland
| | - Akiko Shimamura
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel E Bauer
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Susanne I Wells
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Benjamin L Ebert
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Boston, MA, USA
| | - Daniel Starczynowski
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati Cancer Center, Cincinnati, OH, USA
| | | | - R Grant Rowe
- Department of Hematology-Oncology, Boston Children's Hospital, Boston, MA, USA.
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Mochizuki-Kashio M, Otsuki N, Fujiki K, Abdelhamd S, Kurre P, Grompe M, Iwama A, Saito K, Nakamura-Ishizu A. Replication stress increases mitochondrial metabolism and mitophagy in FANCD2 deficient fetal liver hematopoietic stem cells. Front Oncol 2023; 13:1108430. [PMID: 37007148 PMCID: PMC10061350 DOI: 10.3389/fonc.2023.1108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023] Open
Abstract
Fanconi Anemia (FA) is an inherited bone marrow (BM) failure disorder commonly diagnosed during school age. However, in murine models, disrupted function of FA genes leads to a much earlier decline in fetal liver hematopoietic stem cell (FL HSC) number that is associated with increased replication stress (RS). Recent reports have shown mitochondrial metabolism and clearance are essential for long-term BM HSC function. Intriguingly, impaired mitophagy has been reported in FA cells. We hypothesized that RS in FL HSC impacts mitochondrial metabolism to investigate fetal FA pathophysiology. Results show that experimentally induced RS in adult murine BM HSCs evoked a significant increase in mitochondrial metabolism and mitophagy. Reflecting the physiological RS during development in FA, increase mitochondria metabolism and mitophagy were observed in FANCD2-deficient FL HSCs, whereas BM HSCs from adult FANCD2-deficient mice exhibited a significant decrease in mitophagy. These data suggest that RS activates mitochondrial metabolism and mitophagy in HSC.
Collapse
Affiliation(s)
- Makiko Mochizuki-Kashio
- Department of Mieroscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan
| | - Noriko Otsuki
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Kota Fujiki
- Department of Hygiene and Fublic Health, Tokyo Women's Medical University, Tokyo, Japan
| | - Sherif Abdelhamd
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Peter Kurre
- Children's Hospital of Philadelphia, Comprehensive Bone Marrow Failure Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Markus Grompe
- Papé Family Pediatric Research Institute, Oregon Stem Cell Center, Oregon Health & Science University, Portland, OR, United States
| | - Atsushi Iwama
- Division of Stem Cell and Molecular Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Ayako Nakamura-Ishizu
- Department of Mieroscopic and Developmental Anatomy, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
5
|
Animal models of Fanconi anemia: A developmental and therapeutic perspective on a multifaceted disease. Semin Cell Dev Biol 2021; 113:113-131. [PMID: 33558144 DOI: 10.1016/j.semcdb.2020.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/17/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022]
Abstract
Fanconi anemia (FA) is a genetic disorder characterized by developmental abnormalities, progressive bone marrow failure, and increased susceptibility to cancer. FA animal models have been useful to understand the pathogenesis of the disease. Herein, we review FA developmental models that have been developed to simulate human FA, focusing on zebrafish and mouse models. We summarize the recapitulated phenotypes observed in these in vivo models including bone, gametogenesis and sterility defects, as well as marrow failure. We also discuss the relevance of aldehydes in pathogenesis of FA, emphasizing on hematopoietic defects. In addition, we provide a summary of potential therapeutic agents, such as aldehyde scavengers, TGFβ inhibitors, and gene therapy for FA. The diversity of FA animal models makes them useful for understanding FA etiology and allows the discovery of new therapies.
Collapse
|
6
|
Nicoletti E, Rao G, Bueren JA, Río P, Navarro S, Surrallés J, Choi G, Schwartz JD. Mosaicism in Fanconi anemia: concise review and evaluation of published cases with focus on clinical course of blood count normalization. Ann Hematol 2020; 99:913-924. [PMID: 32065290 PMCID: PMC7196946 DOI: 10.1007/s00277-020-03954-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/06/2020] [Indexed: 11/30/2022]
Abstract
Fanconi anemia (FA) is a DNA repair disorder resulting from mutations in genes encoding for FA DNA repair complex components and is characterized by variable congenital abnormalities, bone marrow failure (BMF), and high incidences of malignancies. FA mosaicism arises from reversion or other compensatory mutations in hematopoietic cells and may be associated with BMF reversal and decreased blood cell sensitivity to DNA-damaging agents (clastogens); this sensitivity is a phenotypic and diagnostic hallmark of FA. Uncertainty regarding the clinical significance of FA mosaicism persists; in some cases, patients have survived multiple decades without BMF or hematologic malignancy, and in others hematologic failure occurred despite the presence of clastogen-resistant cell populations. Assessment of mosaicism is further complicated because clinical evaluation is frequently based on clastogen resistance in lymphocytes, which may arise from reversion events both in lymphoid-specific lineages and in more pluripotent hematopoietic stem/progenitor cells (HSPCs). In this review, we describe diagnostic methods and outcomes in published mosaicism series, including the substantial intervals (1-6 years) over which blood counts normalized, and the relatively favorable clinical course in cases where clastogen resistance was demonstrated in bone marrow progenitors. We also analyzed published FA mosaic cases with emphasis on long-term clinical outcomes when blood count normalization was identified. Blood count normalization in FA mosaicism likely arises from reversion events in long-term primitive HSPCs and is associated with low incidences of BMF or hematologic malignancy. These observations have ramifications for current investigational therapeutic programs in FA intended to enable gene correction in long-term repopulating HSPCs.
Collapse
Affiliation(s)
| | - Gayatri Rao
- Rocket Pharmaceuticals, Inc., New York, NY, USA
| | - Juan A Bueren
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Paula Río
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Susana Navarro
- Hematopoietic Innovative Therapies Division, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Instituto de Investigaciones Sanitarias Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Jordi Surrallés
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
- Genome Instability and DNA Repair Syndromes Group, Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
- Servicio de Genética e Instituto de Investigaciones Biomédicas del Hospital de Sant Pau, Barcelona, Spain
| | - Grace Choi
- Rocket Pharmaceuticals, Inc., New York, NY, USA
| | | |
Collapse
|
7
|
Mulderrig L, Garaycoechea JI. XPF-ERCC1 protects liver, kidney and blood homeostasis outside the canonical excision repair pathways. PLoS Genet 2020; 16:e1008555. [PMID: 32271760 PMCID: PMC7144963 DOI: 10.1371/journal.pgen.1008555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/05/2019] [Indexed: 01/02/2023] Open
Abstract
Loss of the XPF-ERCC1 endonuclease causes a dramatic phenotype that results in progeroid features associated with liver, kidney and bone marrow dysfunction. As this nuclease is involved in multiple DNA repair transactions, it is plausible that this severe phenotype results from the simultaneous inactivation of both branches of nucleotide excision repair (GG- and TC-NER) and Fanconi anaemia (FA) inter-strand crosslink (ICL) repair. Here we use genetics in human cells and mice to investigate the interaction between the canonical NER and ICL repair pathways and, subsequently, how their joint inactivation phenotypically overlaps with XPF-ERCC1 deficiency. We find that cells lacking TC-NER are sensitive to crosslinking agents and that there is a genetic interaction between NER and FA in the repair of certain endogenous crosslinking agents. However, joint inactivation of GG-NER, TC-NER and FA crosslink repair cannot account for the hypersensitivity of XPF-deficient cells to classical crosslinking agents nor is it sufficient to explain the extreme phenotype of Ercc1-/- mice. These analyses indicate that XPF-ERCC1 has important functions outside of its central role in NER and FA crosslink repair which are required to prevent endogenous DNA damage. Failure to resolve such damage leads to loss of tissue homeostasis in mice and humans.
Collapse
Affiliation(s)
- Lee Mulderrig
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge, United Kingdom
| | - Juan I. Garaycoechea
- Hubrecht Institute–KNAW, University Medical Center Utrecht, Uppsalalaan, CT Utrecht, Netherlands
| |
Collapse
|
8
|
Mani C, Reddy PH, Palle K. DNA repair fidelity in stem cell maintenance, health, and disease. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165444. [PMID: 30953688 DOI: 10.1016/j.bbadis.2019.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 12/13/2022]
Abstract
Stem cells are a sub population of cell types that form the foundation of our body, and have the potential to replicate, replenish and repair limitlessly to maintain the tissue and organ homeostasis. Increased lifetime and frequent replication set them vulnerable for both exogenous and endogenous agents-induced DNA damage compared to normal cells. To counter these damages and preserve genetic information, stem cells have evolved with various DNA damage response and repair mechanisms. Furthermore, upon experiencing irreparable DNA damage, stem cells mostly prefer early senescence or apoptosis to avoid the accumulation of damages. However, the failure of these mechanisms leads to various diseases, including cancer. Especially, given the importance of stem cells in early development, DNA repair deficiency in stem cells leads to various disabilities like developmental delay, premature aging, sensitivity to DNA damaging agents, degenerative diseases, etc. In this review, we have summarized the recent update about how DNA repair mechanisms are regulated in stem cells and their association with disease progression and pathogenesis.
Collapse
Affiliation(s)
- Chinnadurai Mani
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, United States of America
| | - P Hemachandra Reddy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, United States of America
| | - Komaraiah Palle
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Centre, Lubbock, TX 79430, United States of America.
| |
Collapse
|
9
|
Domenech C, Maillard L, Rousseau A, Guidez F, Petit L, Pla M, Clay D, Guimiot F, Sanfilippo S, Jacques S, de la Grange P, Robil N, Soulier J, Souyri M. Studies in an Early Development Window Unveils a Severe HSC Defect in both Murine and Human Fanconi Anemia. Stem Cell Reports 2018; 11:1075-1091. [PMID: 30449320 PMCID: PMC6234961 DOI: 10.1016/j.stemcr.2018.10.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 01/05/2023] Open
Abstract
Fanconi anemia (FA) causes bone marrow failure early during childhood, and recent studies indicate that a hematopoietic defect could begin in utero. We performed a unique kinetics study of hematopoiesis in Fancg-/- mouse embryos, between the early embryonic day 11.5 (E11.5) to E12.5 developmental window (when the highest level of hematopoietic stem cells [HSC] amplification takes place) and E14.5. This study reveals a deep HSC defect with exhaustion of proliferative and self-renewal capacities very early during development, together with severe FA clinical and biological manifestations, which are mitigated at E14.5 due to compensatory mechanisms that help to ensure survival of Fancg-/- embryos. It also reports that a deep HSC defect is also observed during human FA development, and that human FA fetal liver (FL) HSCs present a transcriptome profile similar to that of mouse E12.5 Fancg-/- FL HSCs. Altogether, our results highlight that early mouse FL could represent a good alternative model for studying Fanconi pathology.
Collapse
Affiliation(s)
- Carine Domenech
- CNRS UMR7622/IBPS, Paris, France; Université Pierre et Marie Curie, Sorbonne Universités, Paris, France; INSERM UMR_S1131, Hôpital Saint Louis, Paris, France; IUH, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Loïc Maillard
- CNRS UMR7622/IBPS, Paris, France; Université Pierre et Marie Curie, Sorbonne Universités, Paris, France; INSERM UMR_S1131, Hôpital Saint Louis, Paris, France; IUH, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alix Rousseau
- IUH, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; INSERM U944/CNRS UMR7212, Hôpital Saint Louis, Paris, France
| | - Fabien Guidez
- INSERM UMR_S1131, Hôpital Saint Louis, Paris, France; IUH, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Laurence Petit
- CNRS UMR7622/IBPS, Paris, France; Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Marika Pla
- INSERM UMR_S1131, Hôpital Saint Louis, Paris, France; IUH, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Denis Clay
- INSERM U972, Hôpital Paul Brousse, Villejuif, France; Plateforme de cytométrie, UMS33, Université Paris Sud, Villejuif, France
| | - Fabien Guimiot
- Service de Foetopathologie, Hôpital Robert Debré, Paris, France
| | - Sandra Sanfilippo
- CNRS UMR7622/IBPS, Paris, France; Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | | | | | | | - Jean Soulier
- IUH, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; INSERM U944/CNRS UMR7212, Hôpital Saint Louis, Paris, France
| | - Michèle Souyri
- CNRS UMR7622/IBPS, Paris, France; Université Pierre et Marie Curie, Sorbonne Universités, Paris, France; INSERM UMR_S1131, Hôpital Saint Louis, Paris, France; IUH, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
10
|
Abstract
Fanconi anemia is an inherited disease characterized by genomic instability, hypersensitivity to DNA cross-linking agents, bone marrow failure, short stature, skeletal abnormalities, and a high relative risk of myeloid leukemia and epithelial malignancies. The 21 Fanconi anemia genes encode proteins involved in multiple nuclear biochemical pathways that effect DNA interstrand crosslink repair. In the past, bone marrow failure was attributed solely to the failure of stem cells to repair DNA. Recently, non-canonical functions of many of the Fanconi anemia proteins have been described, including modulating responses to oxidative stress, viral infection, and inflammation as well as facilitating mitophagic responses and enhancing signals that promote stem cell function and survival. Some of these functions take place in non-nuclear sites and do not depend on the DNA damage response functions of the proteins. Dysfunctions of the canonical and non-canonical pathways that drive stem cell exhaustion and neoplastic clonal selection are reviewed, and the potential therapeutic importance of fully investigating the scope and interdependences of the canonical and non-canonical pathways is emphasized.
Collapse
Affiliation(s)
- Grover Bagby
- Departments of Medicine and Molecular and Medical Genetics, Division of Hematology and Medical Oncology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
11
|
|
12
|
Giri N, Reed HD, Stratton P, Savage SA, Alter BP. Pregnancy outcomes in mothers of offspring with inherited bone marrow failure syndromes. Pediatr Blood Cancer 2018; 65:10.1002/pbc.26757. [PMID: 28801981 PMCID: PMC7408308 DOI: 10.1002/pbc.26757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 01/31/2023]
Abstract
BACKGROUND Children with inherited bone marrow failure syndromes (IBMFSs) may be symptomatic in utero, resulting in maternal and fetal problems during the pregnancy. Subsequent pregnancies by their mothers should be considered "high risk". METHODS We retrospectively analyzed outcomes of 575 pregnancies in 165 unaffected mothers of offspring with Fanconi anemia (FA), dyskeratosis congenita (DC), Diamond-Blackfan anemia (DBA), and Shwachman-Diamond syndrome (SDS) for events noted during pregnancy, labor, and delivery. We compared outcomes of pregnancies with affected and unaffected offspring within each group of mothers and with the general population. RESULTS The rates of miscarriage (12-20%), elective abortion (5-10%), and live birth (68-78%) among mothers of all IBMFS groups were similar and comparable with general population rates but recurrent miscarriages (≥2) were significantly more common in mothers of offspring with DBA and SDS. Offspring with FA were more frequently born small for gestational age (SGA) than unaffected babies (39% vs. 4%) and had fetal malformations (46%) with 18% having three or more, often necessitating early delivery and surgery; offspring with DC had higher rates of SGA (39% vs. 8%) and fetal distress (26% vs. 3%); and offspring with DBA had fetal hypoxia (19% vs. 1%) leading to preterm and emergency cesarean deliveries (26% vs. 6%). Offspring with early-onset severe phenotypes had the most prenatal and peripartum adverse events. CONCLUSION We identified the high-risk nature of pregnancies in mothers with IBMFS-affected fetuses, suggesting the need for prepregnancy counseling and monitoring of subsequent pregnancies by high-risk fetal-maternal specialists.
Collapse
Affiliation(s)
- Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Helen D Reed
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
- Baylor College of Medicine, Houston, TX
| | - Pamela Stratton
- Office of the Clinical Director, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| | - Blanche P Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD
| |
Collapse
|
13
|
Kurre P. Hematopoietic development: a gap in our understanding of inherited bone marrow failure. Exp Hematol 2017; 59:1-8. [PMID: 29248612 DOI: 10.1016/j.exphem.2017.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/26/2017] [Accepted: 12/07/2017] [Indexed: 12/31/2022]
Abstract
Inherited bone marrow failure syndromes (IBMFS) represent a heterogeneous group of multisystem disorders that typically present with cytopenia in early childhood. Efforts to understand the underlying hematopoietic stem cell (HSC) losses have generally focused on postnatal hematopoiesis. However, reflecting the role of many of the involved genes in core cellular functions and the diverse nonhematologic abnormalities seen in patients at birth, studies have begun to explore IBMFS manifestations during fetal development. Here, I consider the current evidence for fetal deficits in the HSC pool and highlight emerging concepts regarding the origins and unique pathophysiology of hematopoietic failure in IBMFS.
Collapse
Affiliation(s)
- Peter Kurre
- Department of Pediatrics, Papé Family Pediatric Research Institute, Pediatric Blood & Cancer Biology Program, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
14
|
Botthof JG, Bielczyk-Maczyńska E, Ferreira L, Cvejic A. Loss of the homologous recombination gene rad51 leads to Fanconi anemia-like symptoms in zebrafish. Proc Natl Acad Sci U S A 2017; 114:E4452-E4461. [PMID: 28512217 PMCID: PMC5465903 DOI: 10.1073/pnas.1620631114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RAD51 is an indispensable homologous recombination protein, necessary for strand invasion and crossing over. It has recently been designated as a Fanconi anemia (FA) gene, following the discovery of two patients carrying dominant-negative mutations. FA is a hereditary DNA-repair disorder characterized by various congenital abnormalities, progressive bone marrow failure, and cancer predisposition. In this report, we describe a viable vertebrate model of RAD51 loss. Zebrafish rad51 loss-of-function mutants developed key features of FA, including hypocellular kidney marrow, sensitivity to cross-linking agents, and decreased size. We show that some of these symptoms stem from both decreased proliferation and increased apoptosis of embryonic hematopoietic stem and progenitor cells. Comutation of p53 was able to rescue the hematopoietic defects seen in the single mutants, but led to tumor development. We further demonstrate that prolonged inflammatory stress can exacerbate the hematological impairment, leading to an additional decrease in kidney marrow cell numbers. These findings strengthen the assignment of RAD51 as a Fanconi gene and provide more evidence for the notion that aberrant p53 signaling during embryogenesis leads to the hematological defects seen later in life in FA. Further research on this zebrafish FA model will lead to a deeper understanding of the molecular basis of bone marrow failure in FA and the cellular role of RAD51.
Collapse
Affiliation(s)
- Jan Gregor Botthof
- Department of Haematology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - Ewa Bielczyk-Maczyńska
- Department of Haematology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- National Health Service Blood and Transplant, Cambridge CB2 0PT, United Kingdom
| | - Lauren Ferreira
- Department of Haematology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| | - Ana Cvejic
- Department of Haematology, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0XY, United Kingdom;
- Wellcome Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, United Kingdom
| |
Collapse
|
15
|
Zhou Y, He Y, Xing W, Zhang P, Shi H, Chen S, Shi J, Bai J, Rhodes SD, Zhang F, Yuan J, Yang X, Zhu X, Li Y, Hanenberg H, Xu M, Robertson KA, Yuan W, Nalepa G, Cheng T, Clapp DW, Yang FC. An abnormal bone marrow microenvironment contributes to hematopoietic dysfunction in Fanconi anemia. Haematologica 2017; 102:1017-1027. [PMID: 28341737 PMCID: PMC5451333 DOI: 10.3324/haematol.2016.158717] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 03/20/2017] [Indexed: 01/04/2023] Open
Abstract
Fanconi anemia is a complex heterogeneous genetic disorder with a high incidence of bone marrow failure, clonal evolution to acute myeloid leukemia and mesenchymal-derived congenital anomalies. Increasing evidence in Fanconi anemia and other genetic disorders points towards an interdependence of skeletal and hematopoietic development, yet the impact of the marrow microenvironment in the pathogenesis of the bone marrow failure in Fanconi anemia remains unclear. Here we demonstrated that mice with double knockout of both Fancc and Fancg genes had decreased bone formation at least partially due to impaired osteoblast differentiation from mesenchymal stem/progenitor cells. Mesenchymal stem/progenitor cells from the double knockout mice showed impaired hematopoietic supportive activity. Mesenchymal stem/progenitor cells of patients with Fanconi anemia exhibited similar cellular deficits, including increased senescence, reduced proliferation, impaired osteoblast differentiation and defective hematopoietic stem/progenitor cell supportive activity. Collectively, these studies provide unique insights into the physiological significance of mesenchymal stem/progenitor cells in supporting the marrow microenvironment, which is potentially of broad relevance in hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Yuan Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yongzheng He
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wen Xing
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peng Zhang
- Sylvester Comprehensive Cancer Center, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hui Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Sylvester Comprehensive Cancer Center, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shi Chen
- Sylvester Comprehensive Cancer Center, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jie Bai
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Steven D Rhodes
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fengqui Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jin Yuan
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xianlin Yang
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yan Li
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Helmut Hanenberg
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - Mingjiang Xu
- Sylvester Comprehensive Cancer Center, Miami, FL, USA.,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kent A Robertson
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Grzegorz Nalepa
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA.,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - D Wade Clapp
- Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA .,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Feng-Chun Yang
- Sylvester Comprehensive Cancer Center, Miami, FL, USA .,Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
16
|
Impairment of fetal hematopoietic stem cell function in the absence of Fancd2. Exp Hematol 2016; 48:79-86. [PMID: 27915139 DOI: 10.1016/j.exphem.2016.11.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/23/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022]
Abstract
Fanconi anemia (FA) results from mutations in the genes necessary for DNA damage repair and often leads to progressive bone marrow failure. Although the exhaustion of the bone marrow leads to cytopenias in FA patients as they age, evidence from human FA and mouse model fetal livers suggests that hematopoietic defects originate in utero, which may lead to deficient seeding of the bone marrow. To address this possibility, we examined the consequences of loss of Fancd2, a central component of the FA pathway. Examination of embryonic day 14.5 (E14.5) Fancd2 knockout (KO) fetal livers showed a decrease in total cellularity and specific declines in long-term and short-term hematopoietic stem cell (LT-HSC and ST-HSC, respectively) numbers. Fancd2 KO fetal liver cells display similar functional defects to Fancd2 adult bone marrow cells, including reduced colony-forming units, increased mitomycin C sensitivity, increased LT-HSC apoptosis, and heavily impaired competitive repopulation, implying that these defects are intrinsic to the fetal liver and are not dependent on the accumulation of DNA damage during aging. Telomere shortening, an aging-related mechanism proposed to contribute to HSC apoptosis and bone marrow failure in FA, was not observed in Fancd2 KO fetal livers. In summary, loss of Fancd2 yields significant defects to fetal liver hematopoiesis, particularly the HSC population, which mimics key phenotypes from adult Fancd2 KO bone marrow independently of aging-accrued DNA damage.
Collapse
|
17
|
Metformin improves defective hematopoiesis and delays tumor formation in Fanconi anemia mice. Blood 2016; 128:2774-2784. [PMID: 27756748 DOI: 10.1182/blood-2015-11-683490] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Fanconi anemia (FA) is an inherited bone marrow failure disorder associated with a high incidence of leukemia and solid tumors. Bone marrow transplantation is currently the only curative therapy for the hematopoietic complications of this disorder. However, long-term morbidity and mortality remain very high, and new therapeutics are badly needed. Here we show that the widely used diabetes drug metformin improves hematopoiesis and delays tumor formation in Fancd2-/- mice. Metformin is the first compound reported to improve both of these FA phenotypes. Importantly, the beneficial effects are specific to FA mice and are not seen in the wild-type controls. In this preclinical model of FA, metformin outperformed the current standard of care, oxymetholone, by improving peripheral blood counts in Fancd2-/- mice significantly faster. Metformin increased the size of the hematopoietic stem cell compartment and enhanced quiescence in hematopoietic stem and progenitor cells. In tumor-prone Fancd2-/-Trp53+/- mice, metformin delayed the onset of tumors and significantly extended the tumor-free survival time. In addition, we found that metformin and the structurally related compound aminoguanidine reduced DNA damage and ameliorated spontaneous chromosome breakage and radials in human FA patient-derived cells. Our results also indicate that aldehyde detoxification might be one of the mechanisms by which metformin reduces DNA damage in FA cells.
Collapse
|
18
|
Yoon YM, Storm KJ, Kamimae-Lanning AN, Goloviznina NA, Kurre P. Endogenous DNA Damage Leads to p53-Independent Deficits in Replicative Fitness in Fetal Murine Fancd2 -/- Hematopoietic Stem and Progenitor Cells. Stem Cell Reports 2016; 7:840-853. [PMID: 27720904 PMCID: PMC5106485 DOI: 10.1016/j.stemcr.2016.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 11/30/2022] Open
Abstract
Our mechanistic understanding of Fanconi anemia (FA) pathway function in hematopoietic stem and progenitor cells (HSPCs) owes much to their role in experimentally induced DNA crosslink lesion repair. In bone marrow HSPCs, unresolved stress confers p53-dependent apoptosis and progressive cell attrition. The role of FA proteins during hematopoietic development, in the face of physiological replicative demand, remains elusive. Here, we reveal a fetal HSPC pool in Fancd2−/− mice with compromised clonogenicity and repopulation. Without experimental manipulation, fetal Fancd2−/− HSPCs spontaneously accumulate DNA strand breaks and RAD51 foci, associated with a broad transcriptional DNA-damage response, and constitutive activation of ATM as well as p38 stress kinase. Remarkably, the unresolved stress during rapid HSPC pool expansion does not trigger p53 activation and apoptosis; rather, it constrains proliferation. Collectively our studies point to a role for the FA pathway during hematopoietic development and provide a new model for studying the physiological function of FA proteins. Fancd2−/− fetal HSPCs show spontaneous deficits on replicative stress in development Fancd2−/− FL HSPCs show activated DNA-damage responses and strand-break accumulation Fancd2−/− FL deficits occur without apoptosis and independent of p53 activation MAPK (p38) inhibition rescues Fancd2−/− progenitor defects in vitro and in vivo
Collapse
Affiliation(s)
- Young Me Yoon
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA; Pediatric Cancer Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kelsie J Storm
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA; Pediatric Cancer Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ashley N Kamimae-Lanning
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA; Pediatric Cancer Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Natalya A Goloviznina
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA; Pediatric Cancer Biology Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter Kurre
- Department of Pediatrics, Oregon Health & Science University, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR 97239, USA; Pediatric Cancer Biology Program, Oregon Health & Science University, Portland, OR 97239, USA; OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
19
|
Kaschutnig P, Bogeska R, Walter D, Lier A, Huntscha S, Milsom MD. The Fanconi anemia pathway is required for efficient repair of stress-induced DNA damage in haematopoietic stem cells. Cell Cycle 2015; 14:2734-42. [PMID: 26178207 DOI: 10.1080/15384101.2015.1068474] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Within regenerating tissues, aging is characterized by a progressive general deterioration of organ function, thought to be driven by the gradual depletion of functional adult stem cells. Although there are probably multifactorial mechanisms that result in compromized stem cell functionality with advancing age, the accumulation of DNA damage within the stem cell compartment is likely to make a major contribution to this process. However, the physiologic source of DNA damage within the different tissue specific stem cell compartments remains to be determined, as does the fate of stem cells exposed to such damage. Using the haematopoietic system as a model organ, we have recently shown that certain forms of physiologic stress, such as infection-associated inflammation and extensive blood loss, leads to the induction of biologically relevant levels of DNA damage in haematopoietic stem cells (HSCs) by dramatically increasing the proliferative index of this normally quiescent cell population. (1) We were also able to demonstrate that such stress-associated DNA damage was sufficient to completely deplete HSCs and promote severe aplastic anemia (SAA) in the Fanconi anemia (FA) knockout mouse model, which has compromized replication-associated DNA repair. In this "Extra Views" article, we extend this previous work to show that FA mice do not spontaneously develop a haematopoietic phenotype consistent with SAA, even at extreme old age. This suggests that HSC quiescence restricts the acquisition of DNA damage during aging and preserves the functional integrity of the stem cell pool. In line with this hypothesis, we provide an extended time course analysis of the response of FA knockout mice to chronic inflammatory stress and show that enforced HSC proliferation leads to a highly penetrant SAA phenotype, which closely resembles the progression of the disease in FA patients.
Collapse
Affiliation(s)
- Paul Kaschutnig
- a Deutsches Krebsforschungszentrum; Division of Stem Cells and Cancer; Experimental Hematology Group ; Heidelberg , Germany
| | | | | | | | | | | |
Collapse
|
20
|
Suzuki NM, Niwa A, Yabe M, Hira A, Okada C, Amano N, Watanabe A, Watanabe KI, Heike T, Takata M, Nakahata T, Saito MK. Pluripotent cell models of fanconi anemia identify the early pathological defect in human hemoangiogenic progenitors. Stem Cells Transl Med 2015; 4:333-8. [PMID: 25762002 DOI: 10.5966/sctm.2013-0172] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Fanconi anemia (FA) is a disorder of genomic instability characterized by progressive bone marrow failure (BMF), developmental abnormalities, and an increased susceptibility to cancer. Although various consequences in hematopoietic stem/progenitor cells have been attributed to FA-BMF, the quest to identify the initial pathological event is still ongoing. To address this issue, we established induced pluripotent stem cells (iPSCs) from fibroblasts of six patients with FA and FANCA mutations. An improved reprogramming method yielded iPSC-like colonies from all patients, and iPSC clones were propagated from two patients. Quantitative evaluation of the differentiation ability demonstrated that the differentiation propensity toward the hematopoietic and endothelial lineages is already defective in early hemoangiogenic progenitors. The expression levels of critical transcription factors were significantly downregulated in these progenitors. These data indicate that the hematopoietic consequences in FA patients originate from the early hematopoietic stage and highlight the potential usefulness of iPSC technology for elucidating the pathogenesis of FA-BMF.
Collapse
Affiliation(s)
| | | | - Miharu Yabe
- Department of Cell Transplantation and Regenerative Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Asuka Hira
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Chihiro Okada
- Reprogramming Science, Center for Induced Pluripotent Stem Cell Research and Application, and Mitsubishi Space Software Co., Ltd., Amagasaki, Japan
| | - Naoki Amano
- Reprogramming Science, Center for Induced Pluripotent Stem Cell Research and Application, and
| | - Akira Watanabe
- Reprogramming Science, Center for Induced Pluripotent Stem Cell Research and Application, and
| | - Ken-Ichiro Watanabe
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Toshio Heike
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | | | | |
Collapse
|
21
|
Abstract
Fanconi anemia (FA) represents a paradigm of rare genetic diseases, where the quest for cause and cure has led to seminal discoveries in cancer biology. Although a total of 16 FA genes have been identified thus far, the biochemical function of many of the FA proteins remains to be elucidated. FA is rare, yet the fact that 5 FA genes are in fact familial breast cancer genes and FA gene mutations are found frequently in sporadic cancers suggest wider applicability in hematopoiesis and oncology. Establishing the interaction network involving the FA proteins and their associated partners has revealed an intersection of FA with several DNA repair pathways, including homologous recombination, DNA mismatch repair, nucleotide excision repair, and translesion DNA synthesis. Importantly, recent studies have shown a major involvement of the FA pathway in the tolerance of reactive aldehydes. Moreover, despite improved outcomes in stem cell transplantation in the treatment of FA, many challenges remain in patient care.
Collapse
|
22
|
Oberbeck N, Langevin F, King G, de Wind N, Crossan GP, Patel KJ. Maternal aldehyde elimination during pregnancy preserves the fetal genome. Mol Cell 2014; 55:807-817. [PMID: 25155611 PMCID: PMC4175174 DOI: 10.1016/j.molcel.2014.07.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/27/2014] [Accepted: 07/15/2014] [Indexed: 01/02/2023]
Abstract
Maternal metabolism provides essential nutrients to enable embryonic development. However, both mother and embryo produce reactive metabolites that can damage DNA. Here we discover how the embryo is protected from these genotoxins. Pregnant mice lacking Aldh2, a key enzyme that detoxifies reactive aldehydes, cannot support the development of embryos lacking the Fanconi anemia DNA repair pathway gene Fanca. Remarkably, transferring Aldh2(-/-)Fanca(-/-) embryos into wild-type mothers suppresses developmental defects and rescues embryonic lethality. These rescued neonates have severely depleted hematopoietic stem and progenitor cells, indicating that despite intact maternal aldehyde catabolism, fetal Aldh2 is essential for hematopoiesis. Hence, maternal and fetal aldehyde detoxification protects the developing embryo from DNA damage. Failure of this genome preservation mechanism might explain why birth defects and bone marrow failure occur in Fanconi anemia, and may have implications for fetal well-being in the many women in Southeast Asia that are genetically deficient in ALDH2.
Collapse
Affiliation(s)
- Nina Oberbeck
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Frédéric Langevin
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Gareth King
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Niels de Wind
- Department of Toxicogenetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, the Netherlands
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Ketan J Patel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Department of Medicine, Level 5, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK.
| |
Collapse
|
23
|
FANCA knockout in human embryonic stem cells causes a severe growth disadvantage. Stem Cell Res 2014; 13:240-50. [PMID: 25108529 DOI: 10.1016/j.scr.2014.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 11/22/2022] Open
Abstract
Fanconi anemia (FA) is an autosomal recessive disorder characterized by progressive bone marrow failure (BMF) during childhood, aside from numerous congenital abnormalities. FA mouse models have been generated; however, they do not fully mimic the hematopoietic phenotype. As there is mounting evidence that the hematopoietic impairment starts already in utero, a human pluripotent stem cell model would constitute a more appropriate system to investigate the mechanisms underlying BMF in FA and its developmental basis. Using zinc finger nuclease (ZFN) technology, we have created a knockout of FANCA in human embryonic stem cells (hESC). We introduced a selection cassette into exon 2 thereby disrupting the FANCA coding sequence and found that whereas mono-allelically targeted cells retain an unaltered proliferation potential, disruption of the second allele causes a severe growth disadvantage. As a result, heterogeneous cultures arise due to the presence of cells still carrying an unaffected FANCA allele, quickly outgrowing the knockout cells. When pure cultures of FANCA knockout hESC are pursued either through selection or single cell cloning, this rapidly results in growth arrest and such cultures cannot be maintained. These data highlight the importance of a functional FA pathway at the pluripotent stem cell stage.
Collapse
|
24
|
Larin M, Gallo D, Tamblyn L, Yang J, Liao H, Sabat N, Brown GW, McPherson JP. Fanconi anemia signaling and Mus81 cooperate to safeguard development and crosslink repair. Nucleic Acids Res 2014; 42:9807-20. [PMID: 25056314 PMCID: PMC4150781 DOI: 10.1093/nar/gku676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Individuals with Fanconi anemia (FA) are susceptible to bone marrow failure, congenital abnormalities, cancer predisposition and exhibit defective DNA crosslink repair. The relationship of this repair defect to disease traits remains unclear, given that crosslink sensitivity is recapitulated in FA mouse models without most of the other disease-related features. Mice deficient in Mus81 are also defective in crosslink repair, yet MUS81 mutations have not been linked to FA. Using mice deficient in both Mus81 and the FA pathway protein FancC, we show both proteins cooperate in parallel pathways, as concomitant loss of FancC and Mus81 triggered cell-type-specific proliferation arrest, apoptosis and DNA damage accumulation in utero. Mice deficient in both FancC and Mus81 that survived to birth exhibited growth defects and an increased incidence of congenital abnormalities. This cooperativity of FancC and Mus81 in developmental outcome was also mirrored in response to crosslink damage and chromosomal integrity. Thus, our findings reveal that both pathways safeguard against DNA damage from exceeding a critical threshold that triggers proliferation arrest and apoptosis, leading to compromised in utero development.
Collapse
Affiliation(s)
- Meghan Larin
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - David Gallo
- Department of Biochemistry, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, Canada
| | - Laura Tamblyn
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Jay Yang
- Department of Biochemistry, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, Canada
| | - Hudson Liao
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Nestor Sabat
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| | - Grant W Brown
- Department of Biochemistry, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, Canada
| | - J Peter McPherson
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, M5S 1A8, Canada
| |
Collapse
|
25
|
Abstract
The inherited bone marrow failure (BMF) syndromes are a rare and diverse group of genetic disorders that ultimately result in the loss of blood production. The molecular defects underlying many of these conditions have been elucidated, and great progress has been made toward understanding the normal function of these gene products. This review will focus on perhaps the most well-known and genetically heterogeneous BMF syndrome: Fanconi anemia. More specifically, this account will review the current state of our knowledge on why the bone marrow fails in this illness and what this might tell us about the maintenance of bone marrow function and hematopoiesis.
Collapse
Affiliation(s)
- Juan I Garaycoechea
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | |
Collapse
|